These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Water Injected Turbomachinery  

NASA Technical Reports Server (NTRS)

From antiquity, water has been a source of cooling, lubrication, and power for energy transfer devices. More recent applications in gas turbines demonstrate an added facet, emissions control. Fogging gas turbine inlets or direct injection of water into gas turbine combustors, decreases NOx and increases power. Herein we demonstrate that injection of water into the air upstream of the combustor reduces NOx by factors up to three in a natural gas fueled Trapped Vortex Combustor (TVC) and up to two in a liquid JP-8 fueled (TVC) for a range in water/fuel and fuel/air ratios.

Hendricks, R. C.; Shouse, D. T.; Roquemore, W. M.

2005-01-01

2

Strongly Gorenstein projective, injective, and flat modules  

E-print Network

Abstract. In this paper, we study a particular case of Gorenstein projective, injective, and flat modules, which we call, respectively, strongly Gorenstein projective, injective, and flat modules. These last three classes of modules give us a new characterization of the first modules, and confirm that there is an analogy between the notion of “Gorenstein projective, injective, and flat modules”and the notion of the usual “projective, injective, and flat modules”. Key Words. Gorenstein projective, injective, and flat modules; completely projective, injective, and flat resolutions; strongly Gorenstein projective, injective, and flat modules; quasi-Frobenius rings; S-rings. 1

Driss Bennis; Najib Mahdou

3

Strongly Gorenstein projective, injective, and flat modules  

Microsoft Academic Search

In this paper, we study a particular case of Gorenstein projective, injective, and flat modules, which we call, respectively, strongly Gorenstein projective, injective, and flat modules. These last three classes of modules give us a new characterization of the first modules, and confirm that there is an analogy between the notion of “Gorenstein projective, injective, and flat modules” and the

Driss Bennis; Najib Mahdou

2007-01-01

4

Strongly Gorenstein projective, injective, and flat modules  

Microsoft Academic Search

In this paper, we study a particular case of Gorenstein projective, injective, and flat modules, which we call, respectively, strongly Gorenstein projective, injective, and flat modules. These last three modules give us a new characterization of the first modules, and confirm that there is an analogy between the notion of Gorenstein projective, injective, and flat modules and the notion of

Driss Bennis; Najib Mahdou

2006-01-01

5

Energy recovery by water injection  

SciTech Connect

Several analytical and numerical studies that address injection and thermal breakthrough in fractured geothermal reservoirs are described. The results show that excellent thermal sweeps can be achieved in fractured reservoirs, and that premature cold water breakthrough can be avoided if the injection wells are appropriately located.

Witherspoon, P.A.; Bodvarsson, G.S.; Pruess, K.; Tsang, C.F.

1982-07-01

6

Corrosion control in water injection systems  

SciTech Connect

Corrosion control in water injection systems encompasses a wide range of technologies, including chemicals (corrosion inhibitors, biocides, and oxygen scavengers); corrosion-resistant materials (metallic and nonmetallic); internal coatings and linings; mechanical removal of dissolved oxygen; velocity control; and prevention of oxygen entry and galvanic couples. This article reviews the way that these technologies are used in modern water-injection systems (both seawater and produced water) to provide an acceptable service life and high-quality injection water.

Patton, C.C. (C.C. Patton and Associates Inc., Dallas, TX (United States))

1993-08-01

7

Relative Projective Modules and Relative Injective Modules  

Microsoft Academic Search

Let R be a ring, and n and d fixed non-negative integers. An R-module M is called (n, d)-injective if Ext R (P, M) = 0 for any n-presented R-module P. M is said to be (n, d)-projective if Ext R (M, N) = 0 for any (n, d)-injective R-module N. We use these concepts to characterize n-coherent rings and (n, d)-rings. Some known

Lixin Mao; Nanqing Ding

2006-01-01

8

Global Water Sampling Project  

NSDL National Science Digital Library

Students from around the globe will team up to test fresh water. With this collaborative project, students will compare the water quality of their local river, stream, lake or pond with other fresh water sources around the world. The focus of the project is to assess the quality of water based on physical characteristics and chemical substances, and to look for relationships and trends among the data collected by all project participants.

2009-01-01

9

LIFAC sorbent injection desulfurization demonstration project  

SciTech Connect

In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round 3). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled LIFAC Sorbent Injection Desulfurization Demonstration Project.'' The host site for this $17 million, three-phase project is Richmond Power and Light's Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--80% of the sulfur dioxide (SO{sub 2}) in the flue gas. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the first Technical Progress Report covering the period from project execution through the end of December 1990. Due to the power plant's planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

Not Available

1991-01-01

10

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01

11

Assessing Atmospheric Water Injection from Oceanic Impacts  

NASA Technical Reports Server (NTRS)

Collisions of asteroids and comets with the Earth s surface are rare events that punctuate the geologic record. Due to the vastness of Earth s oceans, oceanic impacts of asteroids or comets are expected to be about 4 times more frequent than land impacts. The resulting injections of oceanic water into the upper atmosphere can have important repercussions on Earth s climate and atmospheric circulation. However, the duration and overall effect of these large injections are still unconstrained. This work addresses atmospheric injections of large amounts of water in oceanic impacts.

Pierazzo, E.

2005-01-01

12

n-Strongly Gorenstein Projective, Injective and Flat Modules  

Microsoft Academic Search

In this article, we study the relation between m-strongly Gorenstein projective (resp., injective) modules and n-strongly Gorenstein projective (resp., injective) modules whenever m ? n, and the homological behavior of n-strongly Gorenstein projective (resp., injective) modules. We introduce the notion of n-strongly Gorenstein flat modules. Then we study the homological behavior of n-strongly Gorenstein flat modules, and the relation between these modules

Guoqiang Zhao; Zhaoyong Huang

2011-01-01

13

STRONGLY n-GORENSTEIN PROJECTIVE, INJECTIVE AND FLAT MODULES  

E-print Network

Abstract. This paper generalize the idea of the authors in [2]. Namely, we define and study a particular case of modules with Gorenstein projective, injective, and flat dimension less or equal than n ? 0, which we call, respectively, strongly n-Gorenstein projective, injective and flat modules. These three classes of modules give us a new characterization of the first modules, and they are a generalization of the notions of strongly Gorenstein projective, injective, and flat modules respectively. 1.

Najib Mahdou; Mohammed Tamekkante

14

Can Earthquakes Induced by Deep Fluid Injection Projects Be Controlled or Limited?  

NASA Astrophysics Data System (ADS)

Projects that involve the injection of high-pressure fluids at depth include Enhanced Geothermal Systems (EGS), CO2 sequestration and liquid waste disposal. We consider some case histories to address the question of the extent to which earthquakes induced by fluid injection can be controlled or limited. For instance, can induced earthquakes be controlled in ways that don't compromise the effectiveness of a given injection project? It is difficult to answer this question definitively because, to our knowledge, only one successful experiment in earthquake control has been performed (Raleigh et al., Science, v. 191, pp. 1230-1237, 1976). Moreover, for numerous injection projects, the induced earthquakes of maximum magnitude have been post shut-in, e.g., the Rocky Mountain Arsenal well, a liquid waste disposal project for which the three largest induced earthquakes occurred more than a year after injection had been terminated. For EGS operations requiring the injection of liquid into rock of low permeability, estimations of maximum magnitudes based on the volume of injected fluid have been moderately successful. For a typical magnitude distribution of induced earthquakes, it can be shown that the largest event accounts for about half of the total induced seismic moment, which is given by the volume of injected liquid multiplied by the modulus of rigidity (McGarr, J. Geophys. Res., v. 81, p. 1487, 1976). The Basel Deep Heat Mining project, an EGS injection of 11,500 cubic meters of water into low-permeability rock at a depth of five km, induced earthquakes with magnitudes that exceeded the safety threshold and so injection was discontinued (Deichmann and Giardini, Seismol. Res. Letters, v. 80, p. 784, 2009). Approximately half a day after shut-in, however, an earthquake of magnitude 3.4 occurred, the largest event of the sequence. It is worth noting that the magnitude of this earthquake is quite close to what could have been estimated based on the volume of injected water. An EGS project in the Cooper Basin, Australia, provides another recent example for which the maximum magnitude agrees with that estimated on the basis of the volume of water injected into low-permeability rock. In this case, the injection of 20,000 cubic meters of water resulted in a maximum magnitude of 3.7. Thus, for EGS projects, maximum magnitudes of induced earthquakes seem to be limited according to the volume of injected liquid. Among the issues that are, as yet, unresolved is the possibility that a small-scale fluid injection project may trigger a much larger earthquake on a pre-existing fault that is in a state close to failure.

McGarr, A.; Williams, C. F.; Hickman, S.; Oppenheimer, D. H.

2011-12-01

15

Water Injection Feasibility for Boeing 747 Aircraft  

NASA Technical Reports Server (NTRS)

Can water injection be offered at a reasonable cost to large airplane operators to reduce takeoff NO( sub x) emissions? This study suggests it may be possible. This report is a contract deliverable to NASA Glenn Research Center from the prime contractor, The Boeing Commercial Airplane Company of Seattle, WA. This study was supported by a separate contract to the Pratt & Whitney Engine Company of Hartford, CT (contract number NNC04QB58P). Aviation continues to grow and with it, environmental pressures are increasing for airports that service commercial airplanes. The feasibility and performance of an emissions-reducing technology, water injection, was studied for a large commercial airplane (e.g., Boeing 747 with PW4062 engine). The primary use of the water-injection system would be to lower NOx emissions while an important secondary benefit might be to improve engine turbine life. A tradeoff exists between engine fuel efficiency and NOx emissions. As engines improve fuel efficiency, by increasing the overall pressure ratio of the engine s compressor, the resulting increased gas temperature usually results in higher NOx emissions. Low-NO(sub x) combustors have been developed for new airplanes to control the increases in NO(sub x) emissions associated with higher efficiency, higher pressure ratio engines. However, achieving a significant reduction of NO(sub x) emissions at airports has been challenging. Using water injection during takeoff has the potential to cut engine NO(sub x) emissions some 80 percent. This may eliminate operating limitations for airplanes flying into airports with emission constraints. This study suggests an important finding of being able to offer large commercial airplane owners an emission-reduction technology that may also save on operating costs.

Daggett, David L.

2005-01-01

16

Strongly $n$-Gorenstein projective, injective and flat modules  

E-print Network

This paper generalize the idea of the authors in \\cite{Bennis and Mahdou1}. Namely, we define and study a particular case of modules with Gorenstein projective, injective, and flat dimension less or equal than $n\\geq 0$, which we call, respectively, strongly n-Gorenstein projective, injective and flat modules. These three classes of modules give us a new characterization of the first modules, and they are a generalization of the notions of strongly Gorenstein projective, injective, and flat modules respectively.

Mahdou, Najib

2009-01-01

17

Modeling of Water Injection into a Vacuum  

NASA Technical Reports Server (NTRS)

A loosely coupled two-phase vacuum water plume model has been developed. This model consists of a source flow model to describe the expansion of water vapor, and the Lagrangian equations of motion for particle trajectories. Gas/Particle interaction is modeled through the drag force induced by the relative velocities. Particles are assumed traveling along streamlines. The equations of motion are integrated to obtain particle velocity along the streamline. This model has been used to predict the mass flux in a 5 meter radius hemispherical domain resulting from the burst of a water jet of 1.5 mm in diameter, mass flow rate of 24.2 g/s, and stagnation pressure of 21.0 psia, which is the nominal Orbiter water dump condition. The result is compared with an empirical water plume model deduced from a video image of the STS-29 water dump. To further improve the model, work has begun to numerically simulate the bubble formation and bursting present in a liquid stream injected into a vacuum. The technique of smoothed particle hydrodynamics was used to formulate this simulation. A status and results of the on-going effort are presented and compared to results from the literature.

Alred, John W.; Smith, Nicole L.; Wang, K. C.; Lumpkin, Forrest E.; Fitzgerald, Steven M.

1997-01-01

18

Strongly $n$-Gorenstein projective, injective and flat modules  

Microsoft Academic Search

This paper generalize the idea of the authors in \\\\cite{Bennis and Mahdou1}. Namely, we define and study a particular case of modules with Gorenstein projective, injective, and flat dimension less or equal than $n\\\\geq 0$, which we call, respectively, strongly n-Gorenstein projective, injective and flat modules. These three classes of modules give us a new characterization of the first modules,

Najib Mahdou; Mohammed Tamekkante

2009-01-01

19

Improved Water Flooding through Injection Brine Modification  

SciTech Connect

Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

2003-01-01

20

Water Pollution. Project COMPSEP.  

ERIC Educational Resources Information Center

This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…

Lantz, H. B., Jr.

21

Western water law project  

NSDL National Science Digital Library

Students read one of two articles (the "cases") from High Country News, a bi-weekly periodical that covers environmental issues in the western North America. Both articles are about situations in which the use of ground water by irrigators has decreased the amount of surface water available for users with senior water rights. I divide the class into groups representing 1) surface water users, 2) ground water users, and 3) a regulatory board. The groups read and discuss each article and prepare a case to present to the regulatory board. After each group has prepared their case, we gather for a hearing, where groups of consultants present their cases and are questioned by the regulatory board. At the end, the regulatory board makes "decisions" on each "case". The decision isn't the focus of the exercise. The most valuable part is the subsequent discussion about the cases and the common issues in them that get the students to recognize the connection between surface and ground water and how humans have come up with confusing and sometimes scientifically conflicting sets of laws to regulate each.

Todd Rayne

22

September 26th, 2006 The Use of Water Injection for  

E-print Network

September 26th, 2006 The Use of Water Injection for CO2 Sequestration in Coalbeds 23rd for an extensive time period (thousands of years), filling the coal cleat system with formation water. #12;Water Coal surface CH4 molecule Natural Equilibrium of a Coal Formation #12;Water Coal surface CH4 molecule

Mohaghegh, Shahab

23

Benchmarking in water project analysis  

NASA Astrophysics Data System (ADS)

The with/without principle of cost-benefit analysis is examined for the possible bias that it brings to water resource planning. Theory and examples for this question are established. Because benchmarking against the demonstrably low without-project hurdle can detract from economic welfare and can fail to promote efficient policy, improvement opportunities are investigated. In lieu of the traditional, without-project benchmark, a second-best-based "difference-making benchmark" is proposed. The project authorizations and modified review processes instituted by the U.S. Water Resources Development Act of 2007 may provide for renewed interest in these findings.

Griffin, Ronald C.

2008-11-01

24

SURFACE WATER EMAP PROJECT  

EPA Science Inventory

The surface water component of the EPA Environmental Monitoring and Assessment Program (EMAP) Western Pilot is a five-year effort to assess the ecological condition of rivers and streams across 12 states in the western United States. EMAP is designed to monitor indicators of poll...

25

Project W.A.T.E.R.  

ERIC Educational Resources Information Center

Introduces networking projects for studying rivers and water quality. Describes two projects in South Africa (Project W.A.T.E.R and SWAP) associated with the international network, Global Rivers Environmental Education Network. Discusses water test kits and educational material developed through Project W.A.T.E.R. (Water Awareness through…

EnviroTeach, 1992

1992-01-01

26

Water mist injection in oil shale retorting  

DOEpatents

Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

1980-07-30

27

BX In Situ Oil Shale Project. Special technical report: surface water hydrology of the Piceance Creek basin and BX In Situ Oil Shale Project, Rio Blanco Country, Colorado. [Steam injection  

Microsoft Academic Search

Objective is to demonstrate the technical feasibility of using superheated steam as a heat-carrying medium to retort in situ the oil shale in the Green River Formation leached zone and provide a mechanism for the recovery of this shale oil with a minimum impact on the environment. One trillion Btu of heat will be injected into a site over two

Dougan

1979-01-01

28

Water Jet Impingement Flow Characteristics in Direct Vessel Injection System  

SciTech Connect

Water jet impingement is a peculiar phenomenon in the APR1400 (Advanced Power Reactor 1400 MWe) in which the safety injection nozzle is located in the outer reactor vessel, not in the cold leg such as in OPR1000 (Optimized Power Reactor 1,000 MWe). Therefore, the injected emergency core coolant (ECC) water spreads with a form of parabolic liquid film in the inner barrel after impinging. It is presently considered that the downcomer flow behavior is strongly governed by the location and geometry of the water injection nozzles. The impingement in the reactor vessel downcomer is one of the unknown important phenomena during a loss-of-coolant accident (LOCA). There is thus a strong need to find how the injected flow strikes the inner downcomer wall and how wide the liquid film spreads by the impingement phenomenon. The liquid film gets in contact with the steam flow in the reactor downcomer such that the interfacial area of liquid film affects the direct bypass according to the nozzle location and geometry. The water jet impingement consists of three rather distinctive flow regions. Albeit the relevant hydrodynamic characteristics are simple and well known in simple geometries, the findings are not readily applicable in the annular reactor downcomer. Analytical and experimental approaches for impingement flow by water injection have yielded detailed flow mechanisms classified in the downcomer. The water injected through three boundaries showed varying behavior according to the injection velocity, injection nozzle diameter, wall curvature, and injection nozzle inclination. As the water injection velocity increases the liquid film spreading width increases, but the spreading width proportional to the injection velocity is tapered due to breakup. Given the injection velocity, a large diameter of injection nozzle increases the film spreading width. Impingement on the flat plate has a larger film spreading width than on the curved plate. Moreover, a larger curvature decreases the film spreading width. The inclined angle of the injection nozzle is a pivotal factor in reducing the film width by increasing the downward velocity. Given the same conditions, the film spreading width lessens as the inclined angle increases. (authors)

Yoon, Sang H. [Seoul National University and PHILOSOPHIA, Inc., San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-744 (Korea, Republic of); Suh, Kune Y. [PHILOSOPHIA, Inc., San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-744 (Korea, Republic of)

2006-07-01

29

Pecos River Water Management Project  

NASA Astrophysics Data System (ADS)

Sandia National Laboratories is providing technical assistance to farmer members of the Carlsbad Irrigation District (CID) to better plan the storage, delivery, and application of water to the Carlsbad Project. The surface waters along the Pecos River are allocated by the State of New Mexico to three major entities: 1) The State of Texas - each year a percentage of water from the natural river flow must be delivered to Texas as governed by the Interstate Streams Commission; 2) CID farmer members - a fixed portion of water must be delivered to the farming members of the CID; and 3) wildlife - an amount of water must be allocated to support the wildlife habitat in the Pecos River, most notably, the endangered Pecos Bluntnose Shiner Minnow. The Pecos Bluntnose Shiner Minnow habitat preference is under investigation by other state and national agencies and preliminary work has established that water depth, water velocity, and sediment activity (dunes, ripples, etc.) are the key parameters influencing minnow habitat preference. The amount of water (river flow rate) necessary to maintain a preferable habitat to support this species has yet to be determined. With a limited amount of water in the Pecos River and its reservoirs, it is critical to allocate water efficiently such that habitat is maintained, the farmers of the CID are supported, and New Mexico meets its commitments to the State of Texas. This study investigates the relationship between flow rate in the river and water depth, water velocity, and sediment activity. The goal is to establish a predictive tool that supports informed decisions about water management practices along the Pecos River that will maximize water available for agriculture and the State of Texas while maintaining the aquatic habitat.

Roberts, J. D.; James, S. C.

2003-12-01

30

Water injected fuel cell system compressor  

DOEpatents

A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

2001-01-01

31

LEPTA project: Formation and injection of positron beam  

NASA Astrophysics Data System (ADS)

The project of the Low-Energy Particle Toroidal Accumulator (LEPTA) has been developed and is put into operation at the Joint Institute for Nuclear Research (Dubna). The LEPTA facility is a small positron storage ring equipped with an electron cooling system. The project positron energy is 2-4 keV. The main purpose of the facility is to generate an intense flux of positronium atoms (the bound state of the electron and positron). The LEPTA storage ring was commissioned in September 2004. The positron injector was designed in 2005-2010, and the beam transport channel was constructed in 2011. The experiments on electron and positron injection from the injector into the accumulator were started in August 2011. The results are reported here.

Akhmanova, E. V.; Eseev, M. K.; Kobets, A. G.; Meshkov, I. N.; Rudakov, A. Yu.; Sidorin, A. A.; Yakovenko, S. L.

2012-07-01

32

Fahud field review: A switch from water to gas injection  

SciTech Connect

The water injection schemes implemented in the Fahud field during the early 1970's led to poor recoveries because the reservoirs were both fractured and oil-wet. On the basis of the results of a thorough performance review, it was decided in 1983 to promote gas/oil gravity drainage fully by drilling rows of downdip producers and switching completely from water to gas injection. This paper investigates the reasons behind each stage of development and reviews recent efforts to evaluate the future production potential through the use of dual-porosity simulators.

O'Neill, N.

1988-05-01

33

Evaluating reservoir production strategies in miscible and immiscible gas-injection projects  

E-print Network

, comprehensive reservoir engineering and project monitoring are necessary for typical miscible flood projects than for other recovery methods. This project evaluated effects of important factors such as injection pressure, vertical-to-horizontal permeability...

Farzad, Iman

2004-11-15

34

Project WET (Water Education for Teachers)  

NSDL National Science Digital Library

Project WET (Water Education for Teachers) is an international, interdisciplinary, water education program for formal and informal educators of students ages 5 to 18. This project site provides opportunities to order high quality educational material, samples of Project WET activities, information on Make a Splash Festivals, education standards, information on events, Project Wet reports and water related links. There is also a link to all of the state coordinators for this project.

35

Nox Emission Reduction in Commercial Jets Through Water Injection  

NASA Technical Reports Server (NTRS)

This paper discusses a method of the nitrogen oxides (NOx) emission reduction through the injection of water in commercial turbofan engines during the takeoff and climbout cycles. In addition to emission reduction, this method can significantly reduce turbine temperature during the most demanding operational modes (takeoff and climbout) and increase engine reliability and life.

Balepin, Vladimir; Ossello, Chris; Snyder, Chris

2002-01-01

36

EFFECTS OF WATER INJECTION INTO FRACTURED GEOTHERMAL RESERVOIRS  

E-print Network

SGP-TR-57 SGP-TR-57 EFFECTS OF WATER INJECTION INTO FRACTURED GEOTHERMAL RESERVOIRS: A SUMMARY OF EXPERIENCE WORLDWIDE BY ROLAND N . HORNE JUNE 1982 SPONSORED BY THE GEOTHERMAL AND HYDROPOWER TECHNOLOGIES INTO FRACTURED GEOTHERMAL RESERVOIRS A SUMMARY OP EXPERImCE WORtDWIDE Roland N. Horne Stanford University

Stanford University

37

Highly efficient 6-stroke engine cycle with water injection  

DOEpatents

A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

Szybist, James P; Conklin, James C

2012-10-23

38

Water injection in longwall top-coal caving face in China  

SciTech Connect

This paper discussed the means of improving dust control efficiency using water injection. At first, the authors point out that internal water has effect on dust control. The objective of water injection is to increase the amount of internal water. Secondly, by analyzing the development trend of crack in top-coal, proper water injection station and boreholes can be determined for dust control.

Yong, Z.; Gui, F.

1999-07-01

39

The global water systems project  

NASA Astrophysics Data System (ADS)

The Global Water System (GWS) plays a central and integrative role in the dynamics of the Earth system. It is a regulator of biogeophysical and biogeochemical processes, and it is also is essential for sustenance of human societies. The GWS is increasingly modified by humans and through climate effects (facets of it have moved well outside the range of natural variability), without adequate understanding of how the system works. For understanding the changes, feedbacks and potentially critical thresholds within the Earth system, and eventually for better managing the GWS, new synthetic knowledge is required. The Global Water System Project (GWSP) is a new activity being undertaken jointly by the World Climate Research Programme (WCRP), International Geophshere-Biosphere Program (IGBP), International Human Dimensions Program (IHP), and Diversitas. It will address the GWS in a comprehensive fashion at the global scale, building upon the emerging new consolidated Earth systems data sets, global monitoring tools, and predictive and coupled modeling capabilities. The central scientific question that motivates the GWSP is: "How are humans changing the global water cycle, the associated biogeochemical cycles, and the biological components of the GWS, and what are the social feedbacks arising from these changes?" GWSP will be structured around three "framing questions": a) What are the relative magnitudes of global-scale changes in the global water system that are attributable to changing human activities, and to environmental factors such as climate variability and change?; b) What are the main mechanisms by which human activities are affecting the global water system; and c) To what extent is the global water system resilient to global change? Examples of issues that might be addressed under each of these questions are provided.

Hoff, H.; Jaeger, C.; Leveque, C.; Lettenmaier, D.; Lins, H.; Meybeck, M.; Niasse, M.; Vorosmarty, C.

2003-04-01

40

Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project  

SciTech Connect

We present the results of coupled thermal, hydraulic, and mechanical (THM) modeling of a proposed stimulation injection associated with an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths below 3 km. Accurate micro-earthquake monitoring from the start of the injection will be used as a tool for tracking the development of the EGS. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11), located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir.

Rutqvist, J.; Oldenburg, C.M.; Dobson, P.F.

2010-02-01

41

Combined Opportunities in Energy & Water Conservation Projects  

E-print Network

Combined Opportunities in Energy & Water Conservation Projects A.Keller, S. Hughes, S. Bennett, M, the Metropolitan Water District, the California Urban Water Conservation Council, Santa Clara Valley Water District) as a result of energy and water conservation; ~ Determined total cost of implementing the conservation

Keller, Arturo A.

42

Multisyringe flow injection spectrophotometric determination of uranium in water samples  

Microsoft Academic Search

A multisyringe flow injection analysis method for the determination of uranium in water samples was developed. The methodology\\u000a was based on the complexation reaction of uranium with arsenazo (III) at pH 2.0. Uranium concentrations were spectrophotometrically\\u000a detected at 649 nm using a light emitting diode. Under the optimized conditions, a linear dynamic range from 0.1 to 4.0 ?g mL?1, a 3? detection limit

Jorge L. Guzmán Mar; Leticia López Martínez; Pedro L. López de Alba; Nancy Ornelas Soto; Víctor Cerdà Martín

2009-01-01

43

Multifluid Flows, Interface Capturing and Application to the Simulation of the Water Assisted Injection Molding Process  

E-print Network

Injection Molding Process T. Coupez (a), H. Digonnet (a), A. Rodriguez-Villa (b), W. Zerguine (a,b) and L Water Assisted Injection Molding (WAIM) is a recent injection process, similar to Gas Assisted Injection Molding, but that presents a number of advantages: for example, water allows a rapid cooling

Paris-Sud XI, Université de

44

A Laboratory Study of Wilmington Tar Zone CO2 Injection Project  

Microsoft Academic Search

The authors conducted a laboratory study of heavy-oil recovery by COâ injection to support the Wilmington, CA tar zone COâ injection project operated by Long Beach Oil Development Co. The study comprised (1) phase behavior of Wilmington tar zone reservoir oil and COâ, and (2) phase behavior of the oil and the refinery gas used for the field project, (3)

Vega Sankur; J. L. Creek; S. S. DiJulio; A. S. Emanuel

1986-01-01

45

The research of numerical simulation in Wuliwan oilfield water injection system  

Microsoft Academic Search

This paper studied the efficiency of the oilfield water injection system by using the water injection system theory, fluid mechanics theory, and graph theory and optimization design technology. According to the actual conditions, the paper established the mathematical model of Wuliwan oilfield pipe network. Based on the actual data of production, energy distribution of oilfield water injection system was analyzed.

Guoqiang Feng; Yanlai Li; Xinghua Zhang; Guoyong Feng

2011-01-01

46

Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides  

NASA Technical Reports Server (NTRS)

The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.

Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.

2010-01-01

47

Air injection project breathes fire into aging West Hackberry oil field  

Microsoft Academic Search

Amoco, the DOE and LSU seek more oil from Gulf Coast salt dome fields with air injection technique. The West Hackberry Field in Louisiana is a water-driven reservoir. By injecting air into the high-pressure, high-temperature reservoir rock, the water is backed down, allowing the oil to drain off the steeply dipped rock.

Duey

1996-01-01

48

Air injection project breathes fire into aging West Hackberry oil field  

SciTech Connect

Amoco, the DOE and LSU seek more oil from Gulf Coast salt dome fields with air injection technique. The West Hackberry Field in Louisiana is a water-driven reservoir. By injecting air into the high-pressure, high-temperature reservoir rock, the water is backed down, allowing the oil to drain off the steeply dipped rock.

Duey, R.

1996-02-01

49

Aging study of boiling water reactor high pressure injection systems  

SciTech Connect

The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-03-01

50

Tracing and age-dating recycled waste water recharged for potable reuse in a seawater injection barrier, southern California, USA  

SciTech Connect

In this report we outline an investigative approach that combines isotopic tracers and tritium-helium-3 (3H-3He) dating to directly measure groundwater mixing and ages. These data can be used to test regulatory compliance in potable water reuse projects (Davisson et al., 1998). We provide an example from a seawater injection barrier located in Orange County, California, which has been injecting advanced- treated waste water into a coastal aquifer for the past 25 years to prevent seawater intrusion. Treatment comprises lime coagulation of secondary waste effluents, followed by re-carbonation, sand filtration, and reverse osmosis. The finished water has a very low TDS (-100 mg/L), which is blended -50% with a low TDS (288 mg/L) native groundwater, making an injection water of -200 mg/L.

Davisson, M L; Esser, B K; Herndon, R L; Hudson, G B

1998-12-02

51

Potential impacts of water injection dredging on water quality and ecotoxicity in Limehouse Basin, River Thames, SE England, UK  

Microsoft Academic Search

The use of water injection dredging (WID) is increasing in the UK’s inland waterways and marinas. Jets of water are injected under low pressure directly into bottom sediment creating a turbulent water-sediment mixture that flows under the influence of gravity. Many of these sediments are highly contaminated and little is known of the effects of contaminant release on water quality

K. L. Spencer; R. E. Dewhurst; P. Penna

2006-01-01

52

Evaluation of Water Injection Effect on NO(x) Formation for a Staged Gas Turbine Combustor  

NASA Technical Reports Server (NTRS)

NO(x) emission control by water injection on a staged turbine combustor (STC) was modeled using the KIVA-2 code with modification. Water is injected into the rich-burn combustion zone of the combustor by a single nozzle. Parametric study for different water injection patterns was performed. Results show NO(x) emission will decrease after water being injected. Water nozzle location also has significant effect for NO formation and fuel ignition. The chemical kinetic model is also sensitive to the excess water. Through this study, a better understanding of the physics and chemical kinetics is obtained, this will enhance the STC design process.

Fan, L.; Yang, S. L.; Kundu, K. P.

1996-01-01

53

Efficiency Projects and Water Reuse  

E-print Network

Generation Cooling Towers ?Irrigation of 90-Acre Sports Complex ?Gas Well Frac Water ?8-Mile Dedicated Pipeline Looping Around East Side of City ?Global 210 Authorization / In-Direct Take Point ?Insures Flexibility ?Future Plans ?10-Mile West Loop... Line / Elevated Storage ?Wetlands / Outfall to Lake Pat Cleburne ?Automated Take Point (South) for Frac Water Sales ?Water Reuse Stretch your Supplies ESL-KT-11-11-36 ?Questions? bill.pannell@cleburne.net ESL-KT-11-11-36 ...

Pannell, B.

2011-01-01

54

Factors affecting the recovery of petroleum in projects involving the injection of liquefied petroleum gases (LPG)  

E-print Network

FACTORS AFFECTING THE RECOVERY OF PETROLEUM IN PROJECTS INVOLVING THE INJECTION OF LIQUEFIED PETROLEUM GASES (LPG) A Thesis By GERRY A. GRAHAM Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1961 Major Subject: Petroleum Engineering GERRY A. GRAHAM FACTORS AFFECTING THE RECOVERY OF PETROLEUM IN PROJECTS INVOLVING THE INJECTION OF LIQUEFIED PETROLEUM GASES (LPG) A...

Graham, Gerry A

2012-06-07

55

Pure water injection into porous rock with superheated steam and salt in a solid state  

NASA Astrophysics Data System (ADS)

Most of geothermal fields require injection of fluid into the hot rock to maintain pressure and productivity. The presence of solid salt in porous space may cause an unexpected change in the characteristics of the reservoir and produced fluids, and dramatically affect the profitability of the project. We consider an injection problem of pure water into high temperature geothermal reservoir, saturated with superheated vapour and solid salt. Pure water moves away from injection point and dissolves solid salt. When salty water reaches the low-pressure hot domain, water evaporation occurs and, consequently, salt precipitates. We develop a simplified analytical model of the process and derive the similarity solutions for a 1-D semi-infinite reservoir. These solutions are multi-valued and describe the reduction in permeability and porosity due to salt precipitation at the leading boiling front. If the parameters of the system exceed critical values, then similarity solution ceases to exist. We identify this mathematical behaviour with reservoir sealing in the physical system. The TOUGH2-EWASG code has been used to verify this hypothesis and investigate the precipitate formation for an idealized bounded 1-D geothermal system of a length of 500 m with water injection at one extreme and fluid extraction at the other one. Both boundaries are kept at constant pressure and temperature. The result for the semi-infinite numerical model show that the monotonic grow of the solid salt saturation to reach asymptotic similarity solution generally occurs over a very large length starting from the injection point. Reservoir sealing occurs if solid salt at the initial state occupies a considerable part of the porous space. Numerical experiments for the bounded 500 m system demonstrate that a small amount of salt is enough to get reservoir sealing. Generally, salt tend to accumulate near the production well, and salt plug forms at the elements adjacent to the extraction point. This type of simulation studies can be applied to Hot Dry Rock systems to investigate the effects of dissolution/precipitation of solid salt, if present in the system, on the feasibility of the project.

Montegrossi, G.; Tsypkin, G.; Calore, C.

2012-04-01

56

Management of water extracted from carbon sequestration projects  

SciTech Connect

Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods for managing very large volumes of water most of which will contain large quantities of salt and other dissolved minerals. Produced water from oil and gas production also typically contains large quantities of dissolved solids. Therefore, many of the same practices that are established and used for managing produced water also may be applicable for extracted water. This report describes the probable composition of the extracted water that is removed from the formations, options for managing the extracted water, the pros and cons of those options, and some opportunities for beneficial use of the water. Following the introductory material in Chapter 1, the report is divided into chapters covering the following topics: (Chapter 2) examines the formations that are likely candidates for CO{sub 2} sequestration and provides a general evaluation of the geochemical characteristics of the formations; (Chapter 3) makes some preliminary estimates of the volume of water that could be extracted; (Chapter 4) provides a qualitative review of many potential technologies and practices for managing extracted water and for each technology or management practice, pros and cons are provided; (Chapter 5) explores the potential costs of water management; and (Chapter 6) presents the conclusions.

Harto, C. B.; Veil, J. A. (Environmental Science Division)

2011-03-11

57

75 FR 49518 - Northwest Area Water Supply Project, North Dakota  

Federal Register 2010, 2011, 2012, 2013, 2014

...INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota AGENCY...Statement (EIS) for the Northwest Area Water Supply Project (NAWS Project), a Federal...Dakotas Area Office, Attention: Alicia Waters, P.O. Box 1017, Bismarck, ND...

2010-08-13

58

75 FR 48986 - Northwest Area Water Supply Project, North Dakota  

Federal Register 2010, 2011, 2012, 2013, 2014

...INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota AGENCY...Statement (EIS) for the Northwest Area Water Supply Project (NAWS Project), a Federal...Dakotas Area Office, Attention: Alicia Waters, P.O. Box 1017, Bismarck, ND...

2010-08-12

59

Tracing and age-dating injected groundwater of the west basin barrier project, Los Angeles, CA  

SciTech Connect

This preliminary report summarizes results from isotopic data recently generated on water collected for the West Basin Municipal Water District (WBMWD). Samples comprised monitoring and production wells up to 3.5 miles form the injection barrier, in addition to barrier product and blend water.

Davisson, M L; Eaton, Gp; Hudson, G B; Koester, C

1999-03-26

60

Analysis of thrust augmentation of turbojet engines by water injection at compressor inlet including charts for calculating compression processes with water injection  

NASA Technical Reports Server (NTRS)

A psychrometric chart having total pressure (sum of partial pressures of air and water vapor) as a variable, a Mollier diagram for air saturated with water vapor, and charts showing the thermodynamic properties of various air-water vapor and exhaust gas-water vapor mixtures are presented as aids in calculating the thrust augmentation of a turbojet engine resulting from the injection of water at the compressor inlet. Curves are presented that show the theoretical performance of the augmentation method for various amounts of water injected and the effects of varying flight Mach number, altitude, ambient-air temperature, ambient relative humidity, compressor pressure ratio, and inlet-diffuser efficiency. Numerical examples, illustrating the use of the psychrometric chart and the Mollier diagram in calculating both compressor-inlet and compressor-outlet conditions when water is injected at the compressor inlet, are presented.

Wilcox, E Clinton; Trout, Arthur M

1951-01-01

61

Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection  

NASA Technical Reports Server (NTRS)

A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

Kandula, Max

2008-01-01

62

The shift of microbial population composition accompanying the injected water flowing in the water-flooding petroleum reservoirs  

NASA Astrophysics Data System (ADS)

In water-flooding petroleum reservoir, microbial populations in injected water are expected to migrate into oil-bearing strata and reach production wells. To demonstrate this, we firstly investigated microbial compositions in a homogeneous sandstone reservoir. The results indicated that the injected water harbored more microbial cells than produced water, and the shared populations and their abundance accounted for a minor fraction in injected water, while dominated in produced water, suggesting that most populations in injected water did hardly reach production wells in this reservoir. We further investigated microbial communities in water samples collected from wellhead and downhole of injection wells and production wells in a heterogeneous conglomerate reservoir. The results indicated that, except for the community reconstruction mainly resulted from dissolved oxygen, most populations were simultaneously detected in the wellhead and downhole of injection wells and production wells, suggesting that most microbial populations in injected water reached the production wells. This study suggest that microbial populations in injected water can pass through reservoir strata and reach production wells, but the reservoir heterogeneity, interwell spacing, sieve effect of strata and dissolved oxygen exert significant influence on microbial migration and distribution in reservoirs.

Gao, P. K.; Li, G. Q.; Tian, H. M.; Wang, Y. S.; Sun, H. W.; Ma, T.

2014-12-01

63

Sodium-water reaction acoustic noise for liquid phase injections. [LMFBR  

SciTech Connect

Data on liquid and steam injections into sodium were recorded during a series of wastage experiments. These data are analyzed for acoustic power and spectral characteristics, expanding the data base up to 10 gm/sec injection rates from the earlier 0.5 gms/sec. No significant difference in acoustic power was measured between low temperature steam and liquid injections for the same mass flowrates. The bandwidth for steam injections is broader than for liquid injections. Reaction product deposition during water injections appears to cause a decrease in signal strength with test duration.

Callis, K.R.; Greene, D.A.; Malovrh, J.W.

1981-02-01

64

Sequential injection methodology for carbon speciation in bathing waters.  

PubMed

A sequential injection method (SIA) for carbon speciation in inland bathing waters was developed comprising, in a single manifold, the determination of dissolved inorganic carbon (DIC), free dissolved carbon dioxide (CO2), total carbon (TC), dissolved organic carbon and alkalinity. The determination of DIC, CO2 and TC was based on colour change of bromothymol blue (660 nm) after CO2 diffusion through a hydrophobic membrane placed in a gas diffusion unit (GDU). For the DIC determination, an in-line acidification prior to the GDU was performed and, for the TC determination, an in-line UV photo-oxidation of the sample prior to GDU ensured the conversion of all carbon forms into CO2. Dissolved organic carbon (DOC) was determined by subtracting the obtained DIC value from the TC obtained value. The determination of alkalinity was based on the spectrophotometric measurement of bromocresol green colour change (611 nm) after reaction with acetic acid. The developed SIA method enabled the determination of DIC (0.24-3.5 mg C L(-1)), CO2 (1.0-10 mg C L(-1)), TC (0.50-4.0 mg C L(-1)) and alkalinity (1.2-4.7 mg C L(-1) and 4.7-19 mg C L(-1)) with limits of detection of: 9.5 ?g C L(-1), 20 ?g C L(-1), 0.21 mg C L(-1), 0.32 mg C L(-1), respectively. The SIA system was effectively applied to inland bathing waters and the results showed good agreement with reference procedures. PMID:23639397

Santos, Inês C; Mesquita, Raquel B R; Machado, Ana; Bordalo, Adriano A; Rangel, António O S S

2013-05-17

65

Little Big Horn River Water Quality Project  

SciTech Connect

This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

Bad Bear, D.J.; Hooker, D. [Little Big Horn Coll., Crow Agency, MT (United States)

1995-10-01

66

Barium Sulfate Scale Formation in Oil Reservoir During Water Injection at High-Barium Formation Water  

NASA Astrophysics Data System (ADS)

This study presents the results of laboratory experiments carried out to investigate the formation of barium sulfate in sandstone cores from mixing injected sea water and formation water contain high concentration of barium at various temperatures (50 and 80°C) and differential pressures (100, 150 and 200 psig). The morphology of scaling crystals as shown by Scanning Electron Microscopy (SEM) is presented. Results show a large extent of permeability damage caused by barium sulfate deposits on the rock pore surface. The rock permeability decline indicates the influence of the concentration of barium ions.

