Science.gov

Sample records for water level predictions

  1. Considering rating curve uncertainty in water level predictions

    NASA Astrophysics Data System (ADS)

    Sikorska, A. E.; Scheidegger, A.; Banasik, K.; Rieckermann, J.

    2013-11-01

    Streamflow cannot be measured directly and is typically derived with a rating curve model. Unfortunately, this causes uncertainties in the streamflow data and also influences the calibration of rainfall-runoff models if they are conditioned on such data. However, it is currently unknown to what extent these uncertainties propagate to rainfall-runoff predictions. This study therefore presents a quantitative approach to rigorously consider the impact of the rating curve on the prediction uncertainty of water levels. The uncertainty analysis is performed within a formal Bayesian framework and the contributions of rating curve versus rainfall-runoff model parameters to the total predictive uncertainty are addressed. A major benefit of the approach is its independence from the applied rainfall-runoff model and rating curve. In addition, it only requires already existing hydrometric data. The approach was successfully demonstrated on a small catchment in Poland, where a dedicated monitoring campaign was performed in 2011. The results of our case study indicate that the uncertainty in calibration data derived by the rating curve method may be of the same relevance as rainfall-runoff model parameters themselves. A conceptual limitation of the approach presented is that it is limited to water level predictions. Nevertheless, regarding flood level predictions, the Bayesian framework seems very promising because it (i) enables the modeler to incorporate informal knowledge from easily accessible information and (ii) better assesses the individual error contributions. Especially the latter is important to improve the predictive capability of hydrological models.

  2. Bachelor's Project Short-Term Prediction of Dangerous High Water Levels

    E-print Network

    Di Bucchianico, Alessandro

    Bachelor's Project Short-Term Prediction of Dangerous High Water Levels A. Di Bucchianico Keywords linear regression, nonlinear regression, short-term prediction, water levels, harbour induced. By the law the barrier should be closed only when the water is 3 metres above sea level in 10 minute average

  3. Predicting Atrazine Levels in Water Utility Intake Water for MCL Compliance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To protect human health, atrazine concentrations in drinking water must not exceed its maximum contaminant level (MCL) of 3 ug/L. The United States Environmental Protection Agency (USEPA) mandates that municipal water providers sample quarterly to determine MCL compliance. Atrazine levels were mon...

  4. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    SciTech Connect

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions.

  5. Dynamic neural networks for real-time water level predictions of sewerage systems - covering gauged and ungauged sites

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2010-04-01

    In this research, we propose recurrent neural networks (RNNs) to build a relationship between rainfalls and water level patterns of an urban sewerage system based on historical torrential rain/storm events. The RNN allows a signal to propagate in backward direction which gives this network a dynamic memory to effectively deal with time-varying systems. The RNN is implemented at both gauged and ungauged sites for 5-, 10-, 15-, and 20-min-ahead water level predictions. The results show that the RNN is capable of learning the nonlinear sewerage system and producing satisfactory predictions at the gauged sites. Concerning the ungauged sites, there are no historical data of water level to support prediction. In order to overcome such problem, a set of synthetic data, generated from a storm water management model (SWMM) under cautious verification process of applicability based on the data from nearby gauging stations, are introduced as the learning target to the training procedure of the RNN and moreover evaluating the performance of the RNN at the ungauged sites. The results demonstrate that the potential role of the SWMM coupled with nearby rainfall and water level information can be of great use in enhancing the capability of the RNN at the ungauged sites. Hence we can conclude that the RNN is an effective and suitable model for successfully predicting the water levels at both gauged and ungauged sites in urban sewerage systems.

  6. Construction and use of special drawdown scales for use in prediction of water-level changes throughout heavily pumped areas

    USGS Publications Warehouse

    Conover, C.S.; Reeder, H.O.

    1957-01-01

    Problem and Proposed Method of Solution Frequently the Theis nonequilibrium formula is use din the quantitative analyses that are part of many-ground-water investigations. The computations associated therewith may become quite involved and tedious, especially when dealing with predictions of the decline of water levels throughout large areas in which there are many discharging wells. The process of predicting future water-level declines can be greatly simplified and shortened by preparing a special draw-down scale for given conditions. Through use of such a scale much of the computation can be reduced to scaling the values sought from a map, on which the pumped wells have been spotted. The net drawdown effect, which is the sum of the water-level declines caused by the many individual pumped wells, can be determined readily for any desired point in the area. If the net drawdown effect is desired, a summation of the effects of all the pumped wells can be repeated for each point. By determining the water-level change at a number of points, for a given period of time, a contour map of predicted water-level changes for the multiple-well system can be drawn.

  7. Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites

    NASA Astrophysics Data System (ADS)

    Chiang, Yen-Ming; Chang, Li-Chiu; Tsai, Meng-Jung; Wang, Yi-Fung; Chang, Fi-John

    2010-07-01

    In this research, we propose recurrent neural networks (RNNs) to build a relationship between rainfalls and water level patterns of an urban sewerage system based on historical torrential rain/storm events. The RNN allows signals to propagate in both forward and backward directions, which offers the network dynamic memories. Besides, the information at the current time-step with a feedback operation can yield a time-delay unit that provides internal input information at the next time-step to effectively deal with time-varying systems. The RNN is implemented at both gauged and ungauged sites for 5-, 10-, 15-, and 20-min-ahead water level predictions. The results show that the RNN is capable of learning the nonlinear sewerage system and producing satisfactory predictions at the gauged sites. Concerning the ungauged sites, there are no historical data of water level to support prediction. In order to overcome such problem, a set of synthetic data, generated from a storm water management model (SWMM) under cautious verification process of applicability based on the data from nearby gauging stations, are introduced as the learning target to the training procedure of the RNN and moreover evaluating the performance of the RNN at the ungauged sites. The results demonstrate that the potential role of the SWMM coupled with nearby rainfall and water level information can be of great use in enhancing the capability of the RNN at the ungauged sites. Hence we can conclude that the RNN is an effective and suitable model for successfully predicting the water levels at both gauged and ungauged sites in urban sewerage systems.

  8. Importance of Long-Term Cycles for Predicting Water Level Dynamics in Natural Lakes

    PubMed Central

    García Molinos, Jorge; Viana, Mafalda; Brennan, Michael; Donohue, Ian

    2015-01-01

    Lakes are disproportionately important ecosystems for humanity, containing 77% of the liquid surface freshwater on Earth and comprising key contributors to global biodiversity. With an ever-growing human demand for water and increasing climate uncertainty, there is pressing need for improved understanding of the underlying patterns of natural variability of water resources and consideration of their implications for water resource management and conservation. Here we use Bayesian harmonic regression models to characterise water level dynamics and study the influence of cyclic components in confounding estimation of long-term directional trends in water levels in natural Irish lakes. We found that the lakes were characterised by a common and well-defined annual seasonality and several inter-annual and inter-decadal cycles with strong transient behaviour over time. Importantly, failing to account for the longer-term cyclic components produced a significant overall underestimation of the trend effect. Our findings demonstrate the importance of contextualising lake water resource management to the specific physical setting of lakes. PMID:25757071

  9. Predicting Aircraft Noise Levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1983-01-01

    Computer program developed for predicting aircraft noise levels either in flight or in ground tests. Noise sources include fan inlet and exhaust jet flap (for powered lift), core (combustor), turbine and airframe. Program written in FORTRAN IV.

  10. Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn River: a comparison

    NASA Astrophysics Data System (ADS)

    López López, P.; Verkade, J. S.; Weerts, A. H.; Solomatine, D. P.

    2014-09-01

    The present study comprises an intercomparison of different configurations of a statistical post-processor that is used to estimate predictive hydrological uncertainty. It builds on earlier work by Weerts, Winsemius and Verkade (2011; hereafter referred to as WWV2011), who used the quantile regression technique to estimate predictive hydrological uncertainty using a deterministic water level forecast as a predictor. The various configurations are designed to address two issues with the WWV2011 implementation: (i) quantile crossing, which causes non-strictly rising cumulative predictive distributions, and (ii) the use of linear quantile models to describe joint distributions that may not be strictly linear. Thus, four configurations were built: (i) a ''classical" quantile regression, (ii) a configuration that implements a non-crossing quantile technique, (iii) a configuration where quantile models are built in normal space after application of the normal quantile transformation (NQT) (similar to the implementation used by WWV2011), and (iv) a configuration that builds quantile model separately on separate domains of the predictor. Using each configuration, four reforecasting series of water levels at 14 stations in the upper Severn River were established. The quality of these four series was intercompared using a set of graphical and numerical verification metrics. Intercomparison showed that reliability and sharpness vary across configurations, but in none of the configurations do these two forecast quality aspects improve simultaneously. Further analysis shows that skills in terms of the Brier skill score, mean continuous ranked probability skill score and relative operating characteristic score is very similar across the four configurations.

  11. Alternative configurations of Quantile Regression for estimating predictive uncertainty in water level forecasts for the Upper Severn River: a comparison

    NASA Astrophysics Data System (ADS)

    López López, P.; Verkade, J. S.; Weerts, A. H.; Solomatine, D. P.

    2014-04-01

    The present study comprises an inter-comparison of different configurations of a statistical post-processor that is used to estimate predictive hydrological uncertainty. It builds on earlier work by Weerts et al. (2011, herinafter referred to as wwv2011), who used the Quantile Regression technique to estimate predictive hydrological uncertainty using a deterministic water level forecast as a predictor. The various configurations are designed to address two issues with the wwv2011 implementation: (i) quantile crossing, which causes non-strictly rising cumulative predictive distributions, and (ii) the use of linear quantile models to describe joint distributions that may not be strictly linear. Thus, four configurations were built: (i) the "as is" implementation used by wwv2011, (ii) a configuration that implements a non-crossing quantile technique, (iii) a configuration where quantile models are built in Normal space after application of the Normal Quantile Transform, and (iv) a configuration that builds quantile model separately on separate domains of the predictor. Using each, four re-forecasting series of water levels at fourteen stations in the Upper Severn River were established. The quality of these four series was inter-compared using a set of graphical and numerical verification metrics. Intercomparison showed that reliability and sharpness vary across configurations, but in none of the configurations do these two forecast quality aspects improve simultaneously. Further analysis shows that skills in terms of Brier Skill Score, mean Continuous Ranked Probability Skill Score and Relative Operating Characteristic Score is very similar across the four configurations.

  12. Predicted Changes in Interannual Water-Level Fluctuations Due to Climate Change and Its Implications for the Vegetation of the Florida Everglades

    NASA Astrophysics Data System (ADS)

    van der Valk, Arnold G.; Volin, John C.; Wetzel, Paul R.

    2015-04-01

    The number of dominant vegetation types (wet prairies, sawgrass flats, ridges and sloughs, sloughs, and tree islands) historically and currently found in the Everglades, FL, USA, as with other wetlands with standing water, appears to be primarily a function of the magnitude of interannual water-level fluctuations. Analyses of 40 years of water-depth data were used to estimate the magnitude of contemporary (baseline) water-level fluctuations in undisturbed ridge and slough landscapes. Baseline interannual water-level fluctuations above the soil surface were at least 1.5 m. Predicted changes in interannual water-level fluctuations in 2060 were examined for seven climate change scenarios. When rainfall is predicted to increase by 10 %, the wettest scenario, the interannual range of water-level fluctuation increases to 1.8 m above the soil surface in sloughs. When rainfall is predicted to decrease by 10 % and temperatures to increase by 1.5 °C, the driest scenario, the range of interannual range of water-level fluctuations is predicted to decrease to 1.2 m above the soil surface in sloughs. A change of 25-30 cm in interannual water-level fluctuations is needed to change the number of vegetation types in a wetland. This suggests that the two most extreme climate change scenarios could have a significant impact on the overall structure of wetland vegetation, i.e., the number of vegetation types or zones, found in the Everglades.

  13. Predicted changes in interannual water-level fluctuations due to climate change and its implications for the vegetation of the Florida Everglades.

    PubMed

    van der Valk, Arnold G; Volin, John C; Wetzel, Paul R

    2015-04-01

    The number of dominant vegetation types (wet prairies, sawgrass flats, ridges and sloughs, sloughs, and tree islands) historically and currently found in the Everglades, FL, USA, as with other wetlands with standing water, appears to be primarily a function of the magnitude of interannual water-level fluctuations. Analyses of 40 years of water-depth data were used to estimate the magnitude of contemporary (baseline) water-level fluctuations in undisturbed ridge and slough landscapes. Baseline interannual water-level fluctuations above the soil surface were at least 1.5 m. Predicted changes in interannual water-level fluctuations in 2060 were examined for seven climate change scenarios. When rainfall is predicted to increase by 10 %, the wettest scenario, the interannual range of water-level fluctuation increases to 1.8 m above the soil surface in sloughs. When rainfall is predicted to decrease by 10 % and temperatures to increase by 1.5 °C, the driest scenario, the range of interannual range of water-level fluctuations is predicted to decrease to 1.2 m above the soil surface in sloughs. A change of 25-30 cm in interannual water-level fluctuations is needed to change the number of vegetation types in a wetland. This suggests that the two most extreme climate change scenarios could have a significant impact on the overall structure of wetland vegetation, i.e., the number of vegetation types or zones, found in the Everglades. PMID:25566832

  14. Hurricane jeanne Preliminary Water Levels Report

    E-print Network

    Hurricane jeanne Preliminary Water Levels Report Tide Gauges within the Path of Hurricane Jeanne-OPS Hurricane JEANNE Preliminary Report #12;SUMMARY CO-OPS Tide Gauge Data for Hurricane Jeanne NOAA's Center://tidesonline.nos.noaa.gov). Storm surge is the observed water level minus the predicted water level referred to MLLW. Hurricane

  15. Predicted water-level and water-quality effects of artificial recharge in the Upper Coachella Valley, California, using a finite-element digital model

    USGS Publications Warehouse

    Swain, Lindsay A.

    1978-01-01

    From 1936 to 1974, water levels declined more than 100 feet in the Palm Springs area and 60 feet in the Palm Desert area of the upper Coachella Valley, Calif. Water from the Colorado River Aqueduct is presently being recharged to the basin. The dissolved-solids concentration of native ground water in the recharge area is about 210 mg/liter and that of recharge water ranges from 600 to 750 mg/liter. A finite-element model indicates that without recharge the 1974 water levels in the Palm Springs area will decline 200 feet by the year 2000 because of pumpage. If the aquifer is recharged at a rate from about 7 ,500 acre-feet per year in 1973 increasing to 61,200 acre-feet per year in 1990 and thereafter, the water level in the Palm Springs area will decline about 20 feet below the 1974 level by 1991 and recover to the 1974 level by 2000. The solute-transport finite-element model of the recharge area indicates that the artificial recharge plume (bounded by the 300-mg/liter line) will move about 1.1 miles downgradient of the recharge ponds by 1981 and about 4.5 miles from the ponds by 2000. (Woodard-USGS)

  16. How historical information can improve estimation and prediction of extreme coastal water levels: application to the Xynthia event at La Rochelle (France)

    NASA Astrophysics Data System (ADS)

    Bulteau, T.; Idier, D.; Lambert, J.; Garcin, M.

    2015-06-01

    The knowledge of extreme coastal water levels is useful for coastal flooding studies or the design of coastal defences. While deriving such extremes with standard analyses using tide-gauge measurements, one often needs to deal with limited effective duration of observation which can result in large statistical uncertainties. This is even truer when one faces the issue of outliers, those particularly extreme values distant from the others which increase the uncertainty on the results. In this study, we investigate how historical information, even partial, of past events reported in archives can reduce statistical uncertainties and relativise such outlying observations. A Bayesian Markov chain Monte Carlo method is developed to tackle this issue. We apply this method to the site of La Rochelle (France), where the storm Xynthia in 2010 generated a water level considered so far as an outlier. Based on 30 years of tide-gauge measurements and 8 historical events, the analysis shows that (1) integrating historical information in the analysis greatly reduces statistical uncertainties on return levels (2) Xynthia's water level no longer appears as an outlier, (3) we could have reasonably predicted the annual exceedance probability of that level beforehand (predictive probability for 2010 based on data until the end of 2009 of the same order of magnitude as the standard estimative probability using data until the end of 2010). Such results illustrate the usefulness of historical information in extreme value analyses of coastal water levels, as well as the relevance of the proposed method to integrate heterogeneous data in such analyses.

  17. Sentence-Level Attachment Prediction

    NASA Astrophysics Data System (ADS)

    Albakour, M.-Dyaa; Kruschwitz, Udo; Lucas, Simon

    Attachment prediction is the task of automatically identifying email messages that should contain an attachment. This can be useful to tackle the problem of sending out emails but forgetting to include the relevant attachment (something that happens all too often). A common Information Retrieval (IR) approach in analyzing documents such as emails is to treat the entire document as a bag of words. Here we propose a finer-grained analysis to address the problem. We aim at identifying individual sentences within an email that refer to an attachment. If we detect any such sentence, we predict that the email should have an attachment. Using part of the Enron corpus for evaluation we find that our finer-grained approach outperforms previously reported document-level attachment prediction in similar evaluation settings.

  18. Vitamin D Levels Predict Multiple Sclerosis Progression

    MedlinePLUS

    ... Research Matters NIH Research Matters February 3, 2014 Vitamin D Levels Predict Multiple Sclerosis Progression Among people ... sclerosis (MS), those with higher blood levels of vitamin D had better outcomes during 5 years of ...

  19. NOAA Water Level and Meteorological Data Report HURRICANE IKE

    E-print Network

    and distributes observations and predictions of water levels and currents to ensure safe, efficientNOAA Water Level and Meteorological Data Report HURRICANE IKE Silver Spring, Maryland July 2, 2009 and environmentally sound maritime commerce. The Center provides the set of water level and coastal current products

  20. Streamflow and Water Level Measurements

    USGS Multimedia Gallery

    USGS scientists Joel Galloway and Dan Thomas prepare to take streamflow and water level measurements of the flooded Red River in downtown Fargo, ND. The USGS Red River of the North at Fargo streamgage can be seen in the background....

  1. Temporal Models for Groundwater Level Prediction in Regions of Maharashtra Dissertation Report

    E-print Network

    Sohoni, Milind

    capture trends on water levels in observation wells, the rainfall model explores the correlation between the rainfall levels and water levels. The periodic and polynomial models are developed only using to predict tempo- ral changes in water level to aid local water management decisions and also give region

  2. Groundwater Level Prediction using M5 Model Trees

    NASA Astrophysics Data System (ADS)

    Nalarajan, Nitha Ayinippully; Mohandas, C.

    2015-01-01

    Groundwater is an important resource, readily available and having high economic value and social benefit. Recently, it had been considered a dependable source of uncontaminated water. During the past two decades, increased rate of extraction and other greedy human actions have resulted in the groundwater crisis, both qualitatively and quantitatively. Under prevailing circumstances, the availability of predicted groundwater levels increase the importance of this valuable resource, as an aid in the planning of groundwater resources. For this purpose, data-driven prediction models are widely used in the present day world. M5 model tree (MT) is a popular soft computing method emerging as a promising method for numeric prediction, producing understandable models. The present study discusses the groundwater level predictions using MT employing only the historical groundwater levels from a groundwater monitoring well. The results showed that MT can be successively used for forecasting groundwater levels.

  3. Computer program to predict aircraft noise levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1981-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  4. Modeling system for predicting enterococci levels at Holly Beach.

    PubMed

    Zhang, Zaihong; Deng, Zhiqiang; Rusch, Kelly A; Walker, Nan D

    2015-08-01

    This paper presents a new modeling system for nowcasting and forecasting enterococci levels in coastal recreation waters at any time during the day. The modeling system consists of (1) an artificial neural network (ANN) model for predicting the enterococci level at sunrise time, (2) a clear-sky solar radiation and turbidity correction to the ANN model, (3) remote sensing algorithms for turbidity, and (4) nowcasting/forecasting data. The first three components are also unique features of the new modeling system. While the component (1) is useful to beach monitoring programs requiring enterococci levels in early morning, the component (2) in combination with the component (1) makes it possible to predict the bacterial level in beach waters at any time during the day if the data from the components (3) and (4) are available. Therefore, predictions from the component (2) are of primary interest to beachgoers. The modeling system was developed using three years of swimming season data and validated using additional four years of independent data. Testing results showed that (1) the sunrise-time model correctly reproduced 82.63% of the advisories issued in seven years with a false positive rate of 2.65% and a false negative rate of 14.72%, and (2) the new modeling system was capable of predicting the temporal variability in enterococci levels in beach waters, ranging from hourly changes to daily cycles. The results demonstrate the efficacy of the new modeling system in predicting enterococci levels in coastal beach waters. Applications of the modeling system will improve the management of recreational beaches and protection of public health. PMID:26186681

  5. EXTREME WATER LEVELS USERS' GUIDE Introduction

    E-print Network

    Value (GEV) probability distribution function to annual maximum or annual minimum data using iterative1 EXTREME WATER LEVELS USERS' GUIDE Introduction The Extreme Water Levels product provides web the extreme water levels that are likely to occur every year, every other year, every 10 years, and every 100

  6. Satellite Water Impurity Marker (SWIM) for predicting seasonal cholera outbreaks

    NASA Astrophysics Data System (ADS)

    Jutla, A. S.; Akanda, A. S.; Islam, S.

    2011-12-01

    Prediction of outbreaks of cholera, a deadly water related disease, remains elusive. Since coastal brackish water provides a natural ecological niche for cholera bacteria and because a powerful evidence of new biotypes is emerging, it is highly unlikely that cholera will be fully eradicated. Therefore, it is necessary to develop cholera prediction model with several months' of lead time. Satellite based estimates of chlorophyll, a surrogate for phytoplankton abundance, has been associated with proliferation of cholera bacteria. However, survival of cholera bacteria in a variety of coastal ecological environment put constraints on predictive abilities of chlorophyll algorithm since it only measures greenness in coastal waters. Here, we propose a new remote sensing reflectance based statistical index: Satellite Water Impurity Marker, or SWIM. This statistical index estimates impurity levels in the coastal waters and is based on the variability observed in the difference between the blue (412nm) and green (555nm) wavelengths in coastal waters. The developed index is bounded between clear and impure water and shows the ability to predict cholera outbreaks in the Bengal Delta with a predicted r2 of 78% with two months lead time. We anticipate that a predictive system based on SWIM will provide essential lead time allowing effective intervention and mitigation strategies to be developed for other cholera endemic regions of the world.

  7. Ground-water-level monitoring and the importance of long-term water-level data

    USGS Publications Warehouse

    Taylor, Charles J.; Alley, William M.

    2001-01-01

    Water-level measurements from observation wells are the principal source of information about the effects of hydrologic stresses on ground-water systems. Long-term water-level data are required to address the effects of aquifer development and to compile a hydrologic record of water-level monitoring, uses of long-term water-level data, and improvements in the collection and accessibility of water-level data.

  8. WATER LEVEL & METEOROLOGICAL DATA REPORT Hurricane GUSTAV

    E-print Network

    WATER LEVEL & METEOROLOGICAL DATA REPORT Hurricane GUSTAV Photo Credit: NOAA National Environmental Hurricane Gustav, stations from the Florida Keys and along the Gulf Coast to Texas recorded elevated water the Louisiana-Texas border. Water levels were slightly elevated along the Florida Keys as Hurricane Gustav

  9. Predicting water intake by yearling feedlot steers.

    PubMed

    Sexson, J L; Wagner, J J; Engle, T E; Eickhoff, J

    2012-06-01

    Data from 4 separate beef cattle feedlot experiments, which were conducted at the Southeast Colorado Research Center (SECRC) in Lamar, CO, in 2001, 2003, 2004, and 2007, were utilized in a retrospective longitudinal study investigating possible relationships between daily water consumption (WC), DMI, and weather variables. The data set consisted of 8,209 records from 2001, 2003, 2004, and 2007, with pen based daily WC (L•animal(-1)) and DMI measurements and calculated daily steer BW from April to October in each year. Daily weather data were obtained from the weather station located at Lamar Municipal Airport located approximately 1.9 km from SECRC. Data collected consisted of daily high, low, and mean temperature; high, low, and mean humidity; high, low, and mean sea level pressure; mean wind speed; total precipitation; and average daily wind direction (cosine of radians from due north). Univariate analysis demonstrated that the continuous variables of BW, humidity, and sea level pressure were negatively related (P < 0.0001), whereas DMI, temperature the previous day, daily temperature, change in temperature from the previous day, average wind speed, and the temperature-humidity index (THI) were positively related (P < 0.001) to daily WC. There was a trend (P < 0.06) for the cosine of wind direction (1 = due north and -1 = due south) to be negatively related to WC. The multivariate, parsimonious model predicting average daily WC included (P < 0.05) average humidity, average humidity squared, high temperature squared, high humidity squared, low temperature, low temperature squared, low humidity, average sea level pressure, average wind speed, average daily BW, high sea level pressure, low sea level pressure, high humidity, and low humidity. The generalized R(2) of the parsimonious multivariate model was 0.32. These results indicate that BW and numerous weather factors are related to WC by yearling feedlot steers. Dry matter intake had minimal impact on WC for yearling feedlot steers consuming steam-flaked corn-based high concentrate diets from mid-spring to early fall. PMID:22205664

  10. Selected water-level records for Oklahoma, 1976-1978

    USGS Publications Warehouse

    Goemaat, Robert L.; Spiser, Dannie E.

    1979-01-01

    A systematic program to collect water-level records in Oklahoma began in 1937. The objectives of this program are (1) to provide long-term records of water-level fluctuations in representative wells, (2) to facilitate the prediction of water-level trends and indicate future availability of ground-water supplies, and (3) to provide information for use in basic research. Water-level data in table 1 are from wells that are measured annually, prior to the irrigation season to achieve the most natural representation of the static water level. Water level measurements listed in the column under 1976 may have been made during December 1975 or January, February, March, April, or May 1976. Measurements listed in the column 1977 may have been made during December 1976 or January, February, March, or April 1977. Figure 1 shows the counties and number of wells therein, where data were obtained for this report. Records of water levels in Oklahoma are collected through a cooperative program by the U.S. Geological Survey and the Oklahoma Water Resources Board. The records are tabulated and published by the U.S. Geological Survey on an annual basis. The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those at the U.S. Geological Survey except for the Cheyenne Sandstone which is considered to be Purgatoire Sandstone by the Oklahoma Geological Survey (Robert O. Fay, Personal Communication, August 9, 1979).

  11. Hurricane IVAN Preliminary Water Levels Report

    E-print Network

    Hurricane IVAN Preliminary Water Levels Report *For the purpose of timely release, data contained and Services #12;CO-OPS Water Level Data for Hurricane IVAN NOAA's Center for Operational Oceanographic and in the Gulf of Mexico. During the hurricane season (June through November) CO-OPS personnel actively maintain

  12. Ebola Blood Level May Predict Odds of Death, Study Says

    MedlinePLUS

    ... html Ebola Blood Level May Predict Odds of Death, Study Says Scientists hope findings will point toward ... patient's blood can strongly predict the risk of death, a new study finds. Researchers evaluated data on ...

  13. Predicting Demonstrations' Violence Level Using Qualitative Reasoning

    NASA Astrophysics Data System (ADS)

    Fridman, Natalie; Zilberstein, Tomer; Kaminka, Gal A.

    In this paper we describe a method for modeling social behavior of large groups, and apply it to the problem of predicting potential violence during demonstrations. We use qualitative reasoning techniques which to our knowledge have never been applied to modeling crowd behaviors, nor in particular to demonstrations. Such modeling may not only contribute to the police decision making process, but can also provide a great opportunity to test existing theories in social science. We incrementally present and compare three qualitative models, based on social science theories. The results show that while two of these models fail to predict the outcomes of real-world events reported and analyzed in the literature, one model is successful. We believe that this demonstrates the efficacy of qualitative reasoning in the development and testing of social sciences theories.

  14. Predicting Anthropogenic Noise Contributions to US Waters.

    PubMed

    Gedamke, Jason; Ferguson, Megan; Harrison, Jolie; Hatch, Leila; Henderson, Laurel; Porter, Michael B; Southall, Brandon L; Van Parijs, Sofie

    2016-01-01

    To increase understanding of the potential effects of chronic underwater noise in US waters, the National Oceanic and Atmospheric Administration (NOAA) organized two working groups in 2011, collectively called "CetSound," to develop tools to map the density and distribution of cetaceans (CetMap) and predict the contribution of human activities to underwater noise (SoundMap). The SoundMap effort utilized data on density, distribution, acoustic signatures of dominant noise sources, and environmental descriptors to map estimated temporal, spatial, and spectral contributions to background noise. These predicted soundscapes are an initial step toward assessing chronic anthropogenic noise impacts on the ocean's varied acoustic habitats and the animals utilizing them. PMID:26610977

  15. Modeling Tidal Water Levels for Canadian Coastal and Offshore waters

    NASA Astrophysics Data System (ADS)

    Robin, C. M. I.; MacAulay, P.; Nudds, S.; Godin, A.; de Lange Boom, B.; Bartlett, J.; Maltais, L.; Herron, T.; Craymer, M. R.; Veronneau, M.; Fadaie, K.

    2014-12-01

    IIn 2010, the Canadian Hydrographic Service initiated the Continuous Vertical Datum for Canadian Waters (CVDCW) project, the aim of which is to connect tidal water level datums (high and low water levels, chart datum, etc.) to a national geodetic reference frame over all Canadian tidal waters. Currently, water level datums are tied to a geodetic reference frame at approximately 400 tide stations which have been surveyed with GPS, whereas water levels vary significantly in space even a short distance away from tide stations. The CVDCW captures the relevant spatial variability between stations and offshore by integrating ocean models, gauge data (water level analyses and/or GPS observations), sea level trends, satellite altimetry, and a geoid model. The CVDCW will enable the use of Global Navigation Satellite System technologies (primarily GPS) for hydrographers and navigators. It will also be important for other users including oceanographers, environmental and climate scientists, surveyors and engineers. For instance, it will allow easier integration of hydrographic and terrestrial data, provide a baseline for storm surge modeling and climate change adaptation, and aid with practical issues such as sovereignty and the definition of the coastline. Once high and low water surfaces are complete, they will define a large portion of the vertical link between land and ocean, helping to delineate flooding thresholds and inter-tidal ecosystem zones and boundaries. Here we present an overview of the methodology using a set of prototype model results, and will outline features of interest for studies in coastal stability, climate change adaptation, and sea level change.

  16. Genetic variation in aldosterone synthase predicts plasma glucose levels

    E-print Network

    Botstein, David

    Genetic variation in aldosterone synthase predicts plasma glucose levels Koustubh Ranadeabc , Kwan single-nucleotide polymor- phisms in the aldosterone synthase gene and plasma glucose levels in a large disequilibrium in this population--were associated with fasting plasma glucose levels (P 0.000017) and those 60

  17. NOAA Water Level and Meteorological Data Report HURRICANE SANDY

    E-print Network

    .....................................................5 Table of Maximum Recorded Water Levels (Storm Tide..................................................11 Table of Maximum Recorded Water Level Residuals (Storm Surge coastlines and Great Lakes to monitor water levels, winds (speed, direction and gusts), barometric pressure

  18. Water Levels of the Great Lakes The Great Lakes, their connecting waterways, and their watersheds, comprise the largest surface freshwater system on the

    E-print Network

    Water Levels of the Great Lakes The Great Lakes, their connecting waterways, and their watersheds a brief overview of historical Great Lakes water level patterns and current water levels, as well level forecasts. How are water levels predicted? Forecasts of Great Lakes monthly-average water levels

  19. Reading Ground Water Levels with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  20. Sampling Dead Block Prediction for Last-Level Caches

    E-print Network

    Jiménez, Daniel A.

    Sampling Dead Block Prediction for Last-Level Caches Samira Khan, Yingying Tian, Daniel A. Jim. On average, a cache block in a 2MB LRU-managed LLC is dead 86% of the time, i.e., it will not be referenced again before it is evicted. This paper introduces sampling dead block prediction, a tech- nique

  1. Hydro static water level systems at Fermilab

    SciTech Connect

    Volk, J.T.; Guerra, J.A.; Hansen, S.U.; Kiper, T.E.; Jostlein, H.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Singatulin, S.

    2006-09-01

    Several Hydrostatic Water Leveling systems (HLS) are in use at Fermilab. Three systems are used to monitor quadrupoles in the Tevatron and two systems are used to monitor ground motion for potential sites for the International Linear Collider (ILC). All systems use capacitive sensors to determine the water level of water in a pool. These pools are connected with tubing so that relative vertical shifts between sensors can be determined. There are low beta quadrupoles at the B0 and D0 interaction regions of Tevatron accelerator. These quadrupoles use BINP designed and built sensors and have a resolution of 1 micron. All regular lattice superconducting quadrupoles (a total of 204) in the Tevatron use a Fermilab designed system and have a resolution of 6 microns. Data on quadrupole motion due to quenches, changes in temperature will be presented. In addition data for ground motion for ILC studies caused by natural and cultural factors will be presented.