Merdhah, Amer Badr Bin; Mohd Yassin, Abu Azam

67

Scale Formation in Oil Reservoir During Water Injection at High-Salinity Formation Water  

NASA Astrophysics Data System (ADS)

This study presents the results of Laboratory experiments carried out to investigate the formation of calcium and strontium sulfates in sandstone cores from mixing injected sea water and formation water contain high concentration of calcium and strontium ions at various temperatures (50 and 80?C) and differential pressures (100 and 200 psig). The morphology of scaling crystals as shown by Scanning Electron Microscopy (SEM) is presented. Results show a large extent of permeability damage caused by calcium and strontium sulfates deposit on the rock pore surface. The rock permeability decline indicates the influence of the concentration of calcium and strontium ions.

Merdhah, Amer Badr Bin; Mohd Yassin, Abu Azam

68

Engine Company Evaluation of Feasibility of Aircraft Retrofit Water-Injected Turbomachines  

NASA Technical Reports Server (NTRS)

This study supports the NASA Glenn Research Center and the U.S. Air Force Research Laboratory in their efforts to evaluate the effect of water injection on aircraft engine performance and emissions. In this study, water is only injected during the takeoff and initial climb phase of a flight. There is no water injection during engine start or ground operations, nor during climb, cruise, descent, or landing. This study determined the maintenance benefit of water injection during takeoff and initial climb and evaluated the feasibility of retrofitting a current production engine, the PW4062 (Pratt & Whitney, East Hartford, CT), with a water injection system. Predicted NO(x) emissions based on a 1:1 water-tofuel ratio are likely to be reduced between 30 to 60 percent in Environmental Protection Agency parameter (EPAP). The maintenance cost benefit for an idealized combustor water injection system installed on a PW4062 engine in a Boeing 747-400ER aircraft (The Boeing Company, Chicago, IL) is computed to be $22 per engine flight hour (EFH). Adding water injection as a retrofit kit would cost up to $375,000 per engine because of the required modifications to the fuel system and addition of the water supply system. There would also be significant nonrecurring costs associated with the development and certification of the system that may drive the system price beyond affordability.

Becker, Arthur

2006-01-01

69

Stimulation of water injection wells in the Los Angeles basin using sodium hypochlorite and mineral acids  

SciTech Connect

A comprehensive stimulation program was developed to improve the injectivity and vertical coverage of water injection wells in the East Beverly Hills Hills and San Vicente Fields. In recent years the wells had low to zero injectivity and very limited vertical distribution of injected water as a result of formation damage, sand face plugging, and perforation blockage. A stimulaiton strategy was developed which sequentially removed this damage. It began with redesigning the central water plant to provide clean injection brine. The casing was mechanically cleaned. Near-wellbore solids were dissolved or loosened using hydrochloric acid and/or sodium hypochlorite (bleach); then, removed from the well by reverse circulating and suction washing. Remaining damage was treated with hydrochloric/hydrofluoric acid and bleach using circulation wash and selective squeeze techniques. Two- to three-fold improvements in injectivity after stimulation were common. Vertical distribution was typically improved from an initial 0-30% coverage to 85-95% after stimulation. 10 refs.

Clementz, D.M.; Patterson, D.E.; Aseltine, R.J.; Young, R.E.

1982-01-01

70

An experimental study of the water-assisted injection molding of glass fiber filled poly-butylene-terephthalate (PBT) composites  

Microsoft Academic Search

The purpose of this report was to experimentally study the water-assisted injection molding process of poly-butylene-terephthalate (PBT) composites. Experiments were carried out on an 80-ton injection-molding machine equipped with a lab scale water injection system, which included a water pump, a pressure accumulator, a water injection pin, a water tank equipped with a temperature regulator, and a control circuit. The

Shih-Jung Liu; Ming-Jen Lin; Yi-Chuan Wu

2007-01-01

71

A laboratory study of Wilmington tar zone CO/sub 2/ injection project  

SciTech Connect

A laboratory study of heavy oil recovery by CO/sub 2/ injection was undertaken in support of the Wilmington Tar Zone CO/sub 2/ Injection project operated by Long Beach Oil Development Company. The work included: - Phase behavior of Tar Zone reservoir oil and CO/sub 2/. - Phase behavior of Tar Zone reservoir oil and the refinery gas (82% CO/sub 2/ - 18% N/sub 2/) used for the field project. - Viscosity measurements of oil-gas mixtures. - Reservoir condition displacements of oil by CO/sub 2/ and by refinery gas. - Equation of state characterization of phase behavior. - Computer simulation of gas-oil displacements. Saturation pressures and swelling factors were measured for oil-gas mixtures for up to 60 mol % CO/sub 2/ and for up to 50 mol % refinery gas. These measurements show that N/sub 2/ is substantially less soluble in oil than CO/sub 2/. Viscosity measurements show that the viscosity reduction is a function of pressure and the total gas dissolved in the oil. Four reservoir condition corefloods were completed: - Refinery gas injection at 0.22:1 WAG ratio, followed by waterflood. - Continuous CO/sub 2/ injection followed by waterflood. - Continuous refinery gas injection followed by waterflood. - Refinery gas injection at 1:1 WAG ratio, followed by waterflood. These floods showed that 1) the recovery efficiency of CO/sub 2/ is higher than that of the refinery gas for continuous or low WAG injection and 2) the recovery efficiency of the refinery gas at 1:1 WAG is about twice that of continuous injection. The corefloods were modeled with a finite difference compositional simulator. Predictions agree with the experimental results.

Sankur, V.; Creek, J.L.; DiJulio, S.S.; Emanuel, A.S.

1984-04-01

72

Joint management of water and electricity in State Water Project  

NASA Astrophysics Data System (ADS)

Understanding the relationship between California's water and electrical power is important for improving the management and planning of these two vital resources to the state's economy development and people's well-being. It is often unclear for consumers, managers and decision-makers that water and electricity in California are inextricably connected. In the past, insufficient considerations of electricity production, consumption and cost in the State Water Project (SWP) - the world's largest publicly built and operated water and power development and conveyance system-has led to significant water rate and electricity rate increase. An innovative concept of this proposed study is developing new technology capable of managing and planning water and power jointly in SWP to promote its operation efficiency, sustainability and resilience to potential water shortage caused by climate change and population increase. To achieve this goal, a nonlinear, two-fold network model describing water delivery in company with power consumption and generation will be constructed, and a multi-objective optimization scheme is to be used to resolve this complex nonlinear network problem.

Yang, T.

2013-12-01

73

Control of water coning in gas reservoirs by injecting gas into the aquifer  

E-print Network

of water in the producing well. fiost research on water coning has been directed toward minimizing water production by reduced well penetration or production rate con- tro1. An alternative method for gas wells with water coning problems, is to inject.... This gives high water cuts in the early stages of the succeeding production, when gas is injected deep in the aquifer. This was not a significant problem for the high permeability ratio. When the well is put on production, the established cone overrides...

Haugen, Sigurd Arild

2012-06-07

74

Influence of water injection on performance and emissions of a direct-injection hydrogen research engine.  

SciTech Connect

The application of hydrogen (H{sub 2}) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for IC engines and hence it is widely regarded as the energy carrier of the future. Direct injection of hydrogen allows optimizing this potential as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently engine efficiency and exhaust emissions.

Nande, A. M.; Wallner, T.; Naber, J. (Energy Systems); (MIchigan Technological Univ.)

2008-10-06

75

Geohydrology and water quality in northern Portage County, Ohio, in relation to deep-well brine injection  

USGS Publications Warehouse

Geohydrology and water quality of the principal freshwater aquifers near oilfield and gasfield brine-injection wells in northern Portage County, Ohio, were evaluated. Since 1975, 13 wells in this part of the Country have been used to dispose of more than 4.5 million barrels of brine by injection into Silurian carbonate and sandstone rocks that generally are greater than 3,500 feet below land surface. More than 3,000 feet of interbedded shales, sandstones, carbonates, and evaporites separate the freshwater aquifers from these brine-injection zones. The shallowest brine-injection zone is greater than 2,200 feet below sea level. Native fluids in the injection zones have dissolved-solids concentrations greater than 125,000 milligrams per liter and are hydraulically isolated from the freshwater aquifers. No known faults or fracture systems are present in northern Portage County, although abandoned oil and gas wells could exist and serve as conduits for migration of injected brine. Pennsylvanian clastic units are freshwater bearing in northern Portage County, and two bedrock aquifers generally are recognized. The shallower bedrock aquifer (Connoquenessing Sandstone Member of the Pottsville Formation) principally consists of sandstone; this aquifer is separated from a deeper sandstone and conglomerate aquifer in the lower part of the Sharon Member (Pottsville Formation) by shale in the upper part of the Sharon Member that acts as a confining unit. The upper sandstone aquifer is the surficial aquifer where overlying glacial deposits are unsaturated in the uplands; glacial deposits comprise the surficial aquifer in buried valleys where the sandstone is absent. These two surficial aquifers are hydraulically connected and act as a single unit. The lower sandstone and conglomerate aquifer is the most areally extensive aquifer within the project area. From November 1987 through August 1988, ground-water levels remained at least 60 feet higher in the upper sandstone aquifer than in the lower sandstone and conglomerate aquifer at a topographically high recharge area. Water levels in the surficial aquifers and the lower sandstone and conglomerate aquifer were nearly the same along the Cuyahoga River. Ground water in the upper sandstone aquifer flows radially from topographically high recharge areas into the glacial deposits in the buried valleys. Much of the ground water in these surficial aquifers discharges into the Cuyahoga River. Most ground water in the lower sandstone and conglomerate aquifer flows toward discharge areas near the Cuyahoga River and Eagle Creek. In June 1988, the Cuyahoga River gained 15.8 cubic feet per second of water from the aquifers between the northern edge of Portage County and State Route 303. Ground water may have discharged into the upstream end of Lake Rockwell but did not discharge into the downstream end of the Lake during most of the period from October 1987 through September 1988. Measurements of the specific conductance of ground water sampled from areas near the 13 brine-injection wells and along the Cuyahoga River indicate no widespread ground-water contamination related to brine injection. Chemical analysis of water from 25 wells indicates that most ground waters are a calcium bicarbonate type. Water analyses show that four wells sampled contain water with chloride concentrations greater than 250 milligrams per liter. Sodium concentrations in water from these four wells ranged from 67 to 190 milligrams per liter. A mixing diagram constructed from bromide and chloride data was used to distinguish between the sources of elevated chloride concentrations in these four wells. Waters from two of the wells have been mixed with oilfield and gasfield brine, and waters from the other two wells have been mixed with a salt-solution brine such as that derived from diluted highway-deicing salts.

Eberts, S.M.

1991-01-01

76

Experimental and numerical study on the fracture of rocks during injection of CO2-saturated water  

NASA Astrophysics Data System (ADS)

Geological sequestration of CO2 into depleted hydrocarbon reserviors or saline aquifers presents the enormous potential to reduce greenhouse gas emission from fossil fuels. However, it may give rise to a complicated coupling physical and chemical process. One of the processes is the hydro-mechanical impact of CO2 injection. During the injection project, the increase of pore pressures of storing formations can induce the instability, which finally results in a catastrophic failure of disposal sites. This paper focuses mainly on the role of CO2-saturated water in the fracturing behavior of rocks. To investigate how much the dissolved CO2 can influence the pore pressure change of rocks, acoustic emission (AE) experiments were performed on sandstone and granite samples under triaxial conditions. The main innovation of this paper is to propose a time dependent porosity method to simulate the abrupt failure process, which is observed in the laboratory and induced by the pore pressure change due to the volume dilatancy of rocks, using a finite element scheme associated with two-phase characteristics. The results successfully explained the phenomena obtained in the physical experiments.

Li, Qi; Wu, Zhishen; Lei, Xing-Lin; Murakami, Yutaka; Satoh, Takashi

2007-02-01

77

Pressure-Transient Testing of Water-Injection Wells  

Microsoft Academic Search

This paper presents an interpretation method for injectivity and falloff testing in a single-layer oil reservoir that is under waterflooding and develops analytical solutions for pressure and saturation distributions. The effects of relative permeability, wellbore storage, and skin are considered in these solutions. New field-dependent type curves for falloff tests, which exhibit features that do not appear in the currently

Maghsood Abbaszadeh; Medhat Kamal

1989-01-01

78

Cerro Prieto cold water injection: effects on nearby production wells  

SciTech Connect

The liquid-dominated Cerro Prieto geothermal field of northern Baja California, Mexico has been under commercial exploitation since 1973. During the early years of operation, all waste brines were sent to an evaporation pond built west of the production area. In 1989, cooled pond brines began to be successfully injected into the reservoir along the western boundary of the geothermal system. The injection rate varied over the years, and is at present about 20% of the total fluid extracted. As expected under the continental desert conditions prevailing in the area, the temperature and salinity of the pond brines change with the seasons, being higher during the summer and lower during the winter. The chemistry of pond brines is also affected by precipitation of silica, oxidation of H{sub 2}S and reaction with airborne clays. Several production wells in the western part of the field (CP-I area) showed beneficial effects from injection. The chemical (chloride, isotopic) and physical (enthalpy, flow rate) changes observed in producers close to the injectors are reviewed. Some wells showed steam flow increases, in others steam flow decline rates flattened. Because of their higher density, injected brines migrated downward in the reservoir and showed up in deep wells.

Truesdell, A.H.; Lippmann, M.J.; De Leon, J.; Rodriguez, M.H.

1999-07-01

79

Streamline-based simulation of water injection in naturally fractured reservoirs  

E-print Network

STREAMLINE-BASED SIMULATION OF WATER INJECTION IN NATURALLY FRACTURED RESERVOIRS A Thesis by AHMED AL-HUTHALI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2003 Major Subject: Petroleum Engineering STREAMLINE-BASED SIMULATION OF WATER INJECTION IN NATURALLY FRACTURED RESERVOIRS A Thesis by AHMED AL...

Al-Huthali, Ahmed

2004-09-30

80

Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance  

NASA Astrophysics Data System (ADS)

Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

Sung, Meagan

81

A laboratory study of Wilmington tar zone CO/sub 2/ injection project  

SciTech Connect

The authors conducted a laboratory study of heavy-oil recovery by CO/sub 2/ injection to support the Wilmington, CA tar zone CO/sub 2/ injection project operated by Long Beach Oil Development Co. The study comprised (1) phase behavior of Wilmington tar zone reservoir oil and CO/sub 2/, and (2) phase behavior of the oil and the refinery gas used for the field project, (3) viscosity measurements of oil/gas mixtures, (4) reservoir-condition displacements of oil by CO/sub 2/ and by refinery gas, (5) equation-of-state characterization of phase behavior, and (6) computer simulation of gas/oil displacements. Saturation pressures and swelling factors were measured for oil/gas mixtures, which showed that N/sub 2/ is substantially less soluble in oil than is CO/sub 2/. Viscosity measurements show that the viscosity reduction is a function of pressure and of the total gas dissolved in the oil. Four reservoir-condition corefloods showed that the recovery efficiency of CO/sub 2/ is higher than that of the refinery gas for continuous or low WAG injection, and the recovery efficiency of the refinery gas at 1:1 WAG is about twice that of continuous injection. The corefloods were modeled with a finite-difference compositional simulator. Predictions agree with the experimental results.

Sankur, V.; Creek, J.L.; DiJulio, S.S.; Emanuel, A.S.

1986-01-01

82

Insights into Cold Water Injection Stimulation Effects through Analytical Solutions to Flow and Heat Transport  

SciTech Connect

Wells in traditional hydrothermal reservoirs are used to extract heat and to dispose of cooled water. In the first case, high productivity (the ratio of production flow rate to the pressure differential required to produce that rate) to is preferred in order to maximize power generation, while minimizing the parasitic energy loss of pumping. In the second case, high injectivity (the ratio of injection flow rate to the pressure differential required to produce that rate) is preferred, in order to reduce pumping costs. In order to improve productivity or injectivity, cold water is sometimes injected into the reservoir in an attempt to cool and contract the surrounding rock matrix and thereby induce dilation and/or extension of existing fractures or to generate new fractures. Though the increases in permeability associated with these changes are likely localized, by improving connectivity to more extensive high-permeability fractures they can at least temporarily provide substantially improved productivity or injectivity.

M.A. Plummer

2013-09-01

83

BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics  

SciTech Connect

Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

Unknown

1999-10-01

84

Generalized Correlations to Estimate Oil Recovery and Pore Volumes Injected in Waterflooding Projects  

E-print Network

GENERALIZED CORRELATIONS TO ESTIMATE OIL RECOVERY AND PORE VOLUMES INJECTED IN WATERFLOODING PROJECTS A Dissertation by ARNALDO LEOPOLDO ESPINEL DIAZ Submitted to the Office of Graduate Studies of Texas A&M University... A Dissertation by ARNALDO LEOPOLDO ESPINEL DIAZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Maria...

Espinel Diaz, Arnaldo Leopoldo

2012-02-14

85

NEED Project: Energy of Moving Water  

NSDL National Science Digital Library

This resource for middle school provides 13 complete lessons for teaching about hydropower and conversion of moving water to electrical energy. The unit crosses the curriculum to include physical science, engineering design, earth systems, language arts, social studies and math. As with all NEED educational materials, this resource includes every component required for immediate classroom use: lesson plans, illustrated lab procedures, rubric, pre and post-test assessments, age-appropriate background information, worksheets, graphics for classroom projection, and student guidebooks. Specific physical science objectives revolve around energy flow in systems and the concept that energy is never destroyed, but can be converted from one form to another. Each investigation requires students to first read about the topic in "infobooks" (included in the materials), then make predictions, complete the lab, record data, and write a conclusion. The NEED Project is a national initiative to bring innovative curriculum materials in energy education to K-12 teachers and learners.

2013-05-10

86

Monitoring a large volume CO2 injection: Year two results from SECARB project at Denbury's Cranfield, Mississippi, USA  

USGS Publications Warehouse

The Southeast Regional Carbon Sequestration Partnership (SECARB) early project in western Mississippi has been testing monitoring tools and approaches to document storage efficiency and storage permanence under conditions of CO2 EOR as well as downdip injection into brine. Denbury Onshore LLC is host for the study and has brought a depleted oil and gas reservoir, Cranfield Field, under CO2 flood. Injection was started in July 2008 and has now achieved injection rates greater than 1.2 million tons/year though 23 wells, with cumulative mass injected as of August, 2010 of 2.2 million metric tons. Injection is into coarse grained fluvial deposits of the Cretaceous lower Tuscaloosa Formation in a gentle anticline at depths of 3300 m. A team of researchers from 10 institutions has collected data from five study areas, each with a different goal and different spatial and temporal scale. The Phase 2 study began at the start of injection and has been using pressure and temperature as a tool for assessing permanence mostly in the oil productive interval. Real-time read-out shows high sensitivity to distant changes in injection rate and confirms the geologic model of reservoir compartmentalization. Above-zone pressure monitoring ???120 m above the injection interval is used to test the sensitivity of this approach for documentation of integrity of the confining system in an area of numerous well completions as pressure increase is induced in the reservoir by more than 70 bar. Monitoring of the High Volume Injection Test (HiVIT) area includes repeat measurements of aqueous geochemistry in the injection zone. Rock-water-CO 2 interactions in the reservoir as CO2 dissolves are minimized by mineral "armoring" by abundant chlorite cement in high permeability reservoir sandstone. Geochemical monitoring of confined freshwater aquifers at depths of 70-100 m is underway. Groundwater analysis focuses on assessment of the sensitivity of this method to detect leakage above background variability. A repeat seismic survey of the HiVIT is planned for late 2010 to assess saturation change especially in downdip brine-only areas. A study focused on feasibility of monitoring the shallow subsurface to separate leakage from normal complex surface fluxes is underway at an monitoring array installed in October 2009 to assess the interactions of recharge, soil gas, and shallow groundwater aquifers. Recent well re-entry and tracer injection will provide further information to interpret observed elevated deep-sourced methane. The Detailed Area Study (DAS) is collecting dense time-lapse data from closely-spaced three well array of an injector and two observation wells. The observation wells were completed with fiberglass casing to facilitate electrical resistance tomography (ERT) measurements, and a diverse array of instrumentation was both cemented behind casing and suspended on tubing. Injection started at the DAS December 1, 2009. We have measured pulsed neutron and resistivity via wireline, downhole and above-zone pressure, distributed temperature, and fluid chemistry including introduced pulses of perfluorocarbons, noble gases, and SF6 as tracers. Between wells, time-lapse crosswell seismic and electrical resistance tomography (ERT) are used to measure saturation change. The goals are to measure changes as fluids evolve from single phase (brine) to two phase (CO2-brine) in order to document linkages between pressure and sweep efficiency. A time-lapse VSP survey bridges the vertical resolution and areal coverage between cross-well and surface seismic. The repeat surveys for many tools are scheduled for September, 2010. Reservoir characterization based on cores, historic and new wireline log data, production history, hydrologic tests, fluid analysis, and a three-D seismic survey have been used in multiple numerical models to predict reservoir response in order to design effective monitoring strategies and optimize deployment. History matching of observed respons

Hovorka, S.D.; Meckel, T.A.; Trevino, R.H.; Lu, J.; Nicot, J.-P.; Choi, J.-W.; Freeman, D.; Cook, P.; Daley, T.M.; Ajo-Franklin, J. B.; Freifeild, B.M.; Doughty, C.; Carrigan, C.R.; La-Brecque, D.; Kharaka, Y.K.; Thordsen, J.J.; Phelps, T.J.; Yang, C.; Romanak, K.D.; Zhang, T.; Holt, R.M.; Lindler, J.S.; Butsch, R.J.

2011-01-01

87

Integrated hydraulic and organophosphate pesticide injection simulations for enhancing event detection in water distribution systems.  

PubMed

As a complementary step towards solving the general event detection problem of water distribution systems, injection of the organophosphate pesticides, chlorpyrifos (CP) and parathion (PA), were simulated at various locations within example networks and hydraulic parameters were calculated over 24-h duration. The uniqueness of this study is that the chemical reactions and byproducts of the contaminants' oxidation were also simulated, as well as other indicative water quality parameters such as alkalinity, acidity, pH and the total concentration of free chlorine species. The information on the change in water quality parameters induced by the contaminant injection may facilitate on-line detection of an actual event involving this specific substance and pave the way to development of a generic methodology for detecting events involving introduction of pesticides into water distribution systems. Simulation of the contaminant injection was performed at several nodes within two different networks. For each injection, concentrations of the relevant contaminants' mother and daughter species, free chlorine species and water quality parameters, were simulated at nodes downstream of the injection location. The results indicate that injection of these substances can be detected at certain conditions by a very rapid drop in Cl2, functioning as the indicative parameter, as well as a drop in alkalinity concentration and a small decrease in pH, both functioning as supporting parameters, whose usage may reduce false positive alarms. PMID:25016300

Schwartz, Rafi; Lahav, Ori; Ostfeld, Avi

2014-10-15

88

Simulation and experiment research on the proportional pressure control of water-assisted injection molding  

NASA Astrophysics Data System (ADS)

Water-assisted injection molding (WAIM), a newly developed fluid-assisted injection molding technology has drawn more and more attentions for the energy saving, short cooling circle time and high quality of products. Existing research for the process of WAIM has shown that the pressure control of the injecting water is mostly important for the WAIM. However, the proportional pressure control for the WAIM system is quite complex due to the existence of nonlinearities in the water hydraulic system. In order to achieve better pressure control performance of the injecting water to meet the requirements of the WAIM, the proportional pressure control of the WAIM system is investigated both numerically and experimentally. A newly designed water hydraulic system for WAIM is first modeled in AMEsim environment, the load characteristics and the nonlinearities of water hydraulic system are both considered, then the main factors affecting the injecting pressure and load flow rate are extensively studied. Meanwhile, an open-loop model-based compensation control strategy is employed to regulate the water injection pressure and a feedback proportional integrator controller is further adopted to achieve better control performance. In order to verify the AMEsim simulation results WAIM experiment for particular Acrylonitrile Butadiene Styrene (ABS) parts is implemented and the measured experimental data including injecting pressure and flow rate results are compared with the simulation. The good coincidence between experiment and simulation shows that the AMEsim model is accurate, and the tracking performance of the load pressure indicates that the proposed control strategy is effective for the proportional pressure control of the nonlinear WAIM system. The proposed proportional pressure control strategy and the conclusions drawn from simulation and experiment contribute to the application of water hydraulic proportional control and WAIM technology.

Zhou, Hua; Chen, Yinglong; Zhang, Zengmeng; Yang, Huayong

2012-05-01

89

Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection  

Microsoft Academic Search

Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA's), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of

M. G. Ortiz; L. S. Ghan

1991-01-01

90

Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection  

Microsoft Academic Search

Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA`s), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of

M. G. Ortiz; L. S. Ghan

1991-01-01

91

Comparing strategies: State funding of capital projects versus water conservation  

E-print Network

10 tx H2O Winter 2013 Column by Dr. Calvin Finch, Water Conservation and Technology Center director COMPARING STRATEGIES State funding of capital projects versus water conservation The Texas Legislature seems intent on helping local water...

Finch, Dr. Calvin

2013-01-01

92

Assessment of hydrogeologic conditions with emphasis on water quality and wastewater injection, southwest Sarasota and West Charlotte counties, Florida  

USGS Publications Warehouse

The 250-square-mile area of southwest Sarasota and west Charlotte Counties is underlain by a complex hydrogeologic system having diverse ground-water quality. The surficial and intermediate aquifer systems and the Upper Floridan aquifer of the Floridan aquifer system contain six separate aquifers, or permeable zones, and have a total thickness of about 2,000 feet. Water in the clastic surficial aquifer system is potable and is tapped by hundreds of shallow, low-yielding supply wells. Water in the mixed clastic and carbonate intermediate aquifer system is potable in the upper part, but in the lower part, because of increasing salinity, it is used primarily for reverse-osmosis desalinization feed water and irrigation. Within the Upper Floridan aquifer, limestone and dolomite of the Suwannee permeable zone are tapped by irrigation and reverse-osmosis supply wells. The underlying, less permeable limestone of the Suwannee-Ocala semiconfining unit generally encompasses the transition zone between freshwater and very saline water. Interbedded limestone and dolomite of the Ocala-Avon Park moderately permeable zone and Avon Park highly permeable zone compose the deep, very saline injection zone. Potential ground-water contamination problems include flooding by storm tides, upward movement of saline water toward pumping centers by natural and induced leakage or through improperly constructed and abandoned wells, and lateral and vertical movement of treated sewage and reverse-osmosis wastewater injected into deep zones. Effects of flooding are evident in coastal areas where vertical layering of fresh and saline waters is observed. Approximately 100 uncontrolled flowing artesian wells that have interaquifer flow rates as high as 350 gallons per minute have been located and scheduled for plugging by the Southwest Florida Water Management District--in an attempt to improve ground-water quality of the shallow aquifers. Because each aquifer or permeable zone has unique head and water-quality characteristics, construction of single-zone wells would eliminate cross-contamination and borehole interflow. Such a program, when combined with the plugging of shallow-cased wells having long open-hole intervals connecting multiple zones, would safeguard ground-water resources in the study area. The study area encompasses seven wastewater injection sites that have a projected capacity for injecting 29 million gallons per day into the zone 1,100 to 2,050 feet below land surface. There are six additional sites within 20 miles. The first well began injecting reverse-osmosis wastewater in 1984, and since then, other wells have been drilled and permitted for injection of treated sewage. A numerical model was used to evaluate injection-well design and potential for movement of injected wastewater within the hydrogeologic framework. The numerical model was used to simulate injection through a representative well at a rate of 1 million gallons per day for 10 years. In this simulation, a convection cell developed around the injection well with the buoyant fresh injectant rising to form a lens within the injection zone below the lower Suwannee-Ocala semiconfining unit. Around an ideal, fully penetrating well cased 50 feet into the injection zone and open from a depth of 1,150 feet to 2,050 feet, simulations show that the injectant moves upward to a depth of 940 feet, forms a lens about 600 feet thick, and spreads radially outward to a distance of about 2,300 feet after 10 years. Comparison simulations of injection through wells having open depth intervals of 1,150 to 1,400 feet and 1,450 to 2,050 feet demonstrate that such changes in well construction have little effect on the areal spread of the injectant lens or the rate of upward movement. Simulations also indicate that reverse-osmosis wastewater injected beneath a supply well field, where water levels above the semiconfining unit are lowered 20 feet by pumping, would move upward after 10 years to a de

Hutchinson, C.B.

1992-01-01

93

Effect of nickel hydroxde injections on the mass transfer of corrosion products in high temperature, high pressure water circuits  

Microsoft Academic Search

Following reports that injections of nickel hydroxide facilitated the removal of crud from the Garigliano Boiling Water Reactor (BWR), nickel hydroxide was injected into a high temperature water loop simulating BWR operation. The injections repeatedly caused large crud bursts in which iron appeared almost exclusively as nickel ferrite. After the crud bursts, iron and nickel redeposited rapidly and preferentially into

F. D. Nicholson; J. V. Evans

1979-01-01

94

Experimental tissue damage after subcutaneous injection of water soluble contrast media.  

PubMed

Various water soluble contrast media (WSCM) were injected subcutaneously into 970 hind feet of 485 rats. Gross morphologic changes were seen after the injection and analyzed as a function of various physicochemical characteristics of WSCM. The WSCM of larger volume, higher osmolality, higher iodine content, and meglumine salts rather than sodium salts caused more severe tissue damage; younger rats showed more severe tissue damage by WSCM of high osmolality. PMID:2354930

Kim, S H; Park, J H; Kim, Y I; Kim, C W; Han, M C

1990-06-01

95

Earthquakes induced by water injection at ?3 km depth within the Rongchang gas field, Chongqing, China  

Microsoft Academic Search

Unwanted water, amounting more than 1 million m3, has been injected intermittently at a pumping pressure of 2.1–2.9 MPa (over hydrostatic) at 2.6–2.9 km depth within the Rongchang gas field, western Chongqing, China, since July 1988. The injections have induced more than 32,000 surface-recorded earthquakes, including 2 of ML ? 5, 14 of ML ? 4, and more than 100

Xinglin Lei; Guozheng Yu; Shengli Ma; Xueze Wen; Qiang Wang

2008-01-01

96

Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations  

NASA Technical Reports Server (NTRS)

The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

Somsel, James P.

1998-01-01

97

Water quality changes at three reclaimed mine sites related to the injection of coal combustion residues  

SciTech Connect

Surface and groundwater pollution is a common problem associated with post-surface mining operations. The US Bureau of Mines (BOM) participated in the testing of subsurface injections of coal combustion residues (CCR) at three reclaimed surface mine sites. The addition of alkaline CCR to the subsurface environment can raise the pH, limit propagation of pyrite oxidizing bacteria and reduce the rate of acid generation. Many CCR`s can also form cement-like grout, which when injected into buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. The objective of this work was to develop an effective, economical and permanent method to abate or reduce post-mining water pollution. The effectiveness of CCR injection as an acid mine drainage abatement technique was evaluated by the BOM by monitoring water quality at three sites in: Upshur County, WV, Clinton County, PA and Greene County, PA. Geophysical techniques were used at all sites to locate monitoring and injection wells that were subsequently drilled into the spoil. Grout injection work was completed between 1990 and 1994 at the three sites. Baseline water quality data were collected at all three sites for a minimum of one year. Post-grouting water quality at the discharge of the three sites showed a slight, long-term improvement and no apparent degradation in water quality resulting from the injection of the coal combustion residues. Notable and long-term improvements in water quality at various monitoring wells (on all sites) were also observed.

Ackman, T.E.; Jones, J.R.; Kim, A.G. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Research Center

1996-12-31

98

Turbine Inlet Analysis of Injected Water Droplet Behavior  

NASA Astrophysics Data System (ADS)

Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the inlet to the turbine has not been extensively studied or documented. It is important to understand how the droplets behave within the inlet so that water droplets above a critical diameter will not enter the compressor and cause damage to the compressor blades. In order to do this a FLUENT simulation was constructed in order to determine the behavior of the water droplets and if any droplets remain at the exit of the inlet, along with their size. In order to do this several engineering drawings were obtained from SRP and studies in order to obtain the correct dimensions. Then the simulation was set up using data obtained from SRP and Parker-Hannifin, the maker of the spray nozzles. Then several sets of simulations were run in order to see how the water droplets behaved under various conditions. These results were then analyzed and quantified so that they could be easily understood. The results showed that the possible damage to the compressor increased with increasing temperature at a constant relative humidity. This is due in part to the fact that in order to keep a constant relative humidity at varying temperatures the mass fraction of water vapor in the air must be changed. As temperature increases the water vapor mass fraction must increase in order to maintain a constant relative humidity. This in turn makes it slightly increases the evaporation time of the water droplets. This will then lead to more droplets exiting the inlet and at larger diameters.

Hargrave, Kevin

99

Flow in a discrete slotted nozzle with massive injection. [water table tests  

NASA Technical Reports Server (NTRS)

An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.

Perkins, H. C.

1974-01-01

100

Laboratory investigations of compatibility of the Kuwait Group aquifer, Kuwait, with possible injection waters  

NASA Astrophysics Data System (ADS)

A laboratory investigation of the compatibility of the Kuwait Group aquifer of Kuwait with desalinated seawater and reverse osmosis processed treated wastewater was carried out in anticipation of the artificial recharge of the aquifer in future. Even with the use of wax coating and freezing with liquid nitrogen, no core plugs could be extracted from the unconsolidated sections, and only the consolidated to semi-consolidated sections could be studied. The aquifer consists of silty and gravelly sand, and is often highly calcareous. The clay minerals present in the aquifer mostly belong to the montmorillonite and illite groups, with some palygorskite. Mercury injection porosimetry experiments on core plugs from the more cemented parts of the aquifer suggest that, to avoid significant clogging from suspended solids, particles down to a diameter of 8 ?m should be filtered out of the injection water. Core flow experiments suggest that, for the samples examined, loss of permeability due to clay swelling is not very important. The blocking of pore throats by moving fines may be a more serious problem during injection. The geochemical simulation indicates that the possibility of scale formation when the injection waters come in contact with the Kuwait Group formation water is remote. Rather, there is a possibility of dissolution of carbonate minerals in the aquifer in contact with the injection waters.

Mukhopadhyay, A.; Al-Awadi, E.; Oskui, R.; Hadi, K.; Al-Ruwaih, F.; Turner, M.; Akber, A.

2004-01-01

101

Can Water-Injected Turbomachines Provide Cost-Effective Emissions and Maintenance Reductions?  

NASA Technical Reports Server (NTRS)

An investigation has been performed to evaluate the effect of water injection on the performance of the Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) experimental trapped vortex combustor (TVC) over a range of fuel-to-air and water-to-fuel ratios. Performance is characterized by combustor exit quantities: temperature and emissions measurements using rakes, and overall pressure drop, from upstream plenum to combustor exit. Combustor visualization is performed using gray-scale and color still photographs and high-frame-rate videos. A parallel investigation evaluated the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid fueled combustor (e.g., TVC) that uses water injection for control of pollutant emissions and turbine inlet temperature. Generally, reasonable agreement is found between data and NO(x) computations. Based on a study assessing the feasibility and performance impact of using water injection on a Boeing 747-400 aircraft to reduce NO(x) emissions during takeoff, retrofitting does not appear to be cost effective; however, an operator of a newly designed engine and airframe might be able to save up to 1.0 percent in operating costs. Other challenges of water injection will be discussed.

Hendricks, Robert C.; Daggett, David L.; Shouse, Dale T.; Roquemore, William M.; Brankovic, Andreja; Ryder, Robert C., Jr.

2011-01-01

102

Comprehensive report to Congress: Clean Coal Technology Program: LIFAC sorbent injection desulfurization demonstration project: A project proposed by: LIFAC North America, Inc  

SciTech Connect

This report describes a project proposed by LIFAC North America, Inc., (LIFAC NA). The host site will be a coal-fired powerplant of Richmond Power Light in Indiana. LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--80% of the sulfur dioxide (SO{sub 2}) in the flue gas. In the LIFAC process, limestone is injected into the upper part of the furnace where the temperatures are sufficiently high to calcine the calcium carbonate (CaCO{sub 3}) to lime (CaO), which reacts with the SO{sub 2} in the flue gas to form calcium sulfite (CaSO{sub 3}), some of which oxidizes to form calcium sulfate (CaSO{sub 4}). The flue gas leaving the boiler then enters LIFAC's unique humidification chamber which increases the water content of the flue gas and activates the lime to enhance SO{sub 2} removal. Reduction of SO{sub 2} emissions are approximately 75--80%. Spent sorbent is then removed, along with the fly ash by an existing electrostatic precipitator (ESP) or baghouse. 6 figs., 1 tab.

Not Available

1990-10-01

103

Caribbean Water Initiative (CARIWIN) Project number S61268-583  

E-print Network

Caribbean Water Initiative (CARIWIN) Project number S61268-583 McGill University Caribbean CARICOM ­ Caribbean Commonwealth CARIWAND ­ Caribbean Water and Gender Network CARIWIN ­ Caribbean Water of Meteorology and Hydrology CWS ­ Community Water Strategies DCETO ­ Developing Country Educational and Training

Barthelat, Francois

104

Stimulation of Water Injection Wells in the Los Angeles Basin By Using Sodium Hypochlorite and Mineral Acids  

Microsoft Academic Search

A stimulation program was developed to improve injectivity and vertical coverage of water injection wells in the East Beverly Hills and San Vicente fields. Damage materials were removed by stimulating the wells with bleach and acid using a variety of tools and techniques. Two- to three-fold injectivity improvements were common, and vertical distribution was typically improved from an initial coverage

David Clementz; David Patterson; Richard Aseltine; Roger Young

1982-01-01

105

Blast furnace granular coal injection project. Annual report, January--December 1995  

SciTech Connect

This annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor Plant. The project is receiving cost-sharing from the U.S. Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. This installation is the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. To achieve the program objectives, the demonstration project is divided into the following three Phases: (1) Phase I - Design. (2) Phase II - Construction. (3) Phase III - Operation. Preliminary Design (Phase I) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase II) began in August 1993 and was completed at the end of 1994. The demonstration test program (Phase III) started in the fourth quarter of 1995.

NONE

1995-05-01

106

Using Ultraviolet Radiation for Controlling Sulfate-Reducing Bacteria in Injection Water  

Microsoft Academic Search

Laboratory and field experiments have shown that ultraviolet light may be as effective a treatment for microbial control in injection waters as many biocides. In many cases, the use of ultraviolet light is less expensive. The ultraviolet unit must be properly designed and constructed, and the effectiveness of the unit must be determined by a bioassay rather than by physical

J. B. Clark; J. C. Luppens; P. T. Tucker

1984-01-01

107

Evaluation of Direct Aqueous Injection Method for Analysis of Chloroform in Drinking Water  

ERIC Educational Resources Information Center

A direct aqueous injection (DAI) technique was compared with the purge method for chloroform measurement in drinking water. The DAI method gave consistently higher values for chloroform than the purge method. The results indicated the need for caution in the interpretation of chloroform and other trihalomethane values generated by DAI. (Author/MA)

Pfaender, Frederic K.; And Others

1978-01-01

108

Assessment of electrical conductivity as a surrogate measurement for water samples in a tracer injection experiment  

Technology Transfer Automated Retrieval System (TEKTRAN)

The transport behavior of solutes in streams depends on chemical, physical, biological, and hydrodynamic processes. Although it is a very complex system, it is known that this behavior is greatly influenced by surface and subsurface flows. For this reason, tracer injection in the water flows is one ...

109

The Relationship Analysis between Water Injection and Microfacies of SHA1 Reservoir of Liao He Basin, China  

PubMed Central

SHA1 is the representative reservoir in Liao He Basin. Through the introduction of curvature displayed on the gray scale, we determine the substructure and fractures. Geostatistical inversion method is used to help study the porosity of reservoir. The relationship between interval transit times and resistivity among mudstone and sandstone, before and after water injection, is analyzed. The relationship between porosity and permeability and the relationship between porosity and impedance from core analysis were studied. Through the whole information above, we divide the microfacies of SHA1 reservoir to distributary channel, mouth bar, the leading edge thin sand, and prodelta mud. The water injections in different microfacies are studied. The distributary channel should be used by large distant injection wells or smaller injection pressure injection. The smaller distant injection wells or large injection pressure should be used in the mouth bar. The arrangement of well injection need consider the different sedimentary microfacies. PMID:24672345

Wang, Qing; Lu, Zhanguo; Guo, Shiguang; Wang, Chao

2014-01-01

110

The relationship analysis between water injection and microfacies of SHA1 reservoir of Liao He Basin, China.  

PubMed

SHA1 is the representative reservoir in Liao He Basin. Through the introduction of curvature displayed on the gray scale, we determine the substructure and fractures. Geostatistical inversion method is used to help study the porosity of reservoir. The relationship between interval transit times and resistivity among mudstone and sandstone, before and after water injection, is analyzed. The relationship between porosity and permeability and the relationship between porosity and impedance from core analysis were studied. Through the whole information above, we divide the microfacies of SHA1 reservoir to distributary channel, mouth bar, the leading edge thin sand, and prodelta mud. The water injections in different microfacies are studied. The distributary channel should be used by large distant injection wells or smaller injection pressure injection. The smaller distant injection wells or large injection pressure should be used in the mouth bar. The arrangement of well injection need consider the different sedimentary microfacies. PMID:24672345

Wang, Qing; Lu, Zhanguo; Guo, Shiguang; Wang, Chao

2014-01-01

111

Development Project of Supercritical-water Cooled Power Reactor  

Microsoft Academic Search

A Supercritical-water Cooled Power Reactor (SCPR) development project (Feb. 2001- Mar. 2005) is being performed by a joint team consisting of Japanese universities and nuclear venders with a national fund. The main objective of this project is to provide technical information essential to demonstration of SCPR technologies through concentrating three sub-themes: 'plant conceptual design', 'thermohydraulics', and 'material and water chemistry'.

K. Kataoka; S. Shiga; K. Moriya; Y. Oka; S. Yoshida; H. Takahashi

2002-01-01

112

40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?  

Code of Federal Regulations, 2010 CFR

...monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine when burning a fuel that requires water or steam injection for compliance. ...oxygen (O2 ) or carbon dioxide (CO2...

2010-07-01

113

Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells  

E-print Network

the inner catalyst layers, (2) increases the hydration state and conductivity of the membrane by bringing its anode/membrane interface in direct contact with liquid water and (3) increases the cell tolerance limits for excess injected liquid water, which...

Wood, D. L.; Yi, Y. S.; Nguyen, Trung Van

1998-01-01

114

Assessment of nitrification potential in ground water using short term, single-well injection experiments  

USGS Publications Warehouse

Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 ??M) and ammonium (19 to 625 ??M) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02-0.28 ??mol (L aquifer)-1 h-1 with in situ oxygen concentrations and up to 0.81 ??mol (L aquifer)-1 h-1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations. ?? Springer Science+Business Media, Inc. 2005.

Smith, R.L.; Baumgartner, L.K.; Miller, D.N.; Repert, D.A.; Böhlke, J.K.

2006-01-01

115

Assessment of nitrification potential in ground water using short term, single-well injection experiments.  

PubMed

Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 microM) and ammonium (19 to 625 microM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with (15)N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02-0.28 mumol (L aquifer)(-1) h(-1) with in situ oxygen concentrations and up to 0.81 mumol (L aquifer)(-1) h(-1) with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations. PMID:16382283

Smith, R L; Baumgartner, L K; Miller, D N; Repert, D A; Böhlke, J K

2006-01-01

116

Water governance within Kenya's Upper Ewaso Ng'iro Basin: Assessing the performance of water projects  

NASA Astrophysics Data System (ADS)

Climate change processes are projected to change the availability and seasonality of streamflow with dramatic implications for irrigated agricultural systems. Within mountain environments, this alteration in water availability may be quite pronounced over a relatively short distance as upstream users with first access to river water directly impact the availability of water to downstream users. Livelihood systems that directly depend on river water for both domestic consumption and practices such as irrigated agriculture are particularly vulnerable. The Mount Kenya region is an exemplary case of a semi-arid upstream-downstream system in which water availability rapidly decreases and directly impacts the livelihoods of river water users existing across this steep environmental gradient. To effectively manage river water within these water-scarce environs, water projects have been established along the major rivers of the Mount Kenya region. These water projects are responsible for managing water within discrete sub-catchments of the region. While water projects develop rules that encourage the responsible use of water and maintenance of the project itself, the efficiency of water allocation to the projects' members remains unclear. This research analyzes water projects from five sub-catchments on the northwest slopes of Mount Kenya. It utilizes data from household surveys and water project management surveys as well as stream gauge data and flow measurements within individual water projects to assess the governance structure and performance of water projects. The performance of water projects is measured through a variety of household level metrics including: farm-level water flow and volume over time, mean and variability in maize yield, per capita crop productivity, household-level satisfaction with water availability, number of days where water volume was insufficient for irrigation, and quantity harvested compared with expected quantity harvested. We present results demonstrating the heterogeneity of these individual measures and discuss the influence of topography, network design, household behaviors and water governance on the overall performance of these water projects. This work is the foundation for an agent-based model of these water projects that investigates the impact of climate change and population pressure on sustained agricultural production in the region. Additionally, the study highlights the utility of pairing distinct fields of scholarship by utilizing both survey responses and hydrological data to study complex social-ecological systems. This pairing allows for insights regarding governance structures that are effectively managing river water in the present and helps to understand the structures that may be suitable for future water management.

McCord, P. F.; Evans, T. P.; Dell'Angelo, J.; Gower, D.; McBride, L.; Caylor, K. K.

2013-12-01

117

Biological treatments and uses of geothermal water as alternatives to injection  

SciTech Connect

The feasibility of using geothermal fluids to support various biological systems prior to, or as an alternative to, direct injection at the DOE's Raft River goethermal site is discussed. Researchers at the Raft River site studied the feasibility of using geothermal fluid for establishign methods and for irrigating trees and agricultural crops. The emphasis of these studies has been on the bioaccumulative potential of the plants, their survivability, production rates, and water-purification potential. The possible adverse impacts associated with not injecting the fluid back into the geothermal reservoir have not been addressed. (MJF)

Breckenridge, R.P.; Cahn, L.S.; Thurow, T.L.

1982-04-01

118

The 2013 seismic sequence close to gas injection platform of the Castor project, offshore Spain  

NASA Astrophysics Data System (ADS)

A spatially localized seismic sequence has originated few tens of kilometres offshore the Mediterranean coast of Spain, starting on September 5, 2013, and lasting at least until October 2013. The sequence culminated in a maximal moment magnitude Mw 4.3 earthquake, on October 1, 2013. The epicentral region is located near the offshore platform of the Castor project, where gas is conducted through a pipeline from mainland and where it was recently injected in a depleted oil reservoir, at about 2 km depth. We analyse the temporal evolution of the seismic sequence and use full waveform techniques to derive absolute and relative locations, estimate depths and focal mechanisms for the largest events in the sequence (with magnitude mbLg larger than 3), and compare them to a previous event (April 8, 2012, mbLg 3.3) taking place in the same region prior to the gas injection. Moment tensor inversion results show that the overall seismicity in this sequence is characterized by oblique mechanisms with a normal fault component, with a 30° low-dip angle plane oriented NNE-SSW and a sub- vertical plane oriented NW-SE. The combined analysis of hypocentral location and focal mechanisms could indicate that the seismic sequence corresponds to rupture processes along sub- horizontal shallow surfaces, which could have been triggered by the gas injection in the reservoir,. An alternative scenario includes the iterated triggering of a system of steep faults oriented NW-SE, which were identified by prior marine seismics investigations. The most relevant seismogenic feature in the area is the Fosa de Amposta fault system, which includes different strands mapped at different distances to the coast, with a general NE-SW orientation, roughly parallel to the coastline. No significant known historical seismicity has involved this fault in the past. Our both scenarios exclude its activation, as its known orientation is inconsistent with focal mechanism results.

Cesca, Simone; Grigoli, Francesco; Heimann, Sebastian; Gonzalez, Alvaro; Buforn, Elisa; Maghsoudi, Samira; Blanch, Estefania; Dahm, Torsten

2014-05-01

119

Soil Gas Monitoring for the ZERT Shallow CO2 Injection Project  

SciTech Connect

The ZERT (Zero Emissions Research and Technology) shallow injection experiment is a collaborative effort aimed at developing, verifying, and evaluating near-surface monitoring techniques for geological carbon sequestration. The goal is to simulate leakage of CO2 to the surface in order to determine if various monitoring techniques have the ability to detect and quantify the CO2 lost to the atmosphere. The site for this experiment is a grass field that is part of an agricultural research facility at Montana State University in Bozeman, Montana. The ZERT project included collaboration from several research groups and organizations. Presented here are the results from the monitoring team of the National Energy Technology Lahoratory (NETL). The purpose of this arrangement was to allow each individual research group to run experiments in such a way that the operations did not interfere with each other.

Strazisar, B.R.; Wells, A.W.; Diehl, J.R.

2008-10-01

120

Hydrologic data for 1994-96 for the Huron Project of the High Plains Ground-Water Demonstration Program  

USGS Publications Warehouse

This report presents data on precipitation, water levels, and water quality that have been collected or compiled for water years 1994 through 1996 for the Huron Project of the High Plains Ground-Water Demonstration Program, under the guidance of the Bureau of Reclamation. This is the second report for the project. The first report (Carter, 1995) presented data collected through water year 1993. The purpose of the Huron Project is to demonstrate the artificial recharge potential of glacial aquifers in eastern South Dakota. High flows from the James River during spring runoff were used as a source of supplemental recharge for the Warren aquifer, which is a buried, glacial aquifer. In 1990, 70 observation wells were installed by the South Dakota Department of Environment and Natural Resources (DENR) specifically for this study, and 15 existing DENR observation wells were incorporated into the study. In 1993, the recharge well was installed. After a trial injection of recharge water in April 1994, continuous injection began in June 1994. Many sites were monitored to obtain information before, during, and after recharging the aquifer. This report presents data that were collected during the three phases of recharge. Precipitation data are collected at two sites within the study area. A site description and daily precipitation for water years 1994-95 are presented for one precipitation site. Water-level hydrographs are presented for the 85 observation wells and the recharge well. Hydrographs are shown for the period from October 1, 1993, through November 29, 1995. Recharge water was injected from June 2, 1994, through July 29, 1994, and from June 14, 1995, through September 13, 1995. The cumulative volume of injected water and the injection rates into the aquifer are presented for the periods of recharge. Water-quality data were collected from screening, detailed, and plume-monitoring sampling programs. Screening water-quality data for six observation wells are presented. These data include primarily field parameters and common ions. The four detailed sampling sites represent the quality of untreated water, treated water, and ground water from the Warren aquifer. Data presented for the detailed sampling program include field parameters, bacteria counts, and concentrations of common ions, solids, nutrients, trace elements, radiometrics, total organic carbon, herbicides, insecticides, and volatile organic compounds. Water-quality data for the plume-monitoring sampling program were collected from 25 sites during injection of recharge water into the Warren aquifer in 1994 and 1995. The data for the plume-monitoring program include primarily field parameters and common ions. Data for quality-assurance samples also are presented.

Carter, J.M.

1996-01-01

121

El Dorado County Water Systems Energy Generation Project  

E-print Network

El Dorado County Water Systems Energy Generation Project RENEWABLE ENERGY RESEARCH www.energy.ca.gov/research/renewable/ May 2011 The Issue The water supply, conveyance, treatment, and hydroelectricity generation industry is technologically mature, using durable and proven equipment and methods. However, within most of these water

122

Regional Drinking Water Security District Level Pilot Project  

E-print Network

of western and central Maharashtra have had scanty rainfall this year. As a con- sequence, it is likely. This stress will create a composite set of demands: domestic water, water and fodder for cattle, livelihoods. The central objective of the project will be to ensure regional drinking water security for a district

Sohoni, Milind

123

UV dosage levels in summer: increased risk of ozone loss from convectively injected water vapor.  

PubMed

The observed presence of water vapor convectively injected deep into the stratosphere over the United States can fundamentally change the catalytic chlorine/bromine free-radical chemistry of the lower stratosphere by shifting total available inorganic chlorine into the catalytically active free-radical form, ClO. This chemical shift markedly affects total ozone loss rates and makes the catalytic system extraordinarily sensitive to convective injection into the mid-latitude lower stratosphere in summer. Were the intensity and frequency of convective injection to increase as a result of climate forcing by the continued addition of CO(2) and CH(4) to the atmosphere, increased risk of ozone loss and associated increases in ultraviolet dosage would follow. PMID:22837384

Anderson, James G; Wilmouth, David M; Smith, Jessica B; Sayres, David S

2012-08-17

124

Water Misting and Injection of Commercial Aircraft Engines to Reduce Airport NOx  

NASA Technical Reports Server (NTRS)

This report provides the first high level look at system design, airplane performance, maintenance, and cost implications of using water misting and water injection technology in aircraft engines for takeoff and climb-out NOx emissions reduction. With an engine compressor inlet water misting rate of 2.2 percent water-to-air ratio, a 47 percent NOx reduction was calculated. Combustor water injection could achieve greater reductions of about 85 percent, but with some performance penalties. For the water misting system on days above 59 F, a fuel efficiency benefit of about 3.5 percent would be experienced. Reductions of up to 436 F in turbine inlet temperature were also estimated, which could lead to increased hot section life. A 0.61 db noise reduction will occur. A nominal airplane weight penalty of less than 360 lb (no water) was estimated for a 305 passenger airplane. The airplane system cost is initially estimated at $40.92 per takeoff giving an attractive NOx emissions reduction cost/benefit ratio of about $1,663/ton.

Daggett, David L.; Hendricks, Robert C. (Technical Monitor)

2004-01-01

125

INL Bettis Water Treatment Project Report  

SciTech Connect

Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

Not Available

2009-06-01

126

Contingency power for a small turboshaft engine by using water injection into turbine cooling air  

NASA Technical Reports Server (NTRS)

Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

Biesiadny, Thomas J.; Klann, Gary A.

1992-01-01

127

Contingency power for small turboshaft engines using water injection into turbine cooling air  

NASA Technical Reports Server (NTRS)

Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

Biesiadny, Thomas J.; Klann, Gary A.; Clark, David A.; Berger, Brett

1987-01-01

128

Seismicity Induced by Water Injection for Geothermal Reservoir Stimulation 5 km Below the City of Basel, Switzerland  

NASA Astrophysics Data System (ADS)

To stimulate the reservoir for a proposed "hot dry rock" geothermal project in the city of Basel, approximately 11500 m3 of water were injected between December 2nd and 8th, 2006, at high pressures into a 5 km deep well. A six-sensor borehole array, installed at depths between 300 and 2700 meters around the well to monitor the induced seismicity, recorded more than 10500 events during the injection phase. Events with magnitudes as low as ML 0.7 were also recorded by regional networks in Switzerland, Germany and France, as well as by up to 30 strong-motion stations installed in the epicentral area. Due to excessive seismic activity, that included an ML 2.7 event, injection had already been stopped when a few hours later an ML 3.4 event jolted the city of Basel. A large amount of (non-structural) damage, corresponding to an intensity of V (EMS98), has been claimed by home owners. The unusual number of damage claims compared to past events in this magnitude range observed in Switzerland is partly due to the shallow hypocenter (5 km) beneath a densely populated city. In addition, ground-motion modelling shows that the radiation pattern of the earthquake source was oriented unfavourably for the city of Basel and that in numerous locations shaking was amplified significantly by local site conditions. After bleed-off, about one third of the injected water volume flowed back out of the well. Although seismic activity declined rapidly thereafter, three additional ML>3 events occurred over the following two months. From a statistical analysis it is expected that it may take on the order of a decade for the activity to decrease to the regional background level scaled to the size of the source region. The hypocenters of the located events (about 3500 to date) are restricted to a NW-SE oriented lens-shaped cloud, about 1 km in diameter and 200 m wide, with a single offsetting branch to the ESE. The orientation of the cloud and the focal mechanisms determined so far match the stress field derived from observations of borehole breakouts and natural seismicity. Due to the premature abortion of the stimulation process, the size of the stimulated volume is insufficient for a commercially viable exploitation of geothermal energy. At present the project is on hold, pending a comprehensive assessment of the seismic risk associated with a continuation.

Deichmann, N.; Mai, M.; Bethmann, F.; Ernst, J.; Evans, K.; Fäh, D.; Giardini, D.; Häring, M.; Husen, S.; Kästli, P.; Bachmann, C.; Ripperger, J.; Schanz, U.; Wiemer, S.

2007-12-01

129

Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid  

Microsoft Academic Search

A simple and fast flow injection fluorescence quenching method for the determination of iron in water has been developed.\\u000a Fluorimetric determination is based on the measurement of the quenching effect of iron on salicylic acid fluorescence. An\\u000a emission peak of salicylic acid in aqueous solution occurs at 409 nm with excitation at 299 nm. The carrier solution used\\u000a was 2

Adem Asan; Muberra Andac; Ibrahim Isildak

2010-01-01

130

Using ultraviolet radiation for controlling sulfate-reducing bacteria in injection water  

SciTech Connect

Laboratory and field experiments have shown that ultraviolet light may be as effective a treatment for microbial control in injection waters as many biocides. In many cases, the use of ultraviolet light is less expensive. The ultraviolet unit must be properly designed and constructed, and the effectiveness of the unit must be determined by a bioassay rather than by physical measurements. Experimental results are presented and recommendations for design and use of ultraviolet units are given.

Clark, J.B.; Luppens, J.C.; Tucker, P.T.

1984-09-01

131

Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.  

PubMed

A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water. PMID:14717185

Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J

2003-12-15

132

FEM for stability analysis against overturning of portal water injection sheet pile  

Microsoft Academic Search

Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have\\u000a been many systematic methods addressing the issue, there are very few focusing on the new structure because of the difficulties\\u000a in defining the earth pressure between the two piles. A new method is proposed in this paper to obtain the earth

Liu Lingyun; Guo Haiyan; Sun Qi

2006-01-01

133

Best Practices: Restroom Water Efficiency Project  

Microsoft Academic Search

Established in 2004, Best Practice Awards are designed to recognize campus groups who have demonstrated a “best practice” in achieving the goals set by the Governor’s Green Building Action Plan, the State Energy Action Plan, and the California Public Utilities Commission. For 2007, in the category of UC\\/CSU Water Efficiency and Site Water Quality Best Practice Award, San Francisco State

Fred Bockmiller

2008-01-01

134

Impact of rural water projects on hygienic behaviour in Swaziland  

NASA Astrophysics Data System (ADS)

In Swaziland, access to safe water supply and sanitation has improved significantly and was expected to result in improved health and, in particular, reduced infant mortality rates. On the contrary, mortality rates in the under 5 years age group are high and have doubled from 60 in 1996, to 120 deaths per 1000 in 2006. The main objective of the study was to assess whether the water projects permit, and are accompanied by, changes in hygienic behaviour to prevent transmission of diseases. The study area was Phonjwane, located in the dry Lowveld of Swaziland, where water projects play a significant role in meeting domestic water demands. Hygienic behaviour and sanitation facilities were analysed and compared before and after project. The results of the study show that domestic water supply projects have significantly reduced distances travelled and time taken to collect water, and that increased quantities of water are collected and used. While the majority of respondents (95.6%) used the domestic water project source, the quantities allowed per household (125 l which translates to an average of 20.8 l per person) were insufficient and therefore were supplemented with harvested rainwater (57.8%), water from a polluted river (17.8%), and water from a dam (2.2%). Increased water quantities have permitted more baths and washing of clothes and hands, but significant proportions of the population still skip hygienic practices such as keeping water for washing hands inside or near toilet facilities (40%) and washing hands (20%). The study concludes that the water supply project has permitted and improved hygienic practices but not sufficiently. The health benefits of safe domestic water supplies are hampered by insufficient quantities of water availed through the projects, possible contamination of the water in the house, poor hygienic behaviours and lack of appropriate sanitation measures by some households. There is a need to provide sufficient quantities of safe water to meet all domestic demands. Domestic water supply must be accompanied by appropriate sanitation and hygienic education.

Peter, Graciana

135

Handbook on the Economic Analysis of Water Supply Projects  

NSDL National Science Digital Library

Handbook on the Economic Analysis of Water Supply Projects was written for non-economists working in the planning, implementation, and management of water supplies. Created by the Asian Development Bank, the handbook is a resource guide to help staff of government agencies, financing institutions, and water utilities understand the principles of economic analysis of water supply projects. Written in easy-to-understand language, the handbook consists of nine chapters, each with separate tables of contents, with titles such as "Least Cost Analysis," "Demand Analysis and Forecasting," and "Sensitivity and Risk Analysis." Each chapter is available only in .pdf format and must be downloaded separately. Also included are an appendix and glossary.

1999-01-01

136

Artificial recharge of ground water by well injection for storage and recovery, Cape May County, New Jersey, 1958-92  

USGS Publications Warehouse

Artificial recharge is used for storage and recovery of ground water in the estuarine sand and Cohansey aquifers in southern Cape May County and in the Kirkwood-Cohansey aquifer system in northern Cape May County, New Jersey. Wildwood Water Utility has injected ground water for public-supply storage since 1967 and in 1992 had four injection wells. The storage and recovery program began as a way to ensure an adequate supply of water for the summer tourist season. From 1967 through 1992 about 3.8 billion gallons was injected and about 3.3 billion gallons (about 85 percent of the injected water) was recovered. An electric company in Cape May County has used ground water for industrial-supply storage since 1965 and in 1992 had one injection well. The purpose of the storage and recovery program is to prevent saltwater encroachment and to ensure sufficient supply during times of peak demand. From 1967 through 1988 the company injected 100.0 million gallons and withdrew 60.6 million gallons, or about 61 percent of the injected water.

Lacombe, P.J.

1996-01-01

137

Experimentally studying TV3-117 gas-turbine unit characteristics at superheated water injection into a compressor  

NASA Astrophysics Data System (ADS)

The results from experimentally studying TV3-117 gas-turbine unit (GTU) characteristics at injection of cold and superheated (metastable) water to the inlet of the GTU compressor are presented. In the latter case, the finer water atomization is obtained. The water injection makes it possible to considerably increase the unit power. At a constant temperature of the working fluid downstream of the turbine combustion chamber, water injection in an amount of 1% of the air flow rate provides an increase in the turbine power by approximately 12% and expands GTU controlling potentialities. The use of the metastable superheated water atomization enables one to more reliably implement the technology of water injection into a compressor, especially into intermediate compressor stages. However, it requires accounting for operational conditions of particular installation. Due to small water droplet residence time in the compressor flow path, even with fine water atomization, in aircraft engine derivative power turbines, about 15-20% of moisture injected have no time to completely evaporate within the compressor. When injecting cold water, this figure is from 5 to 10% larger.

Favorskii, O. N.; Alekseev, V. B.; Zalkind, V. I.; Zeigarnik, Yu. A.; Ivanov, P. P.; Marinichev, D. V.; Nizovskii, V. L.; Nizovskii, L. V.

2014-05-01

138

Water Resources Research Grant Program project descriptions, fiscal year 1986  

USGS Publications Warehouse

Information is presented on the 43 projects funded by the United States Geological Survey 's Water Resources Grant Program in fiscal year 1986. The report gives the grant number; project title; performing organization; principal investigator(s); dates; and a project description which includes (1) identification of the water related problems and problem-solution approach, (2) contribution to problem solution, (3) objectives, (4) approach, and (5) result users. The 43 projects include 14 in the area of groundwater management, 6 in surface-water management, 2 in systems-operating/planning, 3 in irrigation management, 8 in desalination/reuse, 6 in economic/institutional studies, and 4 in climate variability. The reports contain tables showing (1) funding according to research topic, (2) projects funded to type of submitting organization, (3) proposals received, research topic, and funding levels, and (4) submitting organization. A comparison is given to fiscal year 1985 in each case. (USGS)

Branch of Research Grants and Contracts

1986-01-01

139

Air Sparging Versus Gas Saturated Water Injection for Remediation of Volatile LNAPL in the Borden Aquifer  

NASA Astrophysics Data System (ADS)

In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline hydrocarbons, mainly pentane and hexane, from the residual gasoline via sparging. A similar mass was estimated to have been removed by aerobic biodegradation. The extent of volatile recovery needs to be better defined and so post-sparging coring and analysis of residual LNAPL is underway. Impressively, the second SWI trial recovered more than 60 percent of the pentane-hexane from the NAPL. In both field experiments there was potential for minor additional recovery if the system had been operated longer. Comparison of efficiency of the pulsed air sparging and SWI systems is difficult in that the initial LNAPL residuals have different chemistry, but similar distribution, different volumes of gas were used, and biodegradation accounted for a significant removal of hydrocarbons only in the air sparging system. The SWI trial recovered an impressive portion of the volatile LNAPL, while using considerably less gas than the air sparging system, but the SWI delivery system was both more complex and more expensive than the air sparging system. Additional trials are underway in more complex aquifers to further assess the performance of the SWI technology, including costs and practical limitations.

Barker, J.; Nelson, L.; Doughty, C.; Thomson, N.; Lambert, J.

2009-05-01

140

Low cost power augmentation by water injection on dual fuel gas turbines  

SciTech Connect

It is {open_quotes}common knowledge{close_quotes} that the power output of a combustion turbine (gas turbine) can be increased by as much as ten percent above the {open_quotes}dry{close_quotes} output by injecting water into the combustion zone. This enhancement is particularly useful during periods of high inlet air temperature when the turbine output is lowered due to the reduced air flow of the lower density hot air. The additional mass flow of water will partially offset the reduction of air mass flow. The specific heat of the water vapor (roughly twice that of air) allows increased fuel (and output) at approximately twice the rate of that which would result if the air mass flow were increased by a lower inlet air temperature. It is often a big step from {open_quotes}common knowledge{close_quotes} to actual practice and that step is the subject of this paper. In the summer of 1994 the Lincoln Electric System (L.E.S.), a public utility serving Lincoln, Nebraska ran operational tests on their 1974 G.E. MS-7001B gas turbine with water injection on natural gas fuel. The results proved the {open_quotes}common knowledge{close_quotes} in that the {open_quotes}wet{close_quotes} power was increased by approximately 9% above the {open_quotes}dry{close_quotes} power when the water/fuel mass flow ratio was held to a fairly conservative 1.2/1.0. Further testing, in August of 1995, confirmed these results. Test set for October, 1995, will check the injection system while operating on oil fuel. In this case, the water injection is intended as a NOx reduction measure only with the water/fuel ratio being held to a maximum of 0.5/1.0. The {open_quotes}wet{close_quotes} power is expected to increase by 4%. The utility is also planning tests on a similar system being installed on a Westinghouse model 251 gas turbine.

Statler, W.O.; McReynolds, B.

1995-12-31

141

Stimulation of water injection wells, in the Los Angeles basin by using sodium hypochlorite and mineral acids  

SciTech Connect

A stimulation program was developed to improve injectivity and vertical coverage of water injection wells in the East Beverly Hills and San Vicente fields. Damage materials were removed by stimulating the wells with bleach and acid using a variety of tools and techniques. Two- to three-fold injectivity improvements were common, and vertical distribution was typically improved from an initial coverage of 0 to 30% to 85 to 95% after stimulation.

Clementz, D.M.; Aseltine, R.J.; Patterson, D.E.; Young, R.E.

1982-09-01

142

Properties of seismic wave scattering around water injection well at Fenton Hill hot dry rock geothermal site  

Microsoft Academic Search

To determine the scattering properties of microcracks created by water injection in hot dry rock a method for analyzing trajectory ellipsoids of semismic particle motions has been applied. Lengths and directions of three principal axes of trajectory ellipsoids were calculated, and a distribution of the shape of these ellipsoids suggests existence of a strong scattering region around the injection point.

O. Nishizawa; C. Pearson; J. Albright

1983-01-01

143

The Effect of Annulus Water on the Wellbore Heat Loss From a Steam Injection Well With Insulated Tubing  

Microsoft Academic Search

Recently completed field experiments using an instrumented string and test well have verified that the presence of annulus water in injection well annuli introduces a real and economically important heat loss mechanism - wellbore refluxing - for surface-generated steam. Measured boiling heat transfer rates at local hot spots are sufficient to maintain steady refluxing over a realistic range of injection

D. P. Aeschliman

1985-01-01

144

UMTRA Project water sampling and analysis plan, Slick Rock, Colorado  

SciTech Connect

This water sampling and analysis plan (WSAP) provides the regulatory and technical basis for ground water and surface water sampling at the Uranium Mill Tailings Remedial Action (UMTRA) Project Union Carbide (UC) and North Continent (NC) processing sites and the proposed Burro Canyon disposal site near Slick Rock, Colorado for the upcoming year. It identifies and justifies the sampling locations, analytical parameters, and sampling frequencies. The WSAP bridges water quality characterization and data collection objectives for the surface remediation program (Subpart A) and the ground water compliance program (Subpart B) identified in 40 CFR Part 192 (1994).

Not Available

1994-08-01

145

Measuring the CO2 flux at the air/water interface in lakes using flow injection analysis  

E-print Network

Measuring the CO2 flux at the air/water interface in lakes using flow injection analysis F. V Article on the web 11th May 2001 The carbon dioxide flux at the air/water interface in lakes a hydrophobic membrane into a flow of deionized water, generating a gradient of conductivity proportional

Jardim, Wilson de Figueiredo

146

Native Waters: An American Indian Water Resource Education Project  

NSDL National Science Digital Library

This community education initiative supports the efforts of Native American tribal leaders, educators, and students to develop contemporary, scientifically accurate, and culturally sensitive water education resources, programs, and networking opportunities. A traveling exhibit provides a Native American point of view on protection and conservation of water resources. A teachers' guide is provided to accompany the exhibit. Other materials include learning opportunities for students and educators, news articles, publications, scholarship information, and links to related information.

2004-01-01

147

UMTRA project water sampling and analysis plan, Tuba City, Arizona  

SciTech Connect

Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

NONE

1996-02-01

148

Low-cost real-time infrared scene generation for image projection and signal injection  

NASA Astrophysics Data System (ADS)

As cost becomes an increasingly important factor in the development and testing of Infrared sensors and flight computer/processors, the need for accurate hardware-in-the- loop (HWIL) simulations is critical. In the past, expensive and complex dedicated scene generation hardware was needed to attain the fidelity necessary for accurate testing. Recent technological advances and innovative applications of established technologies are beginning to allow development of cost-effective replacements for dedicated scene generators. These new scene generators are mainly constructed from commercial-off-the-shelf (COTS) hardware and software components. At the U.S. Army Aviation and Missile Command (AMCOM) Missile Research, Development, and Engineering Center (MRDEC), researchers have developed such a dynamic IR scene generator (IRSG) built around COTS hardware and software. The IRSG is used to provide dynamic inputs to an IR scene projector for in-band seeker testing and for direct signal injection into the seeker or processor electronics. AMCOM MRDEC has developed a second generation IRSG, namely IRSG2, using the latest Silicon Graphics Incorporated (SGI) Onyx2 with Infinite Reality graphics. As reported in previous papers, the SGI Onyx Reality Engine 2 is the platform of the original IRSG that is now referred to as IRSG1. IRSG1 has been in operation and used daily for the past three years on several IR projection and signal injection HWIL programs. Using this second generation IRSG, frame rates have increased from 120 Hz to 400 Hz and intensity resolution from 12 bits to 16 bits. The key features of the IRSGs are real time missile frame rates and frame sizes, dynamic missile-to-target(s) viewpoint updated each frame in real-time by a six-degree-of- freedom (6DOF) system under test (SUT) simulation, multiple dynamic objects (e.g. targets, terrain/background, countermeasures, and atmospheric effects), latency compensation, point-to-extended source anti-aliased targets, and sensor modeling effects. This paper provides a comparison between the IRSG1 and IRSG2 systems and focuses on the IRSG software, real time features, and database development tools.

Buford, James A., Jr.; King, David E.; Bowden, Mark H.

1998-07-01

149

Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)  

SciTech Connect

Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

Abhijit Dandekar; Shirish Patil; Santanu Khataniar

2008-12-31

150

Emissions Prediction and Measurement for Liquid-Fueled TVC Combustor with and without Water Injection  

NASA Technical Reports Server (NTRS)

An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.

Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.

2005-01-01

151

Stable isotope reactive transport modeling in water-rock interactions during CO2 injection  

NASA Astrophysics Data System (ADS)

Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

2010-05-01

152

Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection  

SciTech Connect

Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA's), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs.

Ortiz, M.G.; Ghan, L.S.

1991-01-01

153

Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection  

SciTech Connect

Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA`s), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs.

Ortiz, M.G.; Ghan, L.S.

1991-12-01

154

Subsurface injection of treated sewage into a saline-water aquifer at St. Petersburg, Florida - Aquifer pressure buildup  

USGS Publications Warehouse

The city of St. Petersburg has been testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. Treated sweage that had a mean chloride concentration of 170 milligrams per liter (mg/l) was injected through a single well for 12 months at a mean rate of 4. 7 multiplied by 10**5 cubic feet per day (ft**3/d). The volume of water injected during the year was 1. 7 multiplied by 10**8 cubic feet. Pressure buildup at the end of one year ranged from less than 0. 1 to as much as 2. 4 pounds per square inch (lb/in**2) in observation wells at the site. Pressure buildup in wells open to the upper part of the injection zone was related to buoyant lift acting on the mixed water in the injection zone in addition to subsurface injection through the injection well. Calculations of the vertical component of pore velocity in the semiconfining bed underlying the shallowest permeable zone of the Floridan aquifer indicate upward movement of native water.

Hickey, J.J.

1984-01-01

155

Pressure-transient behavior during cold water injection into geothermal wells  

Microsoft Academic Search

During injection testing, the pressures in geothermal wells used for reinjection sometimes initially increase but then decline as injection continues. Injection tests carried out at the Yutsubo geothermal field in Kyushu, Japan, exhibit this peculiar behavior. During injection testing of Yutsubo well YT-2, the observed downhole pressures eventually began to decline despite sustained injection rates. We have carried out numerical

Shinsuke Nakao; Tsuneo Ishido

1998-01-01

156

UMTRA project water sampling and analysis plan, Monument Valley, Arizona  

SciTech Connect

The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

Not Available

1994-04-01

157

Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla.  

PubMed

Elevated sympathetic outflow contributes to the maintenance of blood pressure in water-deprived rats. The neural circuitry underlying this response may involve activation of a pathway from the hypothalamic paraventricular nucleus (PVH) to the rostral ventrolateral medulla (RVLM). We sought to determine whether the PVH-RVLM projection activated by water deprivation is glutamatergic and/or contains vasopressin- or oxytocin-neurophysins. Vesicular glutamate transporter 2 (VGLUT2) mRNA was detected by in situ hybridization in the majority of PVH neurons retrogradely labeled from the ipsilateral RVLM with cholera toxin subunit B (CTB; 85% on average, with regional differences). Very few RVLM-projecting PVH neurons were immunoreactive for oxytocin- or vasopressin-associated neurophysin. Injection of biotinylated dextran amine (BDA) into the PVH produced clusters of BDA-positive nerve terminals within the ipsilateral RVLM that were immunoreactive (ir) for the VGLUT2 protein. Some of these terminals made close appositions with tyrosine-hydroxylase-ir dendrites (presumptive C1 cells). In water-deprived rats (n=4), numerous VGLUT2 mRNA-positive PVH neurons retrogradely labeled from the ipsilateral RVLM with CTB were c-Fos-ir (16-40%, depending on PVH region). In marked contrast, few glutamatergic, RVLM-projecting PVH neurons were c-Fos-ir in control rats (n=3; 0-3%, depending on PVH region). Most (94% +/- 4%) RVLM-projecting PVH neurons activated by water deprivation contained VGLUT2 mRNA. In summary, most PVH neurons that innervate the RVLM are glutamatergic, and this population includes the neurons that are activated by water deprivation. One mechanism by which water deprivation may increase the sympathetic outflow is activation of a glutamatergic pathway from the PVH to the RVLM. PMID:16374796

Stocker, Sean D; Simmons, Johnny R; Stornetta, Ruth L; Toney, Glenn M; Guyenet, Patrice G

2006-02-01

158

Effective Jet Properties for the Prediction of Turbulent Mixing Noise Reduction by Water Injection  

NASA Technical Reports Server (NTRS)

A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the control volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

Kandula, Max; Lonergan, Michael J.

2007-01-01

159

Simulation of Reclaimed-Water Injection and Pumping Scenarios and Particle-Tracking Analysis near Mount Pleasant, South Carolina  

USGS Publications Warehouse

The effect of injecting reclaimed water into the Middendorf aquifer beneath Mount Pleasant, South Carolina, was simulated using a groundwater-flow model of the Coastal Plain Physiographic Province of South Carolina and parts of Georgia and North Carolina. Reclaimed water, also known as recycled water, is wastewater or stormwater that has been treated to an appropriate level so that the water can be reused. The scenarios were simulated to evaluate potential changes in groundwater flow and groundwater-level conditions caused by injecting reclaimed water into the Middendorf aquifer. Simulations included a Base Case and two injection scenarios. Maximum pumping rates were simulated as 6.65, 8.50, and 10.5 million gallons per day for the Base Case, Scenario 1, and Scenario 2, respectively. The Base Case simulation represents a non-injection estimate of the year 2050 groundwater levels for comparison purposes for the two injection scenarios. For Scenarios 1 and 2, the simulated injection of reclaimed water at 3 million gallons per day begins in 2012 and continues through 2050. The flow paths and time of travel for the injected reclaimed water were simulated using particle-tracking analysis. The simulations indicated a general decline of groundwater altitudes in the Middendorf aquifer in the Mount Pleasant, South Carolina, area between 2004 and 2050 for the Base Case and two injection scenarios. For the Base Case, groundwater altitudes generally declined about 90 feet from the 2004 groundwater levels. For Scenarios 1 and 2, although groundwater altitudes initially increased in the Mount Pleasant area because of the simulated injection, these higher groundwater levels declined as Mount Pleasant Waterworks pumping increased over time. When compared to the Base Case simulation, 2050 groundwater altitudes for Scenario 1 are between 15 feet lower to 23 feet higher for production wells, between 41 and 77 feet higher for the injection wells, and between 9 and 23 feet higher for observation wells in the Mount Pleasant area. When compared to the Base Case simulation, 2050 groundwater altitudes for Scenario 2 are between 2 and 106 feet lower for production wells and observation wells and between 11 and 27 feet higher for the injection wells in the Mount Pleasant area. Water budgets for the model area immediately surrounding the Mount Pleasant area were calculated for 2011 and for 2050. The largest flow component for the 2050 water budget in the Mount Pleasant area is discharge through wells at rates between 7.1 and 10.9 million gallons of water per day. This groundwater is replaced predominantly by between 6.0 and 7.8 million gallons per day of lateral groundwater flow within the Middendorf aquifer for the Base Case and two scenarios and through reclaimed-water injection of 3 million gallons per day for Scenarios 1 and 2. In addition, between 175,000 and 319,000 gallons of groundwater are removed from this area per day because of the regional hydraulic gradient. Additional sources of water to this area are groundwater storage releases at rates between 86,800 and 116,000 gallons per day and vertical flow from over- and underlying confining units at rates between 69,100 and 150,000 gallons per day. Reclaimed water injected into the Middendorf aquifer at three hypothetical injection wells moved to the Mount Pleasant Waterworks production wells in 18 to 256 years as indicated by particle-tracking simulations. Time of travel varied from 18 to 179 years for simulated conditions of 20 percent uniform aquifer porosity and between 25 to 256 years for 30 percent uniform aquifer porosity.

Petkewich, Matthew D.; Campbell, Bruce G.

2009-01-01

160

Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA  

USGS Publications Warehouse

The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June 2009. Baseline data from EC monitoring is being used to characterize pre-injection conditions, and may then be used to detect changes in net exchange CO2 fluxes (Fc) that could be the result of CO2 leakage into the near-surface environment during or following injection. When injection at IBDP begins, soil and net CO2 monitoring efforts will have established a baseline of near-surface conditions that will be important to help demonstrate the effectiveness of storage activities. ?? 2011 Published by Elsevier Ltd.

Locke, R.A., II; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.

2011-01-01

161

40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?  

Code of Federal Regulations, 2013 CFR

emissions, you must install, calibrate, maintain and operate a continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine when burning a fuel that requires water or steam injection for...

2013-07-01

162

40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?  

Code of Federal Regulations, 2011 CFR

emissions, you must install, calibrate, maintain and operate a continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine when burning a fuel that requires water or steam injection for...

2011-07-01

163

UMTRA project water sampling and analysis plan, Mexican Hat, Utah  

SciTech Connect

The Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site is a former uranium mill that is undergoing surface remediation in the form of on-site tailings stabilization. Contaminated surface materials from the Monument Valley, Arizona, UMTRA Project site have been transported to the Mexican Hat site and are being consolidated with the Mexican Hat tailings. The scheduled completion of the tailings disposal cell is August 1995. Water is found in two geologic units at the site: the Halgaito Shale Formation and the Honaker Trail Formation. The tailings rest on the Halgaito Shale, and water contained in that unit is a result of milling activities and, to a lesser extent, water released from the tailings from compaction during remedial action construction of the disposal cell. Water in the Halgaito Shale flows through fractures and discharges at seeps along nearby arroyos. Flow from the seeps will diminish as water drains from the unit. Ground water in the lower unit, the Honaker Trail Formation, is protected from contamination by an upward hydraulic gradient. There are no nearby water supply wells because of widespread poor background ground water quality and quantity, and the San Juan River shows no impacts from the site. This water sampling and analysis plan (WSAP) recommends sampling six seeps and one upgradient monitor well compared in the Honaker Trail Formation. Samples will be taken in April 1994 (representative of high group water levels) and September 1994 (representative of low ground water levels). Analyses will be performed on filtered samples for plume indicator parameters.