  2. Trihalomethanes formation in Iranian water supply systems: predicting and modeling.

    PubMed

    Babaei, Ali Akbar; Atari, Leila; Ahmadi, Mehdi; Ahmadiangali, Kambiz; Zamanzadeh, Mirzaman; Alavi, Nadali

    2015-09-01

    Trihalomethanes (THMs) were the first disinfection by-products discovered in drinking water and are classified as probable carcinogens. This study measures and models THMs formation at two drinking water distribution systems (WDS1 and WDS2) in Ahvaz City, Iran. The investigation was based on field-scale investigations and an intensive 36-week sampling program, from January to September 2011. The results showed total THM concentrations in the range 17.4-174.8 ?g/L and 18.9-99.5 ?g/L in WDS1 and WDS2, respectively. Except in a few cases, the THM concentrations in WDS1 and WDS2 were lower than the maximum contaminant level values. Using two-tailed Pearson correlation test, the water temperature, dissolved organic carbon, UV254, bromide ion (Br-), free residual chlorine, and chlorine dose were identified as the significant parameters for THMs formation in WDS2. Water temperature was the only significant parameter for THMs formation in WDS1. Based on the correlation results, a predictive model for THMs formation was developed using a multiple regression approach. A multiple linear regression model showed the best fit according to the coefficients of determination (R2) obtained for WDS1 (R2=0.47) and WDS2 (R2=0.54). Further correlation studies and analysis focusing on THMs formation are necessary to assess THMs concentration using the predictive models. PMID:26322772

  3. Predicting eye fixations with higher-level visual features.

    PubMed

    Liang, Ming; Hu, Xiaolin

    2015-03-01

    Saliency map and object map are the two contrasting hypotheses for the mechanisms utilized by the visual system to guide eye fixations when humans are freely viewing natural images. Most computational studies define saliency as outliers of distributions of low-level features, and propose saliency as an important factor for predicting eye fixations. Psychophysical studies, however, suggest that high-level objects predict eye fixations more accurately and the early saliency only has a minor effect. But this view has been challenged by a study which shows opposite results, suggesting that the role of object-level features needs further investigations. In addition, little is known about the role of intermediate features between the low-level and the object-level features. In this paper, we construct two models based on mid-level and object-level features, respectively, and compare their performances against those based on low-level features. Quantitative evaluation on three benchmark natural image fixation data sets demonstrates that the mid-level model outperforms the state-of-the-art low-level models by a significant margin and the object-level model is inferior to most low-level models. Quantitative evaluation on a video fixation data set demonstrates that both the mid-level and object-level models outperform the state-of-the-art low-level models, and the latter performs better under three out of four standard metrics. When combined together the two proposed models achieve even higher performance. However, incorporating the best low-level model yields negligible improvements on all of the data sets. Taken together, these results indicate that higher level features may be more effective than low-level features for predicting eye fixations on natural images in the free viewing condition. PMID:25622314

  4. How Temperature and Water levels affect Polar Mesospheric Cloud Formation

    NASA Astrophysics Data System (ADS)

    Smith, L. L.; Randall, C. E.; Harvey, V.

    2012-12-01

    Using the Cloud Imaging and Particle Size (CIPS) instrument data, which is part of the Aeronomy in the Mesosphere (AIM) mission, we compare the albedo and ice water content measurements of CIPS with the Navy Operation Global Atmospheric Prediction System - Advanced Level Phyiscs and High Altitude (NOGAPS-ALPHA) temperature and water vapor data in order to derive a greater understanding of cloud formation and physics. We particularly focus on data from June 2007 and July 2007 in this case study because of particular cloud structures and formations during this time period for future studies.

  5. Predicting Students' Homework Environment Management at the Secondary School Level

    ERIC Educational Resources Information Center

    Xu, Jianzhong

    2012-01-01

    The present study examined empirical models of variables posited to predict students' homework environment management at the secondary school level. The participants were 866 8th graders from 61 classes and 745 11th graders from 46 classes. Most of the variance in homework environment management occurred at the student level, with classmates'…

  6. Monitoring Lake and Reservoir Level: Satellite Observations, Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Ricko, M.; Birkett, C. M.; Adler, R. F.; Carton, J.

    2013-12-01

    Satellite measurements of lake and reservoir water levels complement in situ observations by providing stage information for un-gauged basins and by filling data gaps in gauge records. However, different satellite radar altimeter-derived continental water level products may differ significantly owing to choice of satellites and data processing methods. To explore the impacts of these differences, a direct comparison between three different altimeter-based surface water level estimates (USDA/NASA GRLM, LEGOS and ESA-DMU) will be presented and products validated with lake level gauge time series for lakes and reservoirs of a variety of sizes and conditions. The availability of satellite-based rainfall (i.e., TRMM and GPCP) and satellite-based lake/reservoir levels offers exciting opportunities to estimate and monitor the hydrologic properties of the lake systems. Here, a simple water balance model is utilized to relate net freshwater flux on a catchment basin to lake/reservoir level. Focused on tropical lakes and reservoirs it allows a comparison of the flux to altimetric lake level estimates. The combined use of model, satellite-based rainfall, evaporation information and reanalysis products, can be used to output water-level hindcasts and seasonal future forecasts. Such a tool is fundamental for understanding present-day and future variations in lake/reservoir levels and enabling a better understand of climatic variations on inter-annual to inter-decadal time-scales. New model-derived water level estimates of lakes and reservoirs, on regional to global scales, would assist communities with interests in climate studies focusing on extreme events, such as floods and droughts, and be important for water resources management.

  7. Experiments on steam generator water level swell and shrinkage

    SciTech Connect

    Moon, B.S.; Kim, K.R.; Moon, J.S.; Kim, S.B.

    1996-03-01

    Equipment that is one-tenth the size of the steam generators for the Westinghouse 900-MW(electric) nuclear power plants is used to study the swell and shrinkage of the water level. The cyclic aspect of level swell and shrinkage occurring during low-power operation of the nuclear power plants is realized by sequential steam dump valve control. Experimental results show that a simple mathematical model based on the amount of steam generated during depressurization provides a good approximation for predicting level swell and shrinkage. Steam generation also causes water movement between the downcomer area and the inner part of the vessel, the effect of which during the initial steam dump period is estimated and applied to adjust this model.

  8. Statistical model predicts shoreline erosion rates due to sea level rise

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-12-01

    While sea level rise in the face of global warming is a well-acknowledged threat, providing estimates of the local impact—the information needed by planners to develop effective strategies against the rising waters—has been difficult. Many attempts treat the global ocean as a giant bathtub, where increased water volume simply rises up and floods the land. Understandably, these approaches fall short of accurately estimating the impact of storms, sea level rise, and human influence on coastlines. The next extension toward an accurate longterm prediction of shoreline change necessarily includes a representation of the dynamic interaction between coastal features and the rising water.

  9. NOAA Water Level and Meteorological Data Report HURRICANE IRENE

    E-print Network

    and meteorological stations along the United States coastlines and Great Lakes to monitor water levels, winds (speed). This report documents the elevated water levels, high winds and reduced barometric pressures recorded water levels as a result of Irene (Figure 3). The historical recorded maximum water levels

  10. Water levels shape fishing participation in flood-control reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  11. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    SciTech Connect

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  12. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltrat...

  13. Advanced Diabetes care: three levels of prediction, prevention & personalized treatment.

    PubMed

    Golubnitschaja, Olga

    2010-01-01

    Worldwide epidemic scale of Diabetes mellitus (DM) has been underestimated for a long time. Currently every 10 seconds one patient dies of diabetes-related pathologies. Given the high risk and prevalence of secondary complications as well as individual predisposition to target organ injury, DM is one of the best examples for the application of predictive diagnostics aimed at preventive measures and personalized treatment approaches. Generally there are three levels in desirable pre- and Diabetes care: 1st level: prediction of the predisposition early in childhood. 2nd level: prediction of early/premature aging and prestages of Diabetes. 3rd level: prediction of Diabetes-related complications - cardiovascular, neurodegenerative and cancer diseases frequently developed in Diabetics. Predictive diagnosis is considered as the basis for targeted preventive measures and consequent creation of individualized treatment approaches. Communication among the professionals - healthcare providers, policy-makers, educators, etc., obligatory involved in the overall process to improving (pre)Diabetes care is of paramount importance. PMID:20034368

  14. The response of mire vegetation to water level drawdown

    NASA Astrophysics Data System (ADS)

    Kurki, Kirsi; Laine, Jukka; Vasander, Harri; Tuittila, Eeva-Stiina

    2010-05-01

    Mires have a significant role in climate change mitigation due to their enormous carbon storage and due to the fluxes of greenhouse gases between ecosystem and the atmosphere. Mire vegetation is controlled by ecohydrology, climate and by the competition of plants on light and nutrients. The water logged conditions create a challenging environment for both vascular plants and bryophytes; therefore majority of plants growing in these habitats are highly specialized. Global warming is predicted to affect mire vegetation indirectly through increased evapotranspiration leading to decreased water table levels down to 14-22 centimeters. Water level drawdown is likely to affect the vegetation composition and consequently the ecosystem functioning of mires. Previous studies covering the first years following water table level drawdown have shown that vascular plants benefit from a lower water table and hollow-specific Sphagnum species suffer. In addition to changes in plant abundances the diversity of plant communities decreases. The lawn and hollow communities of Sphagna and sedges are found to be the most sensitive plant groups. It has been shown that surveys on vegetation changes can have different results depending on the time scale. The short and long term responses are likely vary in heterogenous mire vegetation; therefore predictions can be done more reliably with longer surveys. We applied BACI (before-after-control-impact) experimental approach to study the responses of different functional mire plant groups to water level drawdown. There are 3 control plots, 3 treatment plots with moderate water level drawdown and 3 plots drained for forestry 40 years ago as a reference. The plots are located in meso-, oligo- and ombrotrophic sites in Lakkasuo (Orivesi, Finland). The vegetation was surveyed from permanent sampling points before ditching in 2000 and during the years 2001-2003 and 2009. The data was analyzed with NMDS (PC-Ord) and DCA (CANOCO). Overall results show that the control and treatment plots were similar before the treatment which is crucial in studies conducted with BACI- experimental design. The vegetation composition in the varied between the years also in the control plots following variation in weather conditions, i.e., growing season temperature and precipitation. The year 2003 stood out with lowest water table levels and with highest coverage of the evergreen vascular plants in all plots. By 2009 there was a dramatic decrease in sedge species cover. There seems to be more changes in bryophyte cover in mesotrophic sites than in ombrotrophic ones. Especially lawn-specific Sphagnum responded to water level drawdown. To quantify the impact of water level drawdown for different plant groups we used Principal Response Curves (CANOCO). Results show that all plant groups have a different short and long term response to water level drawdown. The first three years after ditching appeared to be a disturbance state. Only after that the vegetation started to adapt to the lowered water table conditions.

  15. Hydrostatic Water Level Systems At Homestake DUSEL

    NASA Astrophysics Data System (ADS)

    Stetler, L. D.; Volk, J. T.

    2009-12-01

    Two arrays of Fermilab-style hydrostatic water level sensors have been installed in the former Homestake gold mine in Lead, SD, the site of the new Deep Underground Science and Engineering Laboratory (DUSEL). Sensors were constructed at Fermilab from 8.5 cm diameter PVC pipe (housing) that was sealed on the ends and fit with a proximity sensor. The instrument have a height of 10 cm. Two ports in each sensor housing provide for connectivity, the upper port for air and the bottom port for water. Multiple instruments connected in series provide a precise water level and differences in readings between successive sensors provide for ground tilt to be resolved. Sensor resolution is 5 ?m per count and has a range of approximately 1.25 cm. Data output from each sensor is relayed to a Fermilab-constructed readout card that also has temperature/relative humidity and barometric pressure sensors connected. All data are relayed out of the mine by fiber optic cable and can be recorded by Ethernet at remote locations. The current arrays have been installed on the 2000-ft level (610 m) and consist of six instruments in each array. Three sensors were placed in a N-S oriented drift and three in an E-W oriented drift. Using this orientation, it is anticipated that tilt direction may be resolved in addition to overall tilt magnitude. To date the data show passage of earth tides and frequency analysis has revealed five components to this signal, three associated with the semi-diurnal (~12.4 hr) and two with the diurnal (~24.9 hr) tides. Currently, installation methods are being analyzed between concrete pillar and rib-mounting using the existing setup on the 2000-ft level. Using these results, two additional arrays of Fermilab instruments will be installed on the 4550-ft and 4850-ft levels (1387 and 1478 m, respectively). In addition to Fermilab instruments, several high resolution Budker tiltmeters (1 ?m resolution) will be installed in the mine workings in the near future, some correlated to Fermilab instruments (for comparative analysis) and others in independent arrays. All tiltmeter data will be analyzed with water reduction data (currently being collected from the #6 winze as the mine is dewatered) and data from rock stress/fracture experiments to document net ground settling due to dewatering, potential collapse of stope areas and renewed excavation activities.

  16. Acoustics 2000 1 Acoustic Propagation Prediction in Shallow Water

    E-print Network

    and purpose-built evacuated spheres are discussed in this paper. From analysing the recordings on both mid-water assumptions were made: 1) The sound speed in the water column is independent of both depth and range, 2Acoustics 2000 1 Acoustic Propagation Prediction in Shallow Water Justin P. Hoffman1 , John D

  17. Predicting high levels of multitasking reduces between-tasks interactions.

    PubMed

    Fischer, Rico; Dreisbach, Gesine

    2015-12-01

    The simultaneous handling of 2 tasks requires shielding of the prioritized primary task (T1) from interference caused by the secondary task (T2) processing. Such interactions between tasks (e.g., between-task interference, or crosstalk) depend on the similarity of both tasks and are especially pronounced when both tasks overlap strongly in time. In the present study we investigated whether between-tasks interference can be reduced when specific items do not predict the level of interference but instead the degree of temporal proximity between both tasks. We implemented an item-specific proportion manipulation of temporal task overlap (stimulus onset asynchrony [SOA]). Selected stimuli of T1 predicted high temporal task overlap (short SOAs) in 80% of trials, whereas other stimuli of T1 predicted low temporal task overlap (long SOAs) in 80% of trials. Results showed that the predictive value of T1 stimuli determined the adjustment of T1 shielding. That is, interference from the secondary task was significantly reduced for items predicting high temporal task overlap compared to items predicting low temporal task overlap. It is important to note that task shielding was not initiated by predicting the actual conflict level (i.e., whether T1 and T2 required compatible/incompatible responses) between tasks but by specific items predicting conditions in which 2 tasks are likely to interact (i.e., short vs. long SOA). These findings offer new insights into the specificity of contextual bottom-up regulations of cognitive control. (PsycINFO Database Record PMID:26480246

  18. On-line hydraulic state prediction for water distribution systems

    E-print Network

    Whittle, Andrew

    This paper describes and demonstrates a method for on?line hydraulic state prediction in urban water networks. The proposed method uses a Predictor?Corrector (PC) approach in which a statistical data?driven algorithm is ...

  19. Predicted effects of a proposed water-resources management plan in the lower San Luis Rey River Valley, California, using digital ground-water flow models

    USGS Publications Warehouse

    Skrivan, James A.

    1976-01-01

    A proposed plan for water-resource management in the lower San Luis Rey River valley, Calif. has been evaluated using digital models of ground-water flow. Two projections of water-level changes and salt balance in 1977 were made. The first projection used 1972 climatic and pumping conditions. The second projection used these same conditions plus a plan of recharging and pumping various areas of the aquifer. The predicted salt balance in 1977 under the proposed plan improved for the Pala, Bonsall, and Mission basins when compared to the predicted 1977 salt balance using 1972 pumpage alone. The plan did not affect the predicted salt balance for the Pauma basin. Under the plan, water levels decreased in the Pala basin and water levels increased in the Bonsall and Mission basins. In addition, an area of potential water logging exists in the Mission basin. The plan did not affect water levels for the Pauma basin. (Woodard-USGS)

  20. Water Impact Prediction Tool for Recoverable Rockets

    NASA Technical Reports Server (NTRS)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a flight.

  1. Predicting ground level impacts of solid rocket motor testing

    NASA Technical Reports Server (NTRS)

    Douglas, Willard L.; Eagan, Ellen E.; Kennedy, Carolyn D.; Mccaleb, Rebecca C.

    1993-01-01

    Beginning in August of 1988 and continuing until the present, NASA at Stennis Space Center, Mississippi has conducted environmental monitoring of selected static test firings of the solid rocket motor used on the Space Shuttle. The purpose of the study was to assess the modeling protocol adapted for use in predicting plume behavior for the Advanced Solid Rocket Motor that is to be tested in Mississippi beginning in the mid-1990's. Both motors use an aluminum/ammonium perchlorate fuel that produces HCl and Al2O3 particulates as the major combustion products of concern. A combination of COMBUS.sr and PRISE.sr subroutines and the INPUFF model are used to predict the centerline stabilization height, the maximum concentration of HCl and Al2O3 at ground level, and distance to maximum concentration. Ground studies were conducted to evaluate the ability of the model to make these predictions. The modeling protocol was found to be conservative in the prediction of plume stabilization height and in the concentrations of the two emission products predicted.

  2. NOAA Water Level and Meteorological Data Report HURRICANE ISAAC

    E-print Network

    levels, winds (speed, direction and gusts), barometric pressure, and air/water temperature. CO-OPS also exceeded historical recorded maximum water levels as a result of Isaac (Figure 3). The historical recorded records may not have included the highest water levels measured at a station during an event if a complete

  3. County Level Assessment of Impaired Waters and Gastrointestinal Infections

    EPA Science Inventory

    Water quality data are measured at a watershed level and health data are organized at different levels of aggregation therefore, assessing the population-level impact of water quality on health can be difficult. To address this discrepancy and enable the consideration of water ...

  4. Recent and late quaternary changes in water level

    NASA Technical Reports Server (NTRS)

    Walcott, R. I.

    1975-01-01

    Water level changes of both the Great Lakes and the sea are described along with methods of analyzing water level data. The influence of elastic deformation of the earth and viscosity is discussed. Causes of water level changes reviewed include: earth movements, geoid changes, storm surges or meteorological phenomena, and melting ice in Antarctica, Greenland, and the mountain glaciers.

  5. Ground-water levels in Anchorage, Alaska, 1985

    USGS Publications Warehouse

    Glass, R.L.

    1987-01-01

    Water-level data collected during 1985 for 146 Anchorage wells deeper than 40 feet are presented. Hydrographs of water levels in 20 wells for the period 1970 through 1985 are also given. The report describes groundwater conditions and seasonal fluctuations in water levels, and includes pumpage figures and well-construction data. (USGS)

  6. Water column productivity and temperature predict coral reef

    E-print Network

    Purkis, Sam

    Water column productivity and temperature predict coral reef regeneration across the Indo-Pacific B. Riegl1 , P. W. Glynn3 , E. Wieters4 , S. Purkis1 , C. d'Angelo2 & J. Wiedenmann2 1 National Coral Reef. Predicted increases in seawater temperatures accelerate coral reef decline due to mortality by heat

  7. Analytical approach for determining the mean water level profile in an estuary with substantial fresh water discharge

    NASA Astrophysics Data System (ADS)

    Cai, H.; Savenije, H. H. G.; Jiang, C.; Zhao, L.; Yang, Q.

    2015-08-01

    Although modestly, the mean water level in estuaries rises in landward direction induced by a combination of the salinity gradient, the tidal asymmetry, and the backwater effect. The water level slope is increased by the fresh water discharge. However, the interactions between tide and river flow and their individual contributions to the rise of the mean water level along the estuary are not yet completely understood. In this study, we adopt an analytical approach to describe the tidal wave propagation under the influence of fresh water discharge, in which the friction term is approximated by a Chebyshev polynomials approach. The analytical model is used to quantify the contributions made by tide, river, and tide-river interaction to the water level slope along the estuary. Subsequently, the method is applied to the Yangtze estuary under a wide range of river discharge conditions and the influence of tidal amplitude and fresh water discharge on the longitudinal variation of mean water level is explored. The proposed method is particularly useful for accurately predicting water levels and the frequency of extreme high water, relevant for water management and flood control.

  8. Water Habitat Study: Prediction Makes It More Meaningful.

    ERIC Educational Resources Information Center

    Glasgow, Dennis R.

    1982-01-01

    Suggests a teaching strategy for water habitat studies to help students make a meaningful connection between physiochemical data (dissolved oxygen content, pH, and water temperature) and biological specimens they collect. Involves constructing a poster and using it to make predictions. Provides sample poster. (DC)

  9. Ground-water levels in observation wells in Oklahoma, 1967-68

    USGS Publications Warehouse

    Bingham, R.H.

    1969-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1967-68), is the fifth in a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 2-year period of (1961-62); the second report, published in 1964, contains water-level records for the 2-year period (1961-62); the third report, published in 1965, contains water-level records for the 2-year period (1963-64); and the fourth report contains water-level records for the 2-year period (1965-66).

  10. Predicting impacts from water conservation and energy development on the Salton Sea, California

    SciTech Connect

    Kratzer, C.R.; Dritschilo, W.; Hannah, L.J.; Broutman, M.A.

    1985-08-01

    An input-output model was developed to predict changes in Salton Sea salinity and water level until the year 2000 due to proposed water conservation efforts and geothermal and solar pond energy developments. The model SALINP provided good agreement with the observed salinities for 1960-80. While SALINP was not overly sensitive to one-year changes in any of the major inputs, a change in the historical means of the Imperial Valley runoff and evaporative loss inputs produced a significant effect on future predictions. The proposed water conservation measures caused the predicted Salton Sea salinity for 2000 to greatly exceed 40,000 ppm, the level at which adverse effects to wildlife are believed to occur. The possible geothermal development also produced predicted salinities considerably above 40,000 ppm. The salinity predictions for solar ponds by themselves and in conjunction with geothermal development were below 45,000 ppm for 2000. The solar pond and geothermal combination also resulted in a predicted lowering of the natural water level by 5 to 7 feet by 2000.

  11. Water nanodroplets: Predictions of five model potentials

    NASA Astrophysics Data System (ADS)

    Kazachenko, Sergey; Thakkar, Ajit J.

    2013-05-01

    Putative global minima for five intermolecular potential energy models are reported for water clusters (H2O)n with n ? 55. The models studied include three empirical, pairwise-additive potential energy surfaces, TIP4P, TIP4P-Ew, and TIP4P/2005, which use fixed point charges and rigid monomers. The other two, TTM2.1-F and AMOEBA, are polarizable, include non-additive inductive effects, have flexible monomers, and were parametrized, at least partially, using ab initio data. The n = 51 cluster has the same structure and is exceptionally stable for all five potentials. A structured inner core can be seen in cage clusters with n > 37. Periplanar rings, branched rings, and coils are among the structural motifs of the inner core.

  12. Drought-trigger ground-water levels and analysis of historical water-level trends in Chester County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    1996-01-01

    The Chester County observation-well network was established in 1973 through a cooperative agreement between the Chester County Water Resources Authority (CCWRA) and the U.S. Geological Survey. The network was established to monitor local ground-water levels, to determine drought conditions, and to monitor ground-water-level trends. Drought-warning and drought-emergency water-level triggers were determined for 20 of the 23 wells in the Chester County observation-well network. A statistical test to determine either rising or declining water-level trends was performed on data for all wells in the network. Water-level data from both of these wells showed a rising trend. A decrease in ground-water pumping in the area near these wells was probably the reason for the rise in water levels.

  13. Improving Great Lakes Regional Operational Water Budget and Water Level Forecasting

    E-print Network

    Improving Great Lakes Regional Operational Water Budget and Water Level Forecasting R.A. Bolinger1 forecasting monthly average water levels of the North American Great Lakes is an important priority for regional research-oriented and operational institutions. Both historical and projected water level

  14. Integrating Non-Tidal Sea Level data from altimetry and tide gauges for coastal sea level prediction

    NASA Astrophysics Data System (ADS)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2012-10-01

    The main objective of this paper is to integrate Non-Tidal Sea Level (NSL) from the joint TOPEX, Jason-1 and Jason-2 satellite altimetry with tide gauge data at the west and north coast of the United Kingdom for coastal sea level prediction. The temporal correlation coefficient between altimetric NSLs and tide gauge data reaches a maximum higher than 90% for each gauge. The results show that the multivariate regression approach can efficiently integrate the two types of data in the coastal waters of the area. The Multivariate Regression Model is established by integrating the along-track NSL from the joint TOPEX/Jason-1/Jason-2 altimeters with that from eleven tide gauges. The model results give a maximum hindcast skill of 0.95, which means maximum 95% of NSL variance can be explained by the model. The minimum Root Mean Square Error (RMSe) between altimetric observations and model predictions is 4.99 cm in the area. The validation of the model using Envisat satellite altimetric data gives a maximum temporal correlation coefficient of 0.96 and a minimum RMSe of 4.39 cm between altimetric observations and model predictions, respectively. The model is furthermore used to predict high frequency NSL variation (i.e., every 15 min) during a storm surge event at an independent tide gauge station at the Northeast of the UK (Aberdeen).

  15. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions, flood potential and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of water variability over the 20th century, which forms the background climatology to which current conditions can be assessed. Future changes in water availability and drought risk are quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. For regions with lack of on-the-ground data we are field-testing low-cost environmental sensors and along with new satellite products for terrestrial hydrology and vegetation, integrating these into the system for improved monitoring and prediction. We provide an overview of the system and some examples of real-world applications to flood and drought events, with a focus on Africa.

  16. Assessing the effect of different river water level interpolation schemes on modeled groundwater residence times

    NASA Astrophysics Data System (ADS)

    Diem, Samuel; Renard, Philippe; Schirmer, Mario

    2014-03-01

    Obtaining a quantitative understanding of river-groundwater interactions is of high practical relevance, for instance within the context of riverbank filtration and river restoration. Modeling interactions between river and groundwater requires knowledge of the river's spatiotemporal water level distribution. The dynamic nature of riverbed morphology in restored river reaches might result in complex river water level distributions, including disconnected river branches, nonlinear longitudinal water level profiles and morphologically induced lateral water level gradients. Recently, two new methods were proposed to accurately and efficiently capture 2D water level distributions of dynamic rivers. In this study, we assessed the predictive capability of these methods with respect to simulated groundwater residence times. Both methods were used to generate surface water level distributions of a 1.2 km long partly restored river reach of the Thur River in northeastern Switzerland. We then assigned these water level distributions as boundary conditions to a 3D steady-state groundwater flow and transport model. When applying either of the new methods, the calibration-constrained groundwater flow field accurately predicted the spatial distribution of groundwater residence times; deviations were within a range of 30% when compared to residence times obtained using a reference method. We further tested the sensitivity of the simulated groundwater residence times to a simplified river water level distribution. The negligence of lateral river water level gradients of 20-30 cm on a length of 200 m caused errors of 40-80% in the calibration-constrained groundwater residence time distribution compared to results that included lateral water level gradients. The additional assumption of a linear water level distribution in longitudinal river direction led to deviations from the complete river water level distribution of up to 50 cm, which caused wide-spread errors in simulated groundwater residence times of 200-500%. For an accurate simulation of groundwater residence times, it is therefore imperative that the longitudinal water level distribution is correctly captured and described. Based on the confirmed predictive capability of the new methods to estimate 2D river water level distributions, we can recommend their application to future studies that model dynamic river-groundwater systems.

  17. Water dimer vibrationrotation tunnelling levels from vibrationally averaged monomer wavefunctions

    E-print Network

    Water dimer vibration­rotation tunnelling levels from vibrationally averaged monomer wavefunctions 2010 Accepted 27 January 2010 Keywords: Water dimer Transition wavenumbers Atmospheric physics Water continuum a b s t r a c t The vibration­rotation tunnelling (VRT) spectra for the water dimer obtained

  18. Predicting Salmonella Populations from Biological, Chemical, and Physical Indicators in Florida Surface Waters

    PubMed Central

    McEgan, Rachel; Mootian, Gabriel; Goodridge, Lawrence D.; Schaffner, Donald W.

    2013-01-01

    Coliforms, Escherichia coli, and various physicochemical water characteristics have been suggested as indicators of microbial water quality or index organisms for pathogen populations. The relationship between the presence and/or concentration of Salmonella and biological, physical, or chemical indicators in Central Florida surface water samples over 12 consecutive months was explored. Samples were taken monthly for 12 months from 18 locations throughout Central Florida (n = 202). Air and water temperature, pH, oxidation-reduction potential (ORP), turbidity, and conductivity were measured. Weather data were obtained from nearby weather stations. Aerobic plate counts and most probable numbers (MPN) for Salmonella, E. coli, and coliforms were performed. Weak linear relationships existed between biological indicators (E. coli/coliforms) and Salmonella levels (R2 < 0.1) and between physicochemical indicators and Salmonella levels (R2 < 0.1). The average rainfall (previous day, week, and month) before sampling did not correlate well with bacterial levels. Logistic regression analysis showed that E. coli concentration can predict the probability of enumerating selected Salmonella levels. The lack of good correlations between biological indicators and Salmonella levels and between physicochemical indicators and Salmonella levels shows that the relationship between pathogens and indicators is complex. However, Escherichia coli provides a reasonable way to predict Salmonella levels in Central Florida surface water through logistic regression. PMID:23624476

  19. A multivariate linear regression model for predicting children's blood lead levels based on soil lead levels: A study at four Superfund sites

    SciTech Connect

    Lewin, M.D.; Sarasua, S.; Jones, P.A. . Div. of Health Studies)

    1999-07-01

    For the purpose of examining the association between blood lead levels and household-specific soil lead levels, the authors used a multivariate linear regression model to find a slope factor relating soil lead levels to blood lead levels. They used previously collected data from the Agency for Toxic Substances and Disease Registry's (ATSDR's) multisite lead and cadmium study. The data included in the blood lead measurements of 1,015 children aged 6--71 months, and corresponding household-specific environmental samples. The environmental samples included lead in soil, house dust, interior paint, and tap water. After adjusting for income, education or the parents, presence of a smoker in the household, sex, and dust lead, and using a double log transformation, they found a slope factor of 0.1388 with a 95% confidence interval of 0.09--0.19 for the dose-response relationship between the natural log of the soil lead level and the natural log of the blood lead level. The predicted blood lead level corresponding to a soil lead level of 500 mg/kg was 5.99 [micro]g/kg with a 95% prediction interval of 2.08--17.29. Predicted values and their corresponding prediction intervals varied by covariate level. The model shows that increased soil lead level is associated with elevated blood leads in children, but that predictions based on this regression model are subject to high levels of uncertainty and variability.

  20. 26. Mechanical float gages used to monitor level of water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Mechanical float gages used to monitor level of water in the filtration bed reservoir. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  1. PERSPECTIVE FROM WATER LEVEL, SOUTHEAST BY 165 DEGREES. Wright's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE FROM WATER LEVEL, SOUTHEAST BY 165 DEGREES. - Wright's Bridge, Spanning Sugar River, former Boston & Maine Railroad (originally Concord & Claremont Railroad), Claremont, Sullivan County, NH

  2. Water levels in the Yucca Mountain area, Nevada, 1995

    SciTech Connect

    Graves, R.P.; Goemaat, R.L.

    1998-09-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1995. Seventeen wells representing 18 depth intervals were monitored periodically, generally on a monthly basis, 2 wells representing 3 depth intervals were monitored hourly, and 9 wells representing 15 depth intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and/or pressure transducers. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1995. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1995. Mean water level altitudes were only an average of about 0.01 meters higher than 1994 mean water level altitudes. A single-well aquifer test was conducted on well UE-25 WT{number_sign}12 during August and September 1995. Well USW 0-2 was also pumped during October and November 1995, in preparation for single-well aquifer test at that well. All data were acquired in accordance with a quality-assurance program to support the reliability of the data.

  3. Impact of Plumbing Age on Copper Levels in Drinking Water

    EPA Science Inventory

    Theory and limited practical experiences suggest that higher copper levels in drinking water tap samples are typically associated with newer plumbing systems, and levels decrease with increasing plumbing age. Past researchers have developed a conceptual model to explain the “agin...

  4. Predicting tree water use and drought tolerance from leaf traits in the Los Angeles urban ecosystem

    NASA Astrophysics Data System (ADS)

    John, G. P.; Scoffoni, C.; Sack, L.

    2013-12-01

    Urban green space provides a suite of valuable ecosystem services. In semiarid systems, like Los Angeles, trees rely primarily on irrigation water for transpiration. Managers may need to reduce irrigation associated with urban trees given climate change, urban expansion, and the steady decrease in available freshwater. While leaf and whole plant water relations have been extensively studied, we are only now gaining a detailed understanding of diverse leaf anatomical designs, and their use for predicting physiology and water use at landscape scale. For 50 diverse urban species, we quantified leaf anatomical and physiological traits important to tree drought tolerance and water use efficiency including turgor loss point, vein architecture, cellular anatomy, leaf mass per unit area, and petiole and leaf dimensions. We hypothesized detailed relationships to develop models relating leaf functional traits to tree water relations. These models provide key insights regarding the role of anatomical designs in leaf stress tolerance and water use efficiency. Additionally we predicted how traits measured at the leaf level would scale with existing data for individuals at the whole plant level. We tested our predictions by determining correlations between leaf level anatomical traits and drought tolerance. Additionally, we determined correlations between functional traits, physiology and water use, and the climate of origin for the urban species. Leaf level measurements will be valuable for rapid estimation of more difficult to measure whole plant water relations traits important at the landscape scale. The Los Angeles urban ecosystem can serve as a model for other semiarid system and provide more informed system wide water conservation strategies.