Not Available

1994-04-01

164

Geospatial application of the Water Erosion Prediction Project (WEPP) model  

Technology Transfer Automated Retrieval System (TEKTRAN)

At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillsl...

165

Water Resources Research Grant Program project descriptions, fiscal year 1985  

USGS Publications Warehouse

Information on each of the 24 projects funded by the U.S. Geological Survey in FY 1985 under section 105 of Public Law 93-242 (the Water Resources Research Act of 1984) is presented, including the grant number, organization, the period of performance, and a brief description of the work to be carried out. (Lantz-PTT)

U.S. Geological Survey Branch of Research Grants and Contracts

1985-01-01

166

Impact of water control projects on fisheries resources in Bangladesh  

NASA Astrophysics Data System (ADS)

Bangladesh is a very flat delta built up by the Ganges—Brahmaputra—Meghna/Barak river systems. Because of its geographical location, floods cause huge destruction of lives and properties almost every year. Water control programs have been undertaken to enhance development through mitigating the threat of disasters. This structural approach to flood hazard has severely affected floodplain fisheries that supply the major share of protein to rural Bangladesh, as exemplified by the Chandpur Irrigation Project. Although the regulated environment of the Chandpur project has become favorable for closed-water cultured fish farming, the natural open-water fishery loss has been substantial. Results from research show that fish yields were better under preproject conditions. Under project conditions per capita fish consumption has dropped significantly, and the price of fish has risen beyond the means of the poor people, so that fish protein in the diet of poor people is gradually declining. Bangladesh is planning to expand water control facilities to the remaining flood-prone areas in the next 15 20 years. This will cause further loss of floodplain fisheries. If prices for closed-water fish remain beyond the buying power of the poor, alternative sources of cheap protein will be required.

Mirza, Monirul Qader; Ericksen, Neil J.

1996-07-01

167

Ensemble approach for projections of return periods of extreme water levels in Estonian waters  

NASA Astrophysics Data System (ADS)

The contribution of various drivers to the water level in the eastern Baltic Sea and the presence of outliers in the time series of observed and hindcast water level lead to large spreading of projections of future extreme water levels. We explore the options for using an ensemble of projections to more reliably evaluate return periods of extreme water levels. An example of such an ensemble is constructed by means of fitting several sets of block maxima (annual maxima and stormy season maxima) with a Generalised Extreme Value, Gumbel and Weibull distribution. The ensemble involves projections based on two data sets (resolution of 6 h and 1 h) hindcast by the Rossby Centre Ocean model (RCO; Swedish Meteorological and Hydrological Institute) and observed data from four representative sites along the Estonian coast. The observed data are transferred into the grid cells of the RCO model using the HIROMB model and a linear regression. For coastal segments where the observations represent the offshore water level well, the overall appearance of the ensembles signals that the errors of single projections are randomly distributed and that the median of the ensemble provides a sensible projection. For locations where the observed water level involves local effects (e.g. wave set-up) the block maxima are split into clearly separated populations. The resulting ensemble consists of two distinct clusters, the difference between which can be interpreted as a measure of the impact of local features on the water level observations.

Eelsalu, Maris; Soomere, Tarmo; Pindsoo, Katri; Lagemaa, Priidik

2014-12-01

168

U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan  

SciTech Connect

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

Not Available

1994-09-01

169

Comparison of Microbial Community Compositions of Injection and Production Well Samples in a Long-Term Water-Flooded Petroleum Reservoir  

PubMed Central

Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water. PMID:21858049

Ren, Hong-Yan; Zhang, Xiao-Jun; Song, Zhi-yong; Rupert, Wieger; Gao, Guang-Jun; Guo, Sheng-xue; Zhao, Li-Ping

2011-01-01

170

Flow structures of gaseous jets injected into water for underwater propulsion  

NASA Astrophysics Data System (ADS)

Gaseous jets injected into water are typically found in underwater propulsion, and the flow is essentially unsteady and turbulent. Additionally, the high water-to-gas density ratio can result in complicated flow structures; hence measuring the flow structures numerically and experimentally remains a challenge. To investigate the performance of the underwater propulsion, this paper uses detailed Navier-Stokes flow computations to elucidate the gas-water interactions under the framework of the volume of fluid (VOF) model. Furthermore, these computations take the fluid compressibility, viscosity, and energy transfer into consideration. This paper compares the numerical results and experimental data, showing that phenomena including expansion, bulge, necking/breaking, and back-attack are highlighted in the jet process. The resulting analysis indicates that the pressure difference on the rear and front surfaces of the propulsion system can generate an additional thrust. The strong and oscillatory thrust of the underwater propulsion system is caused by the intermittent pulses of the back pressure and the nozzle exit pressure. As a result, the total thrust in underwater propulsion is not only determined by the nozzle geometry but also by the flow structures and associated pressure distributions.

Tang, Jia-Ning; Wang, Ning-Fei; Shyy, Wei

2011-08-01

171

STORM WATER POLLUTION PREVENTION PLAN BUILDING B51 AND BEVATRON DEMOLITION PROJECT  

E-print Network

STORM WATER POLLUTION PREVENTION PLAN FOR: BUILDING B51 AND BEVATRON DEMOLITION PROJECT PROJECT NO;Storm Water Pollution Prevention Plan (SWPPP) Building B51 and Bevatron Demolition Project Lawrence............................................................................................300-3 300.4 Project Schedule/Water Pollution Control Schedule

172

Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust  

NASA Technical Reports Server (NTRS)

An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

Henneberry, Hugh M.; Snyder, Christopher A.

1993-01-01

173

Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells  

NASA Astrophysics Data System (ADS)

Urbanized areas have environmental features that may influence the development of low-enthalpy geothermal systems and the choice of the most suitable among the available (roughly earth-coupled closed-loop and groundwater open-loop type). In particular, if compared to less anthropized areas, some characteristic urban elements require particular attention: underground extensive use, contamination of groundwater, interference between the systems, authorization procedures and planning restrictions, the competition with cogeneration systems and the impact on emissions of pollutants. In this general context, the increasing implementation in several areas of the world of the open-loop groundwater heat pumps technology which discharge into the aquifer for cooling and heating buildings, could potentially cause, even in the short term, a significant environmental impact associated with thermal interference with groundwater, particularly in the shallow aquifers. The discharge of water at different temperatures compared to baseline (warmer in summer and colder in winter) poses a number of problems in relation to the potential functionality of many existing situations of use of the groundwater (drinking water wells, agricultural, industrial, etc.). In addition, there may be cases of interference between systems, especially in the more densely urbanized areas. Appropriate hydrogeological investigations should be performed for the characterization of the main hydrogeological parameters of the subsoil at the considered site in order to minimize the environmental impact of discharges into aquifers. The current Italian legislation related to withdrawals and discharges into aquifers designs a framework suitable for the protection of groundwater and induce deciding the best configuration of the plant with a case by case approach. An increased contact area between the dispersant system and the ground makes it possible to affect a greater volume of aquifer and, consequently, reduce the areal extent of the thermal plume that develops around the area of injection minimizing the time and the space needed for the disappearance of the thermal plume and the restoration of undisturbed temperature conditions. The reduction in plan and temporal extension of the thermal plume would have several benefits, minimizing the use of large areas around the buildings involved by the thermal perturbation, with direct implementation benefits. In order to investigate alternatives to traditional drilled water well for the re-injection and dispersion of water in aquifer downstream of the heat pump, we modeled with FEFLOW the possible reverse use of commercial draining gabions in various types of ground configuration, geometry and interconnection with systems of pre-fabricated vertical drains on a possible reliable test-site. The results highlighted that they can represent a good and efficient alternative for the groundwater dispersion in the aquifers.

Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

2014-05-01

174

Large diameter, deep water pipelay Zeepipe IIA project  

SciTech Connect

The 300 km Zeepipe IIA offshore gas pipeline was installed by European marine Contractors Ltd. for Statoil between the Sleipner A Platform and the Kollsness Terminal tunnel exit in the 1994 and 1995 lay seasons. The route passes through the Norwegian Trench and the highly undulating nearshore area at Oygarden. While smaller pipes have been laid in deeper water, with a diameter of 40 inches and a maximum water depth of 365 meters this pipeline represents the most technically demanding combination of diameter and water depth laid in the world to date. The project faced specific challenges, including high lay tensions, heavily concrete coated pipe, pipeline laydown and recovery in deep water, subsea pockmark and boulder fields, stringent lay tolerances and low residual tension requirements. This paper details the planning, installation engineering, equipment modification and innovations required to achieve successful completion of the pipeline installation.

Farley, S.D.; Sykes, C.; Simons, P. [European Marine Contractors Ltd., Motspur Park (United Kingdom)

1996-12-01

175

Safe drinking water projects integrated information system for rural areas  

NASA Astrophysics Data System (ADS)

According to the water supply characteristics in rural areas, it designs a safe drinking water project in this paper. The whole system includes three parts. Those are communication part, automatic control and test part and video surveillance part. Communication part mainly realizes the data transfer between PLC controlled equipment, branch pipeline monitoring and control equipment in the water plant. Automatic control and test part adopts hierarchical, distributed, decentralized structure to remote control and dynamic detect the data on-site. Video Surveillance part can monitor the personnel and equipment condition to guarantee the safe of the whole system. The system takes Visual Studio .NET as the development platform and it entirely bases on the public network B/S structure. From the application, it can be seen that the whole system has the characters of using and maintaining easily, interface simple and friend and it can improve the drinking water condition in rural areas greatly.

Song, Xue-ling; Zhao, Ying-bao; Liu, Chao-ying; Song, Zhe-ying

2009-07-01

176

The Cedar Project: historical trauma, sexual abuse and HIV risk among young Aboriginal people who use injection and non-injection drugs in two Canadian cities.  

PubMed

Recent Indigenist scholarship has situated high rates of traumatic life experiences, including sexual abuse, among Indigenous peoples of North America within the larger context of their status as colonized peoples. Sexual abuse has been linked to many negative health outcomes including mental, sexual and drug-related vulnerabilities. There is a paucity of research in Canada addressing the relationship between antecedent sexual abuse and negative health outcomes among Aboriginal people including elevated risk of HIV infection. The primary objectives of this study were to determine factors associated with sexual abuse among participants of the Cedar Project, a cohort of young Aboriginal people between the ages of 14 and 30 years who use injection and non-injection drugs in two urban centres in British Columbia, Canada; and to locate findings through a lens of historical and intergenerational trauma. We utilized post-colonial perspectives in research design, problem formulation and the interpretation of results. Multivariate modeling was used to determine the extent to which a history of sexual abuse was predictive of negative health outcomes and vulnerability to HIV infection. Of the 543 eligible participants, 48% reported ever having experienced sexual abuse; 69% of sexually abused participants were female. The median age of first sexual abuse was 6 years for both female and male participants. After adjusting for sociodemographic variables and factors of historical trauma, sexually abused participants were more likely to have ever been on the streets for more than three nights, to have ever self-harmed, to have suicide ideation, to have attempted suicide, to have a diagnosis of mental illness, to have been in the emergency department within the previous 6 months, to have had over 20 lifetime sexual partners, to have ever been paid for sex and to have ever overdosed. The prevalence and consequences of sexual abuse among Cedar Project participants are of grave concern. Sexual trauma will continue to impact individuals, families and communities until unresolved historical trauma is meaningfully addressed in client-driven, culturally safe programming. PMID:18455054

Cedar Project Partnership; Pearce, Margo E; Christian, Wayne M; Patterson, Katharina; Norris, Kat; Moniruzzaman, Akm; Craib, Kevin J P; Schechter, Martin T; Spittal, Patricia M

2008-06-01

177

Hydrologic data through 1993 for the Huron Project of the High Plains Ground-Water Demonstration Program  

USGS Publications Warehouse

This report presents data on precipitation, geologic logs, water levels, and water quality that have been collected or compiled, through water year 1993, for the Huron Project of the High Plains Ground-Water Demonstration Program, under the guidance of the Bureau of Reclamation. The purpose of the Huron Project is to demonstrate the artificial recharge potential of glacial aquifers in eastern South Dakota. High flows from the James River during spring runoff are used as a source of supplemental recharge for the Warren aquifer, which is a buried, glacial aquifer. Prior to the injection of recharge water, which began in April 1994, many sites were monitored to obtain background information. This report presents data that were collected prior to the initiation of recharge. Precipitation data are collected at two sites within the study area. A site description and daily precipitation for water years 1991-93 are presented for one precipitation site. In 1990, 76 test holes were drilled and observation wells were installed at 70 sites. Well information and geologic logs collected during the drilling program for the Huron Project are presented. In addition to the 70 new Huron Project wells, 15 existing observation wells owned by the South Dakota Department of Environment and Natural Resources were incorporated into the study. Water- level hydrographs are presented for the 85 observation wells. The period of record shown for the hydrographs is from the earliest available record through September 1993. Water-quality data were collected from both screening and detailed sampling programs. Screening water-quality data for 32 observation wells are presented. These data include primarily field parameters and common ions. The eight detailed sampling sites represent the quality of untreated water, treated water, an intermittent stream, and ground water from the Warren aquifer. Data presented for the detailed sampling program include field parameters, bacteria counts, and concentrations of common ions, solids, nutrients, trace elements, radiometrics, total organic carbon, herbicides, insecticides, and volatile organic compounds.

Carter, Janet M.

1995-01-01

178

Use of tetramethylbenzidine for the spectrophotometric sequential injection determination of free chlorine in waters.  

PubMed

A sequential injection (SI) method was developed for the spectrophotometric determination of chlorine based on the reaction between tetramethylbenzidine (TMB) and free chlorine. The advantages resulting from the use of TMB are considerable: TMB is highly selective for chlorine, it enables a fairly low quantification limit and represents a less toxic alternative to reagents such as tolidine. The use of this reaction in SI adds other advantages as it enhances the degree of automation, minimisation of reagent consumption (6.8mug TMB/assay) and low effluent production (2.5mL/determination). The developed method allowed a quantification limit of 90mug/L with a working range of 0.09-1.30mgOCl(-)/L and a determination rate of 60det./h. Based on these features, the system was applied to tap-water and surface water samples with no previous treatment required. The results obtained with the developed system were compared to the reference method, diethyl-p-phenylelediamine (DPD) colorimetric method, and proved not to be statistically different. PMID:19071743

Mesquita, Raquel B R; Noronha, M Lúcia F O B; Pereira, Ana I L; Santos, Arménia C F; Torres, André F; Cerdà, Víctor; Rangel, António O S S

2007-05-15

179

Experimental study on turbulent natural convection heat transfer in water with sub-millimeter-bubble injection  

NASA Astrophysics Data System (ADS)

Using thermocouples and a particle tracking velocimetry technique, temperature and velocity measurements are conducted to investigate flow and heat transfer characteristics of turbulent natural convection from a vertical heated plate in water with sub-millimeter-bubble injection. Hydrogen-bubbles generated by the electrolysis of water are used as the sub-millimeter-bubbles. In the turbulent region, the heat transfer deterioration occurs for a bubble flow rate Q = 33 mm3/s, while the heat transfer enhancement occurs for Q = 56 mm3/s. Temperature and velocity measurements suggest that the former is caused by a delay of the transition due to the bubble-induced upward flow. On the other hand, the latter is mainly due to two factors: one is the enhancement of the rotation of eddies in the outer layer, and the other is the increase in the gradient of the streamwise liquid velocity at the heated wall. These are caused by bubbles, which are located in the inner layer, rising at high speed.

Kitagawa, Atsuhide; Kitada, Kenji; Hagiwara, Yoshimichi

2010-09-01

180

Quality of water recovered from a municipal effluent injection well in the Floridan aquifer system, Pompano Beach, Florida  

USGS Publications Warehouse

Approximately 69 million gallons of backflow from an injection well used for the disposal of secondary treated municipal effluent in the Floridan aquifer system near Pompano Beach, Florida, was periodically sampled for inorganic quality from March 1975 through March 1977. Analyses of the backflow effluent showed a concomitant increase in dissolved solids and a change in ionic composition as a function of cumulative volume of backflow. Both the increase in dissolved solids and the change in major ionic composition were directly related to an estimated 6 to 7 percent mixing of the moderately saline water in the Florida aquifer system with the injected system with the injected effluent. Although an estimated 3.5 billion gallons of effluent was injected into the aquifer system during the 16-year operation of the Collier Manor treatment plant, only 65 to 70 million gallons was backflowed before the chloride concentration approached 250 milligrams per liter. (USGS)

McKenzie, D.J.; Irwin, G.A.

1984-01-01

181

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-print Network

) using Kulin oil (21 'API oil Irom Indonesia). ' The same effect of production acceleration was observed in these experiments and steam injectivity was improved with the addition of propane to the steam. Rivero and Mamora (2002) conducted several steam... studies of steam-propane and enriched gas injection for the Minas light crude oil. ' With steam-propane injection no improvement on production and oil recovery was obtained. Enriched gas injection increase the oil recovery in 13'/o, (74'/o OOIP with 5...

Rueda Silva, Carlos Fernando

2003-01-01

182

UMTRA Ground Water Project management action process document  

SciTech Connect

A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

NONE

1996-03-01

183

Pre-injection Comparison of Methods for Sampling Formation Water and Associated Gas from a Monitoring Well at a Carbon Dioxide Injection Site, Citronelle Oil Field, Alabama  

NASA Astrophysics Data System (ADS)

The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a well in the Citronelle Oil Field, Alabama, a site that will be used for a carbon dioxide injection experiment. Prior to each of the two sampling periods, the well was cleaned from the drilling fluids and KCl solutions by producing at least three pore volumes of formation water. Accurate measurements of the chemical composition of groundwater or formation water, including dissolved gasses, and gas samples is essential in understanding subsurface geochemical processes occurring as a result of geologic carbon dioxide injection, which is used for enhanced oil recovery (EOR) and has been proposed as a means of carbon sequestration. In this study, formation water and gas samples for geochemical analyses were obtained from well D-9-8 #2 at Citronelle using nitrogen lift, submersible pump, U-Tube, and a downhole (Kuster) sampler. Field chemical analyses included electrical conductivity, hydrogen sulfide, alkalinity, and pH, and laboratory analyses included major, minor and trace elements by mass spectrometry and ion chromatography, dissolved carbon, organic acid anions, free and dissolved gas species. The formation water obtained from this well is a Na-Ca-Cl brine with a salinity of 160,000 and 200,000 mg/L total dissolved solids (TDS). Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity measurements. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the downhole sampler and U-Tube system performing most favorably in this aspect.

Conaway, C.; Thordsen, J. J.; Manning, M. A.; Cook, P. J.; Abedini, A. A.; Trautz, R. C.; Thomas, B.; Kharaka, Y. K.

2012-12-01

184

Microbial biomass, activity, and community structure of water and particulates retrieved by backflow from a waterflood injection well.  

PubMed

Oil field injection water was allowed to back flow from two wells at the Packard drill site in Los Angeles, Calif., and was sampled at various times to obtain information about the biomass, potential activity, and community structure of the microbiota in the reservoir formation and in the injection water. Biomass was greatest in water samples that came from the zone near the injection site and dropped off sharply in subsequent samples, which were assumed to come from zones farther away from the well. Samples obtained from near the well also had visible exopolysaccharide blankets, as seen in scanning electron microscopic preparations. In one of the wells that was sampled, rates of glucose or acetate incorporation into microbial lipids correlated with biomass; but in the other well, activities correlated with the sampling time (volume of water that back flowed). Transmission electron micrographs showed a diverse, gram-negative bacterial population in a variety of physiological states. The analysis of the phospholipid ester-linked fatty acid profiles of the samples revealed consistently large proportions of 18:1omega7c fatty acids, indicating the presence of many anaerobes, facultative organisms, or both. Proportions of cyclopropyl fatty acids and ratios of trans/cis monoenoic compounds increased with the volume of water that back flowed (analogous with the distance into the formation), while the ratio of unsaturated/saturated compounds decreased, possibly indicating higher levels of stress or starvation in the microbial communities farthest from the injection well. Greater than 90% of the total biomass was trapped on glass fiber filters, indicating that the microbiota were largely attached to particles or were clumped. These sampling techniques and analytical methods may prove useful in monitoring for problems with microbes (e.g., plugging) in waterflood operations and in the preparation of water injection wells for enhanced oil recovery by the use of microbes. PMID:16347649

McKinley, V L; Costerton, J W; White, D C

1988-06-01

185

The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project  

NASA Technical Reports Server (NTRS)

Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

House, P. R.; Lapenta, W.; Schiffer, R.

2008-01-01

186

Cyclic injection, storage, and withdrawal of heated water in a sandstone aquifer at St. Paul, Minnesota; analysis of thermal data and nonisothermal modeling of short-term test cycles  

USGS Publications Warehouse

In May 1980, the University of Minnesota began a project to evaluate the feasibility of storing heated water (150 degree Celsius) in the deep Franconia-Ironton-Galesville aquifer (180 to 240 meters below land surface) and later recovering it for space heating. High-temperature water from the University's steam-generation facilities supplied heated water for injection. The Aquifer Thermal- Energy Storage system is a doublet-well design in which the injection/withdrawal wells are spaced approximately 250 meters apart. Water was pumped from one of the wells through a heat exchanger, where heat was added or removed. This water was then injected back into the aquifer through another well. Four short-term test cycles were completed. Each cycle consisted of approximately equal durations of injection, and withdrawal. Equal rates of injection and withdrawal, ranging from 17.7 to 18.4 liters per second, were maintained for each short-term test cycle. Injection temperatures ranged from 88.5 to 117.9 degrees Celsius. A three-dimensional, anisotropic, noniso- thermal ground-water flow and thermal-energy- transport model was constructed to simulate the four short-term test cycles. The only model properties varied during model calibration were longitudinal and transverse thermal dispersivities. The model was calibrated by comparing model-computed results to (1) field-recorded temperatures at selected locations, in four observation wells; (2) field- recorded temperatures at the production well; and (3) calculated aquifer-thermal efficiences. Model- computed withdrawal-water temperaturs were within an average of about 3 percent of measured values and model-computed aquifer-thermal efficiencies were within an average of about 5 percent of calculated values for the short-term test cycles. These data indicate that the model accurately simulated thermal-energy storage.

Miller, Robert T.; Delin, G.N.

1994-01-01

187

Analysis of compaction phenomena due to water injection in reservoirs with a three-phase geomechanical model  

Microsoft Academic Search

In coastal regions, land subsidence that results from industrial pumping of underground fluids, such as methane, is documented by in situ surveys. Laboratory characterization of gas bearing formations has also been published, which complements knowledge of reservoir compaction due to variation of fluid pressures. Gas withdrawal is reproduced in the laboratory by injecting water under a constant uniaxial or hydrostatic

Mathieu Nuth; Lyesse Laloui; Bernhard A. Schrefler

2010-01-01

188

ANALYSIS OF LOW-LEVEL PESTICIDES FROM HIGH-ELEVATION LAKE WATERS BY LARGE VOLUME INJECTION GCMS  

EPA Science Inventory

This paper describes the method development for the determination of ultra-low level pesticides from high-elevation lake waters by large-volume injection programmable temperature vaporizer (LVI-PTV) GC/MS. This analytical method is developed as a subtask of a larger study, backgr...

189

A prospective, randomized trial of endoscopic hemoclip placement and distilled water injection for treatment of high-risk bleeding ulcers  

Microsoft Academic Search

Background: Although endoscopic hemoclip therapy is widely used in the treatment of GI bleeding, there are few prospective trials that assess its efficacy. This study evaluated the efficacy and safety of hemoclip placement and distilled water injection for the treatment of high-risk bleeding ulcers. Methods: Seventy-nine patients with major stigmata of ulcer hemorrhage were randomly assigned to either endoscopic hemoclip

Yuh-Chyi Chou; Ping-I. Hsu; Kwok-Hung Lai; Ching-Chu Lo; Hoi-Hung Chan; Chi-Pin Lin; Wen-Chi Chen; Chang-Bih Shie; E.-Ming Wang; Nan-Hua Chou; Wency Chen; Gin-Ho Lo

2003-01-01

190

A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery  

Microsoft Academic Search

A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted

James C. Conklin; James P. Szybist

2010-01-01

191

Sensitive enantioanalysis of ?-blockers via field-amplified sample injection combined with water removal in microemulsion electrokinetic chromatography.  

PubMed

In this study, an on-line sample preconcentration technique, field-amplified sample injection combined with water removal by electroosmotic flow (EOF) pump, was applied to realize a highly sensitive chiral analysis of ?-blocker enantiomers by MEEKC. The introduction of a water plug in capillary before the electrokinetic injection provided the effective preconcentration of chiral compounds. And then the water was moving out of the column from the injection end under the effect of the EOF, which avoided dilution of the stacked ?-blocker enantiomers concentration suffering from the presence of water in separation buffer. Moreover, the addition of H3 PO4 and methanol in the sample solution greatly improved the enhancement efficiency further. Under optimized conditions, more than 2700-fold enhancement in sensitivity was obtained for each enantiomer of bupranolol (BU), alprenolol (AL), and propranolol (PRO) via electrokinetic injection. LODs were 0.10, 0.10, 0.12, 0.11, 0.02, and 0.02 ng/mL for S-BU, R-BU, S-AL, R-AL, S-PRO, and R-PRO, respectively. Eventually, the proposed method was successfully applied to the determination of BU, AL, and PRO in serum samples with good recoveries ranging from 93.4 to 98.2%. PMID:24798241

Ma, Yanhua; Zhang, Huige; Rahman, Zia Ur; Wang, Weifeng; Li, Xi; Chen, Hongli; Chen, Xingguo

2014-10-01

192

Science in an Integrated Primary School Project on Water: Part 1.  

ERIC Educational Resources Information Center

Describes water-related activities in an elementary school science project. These activities focus on electric generators, rainfall, erosion, floating, water conservation, and other areas. Brief comments on developing such a project are included. (JN)

Ward, Alan

1984-01-01

193

Water banks and environmental water demands: Case of the Klamath Project  

NASA Astrophysics Data System (ADS)

Demand for water for environmental uses, such as to provide critical habitat for endangered species, has increased competition for agricultural water supplies. In the western United States, a significant portion of these water demands is to increase in-stream flows. Given that Endangered Species Act (ESA) requirements supersede prior appropriation rights, ESA water demands have the potential to reduce agricultural diversions, particularly in times of drought. This situation occurred in 2001 in the Klamath Basin of southern Oregon and northern California: an ESA-related judicial ruling on the needs of several endangered fish species resulted in a major reduction in water diversions to the Klamath Reclamation Project. Using the Klamath Basin as an empirical backdrop, this study examines the potential benefits and challenges of water banks to mitigate damages to appropriative water rights holders and to provide water for environmental purposes. Results from this case study indicate that water banks are a potentially cost effective way to meet environmental needs. This study, however, illustrated several of the challenges of implementing a water bank given that modifications to the proposed bank are needed to achieve cost efficiency. Specifically, expanded trading is needed, both intraproject and interproject, to achieve the objectives of providing environmental water at minimum cost to society.

Burke, Susan M.; Adams, Richard M.; Wallender, Wesley W.

2004-09-01

194

Ground-water resources of Riverton irrigation project area, Wyoming  

USGS Publications Warehouse

The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts of the project, water from domestic use is obtained chiefly from the sandstone beds of the Wind River formation although some is obtained from the alluvium underlying the bottom land and from the unconsolidated deposits underlying the lower terraces along the Wind River. Although adequate quantities if water for domestic use are available from the Wind River formation, there quantities are not considered to be large enough to warrant pumping of ground water for irrigation. Only a few wells are in the nonirrigated part of the area. When this new land is irrigated, a body of ground water will gradually form in the terrace deposits and the alluvial and colluvial-alluvial deposits. Eventually, the terrace deposits may yield adequate quantities of water for domestic and stock use, but only locally are the alluvial and colluvial-alluvial deposits likely to become suitable aquifers. In the Riverton irrigation project area, ground water occurs under water-table conditions near the surface and under artesian conditions in certain strata at both shallow and greater depths. Irrigation is the principal source of recharge to the shallow aquifers; the water level in wells that tap these aquifers fluctuates with irrigation. The depth to water in the shallow wells ranges from less than 1 foot to about 30 feet below the land surface, depending on the season of the year and on the length of time the land has been irrigated. The water level in the wells that tap the deep confined aquifers , which receive recharge indirectly from surface sources, fluctuates only slightly because the recharge and discharge are more constant. In most places the depth to water in wells penetrating the deep confined aquifers is mush greater than that in shallow wells. but in certain low areas water from the deep aquifers flows at the surface from wells. Ground water moves from the area of recharge in the direction of the hydraulic gradient and is discharges either by evapotranspiration; by inflow into streams, drains, or lakes; by pumping or flow of wells; or by flow of springs. Waterlogging and the a

Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

1959-01-01

195

Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being con-  

E-print Network

Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being, are needed before large-scale production of treated CAP water can become cost-effective. Investigators Smith (UA) Umur Yenal (UA) PROJECT FUNDING CYCLE 2007 PROJECT GOALS This project had three main goals: 1

Fay, Noah

196

Pharmacokinetics and pharmacodynamics of GPI 15715 or fospropofol (Aquavan injection) - a water-soluble propofol prodrug.  

PubMed

Propofol (2,6-diisopropylphenol) is inadequably soluble in water and is therefore formulated as a lipid emulsion. This may have disadvantages when propofol is used to provide total intravenous anaesthesia or especially during long-term sedation. There has been considerable interest in the development of new propofol formulations or propofol prodrugs. GPI 15715 or fospropofol (Aquavan injection; Guilford Pharmaceutical, Baltimore, MD) is the first water-soluble prodrug that has been thoroughly studied in human volunteers and patients. GPI 15751 or fospropofol is cleaved by alkaline phosphatase to phosphate, formaldehyde and propofol. Formaldehyde is rapidly metabolised to formate. Although a formate accumulation is the principal pathomechanism responsible for the toxicity of methanol ingestion, so far there has been no report of toxicity due to the administration of fospropofol or other phosphate ester prodrugs, such as fosphenytoin. Fosphenytoin has been successfully introduced into the market for the treatment of status epilepticus in 1996. The main side-effects were a feeling of paraesthesia after rapid i.v. administration of GPI 15715 or fospropofol, which has also been described for fosphenytoin. The pharmacokinetics of GPI 15715 or fospropofol could be described by a combined pharmacokinetic model with a submodel of two compartments for GPI 15715 and of three compartments for propofol(G). The liberated propofol(G) compared to lipid-formulated propofol showed unexpected pharmacokinetic and pharmacodynamic differences. We found a significantly greater V(c), V(dss), significantly shorter alpha- and beta-half-life and a longer MRT (mean residence time) for propofol(G). The pharmacodynamic potency of propofol(G) appears to be higher than propofol when measured by EEG and clinical signs of hypnosis. In summary, GPI 15715 or fospropofol was well suited to provide anaesthesia or conscious sedation. PMID:18175095

Fechner, J; Schwilden, H; Schüttler, J

2008-01-01

197

Project Zoom IN, Citizen Perspectives on Climate and Water Resources  

NASA Astrophysics Data System (ADS)

Perspective on climate and water resources can come from the top, scientists sharing invaluable data and findings about how climate dynamics function or quantifications of systems in flux. However, citizens are endowed with an equally as powerful tool for insight: ground zero experience. Project Zoom In is a nascent project undertaken by Global Media Forge to empower youth, educators and scientists with tools to reach the media with locale-specific imagery and perspective of climate dynamics and evidence of anecdotal resource management of liquid gold: fresh water. Zoom In is taking root in Colorado but is designed for national/international scaling. This effort has three limbs: (1) student, scientist and educator workshops teaching invaluable video production skills (2) engaging Colorado school systems to stimulate submission of clips to full video productions to our database, and (3) embedding the findings on a taxonomic GIS interface on-line. The website will be invaluable in classrooms and link network media to individuals with firsthand viewpoints on change.; Climate and Water Resources

Glaser, J. P.

2012-12-01

198

Global Change adaptation in water resources management: the Water Change project.  

PubMed

In recent years, water resources management has been facing new challenges due to increasing changes and their associated uncertainties, such as changes in climate, water demand or land use, which can be grouped under the term Global Change. The Water Change project (LIFE+ funding) developed a methodology and a tool to assess the Global Change impacts on water resources, thus helping river basin agencies and water companies in their long term planning and in the definition of adaptation measures. The main result of the project was the creation of a step by step methodology to assess Global Change impacts and define strategies of adaptation. This methodology was tested in the Llobregat river basin (Spain) with the objective of being applicable to any water system. It includes several steps such as setting-up the problem with a DPSIR framework, developing Global Change scenarios, running river basin models and performing a cost-benefit analysis to define optimal strategies of adaptation. This methodology was supported by the creation of a flexible modelling system, which can link a wide range of models, such as hydrological, water quality, and water management models. The tool allows users to integrate their own models to the system, which can then exchange information among them automatically. This enables to simulate the interactions among multiple components of the water cycle, and run quickly a large number of Global Change scenarios. The outcomes of this project make possible to define and test different sets of adaptation measures for the basin that can be further evaluated through cost-benefit analysis. The integration of the results contributes to an efficient decision-making on how to adapt to Global Change impacts. PMID:22883209

Pouget, Laurent; Escaler, Isabel; Guiu, Roger; Mc Ennis, Suzy; Versini, Pierre-Antoine

2012-12-01

199

Characterization of coal water slurry sprays from a positive displacement fuel injection system  

E-print Network

system of a diesel engine. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal from the pump, and a single hole fuel nozzle. The sprays were injected into a... 21 Instrumentation, Diagnostic System. 23 27 Fuel 23 EXPERIMENTAL PROCEDURES. 27 RESULTS AND DISCUSSION. 31 General Spray Characterization. 31 Effect of Nozzle Sizes. Page 56 Effect of Chamber Densities. 63 Effect of Fuels. Effect...

Kumar Seshadri, Ajoy

2012-06-07

200

Florida River Project: Measuring discharge, sediment, and water chemistry  

NSDL National Science Digital Library

This is the data collection portion of a semester-long project. Before this lab, students will have graphed discharge data for one previous water year, graphed similar data collected by classes during a previous year, written one-page explanations of the techniques that they will be using, and speculated about the results they expect to get. After this lab, their data will be shared with other lab sections, which will have collected similar data at other sites along the same river. Each research group will present their preliminary data to the class during a later lab meeting, and the class will discuss how the different types of data relate to one another. The project culminates in a final paper (one per research group).

Hannula, Kim

201

INITIAL TEST RESULTS OF THE LIMESTONE INJECTION MULTISTAGE BURNER (LIMB) DEMONSTRATION PROJECT  

EPA Science Inventory

The paper discusses SO2 removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO2 remov...

202

Transient formation characteristics of temperature stratified flow in a horizontal water pipe with an injection of hot water from a hole of a pipe  

SciTech Connect

Temperature stratified flow was numerically analyzed in a horizontal pipe. Initially cold water is running and developed in a pipe. From a part of a pipe wall, hot water is injected. Subsequent transient velocity and temperature stratification process was numerically analyzed. This process is a model for such transfer phenomena as follows, i.e., blowing of fresh air into a long tunnel, replacing process of hazardous fluids from a pipeline of an industrial plant with safer fluids, ventilation of a large construction house or ducts, transient combustion process in a tunnel or huge duct, transient flow and temperature characteristics in a canal or river with multiple sub channels. These various cases become more complicated and more serious for the larger scale systems. Temperature stratified flow is everywhere established which makes the prediction difficult. This paper presents transient three-dimensional numerical analyses for a horizontal pipe in which laminar cold water runs steadily. Hot water is injected from a lower side corner of a pipe. Model equations consist of fully three-dimensional balance equations in a cylindrical coordinate. Total tube length computed is 10 times of a pipe diameter d{sub 0}. Hot water inlet hole is 0.4d{sub 0} long in an axial direction and {pi}d{sub 0}/8 in a circumferential direction near the entrance of the system. Reynolds number in a pipe is 1000. Reynolds number of the hot water at the injection hole is 447. Grashof number based on the temperature difference is 5 x 10{sup 7} and Pr = 5.41. Transient three-dimensional velocity profiles and isotherms are presented. The instantaneous water temperature represents oscillatory fluctuation depending on the level in a pipe and on the axial distance from the injection hole. For the tube diameter 0.1m, an average temperature arrived a quasi-steady state after 5 minutes with strong temperature stratification even at 1m from an injection hole. Near the injection hole, hot water makes circumferential convection with oscillatory up and down vortex flow in an axial direction. Warmer water makes stratified flow with faster axial velocity near the top of the tube with much slower axial velocity near the bottom of the tube. These fully three-dimensionally complicated flow and temperature stratification characteristics are presented in various ends view and side views of a long pipe. The importance to note the temperature stratified flow is discussed.

Okinotani, Takeshi; Ozoe, Hiroyuki

1999-07-01

203

18 CFR 401.36 - Water supply projects-Conservation requirements.  

Code of Federal Regulations, 2012 CFR

18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water supply projects-Conservation requirements...Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN...

2012-04-01

204

18 CFR 401.36 - Water supply projects-Conservation requirements.  

Code of Federal Regulations, 2013 CFR

18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water supply projects-Conservation requirements...Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN...

2013-04-01

205

18 CFR 401.36 - Water supply projects-Conservation requirements.  

Code of Federal Regulations, 2014 CFR

18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water supply projects-Conservation requirements...Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN...

2014-04-01

206

18 CFR 401.36 - Water supply projects-Conservation requirements.  

Code of Federal Regulations, 2011 CFR

18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water supply projects-Conservation requirements...Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN...

2011-04-01

207

18 CFR 401.36 - Water supply projects-Conservation requirements.  

Code of Federal Regulations, 2010 CFR

18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply projects-Conservation requirements...Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN...

2010-04-01

208

36 CFR 328.5 - Guidelines for seaplane use of project waters.  

Code of Federal Regulations, 2011 CFR

...in, on, or affecting project waters, under the management of the Resource Manager, including waters under lease, license or other...and section 404 of the Federal Water Pollution Control Act of 1972 (Pub....

2011-07-01

209

36 CFR 328.5 - Guidelines for seaplane use of project waters.  

Code of Federal Regulations, 2014 CFR

...in, on, or affecting project waters, under the management of the Resource Manager, including waters under lease, license or other...and section 404 of the Federal Water Pollution Control Act of 1972 (Pub....

2014-07-01

210

36 CFR 328.5 - Guidelines for seaplane use of project waters.  

Code of Federal Regulations, 2012 CFR

...in, on, or affecting project waters, under the management of the Resource Manager, including waters under lease, license or other...and section 404 of the Federal Water Pollution Control Act of 1972 (Pub....

2012-07-01

211

36 CFR 328.5 - Guidelines for seaplane use of project waters.  

Code of Federal Regulations, 2013 CFR

...in, on, or affecting project waters, under the management of the Resource Manager, including waters under lease, license or other...and section 404 of the Federal Water Pollution Control Act of 1972 (Pub....

2013-07-01

212

36 CFR 328.5 - Guidelines for seaplane use of project waters.  

Code of Federal Regulations, 2010 CFR

...in, on, or affecting project waters, under the management of the Resource Manager, including waters under lease, license or other...and section 404 of the Federal Water Pollution Control Act of 1972 (Pub....

2010-07-01

213

Optimal water management and conflict resolution: The Middle East Water Project  

NASA Astrophysics Data System (ADS)

In many situations, actual water markets will not allocate water resources optimally, largely because of the perceived social value of water. It is possible, however, to build optimizing models which, taking account of demand as well as supply considerations, can substitute for actual markets. Such models can assist the formation of water policies, taking into account user-supplied values and constraints. They provide powerful tools for the system-wide cost-benefit analysis of infrastructure; this is illustrated by an analysis of the need for desalination in Israel and the cost and benefits of adding a conveyance line. Further, the use of such models can facilitate cooperation in water, yielding gains that can be considerably greater than the value of the disputed water itself. This can turn what appear to be zero-sum games into win-win situations. The Middle East Water Project has built such a model for the Israeli-Jordanian-Palestinian region. We find that the value of the water in dispute in the region is very small and the possible gains from cooperation are relatively large. Analysis of the scarcity value of water is a crucial feature.

Fisher, Franklin M.; Arlosoroff, Shaul; Eckstein, Zvi; Haddadin, Munther; Hamati, Salem G.; Huber-Lee, Annette; Jarrar, Ammar; Jayyousi, Anan; Shamir, Uri; Wesseling, Hans

2002-11-01

214

Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs  

PubMed Central

A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaskan North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24–27°C), Kuparuk (47–70°C), Sag River (80°C), and Ivishak (80–83°C) reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta) were most prominent in Schrader Bluff samples, and the combined ?D and ?13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae) and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited). Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences. PMID:25147549

Piceno, Yvette M.; Reid, Francine C.; Tom, Lauren M.; Conrad, Mark E.; Bill, Markus; Hubbard, Christopher G.; Fouke, Bruce W.; Graff, Craig J.; Han, Jiabin; Stringfellow, William T.; Hanlon, Jeremy S.; Hu, Ping; Hazen, Terry C.; Andersen, Gary L.

2014-01-01

215

FEM for stability analysis against overturning of portal water injection sheet pile  

NASA Astrophysics Data System (ADS)

Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have been many systematic methods addressing the issue, there are very few focusing on the new structure because of the difficulties in defining the earth pressure between the two piles. A new method is proposed in this paper to obtain the earth pressure between the PWISPs. Stability analysis against overturning follows as a consequence. Using Finite Element Analysis (FEA) software ANSYS, both the nonlinear characteristics of the soil and thos of the contact elements are taken into account to obtain the earth pressure distribution on the contact surface. Based on the results of the FEA, Rankin's theory and the slip plane theory, the formula of the earth pressure on the inner surfaces between the piles is given. Assuming the PWISP as the analysis object and the earth pressure as an outside force acting upon it, the equation of stability against overturning of the PWISP is presented. Finally, some parameters are discussed about the stability of the PWISP against overturning, such as the embedded depth of the front pile, the distance between the two rows of piles, the internal friction angle and the cohesion of the earth. The results show that the increase of the cohesion and the internal friction angle will decrease the distance and the embedded depth, and therefore enhance the stability against overturning. Specifically, when the distance is 1/3 2/3 of the maximal excavation depth, the two rows of piles give the best performance in stability.

Lingyun, Liu; Haiyan, Guo; Qi, Sun

2006-07-01

216

Soil Management Plan For The Potable Water System Upgrades Project  

SciTech Connect

This plan describes and applies to the handling and management of soils excavated in support of the Y-12 Potable Water Systems Upgrades (PWSU) Project. The plan is specific to the PWSU Project and is intended as a working document that provides guidance consistent with the 'Soil Management Plan for the Oak Ridge Y-12 National Security Complex' (Y/SUB/92-28B99923C-Y05) and the 'Record of Decision for Phase II Interim Remedial Actions for Contaminated Soils and Scrapyard in Upper East Fork Popular Creek, Oak Ridge, Tennessee' (DOE/OR/01-2229&D2). The purpose of this plan is to prevent and/or limit the spread of contamination when moving soil within the Y-12 complex. The major feature of the soil management plan is the decision tree. The intent of the decision tree is to provide step-by-step guidance for the handling and management of soil from excavation of soil through final disposition. The decision tree provides a framework of decisions and actions to facilitate Y-12 or subcontractor decisions on the reuse of excavated soil on site and whether excavated soil can be reused on site or managed as waste. Soil characterization results from soil sampling in support of the project are also presented.

Field, S. M.

2007-04-01

217

Synchronized droplet size measurements for coal-water-slurry (CWS) diesel sprays of an electronically-controlled fuel injection system  

SciTech Connect

Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1993-12-31

218

Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system  

NASA Astrophysics Data System (ADS)

Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

219

Preliminary report on isotope abundance measurements in groundwater samples from the Talbert Injection Barrier Area, Orange County Water District  

SciTech Connect

This report discusses isotope abundance measurements made on a collection of groundwater samples from the Orange County Water District. The water samples were collected in May, 1994 as part of a preliminary study conducted by LLNL to assess the feasibility of tracing and dating reclaimed water used in the Talbert Injection Barrier. A set of samples were collected both near to and far from the barrier and also at different depths in available monitoring wells. A variety of elements were selected for isotopic analysis; hydrogen (tritium), helium, neon, carbon, chlorine and strontium. The tritium abundance combined with the {sup 3}He and {sup 20}Ne abundance provides a method for age dating young (< 40 yr.) groundwater. The abundance of {sup 14}C provides an age dating technique for older (1,000--50,000 yr.) groundwater. The concentrations of {sup 36}Cl and {sup 87}Sr/{sup 86}Sr give information on sea water mixing and water-rock chemical interactions.

Hudson, G.B.; Davisson, M.L.; Velsko, C.; Niemeyer, S.; Esser, B.; Beiriger, J. [Lawrence Livermore National Lab., CA (United States). Isotope Sciences Div.

1995-02-01

220

Flow injection analysis of trace chromium (VI) in drinking water with a liquid waveguide capillary cell and spectrophotometric detection.  

PubMed

Hexavalent chromium (Cr(VI)) is an acknowledged hazardous material in drinking waters. As such, effective monitoring and assessment of the risks posed by Cr(VI) are important analytical objectives for both human health and environmental science. However, because of the lack of highly sensitive, rapid, and simple procedures, a relatively limited number of studies have been carried out in this field. Here we report a simple and sensitive analytical procedure of flow injection analysis (FIA) for sub-nanomolar Cr(VI) in drinking water samples with a liquid core waveguide capillary cell (LWCC). The procedure is based on a highly selective reaction between 1, 5-diphenylcarbazide and Cr(VI) under acidic conditions. The optimized experimental parameters included reagent concentrations, injection volume, length of mixing coil, and flow rate. Measurements at 540 nm, and a 650-nm reference wavelength, produced a 0.12-nM detection limit. Relative standard deviations for 1, 2, and 10 nM samples were 5.6, 3.6, and 0.72 % (n?=?9), and the analysis time was <2 min sample(-1). The effects of salinity and interfering ions, especially Fe(III), were evaluated. Using the FIA-LWCC method, different sources of bottled waters and tap waters were examined. The Cr(VI) concentrations of the bottled waters ranged from the detection limit to ?20 nM, and tap waters collected from the same community supply had Cr(VI) concentration around 14 nM. PMID:23943244

Ma, Jian; Yuan, Dongxing; Byrne, Robert H

2014-01-01

221

Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs  

PubMed Central

Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438

Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

2014-01-01

222

Status of the S.E. Geysers effluent pipeline & injection project  

SciTech Connect

A unique public/private partnership of local, state, federal, and corporate stakeholders is constructing the world`s first wastewater-to-electricity system in Lake County, California. A rare example of a genuinely {open_quotes}sustainable{close_quotes} system, three Lake County communities will recycle their treated wastewater effluent through the Geysers geothermal steamfield to produce an estimated 625,000 MWh of electricity annually from six existing geothermal power plants. The concept is shown schematically. Construction was initiated in October 1995, and as of this writing, the system is approximately 85% complete. Operational start-up is expected in October 1997. The key to the project`s success thus far has been its emphasis on cooperative action among affected stakeholders; and a broad, community-based view of solving problems rather than the traditional, narrower view of engineering-driven technical solutions. Special attention has been given to environmentally-responsive engineering design to avoid or minimize adverse environmental impacts.

Dellinger, M. [Lake County Sanitation District, Lakeport, CA (United States)

1997-12-31

223

A comprehensive model for pilot-ignited, coal-water mixture combustion in a direct-injection diesel engine  

SciTech Connect

This paper reports on a combustion model developed for a direct-injected diesel engine fueled with coal-water slurry mixture (CWM) and assisted by diesel pilot injection. The model combines the unique heat and mass transport and chemical kinetic processes of CWM combustion with the normal in-cylinder processes of a diesel engine. It includes a two-stage evaporation submodel for the drying of the CWM droplet, a global kinetic submodel for devolatilization, and a char combustion submodel describing surface gasification by oxygen, carbon dioxide, and water vapor. The combustion volume is discretized into multiple zones, each of whose individual thermochemistry is determined by in-situ equilibrium calculations. This provides an accurate determination of the boundary conditions for the CWM droplet combustion submodels and the gas phases heat release.

Wahiduzzaman, S.; Blumberg, P.N.; Keribar, R.; Rackmil, C.I. (Ricardo-ITI, Inc., Westmont, IL (US))

1990-07-01

224

Pharmacological Interventions Including Medical Injections for Neck Pain: An Overview as Part of the ICON§ Project  

PubMed Central

Objectives: To conduct an overview (review-of-reviews) on pharmacological interventions for neck pain. Search Strategy: Computerized databases and grey literature were searched from 2006 to 2012. Selection Criteria: Systematic reviews of randomized controlled trials (RCT) in adults with acute to chronic neck pain reporting effects of pharmacological interventions including injections on pain, function/disability, global perceived effect, quality of life and patient satisfaction. Data Collection & Analysis: Two independent authors selected articles, assessed risk of bias and extracted data The GRADE tool was used to evaluate the body of evidence and an external panel provided critical review. Main Results: We found 26 reviews reporting on 47 RCTs. Most pharmacological interventions had low to very low quality methodologic evidence with three exceptions. For chronic neck pain, there was evidence of: a small immediate benefit for eperison hydrochloride (moderate GRADE, 1 trial, 157 participants);no short-term pain relieving benefit for botulinum toxin-A compared to saline (strong GRADE; 5 trial meta-analysis, 258 participants) nor for subacute/chronic whiplash (moderate GRADE; 4 trial meta-analysis, 183 participants) including reduced pain, disability or global perceived effect; andno long-term benefit for medial branch block of facet joints with steroids (moderate GRADE; 1 trial, 120 participants) over placebo to reduce pain or disability; Reviewers' Conclusions: While in general there is a lack of evidence for most pharmacological interventions, current evidence is against botulinum toxin-A for chronic neck pain or subacute/chronic whiplash; against medial branch block with steroids for chronic facet joint pain; but in favour of the muscle relaxant eperison hydrochloride for chronic neck pain. PMID:24155805

Peloso, Paul M; Khan, Mahweesh; Gross, Anita R; Carlesso, Lisa; Santaguida, Lina; Lowcock, Janet; MacDermid, Joy C; Walton, Dave; Goldsmith, Charlie H; Langevin, Pierre; Shi, Qiyun

2013-01-01

225

Ground water in the North Side Pumping Division, Minidoka Project, Minidoka County, Idaho  

USGS Publications Warehouse

nearby is being developed by private capital. Completion of the Federal reclamation project will more than double the irrigated acreage in the North Side Division of the Minidoka Project. The area to be irrigated with ground water is at the south-central edge of the Snake River Plain adjacent to project lands that have been irrigated for many years with Snake River water.

Crosthwaite, Emerson G.; Scott, R.C.

1956-01-01

226

The NASA Energy and Water cycle Extreme (NEWSE) Integration Project  

NASA Astrophysics Data System (ADS)

Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are toprovide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.). *The NEWSE Team is: Romanou, Anastasiam, Columbia U.; Brian Soden, U. Miami; William Lapenta, NASA- MSFC; Megan Larko, CREW; Bing Lin, NASA-LaRC; Christa Peters-Lidard, NASA-GSFC; Xiquan Dong, U. North Dakota; Debbie Belvedere, CREW; Mathew Sapiano, U. Maryland; Duane Waliser, NASA-JPL; Eni Njoku, NASA/JPL; Eric Fetzer, NASA-JPL; Eyal Amitai, NASA-GSFC; Xiaogang Gao, U. California, Irvine; George Huffman, NASA-GSFC & SSAI; Jared Entin, NASA; Joseph Santanello, NASA-GSFC; John Roads, UCSD; W. Timothy Liu, NASA-JPL; Lixin Lu, Colorado State U.; Zhengzhao Luo, Colorado State U.; Michael Bosilovich, NASA-GSFC; Michael Jasinski, NASA-GSFC; William Olson, NASA-GSFC & UMBC-GEST; Pete Robertson, NASA-MSFC; Phil Arkin, U. Maryland; Paul Houser, CREW & GMU; Ralph Ferraro, NOAA; Pete Robertson, NASA-MSFC; Robert Schiffer; UMBC-GEST; Sujay Kumar, NASA-GSFC; Joseph A. Santanello, NASA-GSFC; Tristan L'Ecuyer, Colorado State U.; Wei-Kuo Tao; NASA-GSFC; Xia Feng; George Mason U.

Houser, P. R.; Lapenta, W.; Schiffer, R.

2008-05-01

227

A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery  

SciTech Connect

A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion was used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy while not resulting in a decrease in power density.

Conklin, Jim [ORNL; Szybist, James P [ORNL

2010-01-01

228

Water Lamp and Pinwheels: Ambient Projection of Digital Information into Architectural Space  

E-print Network

Water Lamp and Pinwheels: Ambient Projection of Digital Information into Architectural Space Andrew Lamp and Pinwheels: a new approach to interfacing people with online digital information. The Water Lamp projects water ripple shadow created by a "rain of bits." The Pinwheels spin in a "bit wind

Ishii, Hiroshi

229

Effect of Sodium Bisulfite Injection on the Microbial Community Composition in a Brackish-Water-Transporting Pipeline?†  

PubMed Central

Pipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) of Pseudomonas not found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereas Deltaproteobacteria of the genera Desulfomicrobium and Desulfocapsa were not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) of Methanobacteriaceae archaea but increased fractions of sulfate-reducing Desulfomicrobium (18% and 48%) and of bisulfite-disproportionating Desulfocapsa (35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters. PMID:21856836

Park, Hyung Soo; Chatterjee, Indranil; Dong, Xiaoli; Wang, Sheng-Hung; Sensen, Christoph W.; Caffrey, Sean M.; Jack, Thomas R.; Boivin, Joe; Voordouw, Gerrit

2011-01-01

230

Unit operation optimization for the manufacturing of botanical injections using a design space approach: a case study of water precipitation.  

PubMed

Quality by design (QbD) concept is a paradigm for the improvement of botanical injection quality control. In this work, water precipitation process for the manufacturing of Xueshuantong injection, a botanical injection made from Notoginseng Radix et Rhizoma, was optimized using a design space approach as a sample. Saponin recovery and total saponin purity (TSP) in supernatant were identified as the critical quality attributes (CQAs) of water precipitation using a risk assessment for all the processes of Xueshuantong injection. An Ishikawa diagram and experiments of fractional factorial design were applied to determine critical process parameters (CPPs). Dry matter content of concentrated extract (DMCC), amount of water added (AWA), and stirring speed (SS) were identified as CPPs. Box-Behnken designed experiments were carried out to develop models between CPPs and process CQAs. Determination coefficients were higher than 0.86 for all the models. High TSP in supernatant can be obtained when DMCC is low and SS is high. Saponin recoveries decreased as DMCC increased. Incomplete collection of supernatant was the main reason for the loss of saponins. Design space was calculated using a Monte-Carlo simulation method with acceptable probability of 0.90. Recommended normal operation region are located in DMCC of 0.38-0.41 g/g, AWA of 3.7-4.9 g/g, and SS of 280-350 rpm, with a probability more than 0.919 to attain CQA criteria. Verification experiment results showed that operating DMCC, SS, and AWA within design space can attain CQA criteria with high probability. PMID:25101624

Gong, Xingchu; Chen, Huali; Chen, Teng; Qu, Haibin

2014-01-01

231

Unit Operation Optimization for the Manufacturing of Botanical Injections Using a Design Space Approach: A Case Study of Water Precipitation  

PubMed Central

Quality by design (QbD) concept is a paradigm for the improvement of botanical injection quality control. In this work, water precipitation process for the manufacturing of Xueshuantong injection, a botanical injection made from Notoginseng Radix et Rhizoma, was optimized using a design space approach as a sample. Saponin recovery and total saponin purity (TSP) in supernatant were identified as the critical quality attributes (CQAs) of water precipitation using a risk assessment for all the processes of Xueshuantong injection. An Ishikawa diagram and experiments of fractional factorial design were applied to determine critical process parameters (CPPs). Dry matter content of concentrated extract (DMCC), amount of water added (AWA), and stirring speed (SS) were identified as CPPs. Box-Behnken designed experiments were carried out to develop models between CPPs and process CQAs. Determination coefficients were higher than 0.86 for all the models. High TSP in supernatant can be obtained when DMCC is low and SS is high. Saponin recoveries decreased as DMCC increased. Incomplete collection of supernatant was the main reason for the loss of saponins. Design space was calculated using a Monte-Carlo simulation method with acceptable probability of 0.90. Recommended normal operation region are located in DMCC of 0.38–0.41 g/g, AWA of 3.7–4.9 g/g, and SS of 280–350 rpm, with a probability more than 0.919 to attain CQA criteria. Verification experiment results showed that operating DMCC, SS, and AWA within design space can attain CQA criteria with high probability. PMID:25101624

Gong, Xingchu; Chen, Huali; Chen, Teng; Qu, Haibin

2014-01-01

232

Experimental and Numerical Studies on Mudstone's Creep Behavior During Water Injection and Its Effect on Casing Damage  

NASA Astrophysics Data System (ADS)

During the process of water injection production in oilfield, when water cuts into the mudstone, as a result, large numbers of casings are damaged because of mudstone's creep characteristic. In order to analyze this phenomenon, the uniaxial compression experiments and creep experiments of mudstone from Daqing Oil Field under different saturation conditions were done, it was studied that how the mudstone's mechanical parameters and creep characteristic would change with the increment of water contents. The results indicate that the rock strength and elastic modulus are decreased rapidly with the increment of water contents, on the other hand, the creep strain and steady state creep strain rate are increased with the increment of water contents, and also the steady state creep strain rate is enhanced with the increment of deviatoric stress. Through the creep characteristic curves, a nonlinear creeping constitutive equation of mudstone considering the changes of water contents was established. In the deep stratum of the oilfield, the calculation model of casing-cement sheath-mudstone was built, based on the experiment results of mudstone and its creep constitutive equation, mudstone's creep pressure with time under different water contents was simulated. The simulation results show that the increasing water content accelerates the incremental rate of the creep pressure of mudstone, so the time of reaching yield state of casing will descend greatly, which means service time of casing becomes much shorter.

Huang, X. L.; Yang, C. H.; Liu, J. J.; He, X.; Xiong, J.

2008-07-01

233

An injectable hybrid nanoparticle-in-oil-in-water submicron emulsion for improved delivery of poorly soluble drugs  

PubMed Central

Poor drugability problems are commonly seen in a class of chemical entities with poor solubility in water and oil, and moreover, physicochemical instability of these compounds poses extra challenges in design of dosage forms. Such problems contribute a significant high failure rate in new drug development. A hybrid nanoparicle-in-oil-in-water (N/O/W) submicron emulsion was proposed for improved delivery of poorly soluble and unstable drugs (e.g., dihydroartemisinin (DHA)). DHA is known for its potent antimalarial effect and antitumor activity. However, its insolubility and instability impose big challenges for formulations, and so far, no injectable dosage forms are clinically available yet. Therefore, an injectable DHA N/O/W system was developed. Unlike other widely-explored systems (e.g., liposomes, micelles, and emulsions), in which low drug load and only short-term storage are often found, the hybrid submicron emulsion possesses three-fold higher drug-loading capacity than the conventional O/W emulsion. Of note, it can be manufactured into a freeze-drying form and can render its storage up to 6 months even in room temperature. The in vivo studies demonstrated that the PK profiles were significantly improved, and this injectable system was effective in suppressing tumor growth. The strategy provides a useful solution to effective delivery of such a class of drugs. PMID:22502598

2012-01-01

234

The Effects of Droplet Size and Injection Orientation on Water Mist Suppression of Low and High Boiling Point Liquid Pool Fires  

Microsoft Academic Search

This paper presents the results of an experimental parametric study of water mist suppression of large-scale liquid pool fires. The experiments were conducted with 50cm diameter pan heptane and JP8 pool fires. Mist was injected into the fire from the base at 90 and 45 and from the top at 90. The results show that base injection of droplets enhanced

CHUKA C. NDUBIZU; RAMAGOPAL ANANTH; PATRICIA A. TATEM

2000-01-01

235

Time-Lapse Acoustic, Transport, and NMR Measurements to Monitor Induced Microstructural Changes of Carbonate Rocks During Injection of CO2-Rich Water  

NASA Astrophysics Data System (ADS)

Geophysical monitoring during CO2 injection is necessary to ensure that 1) injected CO2 fills the reservoir as predicted, and that 2) injected CO2 does not migrate towards regions where it may escape. Injection of CO2 results in an altered equilibrium between the pore fluid and the host rock causing chemo-mechanical processes to occur which may impact rock frame properties. In order to improve monitoring techniques, further characterization of injection-induced microstructural changes due to chemo-mechanical processes is needed. We attempt to answer the following questions: How does injection alter the pore network, and how do injection-induced microstructural changes impact seismic properties? An experiment consisting of a suite of six concurrent and independent time-lapse measurements including permeability, porosity, acoustic, nuclear magnetic resonance (NMR) T2 relaxation, and scanning electron microscopy (SEM) and CT-scan images were conducted on two types of carbonate rocks (micritic limestones, and chalky, micritic carbonates). Measurements were taken as a function of the total injected volume of CO2-rich water (which mimics CO2 injection). Injections took place both under bench top conditions and under conditions of constant confining and pore pressures of 15MPa and 12MPa, respectively. Each measurement type is independent and sensitive to different pore properties, allowing us to determine how the microstructure is altered by considering the data from all measurement types simultaneously. Additionally, time-lapse measurements allow us to quantify induced pore structure changes. With increased injection of CO2-rich water, micritic limestones exhibit increased sensitivity of velocity to confining pressure, large permeability increases (~200%), and much variation in their T2 distribution. We hypothesize that injection alters the pore network by increasing pore connectivity and promoting the formation of more elongated pores. In contrast, chalkly, micritic carbonates show large velocity reductions (~20%), modest permeability increases, and little variation in their T2 distribution during injection of CO2-rich water. In this case, we hypothesize that injection serves to weaken grain contact stiffness, allowing compaction to occur while roughly preserving pore shape. The results demonstrate that irreversible alterations to the microstructure, impacting the observed seismic properties, are induced during injection of a reactive fluid (CO2-rich water in this experiment). Neglecting injection-induced rock frame changes may lead to inaccurate interpretations of time-lapse data for purposes of monitoring CO2 injections.

Grombacher, D.; Vanorio, T.; Ebert, Y.

2011-12-01

236

The injection of water into and extraction of vapour from bounded geothermal reservoirs  

SciTech Connect

When liquid is injected into a geothermal reservoir, a fraction of the liquid may vaporise if the reservoir is sufficiently hot. The vapour forms at an approximately planar liquid-vapour interface and diffuses towards the far boundary of the reservoir. If vapour is extracted from the far boundary, then once the new vapour has diffused across the reservoir, the rate of production of vapour at the liquid-vapour interface approximately balances the rate of extraction. We find that if the pressure at the injection pump and extraction well is fixed, then the fraction of the liquid which vaporises and the rate of extraction of vapour from the reservoir increase with time. However, the rate at which liquid is pumped into the reservoir inay initially decrease but subsequently increases with time, if a sufficient fraction of the liquid vaporises. If the mass flux of liquid injected into the reservoir is fixed, then again both the fraction of the liquid which vaporises and the mass flux of vapour which may be extracted increase with time. In this case, the pressure at the injection pump may increase but subsequently decreases with time, again if a sufficient fraction of the liquid vaporises.

Fitzgerald, Shaun D.; Woods, Andrew W.

1993-01-28

237

Assessment of Nitrification Potential in Ground Water Using Short Term, Single-Well Injection Experiments  

Technology Transfer Automated Retrieval System (TEKTRAN)

Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the am...

238

Biological treatments and uses of geothermal water as alternatives to injection  

Microsoft Academic Search

The feasibility of using geothermal fluids to support various biological systems prior to, or as an alternative to, direct injection at the DOE's Raft River goethermal site is discussed. Researchers at the Raft River site studied the feasibility of using geothermal fluid for establishign methods and for irrigating trees and agricultural crops. The emphasis of these studies has been on

R. P. Breckenridge; L. S. Cahn; T. L. Thurow

1982-01-01

239

Strontium isotopes test long-term zonal isolation of injected and Marcellus formation water after hydraulic fracturing.  

PubMed

One concern regarding unconventional hydrocarbon production from organic-rich shale is that hydraulic fracture stimulation could create pathways that allow injected fluids and deep brines from the target formation or adjacent units to migrate upward into shallow drinking water aquifers. This study presents Sr isotope and geochemical data from a well-constrained site in Greene County, Pennsylvania, in which samples were collected before and after hydraulic fracturing of the Middle Devonian Marcellus Shale. Results spanning a 15-month period indicated no significant migration of Marcellus-derived fluids into Upper Devonian/Lower Mississippian units located 900-1200 m above the lateral Marcellus boreholes or into groundwater sampled at a spring near the site. Monitoring the Sr isotope ratio of water from legacy oil and gas wells or drinking water wells can provide a sensitive early warning of upward brine migration for many years after well stimulation. PMID:25024106

Kohl, Courtney A Kolesar; Capo, Rosemary C; Stewart, Brian W; Wall, Andrew J; Schroeder, Karl T; Hammack, Richard W; Guthrie, George D

2014-08-19

240

Social and cultural context of rural water and sanitation projects: case studies from Ghana   

E-print Network

The research underpinning this work took place in the context of two rural water and sanitation projects carried out in the Eastern Region of Ghana. The focus of study was on the way engineers can make water and sanitation ...

Furber, Alison Mary

2013-07-01

241

The effects of cold water injection and two-phase flow on skin factor and permeability estimates from pressure falloff analysis  

E-print Network

THE EFFECTS OF COLD WATER INJECTION AND TWO-PHASE FLOW ON SKIN FACTOR AND PERMEABILITY ESTIMATES FROM PRESSURE FALLOFF ANALYSIS A Thesis by FRODE LINGE Submitted to the Graduate College of Texas ABM University in Partial fulfillment... Approved as to style and content by: H. Wu (Chairman of conanittee) ar zman (Member) an ee (Member ) W D, on Gonten (H d of Department) August 1984 ABSTRACT The Effects of Cold Water Injection and Two-Phase Flow on Skin Factor and Permeability...

Linge, Frode

2012-06-07

242

Injection of Contaminants into a Simulated Water Distribution System Equipped with Continuous Multi-Parameter Water Monitors  

EPA Science Inventory

The U.S. EPA?s Technology Testing and Evaluation Program has been charged by EPA to evaluate the performance of commercially available water security-related technologies. Multi-parameter water monitors for distributions systems have been evaluated as such a water security techn...

243

Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks  

NASA Technical Reports Server (NTRS)

The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

2011-01-01

244

A fast screening method for the presence of atrazine and other triazines in water using flow injection with chemiluminescent detection.  

PubMed

Atrazine is a triazine herbicide which contains two secondary aliphatic amine groups. Previous studies have shown that aliphatic amines react with tris(2,2'-bipyridyl)ruthenium(III) to produce chemiluminescence. This paper describes the application of tris(2,2'-bipyridyl)ruthenium(III) to the detection of atrazine and related triazine herbicides in water by flow injection chemiluminescence analysis. The optimised experimental conditions were determined to be: sample and carrier flow rates of 4.6 mL min(-1), sample at pH 9 buffered with 50mM borax, and reagent concentration of 1mM tris(2,2'-bipyridyl)ruthenium(III) in 20mM H(2)SO(4) (pH 1). Under these conditions, the logarithm of the chemiluminescence intensity versus concentration was linear in the range of 2.15-2150 microg L(-1) for samples in MilliQ water, and the limit of detection of atrazine in water was determined to be 1.3+/-0.1 microg L(-1). Validation of the method was performed using direct injection HPLC. The presence of natural organic matter (NOM) significantly increased the chemiluminescence, masking the signal generated by atrazine. Isolating the target analyte via solid phase extraction (SPE) prior to analysis removed this interference and concentrated the samples, resulting in a greatly improved sensitivity with a detection limit of 14+/-2 ng L(-1). PMID:19203593

Beale, David J; Porter, Nichola A; Roddick, Felicity A

2009-04-30

245

Ultrasonic velocity and attenuation during CO 2 injection into water-saturated porous sandstone: Measurements using difference seismic tomography  

NASA Astrophysics Data System (ADS)

We undertook laboratory-based seismic measurements with dense sensor array at ultrasonic frequencies during the injection of CO 2 into a water-saturated sandstone specimen. The resulting high-quality seismic data enabled detailed determination of the relative velocity and attenuation coefficient of the compressional wave using difference seismic tomography, which directly inverses time-lapse changes in rock properties from time-lapse changes in observed data. CO 2 migration and water displacement were clearly mapped using tomographic images of relative velocity and the attenuation coefficient. The final and largely stabilised volume fraction of CO 2 in the pore space of the sample is about 30-40%. On average, the P-velocity fell by 7.5, 12, and 14.5% and the attenuation coefficient Q-1 increased by factors of 3.3, 2.7, and 3.7 as a result of the replacement of water with CO 2 during the injection of gaseous, liquid, and supercritical CO 2, respectively. As a function of gas saturation, both the velocity and attenuation data are in good agreement with results obtained using the White and Dutta-Odé model for partial saturation, indicating that viscous losses due to fluid diffusion are of significant importance for compressional waves travelling at ultrasonic frequencies in porous rocks.

Lei, Xinglin; Xue, Ziqiu

2009-10-01

246

An investigation of ground-water recharge by injection in the Palo Alto Baylands, California : hydraulic and chemical interactions; final report  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the Santa Clara Valley Water District, has completed a study of ground-water recharge by injection in the Palo Alto baylands along San Francisco Bay, California. Selected wells within the Water District 's injection-extraction network were monitored to determine hydraulic and chemical interactions affecting well-field operation. The well field was installed to prevent and eliminate saline contamination in the local shallow aquifer system. The primary focus of this study is on factors that affect injection efficiency, specifically well and aquifer clogging. Mixing and break-through curves for major chemical constituents indicate ion exchange, adsorption, and dissolution reactions. Freshwater breakthrough was detected in water-level data, which reflected fluid-density change as well as head buildup. Dissolution of calcium carbonate caused by dilution of saline ground water probably accounts for an apparent increase in specific capacity possibly related to improved aquifer permeability. Adsorption evidently removed trace elements during passage of injected water through the aquifer. In terms of hydraulic and chemical compatibility, the well field is a viable system for ground-water recharge. Aquifer heterogeneity and operational constraints reduce the efficiency of the system. Efficiency may be maximized by careful attention to extraction distribution and quantity and to injection distribution, quantity, and water quality. (USGS)

Hamlin, S.N.

1985-01-01

247

Potential Ecological Benefits of the Middle Route for the South-North Water Diversion Project  

Microsoft Academic Search

This paper presents a study of the middle route of the South-North Water Diversion Project. The middle route runs through the Northern China plain, where the water shortages are the most severe. There is not only a shortage of water for human usage, but also a shortage of ecological water. Although the current plan for the middle route is strictly

Han-Chu Chen; Pengfei Du

2008-01-01

248

UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1  

SciTech Connect

This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site.

NONE

1995-06-01

249

Project Water Science. General Science High School Level.  

ERIC Educational Resources Information Center

This teacher's guide presents 12 hands-on laboratory activities for high school science classes that cover the environmental issue of water resources in California. The activities are separated into three sections. Five activities in the section on water quality address the topics of groundwater, water hardness, bottled water, water purity, and…

Water Education Foundation, Sacramento, CA.

250

UMTRA Project water sampling and analysis plan: Canonsburg and Burrell, Pennsylvania  

SciTech Connect

Surface remedial action was completed at the Canonsburg and Burrell UMTRA Project sites in southwestern Pennsylvania in 1985 and 1987, respectively. Results of 1993 water sampling indicate ground water flow conditions and ground water quality at both sites have remained relatively consistent with time. Uranium concentrations in ground water continue to exceed the maximum concentration limit (MCL) at the Canonsburg site; no MCLs are exceeded in ground water at the Burrell site. Surface water quality shows no evidence of impact from the sites.

Not Available

1994-03-01

251

Scenarios of Global Municipal Water-Use Demand Projections over the 21st Century  

SciTech Connect

This paper establishes three future projections of global municipal water use to the end of the 21st century: A reference business-as usual (BAU) scenario, a High Technological Improvement (High Tech) scenario and a Low Technological Improvement (Low Tech) scenario. A global municipal water demand model is constructed using global water use statistics at the country-scale, calibrated to the base year of 2005, and simulated to the end of the 21st century. Since the constructed water demand model hinges on socioeconomic variables (population, income), water price, and end-use technology and efficiency improvement rates, projections of those input variables are adopted to characterize the uncertainty in future water demand estimates. The water demand model is linked to the Global Change Assessment Model (GCAM), a global change integrated assessment model. Under the reference scenario, the global total water withdrawal increases from 466 km3/year in 2005 to 941 km3/year in 2100,while withdrawals in the high and low tech scenarios are 321 km3/ year and 2000 km3/ year, respectively. This wide range (321-2000 km3/ year) indicates the level of uncertainty associated with such projections. The simulated global municipal demand projections are most sensitive to population and income projections, then to end-use technology and efficiency projections, and finally to water price. Thus, using water price alone as a policy measure to reduce municipal water use may substantiate the share of municipal water price of people’s annual incomes.

Hejazi, Mohamad I.; Edmonds, James A.; Chaturvedi, Vaibhav; Davies, Evan; Eom, Jiyong

2013-03-06

252

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

SciTech Connect

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01

253

Maximum magnitude earthquakes induced by fluid injection  

NASA Astrophysics Data System (ADS)

of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

McGarr, A.

2014-02-01

254

The recovery of oil from carbonate reservoirs by fluid injection  

E-print Network

? Field B 29 30 VI. Comparison of Measured and Calculated Productivities FIGURES ~Fi e ~Pa e 1. Water Injection Project - Field A 2. Water Flood Performance ? Field A 3 0 Water Injection Project ? Field B - - ? ? - - - -- 4. . Water Flood...- erations, According to Craze~2 approximately 60 per cent of the world' s crude oil production comes from carbonate formations, A similar esti- t, , pll&iF4h t'h f 1ol d' Pt 1 Sttftf. an identification of the fields mentioned, indicates 4O per cent...

Coleman, Dwayne Marvin

1954-01-01

255

Enhanced source-water monitoring for New York City: historical framework, political context, and project design  

Microsoft Academic Search

An enhanced water-quality monitoring project was established in 2000 for streams providing drinking water to New York City (NYC). The project's design considered the history of the NYC source watersheds, and some of the broader issues facing freshwater supply systems in general. NYC's relationship with its watershed has historically been acrimonious and filled with mistrust, a situation that became critical

James G. Blaine; Bernard W. Sweeney; David B. Arscott

2006-01-01

256

The effects of the implementation of grey water reuse systems on construction cost and project schedule  

E-print Network

of the United States due to their effects on construction cost and project schedules. Even though a project could get one or multiple points upon successful implementation of a grey water reuse system and conserving potable water, the following factors may have...

Kaduvinal Varghese, Jeslin

2009-05-15

257

West Hackberry Tertiary Project  

Microsoft Academic Search

The West Hackberry Tertiary Project is a field test of the concept that air injection can generate tertiary oil recovery through the Double Displacement Process. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil through gravity drainage. The novel aspect of this project is the use of air

Travis Gillham; Demetrios Yannimaras

1999-01-01

258

Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar.  

PubMed

A new laser system for use of differential absorption lidar (DIAL) in measurements of tropospheric water vapor and temperature is introduced. This system operates in the 720-780-nm region and is configured as an alexandrite ring laser injection seeded by a cw Ti:sapphire ring laser. This combination provides for the necessary narrow-bandwidth, high-frequency stability and excellent spectral purity. A bandwidth of <5.0 x 10(-3) cm(-1), a frequency stability of 2.1 x 10(-3) cm(-1) rms, and a spectral purity of 99.995% at 726 nm have been achieved during extended periods of operation. A comparison of a DIAL water-vapor measurement with a radiosonde in the boundary layer between 500 and 2000 m was performed. The maximum deviation between the humidity profiles is 15%, the standard deviation 1.6%, and the difference between the mean values 1%. PMID:19859281

Wulfmeyer, V; Bösenberg, J; Lehmann, S; Senff, C; Schmitz, S

1995-03-15

259

Design and development of an automated flow injection instrument for the determination of arsenic species in natural waters  

NASA Astrophysics Data System (ADS)

The design and development of an automated flow injection instrument for the determination of arsenite [As(III)] and arsenate [As(V)] in natural waters is described. The instrument incorporates solenoid activated self-priming micropumps and electronic switching valves for controlling the fluidics of the system and a miniature charge-coupled device spectrometer operating in a graphical programming environment. The limits of detection were found to be 0.79 and 0.98 ?M for As(III) and As(V), respectively, with linear range of 1-50 ?M. Spiked ultrapure water samples were analyzed and recoveries were found to be 97%-101% for As(III) and 95%-99% for As(V), respectively. Future directions in terms of automation, optimization, and field deployment are discussed.

Hanrahan, Grady; Fan, Tina K.; Kantor, Melanie; Clark, Keith; Cardenas, Steven; Guillaume, Darrell W.; Khachikian, Crist S.

2009-10-01

260

Determination of thiram in natural waters using flow-injection with cerium(IV)-quinine chemiluminescence system.  

PubMed

A simple and rapid flow-injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5-2500 ng/mL and the detection limit (signal-to-noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C(18)) cartridges for solid-phase extraction. The recoveries were in the range 99 +/- 1 to 104 +/- 1%. PMID:19630089

Waseem, Amir; Yaqoob, Mohammad; Nabi, Abdul

2010-01-01

261

The challenge addressed by this project is water resource sustainability and drought planning in an  

E-print Network

The challenge addressed by this project is water resource sustainability and drought planning the storage and recovery of groundwater credits in the aquifer during prolonged or severe drought 2007 PROJECT GOALS The goals of the project included 1) developing sce- narios of drought conditions

Fay, Noah

262

Evolution of a water and power demand projection model for Saudi Arabia  

Microsoft Academic Search

This paper describes a demand projection effort that evolved over the course of a larger consulting project. The description will focus on the development of a computer simulation model which projects water and power demands for the different regions of Saudi Arabia. It will also be concerned with the development of the proper client\\/consultant relationship necessary to make the best

Alan Mc K. Shorb; Anthony C. Picardi

1978-01-01

263

Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report  

SciTech Connect

Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

R. Johansen

2011-09-01

264

Modeling and Analysis of Reservoir Response to Stimulation by Water Injection  

E-print Network

built up two models. One is a model (WFPSD model) of water-flood induced fracturing from a single well in an infinite reservoir. WFPSD model calculates the length of a water flood fracture and the extent of the cooled and flooded zones. The second model...

Ge, Jun

2011-02-22

265

MICROBIAL RESPONSES TO CHEMICAL OXIDATION, SIX-PHASE HEATING, AND STEAM INJECTION TREATMENT IN GROUND WATER  

EPA Science Inventory

MTBE (methyl tertiary butyl ether) is present at high concentrations in ground water at many sites where gasoline has been spilled from underground storage tanks. In addition, TBA (tertiary butyl alcohol) is also present at high concentrations in many of the same ground waters. ...

266

Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers  

SciTech Connect

X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

McGill U; Gostick, J. T.; Gunterman, H. P.; Weber, A. Z.; Newman, J. S.; Kienitz, B. L.; MacDowell, A. A.

2010-06-25

267

Online/offline injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL  

NASA Astrophysics Data System (ADS)

A compact and rugged distributed feedback (DFB) laser system has been developed as online-offline injection seeder for the laser transmitter of a ground-based water vapor differential absorption lidar (WV DIAL) near 820 nm. The frequency stability of this injection seeder system shows a standard deviation of only 6.3 MHz and a linewidth of less than 4.6 MHz during continuous operation of more than 14 h. These values by far exceed the requirements for WV DIAL. By use of a novel technique based on an electro-optic deflector (EOD), alternating online-offline wavelength switching is achieved for each shot of the seeded laser with 250 Hz with a response time of less than 10 ?s and very low crosstalk between the channels of only 33 dB. As a result, a spectral purity of 99.95% is reached by the WV DIAL transmitter which again fulfills the requirements for WV DIAL measurements with high accuracy. Because moveable parts are not present in the seeding system, this setup is significantly less sensitive to acoustic vibrations and ambient temperature drifts during field experiments than other seeding systems which use external cavity diode lasers (ECDL) and mechanical switches. By our new seeding system not only the requirements for ground-based water-vapor DIAL are met but also for space-borne WV DIAL applications that pose even higher demands to the frequency stability and spectral purity of the laser transmitters.