  5. Predicting Risk from Radon in Source Waters from Water Quality Parameters

    EPA Science Inventory

    Overall, 47 groundwater samples were collected from 45 small community water systems (CWSs) and analyzed for radon and other water quality constituents. In general, groundwater from unconsolidated deposits and sedimentary rocks had lower average radon levels (ranging from 223 to...

  6. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillsl...

  7. Predicting stream water quality using artificial neural networks (ANN)

    SciTech Connect

    Bowers, J.A.

    2000-05-17

    Predicting point and nonpoint source runoff of dissolved and suspended materials into their receiving streams is important to protecting water quality and traditionally has been modeled using deterministic or statistical methods. The purpose of this study was to predict water quality in small streams using an Artificial Neural Network (ANN). The selected input variables were local precipitation, stream flow rates and turbidity for the initial prediction of suspended solids in the stream. A single hidden-layer feedforward neural network using backpropagation learning algorithms was developed with a detailed analysis of model design of those factors affecting successful implementation of the model. All features of a feedforward neural model were investigated including training set creation, number and layers of neurons, neural activation functions, and backpropagation algorithms. Least-squares regression was used to compare model predictions with test data sets. Most of the model configurations offered excellent predictive capabilities. Using either the logistic or the hyperbolic tangent neural activation function did not significantly affect predicted results. This was also true for the two learning algorithms tested, the Levenberg-Marquardt and Polak-Ribiere conjugate-gradient descent methods. The most important step during model development and training was the representative selection of data records for training of the model.

  8. Ensemble streamflow prediction adjustment for upstream water use and regulation

    NASA Astrophysics Data System (ADS)

    Georgakakos, Aris P.; Yao, Huaming; Georgakakos, Konstantine P.

    2014-11-01

    Hydrologic model forecasts are commonly biased in watersheds where water use and regulation activities cause flow alterations. Furthermore, direct accounting of such biases in forecast preparation is impractical as the information required is extensive and usually unavailable. This article introduces a new method to characterize the aggregate flow alteration biases and associated uncertainty in watersheds with important but largely undocumented water use and regulation activities. It also uses these assessments to adjust the ensemble streamflow predictions at downstream locations. The method includes procedures to (a) detect the presence of significant upstream regulation and water use influences; (b) correct the ensemble streamflow predictions and associated uncertainty for any biases in periods when such influences are detectable; and (c) assess the adjusted forecast reliability improvements. Applications in three watersheds of the American River in California demonstrate that the new method leads to significant forecast skill improvements and is also readily applicable to other regions.

  9. Nicotine metabolite ratio predicts smoking topography and carcinogen biomarker level

    PubMed Central

    Strasser, Andrew A.; Benowitz, Neal L.; Pinto, Angela G.; Tang, Kathy Z.; Hecht, Stephen S.; Carmella, Steve G.; Tyndale, Rachel F.; Lerman, Caryn E.

    2010-01-01

    Background Variability in smoking behavior is partly attributable to heritable individual differences in nicotine clearance rates. This can be assessed as the ratio of the metabolites cotinine (COT) and 3'-hydroxycotinine (3HC) (referred to as the nicotine metabolism ratio, NMR). We hypothesized that faster NMR would be associated with greater cigarette puff volume and higher levels of total NNAL, a carcinogen biomarker. Methods Current smokers (n=109) smoked one of their preferred brand cigarettes through a smoking topography device and provided specimens for NMR and total NNAL assays. Results Faster nicotine metabolizers (third and fourth quartiles versus first quartile) based on the NMR exhibited significantly greater total puff volume and total NNAL; the total puff volume by daily cigarette consumption interaction was a significant predictor of total NNAL level. Conclusion A heritable biomarker of nicotine clearance predicts total cigarette puff volume and total NNAL. Impact If validated, the NMR could contribute to smoking risk assessment in epidemiological studies and potentially in clinical practice. PMID:21212060

  10. Prediction of water intake and excretion flows in Holstein dairy cows under thermoneutral conditions.

    PubMed

    Khelil-Arfa, H; Boudon, A; Maxin, G; Faverdin, P

    2012-10-01

    The increase in the worldwide demand for dairy products, associated with global warming, will emphasize the issue of water use efficiency in dairy systems. The evaluation of environmental issues related to the management of animal dejections will also require precise biotechnical models that can predict effluent management in farms. In this study, equations were developed and evaluated for predicting the main water flows at the dairy cow level, based on parameters related to cow productive performance and diet under thermoneutral conditions. Two datasets were gathered. The first one comprised 342 individual measurements of water balance in dairy cows obtained during 18 trials at the experimental farm of Méjussaume (INRA, France). Predictive equations of water intake, urine and fecal water excretion were developed by multiple regression using a stepwise selection of regressors from a list of seven candidate parameters, which were milk yield, dry matter intake (DMI), body weight, diet dry matter content (DM), proportion of concentrate (CONC) and content of crude protein (CP) ingested with forage and concentrate (CPf and CPc, g/kg DM). The second dataset was used for external validation of the developed equations and comprised 196 water flow measurements on experimental lots obtained from 43 published papers related to water balance or digestibility measurements in dairy cows. Although DMI was the first predictor of the total water intake (TWI), with a partial r(2) of 0.51, DM was the first predictive parameter of free water intake (FWI), with a partial r(2) of 0.57, likely due to the large variability of DM in the first dataset (from 11.5 to 91.4 g/100 g). This confirmed the compensation between water drunk and ingested with diet when DM changes. The variability of urine volume was explained mainly by the CPf associated with DMI (r.s.d. 5.4 kg/day for an average flow of 24.0 kg/day) and that of fecal water was explained by the proportion of CONC in the diet and DMI. External validation showed that predictive equations excluding DMI as predictive parameters could be used for FWI, urine and fecal water predictions if cows were fed a well-known total mixed ration. It also appeared that TWI and FWI were underestimated when ambient temperature increased above 25°C and possible means of including climatic parameters in future predictive equations were proposed. PMID:23031565

  11. Water levels in the Yucca Mountain Area, Nevada, 1992

    SciTech Connect

    O`Brien, G.M.; Tucci, P.; Burkhardt, D.J.

    1995-05-01

    Water levels were monitored in 27 wells in the Yucca Mountain area, Nevada, during 1992. Fourteen wells were monitored periodically, generally on a monthly basis, and 13 wells representing 21 intervals were monitored hourly. All wells monitor levels in Tertiary volcanic rocks, except one which monitors levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,035 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 751 and 753 meters above sea level during 1992. Water-level fluctuations were observed at 11 wells in response to the Landers, California earthquake on June 28, 1992. All data were acquired in accordance with a quality-assurance program to support the reliability of the data.

  12. Measuring Water Levels in the Eastern Snake River Plain Aquifer

    USGS Multimedia Gallery

    USGS hydrologic technician Jayson Blom collects a water-level measurement at a monitoring well on the U.S. Department of Energy's Idaho National Laboratory site. During the summer of 2014, water levels measured at the site reached all-time lows....

  13. A siphon gage for monitoring surface-water levels

    USGS Publications Warehouse

    McCobb, T.D.; LeBlanc, D.R.; Socolow, R.S.

    1999-01-01

    A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.

  14. Investigating Anomalous Water Flow on the Microscopic Level

    E-print Network

    Winglee, Robert M.

    , by altering the pH of the water on one side of the surface I can dramatically increase, decrease, or evenInvestigating Anomalous Water Flow on the Microscopic Level Background Previous research immersed in an aqueous solution these surfaces form a solute-free zone in the nearby water ­ an Exclusion

  15. Getting Warmer: Solar Water Heaters Grade Levels: 6 12

    E-print Network

    Hammack, Richard

    ) 20 oz Cup Submersible Water Pump 2V Solar Panel with Connections Insulated electric wiresGetting Warmer: Solar Water Heaters Grade Levels: 6 ­ 12 Objective: To investigate solar energy technology by building model solar water heater s that mimic full- scale units in residences to capture

  16. Weather and Prey Predict Mammals’ Visitation to Water

    PubMed Central

    Harris, Grant; Sanderson, James G.; Erz, Jon; Lehnen, Sarah E.; Butler, Matthew J.

    2015-01-01

    Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs. PMID:26560518

  17. Weather and Prey Predict Mammals' Visitation to Water.

    PubMed

    Harris, Grant; Sanderson, James G; Erz, Jon; Lehnen, Sarah E; Butler, Matthew J

    2015-01-01

    Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs. PMID:26560518

  18. Accurate predictions for the production of vaporized water

    SciTech Connect

    Morin, E.; Montel, F.

    1995-12-31

    The production of water vaporized in the gas phase is controlled by the local conditions around the wellbore. The pressure gradient applied to the formation creates a sharp increase of the molar water content in the hydrocarbon phase approaching the well; this leads to a drop in the pore water saturation around the wellbore. The extent of the dehydrated zone which is formed is the key controlling the bottom-hole content of vaporized water. The maximum water content in the hydrocarbon phase at a given pressure, temperature and salinity is corrected by capillarity or adsorption phenomena depending on the actual water saturation. Describing the mass transfer of the water between the hydrocarbon phases and the aqueous phase into the tubing gives a clear idea of vaporization effects on the formation of scales. Field example are presented for gas fields with temperatures ranging between 140{degrees}C and 180{degrees}C, where water vaporization effects are significant. Conditions for salt plugging in the tubing are predicted.

  19. Neural Affective Mechanisms Predict Market-Level Microlending

    PubMed Central

    Genevsky, Alexander; Knutson, Brian

    2015-01-01

    Humans sometimes share with others whom they may never meet or know, in violation of the dictates of pure self-interest. Research has not established which neuropsychological mechanisms support lending decisions, nor whether their influence extends to markets involving significant financial incentives. In two studies, we found that neural affective mechanisms influence the success of requests for microloans. In a large Internet database of microloan requests (N = 13,500), we found that positive affective features of photographs promoted the success of those requests. We then established that neural activity (i.e., in the nucleus accumbens) and self-reported positive arousal in a neuroimaging sample (N = 28) predicted the success of loan requests on the Internet, above and beyond the effects of the neuroimaging sample’s own choices (i.e., to lend or not). These findings suggest that elicitation of positive arousal can promote the success of loan requests, both in the laboratory and on the Internet. They also highlight affective neuroscience’s potential to probe neuropsychological mechanisms that drive microlending, enhance the effectiveness of loan requests, and forecast market-level behavior. PMID:26187248

  20. Neural Affective Mechanisms Predict Market-Level Microlending.

    PubMed

    Genevsky, Alexander; Knutson, Brian

    2015-09-01

    Humans sometimes share with others whom they may never meet or know, in violation of the dictates of pure self-interest. Research has not established which neuropsychological mechanisms support lending decisions, nor whether their influence extends to markets involving significant financial incentives. In two studies, we found that neural affective mechanisms influence the success of requests for microloans. In a large Internet database of microloan requests (N = 13,500), we found that positive affective features of photographs promoted the success of those requests. We then established that neural activity (i.e., in the nucleus accumbens) and self-reported positive arousal in a neuroimaging sample (N = 28) predicted the success of loan requests on the Internet, above and beyond the effects of the neuroimaging sample's own choices (i.e., to lend or not). These findings suggest that elicitation of positive arousal can promote the success of loan requests, both in the laboratory and on the Internet. They also highlight affective neuroscience's potential to probe neuropsychological mechanisms that drive microlending, enhance the effectiveness of loan requests, and forecast market-level behavior. PMID:26187248

  1. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    PubMed

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  2. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    PubMed Central

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  3. Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles

    NASA Astrophysics Data System (ADS)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2012-04-01

    Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A genetic algorithm based model (Shuffled Complex Evolution-UA; SCE-UA) is also being developed to provide estimates of the predictions and parameters uncertainties and to compare against the linear regression models. Ultimately, models will be selected to undertake predictions for a range of climate change and landscape scenarios. Finally, project results will contribute to a better understanding of water demand to help predict future water use and implement targeted landscaping conservation programs to maintain sustainable water needs for a growing population under uncertain climate variability.

  4. Effects of Barometric Fluctuations on Well Water-Level Measurements and Aquifer Test Data

    SciTech Connect

    FA Spane, Jr.

    1999-12-16

    The Pacific Northwest National Laboratory, as part of the Hanford Groundwater Monitoring Project, examines the potential for offsite migration of contamination within underlying aquifer systems. Well water-level elevation measurements from selected wells within these aquifer systems commonly form the basis for delineating groundwater-flow patterns (i.e., flow direction and hydraulic gradient). In addition, the analysis of water-level responses obtained in wells during hydrologic tests provides estimates of hydraulic properties that are important for evaluating groundwater-flow velocity and transport characteristics. Barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These barometric effects may lead to erroneous indications of hydraulic head within the aquifer. Total hydraulic head (i.e., sum of the water-table elevation and the atmospheric pressure at the water-table surface) within the aquifer, not well water-level elevation, is the hydrologic parameter for determining groundwater-flow direction and hydraulic gradient conditions. Temporal variations in barometric pressure may also adversely affect well water-level responses obtained during hydrologic tests. If significant, adjustments or removal of these barometric effects from the test-response record may be required for quantitative hydraulic property determination. This report examines the effects of barometric fluctuations on well water-level measurements and evaluates adjustment and removal methods for determining areal aquifer head conditions and aquifer test analysis. Two examples of Hanford Site unconfined aquifer tests are examined that demonstrate barometric response analysis and illustrate the predictive/removal capabilities of various methods for well water-level and aquifer total head values. Good predictive/removal characteristics were demonstrated with best corrective results provided by multiple-regression deconvolution methods.

  5. Water pair potential of near spectroscopic accuracy. II. Vibrationrotationtunneling levels of the water dimer

    E-print Network

    Water pair potential of near spectroscopic accuracy. II. Vibration­rotation­tunneling levels-dimensional quantum calculations of the vibration­rotation­tunneling VRT levels of the water dimer for values of the water dimer G. C. Groenenboom, P. E. S. Wormer, and A. van der Avoird Institute of Theoretical Chemistry

  6. Evaluating a microbial water quality prediction model for beach management under the revised EU Bathing Water Directive.

    PubMed

    Bedri, Zeinab; Corkery, Aisling; O'Sullivan, John J; Deering, Louise A; Demeter, Katalin; Meijer, Wim G; O'Hare, Gregory; Masterson, Bartholomew

    2016-02-01

    The revised Bathing Water Directive (2006/7/EC) requires EU member states to minimise the risk to public health from faecal pollution at bathing waters through improved monitoring and management approaches. While increasingly sophisticated measurement methods (such as microbial source tracking) assist in the management of bathing water resources, the use of deterministic predictive models for this purpose, while having the potential to provide decision making support, remains less common. This study explores an integrated, deterministic catchment-coastal hydro-environmental model as a decision-making tool for beach management which, based on advance predictions of bathing water quality, can inform beach managers on appropriate management actions (to prohibit bathing or advise the public not to bathe) in the event of a poor water quality forecast. The model provides a 'moving window' five-day forecast of Escherichia coli levels at a bathing water compliance point off the Irish coast and the accuracy of bathing water management decisions were investigated for model predictions under two scenarios over the period from the 11th August to the 5th September, 2012. Decisions for Scenario 1 were based on model predictions where rainfall forecasts from a meteorological source (www.yr.no) were used to drive the rainfall-runoff processes in the catchment component of the model, and for Scenario 2, were based on predictions that were improved by incorporating real-time rainfall data from a sensor network within the catchment into the forecasted meteorological input data. The accuracy of the model in the decision-making process was assessed using the contingency table and its metrics. The predictive model gave reasonable outputs to support appropriate decision making for public health protection. Scenario 1 provided real-time predictions that, on 77% of instances during the study period where both predicted and E. coli concentrations were available, would correctly inform a beach manager to either take action to mitigate for poor bathing water quality or take no action. However, Scenario 1 also provided data to support a decision to take action (when none was necessary - a type I error) in 4% of instances and to take no action (when action was required - a type II error) in 19% of the instances analysed. Type II errors are critical in terms of public health protection given that for this error, bathers can be exposed to risks from poor bathing water quality. Scenario 2, on the other hand, provided predictions that would support correct management actions for 79% of the instances but would result in type I and type II errors for 4% and 17% of the instances respectively. Comparison of Scenarios 1 and 2 for this study indicate that Scenario 2 gave a marginally better overall performance in terms of supporting correct management decisions, as it provided data that could result in a lower occurrence of the more critical type II errors. Given that the 28 member states of the European Union are required to engage with the public health provisions of the revised Bathing Water Directive, issues of compliance, pertaining particularly to the management of bathing water resources, remain topical. Decision supports for managing bathing waters in the context of the Directive are likely to become the focus of much attention and although, the current study has been validated in bathing waters off the east coast of Ireland, the approach of using a deterministic and integrated catchment-coastal model for such purposes is easily transferable to other bathing water jurisdictions. PMID:26613350

  7. Predicting oxygen transfer and water flow rate in airlift aerators.

    PubMed

    Burris, Vickie L; McGinnis, Daniel F; Little, John C

    2002-11-01

    Water flow rate, gas-phase holdup, and dissolved oxygen (DO) profiles are measured in a full-scale airlift aerator as a function of applied air flow rate. A model that predicts oxygen transfer based on discrete-bubble principles is applied. The riser DO profiles are used to calculate the initial bubble size. The range of calculated bubble diameters obtained using the model is 2.3-3.1 mm. The Sauter-mean diameter of bubbles measured in the laboratory ranged from 2.7 to 3.9 mm. The riser and downcomer DO profiles and gas holdups predicted by the model are in close agreement with the experimental results. A model that predicts water flow rate based on an energy balance is used to calculate Kt, the frictional loss coefficient for the air-water separator. Excluding the data at the very lowest air flow rate, the range of calculated values for Kt (3-8) is close to a literature value of 5.5 proposed for hydrodynamically similar external airlift bioreactors. The models should prove useful in the design and optimization of airlift aerators. PMID:12418663

  8. Predictive model for chloroform during disinfection of water for consumption, city of Montevideo.

    PubMed

    Gomez Camponovo, Mariana; Seoane Muniz, Gustavo; Rothenberg, Stephen J; Umpiérrez Vazquez, Eleuterio; Achkar Borras, Marcel

    2014-10-01

    The objective of this study was to predict chloroform formation resulting from the process of disinfecting water, particularly trihalomethane which is most frequently produced. A statistical model was used which included repeated measurements of water parameters used for monitoring water quality at 51 sites covering the municipal water system of Montevideo. Samples were taken considering different seasons from June 2009 to July 2011 in Montevideo. Total samples (n?=?330) were analytically studied using the headspace-gas chromatography method coupled with mass spectrometry. Chloroform was the dependent variable and the covariables were pH, temperature, free chlorine, and total chlorine. A Tobit analysis with an unstructured correlation matrix was performed, and a significant interaction was found between pH and free chlorine for the prediction of chloroform formation. We concluded that parameters for the continuous control of water quality for consumption can be used to predict the levels of chloroform that may be present. Given the large measurement to variability found in the repeated measurements, the use of averages that include more than one season is not recommended to determine the degree of compliance with acceptable levels established by norms. PMID:24981876

  9. Prediction of the safety level to an installation of the tritium process through predictive maintenance

    SciTech Connect

    Anghel, V.

    2008-07-15

    The safety level for personnel and environment to a nuclear installation is given in generally by the technological process quality of operation and maintenance and in particular by a lot of technical, technological, economic and human factors. The maintenance role is fundamental because it has to quantify all the technical, economic and human elements as an integrated system for it creates an important feedback for activities concerning the life cycle of the nuclear installation. In maintenance activities as in any dynamic area, new elements appear continuously which, sometimes require new approaches. The theory of fuzzy logic and the software LabVIEW supplied to the Nuclear Detritiation Plant (NDP) is part of National Research and Development Inst. for Cryogenics and Isotopic Technologies-ICIT, Rm.Valcea, used for predictive maintenance to assure safety operation. The final aim is to achieve the best practices for maintenance of the Plant that processes tritium. (authors)

  10. Determining return water levels at ungauged coastal sites: a case study for northern Germany

    NASA Astrophysics Data System (ADS)

    Arns, Arne; Wahl, Thomas; Haigh, Ivan D.; Jensen, Jürgen

    2015-04-01

    We estimate return periods and levels of extreme still water levels for the highly vulnerable and historically and culturally important small marsh islands known as the Halligen, located in the Wadden Sea offshore of the coast of northern Germany. This is a challenging task as only few water level records are available for this region, and they are currently too short to apply traditional extreme value analysis methods. Therefore, we use the Regional Frequency Analysis (RFA) approach. This originates from hydrology but has been used before in several coastal studies and is also currently applied by the local federal administration responsible for coastal protection in the study area. The RFA enables us to indirectly estimate return levels by transferring hydrological information from gauged to related ungauged sites. Our analyses highlight that this methodology has some drawbacks and may over- or underestimate return levels compared to direct analyses using station data. To overcome these issues, we present an alternative approach, combining numerical and statistical models. First, we produced a numerical multidecadal model hindcast of water levels for the entire North Sea. Predicted water levels from the hindcast are bias corrected using the information from the available tide gauge records. Hence, the simulated water levels agree well with the measured water levels at gauged sites. The bias correction is then interpolated spatially to obtain correction functions for the simulated water levels at each coastal and island model grid point in the study area. Using a recommended procedure to conduct extreme value analyses from a companion study, return water levels suitable for coastal infrastructure design are estimated continuously along the entire coastline of the study area, including the offshore islands. A similar methodology can be applied in other regions of the world where tide gauge observations are sparse.

  11. Predicting habitat distribution to conserve seagrass threatened by sea level rise

    NASA Astrophysics Data System (ADS)

    Saunders, M. I.; Baldock, T.; Brown, C. J.; Callaghan, D. P.; Golshani, A.; Hamylton, S.; Hoegh-guldberg, O.; Leon, J. X.; Lovelock, C. E.; Lyons, M. B.; O'Brien, K.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.

    2013-12-01

    Sea level rise (SLR) over the 21st century will cause significant redistribution of valuable coastal habitats. Seagrasses form extensive and highly productive meadows in shallow coastal seas support high biodiversity, including economically valuable and threatened species. Predictive habitat models can inform local management actions that will be required to conserve seagrass faced with multiple stressors. We developed novel modelling approaches, based on extensive field data sets, to examine the effects of sea level rise and other stressors on two representative seagrass habitats in Australia. First, we modelled interactive effects of SLR, water clarity and adjacent land use on estuarine seagrass meadows in Moreton Bay, Southeast Queensland. The extent of suitable seagrass habitat was predicted to decline by 17% by 2100 due to SLR alone, but losses were predicted to be significantly reduced through improvements in water quality (Fig 1a) and by allowing space for seagrass migration with inundation. The rate of sedimentation in seagrass strongly affected the area of suitable habitat for seagrass in sea level rise scenarios (Fig 1b). Further research to understand spatial, temporal and environmental variability of sediment accretion in seagrass is required. Second, we modelled changes in wave energy distribution due to predicted SLR in a linked coral reef and seagrass ecosystem at Lizard Island, Great Barrier Reef. Scenarios where the water depth over the coral reef deepened due to SLR and minimal reef accretion, resulted in larger waves propagating shoreward, changing the existing hydrodynamic conditions sufficiently to reduce area of suitable habitat for seagrass. In a scenario where accretion of the coral reef was severely compromised (e.g. warming, acidification, overfishing), the probability of the presence of seagrass declined significantly. Management to maintain coral health will therefore also benefit seagrasses subject to SLR in reef environments. Further disentangling direct and indirect effects of climate change on seagrass will be necessary to inform management of these valuable coastal ecosystems. Models such as these will be important sources of information for management agencies, which require specific information on the likely impacts of sea level rise in coastal areas.

  12. 1. East side of lower dam shown with water level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. East side of lower dam shown with water level dropped. VIEW WEST - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  13. Trace-level mercury removal from surface water

    SciTech Connect

    Klasson, K.T.; Bostick, D.T.

    1998-06-01

    Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, most of the data published thus far do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. Mercury was successfully removed from surface water via adsorption onto Ionac SR-4 and Mersorb resins to levels below the target goal of 12 ng/L in batch studies. A thiol-based resin performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1,000 gal of water.

  14. 17. INTERIOR OF 1814 MILL TAILRACE WITH LEVEL OF WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR OF 1814 MILL TAILRACE WITH LEVEL OF WATER BELOW DAM EVIDENT. WALL DIMLY VISIBLE AT REAR IS BRICKED UP ARCH IN FOUNDATION WALL OF THE MILL. - Boston Manufacturing Company, 144-190 Moody Street, Waltham, Middlesex County, MA

  15. 3. View of Santa Elena, looking from water level (Note: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of Santa Elena, looking from water level (Note: The lighthouse of Del Morro is just visible in the background) - Murallas del Viejo San Juan, Baluarte de Santa Elena, San Juan, San Juan Municipio, PR

  16. 8. General view of movable span from water level, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. General view of movable span from water level, showing piers turntable, movable span, parts of west land span and east viaduct. VIEW NORTHEAST - Broadway Bridge, Spanning Foundry Street, MBTA Yard, Fort Point Channel, & Lehigh Street, Boston, Suffolk County, MA

  17. 9. Close general view of movable span from water level, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Close general view of movable span from water level, from west to cast piers, showing remnants of bumper piers. VIEW NORTHEAST - Broadway Bridge, Spanning Foundry Street, MBTA Yard, Fort Point Channel, & Lehigh Street, Boston, Suffolk County, MA

  18. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    NASA Technical Reports Server (NTRS)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  19. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model

    NASA Astrophysics Data System (ADS)

    Aregawi, Wondwosen A.; Abera, Metadel K.; Fanta, Solomon W.; Verboven, Pieter; Nicolai, Bart

    2014-11-01

    A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus?×?domestica Borkh. cv. ‘Jonagold’) during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick’s second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell’s rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range (?>?97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.

  20. Water levels through 1989 in bedrock aquifers in South Dakota

    USGS Publications Warehouse

    Winter, Douglas R.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the South Dakota Department of Environmental and Natural Resources, has collected water-level data for 237 wells completed in bedrock aquifers throughout South Dakota. The water levels are presented in hydrographs in the main body of the report and in tables in a Supplemental Information section at the end of the report. The data are organized by county, in alphabetical order.

  1. Nestling activity levels during begging behaviour predicts activity level and body mass in adulthood

    PubMed Central

    Griffith, Simon C.

    2014-01-01

    Across a range of species including humans, personality traits, or differences in behaviour between individuals that are consistent over time, have been demonstrated. However, few studies have measured whether these consistent differences are evident in very young animals, and whether they persist over an individual’s entire lifespan. Here we investigated the begging behaviour of very young cross-fostered zebra finch nestlings and the relationship between that and adult activity levels. We found a link between the nestling activity behaviour head movements during begging, measured at just five and seven days after hatching, and adult activity levels, measured when individuals were between three and three and a half years old. Moreover, body mass was found to be negatively correlated with both nestling and adult activity levels, suggesting that individuals which carry less body fat as adults are less active both as adults and during begging as nestlings. Our work suggests that the personality traits identified here in both very young nestlings and adults may be linked to physiological factors such as metabolism or environmental sources of variation. Moreover, our work suggests it may be possible to predict an individual’s future adult personality at a very young age, opening up new avenues for future work to explore the relationship between personality and a number of aspects of individual life history and survival. PMID:25279258

  2. Ground-water levels in Arkansas, Spring 1984

    SciTech Connect

    Edds, J.

    1984-01-01

    The report contains 680 ground-water level measurements made in observation wells in Arkansas in the Spring of 1984. In addition, the report contains well hydrographs relating to the alluvial aquifer and the Sparta Sand and Memphis Sand aquifers, the most important aquifers with respect to ground-water availability and use in Arkansas. 18 refs., 14 tabs.

  3. Selective Trace Level Analysis of Phenolic Compounds in Water by

    E-print Network

    Jardim, Wilson de Figueiredo

    Selective Trace Level Analysis of Phenolic Compounds in Water by Flow Injection Analysis interference-free, and sensitive (low µg/L) quantitation of phenolic compounds in water. On-line FIA derivatization of the phenolic compounds is performed by acetic anhydride acetylation in a K2CO3- buffered

  4. Developing and implementing the use of predictive models for estimating water quality at Great Lakes beaches

    USGS Publications Warehouse

    Francy, Donna S.; Brady, Amie M.G.; Carvin, Rebecca B.; Corsi, Steven R.; Fuller, Lori M.; Harrison, John H.; Hayhurst, Brett A.; Lant, Jeremiah; Nevers, Meredith B.; Terrio, Paul J.; Zimmerman, Tammy M.

    2013-01-01

    Predictive models have been used at beaches to improve the timeliness and accuracy of recreational water-quality assessments over the most common current approach to water-quality monitoring, which relies on culturing fecal-indicator bacteria such as Escherichia coli (E. coli.). Beach-specific predictive models use environmental and water-quality variables that are easily and quickly measured as surrogates to estimate concentrations of fecal-indicator bacteria or to provide the probability that a State recreational water-quality standard will be exceeded. When predictive models are used for beach closure or advisory decisions, they are referred to as “nowcasts.” During the recreational seasons of 2010-12, the U.S. Geological Survey (USGS), in cooperation with 23 local and State agencies, worked to improve existing nowcasts at 4 beaches, validate predictive models at another 38 beaches, and collect data for predictive-model development at 7 beaches throughout the Great Lakes. This report summarizes efforts to collect data and develop predictive models by multiple agencies and to compile existing information on the beaches and beach-monitoring programs into one comprehensive report. Local agencies measured E. coli concentrations and variables expected to affect E. coli concentrations such as wave height, turbidity, water temperature, and numbers of birds at the time of sampling. In addition to these field measurements, equipment was installed by the USGS or local agencies at or near several beaches to collect water-quality and metrological measurements in near real time, including nearshore buoys, weather stations, and tributary staff gages and monitors. The USGS worked with local agencies to retrieve data from existing sources either manually or by use of tools designed specifically to compile and process data for predictive-model development. Predictive models were developed by use of linear regression and (or) partial least squares techniques for 42 beaches that had at least 2 years of data (2010-11 and sometimes earlier) and for 1 beach that had 1 year of data. For most models, software designed for model development by the U.S. Environmental Protection Agency (Virtual Beach) was used. The selected model for each beach was based on a combination of explanatory variables including, most commonly, turbidity, day of the year, change in lake level over 24 hours, wave height, wind direction and speed, and antecedent rainfall for various time periods. Forty-two predictive models were validated against data collected during an independent year (2012) and compared to the current method for assessing recreational water quality-using the previous day’s E. coli concentration (persistence model). Goals for good predictive-model performance were responses that were at least 5 percent greater than the persistence model and overall correct responses greater than or equal to 80 percent, sensitivities (percentage of exceedances of the bathing-water standard that were correctly predicted by the model) greater than or equal to 50 percent, and specificities (percentage of nonexceedances correctly predicted by the model) greater than or equal to 85 percent. Out of 42 predictive models, 24 models yielded over-all correct responses that were at least 5 percent greater than the use of the persistence model. Predictive-model responses met the performance goals more often than the persistence-model responses in terms of overall correctness (28 versus 17 models, respectively), sensitivity (17 versus 4 models), and specificity (34 versus 25 models). Gaining knowledge of each beach and the factors that affect E. coli concentrations is important for developing good predictive models. Collection of additional years of data with a wide range of environmental conditions may also help to improve future model performance. The USGS will continue to work with local agencies in 2013 and beyond to develop and validate predictive models at beaches and improve existing nowcasts, restructuring monitoring activities to accommodate future uncertainties in

  5. Uncertainty in predictions of the climate response to rising levels

    E-print Network

    Spicer, Robert A

    of a wide range of uncertainties in the way the atmosphere is represented, while avoiding a long spin.............................................................. Uncertainty in predictions to assess both chaotic climate variability and model response uncertainty4­9 . Statistical estimates

  6. Transient response of Salix cuttings to changing water level regimes

    NASA Astrophysics Data System (ADS)

    Gorla, L.; Signarbieux, C.; Turberg, P.; Buttler, A.; Perona, P.

    2015-03-01

    Sustainable water management requires an understanding of the effects of flow regulation on riparian ecomorphological processes. We investigated the transient response of Salix viminalis by examining the effect of water-level regimes on its above-ground and below-ground biomass. Four sets of Salix cuttings, three juveniles (in the first growing season) and one mature (1 year old), were planted and initially grown under the same water-level regime for 1 month. We imposed three different water-level regime treatments representing natural variability, a seasonal trend with no peaks, and minimal flow (characteristic of hydropower) consisting of a constant water level and natural flood peaks. We measured sap flux, stem water potential, photosynthesis, growth parameters, and final root architecture. The mature cuttings were not affected by water table dynamics, but the juveniles displayed causal relationships between the changing water regime, plant growth, and root distribution during a 2 month transient period. For example, a 50% drop in mean sap flux corresponded with a -1.5 Mpa decrease in leaf water potential during the first day after the water regime was changed. In agreement with published field observations, the cuttings concentrated their roots close to the mean water table of the corresponding treatment, allowing survival under altered conditions and resilience to successive stress events. Juvenile development was strongly impacted by the minimum flow regime, leading to more than 60% reduction of both above-ground and below-ground biomass, with respect to the other treatments. Hence, we suggest avoiding minimum flow regimes where Salix restoration is prioritized.