Späth, Florian; Metzendorf, Simon; Behrendt, Andreas; Wizemann, Hans-Dieter; Wagner, Gerd; Wulfmeyer, Volker

2013-11-01

268

The Navruz Project: Cooperative, Transboundary Monitoring, Data Sharing and Modeling of Water Resources in Central Asia  

Microsoft Academic Search

The Navruz Project engages scientists from nuclear physics research institutes and water science institutions in the Central\\u000a Asia Republics of Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan, and Sandia National Laboratories. The project uses standardized\\u000a methods to monitor basic water quality parameters, radionuclides, and metals in the Syr Darya and Amu Darya rivers. Phase\\u000a I of the project was initiated in 2000

H. D. Passell; V. Solodukhin; S. Khazekhber; V. L. Pozniak; I. A. Vasiliev; V. M. Alekhina; A. Djuraev; R. I. Radyuk; D. Suozzi; D. S. Barber

269

Analysis of Questionnaire on Time and Cost of the China's South-to-North Water Diversion Project  

Microsoft Academic Search

The China's South-to-North Water Diversion Project is the largest water transfer project in the world which was paid more attentions on by thousands of peoples. The important task of project manager is to control project cost and duration. It is the most concerned question with the project managers which factors seriously affect the duration and cost. In order to study

Liu Rui; Wang Xiaoya

2008-01-01

270

Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil  

PubMed Central

Subsurface drip irrigation (SDI) can substantially reduce the amount of irrigation water needed for corn production. However, corn yields need to be improved to offset the initial cost of drip installation. Air-injection is at least potentially applicable to the (SDI) system. However, the vertical stream of emitted air moving above the emitter outlet directly toward the surface creates a chimney effect, which should be avoided, and to ensure that there are adequate oxygen for root respiration. A field study was conducted in 2010 and 2011, to evaluate the effect of air-injection into the irrigation stream in SDI on the performance of corn. Experimental treatments were drip irrigation (DI), SDI, and SDI with air injection. The leaf area per plant with air injected was 1.477 and 1.0045 times greater in the aerated treatment than in DI and SDI, respectively. Grain filling was faster, and terminated earlier under air-injected drip system, than in DI. Root distribution, stem diameter, plant height and number of grains per plant were noticed to be higher under air injection than DI and SDI. Air injection had the highest water use efficiency (WUE) and irrigation water use efficiency (IWUE) in both growing seasons; with values of 1.442 and 1.096 in 2010 and 1.463 and 1.112 in 2011 for WUE and IWUE respectively. In comparison with DI and SDI, the air injection treatment achieved a significantly higher productivity through the two seasons. Yield increases due to air injection were 37.78% and 12.27% greater in 2010 and 38.46% and 12.5% in 2011 compared to the DI and SDI treatments, respectively. Data from this study indicate that corn yield can be improved under SDI if the drip water is aerated.

Abuarab, Mohamed; Mostafa, Ehab; Ibrahim, Mohamed

2012-01-01

271

Management of water extracted from carbon sequestration projects  

Microsoft Academic Search

Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (COâ). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of COâ that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following

C. B. Harto; J. A. Veil

2011-01-01

272

Cyclic injection, storage, and withdrawal of heated water in a sandstone aquifer at St. Paul, Minnesota--Analysis of thermal data and nonisothermal modeling of short-term test cycles  

USGS Publications Warehouse

In May 1980, the University of Minnesota began a project to evaluate the feasibility of storing heated water (150 degrees Celsius) in the Franconia-Ironton Galesville aquifer (183 to 245 meters below land surface) and later recovering it for space heating. The University's steam-generation facilities supplied high-temperature water for injection. The Aquifer Thermal-Energy Storage system is a doublet-well design in which the injection-withdrawal wells are spaced approximately 250 meters apart. Water was pumped from one of the wells through a heat exchanger, where heat was added or removed. This water was then injected back into the aquifer through the other well. Four short-term test cycles were completed. Each cycle consisted of approximately equal durations of injection and withdrawal ranging from 5.25 to 8.01 days. Equal rates of injection and withdrawal, ranging from 17.4 to 18.6 liters per second, were maintained for each short-term test cycle. Average injection temperatures ranged from 88.5 to 117.9 degrees Celsius. Temperature graphs for selected depths at individual observation wells indicate that the Ironton and Galesville Sandstones received and stored more thermal energy than the upper part of the Franconia Formation. Clogging of the Ironton Sandstone was possibly due to precipitation of calcium carbonate or movement of fine-grain material or both. Vertical-profile plots indicate that the effects of buoyancy flow were small within the aquifer. A three-dimensional, anisotropic, nonisothermal, ground-water-flow, and thermal-energy-transport model was constructed to simulate the four short-term test cycles. The model was used to simulate the entire short-term testing period of approximately 400 days. The only model properties varied during model calibration were longitudinal and transverse thermal dispersivities, which, for final calibration, were simulated as 3.3 and 0.33 meters, respectively. The model was calibrated by comparing model-computed results to (1) measured temperatures at selected altitudes in four observation wells, (2) measured temperatures at the production well, and (3) calculated thermal efficiencies of the aquifer. Model-computed withdrawal-water temperatures were within an average of about 3 percent of measured values and model-computed aquifer-thermal efficiencies were within an average of about 5 percent of calculated values for the short-term test cycles. These data indicate that the model accurately simulated thermal-energy storage within the Franconia-Ironton-Galesville aquifer.

Miller, Robert T.; Delin, G.N.

2002-01-01

273

Flow Injection Analysis with Electrochemical Detection for Rapid Identification of Platinum-Based Cytostatics and Platinum Chlorides in Water  

PubMed Central

Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED). Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer) and potential changes (1,000, 1,100 and 1,200 mV) offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments. PMID:24499878

Kominkova, Marketa; Heger, Zbynek; Zitka, Ondrej; Kynicky, Jindrich; Pohanka, Miroslav; Beklova, Miroslava; Adam, Vojtech; Kizek, Rene

2014-01-01

274

Water lamp and pinwheels: ambient projection of digital information into architectural space  

Microsoft Academic Search

We envision that the architectural spaces we inhabit will be an interface between humans and online digital information. This paper introduces ambient fixtures called Water Lamp and Pinwheels: a new approach to interfacing people with online digital information. The Water Lamp projects water ripple shadow created by a \\

Andrew Dahley; Craig Wisneski; Hiroshi Ishii

1998-01-01

275

Administration of hot-water extract of brown seaweed Sargassum duplicatum via immersion and injection enhances the immune resistance of white shrimp Litopenaeus vannamei.  

PubMed

The total haemocyte count (THC), phenoloxidase activity, and respiratory burst were examined when the white shrimp Litopenaeus vannamei (10.42+/-1.39 g) were immersed in seawater (34 per thousand) containing hot-water extract of brown alga Sargassum duplicatum at 100, 300 and 500 mg l(-1), or injected with hot-water extract of S. duplicatum at 2, 6, 10 and 20 microg g(-1). These parameters increased significantly when the shrimp were immersed in seawater containing hot-water extract at 300 and 500 mg l(-1) after 1 h, or when the shrimp were injected with hot-water extract at 10 and 20 microg g(-1) after 1 day. L. vannamei that were injected with hot-water extract at 6, 10 and 20 microg g(-1) had increased phagocytic activity and clearance efficiency to V. alginolyticus after 1-6 days. In another experiment, L. vannamei which had been immersed in seawater containing hot-water extract at 100, 300 and 500 mg l(-1), or injected with hot-water extract at 2, 6, 10 or 20 microg g(-1) were challenged with V. alginolyticus at 1 x 10(6), or 1.4 x 10(6) colony-forming units (cfu) shrimp(-1), and then placed in seawater. The survival of shrimp that received hot-water extract at either dose was significantly higher than that of control shrimp after 2 days, as well as at the termination of the experiment (6 days after the challenge). It is therefore concluded that L. vannamei that were immersed in hot-water extract of S. duplicatum at 300 mg l(-1), or the shrimp that were injected with hot-water extract at 10 microg g(-1) or less had increased immune ability as well as resistance to V. alginolyticus infection. PMID:16005643

Yeh, Su-Tuen; Lee, Chiu-Sha; Chen, Jiann-Chu

2006-03-01

276

Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery -- Mattoon Oil Field, Illinois. First quarterly technical progress report, 1993  

SciTech Connect

For work during the first quarter of 1993, American Oil Recovery, Inc. targeted completion of the following specific objectives: Convene meetings of Mattoon Project subcontractors in order to plan and coordinate Project activities. Confirm organizational arrangements and plans for implementation of Mattoon Project. Complete most work on detailed analysis of reservoir geology of productive leases in the Mattoon Project. Identify first Facies Defined Subunit for initial injectivity testing to be commenced near the beginning of the second quarter. Identify additional Facies Defined Subunits for injectivity testing and characterization during the second and third quarters. Award subcontract to the Illinois State Geological Survey and commence work on preparation of a geostatistical model (STRATAMODEL) of more than 100 wells on 1,000 acres within the Mattoon Project Area. Obtain oil samples from wells in the identified Facies Subunit for reservoir rock, fluid, and CO{sub 2} compatibility testing by the Illinois State Geological Survey. Design CO{sub 2} injection pumps and injection monitoring equipment configuration. Obtain bids for required pumps and diesel motor. Accomplishments for this quarter are reported.

Baroni, M.R.

1993-05-24

277

[Sustainability of ecological water transfer and rehabilitation project based on participatory survey].  

PubMed

In the arid inland area of Northwest China, the ecological water transfer and rehabilitation project (EWTRP) is an important measure to restore the deteriorated ecosystem. However, the sustainability of the project is affected by many socio-economic factors. This research was based on results of the questionnaire from Ejina County's farmer households, which included the farmer households' attitude, livelihood and the efficiency of the water resource usage. The results showed that although the EWTRP had made great achievements in vegetation restoration, but the sustainability of the project was affected by the following factors: the ecologically-motivated relocated/resettled herdsmen mainly relied on the compensation from the project, causing them a hard living, and increasing the risk of maintaining the current achievement; the project didn't have a positive impact on water-saving agriculture, the efficiency of water usage was relatively low and had not yet reached the final goal; the compensation of the project only considered the loss of agriculture, but neglected the externality and publicity of eco-water. We suggest that developing education, offering job opportunity and training programs, improving the efficiency of water usage and establishing reasonable water resources compensation mechanisms are needed to be considered as main domain of environmental recovery as well as ecological water transfer and rehabilitation. PMID:24765863

Wang, Yu; Feng, Qi; Chen, Li-Juan; Yu, Teng-Fei

2014-01-01

278

UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water  

SciTech Connect

The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements.

Not Available

1994-09-01

279

Bulk organic matter and nitrogen removal from reclaimed water during groundwater recharge by enhanced direct injection well.  

PubMed

Water shortages lead to increasing attention to artificial groundwater recharge by reclaimed water. A new kind of approach, enhanced direct injection-well recharge (EnDir) consisting of short- and long-term soil treatment, is considered to be suitable for large cities in China. In this paper, EnDir was simulated by soil columns in the laboratory with the secondary effluent as raw water that was ozonated before EnDir. Laboratory-scale experiments demonstrate that the short-term part of EnDir can remove 47 to 60% dissolved organic carbon (DOC), convert 5 mg/L of ammonia-nitrogen to equivalent nitrate-nitrogen, and offer preferred removal of non-UV-absorbing organics. Soluble microbial byproducts and fulvic-acid-like materials can be ozonated and then partially biodegraded. The residuals of organic matter as a refractory fraction are biodegraded continuously during the long-term part. The DOC value of 1.8 to 2.5 mg/L can be reached, and 40% of organic matter with molecular weight less than 500 Da can be removed after full-term EnDir. PMID:19280901

Xuan, Zhao; Meng, Zhang; Xuzhou, Cheng

2009-01-01

280

2:17-type SmCo magnets prepared by powder injection molding using a water-based binder  

NASA Astrophysics Data System (ADS)

2:17-type SmCo permanent magnets by powder injection molding using a water-based binder have been studied. The water-based binder is methylcellulose solution, which consists of deionized water and methylcellulose. When the solution concentration is 0.5 wt%, the carbon content of the sintered magnets is below 0.1 wt% and the magnets have better magnetic properties. The magnetic properties and density of the sintered magnets can be increased through pre-sintering in vacuum (10 -3 Pa) at 1200 °C. However, the Sm content of the magnets loses obviously in pre-sintering for a long period. The appropriate pre-sintering duration is 20-40 min. The magnetic properties of the magnets are: Br=0.97 T, Hcj=871 kA/m, BH max=157 kJ/m 3. The structure of the magnet consists of the matrix phases (2:17 phases) and the precipitate phases (1:5 phases).

Tian, Jianjun; Tao, Siwu; Qu, Xuanhui; Zhang, Shengen

281

Flow injection solid phase extraction with Chromosorb 102: determination of lead in soil and waters by flame atomic absorption spectrometry  

NASA Astrophysics Data System (ADS)

A flow-injection, solid-phase extraction, preconcentration method was developed for the determination of lead in soil and water samples by flame atomic absorption spectrometry. Lead, in the form of the diethyldithiocarbamate complex, was retained on a miniature column of Chromosorb 102 from buffered sample solutions. Several parameters governing the efficiency and throughput of the method were evaluated including pH, eluent composition, volume and flow rate. The complex retained from pH 9.0 (ammonium acetate) solutions was eluted with 176 ?l of ethanol, at 4.2 ml min -1 into the nebulizer-burner system of the spectrometer. The detection limit was 2 ?g l -1 for preconcentration at 2.2 ml min -1 for 120 s. The relative standard deviation (R.S.D.) was less than 4% for concentrations down to 400 ?g l -1. The procedure was validated by the analysis of NIST standard reference material 2711 (Montana Soil) which contains lead at a concentration of 1162 ?g g -1. Recoveries of spike additions (100-400 ?g l -1) to artificial sea water and tap water were quantitative.

Elçi, Latif; Arslan, Zikri; Tyson, Julian F.

2000-07-01

282

Stir bar sorptive extraction and large volume injection gas chromatography to determine a group of endocrine disrupters in water samples.  

PubMed

Stir bar sorptive extraction (SBSE) combined with gas chromatography (GC) with mass spectrometric detection (MS) has been applied to determine a group of suspected endocrine disrupters in water samples. One centimeter stir bars coated with PDMS were used to extract the analytes and then solvent desorption was carried out. The absorption and desorption parameters in SBSE were optimized and large volume injection was used with a programmed temperature vaporizer injector (PTV) in GC to enhance the sensitivity of the method. The linear range of some endocrine disrupters was between 0.05 and 5 microg l(-1) and limits of detection were 0.01-0.24 microg l(-1) under full scan acquisition mode. The repeatability and reproducibility of the method (n = 5) for Ebro river water samples spiked at a level of 0.5 microg l(-1) was below 13 and 23%, respectively. Recoveries between 42 and 96% were obtained with the exception of atrazine. The method was applied to analyze real water samples from the Ebro River and irrigation streams of Ebro Delta and some of the compounds studied (aldrin, dieldrin, 4,4'-DDE and 4,4'-DDT) were found in some of them between detection and quantification limits. PMID:12924545

Peñalver, A; García, V; Pocurull, E; Borrull, F; Marcé, R M

2003-07-25

283

Feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application  

NASA Technical Reports Server (NTRS)

A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.

Vanfossen, G. J.

1983-01-01

284

Simultaneous quantitative analysis of anionic, cationic, and nonionic surfactants in water by electrospray ionization mass spectrometry with flow injection analysis.  

PubMed

A rapid method is described for the quantitative analysis of anionic, cationic, and nonionic surfactants in water samples by flow injection analysis coupled to electrospray ionization mass spectrometry (FIA/ESI-MS). All surfactants were isolated by liquid-liquid extraction and quantified using labeled triethoxylated nonylphenol ([13C6]-NP3EO) and sodium dibutylnaphthalenesulfonate as internal standards. FIA/ESI-MS was performed by alternating both positive and negative ionization modes, which allows simultaneous analysis of most common surfactants in a short time. Quality parameters of the method, such as linear range, repeatability, reproducibility, and limits of detection were studied. This method was applied to the analysis of wastewater treatment plant effluents from Catalonia (NE Spain). PMID:14708787

Barco, Mónica; Planas, Carles; Palacios, Oscar; Ventura, Francesc; Rivera, Josep; Caixach, Josep

2003-10-01

285

Seymour Aquifer Water Quality Improvement Project Final Report  

E-print Network

to the underlying Seymour Aquifer, which supplies all the irrigation water and more than 90% of potable water to the area. The climate in the area is semi-arid with average annual precipitation of 610 mm and potential evapo-transpiration (PET) of approximately...

Sij, J.; Morgan, C.; Belew, M.; Jones, D.; Wagner, K.

286

Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.  

PubMed

Present in all environments, microorganisms develop biofilms adjacent to the metallic structures creating corrosion conditions which may cause production failures that are of great economic impact to the industry. The most common practice in the oil and gas industry to annihilate these biofilms is the mechanical cleaning known as "pigging". In the present work, microorganisms from the "pigging" operation debris are tested biologically and electrochemically to analyse their effect on the corrosion of carbon steel. Results in the presence of bacteria display the formation of black corrosion products allegedly FeS and a sudden increase (more than 400mV) of the corrosion potential of electrode immersed in artificial seawater or in field water (produced water mixed with aquifer seawater). Impedance tests provided information about the mechanisms of the interface carbon steel/bacteria depending on the medium used: mass transfer limitation in artificial seawater was observed whereas that in field water was only charge transfer phenomenon. Denaturing Gradient Gel Electrophoresis (DGGE) results proved that bacterial diversity decreased when cultivating the debris in the media used and suggested that the bacteria involved in the whole set of results are mainly sulphate reducing bacteria (SRB) and some other bacteria that make part of the taxonomic order Clostridiales. PMID:24355513

Cote, Claudia; Rosas, Omar; Sztyler, Magdalena; Doma, Jemimah; Beech, Iwona; Basseguy, Régine

2014-06-01

287

Preserving drinking water quality in geotechnical operations: predicting the feedback between fluid injection, fluid flow, and contamination  

NASA Astrophysics Data System (ADS)

Not only in densely populated areas the preservation of drinking water quality is of vital interest. On the other side, our modern economies request for a sustained energy supply and a secure storage of waste materials. As energy sources with a high security of supply, oil, natural gas, and geothermal energy cover ca. 60% of Europe's energy demand; together with coal more than 75% (IEA 2011). Besides geothermal energy, all of the resources have a high greenhouse gas footprint. All these production activities are related to fluid injection and/or fluid production. The same holds true for gas storage operations in porous reservoirs, to store natural gases, oil, or greenhouse gases. Different concerns are discussed in the public and geoscientific community to influence the drinking water quality: - wastewater discharges from field exploration, drilling, production, well treatment and completion - wastewater sequestration - gas storage - tight gas and tight oil production (including hydraulic fracturing) - Shale gas production (including hydraulic fracturing) - mine drainage This overview contribution focusses on strategies to systematically reduce the risk of water pollution in geotechnical operations of deep reservoirs. The principals will be exemplarily revealed for different geotechnical operations. - How to control hydraulic fracturing operations to reduce the risk of enhanced seismic activity and avoiding the connection of originally separated aquifers. The presented approach to quantitatively predict the impact of stimulation activities is based on petrophysical models taking the feedback of geomechanical processes and fluid flow in porous media, fissures and faults into account. The specific flow patterns in various rock types lead to distinguished differences in operational risk. - How can a proper planning of geotechnical operations reduce the involved risks. A systematic risk reduction strategy will be discussed. On selected samples the role of exploration, operation, monitoring, and proper abandonment will be presented. - Which critical parameters can be monitored? The chances and limitation of different monitoring technologies will be discoursed for a storage site. - How can public involvement reduce risks? This will be shown for hydraulic fracturing operations. - How can geotechnical operation reduce the risk for the groundwater and environment? Some examples will be given to show, that geotechnical operations have the inherent capability to enhance the security of our drinking water. The presentation will discuss how the use of underlying physical and chemical principles can significantly reduce geotechnical risks during fluid injection.

Schilling, Frank R.

2014-05-01

288

Characterization of Solids Collected from H-Area Injection Wells and Injection Tank Chemistry from both F- and H-Area Water Treatment Units (WTUs)  

SciTech Connect

This study suggests that a strong poitential exists for both chemical and biological fouling of the injection wells at the F- and H Area remediation systems. To further the potential, an evaluation of WTU process chemistry, characterization of the natural groundwater geochemistry, and analysis of microbiological activity should be performed. This report summarizes the results.

Serkiz, S.M.

1999-04-15

289

ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL. USEPA DEMONSTRATION PROJECT AT CLIMAX, MN. PROJECT SUMMARY  

EPA Science Inventory

This document is an eight page summary of the final report on arsenic demonstration project at Climax, MN (EPA/600/R-06/152). The objectives of the project are to evaluate the effectiveness of the Kinetico iron removal system in removing arsenic to meet the new arsenic maximum co...

290

A multisyringe sequential injection method for monitoring water in the energy cogeneration system of a municipal waste incinerator.  

PubMed

Leading-edge urban solid waste ashing plants use burning heat energy to obtain electrical power. Water fed to their boilers for conversion into steam should be highly pure in order to minimize corrosion, scaling and similar phenomena, which can lead to malfunctioning and a reduced useful life but can be avoided by proper management and control of the water supply. In this work, we developed a multiparameter monitor based on multisyringe sequential injection for the sequential determination of up to eight important parameters, namely: pH, specific and acid conductivity, hydrazine, ammonium, phosphate, silicate and total iron. Acid conductivity was determined by passing the sample through a cation-exchange resin in order to retain ammonium ion and release protons. This parameter was deemed the most accurate indicator of dissolved solids in boiler water. Chemical parameters were determined spectrophotometrically: hydrazine by reaction with p-dimethylaminobenzaldehyde, ammonium by the modified Berthelot reaction, iron with o-phenanthroline, and phosphate and silica by formation of a molybdoheteropoly blue dye in the presence of ascorbic acid as reductant. Use of the optimum chemical and physical operating conditions provided 3s(blank) detection limits of 0.01 mg l(-1) N(2)H(4), 0.13 mg l(-1) NH(4)(+), 0.04 mg l(-1) Fe, 0.03 mg l(-1) SiO2 and 0.05 mg l(-1) PO(4)(3-), and relative standard deviations not greater than 2.5%. The methods integrated in the proposed monitor were successfully applied to real samples from the water-steam cycle at the Son Reus ashing plant in Palma de Mallorca (Spain). PMID:19615501

de Mirabó, F M Bauzá; Forteza, R; Cerdà, V

2009-09-15

291

Automatic Control System of Water Conservancy Project Model Based on Multi Agent  

Microsoft Academic Search

In order to improve the precision of model test of the water conservancy project, accelerate the speed of experiment, through bringing in the theory of Multi-Agent, this paper has proposed a kind of new-type Automatic Control System of Water Project Model based on Multi-Agent. This automatic System is made up of Monitoring Agent Federation, namely System control Agent, Flow control

Junhu Yang; Lizhi Yang; Tinghong Zhao; Zhiqiang Jia

2009-01-01

292

Income-based projections of water footprint of food consumption in Uzbekistan  

NASA Astrophysics Data System (ADS)

Assessing future water requirements for feeding the growing population of Central Asia can improve understanding of the projected water supply scenarios in the region. Future water requirements will be partially determined by the dietary habits of the populations, and are thus responsive to significant variation of income levels. Using Uzbekistan as an example, this study projects the water footprints of income driven changes on the population's diet in Central Asia. To reveal the influence of large income changes on dietary habits a Normalized Quadratic-Quadratic Expenditure System was calibrated and applied to data from 2009. The national water footprints of food consumption in Uzbekistan were projected until 2034 by applying the parameterized demand system to estimate the respective water footprint values. The results showed that for Uzbekistan the projected increase in the food consumption water footprint would be primarily linked to income growth rather than population growth. Due to the high water footprint of common food products, the composition of the population's diet, and responsiveness to income, economic growth is expected to put greater pressure on water resources in Uzbekistan unless proper measures are undertaken.

Djanibekov, Nodir; Frohberg, Klaus; Djanibekov, Utkur

2013-11-01

293

Sustainable Hydro Assessment and Groundwater Recharge Projects (SHARP) in Germany - Water Balance Models  

NASA Astrophysics Data System (ADS)

SHARP is a European INTERREG IVc Program. It focuses on the exchange of innovative technologies to protect groundwater resources for future generations by considering the climate change and the different geological and geographical conditions. Regions involved are Austria, United Kingdom, Poland, Italy, Macedonia, Malta, Greece and Germany. They will exchange practical know-how and also determine know-how demands concerning SHARP’s key contents: general groundwater management tools, artificial groundwater recharge technologies, groundwater monitoring systems, strategic use of groundwater resources for drinking water, irrigation and industry, techniques to save water quality and quantity, drinking water safety plans, risk management tools and water balance models. SHARP Outputs & results will influence the regional policy in the frame of sustainable groundwater management to save and improve the quality and quantity of groundwater reservoirs for future generations. The main focus of the Saxon State Office for Environment, Agriculture and Landscape in this project is the enhancement and purposive use of water balance models. Already since 1992 scientists compare different existing water balance models on different scales and coupled with groundwater models. For example in the KLIWEP (Assessment of Impacts of Climate Change Projections on Water and Matter Balance for the Catchment of River Parthe in Saxony) project the coupled model WaSiM-ETH - PCGEOFIM® has been used to study the impact of climate change on water balance and water supplies. The project KliWES (Assessment of the Impacts of Climate Change Projections on Water and Matter Balance for Catchment Areas in Saxony) still running, comprises studies of fundamental effects of climate change on catchments in Saxony. Project objective is to assess Saxon catchments according to the vulnerability of their water resources towards climate change projections in order to derive region-specific recommendations for management actions. The model comparisons within reference areas showed significant differences in outcome. The values of water balance components calculated with different models partially fluctuate by a multiple of their value. The SHARP project was prepared in several previous projects that were testing suitable water balance models and is now able to assist the knowledge transfer.

Niemand, C.; Kuhn, K.; Schwarze, R.

2010-12-01

294

UMTRA Project water sampling and analysis plan, Durango, Colorado. Revision 1  

SciTech Connect

Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Durango, Colorado, are described in this water sampling and analysis plan. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the routine monitoring stations at the site. The ground water data are used to characterize the site ground water compliance strategies and to monitor contaminants of potential concern identified in the baseline risk assessment (DOE, 1995a). Regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US EPA regulations in 40 CFR Part 192 (1994) and EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

NONE

1995-09-01

295

Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report  

SciTech Connect

This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in more energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.

Gasper, John R. [Argonne National Laboratory] [Argonne National Laboratory; Veselka, Thomas D. [Argonne National Laboratory] [Argonne National Laboratory; Mahalik, Matthew R. [Argonne National Laboratory] [Argonne National Laboratory; Hayse, John W. [Argonne National Laboratory] [Argonne National Laboratory; Saha, Samrat [Argonne National Laboratory] [Argonne National Laboratory; Wigmosta, Mark S. [PNNL] [PNNL; Voisin, Nathalie [PNNL] [PNNL; Rakowski, Cynthia [PNNL] [PNNL; Coleman, Andre [PNNL] [PNNL; Lowry, Thomas S. [SNL] [SNL

2014-05-19

296

Idaho EPSCoR RII: Water Resources in a Changing Climate Project Summary  

E-print Network

Idaho EPSCoR RII: Water Resources in a Changing Climate Project Summary Context: Idaho has funding. Idaho's universities, via the ongoing RII Project (V), have built basic research expertise in hydrology and stream ecology. These strengths, combined with Idaho's natural field laboratories, provide

Walden, Von P.

297

Projecting Continental U.S. Water Stress Based on Global Datasets  

SciTech Connect

Human populations may be adversely impacted by water stress, a situation which is commonly defined as a per capita water availability of less than 1700 cubic meters of freshwater per person per year. Water stress may result from either overuse of available freshwater resources or a reduction in the amount of available water due to decreases in rainfall and stored water supplies. Analyzing the interrelationship between human populations and water availability is complicated by the uncertainties associated with climate change projections and population projections. We have developed a simple methodology to integrate disparate climate and population data sources and develop first-order per capita water availability projections at the global scale. Simulations from the coupled land-ocean-atmosphere Community Climate System Model version 3 (CCSM3) forced with a range of hypothetical greenhouse gas emissions scenarios have been used to project grid-based changes in precipitation minus evapotranspiration as proxies for changes in runoff, or fresh water supply. Population growth changes, according to Intergovernmental Panel on Climate Change (IPCC) storylines, have been used as proxies for changes in fresh water demand by 2025, 2050 and 2100. These freshwater supply and demand projections have then been combined to yield estimates of per capita water availability aggregated by U.S. watershed. Results suggest that important insights might be extracted from the use of the process developed here, including the identification of potentially vulnerable areas in need of more detailed analysis. This high-level analysis also illustrates the relative importance of population growth versus climate change in in altering future freshwater supplies. However, these are only exemplary insights and, as such, could be considered hypotheses that should be rigorously tested with multiple climate models, multiple observational climate datasets, and more comprehensive population growth projections.

Parish, Esther S [ORNL; Kodra, Evan [Northeastern University; Steinhaeuser, Karsten [University of Minnesota; Ganguly, Auroop R [Northeastern University

2012-01-01

298

Comprehensive report to Congress: Clean Coal Technology Program: Blast furnace granulated coal injection system demonstration project: A project proposed by: Bethlehem Steel Corporation  

SciTech Connect

Bethlehem Steel Corporation (BSC), of Bethlehem, Pennsylvania, has requested financial assistance from DOE for the design, construction, and operation of a 2800-ton-per-day blast furnace granulated coal injection (BFGCI) system for each of two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. BFGCI technology involves injecting coal directly into an iron-making blast furnace and subsequently reduces the need for coke on approximately a pound of coke for pound of coal basis. BFGCI also increases blast furnace production. Coke will be replaced with direct coal injection at a rate of up to 400 pounds per NTHM. The reducing environment of the blast furnace enables all of the sulfur in the coal to be captured by the slag and hot metal. The gases exiting the blast furnace are cleaned by cyclones and then wet scrubbing to remove particulates. The cleaned blast furnace gas is then used as a fuel in plant processes. There is no measurable sulfur in the off gas. The primary environmental benefits derived from blast furnace coal injection result from the reduction of coke requirements for iron making. Reduced coke production will result in reduced releases of environmental contaminants from coking operations. 5 figs.

Not Available

1990-10-01

299

Synthesis of diamond films by pulsed liquid injection chemical vapor deposition using a mixture of acetone and water as precursor  

Microsoft Academic Search

A chemical vapor deposition reactor based on the flash evaporation of an organic liquid precursor was used to grow diamond films on Si substrates. An effective pulsed liquid injection mechanism consisting of an injector, normally used for fuel injection in internal combustion engines, injects micro-doses of the precursor to the evaporation zone at 280 °C and is instantly evaporated. The resulting

L. M. Apátiga; J. Morales

2009-01-01

300

Viability report for the ByWater Lakes project.  

SciTech Connect

This report presents the results from the hydrological, ecological, and renewable energy assessments conducted by Sandia National Laboratories at the ByWater Lakes site in Espanola, New Mexico for ByWater Recreation LLC and Avanyu Energy Services through the New Mexico small business assistance (NMSBA) program. Sandia's role was to assess the viability and provide perspective for enhancing the site to take advantage of renewable energy resources, improve and sustain the natural systems, develop a profitable operation, and provide an asset for the local community. Integral to this work was the identification the pertinent data and data gaps as well as making general observations about the potential issues and concerns that may arise from further developing the site. This report is informational only with no consideration with regards to the business feasibility of the various options that ByWater and Avanyu may be pursuing.

Lowry, Thomas Stephen; Klise, Geoffrey Taylor; Passell, Howard David; Peplinski, William J.

2013-10-01

301

PROJECTED GLOBAL CLIMATE CHANGE IMPACT ON WATER TEMPERATURE IN FIVE NORTH CENTRAL U.S. STREAMS  

EPA Science Inventory

The effect of projected global climate change due to a doubling of atmospheric CO2 on water temperatures in five streams in Minnesota was estimated using a deterministic heat transport model. he model calculates heat exchange between the atmosphere and the water and is driven by ...

302

Improving frost-simulation subroutines of the Water Erosion Prediction Project (WEPP) model  

Technology Transfer Automated Retrieval System (TEKTRAN)

Erosion models play an important role in assessing the influence of human activities on the environment. For cold areas, adequate frost simulation is crucial for predicting surface runoff and water erosion. The Water Erosion Prediction Project (WEPP) model, physically-based erosion-prediction softwa...

303

Water requirements of some selected crops in Kampe dam irrigation project  

Microsoft Academic Search

A study was carried out to determine the crop water requirement of some selected crops for the area around Kampe (Omi) Dam Irrigation Project. These crops include rice, maize, tomato, vegetable amaranth, pepper, onion and cabbage. Crop water requirement for each of the crops was determined by using 25-year climatic data in CROPWAT. Reference crop evapo-transpiration (ETo) was determined using

Adeniran K. A; Amodu M. F; Amodu M. O; Adeniji F. A

2010-01-01

304

Bioavailability of diazepam after intramuscular injection of its water-soluble prodrug alone or with atropine–pralidoxime in healthy volunteers  

PubMed Central

Background and purpose: The aim of this study was to assess the relative bioavailability of diazepam after administration of diazepam itself or as a water-soluble prodrug, avizafone, in humans. Experimental approach: The study was conducted in an open, randomized, single-dose, three-way, cross-over design. Each subject received intramuscular injections of avizafone (20 mg), diazepam (11.3 mg) or avizafone (20 mg) combined with atropine (2 mg) and pralidoxime (350 mg) using a bi-compartmental auto-injector (AIBC). Plasma concentrations of diazepam were quantified using a validated LC/MS–MS assay, and were analysed by both a non-compartmental approach and by compartmental modelling. Key results: The maximum concentration (Cmax) of diazepam after avizafone injection was higher than that obtained after injection of diazepam itself (231 vs. 148 ng·mL?1), while area under the curve (AUC) values were equal. Diazepam concentrations reached their maximal value faster after injection of avizafone. Injection of avizafone with atropine–pralidoxime (AIBC) had no effect on diazepam Cmax and AUC, but the time to Cmax was increased, relative to avizafone injected alone. According to the Akaike criterion, the pharmacokinetics of diazepam after injection as a prodrug was best described as a two-compartment with zero-order absorption model. When atropine and pralidoxime were injected with avizafone, the best pharmacokinetic model was a two-compartment with a first-order absorption model. Conclusion and implications: Diazepam had a faster entry to the general circulation and achieved higher Cmax after injection of prodrug than after the parent drug. Administration of avizafone in combination with atropine and pralidoxime by AIBC had no significant effect on diazepam AUC and Cmax. PMID:19681868

Abbara, C; Rousseau, JM; Turcant, A; Lallement, G; Comets, E; Bardot, I; Clair, P; Diquet, B

2009-01-01

305

Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project  

SciTech Connect

It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

Jager, A.R.

1996-03-01

306

PILOT PLANT PROJECT FOR REMOVING ORGANIC SUBSTANCES FROM DRINKING WATER  

EPA Science Inventory

This report describes research on the European practice of preozonation of water to modify naturally occurring organics, followed by bacteria activated carbon (BAC) adsorption to remove trihalomethane precursors. A 100-gal/min pilot plant was designed, constructed and operated to...

307

Centre Stage Project No. 1 GLISTENING WATERS STORYTELLING FESTIVAL  

E-print Network

were female, Pakeha/European, aged between 35-64, and from the southern North Island area · Most people, cultural event has run. The 1998 festival featured six New Zealand- and seven overseas storytellers The Glistening Waters Storytelling Festival has been running since 1992. Elizabeth Miller, President of the New

308

Flow Injection Hydride Generation Atomic Absorption Spectrometry for Determination of Arsenic in Water and Biological Samples from Arsenic-Affected Districts of West Bengal, India, and Bangladesh  

Microsoft Academic Search

The increasing concern over human exposure to arsenic in West Bengal and Bangladesh has necessitated the development of a rapid method for determination of trace levels of arsenic in water and biological samples. We have developed a simple indigenous flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) system for the determination of arsenic in parts-per-billion levels in water and biological

Gautam Samanta; Tarit Roy Chowdhury; Badal K. Mandal; Bhajan K. Biswas; Uttam K. Chowdhury; Gautam K. Basu; Chitta R. Chanda; Dilip Lodh; Dipankar Chakraborti

1999-01-01

309

Sorption and desorption of pesticide in the octadecylsilyl-silica gel\\/water system by single microparticle injection and absorption microspectroscopy  

Microsoft Academic Search

The sorption and desorption processes of a pesticide between a single octadecylsilyl (ODS)-silica gel microparticle and the surrounding water phase were kinetically analyzed by absorption microspectroscopy combined with a single microparticle injection method. 2-Amino-3-chloro-1,4-naphthoquinone (quinoclamine) sorbed into the microparticle was completely desorbed into the water phase, and both the sorption and desorption processes could be analyzed by the intraparticle diffusion

Katsumi Chikama; Hiroshi Kakizaki; Kiyoharu Nakatani

2008-01-01

310

A comparison of microseismicity induced by gel-proppant-and water-injected hydraulic fractures, Carthage Cotton Valley gas field, East Texas  

E-print Network

A comparison of microseismicity induced by gel-proppant- and water-injected hydraulic fractures induced during a series of hydraulic fracture completions within the Cotton Valley formation of East Texas a series of hydraulic fracture imaging tests in the Carthage Cotton Valley gas field of East Texas (Walker

311

Radiation dosimetry in experimental animals exposed to tritiated water under different conditions. [Comparison between single injection and protracted low-level exposures in mice  

Microsoft Academic Search

The radiation dose to the germ cells of male mice, which sired the offspring scored in a specific-locus mutation test of injected tritiated water, was calculated. The weighted mean dose for germ cells which received all of the radiation at postspermatogonial stages was 430 rads, while that for germ cells irradiated almost entirely as spermatogonia was 615 rads. Most of

R. B. Cumming; G. A. Sega; M. F. Walton

1978-01-01

312

Synchronized droplet size measurements of intermittent coal-water slurry diesel sprays from an electronically-controlled accumulator fuel injection system  

E-print Network

of multiscattering bias was minimal. Coal-water slurry fuel with 50% coal loading by mass containing 5gm volume mean diameter coal particles was used. Injection pressures were ranged from 28 to II 0 MPa. Three different nozzle orifice diameters, 0.2, 0.4, and 0...

Terracina, Dwayne Paul

2012-06-07

313

Development and Validation of a Fast Procedure to Analyze Amoxicillin in River Waters by Direct-Injection LC-MS/MS  

ERIC Educational Resources Information Center

A laboratory application with a strong component in analytical chemistry was designed for undergraduate students, in order to introduce a current problem in the environmental science field, the water contamination by antibiotics. Therefore, a simple and rapid method based on direct injection and high performance liquid chromatography-tandem mass…

Homem, Vera; Alves, Arminda; Santos, Lu´cia

2014-01-01

314

Quarterly Technical Progress Report - West Hackberry Tertiary Project  

SciTech Connect

The West Hackberry Tertiary Project is a field test of the concept that air injection can generate tertiary oil recovery through the Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil through gravity discharge. The novel aspect of this project is the use of air as the injection fluid.

Bruce Cerveny; Tor Kragas; Travis Gillham

1998-01-13

315

Quarterly Technical Progress Report - West Hackberry Tertiary Project  

SciTech Connect

The West Hackberry Tertiary Project is a field test of the concept that air injection can generate tertiary oil recovery through the Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil through gravity discharge. The novel aspect of this project is the use of air as the injection fluid.

Demetrios Yannimaras; Travis Gillham

1998-07-14

316

Quarterly Technical Progress Report - West Hackberry Tertiary Project  

SciTech Connect

The West Hackberry Tertiary Project is a field test of the concept that air injection can generate tertiary oil recovery through the Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil through gravity discharge. The novel aspect of this project is the use of air as the injection fluid.

Bruce Cerveny; Tor Kragas; Travis Gillham

1997-07-10

317

Quarterly Technical Progress Report - West Hackberry Tertiary Project  

SciTech Connect

The West Hackberry Tertiary Project is a field test of the concept that air injection can generate tertiary oil recovery through the Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil through gravity discharge. The novel aspect of this project is the use of air as the injection fluid.

Demetrois Yannimaras; Travis Gillham

1998-04-15

318

Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data  

SciTech Connect

Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

1992-03-01

319

Inefficiencies in water project design and operation in the third world: An economic perspective  

NASA Astrophysics Data System (ADS)

Water projects in less developed countries (LDCs) frequently are poorly operated and maintained. As a result, project benefits and development impacts fall short of plans. The problems begin in the project identification, design, and construction stages: donor and host country biases lead to inappropriate projects, unsustainable technologies, and shoddy construction. Later operation and maintenance are then difficult or impossible. Causal factors include donor desire to build monuments and sell technology, provision of excessive capital to favored sectors or institutions, and an unwillingness to require a reasonable quid pro quo from the host country. Host country factors include excessive administrative centralization, lack of rewards for good operation and maintenance, and widespread corruption in forms that seriously distort allocative efficiency. Until individual actors on both sides can be motivated to pursue the long-run good of the LDC, Third World water projects will continue to have low or negative net payoffs.

Howe, Charles W.; Dixon, John A.

1993-07-01

320

Mapping water availability, projected use and cost in the western United States  

SciTech Connect

New demands for water can be satisfied through a variety of source options. In some basins surface and/or groundwater may be available through permitting with the state water management agency (termed unappropriated water), alternatively water might be purchased and transferred out of its current use to another (termed appropriated water), or non-traditional water sources can be captured and treated (e.g., wastewater). The relative availability and cost of each source are key factors in the development decision. Unfortunately, these measures are location dependent with no consistent or comparable set of data available for evaluating competing water sources. With the help of western water managers, water availability was mapped for over 1200 watersheds throughout the western US. Five water sources were individually examined, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped was projected change in consumptive water use from 2010 to 2030. Associated costs to acquire, convey and treat the water, as necessary, for each of the five sources were estimated. These metrics were developed to support regional water planning and policy analysis with initial application to electric transmission planning in the western US.

Vincent C. Tidwell; Barbara D. Moreland; Katie M. Zemlick; Barry L. Roberts; Howard D. Passell; Daniel Jensen; Christopher Forsgren; Gerald Sehlke; Margaret A. Cook; Carey W. King

2014-06-01

321

Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System  

NASA Astrophysics Data System (ADS)

The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

2012-09-01

322

Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data  

SciTech Connect

The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

1992-03-01

323

Influence of the South–North Water Diversion Project and the mitigation projects on the water quality of Han River  

Microsoft Academic Search

Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD)

Y. P. Zhu; H. P. Zhang; L. Chen; J. F. Zhao

2008-01-01

324

Analysis of thiabendazole, 4-tert-octylphenol and chlorpyrifos in waste and sewage water by direct injection - micellar liquid chromatography.  

PubMed

A micellar liquid chromatographic method has been developed for the simultaneous quantification of the pesticides thiabendazole and chlorpyrifos, as well as an alkylphenol, which is included in pesticide formulations, i.e., 4-tert-octylphenol, in water. A sample was filtered and directly injected, avoiding large extraction steps using toxic solvents, thus expediting the experimental procedure. The contaminants were eluted without interferences in <17 min, using a mobile phase of 0.15 M sodium dodecyl sulfate - 6% 1-pentanol buffered at pH 3, running through a C18 column at 1 mL min(-1) under the isocratic mode. This optimal mobile phase was selected using a statistical approach, which considers the retention factor, efficiency and peak shape of the analytes measured in only a few mobile phases. The detection was carried out by measuring absorbance at 220 nm. The method was successfully validated in terms of specificity, calibration range (0.5-10 mg L(-1)), linearity (r(2) > 0.994), limit of detection and quantification (0.2-0.3; and 0.5-0.8 mg L(-1), respectively), intra- and interday accuracy (95.2-102.9%), precision (<8.3%), and ruggedness (<9.3%). The stability in storage conditions (at least 14 days) was studied. The method was safe, inexpensive, produced little pollutant and has a short analysis time, thus it is useful for the routine analysis of samples. Finally, the method was applied to analyse wastewater from the fruit-processing industry, wastewater treatment plants, and in sewage water belonging to the Castelló area (Spain). The results were similar to those obtained by an already reliable method. PMID:25604004

Romero-Cano, Ricard; Kassuha, Diego; Peris-Vicente, Juan; Roca-Genovés, Pasqual; Carda-Broch, Samuel; Esteve-Romero, Josep

2015-03-01

325

Ultrasensitive determination of diphacinone by flow injection chemiluminescence: application to quantification in biofluids and photodegradation monitoring in water samples.  

PubMed

An ultrasensitive, quick, and simple approach for the determination of pg levels of diphacinone (DPN) by flow injection chemiluminescence (CL) analysis is proposed for the first time. It is based on the quenching effect of DPN on the CL intensity from a luminol-bovine serum albumin (BSA) CL system, for which the CL intensity decrease was linearly proportional to the logarithm of DPN concentration in the range of 5.0 to 5000 pg/mL. The LOD for DPN determination was as low as 2.0 pg/mL (3? a), and the RSD values were less than 5.0%. One determination cycle that included sampling and washing could be performed in 0.5 min with a sample throughput of 120/h under the optimum experimental conditions. This proposed method was successfully applied to determining DPN in human gastric juice and serum samples with recoveries from 91.8 to 114.3%, and to continuous monitoring of the degradation of DPN in water samples exposed to sunlight during 43 h with a variation ratio of 99.99%. The possible interaction behavior of BSA-DPN is briefly discussed. PMID:25632450

Tan, Xijuan; Song, Zhenghua; Chen, Donghua; Lv, Airu

2014-01-01

326

Erosion Control Progress in the HUA IDAHO SNAKE-PAYETTE RIVERS --HUA WATER QUALITY PROJECT FINAL REPORT  

E-print Network

Erosion Control Progress in the HUA IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER QUALITY PROJECT FINAL HUAWater Quality Project encompassing Canyon, Gem, Payette, and Washington counties in southwestern Idaho. Washington Payette Gem Canyon BUL 808 The Idaho Snake-Payette Rivers Hydrologic Unit Water Quality Project

O'Laughlin, Jay

327

UMTRA project water sampling and analysis plan, Riverton, Wyoming  

SciTech Connect

Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

Not Available

1994-03-01

328

Gender Differences in Perceptions of Water in Arizona: Insights from the Science of Water Art Project  

E-print Network

Gender Differences in Perceptions of Water in Arizona: Insights from the Science of Water Art in determining if gender is linked to children's perceptions of how they use water now and in the future the artwork, a coding scheme was developed based on nine different themes that could occur in the artwork

Hall, Sharon J.

329

Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project  

NASA Astrophysics Data System (ADS)

This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of lands in flood-prone areas, will alter the tradeoff for the optimal use of reservoir storage capacity. We emphasize three concepts: i) institutions, ii) scarcity, and iii) the role of social science in projects of this kind. Institutions represent the main instrument or tool that humans use to influence how resources are used, to reduce waste, promote efficiency, and foster predictability. Water scarcity when defined in human normative terms. The concept provides a lens through which to recognize the wide range of ways that water scarcity can arise and persist even in water-abundant settings. We conclude with observations about the role of social science in research on biophysical and human systems. Reference Jaeger, W.K., et al., 2013. Toward a formal definition of water scarcity in natural-human systems. Water Resources Research, Volume 49. Published online: 8 JUL 2013 | DOI: 10.1002/wrcr.20249

Jaeger, W. K.; Plantinga, A.

2013-12-01

330

The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.  

NASA Astrophysics Data System (ADS)

In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

van den Elsen, E.; Doerr, S.; Ritsema, C. J.

2009-04-01

331

Application of Tracer-Injection Techniques to Demonstrate Surface-Water and Ground-Water Interactions Between an Alpine Stream and the North Star Mine, Upper Animas River Watershed, Southwestern Colorado  

USGS Publications Warehouse

Tracer-injection studies were done in Belcher Gulch in the upper Animas River watershed, southwestern Colorado, to determine whether the alpine stream infiltrates into underground mine workings of the North Star Mine and other nearby mines in the area. The tracer-injection studies were designed to determine if and where along Belcher Gulch the stream infiltrates into the mine. Four separate tracer-injec-tion tests were done using lithium bromide (LiBr), optical brightener dye, and sodium chloride (NaCl) as tracer solu-tions. Two of the tracers (LiBr and dye) were injected con-tinuously for 24 hours, one of the NaCl tracers was injected continuously for 12 hours, and one of the NaCl tracers was injected over a period of 1 hour. Concentration increases of tracer constituents were detected in water discharging from the North Star Mine, substantiating a surface-water and ground-water connection between Belcher Gulch and the North Star Mine. Different timing and magnitude of tracer breakthroughs indicated multiple flow paths with different residence times from the stream to the mine. The Pittsburgh and Sultan Mines were thought to physically connect to the North Star Mine, but tracer breakthroughs were inconclusive in water from these mines. From the tracer-injection tests and synoptic measure-ments of streamflow discharge, a conceptual model was devel-oped for surface-water and ground-water interactions between Belcher Gulch and the North Star Mine. This information, combined with previous surface geophysical surveys indicat-ing the presence of subsurface voids, may assist with decision-making process for preventing infiltration and for the remedia-tion of mine drainage from these mines.

Wright, Winfield G.; Moore, Bryan

2003-01-01

332

Green River Formation Water Flood Demonstration Project. Annual report, April 1, 1994--March 31, 1995  

SciTech Connect

The successful water flood of the Green River Formation in the Monument Butte unit was analyzed in detail in the last yearly report. It was shown that primary recovery and the water flood in the unit were typical of oil production from an undersaturated oil reservoir close its bubble point. The reservoir performance of the smaller Travis unit was also analyzed. The Monument Butte unit is currently producing at around 300 barrels per day of oil. Two of the new wells drilled in the unit had zones pressurized by the water flood. The third well produced from pressurized as well as from zones which were unaffected by the water flood. The water flood response of the Travis unit is slow possibly due to problems of reservoir continuity. Plans for water flooding the Boundary unit were drawn. Core description and Formation Micro Imaging log of well 14a-28 provided insight about the important Lower Douglas Creek sandstone. It was determined that this sandstone was extensively fractured and detailed fracture characteristics were obtained through comprehensive interpretation of the FMI log. Reservoir modeling and simulation studies of all the three units were also continued. A larger, more detailed model of the Monument Butte unit was built in order to study the performance of the new development wells being drilled. Three alternate models developed to explain the performance of the Travis flood revealed that intersecting hydraulic fractures may have also provided paths for water channeling observed in this unit. The reservoir characterization activities identified new reservoirs in the Travis unit. Reservoir simulations helped design an injection program in Travis, unit expansion plans on the west and north sides of the Monument Butte until and to evaluate the infill drilling. The reservoir simulations are being used to examine the role of the aquifer underlying the oil bearing D2 sandstone in Boundary on water flood strategies and injection patterns.

Lomax, J.

1995-09-01

333

Analysis of Ground-Water Flow in the Madison Aquifer using Fluorescent Dyes Injected in Spring Creek and Rapid Creek near Rapid City, South Dakota, 2003-04  

USGS Publications Warehouse

The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO, which is located adjacent to the loss zone, was similar to the concentration in the stream. Fluorescein arrived at well NON (injection at site S1), which is located about 2 miles northeast of the loss zone, within about 1.6 days, and the maximum concentration was 44 ug/L. For injection at site S4, when streamflow was about 12 ft3/s, fluorescein was detected in samples from six wells and time to first arrival ranged from 0.2 to 16 days. Following injection at site S4 in 2004, the length of time that dye remained in the capture zone of well NON, which is located approximately 2 miles from the loss zone, was almost an order of magnitude greater than in 2003. For injection at site R1, Rhodamine WT was detected at well DRU and spring TI-SP with time to first arrival of about 0.5 and 1.1 days and maximum concentrations of 6.2 and 0.91 ug/L, respectively. Well DRU and spring TI-SP are located near the center of the Rapid Creek loss zone where the creek has a large meander. Measurable concentrations were observed for spring TI-SP as many as 109 days after the dye injection. The direction of a conduit flow path in the Spring Creek area was to the northeast with ground-water velocities that ranged from 770 to 6,500 feet per day. In the Rapid Creek loss zone, a conduit flow path east of the loss zone was not evident from the dye injection.

Putnam, Larry D.; Long, Andrew J.

2007-01-01

334

Moving Water to Move People The Toshka Project in Egypt A Water Forum Contribution  

Microsoft Academic Search

The purpose of this paper is to provide an initial assessment of Egypt's plan to resettle population from the Nile Valley to the Western Desert. Known popularly as the Toshka Project, it is formally titled the National Project for the Development of Upper Egypt (NPDUE). The resettlement scheme is entirely dependent on the provision of a reliable source of freshwater.

Steve Lonergan; Aaron T. Wolf

2001-01-01

335

West Hackberry Tertiary Project  

Microsoft Academic Search

The West Hackberry Tertiary Project is a field test of the concept that air injection can be combined with the Double Displacement Process to produce a tertiary recovery process that is both low cost and economic at current oil prices. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary

Kenneth Haley; Travis Gillham; Demetrios Yannimaras

1999-01-01

336

The Climaware project: Impacts of climate change on water resources management - regional strategies and European view  

NASA Astrophysics Data System (ADS)

Climate projections produced with CMIP5 and applied by the Intergovernmental Panel on Climate Change (IPCC) in its fifth assessment report indicate that changes in precipitation and temperature are expected to occur throughout Europe in the 21th century, with a likely decrease of water availability in many regions. Besides, water demand is also expected to increase, in link with these expected climate modifications, but also due to socio-economic and demographic changes. In this respect, the use of future freshwater resources may not be sustainable from the current water management perspective. Therefore adaptation strategies will most likely be needed to cope with these evolutions. In this context, the main objective of the ClimAware project (2010-2013 - www.uni-kassel.de/fb14/wasserbau/CLIMAWARE/, a project implemented within the IWRM-NET Funding Initiative) was to analyse the impacts of climate change (CC) on freshwater resources at the continental and regional scales and to identify efficient adaptation strategies to improve water management for various socio-economic sectors. This should contribute to a more effective implementation of the Water Framework Directive (WFD) and its instruments (river basin management plans, programmes of measures). The project developed integrated measures for improved freshwater management under CC constraints. More specifically, the objectives of the ClimAware project were to: • elaborate quantitative projections of changes in river flows and consequences such as flood frequency, drought occurrence and sectorial water uses. • analyse the effect of CC on the hydromorphological reference conditions of rivers and therefore the definition of "good status". • define management rules/strategies concerning dam management and irrigation practices on different time perspectives. • investigate uncertainties in climate model - scenario combinations. The research approach considered both European and regional perspectives, to get an integrated analysis across different spatial scales. To fulfil the objectives of the ClimAware project, the following modelling methodology was implemented. Starting from a European modelling approach of water availability and use based on the WaterGAP3 model, the changes in the hydrologic regimes and water use of different sectors were analysed. Subsequently three case studies were used to investigate the impacts of CC at a regional scale. Regional models from three different countries and focusing on three types of water management issues were developed: • Hydromorphology (Eder basin, Germany): By using different scenarios, the influence of CC on the hydromorphological characteristics of the River Weser according to the WFD was evaluated and proposals for implementation were given. The objective was to examine, on typical river sections, how the WFD objectives can be implemented under CC constraints. • Dam management (Seine basin, France): Water management on the River Seine for water supply and flood alleviation is partly based on the management of artificial reservoirs. The case study developed scenarios linking the impact of CC on water resources and the expected change on the uses and on the management of the system. • Agricultural water use (Apulia region, Italy): In this region, economic and demographic changes cause an increase in the demand for good-quality municipal and industrial water. Besides, changes in the agricultural practices increase the demand for water in the agricultural sector. Since water is scarce in this region, the study focuses on the agricultural sector, which has the largest water saving potential. The final assessment comprises a cross-scale integration between the European and regional modelling frameworks in order to facilitate knowledge transfer and to help establishing sustainable and integrated water resources management plans.

Thirel, Guillaume; D'Agostino, Daniela; Démerliac, Stéphane; Dorchies, David; Flörke, Martina; Jay-Allemand, Maxime; Jost, Claudine; Kehr, Katrin; Perrin, Charles; Scardigno, Alessandra; Schneider, Christof; Theobald, Stephan; Träbing, Klaus

2014-05-01

337

Students as Water Monitoring Experts--New Forms of Environmental Learning in the 'Schools for a Living River Elbe' Project.  

ERIC Educational Resources Information Center

Describes the cross-national educational network, Schools for a Living River Elbe. The project is thought to be the largest educational water-quality project in the world. The establishment of the project and the results of an initial survey show that the project is in a position to develop instructional and ecologically stimulating activities.…

Bosler, Ulrich; Lehmann, Jurgen

2001-01-01

338

Numerical modelling dam break analysis for water supply project  

NASA Astrophysics Data System (ADS)

Dam provides many benefits to the society, but it can also cause extensive damage to downstream area when it fails. Dam failure can cause extensive damage to properties and loss of human life due to short warning time available. In general, dam spillway was designed to drain the maximum discharge from the dam during the Probable Maximum Flood (PMF). The spillway is functioned to prevent the dam from failure due to overtopping, which can lead to the dam failure. Dam failure will result in large volume of water travelling at very high velocity to the downstream area of the dam. It can cause extensive property damage, destruction of important facilities, and significant loss of human life along the way. Due to the potential of high hazard it poses to the downstream area, a dam break analysis is considered very essential. This paper focuses into the dam failure analysis for Kahang Dam by prediction of breach flow hydrographs and generation of inundation map at downstream area. From the PMF scenario simulation, the maximum inflow is 525.12 m3/s and peak discharge from the dam during dam failure is 6188m3/s. The results are able to provide information for preparation of Emergency Response Plan (PMF), in which appropriate steps can be taken by relevant authorities to avoid significant loss of human lives.

Lariyah, M. S.; Vikneswaran, M.; Hidayah, B.; Muda, Z. C.; Thiruchelvam, S.; Abd Isham, A. K.; Rohani, H.

2013-06-01

339

The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems.  

PubMed

Biogenic production of hydrogen sulphide (H(2)S) is a problem for the oil industry as it leads to corrosion and reservoir souring. Continuous injection of a low nitrate concentration (0.25-0.33 mM) replaced glutaraldehyde as corrosion and souring control at the Veslefrikk and Gullfaks oil field (North Sea) in 1999. The response to nitrate treatment was a rapid reduction in number and activity of sulphate-reducing bacteria (SRB) in the water injection system biofilm at both fields. The present long-term study shows that SRB activity has remained low at < or =0.3 and < or =0.9 microg H(2)S/cm(2)/day at Veslefrikk and Gullfaks respectively, during the 7-8 years with continuous nitrate injection. At Veslefrikk, 16S rRNA gene based community analysis by PCR-DGGE showed that bacteria affiliated to nitrate-reducing sulphide-oxidizing Sulfurimonas (NR-SOB) formed major populations at the injection well head throughout the treatment period. Downstream of deaerator the presence of Sulfurimonas like bacteria was less pronounced, and were no longer observed 40 months into the treatment period. The biofilm community during nitrate treatment was highly diverse and relative stable for long periods of time. At the Gullfaks field, a reduction in corrosion of up to 40% was observed after switch to nitrate treatment. The present study show that nitrate injection may provide a stable long-term inhibition of SRB in sea water injection systems, and that corrosion may be significantly reduced when compared to traditional biocide treatment. PMID:18752014

Bødtker, Gunhild; Thorstenson, Tore; Lillebø, Bente-Lise P; Thorbjørnsen, Bente E; Ulvøen, Rikke Helen; Sunde, Egil; Torsvik, Terje

2008-12-01

340

Optimizations of packed sorbent and inlet temperature for large volume-direct aqueous injection-gas chromatography to determine high boiling volatile organic compounds in water.  

PubMed

For the expanded application area, fast trace analysis of certain high boiling point (i.e., 150-250 °C) volatile organic compounds (HVOCs) in water, a large volume-direct aqueous injection-gas chromatography (LV-DAI-GC) method was optimized for the following parameters: packed sorbent for sample on-line pretreatment, inlet temperature and detectors configuration. Using the composite packed sorbent self-prepared with lithium chloride and a type of diatomite, the method enabled safe injection of an approximately 50-100 ?L sample at an inlet temperature of 150 °C in the splitless mode and separated HVOCs from water matrix in 2 min. Coupled with a flame ionization detector (FID), an electron capture detector (ECD) and a flame photometric detector (FPD), the method could simultaneously quantify 27 HVOCs that belong to seven subclasses (i.e., halogenated aliphatic hydrocarbons, chlorobenzenes, nitrobenzenes, anilines, phenols, polycyclic aromatic hydrocarbons and organic sulfides) in 26 min. Injecting a 50 ?L sample without any enrichment step, such as cryotrap focusing, the limits of quantification (LOQs) for the 27 HVOCs was 0.01-3 ?g/L. Replicate analyses of the 27 HVOCs spiked source and river water samples exhibited good precision (relative standard deviations ? 11.3%) and accuracy (relative errors ? 17.6%). The optimized LV-DAI-GC was robust and applicable for fast determination and automated continuous monitoring of HVOCs in surface water. PMID:24997514

Yu, Bofan; Song, Yonghui; Han, Lu; Yu, Huibin; Liu, Yang; Liu, Hongliang

2014-08-22

341

43 CFR 404.51 - Are proposed projects under the Rural Water Supply Program reviewed by the Administration?  

Code of Federal Regulations, 2012 CFR

Yes. The Administration will review all projects proposed for funding under the Reclamation's Rural Water Supply Program. This includes review under Executive Order 12322 to determine whether the project is consistent with the policies and programs of the...

2012-10-01

342

Gas-Water-Rock Interactions in Saline Aquifers Following CO2 Injection: Results From Frio Formation, Texas, USA  

NASA Astrophysics Data System (ADS)

To investigate the potential for the geologic storage of CO2 in saline sedimentary aquifers, ~16 million kg of CO2 were injected at ~1,500-m depth into a 24-m sandstone section of the Frio Formation - a regional brine and oil reservoir in the U. S. Gulf Coast. Fluid samples obtained from the injection and observation wells before, during and post CO2 injection, show a Na-Ca-Cl type brine with 93,000 mg/L TDS and near saturation of CH4 at reservoir conditions. As injected CO2 became the dominant gas at the observation well, results showed sharp drops in pH (6.5 to 5.7), pronounced increases in alkalinity (100 to 3,000 mg/L as HCO3) and Fe (30 to 1,100 mg/L), and significant shifts in the isotopic compositions of H2O, DIC and CH4. Geochemical modeling indicates that brine pH would have dropped lower, but for the buffering by dissolution of carbonate and iron oxyhydroxides. The low pH values resulting from CO2 injection could cause rapid dissolution of carbonate and other minerals creating pathways for CO2 and brine leakage. Dissolution of some minerals, especially iron oxyhdroxides could mobilize trace metals and other toxic components. Also, where residual oil and other organics are present, the injected CO2 may mobilize organic compounds, some may be environmentally toxic. The ?18O values for brine and CO2 samples indicate that supercritical CO2 comprises ~45% of fluid volume in Frio sandstone near injection well ~6 months after end of injection. Post-injection sampling, coupled with geochemical modeling, indicate the brine gradually returning to its pre-injection composition.

Kharaka, Y. K.; Cole, D. R.; Gunter, W. D.; Thordsen, J. J.; Kakouros, E.

2005-12-01

343

Water pollution risk simulation and prediction in the main canal of the South-to-North Water Transfer Project  

NASA Astrophysics Data System (ADS)

The middle route of the South-to-North Water Transfer Project (MRP) will divert water to Beijing Tuancheng Lake from Taocha in the Danjiangkou reservoir located in the Hubei province of China. The MRP is composed of a long canal and complex hydraulic structures and will transfer water in open channel areas to provide drinking water for Beijing, Shijiazhuang and other cities under extremely strict water quality requirements. A large number of vehicular accidents, occurred on the many highway bridges across the main canal would cause significant water pollution in the main canal. To ensure that water quality is maintained during the diversion process, the effects of pollutants on water quality due to sudden pollution accidents were simulated and analyzed in this paper. The MIKE11 HD module was used to calculate the hydraulic characteristics of the 42-km Xishi-to-Beijuma River channel of the MRP. Six types of hydraulic structures, including inverted siphons, gates, highway bridges, culverts and tunnels, were included in this model. Based on the hydrodynamic model, the MIKE11 AD module, which is one-dimensional advection dispersion model, was built for TP, NH3-N, CODMn and F. The validated results showed that the computed values agreed well with the measured values. In accordance with transportation data across the Dianbei Highway Bridge, the effects of traffic accidents on the bridge on water quality were analyzed. Based on simulated scenarios with three discharge rates (ranged from 12 m3/s to 17 m3/s, 40 m3/s, and 60 m3/s) and three pollution loading concentration levels (5 t, 10 t and 20 t) when trucks spill their contents (i.e., phosphate fertilizer, cyanide, oil and chromium solution) into the channel, emergency measures were proposed. Reasonable solutions to ensure the water quality with regard to the various types of pollutants were proposed, including treating polluted water, maintaining materials, and personnel reserves.

Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Cheng, Xi

2014-11-01

344

Evaluation of the Feasibility of Freshwater Injection Wells in Mitigating Ground-Water Quality Degradation at Selected Well Fields in Duval County, Florida  

USGS Publications Warehouse

The Fernandina permeable zone contains brackish water in parts of Duval County, Florida. Upward flow from the Fernandina permeable zone to the upper zone of the Lower Floridan aquifer increases chloride concentrations in ground water in parts of Duval County. Numerical models of the ground-water flow system in parts of Duval, St. Johns, and Clay Counties, Florida, were used to (1) estimate the vertical flows between the low-quality water of the Fernandina permeable zone and the high-quality water of the upper zone of the Lower Floridan aquifer in the vicinity of Deerwood 3 and Brierwood well fields, based on 2000 ground-water withdrawal rates; (2) determine how such vertical flows change as several scenarios of injection, withdrawal, and intervening rest periods are simulated in the two well fields; and (3) evaluate the effects of changes in less certain hydraulic parameters on the vertical flows between the Fernandina permeable zone and the upper zone of the Lower Floridan aquifer. The ground-water flow system was simulated with a four-layer model using MODFLOW-2000, which was developed by the U.S. Geological Survey. The first layer consists of specified-head cells simulating the surficial aquifer system with prescribed water levels. The second layer simulates the Upper Floridan aquifer. The third and fourth layers simulate the upper zone of the Lower Floridan aquifer and the Fernandina permeable zone, respectively. Average flow conditions in 2000 were approximated with a steady-state simulation. The changes in upward flow from the Fernandina permeable zone due to periods of injections and withdrawals were analyzed with transient simulations. The grid used for the ground-water flow model was uniform and composed of square 250-foot cells, with 400 columns and 400 rows. The active model area encompasses about 360 square miles in parts of Duval, St. Johns, and Clay Counties, Florida. Ground-water flow simulation was limited vertically to the bottom of the Fernandina permeable zone. The steady-state ground-water flow model was calibrated using time-averaged 2000 heads at 20 control points. Environmental-water heads in the Fernandina permeable zone were calculated for wells with variable water density. Transmissivity of the Upper Floridan aquifer, the upper zone of the Lower Floridan aquifer, and the Fernandina permeable zone, and the leakance of the intermediate confining unit, the middle semiconfining unit, and the semiconfining unit were obtained from regional ground-water flow models and adjusted until a reasonable fit between simulated and computed heads was obtained. The calibrated hydraulic properties from the steady-state ground-water flow model, and the calibrated storage coefficient from the transient model, were used to simulate hypothetical transient scenarios of injection, withdrawal, and intervening rest periods to assess changes in flow between the Fernandina permeable zone and the upper zone of the Lower Floridan aquifer. Based on the simulated flows between the Fernandina permeable zone and the upper zone of the Lower Floridan aquifer and the 18 million gallons per day of water available for injection, the reversal of the prevailing upward flow from the Fernandina permeable zone was not achieved. However, steady-state and transient simulations indicate that the upward flow of water from the Fernandina permeable zone could be reduced by as much as 64 percent, from 0.11 to 0.04 cubic foot per second, if only injection periods are simulated.

Sepulveda, Nicasio; Spechler, Rick M.

2004-01-01

345

Digital-model study of ground-water hydrology, Columbia Basin Irrigation Project Area, Washington  

USGS Publications Warehouse

Since 1952 water diverted from the Columbia River at Grand Coulee Dam has been used to irrigate parts of the Columbia Basin Irrigation Project area in eastern Washington, and as a result ground-water levels generally have risen in the area. The rapid increases in ground-water inflow, outflow, and storage from irrigation have created a need for a better understanding of the ground-water system before and after the start of irrigation to establish guidelines necessary for management of the area's ground-water resource. Data and information from previous geologic and hydrologic studies were used as a basis for quantitative analyses of ground-water inflow and outflow by means of digital computer models representing three major areas--Quincy Basin, Pasco Basin, and Royal Slope.

Tanaka, H.H.; Hansen, A.J., Jr.; Skrivan, J.A.

1974-01-01

346

Ammonium Concentrations in Produced Waters from a Mesothermic Oil Field Subjected to Nitrate Injection Decrease through Formation of Denitrifying Biomass and Anammox Activity? †  

PubMed Central

Community analysis of a mesothermic oil field, subjected to continuous field-wide injection of nitrate to remove sulfide, with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes indicated the presence of heterotrophic and sulfide-oxidizing, nitrate-reducing bacteria (hNRB and soNRB). These reduce nitrate by dissimilatory nitrate reduction to ammonium (e.g., Sulfurospirillum and Denitrovibrio) or by denitrification (e.g., Sulfurimonas, Arcobacter, and Thauera). Monitoring of ammonium concentrations in producing wells (PWs) indicated that denitrification was the main pathway for nitrate reduction in the field: breakthrough of nitrate and nitrite in two PWs was not associated with an increase in the ammonium concentration, and no increase in the ammonium concentration was seen in any of 11 producing wells during periods of increased nitrate injection. Instead, ammonium concentrations in produced waters decreased on average from 0.3 to 0.2 mM during 2 years of nitrate injection. Physiological studies with produced water-derived hNRB microcosms indicated increased biomass formation associated with denitrification as a possible cause for decreasing ammonium concentrations. Use of anammox-specific primers and cloning of the resulting PCR product gave clones affiliated with the known anammox genera “Candidatus Brocadia” and “Candidatus Kuenenia,” indicating that the anammox reaction may also contribute to declining ammonium concentrations. Overall, the results indicate the following: (i) that nitrate injected into an oil field to oxidize sulfide is primarily reduced by denitrifying bacteria, of which many genera have been identified by DGGE, and (ii) that perhaps counterintuitively, nitrate injection leads to decreasing ammonium concentrations in produced waters. PMID:20562276

Cornish Shartau, Sabrina L.; Yurkiw, Marcy; Lin, Shiping; Grigoryan, Aleksandr A.; Lambo, Adewale; Park, Hyung-Soo; Lomans, Bart P.; van der Biezen, Erwin; Jetten, Mike S. M.; Voordouw, Gerrit

2010-01-01

347

Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact  

SciTech Connect

The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

Not Available

1992-12-31

348

Water use and supply concerns for utility-scale solar projects in the Southwestern United States.  

SciTech Connect

As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO] [National Renewable Energy Laboratory Golden, CO

2013-07-01

349

UMTRA Project water sampling and analysis plan, Gunnison, Colorado: Revision 1  

SciTech Connect

This water sampling and analysis plan summarizes the results of previous water sampling activities and the plan for future water sampling activities, in accordance with the Guidance Document for Preparing Sampling and Analysis Plans for UMTRA Sites. A buffer zone monitoring plan for the Dos Rios Subdivision is included as an appendix. The buffer zone monitoring plan was developed to ensure continued protection to the public from residual contamination. The buffer zone is beyond the area depicted as contaminated ground water due to former milling operations. Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually at the Gunnison processing site and disposal site. Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer at the Gunnison disposal site. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation.

Not Available

1994-11-01

350

Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila  

PubMed Central

Water perception is important for insects, because they are particularly vulnerable to water loss because their body size is small. In Drosophila, gustatory receptor neurons are located at the base of the taste sensilla on the labellum, tarsi, and wing margins. One of the gustatory receptor neurons in typical sensilla is known to respond to water. To reveal the neural mechanisms of water perception in Drosophila, it is necessary to identify water receptor neurons and their projection patterns. We used a Gal4 enhancer trap strain in which GAL4 is expressed in a single gustatory receptor neuron in each sensillum on the labellum. We investigated the function of these neurons by expressing the upstream activating sequence transgenes, shibirets1, tetanus toxin light chain, or diphtheria toxin A chain. Results from the proboscis extension reflex test and electrophysiological recordings indicated that the GAL4-expressing neurons respond to water. We show here that the water receptor neurons project to a specific region in the subesophageal ganglion, thus revealing the water taste sensory map in Drosophila. PMID:16415164

Inoshita, Tsuyoshi; Tanimura, Teiichi

2006-01-01

351

Estimated use of water in the Tennessee River watershed in 2000 and projections of water use to 2030  

USGS Publications Warehouse

Estimates indicate that after increases in water withdrawals from 1965 to 1980 in the Tennessee River watershed, withdrawals declined from 1980 to 1985 and remained steady from 1985 to 1995. Water withdrawals in the Tennessee River watershed during 2000 averaged about 12,211 million gallons per day (Mgal/d) of freshwater for offstream uses?22 percent more than the 1995 estimate. The 2000 estimate is nearly the same as the estimate for 1980, the highest year of record, with 12,260 Mgal/d. The reuse potential of water from the Tennessee River is high because most of the water withdrawn for offstream use is returned to the river system. Besides water quality, reuse potential reflects the quantity of water available for subsequent uses and is gaged by consumptive use, which is the difference between water withdrawals and return flow. For the Tennessee River watershed, return flow was estimated to be 11,562 Mgal/d, or 95 percent of the water withdrawn during 2000. Total consumptive use accounts for the remaining 5 percent, or 649 Mgal/d. Estimates of water withdrawals by source indicate that during 2000, withdrawals from surface water accounted for 98 percent of the total withdrawals, or 11,996 Mgal/d, 23 percent more than during 1995. Total ground-water withdrawals during 2000 were 215 Mgal/d, or 17 percent less than during 1995. During 2000, thermoelectric power withdrawals were estimated to be 10,276 Mgal/d; industrial, 1,205 Mgal/d; public supply, 662 Mgal/d; and irrigation, 68.9 Mgal/d. Return flows were estimated to be: thermoelectric power, 10,244 Mgal/d; industrial, 942 Mgal/d; and public supply, 377 Mgal/d. Consumptive use was estimated to be: thermoelectric power, 32.2 Mgal/d; industrial, 263 Mgal/d; public supply, 285 Mgal/d; and irrigation, 68.9 Mgal/d. Each category of use affects the reuse potential of the return flows differently. The consumptive use in the river is comparatively small because most of the water withdrawn from the Tennessee River watershed is used for once-through cooling for the thermoelectric power and industrial sectors. Average per capita use for all offstream uses was 2,710 gallons per day per person in 2000, compared to the record high of 3,200 in 1975 and 1980. The intensity of use for the Tennessee River watershed as measured as a function of area was 298,489 gallons per day per square mile in 2000. In 2030, water withdrawals are projected to increase by about 15 percent to 13,990 Mgal/d. By category, water withdrawals are projected to increase as follows: thermoelectric power, 11 percent or 1,152 Mgal/d; industry, 31 percent or 368 Mgal/d; public supply, 35 percent or 232 Mgal/d; and irrigation, 37 percent or 25.2 Mgal/d. Total consumptive use is projected to increase about 51 percent or 334 Mgal/d to 980 Mgal/d. Per capita use in 2030 is calculated to be about 2,370 gallons per day, about 26 percent less than in 1980. Water transfers to the Tennessee-Tombigbee waterway for navigation lockages were estimated as 200 Mgal/d for 2000 and 800 Mgal/d for 2030. Water transfers for hydropower commitments through Barkley Canal averaged 3,361 Mgal/d for 2000 and are estimated to be an average of 4,524 Mgal/d in 2030.

Hutson, Susan S.; Koroa, M. Carolyn; Murphree, C. Michael

2003-01-01

352

Comparison of the Wymark CO2 Reservoir with the Midale Beds at the Weyburn CO2 Injection Project  

SciTech Connect

The Devonian carbonates of the Duperow Formation on the western flank of the Williston Basin in southwest Saskatchewan contain natural accumulations of CO{sub 2}, and may have done so for as long as 50 m.y. in the views of some investigations. These carbonate sediments are characterized by a succession of carbonate cycles capped by anhydrite-rich evaporites that are thought to act as seals to fluid migration. The Weyburn CO{sub 2} injection site lies 400 km to the east in a series of Mississippian carbonates that were deposited in a similar depositional environment. That natural CO{sub 2} can be stored long-term within carbonate strata has motivated the investigation of the Duperow rocks as a potential natural analogue to storage of anthropogenic CO{sub 2} that may ultimately provide additional confidence for CO{sub 2} sequestration in carbonate lithologies. For the Duperow strata to represent a legitimate analog for Midale injection and storage, the similarity in lithofacies, whole rock compositions, mineral compositions and porosity with the Midale Beds must be established. Previous workers have demonstrated the similarity of the lithofacies at both sites. Here we compare the whole rock compositions, mineralogy and mineral compositions. The major mineral phases at both locales are calcite, dolomite and anhydrite. In addition, accessory pyrite, fluorite and celestine are also observed. The distribution of porosity in the Midale Vuggy units is virtually identical to that of the Duperow Formation, but the Marly units of the Midale have significantly higher porosity. The Duperow Formation is topped by the Dinesmore evaporite that is particularly rich in anhydrite, and often contains authigenic K-feldspar. The chemistry of dolomite and calcite from the two localities also overlaps. Silicate minerals are in low abundance within the analyzed Duperow samples, < 3 wt% on a normative basis, with quartz the only phase identifiable in x-ray diffraction patterns. The Midale Beds contain significantly higher silica/silicate concentrations, but the silicate minerals observed, K-feldspar and quartz, are unlikely to participate in carbonate mineral precipitation due to the absence of alkaline earths. Hence, physical and solution trapping are likely to be the primary trapping mechanisms at both sites. Given the similarity of mineral constituents, whole rock and mineral chemistry, reactive transport models developed for the Weyburn site should also be applicable to the Duperow lithologies.

Ryerson, F; Johnson, J

2010-11-22

353

Determination of beryllium in natural and waste waters using on-line flow-injection preconcentration by precipitation\\/dissolution for electrothermal atomic absorption spectrometry  

Microsoft Academic Search

A flow injection (FI) on-line precipitation–dissolution was developed for electrothermal atomic absorption spectrometry (ETAAS) determination of (ultra)trace amounts of beryllium in water samples. Beryllium was precipitated quantitatively with NH4OH+NH4Cl and collected in a knotted tube of Tygon without using a filter, while the other matrix components flowed downstream to waste. The precipitate was dissolved with nitric acid and a sub-sample

J. L. Burguera; M. Burguera; C. Rondón; P. Carrero; M. R. Brunetto; Y. Petit de Peña

2000-01-01

354

GnRHa injection accelerates final maturation and ovulation\\/spermiation of sockeye salmon ( Oncorhynchus nerka) in both fresh and salt water  

Microsoft Academic Search

The potential for accelerating final maturation and ovulation\\/spermiation of adult sockeye salmon (Oncorhynchus nerka) by using gonadotropin-releasing hormone analog (des-Gly10 [D-Ala6] GnRH-ethylamide; GnRHa) was evaluated. GnRHa injection reduced the median number of days to ovulation\\/spermiation from 21 to 11 in fish held in fresh water, from 24 to 10 in fish held in saltwater netpens, and from 30 to 7

Caleb H. Slater; Carl B. Schreck; Donald F. Amend

1995-01-01

355

Possibilities and limitations of the sequential injection chromatography technique for the determination of anticoccidial agents in water, pharmaceutical formulations and feed  

Microsoft Academic Search

This paper explores the potential of applying reversed-phase sequential injection chromatography (SIC) to determine the anticoccidial agents Lasalocid and Toltrazuril in various matrices including ground water, pharmaceutical formulations and feed. SIC was performed by connecting a 25×4.6mm monolithic C18 column to a 2m long pathlength capillary flow cell, where the usage of a flow cell lowers the detection limit compared

Erland Björklund; Fernando Maya; Søren A. Bak; Martin Hansen; José Manuel Estela; Víctor Cerdá

2011-01-01

356

Comparison of MELCOR modeling techniques and effects of vessel water injection on a low-pressure, short-term, station blackout at the Grand Gulf Nuclear Station  

SciTech Connect

A fully qualified, best-estimate MELCOR deck has been prepared for the Grand Gulf Nuclear Station and has been run using MELCOR 1.8.3 (1.8 PN) for a low-pressure, short-term, station blackout severe accident. The same severe accident sequence has been run with the same MELCOR version for the same plant using the deck prepared during the NUREG-1150 study. A third run was also completed with the best-estimate deck but without the Lower Plenum Debris Bed (BH) Package to model the lower plenum. The results from the three runs have been compared, and substantial differences have been found. The timing of important events is shorter, and the calculated source terms are in most cases larger for the NUREG-1150 deck results. However, some of the source terms calculated by the NUREG-1150 deck are not conservative when compared to the best-estimate deck results. These results identified some deficiencies in the NUREG-1150 model of the Grand Gulf Nuclear Station. Injection recovery sequences have also been simulated by injecting water into the vessel after core relocation started. This marks the first use of the new BH Package of MELCOR to investigate the effects of water addition to a lower plenum debris bed. The calculated results indicate that vessel failure can be prevented by injecting water at a sufficiently early stage. No pressure spikes in the vessel were predicted during the water injection. The MELCOR code has proven to be a useful tool for severe accident management strategies.

Carbajo, J.J.

1995-06-01

357

Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies  

DOE Data Explorer

According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

Schroeder, Jenna N.

358

Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies  

SciTech Connect

According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

Schroeder, Jenna N.

2014-12-16

359

Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado  

USGS Publications Warehouse

Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Bureau of Reclamation is working to meet its goal to issue a Final Environmental Impact Statement (EIS) on the Southern Delivery System project (SDS). SDS is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various EIS alternatives and plans by Pueblo West to discharge treated water into the reservoir. Plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (water years 2000 through 2002) were compared to the No Action scenario (projected demands in 2046) to assess changes in water quality over time. All scenario modeling used an external nutrient-decay model to simulate degradation and assimilation of nutrients along the riverine reach upstream from Pueblo Reservoir. Reservoir modeling was conducted using the U.S. Army Corps of Engineers CE-QUAL-W2 two-dimensional water-quality model. Lake hydrodynamics, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, algal biomass, and total iron were simulated. Two reservoir site locations were selected for comparison. Results of simulations at site 3B were characteristic of a riverine environment in the reservoir while results at site 7B (near the dam) were characteristic of the main body of the reservoir. Simulation results for the epilimnion and hypolimnion at these two sites also were evaluated and compared. The simulation results in the hypolimnion at site 7B were indicative of the water quality leaving the reservoir. Comparisons of the different scenario results were conducted to assess if substantial differences were observed between selected scenarios. Each of the scenarios was simulated for three contiguous years representing a wet, average, and dry annual hydrologic cycle (water years 2000 through 2002). Additionally, each selected simulation scenario was evaluated for differences in direct- and cumulative-effects on a particular scenario. Direct effects are intended to isolate the future effects of the scenarios. Cumulative effects are intended to evaluate the effects of the scenarios in conjunction with all reasonably foreseeable future activities in the study area. Comparisons between the direct- and cumulative-effects analyses indicated that there were not large differences in the results between most of the simulation scenarios and, as such, the focus of this report was on results for the direct-effects analysis. Addi

Ortiz, Roderick F.; Galloway, Joel M.; Miller, Lisa D.; Mau, David P.