  7. Parameter estimation techniques and uncertainty in ground water flow model predictions

    SciTech Connect

    Zimmerman, D.A. ); Davis, P.A. )

    1990-01-01

    Quantification of uncertainty in predictions of nuclear waste repository performance is a requirement of Nuclear Regulatory Commission regulations governing the licensing of proposed geologic repositories for high-level radioactive waste disposal. One of the major uncertainties in these predictions is in estimating the ground-water travel time of radionuclides migrating from the repository to the accessible environment. The cause of much of this uncertainty has been attributed to a lack of knowledge about the hydrogeologic properties that control the movement of radionuclides through the aquifers. A major reason for this lack of knowledge is the paucity of data that is typically available for characterizing complex ground-water flow systems. Because of this, considerable effort has been put into developing parameter estimation techniques that infer property values in regions where no measurements exist. Currently, no single technique has been shown to be superior or even consistently conservative with respect to predictions of ground-water travel time. This work was undertaken to compare a number of parameter estimation techniques and to evaluate how differences in the parameter estimates and the estimation errors are reflected in the behavior of the flow model predictions. That is, we wished to determine to what degree uncertainties in flow model predictions may be affected simply by the choice of parameter estimation technique used. 3 refs., 2 figs.

  8. Effects of water turbidity and salt concentration levels on penetration of solar radiation under water

    SciTech Connect

    Wang, J.; Seyed-Yagoobi, J. )

    1994-05-01

    Two large, outdoor tanks were constructed in order to investigate the effects of water turbidity and salt concentration levels at various depths of water on penetration of solar radiation. These experiments were followed by a laboratory investigation that measured spectral transmittance and the extinction coefficient of water at different salt concentrations and turbidity levels. Both the outdoor and laboratory results indicate that the salt concentration level does not significantly affect solar radiation penetration. However, water clarity, quantified in terms of the turbidity level, plays a critical role on the magnitude of the solar radiation penetration, with the effect of turbidity on penetration increasing with the depth of water. A best-fit model is developed that gives the solar radiation penetration as a function of turbidity level and depth of water.

  9. ELEVATED LEVELS OF SODIUM IN COMMUNITY DRINKING WATER

    EPA Science Inventory

    A comparison study of students from towns with differing levels of sodium in drinking water revealed statistically significantly higher blood pressure distributions among the students from the town with high sodium levels. Differences were found in both systolic and diastolic rea...

  10. Water levels in bedrock aquifers in South Dakota

    USGS Publications Warehouse

    Bradford, Wendell L.

    1981-01-01

    This report on water levels in bedrock aquifers in South Dakota is the result of a continuing investigation begun in 1959 by the U.S. Geological Survey in cooperation with the South Dakota Department of Water and Natural Resources. The purpose of the investigation is to collect data on the artesian water supply in the bedrock aquifers and to present these data in data reports that will aid in planning the use and conservation of water from these aquifers in South Dakota. The locations of wells were data have been collected are included. (USGS)

  11. NOAA Technical Memorandum ERL GLERL-68 POTENTIAL VARIATION OF GREAT LAKES WATER LEVELS

    E-print Network

    NOAA Technical Memorandum ERL GLERL-68 POTENTIAL VARIATION OF GREAT LAKES WATER LEVELS #12;Figure 4. --Annual maximum monthly water levels of Lakes Michigan-Huron, St. Clair, and Erie lake levels................................................... 11 Mean annual water levels of Lakes

  12. Numerical simulation of the impacts of water level variation on water age in Dahuofang Reservoir

    NASA Astrophysics Data System (ADS)

    Li, Xinwen; Shen, Yongming

    2015-06-01

    The transport timescales were investigated in response to water level variation under different constant flow rates in Dahuofang Reservoir. The concept of water age was applied to quantify the transport timescales. A three-dimensional hydrodynamic model was developed based on the Environmental Fluid Dynamics Code (EFDC). The model was calibrated for water surface elevation and temperature profiles from April 1, 2008 to October 31, 2008. Comparisons of observed and modeled data showed that the model reproduced the water level fluctuation and thermal stratification during warm season and vertical mixing during cold season fairly well. The calibrated model was then applied to investigate the response of water age to water level changes in Dahuofang Reservoir. Model results showed that water age increases from confluence toward dam zone. In the vertical direction, the water age is relatively uniform at upstream and stratifies further downstream, with a larger value at bottom layer than at surface layer. Comparisons demonstrated that water level variation has a significant impact on transport timescales in the reservoir. The impact of water level drawdown on water age is stronger at bottom layer than at surface layer. Under high flow conditions, the water age decreases 0-20 days at surface layer and 15-25 days at bottom layer. Under mean flow conditions, the water age decreases 20-30 days at surface layer and 30-50 days at bottom layer. Furthermore, the impact is minor in the upstream and increases further downstream. The vertical stratification of water age weakens as the water level decreases. This study provides a numerical tool to quantify the transport timescale in Dahuofang Reservoir and supports adaptive management of regional water resources by local authorities.

  13. Predicting recreational water quality advisories: A comparison of statistical methods

    USGS Publications Warehouse

    Brooks, Wesley R.; Corsi, Steven; Fienen, Michael N.; Carvin, Rebecca B.

    2016-01-01

    Epidemiological studies indicate that fecal indicator bacteria (FIB) in beach water are associated with illnesses among people having contact with the water. In order to mitigate public health impacts, many beaches are posted with an advisory when the concentration of FIB exceeds a beach action value. The most commonly used method of measuring FIB concentration takes 18–24 h before returning a result. In order to avoid the 24 h lag, it has become common to ”nowcast” the FIB concentration using statistical regressions on environmental surrogate variables. Most commonly, nowcast models are estimated using ordinary least squares regression, but other regression methods from the statistical and machine learning literature are sometimes used. This study compares 14 regression methods across 7 Wisconsin beaches to identify which consistently produces the most accurate predictions. A random forest model is identified as the most accurate, followed by multiple regression fit using the adaptive LASSO.

  14. Predicting shallow water table depth at regional scale from rainfall and soil data

    NASA Astrophysics Data System (ADS)

    Calzolari, Costanza; Ungaro, Fabrizio

    2012-01-01

    SummaryShallow water table levels can be predicted using several approaches, based either on climatic records, on field evidences based on soil morphology, or on the outputs of physically based soil-water balance models. In this study, data from a water table monitoring network were used to develop an empirical method for predicting water table depth in space and time from a soil map, cumulative rainfall data and long term water table characteristics, in order to optimize irrigation management at regional scale. Records of 160 piezometer sites available from 1997 to 2008 were analyzed to detect the overall temporal trend in water table depth in a relevant agricultural area of Northern Italy (extent of about 12,000 Km 2). A clear trend in water table lowering is observed over the 12 years of available observations, with an average rate of 4.5 cm per year. Precipitation data for the years 2004-2008 and the records from 25 selected sites ( N = 2299) for the same period were used to calibrate a predictive tool based on the assumption of a sinusoidal behavior of the water table depth with a bimodal yearly cycle. The proposed model uses as inputs the cumulative rainfall in the previous 365 days to that of prediction and the geostatistical estimates of the long-term (2005-2008) yearly average water table depth and oscillation. The model, calibrated for the whole data set and for subsets of sites grouped in terms of functional soil properties, was validated against the WT depths observed in 7 independent sites during 2005-2008 ( N = 654). Validation results showed a mean absolute error of 37.1 cm for the general model and 33.1 cm for the model calibrated on the soil groups' subsets. The accuracy of prediction was higher in years with precipitation amounts closer to the observed average. The general model was eventually extended to the whole study area, providing spatio-temporal maps of the water table depth. The results were further validated against the water table depths observed in all the piezometers at three dates in 2009: error statistics computed for the whole set of available readings at the three selected dates ( N = 322), resulted in a mean absolute error of 37.7 cm. Although based on a limited amount of inputs, the accuracy of the proposed models was comparable to the results reported in the literature for more complex models.

  15. Striatal volume predicts level of video game skill acquisition.

    PubMed

    Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Prakash, Ruchika S; Voss, Michelle W; Graybiel, Ann M; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F

    2010-11-01

    Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks. PMID:20089946

  16. Analysis for water level data for Everglades National Park, Florida

    USGS Publications Warehouse

    Buchanan, T.J.; Hartwell, J.H.

    1972-01-01

    Stage-duration curves were developed for five gaging stations in Everglades National Park, Florida. Four of the five curves show similar characteristics with an increase in the slope when the water level is below land surface. Monthly stage-duration curves, developed for one of the stations, reflect the seasonal trends of the water level. Recession curves were prepared for the same five stations. These curves represent the average water-level decline during periods of little or no rainfall. They show the decline in level at the end of 10, 20, and 60 days for any given initial stage. A family of curves was also prepared to give the recession from various initial stages for any period up to 60 days.

  17. Monitoring water levels by integrating optical and synthetic aperture radar water masks with lidar DEMs

    NASA Astrophysics Data System (ADS)

    Hopkinson, C.; Brisco, B.; Patterson, S.

    2014-12-01

    The ability to map and monitor wetland and lake open water extent and levels across the landscape allows improved estimates of watershed water balance, surface storage and flood inundation. The study presents open water classifications over the wetland dominated Sheppard Slough watershed east of Calgary in western Canada using parallel temporal imagery captured from the RapidEye and RadarSat satellites throughout 2013, a year of widespread and costly flood inundation in this region. The optical and SAR-based temporal image stacks were integrated with a high-resolution lidar DEM in order to delineate regions of inundation on the DEM surface. GIS techniques were developed to extract lidar-derived water surface elevations and track the spatio-temporal variation in pond and lake water level across the watershed. Water bodies were assigned unique identifiers so that levels could be tracked and linked to their associated watershed channel reach. The procedure of optical image classification through to merging of individual water bodies into watershed channel topology and extracting reach water levels has been automated within python scripts. The presentation will describe: i) the procedures used; ii) a comparison of the SAR and optical classification and water level extraction results; iii) a discussion of the spatio-temporal variations in water level across the Sheppard Slough watershed; and iv) a commentary on how the approach could be implemented for web-based operational monitoring and as simulation initialisation inputs for flood inundation model studies.

  18. Validation of Aircraft Noise Prediction Models at Low Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Hobbs, Christopher M.; Plotkin, Kenneth J.; Stusnick, Eric; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Aircraft noise measurements were made at Denver International Airport for a period of four weeks. Detailed operational information was provided by airline operators which enabled noise levels to be predicted using the FAA's Integrated Noise Model. Several thrust prediction techniques were evaluated. Measured sound exposure levels for departure operations were found to be 4 to 10 dB higher than predicted, depending on the thrust prediction technique employed. Differences between measured and predicted levels are shown to be related to atmospheric conditions present at the aircraft altitude.

  19. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    SciTech Connect

    Crawford, C; Ned Bibler, N

    2009-04-15

    In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in the waste. The difference in the two models has led to the questions of how different are the results predicted by the two models and which model predicts the more conservative (larger) G values. More conservative G values would predict higher H{sub 2} generation rates that would require higher ventilation rates in the SRS tanks. This report compares predictions based on the two models at various nitrate and nitrite concentrations in the SRS HLW tanks for both beta/gamma and for alpha radiation. It also compares predicted G values with those determined by actually measuring the H{sub 2} production from four SRS HLW tanks (Tanks 32H, 35H, 39H, and 42H). Lastly, the H{sub 2} generation rates predicted by the two models are compared for the 47 active SRS high level waste tanks using the most recent tank nitrate and nitrite concentrations and the beta/gamma and alpha heat loads for each tank. The predictions of the models for total H{sub 2} generation rates from the 47 active SRS waste were, for the most part, similar. For example, the predictions for both models applied to 25 tanks agreed within {+-}10% of each other. For the remaining 22 tanks, the SRS prediction was more conservative for 9 tanks (maximum 29% higher) and the Hanford prediction was more conservative for 13 tanks (maximum 19% higher). When comparing G values predicted by the equations presuming only alpha radiation or only beta/gamma was present the results were somewhat different. The results of predictions for alpha radiation, at the 47 current nitrate and nitrite concentrations in the SRS tanks indicated that all the SRS predictions were higher (up to 30%) than the Hanford predictions and thus more conservative. For beta/gamma radiation the predictions for both models agreed to {+-}10% for 18 of the combinations, the Hanford model predicted higher values (11 up to 17%) for 25 of the concentrations considered, and the SRS model predicted higher G values for the remaining two combinations (12 and 17%). For the four SRS tanks, where we compared measured G values to those predicted by the two differen

  20. A statistical model for water quality predictions from a river discharge using coastal observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  1. Data assimilation in optimizing and integrating soil and water quality water model predictions at different scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relevant data about subsurface water flow and solute transport at relatively large scales that are of interest to the public are inherently laborious and in most cases simply impossible to obtain. Upscaling in which fine-scale models and data are used to predict changes at the coarser scales is the...

  2. Predicting Change in Eelgrass Distribution Due to Sea Level Rise

    EPA Science Inventory

    The eelgrass species Zostera marina is the dominant estuarine seagrass on the Pacific Northwest coast of North America and provides important ecosystem services and functions. The loss of eelgrass bed acreage due to environmental pressures is of world-wide concern, yet predicted ...

  3. Fuzzy logic model of lake water level fluctuations in Lake Van, Turkey

    NASA Astrophysics Data System (ADS)

    Altunkaynak, A.; ?en, Z.

    2007-11-01

    Lake Van is one of the largest terminal lakes in the world. In recent years, significant lake level fluctuations have occurred and can be related to global climatic change. This fluctuation sometimes exhibits abrupt shifts. Floods originating from the lake can cause considerable damage and loss in agriculture and urban areas. Therefore, water level forecasting plays a significant role in planning and design. This study is aimed at predicting future lake levels from past rainfall amounts and water level records. A dynamical change of the lake level is evaluated by the fuzzy approach. The fuzzy inference system has the ability to use fuzzy membership functions that include the uncertainties of the concerned event. This method is applied for Lake Van, in east Turkey. Furthermore, model capabilities are compared with ARMAX model. It is shown that lower absolute errors are obtained with the Takagi-Sugeno fuzzy approach than with the ARMAX model.

  4. Water clusters on graphite: methodology for quantum chemical a priori prediction of reaction rate constants.

    PubMed

    Xu, S; Irle, S; Musaev, D G; Lin, M C

    2005-10-27

    The properties, interactions, and reactions of cyclic water clusters (H(2)O)(n=1-5) on model systems for a graphite surface have been studied using pure B3LYP, dispersion-augmented density functional tight binding (DFTB-D), and integrated ONIOM(B3LYP:DFTB-D) methods. Coronene C(24)H(12) as well as polycircumcoronenes C(96)H(24) and C(216)H(36) in monolayer, bilayer, and trilayer arrangements were used as model systems to simulate ABA bulk graphite. Structures, binding energies, and vibrational frequencies of water clusters on mono- and bilayer graphite models have been calculated, and structural changes and frequency shifts due to the water cluster-graphite interactions are discussed. ONIOM(B3LYP:DFTB-D) with coronene and water in the high level and C(96)H(24) in the low level mimics the effect of extended graphite pi-conjugation on the water-graphite interaction very reasonably and suggests that water clusters only weakly interact with graphite surfaces, as suggested by the fact that water is an excellent graphite lubricant. We use the ONIOM(B3LYP:DFTB-D) method to predict rate constants for model pathways of water dissociative adsorption on graphite. Quantum chemical molecular dynamics (QM/MD) simulations of water clusters and water addition products on the C(96)H(24) graphite model are presented using the DFTB-D method. A three-stage strategy is devised for a priori investigations of high temperature corrosion processes of graphite surfaces due to interaction with water molecules and fragments. PMID:16866408

  5. Subsidence at the Fairport Harbor Water Level Gauge

    NASA Astrophysics Data System (ADS)

    Conner, D. A.

    2014-12-01

    SUBSIDENCE AT THE FAIRPORT HARBOR WATER LEVEL GAUGE I will provide information on methods being used to monitor Lake Erie water levels and earth movement at Fairport Harbor, Ohio. Glacial Isostatic Adjustment (GIA) is responsible for vertical movement throughout the Great Lakes region. Fairport Harbor is also experiencing vertical movement due to salt mining, so the nearby water level gauge operated by the National Oceanic and Atmospheric Administration (NOAA) is affected by both GIA and mining. NOAA's National Geodetic Survey (NGS) defines and maintains the National Spatial Reference System (NSRS). The NSRS includes a network of permanently marked points; a consistent, accurate, and up-to-date national shoreline; a network of Continuously Operating Reference Stations (CORS) which supports three-dimensional positioning activities; and a set of accurate models describing dynamic, geophysical processes that affect spatial measurements. The NSRS provides the spatial reference foundation for transportation, mapping, charting and a multitude of scientific and engineering applications. Fundamental elements of geodetic infrastructure include GPS CORS (3-D), water level and tide gauges (height) and a system of vertical bench marks (height). When two or more of these elements converge they may provide an independent determination of position and vertical stability as is the case here at the Fairport Harbor water level gauge. Analysis of GPS, leveling and water level data reveal that this gauge is subsiding at about 2-3 mm/year, independent of the effects of GIA. Analysis of data from the nearby OHLA GPS CORS shows it subsiding at about 4 mm/yr, four times faster than expected due to GIA alone. A long history of salt mine activity in the area is known to geologists but it came as a surprise to other scientists.

  6. A Methylmercury Prediction Too For Surface Waters Across The Contiguous United States (Invited)

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, D. P.; Booth, N.; Lutz, M.; Fienen, M. N.; Saltman, T.

    2009-12-01

    About 20 years ago, researchers at a few locations across the globe discovered high levels of mercury in fish from remote settings lacking any obvious mercury source. We now know that for most locations atmospheric deposition is the dominant mercury source, and that mercury methylation is the key process that translates low mercury loading rates into relatively high levels in top predators of aquatic food webs. Presently, almost all US states have advisories for elevated levels of mercury in sport fish, and as a result there is considerable public awareness and concern for this nearly ubiquitous contaminant issue. In some states, “statewide” advisories have been issued because elevated fish mercury levels are so common, or the state has no effective way to monitor thousands of lakes, reservoirs, wetlands, and streams. As such, resource managers and public health officials have limited options for informing the public on of where elevated mercury concentrations in sport fish are more likely to occur than others. This project provides, for the first time, a national map of predicted (modeled) methylmercury concentrations in surface waters, which is the most toxic and bioaccumulative form of mercury in the environment. The map is the result of over two decades of research that resulted in the formulation of conceptual models of the mercury methylation process, which is strongly governed by environmental conditions - specifically hydrologic landscapes and water quality. The resulting predictive map shows clear regional trends in the distribution of methylmercury concentrations in surface waters. East of the Mississippi, the Gulf and southeastern Atlantic coast, the northeast, the lower Mississippi valley, and Great Lakes area are predicted to have generally higher environmental methylmercury levels. Higher-elevation, well-drained areas of Appalachia are predicted to have relatively lower methylmercury abundance. Other than the prairie pothole region, in the western US incessant regional patterns are less clear. However, the full range of predicted methylmercury levels are predicted to occur in western US watersheds. Lastly, although this map is being presented at the continental US scale, the principles used to generate the modeled results can easily applied to data sets that represent a range of geographic scales.

  7. Regional and State Level Water Scarcity Report: Northeast United States

    NASA Astrophysics Data System (ADS)

    Nicoletti, C. K.; Lopez-Morales, C. A.; Hoover, J. H.; Voigt, B. G.; Vorosmarty, C. J.; Mohammed, I. N.

    2010-12-01

    There are an abundance of large-scale, coarse resolution global water scarcity studies, but the existing literature fails to address regional and state specific scarcity measures. Moreover, while environmental water requirements are an integral factor in the development and implementation of sustainable water management practices, only recently has this notion been introduced to water scarcity research. In this paper, we argue that developing a preliminary measure of water scarcity, at the regional and state levels, will allow for more informed policy development. The goal of this study is to generate a more comprehensive understanding of water scarcity in the Northeast, by gathering fine scale data, applying a consistent methodology to the calculation of a scarcity index, and analyzing the results to see relative trends in spatio-temporal water scarcity. Public supply, irrigation, rural, industrial and thermo-power withdrawals have been compiled from USGS state water use publications from 1950 to 1985. Using the WBMplus water model runoff data, state specific in-stream environmental water requirements were calculated using the accepted hydro-ecological methodology. Water scarcity was then calculated as a ratio of water withdrawals to total available water minus environmental flow requirements for the system. In so doing, this study generates a spatially explicit and temporally varying water scarcity indicator (WSI) for the Northeastern United States between 1950 and 2000 at the regional and state levels at a five-year time interval. Calculation of a spatial and temporal water scarcity indicator enabled us to identify regions and specific states that were: slightly exploited (WSI < 0.3), moderately exploited (0.31.0). The minimum environmental water requirements to maintain in-stream aquatic and riparian ecosystems for the Northeastern states ranged between 27.5 to 36.3 percent of the mean annual runoff within Vermont and Maryland, respectively. The regional WSI values ranged between 0.199 in 1950 and 0.512 in 1995, indicating increasing water scarcity over time as population and employment growth has placed greater demands on water resources. Additionally, our study revealed that in 1980, Massachusetts, Pennsylvania and New Jersey scarcity levels were 0.733, 0.790 and 0.857, respectively. Although the Northeastern United States is commonly perceived as a water rich region, moderate to heavily exploited levels of water stress were observed over the time period when a finer spatial scale is utilized. Water scarcity indicator values were disaggregated by state for each time period and illustrated using a series of maps. Additional descriptive statistics were used to elucidate the differences in water scarcity between states over time.

  8. Response in the trophic state of stratified lakes to changes in hydrology and water level: potential effects of climate change

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2011-01-01

    To determine how climate-induced changes in hydrology and water level may affect the trophic state (productivity) of stratified lakes, two relatively pristine dimictic temperate lakes in Wisconsin, USA, were examined. Both are closed-basin lakes that experience changes in water level and degradation in water quality during periods of high water. One, a seepage lake with no inlets or outlets, has a small drainage basin and hydrology dominated by precipitation and groundwater exchange causing small changes in water and phosphorus (P) loading, which resulted in small changes in water level, P concentrations, and productivity. The other, a terminal lake with inlets but no outlets, has a large drainage basin and hydrology dominated by runoff causing large changes in water and P loading, which resulted in large changes in water level, P concentrations, and productivity. Eutrophication models accurately predicted the effects of changes in hydrology, P loading, and water level on their trophic state. If climate changes, larger changes in hydrology and water levels than previously observed could occur. If this causes increased water and P loading, stratified (dimictic and monomictic) lakes are expected to experience higher water levels and become more eutrophic, especially those with large developed drainage basins.

  9. Optical water-level sensing systems using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Fukuchi, Keisuke; Kojima, Seiji; Hishida, Yasuyuki; Hongo, Akihito

    2002-09-01

    We have developed the all optical high-precision water level sensors based on fiber Bragg grating (FBG) technique, which are applied for actual fields such as rivers, lakes, sewage systems and so on. The sensor head consists of a diaphragm, a customized Bourdon tube and two FBGs, one for tensile measurement and other for temperature compensation. The FBG attached to the Bourdon tube is strained as the water level increases, and causes center wavelength shift of the reflected light from the FBG, which is detected by the wavelength interrogation equipment composed of a tunable Fabry-Perot filer. We have achieved the sensor accuracy of +/- 0.1% F.S., i.e. +/- 1 cm in case of full measurement range of 10 m. Several sensor heads can be connected in series through one optical fiber and each water level at different places can be measured simultaneously by one wavelength interrogation equipment.

  10. Developing Landscape Level Indicators for Predicting Watershed Condition

    EPA Science Inventory

    Drainage basins (watersheds) exert a strong influence on the condition of water bodies such as streams and lakes. Watersheds and associated aquatic systems respond differently to stressors (e.g., land use change) or restoration activities depending on the climatic setting, bedroc...

  11. Predicted Transport Of Pyrethroid Insecticides From An Urban Landscape To Surface Water

    PubMed Central

    Jorgenson, Brant; Brown, Larry; Fleishman, Erica; Macneale, Kate; Schlenk, Daniel; Scholz, Nat; Spromberg, Julann; Werner, Inge; Weston, Don; Young, Thomas M.; Zhang, Minghua; Zhao, Qingfu

    2014-01-01

    We developed a simple screening-level model of exposure of aquatic species to pyrethroid insecticides for the lower American River watershed (California, USA). The model incorporated both empirically derived washoff functions based on existing, small-scale precipitation simulations and empirical data on pyrethroid insecticide use and watershed properties for Sacramento County, California. We calibrated the model to in-stream monitoring data and used it to predict daily river pyrethroid concentration from 1995 through 2010. The model predicted a marked increase in pyrethroid toxic units starting in 2000, coincident with an observed watershed-wide increase in pyrethroid use. After 2000, approximately 70% of the predicted total toxic unit exposure in the watershed was associated with the pyrethroids bifenthrin and cyfluthrin. Pyrethroid applications for above-ground structural pest control on the basis of suspension concentrate product formulations accounted for greater than 97% of the predicted total toxic unit exposure. Projected application of mitigation strategies, such as curtailment of structural perimeter band and barrier treatments as recently adopted by the California Department of Pesticide Regulation, reduced predicted total toxic unit exposure by 84%. The model also predicted that similar reductions in surface water concentrations of pyrethroids could be achieved through a switch from suspension concentrate categorized products to emulsifiable concentrate categorized products without restrictions on current use practice. Even with these mitigation actions, the predicted concentration of some pyrethroids would continue to exceed chronic aquatic life criteria. PMID:24115122

  12. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water.

    PubMed

    Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2015-11-01

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater, calculate the resultant gray water footprints (GWFs), and relate the GWFs per river basin to runoff to calculate the N-related water pollution level (WPL) per catchment. The accumulated global GWF related to anthropogenic N loads in the period 2002-2010 was 13 × 10(12) m(3)/y. China contributed about 45% to the global total. Three quarters of the GWF related to N loads came from diffuse sources (agriculture), 23% from domestic point sources and 2% from industrial point sources. Among the crops, production of cereals had the largest contribution to the N-related GWF (18%), followed by vegetables (15%) and oil crops (11%). The river basins with WPL > 1 (where the N load exceeds the basin's assimilation capacity), cover about 17% of the global land area, contribute about 9% of the global river discharge, and provide residence to 48% of the global population. PMID:26440220

  13. Predicting Water Activity for Complex Wastes with Solvation Cluster Equilibria (SCE) - 12042

    SciTech Connect

    Agnew, S.F.; Reynolds, J.G.; Johnston, C.T.

    2012-07-01

    Predicting an electrolyte mixture's water activity, i.e. the ratio of water vapor pressure over a solution with that of pure water, in principle reveals both boiling point and solubilities for that mixture. Better predictions of these properties helps support the ongoing missions to concentrate complex nuclear waste mixtures in order to conserve tank space and improved predictions of water activity will help. A new approach for predicting water activity, the solvation cluster equilibria (SCE) model, uses pure electrolyte water activities to predict water activity for a complex mixture of those electrolytes. An SCE function based on electrolyte hydration free energy and a standard Debye- Hueckel (DH) charge compression fits each pure electrolyte's water activity with three parameters. Given these pure electrolyte water activities, the SCE predicts any mixture water activity over a large range of concentration with an additional parameter for each mixture vector, the multinarity. In contrast to ionic strength, which scales with concentration, multinarity is related to the relative proportion of electrolytes in a mixture and can either increase or decrease the water activity prediction over a broad range of concentration for that mixture. The SCE model predicts water activity for complex electrolyte mixtures based on the water activities of pure electrolytes. Three parameter SCE functions fit the water activities of pure electrolytes and along with a single multinarity parameter for each mixture vector then predict the mixture water activity. Predictions of water activity can in principle predict solution electrolyte activity and this relationship will be explored in the future. Predicting electrolyte activities for complex mixtures provides a means of determining solubilities for each electrolyte. Although there are a number of reports [9, 10, 11] of water activity models for pure and binary mixtures of electrolytes, none of them compare measured versus calculated water activity for more complex mixtures. (authors)

  14. Reduction in predicted survival times in cold water due to wind and waves.

    PubMed

    Power, Jonathan; Simões Ré, António; Barwood, Martin; Tikuisis, Peter; Tipton, Michael

    2015-07-01

    Recent marine accidents have called into question the level of protection provided by immersion suits in real (harsh) life situations. Two immersion suit studies, one dry and the other with 500 mL of water underneath the suit, were conducted in cold water with 10-12 males in each to test body heat loss under three environmental conditions: calm, as mandated for immersion suit certification, and two combinations of wind plus waves to simulate conditions typically found offshore. In both studies mean skin heat loss was higher in wind and waves vs. calm; deep body temperature and oxygen consumption were not different. Mean survival time predictions exceeded 36 h for all conditions in the first study but were markedly less in the second in both calm and wind and waves. Immersion suit protection and consequential predicted survival times under realistic environmental conditions and with leakage are reduced relative to calm conditions. PMID:25766418

  15. Analysis of water-level fluctuations in Wisconsin wells

    USGS Publications Warehouse

    Patterson, G.L.; Zaporozec, A.

    1987-01-01

    The long-term cyclicity of ground-water level fluctuations is shown on hydrographs of wells Sw-7, Ln-25a, Mt-7, Ju-8, and Ju-98. Seasonal variations that tend to obscure the long-term trends are eliminated by plotting the average annual water levels. The hydrographs are similar even though the wells are 80 to 100 miles apart and constructed in different geologic materials. The long-term trends and the duration of the cycles apparently depend little on the location and on the lithologic composition of the aquifers, but rathe

  16. Wii mote as hydrological sensor: observation of water level fluctuations

    NASA Astrophysics Data System (ADS)

    Luxemburg, W.; Hut, R.; Weijs, S.; Hegnauer, M.

    2009-12-01

    The input device of the Nintendo Wii, the Wii-mote offers scientist a multitude of cheap, high quality sensors; ideal for proof of concept testing. For a specific application, i.e. the water level fluctuation in a floating evaporation pan the Wii-mote was tested as the observing device. It is shown that the controller can observe movements with high enough temporal and spatial resolution of up to 4 infrared LED’s to describe water level movements. Floating pans positioned in lakes and reservoirs better represent open water evaporation than evaporation pans installed on land. On the other hand performing water level measurements in a floating pan is more complicated due to movement of the pan and wave activities in the pan. The Wii-mote was mounted on the side of a standard class A-pan and a float was placed in the middle of the pan, with 4 LED’s on top moving along a fixed bar. The information that the Wii-mote wirelessly sends by blue tooth was captured on a laptop. With a MATLAB routine this data was converted into movement of the LED’s relatively to the controller. The observations show that wave activities are nicely captured with a typical spatial resolution smaller than 0.1 mm in our set-up and a temporal resolution of maximum 100 Hz. A frequency domain filter was applied to the observed datasets to obtain average water levels. In our laboratory setting the pan was placed in a large basin with a wave generator. A constant, but small, rate of water was added to the evaporation pan. The average pan levels from the filtered datasets showed systematically lower levels compared to the level without any wave activities. This is a typical effect of waves that occur in shallow basins. However, the added water with rates up to 5 mm/hour were clearly recognized in the filtered datasets which indicates that the Wii-mote is very well capable as a sensor for water level observations.

  17. Low Vitamin D levels predict clinical features of schizophrenia

    PubMed Central

    Cieslak, Kristina; Feingold, Jordyn; Antonius, Daniel; Walsh-Messinger, Julie; Dracxler, Roberta; Rosedale, Mary; Aujero, Nicole; Keefe, David; Goetz, Deborah; Goetz, Raymond; Malaspina, Dolores

    2014-01-01

    Vitamin D plays crucial roles in neuroprotection and neurodevelopment, and low levels are commonly associated with schizophrenia. We considered if the association was spurious or causal by examining the association of Vitamin D with Leukocyte Telomere Length (LTL), a marker of cellular aging. Vitamin D levels in 22 well-characterized schizophrenia cases were examined with respect to symptoms, cognition, and functioning. LTL was assessed using quantitative polymerase chain reaction (qPCR). The results showed that 91% (20) had deficient or insufficient Vitamin D levels, which were associated with excitement and grandiosity, social anhedonia, and poverty of speech. Sex-specific analyses showed strong associations of hypovitamintosis D to negative symptoms and decreased premorbid adjustment in males, and to lesser hallucinations and emotional withdrawal, but increased anti-social aggression in females. In females LTL was furthermore associated with Vitamin D levels. This study demonstrates a relationship of low vitamin D levels with increased cellular aging in females. It is also the first study to demonstrate potential sex-specific profiles among schizophrenia cases with hypovitaminosis. PMID:25311777

  18. Ensemble approach for projections of return periods of extreme water levels in Estonian waters

    NASA Astrophysics Data System (ADS)

    Eelsalu, Maris; Soomere, Tarmo; Pindsoo, Katri; Lagemaa, Priidik

    2014-12-01

    The contribution of various drivers to the water level in the eastern Baltic Sea and the presence of outliers in the time series of observed and hindcast water level lead to large spreading of projections of future extreme water levels. We explore the options for using an ensemble of projections to more reliably evaluate return periods of extreme water levels. An example of such an ensemble is constructed by means of fitting several sets of block maxima (annual maxima and stormy season maxima) with a Generalised Extreme Value, Gumbel and Weibull distribution. The ensemble involves projections based on two data sets (resolution of 6 h and 1 h) hindcast by the Rossby Centre Ocean model (RCO; Swedish Meteorological and Hydrological Institute) and observed data from four representative sites along the Estonian coast. The observed data are transferred into the grid cells of the RCO model using the HIROMB model and a linear regression. For coastal segments where the observations represent the offshore water level well, the overall appearance of the ensembles signals that the errors of single projections are randomly distributed and that the median of the ensemble provides a sensible projection. For locations where the observed water level involves local effects (e.g. wave set-up) the block maxima are split into clearly separated populations. The resulting ensemble consists of two distinct clusters, the difference between which can be interpreted as a measure of the impact of local features on the water level observations.

  19. Politics of innovation in multi-level water governance systems

    NASA Astrophysics Data System (ADS)

    Daniell, Katherine A.; Coombes, Peter J.; White, Ian

    2014-11-01

    Innovations are being proposed in many countries in order to support change towards more sustainable and water secure futures. However, the extent to which they can be implemented is subject to complex politics and powerful coalitions across multi-level governance systems and scales of interest. Exactly how innovation uptake can be best facilitated or blocked in these complex systems is thus a matter of important practical and research interest in water cycle management. From intervention research studies in Australia, China and Bulgaria, this paper seeks to describe and analyse the behind-the-scenes struggles and coalition-building that occurs between water utility providers, private companies, experts, communities and all levels of government in an effort to support or block specific innovations. The research findings suggest that in order to ensure successful passage of the proposed innovations, champions for it are required from at least two administrative levels, including one with innovation implementation capacity, as part of a larger supportive coalition. Higher governance levels can play an important enabling role in facilitating the passage of certain types of innovations that may be in competition with currently entrenched systems of water management. Due to a range of natural biases, experts on certain innovations and disciplines may form part of supporting or blocking coalitions but their evaluations of worth for water system sustainability and security are likely to be subject to competing claims based on different values and expertise, so may not necessarily be of use in resolving questions of "best courses of action". This remains a political values-based decision to be negotiated through the receiving multi-level water governance system.

  20. Predicting the Proficiency Level of Language Learners Using Lexical Indices

    ERIC Educational Resources Information Center

    Crossley, Scott A.; Salsbury, Tom; McNamara, Danielle S.

    2012-01-01

    This study explores how second language (L2) texts written by learners at various proficiency levels can be classified using computational indices that characterize lexical competence. For this study, 100 writing samples taken from 100 L2 learners were analyzed using lexical indices reported by the computational tool Coh-Metrix. The L2 writing…

  1. Behavioral/Cognitive Glutamate and Choline Levels Predict Individual Differences

    E-print Network

    Landi,1,3,5 Jonathan L. Preston,1,6 Leslie Jacobsen,1 Mark S. Seidenberg,1,7 and Robert K. Fulbright1 and Pennington, 2012; Landi et al., 2013). At a more macroscopic level, neuroimaging studies have identified

  2. Water-level changes (1975-1998) in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Carlson, Carl S.; Phillips, Steven P.

    1998-01-01

    Antelope Valley is in the western part of the Mojave Desert in southern California, about 50 mi northeast of Los Angeles. Between 1975 and 1998, water levels in the valley have changed in response to a shift in ground-water use from agricultural to urban, declining in some areas and rising in others. A study to document these changes was conducted by the U.S. Geological Survey in cooperation with the Antelope Valley Water Group. This report presents the water-level data and the changes that occurred during this study period.

  3. [Relationship between groundwater level in riparian wetlands and water level in the river].

    PubMed

    Xu, Hua-Shan; Zhao, Tong-Qian; Meng, Hong-Qi; Xu, Zong-Xue; Ma, Chao-Hong

    2011-02-01

    The development and degradation processes of riparian wetlands are significantly affected by river hydrological processes. By observing the variation of groundwater levels in riparian wetlands at the Kouma section of the Yellow River Wetland, especially that during the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between groundwater level in riparian wetlands and flood water level in the river is studied. The results show that groundwater level in riparian wetlands is significantly affected by water level in the river investigated. There is a negative exponential relationship between groundwater level and the distance between wells and river. The correlation coefficient shows the maximum (R2 > 0.98) during the period of regulation for water and sediment. Affected by the cultivation system in the flooding area, distance between monitoring wells and river bank, water level in the river variation of groundwater level in the wetland changed greatly. In artificial wetland, which is far from the river, the inter-annual variation in groundwater levels show a " (see symbol)" shape, while in the farmland, which is close to the river, the inter-annual variation of groundwater levels show a big peak. The groundwater level 400 m from the river is affected by flood events obviously, that in the area which is less than 200 m from the river is significantly affected by flood events in the area which is especially less than that in the area that is less than 100 m from the river, the groundwater level is affected by flood events intensively. The result indicated that there was a very close relationship between groundwater and surface water, and it was the hydrological ecotone between groundwater of riparian wetlands and the river. It is very important that rational protection for this region (very important for the area which is less than 100 m from the river, important for the area that is between 100 m and 200 m from the river) is critical for the conservation of water quality in the river and groundwater quality. PMID:21528555

  4. MMP-1 serum levels predict coronary atherosclerosis in humans

    PubMed Central

    Lehrke, Michael; Greif, Martin; Broedl, Uli C; Lebherz, Corinna; Laubender, Rüdiger P; Becker, Alexander; von Ziegler, Franz; Tittus, Janine; Reiser, Maximilian; Becker, Christoph; Göke, Burkhard; Steinbeck, Gerhard; Leber, Alexander W; Parhofer, Klaus G

    2009-01-01

    Background Myocardial infarction results as a consequence of atherosclerotic plaque rupture, with plaque stability largely depending on the lesion forming extracellular matrix components. Lipid enriched non-calcified lesions are considered more instable and rupture prone than calcified lesions. Matrix metalloproteinases (MMPs) are extracellular matrix degrading enzymes with plaque destabilisating characteristics which have been implicated in atherogenesis. We therefore hypothesised MMP-1 and MMP-9 serum levels to be associated with non-calcified lesions as determined by CT-angiography in patients with coronary artery disease. Methods 260 patients with typical or atypical chest pain underwent dual-source multi-slice CT-angiography (0.6-mm collimation, 330-ms gantry rotation time) to exclude coronary artery stenosis. Atherosclerotic plaques were classified as calcified, mixed or non-calcified. Results In multivariable regession analysis, MMP-1 serum levels were associated with total plaque burden (OR: 1.37 (CI: 1.02-1.85); p < 0.05) in a model adjusted for age, sex, BMI, classical cardiovascular risk factors, hsCRP, adiponectin, pericardial fat volume and medication. Specification of plaque morphology revealed significant association of MMP-1 serum levels with non-calcified plaques (OR: 1.16 (CI: 1.0-1.34); p = 0.05) and calcified plaques (OR: 1.22 (CI: 1,03-1.45); p < 0.05) while association with mixed plaques was lost in the fully adjusted model. No associations were found between MMP9 serum levels and total plaque burden or plaque morphology. Conclusion MMP-1 serum levels are associated with total plaque burden but do not allow a specification of plaque morphology. PMID:19751510

  5. Orion Crew Member Injury Predictions during Land and Water Landings

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Littell, Justin D.; Fasanella, Edwin L.; Tabiei, Ala

    2008-01-01

    A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.

  6. Blood Glucose Level Prediction using Physiological Models and Support Vector Regression

    E-print Network

    Bunescu, Razvan C.

    Blood Glucose Level Prediction using Physiological Models and Support Vector Regression Razvan continually monitor their blood glucose levels and adjust insulin doses, striving to keep blood glucose levels as close to normal as possible. Blood glucose levels that deviate from the normal range can lead to serious

  7. Effect of Increased Water Vapor Levels on TBC Lifetime

    SciTech Connect

    Pint, Bruce A; Garner, George Walter; Lowe, Tracie M; Haynes, James A; Zhang, Ying

    2011-01-01

    To investigate the effect of increased water vapor levels on thermal barrier coating (TBC) lifetime, furnace cycle tests were performed at 1150 C in air with 10 vol.% water vapor (similar to natural gas combustion) and 90 vol.%. Either Pt diffusion or Pt-modified aluminide bond coatings were applied to specimens from the same batch of a commercial second-generation single-crystal superalloy and commercial vapor-deposited yttria-stabilized zirconia (YSZ) top coats were applied. Three coatings of each type were furnace cycled to failure to compare the average lifetimes obtained in dry O{sub 2}, using the same superalloy batch and coating types. Average lifetimes with Pt diffusion coatings were unaffected by the addition of water vapor. In contrast, the average lifetime of Pt-modified aluminide coatings was reduced by more than 50% with 10% water vapor but only slightly reduced by 90% water vapor. Based on roughness measurements from similar specimens without a YSZ coating, the addition of 10% water vapor increased the rate of coating roughening more than 90% water vapor. Qualitatively, the amount of {beta}-phase depletion in the coatings exposed in 10% water vapor did not appear to be accelerated.

  8. Low-level measurements of tritium in water.

    PubMed

    Villa, M; Manjón, G

    2004-01-01

    Using a liquid scintillation counter, an experimental procedure for measuring low-level activity concentrations of tritium in environmental water has been developed by our laboratory, using the electrolytic tritium enrichment. Additionally, some quality tests were applied in order to assure the goodness of the method. Well-known water samples collected in the Tagus River (West of Spain) and the Danube River (Bulgaria), both affected by nuclear plant releases, were analysed and results were compared to previous data. The analytical procedure was applied to drinking water samples from the public water supply of Seville and mineral waters from different springs in Spain in order to characterize its origin. Due to the very low levels of tritium in the analysed samples, some results were reported as lower than the minimum detectable activity concentration (MDA). However, the count rate of these measurements was over the background count rate of LS counter in all the cases. For that reason, an exhaustive discussion about the meaning of the MDA, using an experimental essay, was made in order to establish a rigorous criterion that leads to a reliable value in the case of low-level measurements. PMID:15177365

  9. Real time prediction of sea level anomaly data with the Prognocean system - comparison of results obtained using different prediction techniques

    NASA Astrophysics Data System (ADS)

    Mizinski, Bartlomiej; Niedzielski, Tomasz; Kosek, Wieslaw

    2013-04-01

    Prognocean is a near-real time modeling and prediction system elaborated and based at University of Wroclaw, Poland. It operates on gridded Sea Level Anomaly (SLA) data obtained from the Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO), France. The data acquisition flow from AVISO to Prognocean is entirely automatic and is implemented in Python. The core of the system - including data pre-processing, modeling, prediction, validation and visualization procedures - is composed of a series of R scripts that are interrelated and work at three levels of generalization. The objective of the work presented here is to show the results of our numerical experiment that have been carried out since early 2012. Four prediction models have been implemented to date: (1) extrapolation of polynomial-harmonic model and the extrapolation of polynomial-harmonic model with (2) autoregressive model, (3) threshold autoregressive model and (4) autocovariance procedure. Although the presentation is limited to four models and their predictive skills, Prognocean consists of modules and hence new techniques may be plugged in at any time. In this paper, the comparison of the results into forecasting sea level anomaly maps is presented. Along with sample predictions, with various lead times up to two weeks, we present and discuss a set of root mean square prediction error maps computed in real time after the observations have been available. We identified areas where linear prediction models reveal considerable errors, which may indicate a non-linear mode of sea level change. In addition, we have identified an agreement between the spatial pattern of large prediction errors and the spatial occurrence of key mesoscale ocean eddies.

  10. Comparison Between Water Level and Precipitation in Rio Negro Basin

    NASA Astrophysics Data System (ADS)

    Figliuolo, G. C.; Santos Da Silva, J.; Calmant, S.; Seyler, F.; Correia, F.; Oliveira, R. J.

    2013-12-01

    The Amazon Basin holds a lot of difficulties for providing data that enable regional researching works, because of its large extension and for having areas, whose access is very difficult. Remote sensing data presents an excellent way for monitoring the Amazon Basin and collecting data for researches. This current study aims matching radar altimetry data from the JASON-2, with the rainfall data from the TRMM satellite in order to analyze the relation between the water level and the precipitation in two different points along the Rio Negro Basin. After data analysis, it was possible noting a difference on the responding process for both regions. Whilst at the NEGRO_089_03 station (located in the city of São Gabriel da Cachoeira) the graphic of precipitation and water level were very similar, in NEGRO_063 station (located in the city of Manaus) the graphic showed a two month discrepancy due to the difference of the river's bottom size in both regions, at NEGRO_089_03's area for having a smaller river and the water level rises faster, whereas in NEGRO_063 the water level takes about two months to respond to precipitation.

  11. Individual Differences and Development in Water-Level Task Performance.

    ERIC Educational Resources Information Center

    Thomas, Hoben; Turner, Geoffrey, F. W.

    1991-01-01

    Presents research on individuals' ability to perform Piaget's water-level task. At almost every age and for each sex, some subjects had high probability of success and some had low. Age-related improvement was not a result of children's increasing accuracy in task performance. Differences in performance between sexes were evident at all ages.…

  12. TRIHALOMETHANE LEVELS IN HOME TAP WATER AND SEMEN QUALITY

    EPA Science Inventory

    Trihalomethane Levels in Home Tap Water and Semen Quality
    Laura Fenster, 1 Kirsten Waller, 2 Gayle Windham, 1 Tanya Henneman, 2 Meredith Anderson, 2 Pauline Mendola, 3 James W. Overstreet, 4 Shanna H. Swan5

    1California Department of Health Services, Division of Environm...

  13. CAN FLUORIDATION AFFECT WATER LEAD LEVELS AND LEAD NEUROTOXICITY?

    EPA Science Inventory

    Recent reports have attempted to show that certain approaches to fluoridating potable water is linked to increased levels of lead(II) in the blood. We examine these claims in light of the established science and critically evaluate their significance. The completeness of nexafluo...

  14. Methodology for predicting cooling water effects on fish

    SciTech Connect

    Cakiroglu, C.; Yurteri, C.

    1998-07-01

    The mathematical model presented here predicts the long-term effects of once-through cooling water systems on local fish populations. The fish life cycle model simulates different life stages of fish by using appropriate expressions representing growth and mortality rates. The heart of the developed modeling approach is the prediction of plant-caused reduction in total fish population by estimating recruitment to adult population with and without entrainment of ichthyoplankton and impingement of small fish. The model was applied to a local fish species, gilthead (Aparus aurata), for the case of a proposed power plant in the Aegean region of Turkey. The simulations indicate that entrainment and impingement may lead to a population reduction of about 2% to 8% in the long run. In many cases, an impact of this size can be considered rather unimportant. In the case of sensitive and ecologically values species facing extinction, however, necessary precautions should be taken to minimize or totally avoid such an impact.

  15. Water level oscillations in Monterey Bay and Harbor

    NASA Astrophysics Data System (ADS)

    Park, J.; Sweet, W.; Heitsenrether, R.

    2014-11-01

    Seiches are normal modes of water bodies responding to geophysical forcings with potential to significantly impact ecology and maritime operations. Analysis of high-frequency (1 Hz) water level data in Monterey California identifies Harbor modes between 10 and 120 s that are attributed with specific geographic features. It found that modal amplitude modulation arises from cross-modal interaction and that offshore wave energy is a primary driver of these modes. Synchronous coupling between modes is observed to significantly impact dynamic water levels. At lower frequencies between 15 and 60 min modes are independent of offshore wave energy, yet are continuously present. This is unexpected since seiches normally dissipate after cessation of the driving force, indicating an unknown forcing. Spectral and kinematic estimates of these low frequency oscillations supports the idea that a persistent anticyclonic mesoscale gyre adjacent to the Bay is a potential mode driver, while discounting other sources.

  16. Water level oscillations in Monterey Bay and Harbor

    NASA Astrophysics Data System (ADS)

    Park, J.; Sweet, W. V.; Heitsenrether, R.

    2015-06-01

    Seiches are normal modes of water bodies responding to geophysical forcings with potential to significantly impact ecology and maritime operations. Analysis of high-frequency (1 Hz) water level data in Monterey, California, identifies harbor modes between 10 and 120 s that are attributed to specific geographic features. It is found that modal amplitude modulation arises from cross-modal interaction and that offshore wave energy is a primary driver of these modes. Synchronous coupling between modes is observed to significantly impact dynamic water levels. At lower frequencies with periods between 15 and 60 min, modes are independent of offshore wave energy, yet are continuously present. This is unexpected since seiches normally dissipate after cessation of the driving force, indicating an unknown forcing. Spectral and kinematic estimates of these low-frequency oscillations support the idea that a persistent anticyclonic mesoscale gyre adjacent to the bay is a potential mode driver, while discounting other sources.

  17. Predicting Airborne Particle Levels Aboard Washington State School Buses

    PubMed Central

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Liu, L.-J. Sally

    2008-01-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits. To assess onboard concentrations, continuous PM2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM2.5 levels, ambient weather, and bus and route characteristics. Concentrations aboard school buses (21 ?g/m3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM2.5 levels between the buses and lead vehicles indicated an average of 7 ?g/m3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics. PMID:18985175

  18. CALCULATION OF NONLINEAR CONFIDENCE AND PREDICTION INTERVALS FOR GROUND-WATER FLOW MODELS.

    USGS Publications Warehouse

    Cooley, Richard L.; Vecchia, Aldo V.

    1987-01-01

    A method is derived to efficiently compute nonlinear confidence and prediction intervals on any function of parameters derived as output from a mathematical model of a physical system. The method is applied to the problem of obtaining confidence and prediction intervals for manually-calibrated ground-water flow models. To obtain confidence and prediction intervals resulting from uncertainties in parameters, the calibrated model and information on extreme ranges and ordering of the model parameters within one or more independent groups are required. If random errors in the dependent variable are present in addition to uncertainties in parameters, then calculation of prediction intervals also requires information on the extreme range of error expected. A simple Monte Carlo method is used to compute the quantiles necessary to establish probability levels for the confidence and prediction intervals. Application of the method to a hypothetical example showed that inclusion of random errors in the dependent variable in addition to uncertainties in parameters can considerably widen the prediction intervals.

  19. Predictive value of the efficacy of tolvaptan in liver cirrhosis patients using free water clearance

    PubMed Central

    MIYAAKI, HISAMITSU; NAKAMURA, YUTAKA; ICHIKAWA, TATSUKI; TAURA, NAOTA; MIUMA, SATOSHI; SHIBATA, HIDETAKA; HONDA, TAKUYA; NAKAO, KAZUHIKO

    2015-01-01

    Tolvaptan, an arginine vasopressin V2 antagonist, is available for patients with refractory ascites. Free water clearance was evaluated as a predictor of tolvaptan efficacy. Twenty-one patients with refractory ascites were enrolled in the present study. Liver function test, renal function test, urine volume, free water clearance and osmotic pressure were measured at baseline (day 0) and for each dose of tolvaptan (1.875, 3.75 and 7.5 mg), and compared for efficacy. Tolvaptan increased urine volume and free water clearance decreased osmotic pressure at each dose of tolvaptan, compared to pretreatment levels. Compared to baseline, an increased volume of free water clearance at 1.875 mg of tolvaptan showed a significant correlation with body weight reduction (r=0.480 and P=0.028). Any factors (age, liver function test and renal function test) at pretreatment showed no significant correlation with body weight reduction. An increased volume of urine and osmotic pressure at each dose was not significantly correlated with the tolvaptan effect. Compared to baseline, an increased volume of free water clearance at 1.875 mg of tolvaptan in responders was significantly increased, compared to non-responders (270±241 ml/day: 27±257 ml/day; P=0.042). In conclusion, an increased volume of free water clearance on day 1 was significantly associated with body weight reduction. Free water clearance could be a simple and useful marker for the prediction of tolvaptan efficacy. PMID:26623035

  20. Predictive analyses of ground-water discharges in the Willow Creek Watershed, northeast Nebraska

    USGS Publications Warehouse

    Dugan, Jack T.; Lappala, E.G.

    1978-01-01

    Ground-water discharge to Willow Creek in northeast Nebraska was predicted with a digital model of the ground-water/surface-water system. Recharge and irrigation requirements were determined with a model of the soil zone. The regional aquifer is Pliocene and Pleistocene sands and gravels. Water in the regional aquifer is unconfined in the western part of the watershed and confined in the eastern part. The confining layer is Pleistocene eolian silts with very fine sand interbeds overlying a basal clay. Where the regional aquifer is unconfined, perennial flow of Willow Creek is sustained by ground-water discharge. Where it is confined, the low hydraulic conductivity of the confining beds isolates the regional aquifer from Willow Creek. Adequate agreement between simulated and observed streamflows and water levels during 1975 and 1976 was obtained by modifying initial estimates of hydraulic conductivity and specific storage. The future perennial flow of Willow Creek was simulated by superimposing six patterns of ground-water withdrawals upon variations in recharge for a monthly climatic sequence identical with the period 1931-34. These analyses showed that the perennial monthly flows would be less than 12 cubic feet per second at least 50 percent of the time. (Woodard-USGS)

  1. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  2. Rising water levels and the future of southeastern Louisiana swamp forests

    USGS Publications Warehouse

    Conner, W.H.; Brody, M.

    1989-01-01

    An important factor contributing to the deterioration of wetland forests in Louisiana is increasing water levels resulting from eustatic sea-level rise and subsidence. Analyses of long-term water level records from the Barataria and Verret watersheds in southeastern Louisiana indicate an apparent sea level rise of about 1-m per century, mainly the result of subsidence. Permanent study plots were established in cypress-tupelo stands in these two watersheds. The tree, water level, and subsidence data collected in these plots were entered into the U.S. Fish and Wildlife Servicea??s FORFLO bottomland hardwood succession model to determine the long-term effects of rising water levels on forest structure. Analyses were made of 50a??100 years for a cypress-tupelo swamp site in each basin and a bottomland hardwood ridge in the Verret watershed. As flooding increased, less flood tolerant species were replaced by cypress-tupelo within 50 years. As flooding continued, the sites start to become nonforested. From the test analyses, the FORFLO model seems to be an excellent tool for predicting long-term changes in the swamp habitat of south Louisiana.

  3. Water quality prediction for recreational use of Kranji Reservoir, Singapore

    E-print Network

    Zhang, Yangyue

    2011-01-01

    Singapore has been making efforts in relieving its water shortage problems and has been making great progress through its holistic water management. Via the Active, Beautiful, Clean Waters (ABC Waters) Programme, Singapore's ...

  4. On the crystallographic accuracy of structure prediction by implicit water models: Tests for cyclic peptides

    NASA Astrophysics Data System (ADS)

    Goldtzvik, Yonathan; Goldstein, Moshe; Benny Gerber, R.

    2013-03-01

    Five small cyclic peptides and four implicit water models, were selected for this study. DEEPSAM, a structure prediction algorithm built upon TINKER, was used. Structures predicted using implicit water models were compared with experimental data, and with predictions calculated in the gas phase. The existence of very accurate X-ray crystallographic data allowed firm and conclusive comparisons between predictions and experiment. The introduction of implicit water models into the calculations improved the RMSD from experiment by about 13% compared with computations neglecting the presence of water. GBSA is shown to be consistently the best implicit water model.

  5. Interpersonal Stressors Predict Ghrelin and Leptin Levels in Women

    PubMed Central

    Jaremka, Lisa M.; Belury, Martha A.; Andridge, Rebecca R.; Malarkey, William B.; Glaser, Ronald; Christian, Lisa; Emery, Charles F.; Kiecolt-Glaser, Janice K.

    2014-01-01

    Objective Stressful events enhance risk for weight gain and adiposity. Ghrelin and leptin, two hormones that are implicated in appetite regulation, may link stressful events to weight gain; a number of rodent studies suggest that stressors increase ghrelin production. The present study investigated the links among daily stressors, ghrelin and leptin, and dietary intake in humans. Method Women (N = 50) completed three study appointments that were scheduled at least 2 weeks apart. At each visit, women arrived fasting and ate a standardized breakfast and lunch. Blood samples were collected 45 minutes after each meal. Women completed a self-report version of the Daily Inventory of Stressful Events (DISE) at each appointment. Two composites were created from the DISE data, reflecting the number of stressors that did and did not involve interpersonal tension. Results Women who experienced more stressors involving interpersonal tension had higher ghrelin and lower leptin levels than those who experienced fewer interpersonal stressors. Furthermore, women who experienced more interpersonal stressors had a diet that was higher in calories, fat, carbohydrates, protein, sugar, sodium, and fiber, and marginally higher in cholesterol, vegetables (but not fruits), vitamin A, and vitamin C. Stressors that did not involve interpersonal tension were unrelated to ghrelin and leptin levels or any of the dietary components examined. Conclusions These data suggest that ghrelin and leptin may link daily interpersonal stressors to weight gain and obesity. PMID:25032903

  6. Multiple metals predict prolactin and thyrotropin (TSH) levels in men

    SciTech Connect

    Meeker, John D.; Rossano, Mary G.; Protas, Bridget; Diamond, Michael P.; Puscheck, Elizabeth; Daly, Douglas; Paneth, Nigel; Wirth, Julia J.; Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI

    2009-10-15

    Exposure to a number of metals can affect neuroendocrine and thyroid signaling, which can result in adverse effects on development, behavior, metabolism, reproduction, and other functions. The present study assessed the relationship between metal concentrations in blood and serum prolactin (PRL) and thyrotropin (TSH) levels, markers of dopaminergic, and thyroid function, respectively, among men participating in a study of environmental influences on male reproductive health. Blood samples from 219 men were analyzed for concentrations of 11 metals and serum levels of PRL and TSH. In multiple linear regression models adjusted for age, BMI and smoking, PRL was inversely associated with arsenic, cadmium, copper, lead, manganese, molybdenum, and zinc, but positively associated with chromium. Several of these associations (Cd, Pb, Mo) are consistent with limited studies in humans or animals, and a number of the relationships (Cr, Cu, Pb, Mo) remained when additionally considering multiple metals in the model. Lead and copper were associated with non-monotonic decrease in TSH, while arsenic was associated with a dose-dependent increase in TSH. For arsenic these findings were consistent with recent experimental studies where arsenic inhibited enzymes involved in thyroid hormone synthesis and signaling. More research is needed for a better understanding of the role of metals in neuroendocrine and thyroid function and related health implications.

  7. Movements of florida apple snails in relation to water levels and drying events

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Miller, S.J.; Percival, H.F.

    2002-01-01

    Florida apple snails (Pomacea Paludosa) apparently have only a limited tolerance to wetland drying events (although little direct evidence exists), but their populations routinely face dry downs under natural and managed water regimes. In this paper, we address speculation that apple snails respond to decreasing water levels and potential drying events by moving toward refugia that remain inundated. We monitored the movements of apple snails in central Florida, USA during drying events at the Blue Cypress Marsh (BC) and at Lake Kissimmee (LK). We monitored the weekly movements of 47 BC snails and 31 LK snails using radio-telemetry. Snails tended to stop moving when water depths were 10 cm. Snails moved along the greatest positive depth gradient (i.e., towards deeper water) when they encountered water depths between 10 and 20 cm. Snails tended to move toward shallower water in water depths ???50 cm, suggesting that snails were avoiding deep water areas such as canals and sloughs. Of the 11 BC snails originally located in the area that eventually went dry, three (27%) were found in deep water refugia by the end of the study. Only one of the 31 LK snails escaped the drying event by moving to deeper water. Our results indicate that some snails may opportunistically escape drying events through movement. The tendency to move toward deeper water was statistically significant and indicates that this behavioral trait might enhance survival when the spatial extent of a dry down is limited. However, as water level falls below 10 cm, snails stop moving and become stranded. As the spatial extent of a dry down increases, we predict that the number of snails stranded would increase proportionally. Stranded Pomacea paludosa must contend with dry marsh conditions, possibly by aestivation. Little more than anecdotal information has been published on P. paludosa aestivation, but it is a common adaptation among other apple snails (Caenogastropoda: Ampullaridae). ?? 2002, The Society of Wetland Scientists.

  8. Effects of artificial-recharge experiments at Ship Creek alluvial fan on water levels at Spring Acres Subdivision, Anchorage, Alaska

    USGS Publications Warehouse

    Meyer, William; Patrick, Leslie

    1980-01-01

    The effect of the artificial recharge experiments on water levels at Spring Acres subdivision, Anchorage, Alaska, was evaluated using two digital models constructed to simulate groundwater movement and water-level rises induced by the artificial recharge. The models predicted that the artificial recharge would have caused water levels in the aquifer immediately underlying Spring Acres subdivision to rise 0.2 foot from May 20 to August 7, 1975. The models also predicted a total rise in groundwater levels of 1.1 feet at this location from July 16, 1973 to August 7, 1975, as a result of the artificial-recharge experiments. Water-level data collected from auger holes in March 1975 by a consulting firm for the contractor indicated a depth to water of 6-7 feet below land surface at Spring Acres subdivision at this time. Water levels measured in and near Spring Acres subdivision several years before and after the 1973-75 artificial-recharge experiments showed seasonal rises of 2 to 12.4 feet. A depth to water below land surface of 2.6 feet was measured 600 feet from the subdivision in 1971 and in the subdivision in 1977. Average measured depth to water in the area was 7.0 feet from early 1976 to September 1979. (USGS)

  9. Water Erosion Prediction Project (WEPP) –Development History, Model Capabilities and Future Enhancements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Erosion Prediction Project (WEPP) was initiated in August 1985 to develop new generation water erosion prediction technology for use by federal agencies involved in soil and water conservation and environmental planning and assessment. Developed by USDA-ARS as a replacement for empirically...

  10. Concurrent and Predictive Relations between Hormone Levels and Social-Emotional Functioning in Early Adolescence.

    ERIC Educational Resources Information Center

    Nottelmann, Editha D.; And Others

    Hormone levels and changes in hormone levels were evaluated three times across a 1-year period as concurrent and predictive correlates of the socio-emotional functioning of 56 boys 10- to 14-years-old and 52 girls 9- to 14-years-old who represented the five stages of Tanner's criteria of pubertal development. The hormone measures were serum levels

  11. Predicting Homework Time Management at the Secondary School Level: A Multilevel Analysis

    ERIC Educational Resources Information Center

    Xu, Jianzhong

    2010-01-01

    The purpose of this study is to test empirical models of variables posited to predict homework time management at the secondary school level. Student- and class-level predictors of homework time management were analyzed in a survey of 1895 students from 111 classes. Most of the variance in homework time management occurred at the student level,…

  12. Average County-Level IQ Predicts County-Level Disadvantage and Several County-Level Mortality Risk Rates

    ERIC Educational Resources Information Center

    Barnes, J. C.; Beaver, Kevin M.; Boutwell, Brian B.

    2013-01-01

    Research utilizing individual-level data has reported a link between intelligence (IQ) scores and health problems, including early mortality risk. A growing body of evidence has found similar associations at higher levels of aggregation such as the state- and national-level. At the same time, individual-level research has suggested the…

  13. Methods of measuring water levels in deep wells

    USGS Publications Warehouse

    Garber, M.S.; Koopman, F.C.

    1968-01-01

    Accurate measurement of water levels deeper than 1,000 feet in wells requires specialized equipment. Corrections for stretch and thermal expansion of measuring tapes must be considered, and other measuring devices must be calibrated periodically. Bore-hole deviation corrections also must be made. Devices for recording fluctuation of fluid level usually require mechanical modification for use at these depths. A multichannel recording device utilizing pressure transducers has been constructed. This device was originally designed to record aquifer response to nearby underground nuclear explosions but can also be used for recording data from multi-well pumping tests. Bottom-hole recording devices designed for oil-field use have been utilized in a limited manner. These devices were generally found to lack the precision required, in ground-water investigations at the Nevada Test Site but may be applicable in other areas. A newly developed bottom-hole recording pressure gauge of improved accuracy has been used with satisfactory results.

  14. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  15. Prediction of projectile ricochet behavior after water impact.