2008-01-01

360

Microseismic Monitoring of CO2 Injection at the Penn West Enhanced Oil Recovery Pilot Project, Canada: Implications for Detection of Wellbore Leakage  

PubMed Central

A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection. PMID:24002229

Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

2013-01-01

361

Microseismic monitoring of CO2 injection at the Penn West Enhanced Oil Recovery pilot project, Canada: implications for detection of wellbore leakage.  

PubMed

A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection. PMID:24002229

Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

2013-01-01

362

Water cycle research associated with the CaPE hydrometeorology project (CHymP  

NASA Technical Reports Server (NTRS)

One outgrowth of the Convection and Precipitation/Electrification (CaPE) experiment that took place in central Florida during July and August 1991 was the creation of the CaPE Hydrometeorology Project (CHymP). The principal goal of this project is to investigate the daily water cycle of the CaPE experimental area by analyzing the numerous land and atmosphere in situ and remotely sensed data sets that were generated during the 40-days of observations. The water cycle comprises the atmospheric branch. In turn, the atmospheric branch comprises precipitation leaving the base of the atmospheric volume under study, evaporation and transpiration entering the base, the net horizontal fluxes of water vapor and cloud water through the volume and the conversion of water vapor to cloud water and vice-versa. The sum of these components results in a time rate of change in the water and liquid water (or ice) content of the atmospheric volume. The components of the land branch are precipitation input to and evaporation and transpiration output from the surface, net horizontal fluxes of surface and subsurface water, the sum of which results in a time rate of change in surface and subsurface water mass. The objective of CHymP is to estimate these components in order to determine the daily water budget for a selected area within the CaPE domain. This work began in earnest in the summer of 1992 and continues. Even estimating all the budget components for one day is a complex and time consuming task. The discussions below provides a short summary of the rainfall quality assessment procedures followed by a plan for estimating the horizontal moisture flux.

Duchon, Claude E.

1993-01-01

363

Adapting the Water Erosion Prediction Project (WEPP) model for forest applications  

Microsoft Academic Search

summary There has been an increasing public concern over forest stream pollution by excessive sedimentation due to natural or human disturbances. Adequate erosion simulation tools are needed for sound management of forest resources. The Water Erosion Prediction Project (WEPP) watershed model has proved useful in forest applications where Hortonian flow is the major form of runoff, such as modeling erosion

Shuhui Dun; Joan Q. Wu; William J. Elliot; Peter R. Robichaud; Dennis C. Flanagan; James R. Frankenberger; Robert E. Brown; Arthur C. Xu

2009-01-01

364

The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production  

E-print Network

The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand, Brazil f Veracel Celulose, Eunapolis, Bahia, Brazil g International Paper do Brasil, Mogi Guacu, Sao Paulo, Brazil h Suzano Papel e Celulose, Teixeira de Freitas, Bahia, Brazil i CENIBRA, Ipatinga, Minas

Binkley, Dan

365

Adapting the Water Erosion Prediction Project (WEPP) Model for Forest Applications  

Technology Transfer Automated Retrieval System (TEKTRAN)

There has been an increasing public concern over forest stream pollution by excessive sedimentation due to natural or human disturbances. Adequate erosion simulation tools are needed for sound management of forest resources. The Water Erosion Prediction Project (WEPP) watershed model has proved usef...

366

Project number: CIMP-001 Title: Monitoring the Water Quality Parameters of Mayagez Bay  

E-print Network

sediments due to seasonal discharge of local rivers. Several years ago a joint project with researchers from). The backscattering coefficient, bb(), at six wavelengths was measured with the HydroScat-6 (from Hobi Labs attenuation coefficient (K). Water- leaving radiance, Lw(), and the above-surface downwelling irradiance, Ed(0

Gilbes, Fernando

367

Nutrient and Pesticide Management IDAHO SNAKE-PAYETTE RIVERS --HUA WATER QUALITY PROJECT FINAL REPORT  

E-print Network

Nutrient and Pesticide Management in the HUA IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER QUALITY PROJECT FINAL REPORT L. R. Huter, R. L. Mahler, L. E. Brooks and B.A. Lolley BUL 817 The Idaho Snake Service), the University of Idaho Extension System (ES), and Farm Services Agency (FSA; formerly the ASCS

O'Laughlin, Jay

368

PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

369

Task 27 -- Alaskan low-rank coal-water fuel demonstration project  

SciTech Connect

Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

NONE

1995-10-01

370

Interdisciplinary Project-Based Learning through an Environmental Water Quality Study  

Microsoft Academic Search

An interdisciplinary environmental water quality study was designed and conducted to enhance training and employability of chemical and environmental technician students in associate degree programs. Four project objectives were identified as a means to enhance the educational experience and employability of our students: provide experience on analytical instrumentation for organic compounds (gas chromatography\\/mass spectrometry, GC\\/MS), require interdisciplinary group interactions and

Lorie Juhl; Kaye Yearsley; Andrew J. Silva

1997-01-01

371

SEE HYDROPOWER Project, targeted to improve water resource management for a growing renewable energy production  

NASA Astrophysics Data System (ADS)

The three years SEE HYDROPOWER project started on June 2009, financed by the South-East Transnational Cooperation Programme (EU), aims to a sustainable exploitation of water concerning hydropower production in SEE countries, looking up to renewable energy sources development, preserving environmental quality and preventing flood risk. Hydropower is the most important renewable resource for energy production in the SEE countries but creates ecological impacts on a local scale. If on one hand, hydroelectric production has to be maintained and likely increased following the demand trend and RES-e Directive, on the other hand, hydropower utilisation often involves severe hydrological changes, damages the connectivity of water bodies and injures river ecosystems. The project gives a strong contribution to the integration between the Water Frame and the RES-e Directives in the involved countries. The SEE HYDROPOWER project promotes the optimal use of water, as multiple natural resources, in order to face the increasing regional electrical-energy demand. Furthermore, SEE HYDROPOWER defines specific needs and test methodologies & tools, in order to help public bodies to take decisions about planning and management of water and hydropower concessions, considering all multi-purposes uses, taking into account the environmental sustainability of natural resources and flooding risks. Investigations is carried on to define common strategies & methods for preserving river with particular concerns to aquatic ecosystems, considering the required Minimum Environmental Flow, macro-habitat quality, migratory fishes and related environmental issues. Other problem addressed by the Project is the contrast between Public Administration and Environmental associations on one side and the Hydropower producers on the other side, for the exploitation of water bodies. Competition between water users (for drinking, irrigation, industrial processes, power generation, etc.) is becoming a serious problem, and there is a strong need of a more accurate planning and management optimization of the resources. The partnership includes a well balance mixing of public administrations, agencies ruling hydropower development, water bodies conservation and scientific institutions having the most advanced technology applied to water management and hydropower generation. Furthermore, a permanent "consultant panel" integrated by target groups representatives from different European countries are involved in key decisions and meetings, that guaranty a concrete regional scale participation. The present work reports the overall strategy of the project and the description of the main informatic tools that are under development and implementation in five pilot regions, located in Italy, Austria, Romania, Slovenia and Greece. Keywords: WFD Directive, RES-e Directive, water multi-purpose uses, renewable energy, small hydropower production, environmental balance, minimum environmental flow, flood protection

Peviani, Maximo; Alterach, Julio; Danelli, Andrea

2010-05-01

372

UMTRA Project water sampling and analysis plan, Gunnison, Colorado. Revision 2  

SciTech Connect

Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually at the Gunnison processing site (GUN-01) and disposal site (GUN-08). Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer (Tertiary gravels) at the Gunnison disposal site. Semiannual water sampling is scheduled for the spring and fall. Water quality sampling is conducted at the processing site (1) to ensure protection of human health and the environment, (2) for ground water compliance monitoring during remedial action construction, and (3) to define the extent of contamination. At the processing site, the frequency and duration of sampling will be dependent upon the nature and extent of residual contamination and the compliance strategy chosen. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation.

NONE

1995-09-01

373

Enhanced Oil Recovery of Viscous Oil by Injection of Water-in-Oil Emulsion Made with Used Engine Oil  

E-print Network

............................................................................................ 40 3.12 Bentheimer sandstone, Idaho sandstone and Boise sandstone from to t o ott om of si e 1 ..................................................... 42 3.13 Emulsion effluents collected at injection rate 1ft/d, 3 ft/d, 10...

Fu, Xuebing

2012-08-20

374

Water chemistry at Hontomín-Huermeces (Burgos, Spain): insights for a pre-, intra- and post-CO2 injection geochemical monitoring.  

NASA Astrophysics Data System (ADS)

In this study, the very first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín-Huermeces (Burgos, Spain) are presented and discussed. Hontomín-Huermeces was selected as a pilot site for the injection of pure (>99 %) CO2. Injection and monitoring wells are planned to be drilled close to 6 oil wells completed in the 1980's. Stratigraphical logs indicate the presence of a confined saline aquifer at the depth of about 1,500 m into which less than 100,000 tons of liquid CO2 will be injected, possibly starting in 2013. The chemical and isotopic features of the spring waters suggest the occurrence of a shallow aquifer having a Ca2+(Mg2+)-HCO3- composition, relatively low salinity (Total Dissolved Solids ?800 mg/L) and a meteoric isotopic signature. Some spring waters close to the oil wells are characterized by relatively high concentrations of NO3- (up to 123 mg/L), unequivocally indicating anthropogenic contamination that adds to the main water-rock interaction processes. The latter can be referred to Ca-Mg-carbonate and, at a minor extent, Al-silicate dissolution, being the outcropping sedimentary rocks characterized by Palaeozoic to Quaternary rocks. Anomalous concentrations of Cl-, SO42-, As, B and Ba were measured in two springs discharging a few hundreds meters from the oil wells and in the Rio Ubierna, possibly indicative of mixing processes, although at very low extent, between deep and shallow aquifers. Gases dissolved in spring waters show relatively high concentrations of atmospheric species, such as N2, O2 and Ar, and isotopically negative CO2 (<-17.7 ‰ V-PDB), likely related to a biogenic source, possibly masking any contribution related to a deep source. The geochemical and isotopic data of this study are of particular importance when a monitoring program will be established to verify whether CO2 leakages, induced by the injection of this greenhouse gas, may affect the quality of the waters of the shallow Hontomín-Huermeces hydrological circuit. In this respect, carbonate chemistry, the isotopic carbon of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) and selected trace elements can be considered as useful parameters to trace the migration of the injected CO2 into near-surface environments.

Nisi, Barbara; Vaselli, Orlando; Tassi, Franco; de Elio, Javier; Delgado Huertas, António; Mazadiego, Luis Felipe; Ortega, Marcelo F.

2013-04-01

375

Determination of Potassium, Sodium, and Total Alkalies in Portland Cement, Fly Ash, Admixtures, and Water of Concrete by a Simple Flow Injection Flame Photometric System  

PubMed Central

A simple flow injection with flame photometric detection has been developed for determination of sodium, potassium, and total alkalies in portland cement, fly ash, admixtures, and water of concrete. A liquid sample or a digest of solid sample was injected into a water carrier stream which flowed to a flame photometer. A change in emission intensity at a selected wavelength was recorded as a peak. An amplifier circuit was fabricated, which helped improve sensitivity of the flame photometer. Calibration graphs in the range of 0.05–1.0?mg?L?1 and 1.0–20.0?mg?L?1 were obtained with a detection limit of 0.02?mg?L?1, for both potassium and sodium determination. Relative standard deviations for 11 replicates of injecting of 10?mg?L?1 potassium and sodium solutions were 1.69 and 1.79%, respectively. Sample throughput of 120?h?1 was achieved. The proposed method was successfully applied to portland cement, fly ash, admixtures, and water samples validated by the ASTM standard method and certified reference materials of portland cement. PMID:21747733

Junsomboon, Jaroon; Jakmunee, Jaroon

2011-01-01

376

Evaluation of C-14 as a natural tracer for injected fluids at theAidlin sector of The Geysers geothermal system through modeling ofmineral-water-gas Reactions  

SciTech Connect

A reactive-transport model for 14C was developed to test its applicability to the Aidlin geothermal system. Using TOUGHREACT, we developed a 1-D grid to evaluate the effects of water injection and subsequent water-rock-gas interaction on the compositions of the produced fluids. A dual-permeability model of the fracture-matrix system was used to describe reaction-transport processes in which the permeability of the fractures is many orders of magnitude higher than that of the rock matrix. The geochemical system included the principal minerals (K-feldspar, plagioclase, calcite, silica polymorphs) of the metagraywackes that comprise the geothermal reservoir rocks. Initial simulation results predict that the gas-phase CO2 in the reservoir will become more enriched in 14C as air-equilibrated injectate water (with a modern carbon signature) is incorporated into the system, and that these changes will precede accompanying decreases in reservoir temperature. The effects of injection on 14C in the rock matrix will be lessened somewhat because of the dissolution of matrix calcite with ''dead'' carbon.

Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

2006-06-01

377

Flow injection-assisted optical sensor for determination of iron(II) and iron(III) in natural water  

Microsoft Academic Search

An approach for speciation of iron (as Fe(II) and Fe(III)) based on integration of retention of the Fe(III)-SCN complex with detection using a conventional spectrophotometer is proposed here. The device (namely, a flow-cell packed with an exchange resin) has been coupled to a flow-injection manifold with inner-coupled injection valves which enables discrimination between Fe(III) and Fe(II) taking advantage of a

A. C. Lopes da Conceição; M. T. Tena; M. M. Correia dos Santos; M. L. Simões Gonçalves; M. D. Luque de Castro

1997-01-01

378

Meeting the challenge of policy-relevant science: lessons from a water resource project  

USGS Publications Warehouse

Water resource scientists face complex tasks in evaluating aspects of water projects, but relatively few assessment procedures have been applied and accepted as standard applications. Decision-makers often rely on environmental assessments to evaluate the value and operation of projects. There is often confusion about scientists' role in policy decisions. The scientist can affect policy-making as an expert withess, an advocate or a surrogate. By understanding the policy process, scientists can make their work more “policy relevant.” Using the Terror Lake hydro project in Alaska as a guide, three lessons are discussed: (1) not all problems are able to be solved with technology; (2) policy-relevant technology is rarely imposed on a problem; and (3) the scientist need not just react to the policy process, but can have an impact on how that process unfolds.

Lamb, Berton L.

1986-01-01

379

Effect of the ecological water conveyance project on environment in the Lower Tarim River, Xinjiang, China.  

PubMed

The dynamic response of groundwater level is examined in traverse and lengthways directions. Take the Yinsu section for an example, we have simulated groundwater levels before and after water-conveyance every time and calculated the incidence of groundwater on the both sides of the river. It is noted that the effect keeps growing with the water-delivery times increasing, from 570 m after the first times to 3,334 m after the eighth times. In addition, this paper involves the temporal response of the natural vegetation to water conveyance, vegetation coverage, planted-species number, dominant position and species diversity from 2002 to 2006. The findings indicate that the positive influence of ecological water conveyance project (EWCP) on the ecosystem in the Lower Tarim River is a long-term process. In this paper, we try to calculate water required for recovery of damaged ecosystem by using data available. This project is likely the base of research on water demand and the reference of measures for research on ecological water conveyance effect. PMID:18274873

Ye, Zhaoxia; Chen, Yaning; Li, Weihong; Yan, Yan

2009-02-01

380

Supplement to the UMTRA project water sampling and analysis plan, Slick Rock, Colorado  

SciTech Connect

The water sampling and analysis plan (WSAP) provides the regulatory and technical basis for ground water and surface water sampling at the Uranium Mill Tailings Remedial Action (UMTRA) Project Union Carbide (UC) and North Continent (NC) processing sites and the Burro Canyon disposal site near Slick Rock, Colorado. The initial WSAP was finalized in August 1994 and will be completely revised in accordance with the WSAP guidance document (DOE, 1995) in late 1996. This version supplements the initial WSAP, reflects only minor changes in sampling that occurred in 1995, covers sampling scheduled for early 1996, and provides a preliminary projection of the next 5 years of sampling and monitoring activities. Once surface remedial action is completed at the former processing sites, additional and more detailed hydrogeologic characterization may be needed to develop the Ground Water Program conceptual ground water model and proposed compliance strategy. In addition, background ground water quality needs to be clearly defined to ensure that the baseline risk assessment accurately estimated risks from the contaminants of potential concern in contaminated ground water at the UC and NC sites.

NONE

1995-09-01

381

West Hackberry Tertiary Project  

SciTech Connect

The West Hackberry Tertiary Project is a field test of the concept that air injection can generate tertiary oil recovery through the Double Displacement Process. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. In Gulf Coast oil reservoirs with pronounced bed dip, reservoir performance has shown that gravity drainage recoveries average 80% to 90% of the original oil in place while water drive recoveries average 50% to 60% of the original oil in place. The target for tertiary oil recovery with the Double Displacement Process is the incremental oil between the 50% to 60% water drive recoveries and the 80% to 90% gravity drainage recoveries. The use of air injection in this process combines the benefits of air's low cost and universal accessibility with the potential for improved oil recovery resulting from spontaneous in situ combustion. If successful, this project will demonstrate that utilizing air injection in the Double Displacement Process will result in an economically viable tertiary process in many Gulf Coast oil reservoirs where other tertiary processes are presently uneconomic. The West Hackberry Tertiary Project receives matching funds from the United States Department of Energy (DOE) as part of the DOE's Class 1 Program for the development of advance recovery technologies in fluvial dominated deltaic reservoirs. In addition, the Petroleum Engineering Department at Louisiana State University (LSU) provides independent study and technology transfer.

Gillham, Travis; Yannimaras, Demetrios

1999-11-03

382

Improving Climate Projections Through the Assessment of Model Uncertainty and Bias in the Global Water Cycle  

NASA Astrophysics Data System (ADS)

The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the Coupled Model Intercomparison Project (CMIP); these simulations are ensemble-averaged to construct projections for the 21st century climate. However, a significant degree of bias and variability in the model simulations for the 20th century climate is well-known at both global and regional scales. Based on that insight, this study provides an alternative approach for constructing climate projections that incorporates knowledge of model bias. This approach is demonstrated to be a viable alternative which can be easily implemented by water resource managers for potentially more accurate projections. Tests of the new approach are provided on a global scale with an emphasis on semiarid regional studies for their particular vulnerability to water resource changes, using both the former CMIP Phase 3 (CMIP3) and current Phase 5 (CMIP5) model archives. This investigation is accompanied by a detailed analysis of the dynamical processes and water budget to understand the behaviors and sources of model biases. Sensitivity studies of selected CMIP5 models are also performed with an atmospheric component model by testing the relationship between climate change forcings and model simulated response. The information derived from each study is used to determine the progressive quality of coupled climate models in simulating the global water cycle by rigorously investigating sources of model bias related to the moisture budget. As such, the conclusions of this project are highly relevant to model development and potentially may be used to further improve climate projections.

Baker, Noel C.

383

Refining the Resolution of Future Energy-Water Projection through High Performance Computing (Invited)  

NASA Astrophysics Data System (ADS)

With the advance of high performance computing and more abundant historic observation, the resolution and accuracy of hydro-climate projection can now be efficiently improved. Based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections, a series of hydro-climatic models and datasets, including Regional Climate Models, Variable Infiltration Capacity (VIC) hydrologic model, historic runoff-generation relationships and a national hydropower dataset, are jointly utilized to project the future hydropower production at various U.S. regions. To refine spatial resolution and reduce modeling uncertainty, particular efforts were focused on calibrating the VIC hydrologic model at 4-Km spatial resolution. Driven by 1980-2008 DAYMET meteorological observation (biased adjusted by PRISM dataset), the simulated VIC total runoff (baseflow + surface runoff) was calibrated to U.S. Geological Survey WaterWatch monthly runoff observation at 2107 hydrologic Subbasins (HUC8s) in the Conterminous U.S. Each HUC8 was subdivided into 16, 32, or 48 computation units for parallel computing. The simulation was conducted using Oak Ridge National Laboratory's Titan supercomputer, a Cray XK7 system with 18,688 computational nodes, each equipped with four quad-core CPUs and two GPU cards. To date, ~2.5 million CPU-hours (i.e., the number of CPUs multiplied by the average hours used by each CPU) have been used to improve the modeling performance for most of the HUC8s. Using the calibrated model, hydro-climate projections will be produced for various dynamically-downscaled CMIP5 simulations, and will be utilized to project seasonal and monthly hydropower production for various U.S. regions. It is expected that with reduced modeling uncertainty, the regional water budget can be more accurately estimated and it will eventually lead to better simulation and allocation of limited water resources under climate, energy, and water nexus.

Kao, S.; Naz, B.; Ashfaq, M.; Mei, R.

2013-12-01

384

Initial test results of the limestone injection multistage burner (LIMB) demonstration project. Report for September 1984-April 1988  

SciTech Connect

This paper discusses SO/sub 2/ removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO/sub 2/ removal at a Ca/S molar stoichiometry of 2.0 and NOx emissions of less than 0.5 lb/million Btu while maintaining boiler operability and reliability. The tests, conducted before September 1987, indicated that 55-60% SO/sub 2/ removal and NOx emissions on the order of 0.48 lb/million Btu are achievable. The increased dust loading of a high-resistivity ash typically limited continuous operation to 2-6 hr. The paper discusses how the LIMB ash gave rise to back corona which, in turn, increased stack opacity to regulated levels. The extension of the project to include humidification of the flue gas is also described as a way to minimize these effects.

Nolan, P.S.; Hendriks, R.V.

1988-05-01

385

Quantifying Ground-Water Savings Achieved by Salt-Cedar Control Measures: A Demonstration Project  

NASA Astrophysics Data System (ADS)

Consumption of ground water by phreatophytes in riparian corridors is thought to be one factor responsible for stream-flow reductions in western Kansas and elsewhere. Extensive phreatophyte-control measures, primarily focusing on invasive species such as salt cedar and Russian olive, are being considered in response to concerns about the impact of phreatophytes on surface-and ground-water resources. At present, there is no generally accepted means of quantifying the ground-water savings that might be gained through these control measures. Micrometeorological methods are often not appropriate for this application because their fetch requirements are too large for narrow riparian corridors. Recently, an approach based on diurnal fluctuations in the water table has been shown to have potential for quantifying ground-water consumption by phreatophytes. A demonstration project is underway to examine the utility of this method for assessing ground-water savings achieved through phreatophyte-control measures. This project is being carried out at a research site in a region of salt-cedar infestation along the Cimarron River in southwestern Kansas. The site has been subdivided into four areas of approximately four hectares each in which different salt-cedar control measures will be applied. Control measures will not be used in one area so that data unaffected by those measures can be obtained throughout the project. Wells equipped with submersible pressure sensors have been installed to monitor water-table responses in the vicinity of the most common phreatophyte communities at the site. A neutron access tube has been emplaced adjacent to each well so that water content in the vadose zone can also be monitored. Changes in water-content profiles will be used to estimate specific yield, a critical parameter in the proposed methodology. A weather station has also been installed on site to monitor meteorological conditions and provide reference ET estimates. Water-level data collected prior to any control activities clearly indicate that the magnitude of the water-table fluctuations is highly dependent on the apparent vitality of the phreatophyte community in the vicinity of each well. After the control measures have been applied, water-level data from the treated areas will be compared to data from the untreated area. That comparison should enable quantification of reductions in ground-water consumption produced by those measures.

Butler, J. J.; Kluitenberg, G. J.; Whittemore, D. O.; Healey, J. M.; Zhan, X.

2005-05-01

386

Climate Change Projections: A User Community Perspective from the Water Utility Climate Alliance (WUCA)  

NASA Astrophysics Data System (ADS)

The Water Utility Climate Alliance (WUCA) is a coalition of eight large water providers from around the United States formed in 2007 to address climate change adaptation challenges faced by water utilities. WUCA members include the San Francisco Public Utilities Commission, Seattle Public Utilities, Denver Water, New York City Department of Environmental Protection, Portland Water Bureau, Metropolitan Water District of Southern California, San Diego County Water Authority, and Southern Nevada Water Authority. As water utilities contemplate hundreds of billions of dollars in renewal and replacement investment in their aging infrastructures in the coming decades, and the implications of these investments for their ratepayers, they now recognize that those decisions must be made in the context of climate change. Yet long- and short- term climate projections currently provide a wide array of potential climate change effects, in some cases contradictory effects, for such factors as temperature, precipitation, and hydrologic variability. One of the WUCA's early objectives, therefore, has been to raise the urgency level within the climate research community as to the need for climate projections that can be incorporated into water management and planning. In particular, WUCA has identified a need for greater investment and research in higher resolution modeling, at the watershed level or finer grid scale, and in improvements in certain model parameters, such as precipitation, on the part of the climate modeling community. For example, in comments to the federal umbrella effort, the Climate Change Science Program, the Alliance has urged improved data gathering and increased modeling investment. Finally, for this and other programs seeking higher level scientific understanding of climate change, WUCA has found that communication between the climate research community and the "user community" must be enhanced from present levels.

Behar, D.; Fleming, P.; Stickel, L.; Kaatz, L.; Smyth, T.

2008-12-01

387

A flow injection analysis system for monitoring silver (I) ion and iodine residuals in recycled water from recovery systems used for spaceflight.  

PubMed

A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag(+) and I2 are 52?g L(-1) Ag(+) and 2?g L(-1) I2; the mean percent recoveries were 104% and 96.2% for Ag(+) and I2 respectfully; and percent relative standard deviations were estimated at 1.4% for Ag(+) and 5.7% for I2. The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland-Altman analysis as well as more traditional estimates. PMID:23910970

Williamson, Jill P; Emmert, Gary L

2013-08-20

388

-OGP 04 (1) -Predicting Injectivity Decline  

E-print Network

- OGP 04 (1) - Predicting Injectivity Decline in Water Injection Wells by Upscaling On-Site Core, resulting in injectivity decline of injection wells. Particles such as biomass, corrosion products, silt on permeability. These data were then processed, upscaled to model injection wells and, finally, history matched

Abu-Khamsin, Sidqi

389

Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.  

SciTech Connect

The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat, and exacerbating adverse water quality conditions. A reduction in carry over can lead to seasonal reductions in instream flows, which may also negatively affect fish, wildlife, and recreation in Idaho. The Idaho Water Rental Pilot Project does provide opportunities to protect and enhance resident fish and wildlife habitat by improving water quality and instream flows. Control of point sources, such as sewage and industrial discharges, alone will not achieve water quality goals in Idaho reservoirs and streams. Slow, continuous releases of rented water can increase and stabilize instream flows, increase available fish and wildlife habitat, decrease fish displacement, and improve water quality. Island integrity, requisite for waterfowl protection from mainland predators, can be maintained with improved timing of water releases. Rebuilding Snake River salmon and steelhead runs requires a cooperative commitment and increased flexibility in system operations to increase flow velocities for fish passage and migration. Idaho's resident fish and wildlife resources require judicious management and a willingness by all parties to liberate water supplies equitably.

Riggin, Stacey H.; Hansen, H. Jerome

1992-10-01

390

An analysis of eco-environmental impacts of the south-to-north water transfer project on the receiving areas  

NASA Astrophysics Data System (ADS)

The receiving areas of the Phase I projects of the eastern and central routes of the South-to-North Water Transfer Project cover 41 administrative regions at and above the prefecture level in the provincial level administrative regions of Beijing, Tianjin, Hebei, Shandong and Henan, and have a carrying capacity of water resources most unadaptive to the needs by the economic and social development. Those areas have densely distributed population, farmland and agricultural and industrial activities and are experiencing rapid urbanization, but suffer from high scarcity of water resources, with all the cities in the areas seeing water shortage to a varying extent. Most of the cities are relying on abstracting deep groundwater and occupying agricultural water for urban water supply. In December 2002, the State Council officially approved the General Plan on the South-to-North Water Transfer Project, which provides multiple measures to reduce groundwater over-abstraction and improve and gradually restore the eco-environment in the receiving areas by using transferred water to replace the agricultural water occupied by urban water supply and the eco-environmental water occupied by cities and agriculture. What changes have occurred to the eco-environment and urban water use in the receiving areas in recent years ? How much water can be returned from the cities to agriculture and ecology after the objectives of water supply are met? What can be achieved in the control of groundwater abstraction? What level of guarantee can the water transfer provide for agricultural water use in a dry year? All of those issues have been at the focus of public attention. In this paper, statistical analysis is made on the eco-environmental status and urban water use of 72 cities in the receiving areas of the Phase I projects since year 2000 and a conclusion is drawn that the renewal capacity of the eco-environment and groundwater in the receiving areas is deteriorating. Then the water balancing method is used to quantitatively analyze the roles of the Phase I projects in improving the eco-environment in the receiving areas from the angles of alleviation of drought severity, replacement of local source water supply, reduction of groundwater abstraction, replacement of agricultural water occupied by urban water supply, increase of agricultural and ecological water use by water transfer, etc. The results show that the Phase I projects have produced significant impacts on the improvement of urban water supply and agricultural eco-environment in the receiving areas, but cannot fundamentally solve the groundwater over-abstraction problem, and water saving, water transfer and pollution control need to be implemented simultaneously in order to fully tap the benefits of the Phase I projects.

Wang, Lin; Gan, Hong; Xiao, Yuquan; You, Jinjun

2010-05-01

391

Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project.  

PubMed

Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA. PMID:25005236

Navarro-Ortega, Alícia; Acuña, Vicenç; Bellin, Alberto; Burek, Peter; Cassiani, Giorgio; Choukr-Allah, Redouane; Dolédec, Sylvain; Elosegi, Arturo; Ferrari, Federico; Ginebreda, Antoni; Grathwohl, Peter; Jones, Colin; Rault, Philippe Ker; Kok, Kasper; Koundouri, Phoebe; Ludwig, Ralf Peter; Merz, Ralf; Milacic, Radmila; Muñoz, Isabel; Nikulin, Grigory; Paniconi, Claudio; Paunovi?, Momir; Petrovic, Mira; Sabater, Laia; Sabaterb, Sergi; Skoulikidis, Nikolaos Th; Slob, Adriaan; Teutsch, Georg; Voulvoulis, Nikolaos; Barceló, Damià

2015-01-15

392

Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project  

PubMed Central

Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA. PMID:25005236

Navarro-Ortega, Alícia; Acuña, Vicenç; Bellin, Alberto; Burek, Peter; Cassiani, Giorgio; Choukr-Allah, Redouane; Dolédec, Sylvain; Elosegi, Arturo; Ferrari, Federico; Ginebreda, Antoni; Grathwohl, Peter; Jones, Colin; Rault, Philippe Ker; Kok, Kasper; Koundouri, Phoebe; Ludwig, Ralf Peter; Merz, Ralf; Milacic, Radmila; Muñoz, Isabel; Nikulin, Grigory; Paniconi, Claudio; Paunovi?, Momir; Petrovic, Mira; Sabater, Laia; Sabaterb, Sergi; Skoulikidis, Nikolaos Th.; Slob, Adriaan; Teutsch, Georg; Voulvoulis, Nikolaos; Barceló, Damià

2015-01-01

393

Global climate change response program: Evaluation of central valley project water supply and delivery systems. Final report  

Microsoft Academic Search

A simple mass balance reservoir operation for the Central Valley Project (CVP) and State Water Project (SWP) water systems, California, was used to assess the possible global climate change impacts to the CVP. Historic hydrologic parameters were modified in an attempt to reflect possible hydrologic conditions under global climate change. Four different simulation cases were analyzed over a 57 year

J. Sandberg; P. Manza

1991-01-01

394

43 CFR 404.56 - If a financial assistance agreement is entered into for a rural water supply project that...  

Code of Federal Regulations, 2010 CFR

...2010-10-01 false If a financial assistance agreement...a rural water supply project that benefits more... § 404.56 If a financial assistance agreement...a rural water supply project that benefits more...required? Yes. When a financial assistance...

2010-10-01

395

Mapping cropland parameters - Results from the Central Asian Water (CAWa) project  

NASA Astrophysics Data System (ADS)

The CAWa (Central Asian Water) project aims at providing a sound scientific basis for trans-national water resources management in Central Asia (see www.cawa-project.net). The planned activities involve a network of scientific institutions all over Central Asia. They produce joint scientific results as well as pass down up-to-date scientific methods and approaches. The German Research Centre for Geosciences in Potsdam (GFZ) has taken over the project coordination. The Department of Remote Sensing, Würzburg University, associated with the German Aerospace Centre (DLR) is one of the project partners. Its major research activities focus on analysing information on land use and agricultural production and their changes in space and time from remote sensing data, focusing on the irrigated land in Central Asia. Some of the research topics include cropland mapping (e.g. crop classification and creation of agricultural field cadastre), crop production monitoring (yield), drought monitoring, and mapping and monitoring of spatial cropland extent. Detection of marginal land or agricultural land abandonment, a widespread phenomenon in this region that has strong socio-economic and ecological consequences, is another research focus. The methods and results demonstrate the value of remote sensing technologies to supporting regional decision makers and planners for an improved and sustainable land and water resource management.

Conrad, Christopher; Löw, Fabian; Unger-Shayesteh, Katy

2014-05-01

396

ENVIR 202: EARTH, AIR, WATER PERSPECTIVES ON EXPERIMENTAL PROJECTS for Water (W)  

E-print Network

much discussion of water pollution. One of the most serious of environmental problems is the poor in looking at light and optics, and talking about wavelengths (~ colors) of light. We noted that light waves' as the waves are slowed down. Waves `refract' as they come into shore just as light beams are refracted

397

Phase 1 summaries of radionuclide concentration data for vegetation, river water, drinking water, and fish. Hanford Environmental Dose Reconstruction Project  

SciTech Connect

The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at the Hanford Site since 1944. As part of the HEDR Project, the Environmental Monitoring Data Task (Task 05) staff assemble, evaluate, and summarize key historical measurements of radionuclide concentrations in the environment as a result of Hanford operations. The scope of work performed during Phase I included initiating the search, recovery, and inventory of environmental reports. Summaries of the environmental monitoring data that were recovered and evaluated are presented for specific periods of interest. These periods include vegetation monitoring data (primarily sagebrush) for the years 1945 through 1947, Columbia River water and drinking water monitoring data for the years 1963 through 1966, and fish monitoring data for the years 1964 through 1966. Concern was limited to those radionuclides identified as the most likely major contributors to the dose potentially received by the public during the times of interest: phosphorous-32, copper-64, zinc-65, arsenic-76, and neptunium-239 in Columbia River fish and drinking water taken from the river, and iodine-131 in vegetation. This report documents the achievement of the Phase I objectives of the Environmental Monitoring Data Task.

Denham, D.H.; Dirkes, R.L.; Hanf, R.W.; Poston, T.M.; Thiede, M.E.; Woodruff, R.K.

1993-06-01

398

Ion-pair dynamic liquid-phase microextraction combined with injection-port derivatization for the determination of long-chain fatty acids in water samples.  

PubMed

Ion-pair dynamic liquid-phase microextraction coupled to injection-port derivatization has been developed for the determination of long-chain fatty acids in water samples by gas chromatography-mass spectrometry (GC-MS). In this procedure, long-chain fatty acids (C(14), C(16) and C(18)) were converted into their ion-pair complexes with tetrabutylammonium hydrogen sulfate and then extracted by organic solvent (1-octanol) impregnated in the hollow fiber. The dynamic nature of the extraction was represented by the repeated movement of the acceptor phase (organic solvent) in the hollow fiber that was controlled by a syringe pump. Ion pairs of fatty acids quantitatively formed butyl esters in the injection-port of the gas chromatography. Several parameters such as injection temperature, purge-off time, organic solvent, ion-pair reagent, pH, agitation speed, extraction time and the syringe pump parameters (plunger speed and dwell time) have been optimized. The limits of detection were in the range 0.0093-0.015 ng mL(-1) (at a signal-to-noise ratio of 3) under GC-MS-selected ion monitoring mode and the relative standard deviations were between 7.7% and 11.5%. The method was successfully applied to measure long-chain fatty acids in real water samples. PMID:16920127

Wu, Jingming; Lee, Hian Kee

2006-11-10

399

Water quality management and sustainability: the experience of Lake Victoria Environmental Management Project (LVEMP)??Tanzania  

NASA Astrophysics Data System (ADS)

Human health and development are threatened in many parts of the world either from lack of water or poor water quality. Human development has partially contributed to water quality deterioration. In Tanzania, for instance, rapid population growth that caused expansion of agricultural activities, livestock keeping, deforestation, biomass burning and human settlement have exerted pressures within the Lake Victoria Basin. These developments have led to land degradation and increased levels of pollution mainly from non-point sources. The Governments of Kenya, Tanzania and Uganda initiated the program of Lake Victoria Environmental Management Project, (LVEMP), in 1994 to rehabilitate the Lake Ecosystem through restoration and conservation of biodiversity in the lake as well as within the catchment. This paper presents the five years (1997-2002) experience of LVEMP in Tanzania on the issues of water quality; focusing on water pollution, water quality monitoring and LVEMP strategies to accomplish water quality management in the Lake Zone (Kagera, Mara and Mwanza regions). The findings show that non-point source pollution from agricultural practices; as well as unplanned urban settlements contribute more to siltation and eutrophication of the of Lake Victoria than that from point source pollution. Recommendations for water quality management and sustainability are presented.

Machiwa, Praxeda K.

400

Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project  

SciTech Connect

The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

Freshley, M.D.; Thorne, P.D.

1992-08-01

401

The superiority of water-diluted 0.25% to neat 1% lidocaine for trigger-point injections in myofascial pain syndrome: a prospective, randomized, double-blinded trial.  

PubMed

Trigger-point injection with a mixture of commercially available 1% lidocaine in sterile distilled water at a ratio of 1:3 compared with 1% lidocaine alone resulted in better efficacy and less injection pain. This simple procedure may be suitable for treatments of a wide range of myofascial pain syndromes. PMID:10910858

Iwama, H; Akama, Y

2000-08-01

402

Water, water everywhere - and not a drop to spare. [HUD-sponsored conservation project at NBS  

Microsoft Academic Search

Researchers at the National Bureau of Standards Center for Building Technology (NBC\\/CBT) are conducting a water-conservation research program under the sponsorship of the Department of Housing and Urban Development (HUD). In the words of Dr. Lawrence Galowin, a senior mechanical engineer at NBS\\/CBT, the program aims to develop test data and provide engineering-design methods and laboratory-based evaluation criteria which can

Heyman

1980-01-01

403

Pralatrexate Injection  

MedlinePLUS

... You will need to take folic acid and vitamin B12 during your treatment with pralatrexate injection to help ... you that you will need to receive a vitamin B12 injection no more than 10 weeks before your ...

404

Obinutuzumab Injection  

MedlinePLUS

Obinutuzumab injection is used with chlorambucil (Leukeran) to treat chronic lymphocytic leukemia (CLL; a type of cancer of the white blood cells). Obinutuzumab injection is in a class of medications called ...

405

Etanercept Injection  

MedlinePLUS

... areas causing pain and joint damage), chronic plaque psoriasis (a skin disease in which red, scaly patches ... etanercept injection is used to treat chronic plaque psoriasis, it may be injected twice a week during ...

406

Leucovorin Injection  

MedlinePLUS

Leucovorin injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall; cancer chemotherapy medication) when methotrexate is used to to treat certain types of cancer. Leucovorin injection is used to ...

407

Levoleucovorin Injection  

MedlinePLUS

Levoleucovorin injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall) when methotrexate is used to to treat certain types of cancer. Levoleucovorin injection is also used to treat people ...

408

Hydromorphone Injection  

MedlinePLUS

Hydromorphone injection is used to relieve pain. Hydromorphone injection is in a class of medications called opiate (narcotic) analgesics. It works by changing the way the brain and nervous system respond ...

409

Medroxyprogesterone Injection  

MedlinePLUS

Medroxyprogesterone intramuscular injection comes as a suspension (liquid) to be injected into the buttocks or upper arm. It is usually given once every 3 months (13 weeks) by a healthcare provider in ...

410

Cabazitaxel Injection  

MedlinePLUS

Cabazitaxel injection is used along with prednisone to treat prostate cancer (cancer of a male reproductive organ) that has already been treated with other medications. Cabazitaxel injection is in ...

411

Palivizumab Injection  

MedlinePLUS

... disease called respiratory syncytial virus (RSV). The drug will be injected into a large muscle (such as ... month during RSV season. Your health care provider will let you know when the monthly injections are ...

412