    PubMed

    Baillargeon, Yves; Bergeron, Guy

    2012-11-01

    Although not very common, forensic investigation related to projectile ricochet on water can be required when undesirable collateral damage occurs. Predicting the ricochet behavior of a projectile is challenging owing to numerous parameters involved: impact velocity, incident angle, projectile stability, angular velocity, etc. Ricochet characteristics of different projectiles (K50 BMG, 0.5-cal Ball M2, 0.5-cal AP-T C44, 7.62-mm Ball C21, and 5.56-mm Ball C77) were studied in a pool. The results are presented to assess projectile velocity after ricochet, ricochet angle, and projectile azimuth angle based on impact velocity or incident angle for each projectile type. The azimuth ranges show the highest variability at low postricochet velocity. The critical ricochet angles were ranging from 15 to 30°. The average ricochet angles for all projectiles were pretty close for all projectiles at 2.5 and 10° incident angles for the range of velocities studied. PMID:22536929

  16. Predicting Impacts of tropical cyclones and sea-Level rise on beach mouse habitat

    USGS Publications Warehouse

    Chen, Qin; Wang, Hongqing; Wang, Lixia; Tawes, Robert; Rollman, Drew

    2014-01-01

    Alabama beach mouse (ABM) (Peromyscus polionotus ammobates) is an important component of the coastal dune ecosystem along the Gulf of Mexico. Due to habitat loss and degradation, ABM is federally listed as an endangered species. In this study, we examined the impacts of storm surge and wind waves, which are induced by hurricanes and sea-level rise (SLR), on the ABM habitat on Fort Morgan Peninsula, Alabama, using advanced storm surge and wind wave models and spatial analysis tools in geographic information systems (GIS). Statistical analyses of the long-term historical data enabled us to predict the extreme values of winds, wind waves, and water levels in the study area at different return periods. We developed a series of nested domains for both wave and surge modeling and validated the models using field observations of surge hydrographs and high watermarks of Hurricane Ivan (2004). We then developed wave atlases and flood maps corresponding to the extreme wind, surge and waves without SLR and with a 0.5 m of SLR by coupling the wave and surge prediction models. The flood maps were then merged with a map of ABM habitat to determine the extent and location of habitat impacted by the 100-year storm with and without SLR. Simulation results indicate that more than 82% of ABM habitat would be inundated in such an extreme storm event, especially under SLR, making ABM populations more vulnerable to future storm damage. These results have aided biologists, community planners, and other stakeholders in the identification, restoration and protection of key beach mouse habitat in Alabama. Methods outlined in this paper could also be used to assist in the conservation and recovery of imperiled coastal species elsewhere.

  17. Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level

    NASA Astrophysics Data System (ADS)

    Gillies, Robert R.; Chung, Oi-Yu; Simon Wang, S.-Y.; DeRose, R. Justin; Sun, Yan

    2015-10-01

    Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover less than a century, forecasting the predominant yet under-represented decadal variability of the GSL level with such relatively short instrumental records poses a challenge. To overcome data limitations, this study assesses two options: (1) developing a model using the observational GSL elevation record of 137 years to predict itself; (2) incorporating the recently reconstructed GSL elevation that utilized 576 years worth of tree-ring records into the predictive model. It was found that the statistical models that combined the tree-ring reconstructed data with the observed data outperformed those that did not, in terms of reducing the root mean squared errors. Such predictive models can serve as a means toward practical water risk management.

  18. A Bayesian network to predict coastal vulnerability to sea level rise

    USGS Publications Warehouse

    Gutierrez, B.T.; Plant, N.G.; Thieler, E.R.

    2011-01-01

    Sea level rise during the 21st century will have a wide range of effects on coastal environments, human development, and infrastructure in coastal areas. The broad range of complex factors influencing coastal systems contributes to large uncertainties in predicting long-term sea level rise impacts. Here we explore and demonstrate the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments of prediction uncertainty. A BN is used to define relationships between driving forces, geologic constraints, and coastal response for the U.S. Atlantic coast that include observations of local rates of relative sea level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline change rate. The BN is used to make probabilistic predictions of shoreline retreat in response to different future sea level rise rates. Results demonstrate that the probability of shoreline retreat increases with higher rates of sea level rise. Where more specific information is included, the probability of shoreline change increases in a number of cases, indicating more confident predictions. A hindcast evaluation of the BN indicates that the network correctly predicts 71% of the cases. Evaluation of the results using Brier skill and log likelihood ratio scores indicates that the network provides shoreline change predictions that are better than the prior probability. Shoreline change outcomes indicating stability (-1 1 m/yr) was not well predicted. We find that BNs can assimilate important factors contributing to coastal change in response to sea level rise and can make quantitative, probabilistic predictions that can be applied to coastal management decisions. Copyright ?? 2011 by the American Geophysical Union.

  19. Available online at www.sciencedirect.com Late pregnancy glucocorticoid levels predict responsiveness in

    E-print Network

    Nguyen, Nga

    Available online at www.sciencedirect.com Late pregnancy glucocorticoid levels predict in faecal GCs during late pregnancy predicted stable individual differences in maternal respon- siveness. Because elevations in GCs during late pregnancy are probably primarily of fetal rather than maternal

  20. Remotely mapping river water quality using multivariate regression with prediction validation.

    SciTech Connect

    Stork, Christopher Lyle; Autry, Bradley C.

    2005-07-01

    Remote spectral sensing offers an attractive means of mapping river water quality over wide spatial regions. While previous research has focused on development of spectral indices and models to predict river water quality based on remote images, little attention has been paid to subsequent validation of these predictions. To address this oversight, we describe a retrospective analysis of remote, multispectral Compact Airborne Spectrographic Imager (CASI) images of the Ohio River and its Licking River and Little Miami River tributaries. In conjunction with the CASI acquisitions, ground truth measurements of chlorophyll-a concentration and turbidity were made for a small set of locations in the Ohio River. Partial least squares regression models relating the remote river images to ground truth measurements of chlorophyll-a concentration and turbidity for the Ohio River were developed. Employing these multivariate models, chlorophyll-a concentrations and turbidity levels were predicted in river pixels lacking ground truth measurements, generating detailed estimated water quality maps. An important but often neglected step in the regression process is to validate prediction results using a spectral residual statistic. For both the chlorophyll-a and turbidity regression models, a spectral residual value was calculated for each river pixel and compared to the associated statistical confidence limit for the model. These spectral residual statistic results revealed that while the chlorophyll-a and turbidity models could validly be applied to a vast majority of Ohio River and Licking River pixels, application of these models to Little Miami River pixels was inappropriate due to an unmodeled source of spectral variation.

  1. Ground-water monitoring at Santa Barbara, California; Phase 2, effects of pumping on water levels and water quality in the Santa Barbara ground-water basins

    USGS Publications Warehouse

    Martin, Peter

    1982-01-01

    From July 1978 to January 1980, water levels declined more than 100 feet in the coastal area of the Santa Barbara ground-water basin in southern California. The water-level declines are the result of increases in municipal pumping since July 1978. The pumping, centered in the city less than 1 mile from the coast, has caused water-level declines in the main water-bearing zones to altitudes below sea level. Consequently, the ground-water basin is threatened with salt-water intrusion if the present pumpage is maintained or increased. Water-quality data suggest that salt-water intrusion has already degraded the water yielded from six coastal wells. Chloride concentrations in the six wells ranged from about 400 to 4,000 milligrams per liter. Municipal supply wells near the coast currently yield water of suitable quality for domestic use. There is, however, no known physical barrier to the continued inland advance salt water. Management alternatives to control salt-water intrusion in the Santa Barbara area include (1) decreasing municipal pumping, (2) increasing the quantity of water available for recharge by releasing surplus water to Mission Creek, (3) artificially recharing the basin using injection wells, and (4) locating municipal supply wells farther from the coast and farther apart to minimize drawdown. (USGS)

  2. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    SciTech Connect

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A; Ge, Y

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.

  3. Processing of water level derived from water pressure data at the Time Series Station Spiekeroog

    NASA Astrophysics Data System (ADS)

    Holinde, L.; Badewien, T. H.; Freund, J. A.; Stanev, E. V.; Zielinski, O.

    2015-04-01

    The quality of water level time series data strongly varies with periods of high and low quality sensor data. In this paper we are presenting the processing steps which were used to generate high quality water level data from water pressure measured at the Time Series Station (TSS) Spiekeroog. The TSS is positioned in a tidal inlet between the islands of Spiekeroog and Langeoog in the East Frisian Wadden Sea (southern North Sea). The processing steps will cover sensor drift, outlier identification, interpolation of data gaps and quality control. A central step is the removal of outliers. For this process an absolute threshold of 0.25 m/10 min was selected which still keeps the water level increase and decrease during extreme events as shown during the quality control process. A second important feature of data processing is the interpolation of gappy data which is accomplished with a high certainty of generating trustworthy data. Applying these methods a 10 years dataset of water level information at the TSS was processed and the results were submitted to WDC MARE data base system PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.843740).

  4. Processing of water level derived from water pressure data at the Time Series Station Spiekeroog

    NASA Astrophysics Data System (ADS)

    Holinde, L.; Badewien, T. H.; Freund, J. A.; Stanev, E. V.; Zielinski, O.

    2015-10-01

    The quality of water level time series data strongly varies with periods of high- and low-quality sensor data. In this paper we are presenting the processing steps which were used to generate high-quality water level data from water pressure measured at the Time Series Station (TSS) Spiekeroog. The TSS is positioned in a tidal inlet between the islands of Spiekeroog and Langeoog in the East Frisian Wadden Sea (southern North Sea). The processing steps will cover sensor drift, outlier identification, interpolation of data gaps and quality control. A central step is the removal of outliers. For this process an absolute threshold of 0.25 m 10 min-1 was selected which still keeps the water level increase and decrease during extreme events as shown during the quality control process. A second important feature of data processing is the interpolation of gappy data which is accomplished with a high certainty of generating trustworthy data. Applying these methods a 10-year data set (December 2002-December 2012) of water level information at the TSS was processed resulting in a 7-year time series (2005-2011). Supplementary data are available at doi:10.1594/PANGAEA.843740.

  5. Variation of Great Lakes Water Levels Derived from Geosat Altimetry

    NASA Technical Reports Server (NTRS)

    Morris, Charles S.; Gill, Stephen K.

    1994-01-01

    A technique for using satellite radar altimetry data to estimate the temporal variation of the water level in moderate to large lakes and enclosed seas is described. Great Lakes data from the first 2 years of the U.S. Navy's Geosat Exact Repeat Mission (November 1986 to November 1988), for which there is an improved orbit, are used to demonstrate the technique. The Geosat results are compared to the lake level data collected by the Great Lakes Section, National Ocean Service, National Oceanic and Atmospheric Administration, and are found to reproduce the temporal variations of the five major lakes with Root-Mean-Square error (RMS) ranging from 9.4 to 13.8 cm and a combined average of 11.1 cm. Geosat data are also analyzed for Lake St. Clair, representing a moderate-sized lake, with a resulting rms of 17.0 cm. During this study period, the water level in the Great Lakes varied in a typical annual cycle of about 0.2 m (0.5 in for Lake Ontario) superimposed on a general decline of approximately 0.5 m. The altimeter data reproduced the general decline reasonably well for all the lakes, but the annual cycle was obscured in some lakes due to systematic errors in the altimeter data. Current and future altimetry missions will have markedly improved accuracy which will permit many moderate (25 km diameter) or larger lakes or enclosed seas to be routinely monitored.

  6. Wheat: Its water use, production and disease detection and prediction. [Kansas

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T. (principal investigator); Lenhert, D.; Niblett, C.; Manges, H.; Eversmeyer, M. G.

    1974-01-01

    The author has identified the following significant results. Discussed in this report are: (1) the effects of wheat disease on water use and yield; and (2) the use of ERTS-1 imagery in the evaluation of wheat growth and in the detection of disease severity. Leaf area index was linearly correlated with ratios MSS4:MSS5 and MSS5:MSS6. In an area of severe wheat streak mosaic virus infected fields, correlations of ERTS-1 digital counts with wheat yields and disease severity levels were significant at the 5% level for MSS bands 4 and 5 and band ratios 4/6 and 4/7. Data collection platforms were used to gather meteorological data for the early prediction of rust severity and economic loss.

  7. Screening Experiments for Removal of Low-Level Tritiated Water

    SciTech Connect

    Kim, Yun Mi; Baney, Ronald; Powers, Kevin; Koopman, Ben; Tulenko, James

    2005-03-15

    Screening experiments for low levels of tritiated water (HTO) remediation based upon selective adsorption/desorption mechanisms utilizing equilibrium isotope effects have been carried out. Several organic and inorganic high surface area materials were investigated to assess their ability to selectively adsorb low concentrations of HTO. Ion-exchange resins with cation functionalities, chitosan, sodium alginate, and several inorganic media modified with metal cations exhibited promising results. Biomaterials, for example, chitosan and modified alginate, demonstrated positive results. Based on the literature and our preliminary testing, we postulate four possible mechanisms for selected tritium adsorption: hydrogen ion exchange, HTO coordination with surface cation sites, hydrogen bonding to surface basic sites, and secondary hydrogen bonding (structural water) in fine pores.

  8. Demonstration of the Water Erosion Prediction Project (WEPP) internet interface and services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Erosion Prediction Project (WEPP) model is a process-based FORTRAN computer simulation program for prediction of runoff and soil erosion by water at hillslope profile, field, and small watershed scales. To effectively run the WEPP model and interpret results additional software has been de...

  9. Social Status Predicts How Sex Steroid Receptors Regulate Complex Behavior across Levels of

    E-print Network

    Hofmann, Hans A.

    Social Status Predicts How Sex Steroid Receptors Regulate Complex Behavior across Levels, in part mediated by gonadal hormones, although how each sex steroid acts across levels of biological organization is not well understood. We examine the role of sex steroids in modulating social behavior

  10. A Machine Learning Approach to Predicting Blood Glucose Levels for Diabetes Management

    E-print Network

    Bunescu, Razvan C.

    Abstract Patients with diabetes must continually monitor their blood glucose levels and adjust insulin: an insulin pump; a continuous BG monitoring sys- tem; and a closed loop control algorithm to tie themA Machine Learning Approach to Predicting Blood Glucose Levels for Diabetes Management Kevin Plis

  11. BIOASSAY PROCEDURE FOR PREDICTING COLIFORM BACTERIAL GROWTH IN DRINKING WATER

    EPA Science Inventory

    Water quality degradation due to the growth of microorganisms Is an area of concern for many water utilities. urrently the nutrient status of drinking water is difficult to measure and can only be defined in relative terms. o date, the procedures developed for determining the amo...

  12. BIOASSAY PROCEDURES FOR PREDICTING COLIFORM BACTERIAL GROWTH IN DRINKING WATER

    EPA Science Inventory

    Water quality degradation due to the growth of microorganisms is an area of concern for many water utilities. o date, the procedures developed or determining the amount of biodegradable material present in potable water have utilized heterotrophic non-coliform bacteria as bioassa...

  13. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model

    NASA Astrophysics Data System (ADS)

    Chang, Juan; Wang, Genxu; Mao, Tianxu

    2015-10-01

    Suprapermafrost groundwater has an important role in the hydrologic cycle of the permafrost region. However, due to the notably harsh environmental conditions, there is little field monitoring data of groundwater systems, which has limited our understanding of permafrost groundwater dynamics. There is still no effective mathematical method and theory to be used for modeling and forecasting the variation in the permafrost groundwater. Two ANN models, one with three input variables (previous groundwater level, temperature and precipitation) and another with two input variables (temperature and precipitation only), were developed to simulate and predict the site-specific suprapermafrost groundwater level on the slope scale. The results indicate that the three input variable ANN model has superior real-time site-specific prediction capability and produces excellent accuracy performance in the simulation and forecasting of the variation in the suprapermafrost groundwater level. However, if there are no field observations of the suprapermafrost groundwater level, the ANN model developed using only the two input variables of the accessible climate data also has good accuracy and high validity in simulating and forecasting the suprapermafrost groundwater level variation to overcome the data limitations and parameter uncertainty. Under scenarios of the temperature increasing by 0.5 or 1.0 °C per 10 years, the suprapermafrost groundwater level is predicted to increase by 1.2-1.4% or 2.5-2.6% per year with precipitation increases of 10-20%, respectively. There were spatial variations in the responses of the suprapermafrost groundwater level to climate change on the slope scale. The variation ratio and the amplitude of the suprapermafrost groundwater level downslope are larger than those on the upper slope under climate warming. The obvious vulnerability and spatial variability of the suprapermafrost groundwater to climate change will impose intensive effects on the water cycle and alpine ecosystems in the permafrost region.

  14. C-band Radar Observes Water-level Change in Coastal Louisiana Swamp Forests

    NASA Astrophysics Data System (ADS)

    Rykhus, R.; Lu, Z.; Crane, M.; Kwoun, O.; Wells, C.; Swarzenski, C.

    2005-12-01

    It is commonly recognized that C-band (wavelength of 5.7 cm) radar pulses backscatter from the upper canopy of swamp forests. Consequently, interferometric analysis of C-band imagery has not been exploited to study water-level changes in swamp forests. Using C-band ERS-1 and ERS-2 radar images, we show that interferometric synthetic aperture radar (InSAR) images maintain adequate coherence over swamp forests composed of moderately dense trees with a medium-low canopy closure in southeastern Louisiana over a time window of a few months. The InSAR images acquired during leaf-off seasons (October - April) can maintain coherence up to 5 years. This unexpected phenomenon is believed to be due to double-bounce returns of C-band radar signal reflecting off tree trunks and the water surface. The persistent coherence of C-band radar signal over swamp forests allows us to measure changes in water-level beneath tree cover with an unprecedented degree of vertical accuracy. Future InSAR images with shorter repeat times will be capable of characterizing the temporal evolution of water-level changes to improve hydrological modeling predictions and enhance assessments of future flood hazards over wetlands.

  15. C-band Radar Observes Water-level Change in Coastal Louisiana Swamp Forests

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Crane, M.; Kwoun, O.; Wells, C.; Swarzenski, C.; Rykhus, R.

    2005-05-01

    It is commonly recognized that C-band (wavelength of 5.7 cm) radar pulses backscatter from the upper canopy of swamp forests. Consequently, interferometric analysis of C-band imagery has not been exploited to study water-level changes in swamp forests. Using C-band ERS-1 and ERS-2 radar images, we showed that interferometric synthetic aperture radar (InSAR) images maintained adequate coherence over swamp forests composed of moderately dense trees with a medium-low canopy closure in southeastern Louisiana over a time window of a few months. This unexpected phenomenon is believed to be due to double-bounce returns of C-band radar signal reflecting off tree trunks and the water surface. The persistent coherence of C-band radar signal over swamp forests allowed us to measure changes in water-level beneath tree cover with an unprecedented degree of vertical accuracy. Future InSAR images with shorter repeat times will be capable of characterizing the temporal evolution of water-level changes to improve hydrological modeling predictions and enhance assessments of future flood hazards over wetlands.

  16. On an economic prediction of the finer resolution level wavelet coefficients in electron structure calculations

    E-print Network

    Szilvia Nagy; János Pipek

    2015-02-28

    In wavelet based electron structure calculations introducing a new, finer resolution level is usually an expensive task, this is why often a two-level approximation is used with very fine starting resolution level. This process results in large matrices to calculate with and a large number of coefficients to be stored. In our previous work we have developed an adaptively refining solution scheme that determines the indices, where refined basis functions are to be included, and later a method for predicting the next, finer resolution coefficients in a very economic way. In the present contribution we would like to determine, whether the method can be applied for predicting not only the first, but also the other, higher resolution level coefficients. Also the energy expectation values of the predicted wave functions are studied, as well as the scaling behaviour of the coefficients in the fine resolution limit.

  17. An economic prediction of the finer resolution level wavelet coefficients in electronic structure calculations.

    PubMed

    Nagy, Szilvia; Pipek, János

    2015-11-25

    In wavelet based electronic structure calculations, introducing a new, finer resolution level is usually an expensive task, this is why often a two-level approximation is used with very fine starting resolution level. This process results in large matrices to calculate with and a large number of coefficients to be stored. In our previous work we have developed an adaptively refined solution scheme that determines the indices, where the refined basis functions are to be included, and later a method for predicting the next, finer resolution coefficients in a very economic way. In the present contribution, we would like to determine whether the method can be applied for predicting not only the first, but also the other, higher resolution level coefficients. Also the energy expectation values of the predicted wave functions are studied, as well as the scaling behaviour of the coefficients in the fine resolution limit. PMID:26176200

  18. On the interpretation of coastal aquifer water level trends and water balances: A precautionary note

    NASA Astrophysics Data System (ADS)

    Morgan, L.; Werner, A. D.; Simmons, C.

    2012-12-01

    It is common for seawater intrusion-induced interface movements and associated changes in seawater volume not to be considered in coastal aquifer management studies. However, it is not well understood when this simplified approach may result in erroneous estimates of freshwater volumes and flawed interpretations of water level trend analyses. This gap is addressed in this study using a simple steady-state, sharp-interface, analytic modelling approach (i.e., Strack, 1976) to generate idealised relationships between seawater volume, freshwater volume and water levels. For a number of case studies, water level trends were found to be increasingly insensitive to reductions in freshwater volume and, as such, changes in seawater volume need to be considered when using water level trends as a measure of sustainability (e.g., within trigger-level management approaches, as commonly applied in Australia). The conditions under which seawater volume changes have greatest impact on water level trends are also described. Changes in seawater volume (over an assumed timescale) were found to represent 10% to 30% of freshwater discharge under realistic water table decline scenarios. As such, it is shown that changes in seawater volume need to be included within water balance assessments for the case studies considered. These results have wide-sweeping implications for coastal aquifer management, demonstrating that seawater volume changes may, in many cases, need to be included to avoid over-allocation of groundwater. In view of the short-comings associated with using water level trends to assess coastal aquifer status, an approach involving the comparison of groundwater levels relative to the hydraulic head imposed by the ocean, accounting for density effects, is recommended. A representative head for the coastal boundary in freshwater-only representations of unconfined aquifers is proposed that produces reasonable fluxes of freshwater discharge to the sea. This new coastal head adds to the Post et al. (2007) discussion of freshwater head calculations. It provides a first-order estimate of the value that near-shoreline watertable levels should exceed to maintain a discharge to the sea and to avoid SWI issues. The analytic solution used for this study involves an assumption of quasi-equilibrium conditions between the water table and interface. This assumption was evaluated using a selection of transient simulations and was found to be a reasonable approximation in the majority of case studies. As such, the analytic methods presented here can, in many cases, be rapidly applied to assess the need to consider seawater volumes within specific cases. References Post, V., Kooi, H., Simmons, C., 2007. Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45(6), 664-671. Strack, O.D.L., 1976. Single-potential solution for regional interface problems in coastal aquifers. Water Resources Research 12, 1165-1174.

  19. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... erosion. 610.12 Section 610.12 Agriculture Regulations of the Department of Agriculture (Continued... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  20. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... erosion. 610.12 Section 610.12 Agriculture Regulations of the Department of Agriculture (Continued... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  1. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... erosion. 610.12 Section 610.12 Agriculture Regulations of the Department of Agriculture (Continued... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  2. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... erosion. 610.12 Section 610.12 Agriculture Regulations of the Department of Agriculture (Continued... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  3. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... erosion. 610.12 Section 610.12 Agriculture Regulations of the Department of Agriculture (Continued... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  4. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula

    NASA Astrophysics Data System (ADS)

    Nowosad, Jakub

    2015-10-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.

  5. RELATIONSHIPS BETWEEN LEVELS OF HETEROTROPHIC BACTERIA AND WATER QUALITY PARAMETERS IN A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Conventional plating methods were used to quantify heterotrophic bacteria from a drinking water distribution system. Three media, plate count agar (PCA), R2A agar and sheep blood agar (TSA-SB) were used to determine heterotrophic plate count (HPC) levels. Grab samples were collec...

  6. Predicting energy requirement with pedometer-determined physical-activity level in women with chronic obstructive pulmonary disease

    PubMed Central

    Farooqi, Nighat; Slinde, Frode; Carlsson, Maine; Håglin, Lena; Sandström, Thomas

    2015-01-01

    Background In clinical practice, in the absence of objective measures, simple methods to predict energy requirement in patients with chronic obstructive pulmonary disease (COPD) needs to be evaluated. The aim of the present study was to evaluate predicted energy requirement in females with COPD using pedometer-determined physical activity level (PAL) multiplied by resting metabolic rate (RMR) equations. Methods Energy requirement was predicted in 18 women with COPD using pedometer-determined PAL multiplied by six different RMR equations (Harris–Benedict; Schofield; World Health Organization; Moore; Nordic Nutrition Recommendations; Nordenson). Total energy expenditure (TEE) was measured by the criterion method: doubly labeled water. The predicted energy requirement was compared with measured TEE using intraclass correlation coefficient (ICC) and Bland–Altman analyses. Results The energy requirement predicted by pedometer-determined PAL multiplied by six different RMR equations was within a reasonable accuracy (±10%) of the measured TEE for all equations except one (Nordenson equation). The ICC values between the criterion method (TEE) and predicted energy requirement were: Harris–Benedict, ICC =0.70, 95% confidence interval (CI) 0.23–0.89; Schofield, ICC =0.71, 95% CI 0.21–0.89; World Health Organization, ICC =0.74, 95% CI 0.33–0.90; Moore, ICC =0.69, 95% CI 0.21–0.88; Nordic Nutrition Recommendations, ICC =0.70, 95% CI 0.17–0.89; and Nordenson, ICC =0.40, 95% CI ?0.19 to 0.77. Bland–Altman plots revealed no systematic bias for predicted energy requirement except for Nordenson estimates. Conclusion For clinical purposes, in absence of objective methods such as doubly labeled water method and motion sensors, energy requirement can be predicted using pedometer-determined PAL and common RMR equations. However, for assessment of nutritional status and for the purpose of giving nutritional treatment, a clinical judgment is important regarding when to accept a predicted energy requirement both at individual and group levels. PMID:26109854

  7. Roughness and discharge uncertainty propagation in water level calculations :

    NASA Astrophysics Data System (ADS)

    Goutal, Nicole; Arnaud, Aurelie; Goeury, Cedric; Ata, Riadh

    2015-04-01

    In hydraulics, water level simulations are necessary for variety of purposes, such as flood, hydraulic structures design etc. Knowledge of the uncertainty in flow depth estimation is crucial for risk assessment and hydraulic structures design. In hydraulics models, the sources of uncertainty are manifold : roughness coefficient, boundary conditions (discharge - geometry - data for calibration etc) . In the present study, we will investigate the effect of two key uncertainty sources on water level simulations in 1D - 2D hydraulic models : the roughness coefficient and the discharge quantile, i.e. the flow rate corresponding to a given return period. A Monte-Carlo method is used to propagate the input uncertainty through the model in case of a real case study on a 50 km reach of the Garonne river. The difficulty with the crude Monte-Carlo method is due to the convergence, for instance the approximation of quantile could be time consuming. It will be illustrated on a real case of river that we propose for a benchmark.

  8. West African Monsoon water cycle: 2. Assessment of numerical weather prediction water budgets

    NASA Astrophysics Data System (ADS)

    Meynadier, R.; Bock, O.; Gervois, S.; Guichard, F.; Redelsperger, J.-L.; Agustí-Panareda, A.; Beljaars, A.

    2010-10-01

    Water budgets from European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA)-Interim and National Centers for Environmental Prediction (NCEP) Reanalysis I and II are intercompared and compared to GPS precipitable water and to the 6 year hybrid budget data set described in part 1 of this study. Deficiencies are evidenced in the reanalyses which are most pronounced over the Sahel. Results from operational models (ECMWF Integrated Forecast System, NCEP Global Forecast System, and ARPEGE-Tropiques) and the special ECMWF African Monsoon Multidisciplinary Analyses reanalysis confirm and help understanding these findings. A bias (˜1-2 mm d-1) in precipitation and evapotranspiration leads to an unrealistic view of West Africa as a moisture source during the summer. North of the rainband (13°N-16°N), moisture flux convergence (MFC) shows a minimum in the NCEP models and divergence in the ECMWF models not consistent with the hybrid data set. This feature, added to presence of a deep layer of northerly dry air advected at midlevels (800-400 hPa), is thought to block the development of deep convection in the models and the northward propagation of the monsoonal rainband. The northerly flow is part of a shallow meridional circulation that is driven by the Saharan heat low. This circulation appears too strong in some of the models, a possible consequence of the too-approximate representation of physical processes and land surface properties over the Sahel. In most of the models, evapotranspiration shows poor connection with precipitation. This is linked with large analysis increments in precipitable water, soil moisture, and MFC. Despite the large biases affecting the water budget components in the models, temporal variations (seasonal and interannual) might nevertheless be recovered with reasonable accuracy.

  9. Ground-water levels near the top of the water-table mound, western Cape Cod, Massachusetts, 2002-04

    USGS Publications Warehouse

    Massey, Andrew J.; Carlson, Carl S.; LeBlanc, Denis R.

    2006-01-01

    In January 2002 the U.S. Geological Survey began continuous water-level monitoring in three wells in the vicinity of the Southeast Ranges of Camp Edwards, near the Impact Area of the Massachusetts Military Reservation on Cape Cod. The purpose of this effort was to examine how water levels at sites with different unsaturated-zone thicknesses near the top of the water-table mound beneath western Cape Cod are affected by temporally variable recharge from precipitation, which is the sole source of water to the sand and gravel aquifer. The depths to water at the well sites are about 18, 30, and 101 feet below land surface. This report presents the first 3 years of water-level records and an estimate of aquifer recharge calculated from climatological measurements by the Jensen and Haise method and the Thornthwaite method. The water levels in the three wells varied temporally by about 4.5 feet during the study period. A comparison of the water levels with those measured in a nearby monitoring well with about 42 years of monthly measurements indicates that the 3-year monitoring period included the lowest water levels on western Cape Cod since the drought of the 1960's. The response of water levels to recharge was related to the depth to water. Water levels in the two wells with shallow depths to water responded quickly (within hours or days) to recharge, whereas the water-level response in the well with the greatest depth to water often lagged the recharge event by a month or more. The variations in the water levels among the wells changed as the location of the top of the water-table mound moved with the changing water-table altitude.

  10. Liquid-vapor equilibrium isotopic fractionation of water: How well can classical water models predict it?

    NASA Astrophysics Data System (ADS)

    Chialvo, Ariel A.; Horita, Juske

    2009-03-01

    The liquid-vapor equilibrium isotopic fractionation of water is determined by molecular-based simulation, via Gibbs ensemble Monte Carlo and isothermal-isochoric molecular dynamics involving two radically different but realistic models, the extended simple point charge, and the Gaussian charge polarizable models. The predicted temperature dependence of the liquid-vapor equilibrium isotopic fractionation factors for H2O18/H2O16, H2O17/H2O16, and H2H1O16/H21O16 are compared against the most accurate experimental datasets to assess the ability of these intermolecular potential models to describe quantum effects according to the Kirkwood-Wigner free energy perturbation ?2-expansion. Predictions of the vapor pressure isotopic effect for the H2O18/H2O16 and H2O17/H2O16 pairs are also presented in comparison with experimental data and two recently proposed thermodynamic modeling approaches. Finally, the simulation results are used to discuss some approximations behind the microscopic interpretation of isotopic fractionation based on the underlying rototranslational coupling.

  11. Tidal phase of Water level lags behind that of water temperature in Qi'xian observation well, China

    NASA Astrophysics Data System (ADS)

    Wang, B.; Ma, Y.; Huang, F.

    2014-12-01

    There are about 34 observation wells of water temperature which can record the effect of earth tide in national earthquake precursory network center. In most of the 34 wells, tidal phase of water temperature lag behind that of water level, but the opposite phenomenon exists in several observation wells. We take Qi'xian well which has long recording history and continuous data as an example to analyze this phenomenon. We check the instrument's time system by using water temperature and water level changes in response to some big earthquakes?and also check the tidal phase of water temperature and water level in Qi'xian well through harmonic analysis (Baytap-G software), as a result?we find the observation is objective. The fact that Tidal phase of Water level lags behind that of water temperature in Qi'xian observation well shows that water temperature changes may be independent from water level changes. Water temperature changes in this well might be interpreted by the stress-heat consumption hypothesis. This may be beneficial to the study of water temperature changes as an earthquake precursor. Figure 1. Water temperature and water level records of the Qi'xian well from February 26 to 27 in 2010?The coseismic changes due to the 2010 Sumatra earthquake is marked by an arrow?

  12. Predicting Impacts of Increased CO2 and Climate Change on the Water Cycle and Water Quality in the Semiarid James River Basin of the Midwestern USA

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang; Gallant, Alisa L.

    2012-01-01

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO2 concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO3–N) load under hypothetical climate-sensitivity scenarios in terms of CO2, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO2 concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO3–N load to streams, which could be beneficial, but a concomitant increase in NO3–N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin.

  13. Effects of sea-level rise on ground water flow in a coastal aquifer system

    USGS Publications Warehouse

    Masterson, J.P.; Garabedian, S.P.

    2007-01-01

    The effects of sea-level rise on the depth to the fresh water/salt water interface were simulated by using a density-dependent, three-dimensional numerical ground water flow model for a simplified hypothetical fresh water lens that is similar to shallow, coastal aquifers found along the Atlantic coast of the United States. Simulations of sea-level rise of 2.65 mm/year from 1929 to 2050 resulted in an increase in water levels relative to a fixed datum, yet a net decrease in water levels relative to the increased sea-level position. The net decrease in water levels was much greater near a gaining stream than farther from the stream. The difference in the change in water levels is attributed to the dampening effect of the stream on water level changes in response to sea-level rise. In response to the decreased water level altitudes relative to local sea level, the depth to the fresh water/salt water interface decreased. This reduction in the thickness of the fresh water lens varied throughout the aquifer and was greatly affected by proximity to a ground water fed stream and whether the stream was tidally influenced. Away from the stream, the thickness of the fresh water lens decreased by about 2% from 1929 to 2050, whereas the fresh water lens thickness decreased by about 22% to 31% for the same period near the stream, depending on whether the stream was tidally influenced. The difference in the change in the fresh water/salt water interface position is controlled by the difference in the net decline in water levels relative to local sea level. ?? 2007 National Ground Water Association.

  14. An empirical method for predicting the mixing noise levels of subsonic circular and coaxial jets

    NASA Technical Reports Server (NTRS)

    Russell, J. W.

    1984-01-01

    An empirical method for predicting the static free field source noise levels of subsonic circular and coaxial jet flow streams is presented. The method was developed from an extensive data base of 817 jet tests obtained from five different government and industry sources in three nations. The prediction method defines the jet noise in terms of four components which are overall power level, power spectrum level, directivity index, and relative spectrum level. The values of these noise level components are defined on a grid consisting of seven frequency parameter values (Strouhal numbers) and seven directivity angles. The value of the noise level at each of these grid points is called a noise level coordinate and was defined as a function of five jet exhaust flow state parameters which are equivalent jet velocity, equivalent jet total temperature, the velocity ratio (outer stream to inner stream), temperature ratio, and area ratio. The functions were obtained by curve fitting in a least squares sense the noise level coordinates from the data base in a five dimensional flow state space using a third order Taylor series. The noise level coordinates define the component noise levels for all frequencies and directivities through a bicubic spline function.

  15. A biodynamic model predicting waterborne lead bioaccumulation in Gammarus pulex: Influence of water chemistry and in situ validation.

    PubMed

    Urien, N; Uher, E; Billoir, E; Geffard, O; Fechner, L C; Lebrun, J D

    2015-08-01

    Metals bioaccumulated in aquatic organisms are considered to be a good indicator of bioavailable metal contamination levels in freshwaters. However, bioaccumulation depends on the metal, the species, and the water chemistry that influences metal bioavailability. In the laboratory, a kinetic model was used to describe waterborne Pb bioaccumulated in Gammarus pulex. Uptake and elimination rate constants were successfully determined and the effect of Ca(2+) on Pb uptake was integrated into the model. Thereafter, accumulated Pb concentrations in organisms were predicted with the model and compared with those measured in native populations from the Seine watershed (France). The predictions had a good agreement with the bioaccumulation levels observed in native gammarids and particularly when the effect of calcium was considered. To conclude, kinetic parameters experimentally derived for Pb in G. pulex are applicable in environmental conditions. Moreover, the consideration of the water's chemistry is crucial for a reliable interpretation of bioaccumulation. PMID:25845358

  16. Improved multi-level protein–protein interaction prediction with semantic-based regularization

    PubMed Central

    2014-01-01

    Background Protein–protein interactions can be seen as a hierarchical process occurring at three related levels: proteins bind by means of specific domains, which in turn form interfaces through patches of residues. Detailed knowledge about which domains and residues are involved in a given interaction has extensive applications to biology, including better understanding of the binding process and more efficient drug/enzyme design. Alas, most current interaction prediction methods do not identify which parts of a protein actually instantiate an interaction. Furthermore, they also fail to leverage the hierarchical nature of the problem, ignoring otherwise useful information available at the lower levels; when they do, they do not generate predictions that are guaranteed to be consistent between levels. Results Inspired by earlier ideas of Yip et al. (BMC Bioinformatics 10:241, 2009), in the present paper we view the problem as a multi-level learning task, with one task per level (proteins, domains and residues), and propose a machine learning method that collectively infers the binding state of all object pairs. Our method is based on Semantic Based Regularization (SBR), a flexible and theoretically sound machine learning framework that uses First Order Logic constraints to tie the learning tasks together. We introduce a set of biologically motivated rules that enforce consistent predictions between the hierarchy levels. Conclusions We study the empirical performance of our method using a standard validation procedure, and compare its performance against the only other existing multi-level prediction technique. We present results showing that our method substantially outperforms the competitor in several experimental settings, indicating that exploiting the hierarchical nature of the problem can lead to better predictions. In addition, our method is also guaranteed to produce interactions that are consistent with respect to the protein–domain–residue hierarchy. PMID:24725682

  17. Project Water Science. General Science High School Level.

    ERIC Educational Resources Information Center

    Water Education Foundation, Sacramento, CA.

    This teacher's guide presents 12 hands-on laboratory activities for high school science classes that cover the environmental issue of water resources in California. The activities are separated into three sections. Five activities in the section on water quality address the topics of groundwater, water hardness, bottled water, water purity, and…

  18. Global Anthropogenic Phosphorus Loads to Fresh Water, Grey Water Footprint and Water Pollution Levels: A High-Resolution Global Study

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.

  19. The Water Level Fall of Lake Megali Prespa (N Greece): an Indicator of Regional Water Stress Driven by Climate Change and Amplified by Water Extraction?

    NASA Astrophysics Data System (ADS)

    van der Schriek, Tim; Giannakopoulos, Christos

    2014-05-01

    The Mediterranean stands out globally due to its sensitivity to (future) climate change, with future projections predicting an increase in excessive drought events and declining rainfall. Regional freshwater ecosystems are particularly threatened: precipitation decreases, while extreme droughts increase and human impacts intensify (e.g. water extraction, drainage, pollution and dam-building). Many Mediterranean lake-wetland systems have shrunk or disappeared over the past two decades. Protecting the remaining systems is extremely important for supporting global biodiversity and for ensuring sustainable water availability. This protection should be based on a clear understanding of lake-wetland hydrological responses to natural and human-induced changes, which is currently lacking in many parts of the Mediterranean. The interconnected Prespa-Ohrid Lake system is a global hotspot of biodiversity and endemism. The unprecedented fall in water level (~8m) of Lake Megali Prespa threatens this system, but causes remain debated. Modelling suggests that the S Balkan will experience rainfall and runoff decreases of ~30% by 2050. However, projections revealing the potential impact of these changes on future lake level are unavailable as lake regime is not understood. A further drop in lake level may have serious consequences. The Prespa Lakes contribute ~25% of the total inflow into Lake Ohrid through underground karst channels; falling lake levels decrease this discharge. Lake Ohrid, in turn, feeds the Drim River. This entire catchment may therefore be affected by falling lake levels; its water resources are of great importance for Greece, Albania, FYROM and Montenegro (e.g. tourism, agriculture, hydro-energy, urban & industrial use). This new work proves that annual water level fluctuations of Lake Megali Prespa are predominantly related to precipitation during the first 7 months (Oct-Apr) of the hydrological year (Oct-Sep). Lake level is very sensitive to regional and Mediterranean wet-dry events during this period. There are robust indications for a link between lake level and the North Atlantic Oscillation, which is known to strongly influence Mediterranean winter precipitation. Hydro-climatic records show a complicated picture, but tentatively support the conclusion that the unprecedented lake level fall is principally related to climate change. The available fluvial discharge record and most existing snowfall records show statistically significant decreases in annual averages. Annual rainfall only shows a statistically significant decrease of the 25th percentile; 7-month rainfall (Oct-Apr) additionally shows a statistically significant but non-robust decrease of the mean. The modest amount of water extraction (annually: ~14*103m3, ~0.004% of total lake volume) exerts a progressive and significant impact on lake level over the longer term, accounting for ~25% of the observed fall. Lake level lowering ends when lake-surface area shrinkage has led to a decrease in lake-surface evaporation that is equivalent to the amount of water extracted. The adjustment of lake level to stable extraction rates requires two to three decades. This work aims to steer adaptation and mitigation strategies by informing on lake response under different climate change and extraction scenarios. Lake protection is a cost effective solution for supporting global biodiversity and for providing sustainable water resources.

  20. GPS water level measurements for Indonesia's Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Schöne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.

    2011-03-01

    On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  1. Application of empirical predictive modeling using conventional and alternative fecal indicator bacteria in eastern North Carolina waters

    USGS Publications Warehouse

    Gonzalez, Raul; Conn, Kathleen E.; Crosswell, Joey; Noble, Rachel

    2012-01-01

    Coastal and estuarine waters are the site of intense anthropogenic influence with concomitant use for recreation and seafood harvesting. Therefore, coastal and estuarine water quality has a direct impact on human health. In eastern North Carolina (NC) there are over 240 recreational and 1025 shellfish harvesting water quality monitoring sites that are regularly assessed. Because of the large number of sites, sampling frequency is often only on a weekly basis. This frequency, along with an 18–24 h incubation time for fecal indicator bacteria (FIB) enumeration via culture-based methods, reduces the efficiency of the public notification process. In states like NC where beach monitoring resources are limited but historical data are plentiful, predictive models may offer an improvement for monitoring and notification by providing real-time FIB estimates. In this study, water samples were collected during 12 dry (n = 88) and 13 wet (n = 66) weather events at up to 10 sites. Statistical predictive models for Escherichiacoli (EC), enterococci (ENT), and members of the Bacteroidales group were created and subsequently validated. Our results showed that models for EC and ENT (adjusted R2 were 0.61 and 0.64, respectively) incorporated a range of antecedent rainfall, climate, and environmental variables. The most important variables for EC and ENT models were 5-day antecedent rainfall, dissolved oxygen, and salinity. These models successfully predicted FIB levels over a wide range of conditions with a 3% (EC model) and 9% (ENT model) overall error rate for recreational threshold values and a 0% (EC model) overall error rate for shellfish threshold values. Though modeling of members of the Bacteroidales group had less predictive ability (adjusted R2 were 0.56 and 0.53 for fecal Bacteroides spp. and human Bacteroides spp., respectively), the modeling approach and testing provided information on Bacteroidales ecology. This is the first example of a set of successful statistical predictive models appropriate for assessment of both recreational and shellfish harvesting water quality in estuarine waters.

  2. Geographical distribution of drinking-water with high iodine level and association between high iodine level in drinking-water and goitre: a Chinese national investigation.

    PubMed

    Shen, Hongmei; Liu, Shoujun; Sun, Dianjun; Zhang, Shubin; Su, Xiaohui; Shen, Yanfeng; Han, Hepeng

    2011-07-01

    Excessive iodine intake can cause thyroid function disorders as can be caused by iodine deficiency. There are many people residing in areas with high iodine levels in drinking-water in China. The main aim of the present study was to map the geographical distribution of drinking-water with high iodine level in China and to determine the relationship between high iodine level in drinking-water and goitre prevalence. Iodine in drinking-water was measured in 1978 towns of eleven provinces in China, with a total of 28,857 water samples. We randomly selected children of 8-10 years old, examined the presence of goitre and measured their urinary iodine in 299 towns of nine provinces. Of the 1978 towns studied, 488 had iodine levels between 150 and 300 ?g/l in drinking-water, and in 246 towns, the iodine level was >300 ?g/l. These towns are mainly distributed along the original Yellow River flood areas, the second largest river in China. Of the 56 751 children examined, goitre prevalence was 6.3 % in the areas with drinking-water iodine levels of 150-300 ?g/l and 11.0 % in the areas with drinking-water iodine >300 ?g/l. Goitre prevalence increased with water and urinary iodine levels. For children with urinary iodine >1500 ?g/l, goitre prevalence was 3.69 times higher than that for those with urinary iodine levels of 100-199 ?g/l. The present study suggests that drinking-water with high iodine levels is distributed in eleven provinces of China. Goitre becomes more prevalent with the increase in iodine level in drinking-water. Therefore, it becomes important to prevent goitre through stopping the provision of iodised salt and providing normal drinking-water iodine through pipelines in these areas in China. PMID:21320367

  3. Predicted and Measured Modal Sound Power Levels for a Fan Ingesting Distorted Inflow

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2010-01-01

    Refinements have been made to a method for estimating the modal sound power levels of a ducted fan ingesting distorted inflow. By assuming that each propagating circumferential mode consists only of a single radial mode (the one with the highest cut-off ratio), circumferential mode sound power levels can be computed for a variety of inflow distortion patterns and operating speeds. Predictions from the refined theory have been compared to data from an experiment conducted in the Advanced Noise Control Fan at NASA Glenn Research Center. The inflow to the fan was distorted by inserting cylindrical rods radially into the inlet duct. The rods were placed at an axial location one rotor chord length upstream of the fan and arranged in both regular and irregular circumferential patterns. The fan was operated at 2000, 1800, and 1400 rpm. Acoustic pressure levels were measured in the fan inlet and exhaust ducts using the Rotating Rake fan mode measurement system. Far field sound pressure levels were also measured. It is shown that predicted trends in circumferential mode sound power levels closely match the experimental data for all operating speeds and distortion configurations tested. Insight gained through this work is being used to develop more advanced tools for predicting fan inflow distortion tone noise levels.

  4. NOAA NOS CO-OPS Hurricane Wilma Preliminary Report Hurricane Wilma Preliminary Water Levels Report

    E-print Network

    NOAA NOS CO-OPS Hurricane Wilma Preliminary Report Hurricane Wilma Preliminary Water Levels Report;NOAA NOS CO-OPS Hurricane Wilma Preliminary Report Page 2 of 11 SUMMARY Water level stations operated-OPS) recorded elevated water levels during the landfall of Hurricane WILMA from Fort Myers, FL to Trident Pier

  5. Terrestrial waters and sea level variations on interannual time scale W. Llovel a,

    E-print Network

    Terrestrial waters and sea level variations on interannual time scale W. Llovel a, , M. Becker expansion of sea waters and land ice loss are the main contributors to sea level variations. However also affect sea level. For the past decades, variations in land water storage and corresponding effects

  6. 77 FR 25721 - Small Entity Compliance Guide: Bottled Water: Quality Standard: Establishing an Allowable Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ...Compliance Guide: Bottled Water: Quality Standard...Establishing an Allowable Level for di(2-ethylhexyl...entitled ``Bottled Water: Quality Standard...Establishing an Allowable Level for di(2- ethylhexyl...amended its bottled water standard of quality...establishing an allowable level for di(2-...

  7. Estimating Impaired Waters on a County Level for Public Health Analysis

    EPA Science Inventory

    Assessing the population-level impact of water quality on health can be difficult. Water quality data are measured at a watershed level and health data are organized at different levels of aggregation. To address this discrepancy and enable the consideration of water quality for ...

  8. [A simulation model for predicting the dry matter allocation in cut lily plants under effects of substrate water potential].

    PubMed

    Dong, Yong-Yi; Li, Gang; An, Dong-Sheng; Luo, Wei-Hong

    2012-04-01

    Dry matter allocation and translocation is the base of the formation of appearance quality of ornamental plants, and strongly affected by water supply. Taking cut lily cultivar 'Sorbonne' as test material, a culture experiment of different planting dates and water supply levels was conducted in a multi-span greenhouse in Nanjing from March 2009 to January 2010 to quantitatively analyze the seasonal changes of the dry matter allocation and translocation in 'Sorbonne' plants and the effects of substrate water potential on the dry matter allocation indices for different organs (flower, stem, leaf, bulb, and root), aimed to define the critical substrate water potential for the normal growth of the cultivar, and establish a simulation model for predicting the dry matter allocation in cut lily plants under effects of substrate water potential. The model established in this study gave a good prediction on the dry mass of plant organs, with the coefficient of determination and the relative root mean square error between the simulated and measured values of the cultivar' s flower dry mass, stem dry mass, leaf dry mass, bulb dry mass, and root dry mass being 0.96 and 19.2%, 0.95 and 12.4%, 0.86 and 19.4%, 0.95 and 12.2%, and 0.85 and 31.7%, respectively. The critical water potential for the water management of cut lily could be -15 kPa. PMID:22803474

  9. Predicting blood lead levels from current and past environmental data in Europe.

    PubMed

    Bierkens, J; Smolders, R; Van Holderbeke, M; Cornelis, C

    2011-11-01

    The present case study on lead in Europe illustrates the use of the Integrated Monitoring Framework Strategy to assess the health outcome of environmental pollution by evaluating the associations between lead in various environmental compartments (air, soil, dust, drinking water and diet) and lead concentrations in blood (B-Pb) for various age-related sub-populations. The case study was aimed to investigate whether environmental, exposure and biomonitoring data at general population level, covering all EU member states, could be integrated. Although blood lead has been monitored extensively in Europe, consistent datasets are not yet available. Data diverge with regard to objectives, regional scale, sampling years, gender, age groups and sample size. Significant correlations were found between B-Pb and the concentrations of Pb in air and diet. The significant decrease of the Pb in air over time from 0.31 ?g/m(3) (P95: 0.94; n=98) prior to 1990 to 0.045 ?g/m(3) (P95: 0.11; n=256) in 2007 (latest observations included) (?=-85%) corresponds to a decline in B-Pb by 48% and 57% in adult women and adult men, respectively. For pre-school children a more shallow decline in B-Pb of 16% was calculated over the same period. Similarly, the reduction in Pb-dietary intake from on average 68.7 ?g/d (P95: 161.6; n=19) in 1978 to 35.7 ?g/d (P95: 82.3; n=33) in the years post 2000 (?=-48%) is paralleled by a decline in B-Pb of 32, 33 and 19% in adult women, primary- and pre-school children, respectively. Insufficient data exist for other age groups to calculate statistically significant correlations. Although regression models have been derived to predict B-Pb for different sub-populations in Europe based on Pb concentrations in air and soil as well as dietary intake, it is concluded that the available data are insufficient to accurately predict actual and future simultaneous exposure to Pb from various environmental compartments, and as a consequence the health impact of Pb for various target populations at EU scale. At least due to data availability, air Pb remains the best predictor of B-Pb in the population. However, lead emission sources have largely been reduced and inhalation of lead in air is not causal to B-Pb levels. Therefore, there is a need of adequate data for Pb in soil and house dust, and in diet and drinking water as these are causal exposure sources with a longer Pb half-life than air. An extended and more harmonized surveillance system monitoring B-Pb, especially in children, is urgently required in order to identify, quantify and reduce still remaining sources of Pb exposure. PMID:21917298

  10. Ground-water levels in water year 1987 and estimated ground-water pumpage in water years 1986-87, Carson Valley, Douglas County, Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1990-01-01

    Groundwater levels were measured at 58 wells during water year 1987 and a summary of estimated pumpage is given for water years 1986 and 1987 in Carson Valley, Douglas County, Nevada. The data were collected to provide a record of groundwater changes over the long-term and pumpage estimates that can be incorporated into an existing groundwater model. The estimated total pumpage in water year 1986 was 10,200 acre-ft and in water year 1987 was 13,400 acre-ft. Groundwater levels exhibited seasonal fluctuations but remained relatively stable over the reporting period throughout most of the valley. (USGS)

  11. Towards a predictive systems-level model of the human microbiome: progress, challenges, and opportunities

    E-print Network

    Borenstein, Elhanan

    Towards a predictive systems-level model of the human microbiome: progress, challenges,2,3 The human microbiome represents a vastly complex ecosystem that is tightly linked to our development in a microbiome but also the interactions between these components. Such models should aim to study the microbiome

  12. Variable Level-Of-Detail Motion Planning in Environments with Poorly Predictable Bodies

    E-print Network

    Veloso, Manuela M.

    Variable Level-Of-Detail Motion Planning in Environments with Poorly Predictable Bodies Stefan Zickler and Manuela Veloso1 Abstract. Motion planning in dynamic environments consists of the generation a short part of the plan and then requires replanning, using the latest observed state of the environment

  13. Correlates of Achievement: Prediction and Cross-Validation for Intermediate Grade Levels.

    ERIC Educational Resources Information Center

    Marshall, Jon C.; Powers, Jerry M.

    A study was conducted to: (1) determine the simple and multiple correlation coefficients between selected educational/personal variables and academic achievement at intermediate grade levels as measured by the Iowa Tests of Basic Skills; (2) determine the multiple linear regression equations for predicting individual student achievement as…

  14. A Multi-Disciplinary Approach to High Level Fusion in Predictive Situational Awareness

    E-print Network

    Laskey, Kathryn Blackmond

    A Multi-Disciplinary Approach to High Level Fusion in Predictive Situational Awareness Paulo Cesar- dictive situation awareness (PSAW) system and the major issues that must be faced when attempting to meet- poseability. New technologies such as SOA and semanti- cally aware systems have come into the spotlight

  15. Prediction of county-level cancer incidence rates and counts in the United States

    Cancer.gov

    March 28, 2012 1:30 PM - 2:30 PM + Add to Outlook Calendar Speaker Binbing Yu, PhDChief, Biometry SectionLaboratory of Epidemiology, Demography, and BiometryNational Institute on Aging (NIA) Topic Prediction of county-level cancer incidence rates and

  16. Improved Climate Prediction through a System Level Understanding of Arctic Terrestrial Ecosystems

    E-print Network

    Hubbard, Susan

    the evolution of Arctic ecosystems in a changing climate can be modeled at the scale of a high resolution EarthImproved Climate Prediction through a System Level Understanding of Arctic Terrestrial Ecosystems and a rapidly evolving landscape, the Arctic has emerged as an important focal point for the study of climate

  17. The Level of Quality of Work Life to Predict Work Alienation

    ERIC Educational Resources Information Center

    Erdem, Mustafa

    2014-01-01

    The current research aims to determine the level of elementary school teachers' quality of work life (QWL) to predict work alienation. The study was designed using the relational survey model. The research population consisted of 1096 teachers employed at 25 elementary schools within the city of Van in the academic year 2010- 2011, and 346…

  18. Wind wave prediction in shallow water: Theory and applications

    SciTech Connect

    Cavaleri, L.; Rizzoli, P.M.

    1981-11-20

    A wind wave forecasting model is described, based upon the ray technique, which is specifically designed for shallow water areas. The model explicitly includes wave generation, refraction, and shoaling, while nonlinear dissipative processes (breaking and bottom fricton) are introduced through a suitable parametrization. The forecast is provided at a specified time and target position, in terms of a directional spectrum, from which the one-dimensional spectrum and the significant wave height are derived. The model has been used to hindcast storms both in shallow water (Northern Adriatic Sea) and in deep water conditions (Tyrrhenian Sea). The results have been compared with local measurements, and the rms error for the significant wave height is between 10 and 20%. A major problems has been found in the correct evaluation of the wind field.

  19. Prediction of postmine ground-water quality at a Texas surface lignite mine 

    E-print Network

    Wise, Clifton Farrell

    1995-01-01

    The prediction Of postmine ground-water quality is encumbered with many complications resulting from the complex hydrologic system found in mine spoils. Current analytical methods such as acid/base accounting have only had limited success...

  20. PREDICTIVE MODELING OF LIGHT-INDUCED MORTALITY OF ENTEROCOCCI FAECALIS IN RECREATIONAL WATERS

    EPA Science Inventory

    One approach to predictive modeling of biological contamination of recreational waters involves the application of process-based approaches that consider microbial sources, hydrodynamic transport, and microbial fate. This presentation focuses on one important fate process, light-...

  1. Water levels and water-level changes in the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers, Twin Cities metropolitan area, Minnesota, 1971-80

    USGS Publications Warehouse

    Schoenberg, Michael

    1984-01-01

    The Mississippi, Minnesota, and St. Croix Rivers greatly influence flow patterns in the Prairie du Chien-Jordan aquifer. Water generally flows toward these streams from surrounding water-level highs. Heavy pumping has caused only localized cones of depression. In contrast, pumping in Minneapolis and St. Paul has greatly influenced ground-water flow in the Mount Simon-Hinckley aquifer, resulting in a large cone of depression. Between 1971 and 1980 average water levels in the Prairie du Chien-Jordan aquifer changed less than 5 feet in most of the study area, while average water levels in the Mount Simon-Hinckley aquifer rose as much as 60 feet in the center of the cone of depression. Water-level data suggest that (1) little variation of annual pumpage between 1971 and 1980 from the Prairie du Chien-Jordan aquifer produced generally stable water levels in that aquifer, (2) decreased annual pumpage from 1971 to 1980 from the Mount Simon-Hinckley aquifer caused rising water levels in that aquifer, and (3) a greater seasonal component of pumpage for the Mount Simon-Hinckley aquifer than for the Prairie du Chien-Jordan produced larger and more widespread seasonal water-level declines in the Mount Simon-Hinckley than in the Prairie du Chien-Jordan, particularly during dry years. (USGS)

  2. Decadal predictability of soil water, vegetation, and wildfire frequency over North America

    NASA Astrophysics Data System (ADS)

    Chikamoto, Yoshimitsu; Timmermann, Axel; Stevenson, Samantha; DiNezio, Pedro; Langford, Sally

    2015-10-01

    The potential decadal predictability of land hydrological and biogeochemical variables in North America is examined using a 900-year-long pre-industrial control simulation, conducted with the NCAR Community Earth System Model (CESM) version 1.0.3. The leading modes of simulated North American precipitation and soil water storage are characterized essentially by qualitatively similar meridional seesaw patterns associated with the activity of the westerly jet. Whereas the corresponding precipitation variability can be described as a white noise stochastic process, power spectra of vertically integrated soil water exhibit significant redness on timescales of years to decades, since the predictability of soil water storage arises mostly from the integration of precipitation variability. As a result, damped persistence hindcasts following a 1st order Markov process are skillful with lead times of up to several years. This potential multi-year skill estimate is consistent with ensemble hindcasts conducted with the CESM for various initial conditions. Our control simulation further suggests that decadal variations in soil water storage also affect vegetation and wildfire occurrences. The long-term potential predictability of soil water variations in combination with the slow regrowth of vegetation after major disruptions leads to enhanced predictability on decadal timescales for vegetation, terrestrial carbon stock, and fire frequency, in particular in the Southern United States (US)/Mexico region. By contrast, the prediction skill of fire frequency in the Northern US is limited to 1 year. Our results demonstrate that skillful decadal predictions of soil water storage, carbon stock, and fire frequency are feasible with proper initialization of soil conditions. Although the potential predictability in our idealized modeling framework would overestimate the real predictability of the coupled climate-land-vegetation system, the decadal climate prediction may become beneficial for water resource management, forestry, and agriculture.

  3. Ground-water monitoring at Santa Barbara, California; Phase 2, Effects of pumping on water levels and on water quality in the Santa Barbara ground-water basin

    USGS Publications Warehouse

    Martin, Peter

    1984-01-01

    From July 1978 to January 1980, water levels in the southern part of the Santa Barbara ground-water basin declined more than 100 feet. These water-level declines resulted from increases in municipal pumping since July 1978. The increase in municipal pumping was part of a basin-testing program designed to determine the usable quantity of ground water in storage. The pumping, centered in the city less than 1 mile from the coast, has caused water-level declines to altitudes below sea level in the main water-bearing zones. As a result, the ground-water basin would be subject to saltwater intrusion if the study-period pumpage were maintained or increased. Data indicate that saltwater intrusion has degraded the quality of the water yielded from six coastal wells. During the study period, the six coastal wells all yielded water with chloride concentrations in excess of 250 milligrams per liter, and four of the wells yielded water with chloride concentrations in excess of 1,000 milligrams per liter. Previous investigators believed that saltwater intrusion was limited to the shallow part of the aquifer, directly adjacent to the coast. The possibility of saltwater intrusion into the deeper water-bearing deposits in the aquifer was thought to be remote because an offshore fault truncates these deeper deposits so that they lie against consolidated rocks on the seaward side of the fault. Results of this study indicate, however, that ocean water has intruded the deeper water-bearing deposits, and to a much greater extent than in the shallow part of the aquifer. Apparently the offshore fault is not an effective barrier to saltwater intrusion. No physical barriers are known to exist between the coast and the municipal well field. Therefore, if the pumping rate maintained during the basin-testing program were continued, the degraded water along the coast could move inland and contaminate the municipal supply wells. The time required for the degraded water to move from the coast to the nearest supply well is estimated, using Darcy's equation, to be about 20 years. Management alternatives for controlling saltwater intrusion in the Santa Barbara area include (1) decreasing municipal pumping, (2) increasing the quantity of water available for recharge by releasing surplus water from surface reservoirs to Mission Creek, (3) artificially recharging the basin using injection wells, and (4) locating municipal supply wells farther from the coast and spacing them farther apart in order to minimize drawdown. Continued monitoring of water levels and water quality would enable assessment of the effectiveness of the control measures employed.

  4. Multi-level machine learning prediction of protein–protein interactions in Saccharomyces cerevisiae

    PubMed Central

    Zubek, Julian; Tatjewski, Marcin; Boniecki, Adam; Mnich, Maciej; Basu, Subhadip

    2015-01-01

    Accurate identification of protein–protein interactions (PPI) is the key step in understanding proteins’ biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein–protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein–protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent). PMID:26157620

  5. Multi-level machine learning prediction of protein-protein interactions in Saccharomyces cerevisiae.

    PubMed

    Zubek, Julian; Tatjewski, Marcin; Boniecki, Adam; Mnich, Maciej; Basu, Subhadip; Plewczynski, Dariusz

    2015-01-01

    Accurate identification of protein-protein interactions (PPI) is the key step in understanding proteins' biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein-protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein-protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent). PMID:26157620

  6. Construal Levels and Psychological Distance: Effects on Representation, Prediction, Evaluation, and Behavior

    PubMed Central

    Trope, Yaacov; Liberman, Nira; Wakslak, Cheryl

    2011-01-01

    Construal level theory (CLT) is an account of how psychological distance influences individuals’ thoughts and behavior. CLT assumes that people mentally construe objects that are psychologically near in terms of low-level, detailed, and contextualized features, whereas at a distance they construe the same objects or events in terms of high-level, abstract, and stable characteristics. Research has shown that different dimensions of psychological distance (time, space, social distance, and hypotheticality) affect mental construal and that these construals, in turn, guide prediction, evaluation, and behavior. The present paper reviews this research and its implications for consumer psychology. PMID:21822366

  7. Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model

    SciTech Connect

    Lipscomb, William

    2012-06-19

    Coastal stakeholders need defensible predictions of 21st century sea-level rise (SLR). IPCC assessments suggest 21st century SLR of {approx}0.5 m under aggressive emission scenarios. Semi-empirical models project SLR of {approx}1 m or more by 2100. Although some sea-level contributions are fairly well constrained by models, others are highly uncertain. Recent studies suggest a potential large contribution ({approx}0.5 m/century) from the marine-based West Antarctic Ice Sheet, linked to changes in Southern Ocean wind stress. To assess the likelihood of fast retreat of marine ice sheets, we need coupled ice-sheet/ocean models that do not yet exist (but are well under way). CESM is uniquely positioned to provide integrated, physics based sea-level predictions.

  8. Prediction of the interior noise levels of high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Wilby, E. G.

    1980-01-01

    The theoretical basis for an analytical model developed to predict the interior noise levels of high-speed propeller-driven airplanes is presented. Particular emphasis is given to modeling the transmission of discrete tones through a fuselage element into a cavity, estimates for the mean and standard deviation of the acoustic power flow, the coupling between a non-homogeneous excitation and the fuselage vibration response, and the prediction of maximum interior noise levels. The model allows for convenient examination of the various roles of the excitation and fuselage structural characteristics on the fuselage vibration response and the interior noise levels, as is required for the design of model or prototype noise control validation tests.

  9. Effect of vertical resolution on predictions of transpiration in water-limited ecosystems

    E-print Network

    Guswa, Andrew J.

    Effect of vertical resolution on predictions of transpiration in water-limited ecosystems Andrew J the vegetation root zone. Average transpiration in such environments is controlled by precipitation, and accurate of vertical resolution on predictions of transpiration, we conduct a series of numerical experiments

  10. Spatial variability of sea level rise due to water impoundment behind dams

    E-print Network

    Conrad, Clint

    Click Here for Full Article Spatial variability of sea level rise due to water impoundment behind global sea level by 30.0 mm and decreasing the rate of sea level rise. The load from impounded water depresses the earth's surface near dams and elevates the geoid, which locally increases relative sea level

  11. SPATIAL VARIABILITY OF SEA LEVEL RISE DUE TO WATER IMPOUNDMENT BEHIND DAMS

    E-print Network

    Qiu, Bo

    SPATIAL VARIABILITY OF SEA LEVEL RISE DUE TO WATER IMPOUNDMENT BEHIND DAMS A THESIS SUBMITTED sea level by ~30.0 mm and decreasing the rate of sea level rise. The load from impounded water depresses the earth's surface near dams and elevates the geoid, which locally increases relative sea level

  12. Distinct coping strategies differentially predict urge levels and lapses in a smoking cessation attempt.

    PubMed

    Brodbeck, Jeannette; Bachmann, Monica S; Znoj, Hansjörg

    2013-06-01

    This study analysed mechanisms through which stress-coping and temptation-coping strategies were associated with lapses. Furthermore, we explored whether distinct coping strategies differentially predicted reduced lapse risk, lower urge levels, or a weaker association between urge levels and lapses during the first week of an unassisted smoking cessation attempt. Participants were recruited via the internet and mass media in Switzerland. Ecological momentary assessment (EMA) with mobile devices was used to assess urge levels and lapses. Online questionnaires were used to measure smoking behaviours and coping variables at baseline, as well as smoking behaviour at the three-month follow-up. The sample consisted of 243 individuals, aged 20 to 40, who reported 4199 observations. Findings of multilevel regression analyses show that coping was mainly associated with a reduced lapse risk and not with lower urge levels or a weaker association between urge levels and lapses. 'Calming down' and 'commitment to change' predicted a lower lapse risk and also a weaker relation between urge levels and lapses. 'Stimulus control' predicted a lower lapse risk and lower urge levels. Conversely, 'task-orientation' and 'risk assessment' were related to higher lapse risk and 'risk assessment' also to higher urge levels. Disengagement coping i.e. 'eating or shopping', 'distraction', and 'mobilising social support' did not affect lapse risk. Promising coping strategies during the initial stage of smoking cessation attempt are targeted directly at reducing the lapse risk and are characterised by engagement with the stressor or one's reactions towards the stressor and a focus on positive consequences instead of health risks. PMID:23501139

  13. Model analysis of effects on water levels at Indiana Dunes National Lakeshore caused by construction dewatering

    USGS Publications Warehouse

    Marie, James R.

    1976-01-01

    The computer models were developed to investigate possible hydrologic effects within the Indiana Dunes National Lakeshore caused by planned dewatering at the adjacent Bailly Nuclear Generator construction site. The model analysis indicated that the planned dewatering would cause a drawdown of about 4 ft under the westernmost pond of the Lakeshore and that this drawdown would cause the pond to go almost dry--less than 0.5 ft of water remaining in about 1 percent of the pond--under average conditions during the 18-month dewatering period. When water levels are below average, as during late July and early August 1974, the pond would go dry in about 5.5 months. However, the pond may not have to go completely dry to damage the ecosystem. If the National Park Service 's independent study determines the minimum pond level at which ecosystem damage would be minimized, the models developed in this study could be used to predict the hydrologic conditions necessary to maintain that level. (Woodard-USGS)

  14. Modeling hydrodynamics, water quality, and benthic processes to predict ecological effects in Narragansett Bay

    EPA Science Inventory

    The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...

  15. Predicting the Health of a Natural Water System

    ERIC Educational Resources Information Center

    Graves, Gregory H.

    2010-01-01

    This project was developed as an interdisciplinary application of the optimization of a single-variable function. It was used in a freshman-level single-variable calculus course. After the first month of the course, students had been exposed to the concepts of the derivative as a rate of change, average and instantaneous velocities, derivatives of…

  16. Short-term water level forecasts for the Laurentian Great Lakes using coupled atmosphere, land-surface and lake models

    NASA Astrophysics Data System (ADS)

    Fortin, Vincent; Mackay, Murray; Casas-Prat, Mercè; Seglenieks, Frank; Dyck, Sarah; Dupont, Frédéric; Roy, François; Smith, Gregory C.

    2015-04-01

    Over the Gulf of St. Lawrence, Environment Canada operates a very successful short-term (48-h) environmental prediction system which includes the GEM atmospheric model, the ISBA land-surface model and the NEMO-CICE ice-ocean model. The positive impact of two-way coupling between the atmosphere and ocean is most clearly seen in winter, due to the presence of a dynamic ice cover and large heat fluxes over the ocean. This system is now being tested over the Laurentian Great Lakes, with the same objective of improving forecasts both for the atmosphere and the water bodies. In order to account for the significant impact of streamflow on the water level and water temperature of the Great Lakes, routing models for river flow and for connecting channels between lakes were added to the system. Offline tests demonstrated the capacity of the system to accurately simulate seasonal and multi-annual fluctuations in water levels and ice cover, as well as the need for consistent heat flux calculations in the atmospheric and ocean models. In this presentation, we focus on the skill of short-term water level forecasts. Over a few days, water levels of the Great Lakes mainly respond to the wind stress, but also change with surface pressure, precipitation, evaporation and river flow. The approach taken to account for each of these factors is described, and the skill of the resulting water level forecast is assessed over the fall of 2014 and the winter of 2015. It is shown that the system can accurately predict storm surges and seiches at the hourly time scale, with a skill that decreases slowly over 48-h, suggesting that skillful forecasts with longer lead times are feasible. A plan for increasing the lead time up to one month is presented.

  17. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study

    PubMed Central

    Sun, Hai-Lun; Pei, Dee; Lue, Ko-Huang; Chen, Yen-Lin

    2015-01-01

    The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively), a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; p<0.05). However, uric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; p<0.05). The same results were found in multivariate adjusted analysis. In conclusion, a high level of uric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders. PMID:26618358

  18. Predicting spike timing in highly synchronous auditory neurons at different sound levels.

    PubMed

    Fontaine, Bertrand; Benichoux, Victor; Joris, Philip X; Brette, Romain

    2013-10-01

    A challenge for sensory systems is to encode natural signals that vary in amplitude by orders of magnitude. The spike trains of neurons in the auditory system must represent the fine temporal structure of sounds despite a tremendous variation in sound level in natural environments. It has been shown in vitro that the transformation from dynamic signals into precise spike trains can be accurately captured by simple integrate-and-fire models. In this work, we show that the in vivo responses of cochlear nucleus bushy cells to sounds across a wide range of levels can be precisely predicted by deterministic integrate-and-fire models with adaptive spike threshold. Our model can predict both the spike timings and the firing rate in response to novel sounds, across a large input level range. A noisy version of the model accounts for the statistical structure of spike trains, including the reliability and temporal precision of responses. Spike threshold adaptation was critical to ensure that predictions remain accurate at different levels. These results confirm that simple integrate-and-fire models provide an accurate phenomenological account of spike train statistics and emphasize the functional relevance of spike threshold adaptation. PMID:23864375

  19. Growth and food consumption by tiger muskellunge: Effects of temperature and ration level on bioenergetic model predictions

    USGS Publications Warehouse

    Chipps, S.R.; Einfalt, L.M.; Wahl, David H.

    2000-01-01

    We measured growth of age-0 tiger muskellunge as a function of ration size (25, 50, 75, and 100% C(max))and water temperature (7.5-25??C) and compared experimental results with those predicted from a bioenergetic model. Discrepancies between actual and predicted values varied appreciably with water temperature and growth rate. On average, model output overestimated winter consumption rates at 10 and 7.5??C by 113 to 328%, respectively, whereas model predictions in summer and autumn (20-25??C) were in better agreement with actual values (4 to 58%). We postulate that variation in model performance was related to seasonal changes in esocid metabolic rate, which were not accounted for in the bioenergetic model. Moreover, accuracy of model output varied with feeding and growth rate of tiger muskellunge. The model performed poorly for fish fed low rations compared with estimates based on fish fed ad libitum rations and was attributed, in part, to the influence of growth rate on the accuracy of bioenergetic predictions. Based on modeling simulations, we found that errors associated with bioenergetic parameters had more influence on model output when growth rate was low, which is consistent with our observations. In addition, reduced conversion efficiency at high ration levels may contribute to variable model performance, thereby implying that waste losses should be modeled as a function of ration size for esocids. Our findings support earlier field tests of the esocid bioenergetic model and indicate that food consumption is generally overestimated by the model, particularly in winter months and for fish exhibiting low feeding and growth rates.

  20. Predicting Abdominal Aortic Aneurysm Target Genes by Level-2 Protein-Protein Interaction.

    PubMed

    Zhang, Kexin; Li, Tuoyi; Fu, Yi; Cui, Qinghua; Kong, Wei

    2015-01-01

    Abdominal aortic aneurysm (AAA) is frequently lethal and has no effective pharmaceutical treatment, posing a great threat to human health. Previous bioinformatics studies of the mechanisms underlying AAA relied largely on the detection of direct protein-protein interactions (level-1 PPI) between the products of reported AAA-related genes. Thus, some proteins not suspected to be directly linked to previously reported genes of pivotal importance to AAA might have been missed. In this study, we constructed an indirect protein-protein interaction (level-2 PPI) network based on common interacting proteins encoded by known AAA-related genes and successfully predicted previously unreported AAA-related genes using this network. We used four methods to test and verify the performance of this level-2 PPI network: cross validation, human AAA mRNA chip array comparison, literature mining, and verification in a mouse CaPO4 AAA model. We confirmed that the new level-2 PPI network is superior to the original level-1 PPI network and proved that the top 100 candidate genes predicted by the level-2 PPI network shared similar GO functions and KEGG pathways compared with positive genes. PMID:26496478

  1. Predicting Abdominal Aortic Aneurysm Target Genes by Level-2 Protein-Protein Interaction

    PubMed Central

    Fu, Yi; Cui, Qinghua; Kong, Wei

    2015-01-01

    Abdominal aortic aneurysm (AAA) is frequently lethal and has no effective pharmaceutical treatment, posing a great threat to human health. Previous bioinformatics studies of the mechanisms underlying AAA relied largely on the detection of direct protein-protein interactions (level-1 PPI) between the products of reported AAA-related genes. Thus, some proteins not suspected to be directly linked to previously reported genes of pivotal importance to AAA might have been missed. In this study, we constructed an indirect protein-protein interaction (level-2 PPI) network based on common interacting proteins encoded by known AAA-related genes and successfully predicted previously unreported AAA-related genes using this network. We used four methods to test and verify the performance of this level-2 PPI network: cross validation, human AAA mRNA chip array comparison, literature mining, and verification in a mouse CaPO4 AAA model. We confirmed that the new level-2 PPI network is superior to the original level-1 PPI network and proved that the top 100 candidate genes predicted by the level-2 PPI network shared similar GO functions and KEGG pathways compared with positive genes. PMID:26496478

  2. NUTRIENT LEVELS IN DRAINAGE WATER AFFECTED BY TURF MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the water and soil quality in urban watersheds is becoming increasingly important from a regulatory and environmental perspective. Recent evidence suggests turfgrass nutrients in runoff and subsurface flow pose potential risks to surface water quality. Research on water quality associat...

  3. Shallow ground-water flow, water levels, and quality of water, 1980-84, Cowles Unit, Indiana Dunes National Lakeshore

    USGS Publications Warehouse

    Cohen, D.A.; Shedlock, R.J.

    1986-01-01

    The Cowles Unit of Indiana Dunes National Lakeshore in Porter County, northwest Indiana, contains a broad dune-beach complex along the southern shoreline of Lake Michigan and a large wetland, called the Great Marsh, that occupies the lowland between the shoreline dunes and an older dune-beach complex farther inland. These lacustrine sediments form a surficial aquifer that extends from the Lake Michigan shoreline to the northern edge of the Lake Border moraine. Water levels and water quality in the surficial aquifer were monitored from 1977 to 1984 near settling ponds on adjacent industrial property at the western end of the Cowles Unit. Seepage from the settling ponds from 1967 to 1980 created a water table mound that extended north into the shoreline dune complex and caused perennial flooding of several intradunal lowlands on National Lakeshore property. Since 1980, when the settling pond bottoms were sealed , these intradunal lowlands contained standing water only during periods of high snowmelt or rainfall. Water level declines following the cessation of seepage ranged from 6 feet at the eastern-most settling pond to nearly 14 feet at the westernmost pond. No general pattern of water table decline was observed in the Great Marsh or in the shoreline dune complex at distances > 3,000 ft east or north of the settling ponds. Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow groundwater downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow groundwater in areas unaffected by settling pond seepage. (Author 's abstract)

  4. Fundamental understanding, prediction and validation of rotor vibratory loads in steady-level flight

    NASA Astrophysics Data System (ADS)

    Datta, Anubhav

    This work isolates the physics of aerodynamics and structural dynamics from the helicopter rotor aeromechanics problem, investigates them separately, identifies the prediction deficiencies in each, improves upon them, and couples them back together. The objective is to develop a comprehensive analysis capability for accurate and consistent prediction of rotor vibratory loads in steady level flight. The rotor vibratory loads are the dominant source of helicopter vibration. There are two critical vibration regimes for helicopters in steady level flight: (1) low speed transition and (2) high speed forward flight. The mechanism of rotor vibration at low speed transition is well understood---inter-twinning of blade tip vortices below the rotor disk. The mechanism of rotor vibration at high speed is not clear. The focus in this research is on high speed flight. The goal is to understand the key mechanisms involved and accurately model them. Measured lift, chord force, pitching moment and damper force from the UH-60A Flight Test Program are used to predict, validate and refine the rotor structural dynamics. The prediction errors originate entirely from structural modeling. Once validated, the resultant blade deformations are used to predict and validate aerodynamics. Air loads are calculated using a table look up based unsteady lifting-line model and compared with predictions from a 3-dimensional unsteady CFD model. Both Navier-Stokes and Euler predictions are studied. (Abstract shortened by UMI.) The 3D Navier-Stokes CFD analysis is then consistently coupled with a rotor comprehensive analysis to improve prediction of rotor vibratory loads at high speed. The CFD-comprehensive code coupling is achieved using a loose coupling methodology. The CFD analysis significantly improves section pitching moment prediction near the blade tip, because it captures the steady and unsteady 3D transonic effects. Accurate pitching moments drive elastic twist deformations which together with a refined rotor wake model generate the right vibratory airload harmonics at all radial stations. The flap bending moments, torsion bending moments and pitch link load predictions are significantly improved by CFD coupling. (Abstract shortened by UMI.)

  5. Use of predictive models and rapid methods to nowcast bacteria levels at coastal beaches

    USGS Publications Warehouse

    Francy, D.S.

    2009-01-01

    The need for rapid assessments of recreational water quality to better protect public health is well accepted throughout the research and regulatory communities. Rapid analytical methods, such as quantitative polymerase chain reaction (qPCR) and immunomagnetic separation/adenosine triphosphate (ATP) analysis, are being tested but are not yet ready for widespread use. Another solution is the use of predictive models, wherein variable(s) that are easily and quickly measured are surrogates for concentrations of fecal-indicator bacteria. Rainfall-based alerts, the simplest type of model, have been used by several communities for a number of years. Deterministic models use mathematical representations of the processes that affect bacteria concentrations; this type of model is being used for beach-closure decisions at one location in the USA. Multivariable statistical models are being developed and tested in many areas of the USA; however, they are only used in three areas of the Great Lakes to aid in notifications of beach advisories or closings. These "operational" statistical models can result in more accurate assessments of recreational water quality than use of the previous day's Escherichia coli (E. coli) concentration as determined by traditional culture methods. The Ohio Nowcast, at Huntington Beach, Bay Village, Ohio, is described in this paper as an example of an operational statistical model. Because predictive modeling is a dynamic process, water-resource managers continue to collect additional data to improve the predictive ability of the nowcast and expand the nowcast to other Ohio beaches and a recreational river. Although predictive models have been shown to work well at some beaches and are becoming more widely accepted, implementation in many areas is limited by funding, lack of coordinated technical leadership, and lack of supporting epidemiological data. ?? 2009 AEHMS.

  6. Involving regional expertise in nationwide modeling for adequate prediction of climate change effects on different demands for fresh water

    NASA Astrophysics Data System (ADS)

    de Lange, Wim; Prinsen, Geert.; Hoogewoud, Jacco; Veldhuizen, Ab; Ruijgh, Erik; Kroon, Timo

    2013-04-01

    Nationwide modeling aims to produce a balanced distribution of climate change effects (e.g. harm on crops) and possible compensation (e.g. volume fresh water) based on consistent calculation. The present work is based on the Netherlands Hydrological Instrument (NHI, www.nhi.nu), which is a national, integrated, hydrological model that simulates distribution, flow and storage of all water in the surface water and groundwater systems. The instrument is developed to assess the impact on water use on land-surface (sprinkling crops, drinking water) and in surface water (navigation, cooling). The regional expertise involved in the development of NHI come from all parties involved in the use, production and management of water, such as waterboards, drinking water supply companies, provinces, ngo's, and so on. Adequate prediction implies that the model computes changes in the order of magnitude that is relevant to the effects. In scenarios related to drought, adequate prediction applies to the water demand and the hydrological effects during average, dry, very dry and extremely dry periods. The NHI acts as a part of the so-called Deltamodel (www.deltamodel.nl), which aims to predict effects and compensating measures of climate change both on safety against flooding and on water shortage during drought. To assess the effects, a limited number of well-defined scenarios is used within the Deltamodel. The effects on demand of fresh water consist of an increase of the demand e.g. for surface water level control to prevent dike burst, for flushing salt in ditches, for sprinkling of crops, for preserving wet nature and so on. Many of the effects are dealt with? by regional and local parties. Therefore, these parties have large interest in the outcome of the scenario analyses. They are participating in the assessment of the NHI previous to the start of the analyses. Regional expertise is welcomed in the calibration phase of NHI. It aims to reduce uncertainties by improving the rules for manmade re-direction of surface water, schematizations & parameters included in the model. This is carried out in workshops and in one-to-one expert meetings on regional models & the NHI. All results of NHI are presented on the internet and any expert may suggest improvements to the model. The final goal of the involvement of regional parties is the acceptation by decision impact receiving authorities

  7. Involving regional expertise in nationwide modeling for adequate prediction of climate change effects on different demands for fresh water

    NASA Astrophysics Data System (ADS)

    de Lange, W. J.

    2014-05-01

    Wim J. de Lange, Geert F. Prinsen, Jacco H. Hoogewoud, Ab A Veldhuizen, Joachim Hunink, Erik F.W. Ruijgh, Timo Kroon Nationwide modeling aims to produce a balanced distribution of climate change effects (e.g. harm on crops) and possible compensation (e.g. volume fresh water) based on consistent calculation. The present work is based on the Netherlands Hydrological Instrument (NHI, www.nhi.nu), which is a national, integrated, hydrological model that simulates distribution, flow and storage of all water in the surface water and groundwater systems. The instrument is developed to assess the impact on water use on land-surface (sprinkling crops, drinking water) and in surface water (navigation, cooling). The regional expertise involved in the development of NHI come from all parties involved in the use, production and management of water, such as waterboards, drinking water supply companies, provinces, ngo's, and so on. Adequate prediction implies that the model computes changes in the order of magnitude that is relevant to the effects. In scenarios related to drought, adequate prediction applies to the water demand and the hydrological effects during average, dry, very dry and extremely dry periods. The NHI acts as a part of the so-called Deltamodel (www.deltamodel.nl), which aims to predict effects and compensating measures of climate change both on safety against flooding and on water shortage during drought. To assess the effects, a limited number of well-defined scenarios is used within the Deltamodel. The effects on demand of fresh water consist of an increase of the demand e.g. for surface water level control to prevent dike burst, for flushing salt in ditches, for sprinkling of crops, for preserving wet nature and so on. Many of the effects are dealt with by regional and local parties. Therefore, these parties have large interest in the outcome of the scenario analyses. They are participating in the assessment of the NHI previous to the start of the analyses. Regional expertise is welcomed in the calibration phase of NHI. It aims to reduce uncertainties by improving the rules for manmade re-direction of surface water, schematizations & parameters included in the model. This is carried out in workshops and in one-to-one expert meetings on regional models & the NHI. All results of NHI are presented on the internet and any expert may suggest improvements to the model. The final goal of the involvement of regional parties is the acceptation by decision impact receiving authorities. The presentation will give an overview of the experiences and results of the participation process both technically and in the national policy making context.

  8. Investigations on boron levels in drinking water sources in China.

    PubMed

    Xu, Ren-ji; Xing, Xiao-ru; Zhou, Qun-fang; Jiang, Gui-bin; Wei, Fu-sheng

    2010-06-01

    To evaluate boron contamination of public drinking water in China, both dissolved and total boron contents in 98 public drinking water sources from 49 cities, 42 brands of bottled water samples from supermarkets in several cities, and 58 water samples from boron industrial area were measured by inductively coupled plasma-mass spectrometry (ICP-MS). Our experimental results showed that boron existed in public drinking water sources mainly in dissolved status with total concentrations ranging from 0.003 to 0.337 mg/L (mean = 0.046 mg/L). The mean boron concentrations in mineral and pure bottled water were 0.052 and 0.028 mg/L, respectively. The results obtained in this work showed that there was no health risk on view of boron in public drinking water sources and bottled water. In boron industrial area, boron concentrations in surface water and ground water were 1.28 mg/L (range = 0.007-3.8 mg/L) and 18.3 mg/L (range = 0.015-140 mg/L), respectively, which indicated that boron industry caused boron pollution in local water system. PMID:19444639

  9. Investigating Storm-Induced Total Water Levels on Complex Barred Beaches

    NASA Astrophysics Data System (ADS)

    Cohn, N.; Ruggiero, P.; Walstra, D.

    2013-12-01

    Water levels in coastal environments are not static, but rather vary from a range of factors including mean sea level, tides, storm surge, and wave runup. Cumulatively these superimposed factors determine the total water level (TWL), the extent of which has major implications for coastal erosion and inundation during periods of high energy. Storm-induced, super-elevated water levels pose a threat to low lying coastal regions, as clearly demonstrated by recent events such as Hurricanes Sandy and Katrina. For this reason, the ability to accurately predict the TWL is crucial for both emergency managers and coastal planners. While some components of TWL are well understood (e.g., tides) there is still significant uncertainty in predicting runup, a process that can be a major contributor to instantaneous TWLs. Traditionally, empirical relationships derived from observational field data have been used to estimate runup, including wave setup and both incident and infragravity swash (Stockdon et al., 2006). While these formulations have shown skill in predicting the runup extent on natural beaches, these equations consider only the most basic contributing factors - namely the mean foreshore beach slope, the offshore wave height, and offshore wave period. Not included in these empirical estimates is the role of nearshore morphology on TWLs. However, it has long been recognized that nearshore sandbars act as natural barriers to coastal erosion during storm events by dissipating wave energy far from the beach face. Nonetheless, the influence of nearshore morphology on inner surf zone processes, including wave runup, is poorly understood. Recent pioneering studies (eg., Soldini et al., 2013 and Stephens et al., 2011) have explored the role of simple nearshore features (single Gaussian bars) on swash processes. Many locations in the world, however, are characterized by more complex morphologies such as multiple barred systems. Further, in many such places, including Columbia River Littoral Cell (USA), Duck, NC (USA), Hasaki (Japan), and the Netherlands, a net offshore bar migration (NOM) cycle has been observed whereby bars migrate seaward across the surf zone and decay offshore on interannual cycles. Depending on the stage of the cycle, the number and configuration of the bars may differ widely. For example in the Columbia River Littoral Cell there are typically 2 to 4 nearshore bars. In 1999, the outermost bar crest was located in a water depth of 6.5 m (relative to MLLW) while in 2009 it was located only in 3 m of water. Such large differences in nearshore morphology clearly influence wave breaking patterns and have the potential for influencing the corresponding wave runup as well. Here we apply a numerical, short-wave averaged yet long-wave resolving, non-linear hydrodynamic model (XBeach) to investigate the role that real world (non-synthetic), complex morphologies exert on TWLs. Model simulations under moderate to extreme wave forcing conditions are being used to develop relationships between offshore wave conditions, bar configuration, and runup extent. Additionally, we are exploring how, under the same wave conditions, a particular location may be more vulnerable to flooding simply based on the stage of the NOM cycle. Comparisons with the Stockdon et al. (2006) runup equation will be made to assess traditional empirical approaches relative to model predictions.

  10. Synchronous dynamics of observed and predicted values of anti-influenza drugs in environmental waters during a seasonal influenza outbreak.

    PubMed

    Azuma, Takashi; Nakada, Norihide; Yamashita, Naoyuki; Tanaka, Hiroaki

    2012-12-01

    Time-dependent dynamics in the concentrations of four anti-influenza drugs (oseltamivir, oseltamivir carboxylate, zanamivir, and amantadine) in environmental waters collected from the Yodo River basin, Japan, were monitored for the first time over a 1 year period (July 2010 to June 2011). The clear, convex dynamic profiles of oseltamivir, oseltamivir carboxylate, and zanamivir during a 3 month seasonal influenza outbreak (January to March 2011) were synchronized well with that of the numbers of influenza patients treated with the drugs. The highest levels in sewage treatment plants (STPs) and river waters were, respectively, 177 and 60 ng/L (oseltamivir), 827 and 288 ng/L (oseltamivir carboxylate), and 30 and 15 ng/L (zanamivir). Fixed levels of amantadine were detectable year-round (100-200 ng/L in the STPs and 10-30 ng/L in river waters). The predicted convex profiles of oseltamivir, oseltamivir carboxylate, and zanamivir in both STPs and river waters were significantly correlated (0.714 < R < 0.932) with the observed values. The profiles were predicted successfully by simple mathematical principles, taking the number of influenza patients, quantities of Tamiflu and Relenza used, dilution by drainwaters passing through STPs, removal rates at STPs, dilution rates in river effluents, and attenuation rates in rivers into consideration. PMID:23106220

  11. The Quality of Our Nation's Waters Mercury in the Nation's Streams--Levels, Trends, and Implications

    E-print Network

    and protect the overall quality of life and that facilitates effective management of water, biological, energyThe Quality of Our Nation's Waters Mercury in the Nation's Streams--Levels, Trends. Wentz). #12;The Quality of Our Nation's Waters Mercury in the Nation's Streams--Levels, Trends

  12. On the Coupling Between Channel Level and Surface Ground Water Flows

    E-print Network

    Díaz, Jesús Ildefonso

    On the Coupling Between Channel Level and Surface Ground Water Flows S. N. Antontsev (1), , J.I. D@mail.ru Abbreviated Title: CHANNEL LEVEL AND GROUND WATER FLOWS Abstract. This paper is devoted to a mathematical in simultaneous flows of surface, soil and ground waters. Such models are widely used for forecasting (numerical

  13. Computer predictions of photochemical oxidant levels for initial precursor concentrations characteristic of southeastern Virginia

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.; Mclain, A. G.

    1979-01-01

    A computer study was performed with a photochemical box model, using a contemporary chemical mechanism and procedure, and a range of initial input pollutant concentrations thought to encompass those characteristic of the Southeastern Virginia region before a photochemical oxidant episode. The model predictions are consistent with the expectation of high summer afternoon ozone levels when initial nonmethane hydrocarbon (NMHC) levels are in the range 0.30-0.40 ppmC and NOx levels are in the range 0.02-0.05 ppm. Calculations made with a Lagrangian model, for one of the previously calculated cases, which had produced intermediate afternoon ozone levels, suggest that urban source additions of NMHC and NOx exacerbate the photochemical oxidant condition.

  14. Improving Neural Network Prediction Accuracy for PM10 Individual Air Quality Index Pollution Levels.

    PubMed

    Feng, Qi; Wu, Shengjun; Du, Yun; Xue, Huaiping; Xiao, Fei; Ban, Xuan; Li, Xiaodong

    2013-12-01

    Fugitive dust deriving from construction sites is a serious local source of particulate matter (PM) that leads to air pollution in cities undergoing rapid urbanization in China. In spite of this fact, no study has yet been published relating to prediction of high levels of PM with diameters <10??m (PM10) as adjudicated by the Individual Air Quality Index (IAQI) on fugitive dust from nearby construction sites. To combat this problem, the Construction Influence Index (Ci) is introduced in this article to improve forecasting models based on three neural network models (multilayer perceptron, Elman, and support vector machine) in predicting daily PM10 IAQI one day in advance. To obtain acceptable forecasting accuracy, measured time series data were decomposed into wavelet representations and wavelet coefficients were predicted. Effectiveness of these forecasters were tested using a time series recorded between January 1, 2005, and December 31, 2011, at six monitoring stations situated within the urban area of the city of Wuhan, China. Experimental trials showed that the improved models provided low root mean square error values and mean absolute error values in comparison to the original models. In addition, these improved models resulted in higher values of coefficients of determination and AHPC (the accuracy rate of high PM10 IAQI caused by nearby construction activity) compared to the original models when predicting high PM10 IAQI levels attributable to fugitive dust from nearby construction sites. PMID:24381481

  15. Improving Neural Network Prediction Accuracy for PM10 Individual Air Quality Index Pollution Levels

    PubMed Central

    Feng, Qi; Wu, Shengjun; Du, Yun; Xue, Huaiping; Xiao, Fei; Ban, Xuan; Li, Xiaodong

    2013-01-01

    Abstract Fugitive dust deriving from construction sites is a serious local source of particulate matter (PM) that leads to air pollution in cities undergoing rapid urbanization in China. In spite of this fact, no study has yet been published relating to prediction of high levels of PM with diameters <10??m (PM10) as adjudicated by the Individual Air Quality Index (IAQI) on fugitive dust from nearby construction sites. To combat this problem, the Construction Influence Index (Ci) is introduced in this article to improve forecasting models based on three neural network models (multilayer perceptron, Elman, and support vector machine) in predicting daily PM10 IAQI one day in advance. To obtain acceptable forecasting accuracy, measured time series data were decomposed into wavelet representations and wavelet coefficients were predicted. Effectiveness of these forecasters were tested using a time series recorded between January 1, 2005, and December 31, 2011, at six monitoring stations situated within the urban area of the city of Wuhan, China. Experimental trials showed that the improved models provided low root mean square error values and mean absolute error values in comparison to the original models. In addition, these improved models resulted in higher values of coefficients of determination and AHPC (the accuracy rate of high PM10 IAQI caused by nearby construction activity) compared to the original models when predicting high PM10 IAQI levels attributable to fugitive dust from nearby construction sites. PMID:24381481

  16. Predicting population-level risk effects of predation from the responses of individuals.

    PubMed

    MacLeod, Colin D; MacLeod, Ross; Learmonth, Jennifer A; Cresswell, Will; Pierce, Graham J

    2014-07-01

    Fear of predation produces large effects on prey population dynamics through indirect risk effects that can cause even greater impacts than direct predation mortality. As yet, there is no general theoretical framework for predicting when and how these population risk effects will arise in specific prey populations, meaning that there is often little consideration given to the key role predator risk effects can play in understanding conservation and wildlife management challenges. Here, we propose that population predator risk effects can be predicted through an extension of individual risk trade-off theory and show for the first time that this is the case in a wild vertebrate system. Specifically, we demonstrate that the timing (in specific months of the year), occurrence (at low food availability), cause (reduction in individual energy reserves), and type (starvation mortality) of a population-level predator risk effect can be successfully predicted from individual responses using a widely applicable theoretical framework (individual-based risk trade-off theory). Our results suggest that individual-based risk trade-off frameworks could allow a wide range of population-level predator risk effects to be predicted from existing ecological theory, which would enable risk effects to be more routinely integrated into consideration of population processes and in applied situations such as conservation. PMID:25163131

  17. Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level

    NASA Astrophysics Data System (ADS)

    Straková, Petra; Anttila, Jani; Spetz, Peter; Kitunen, Veikko; Tapanila, Tarja; Laiho, Raija

    2010-05-01

    There is increasing evidence that changes in the species composition and structure of plant communities induced by global change will have much more impact on plant-mediated carbon cycling than any phenotypic responses. These impacts are largely mediated by shifts in litter quality. There are few documentations of these changes so far, due to the relatively long time scale required for their direct observation. Here, we examine the changes in litter inputs induced by persistent water-level drawdown in boreal peatland sites. Peatlands contain a major proportion of the terrestrial carbon pool, and it is thus important to be able to predict their behaviour and role in the global C cycle under different global change factors. We studied the effects of short-term (ca. 4 years) and long-term (ca. 40 years) persistent water level (WL) drawdown on the quantity and chemical quality of above-ground plant litter inputs at three sites: bog, oligotrophic fen and mesotrophic fen. The parameters used to characterize litter quality included various extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), lignin, CuO oxidation phenolic products, and concentrations of C, nitrogen (N), phosphorus (P), potassium, magnesium, manganese and calcium. Four different groups of litter were clearly distinct based on their chemical quality: foliar litters, graminoids, mosses and woody litters. The pristine conditions were characterized by Sphagnum moss and graminoid litter. Following short-term WL drawdown, changes in the quality and quantity of litter inputs were small. Following long-term WL drawdown, total litter inputs dramatically increased, due to increased tree litter inputs, and the litter type composition greatly changed. These changes resulted in annual inputs of 1901-2010 kg•ha-1 C, 22-24 kg•ha-1 N, 1.5-2.2 kg•ha-1 P, 967-1235 kg•ha-1 lignin and lignin-like compounds and 254-300 kg•ha-1 water solubles after long-term WL drawdown, compared to respective values of 394-658, 5.6-9.3, 0.22-24.4, 161-293 and 44-81 for the pristine conditions. The direct effects of WL drawdown on litter quality were overruled by the indirect effects via changes in vegetation composition. The short-term (reflecting transient conditions) and long-term (reflecting longer-lasting situation of already adapted ecosystem) effects were very different. Our results imply that the long-term effects will strongly affect the soil properties and C cycle of peatlands.

  18. Modelling and Predicting Sound Level Around Selected Sections of Motorway A2

    NASA Astrophysics Data System (ADS)

    Orczyk, Ma?gorzata; Tomaszewski, Franciszek

    2011-06-01

    This article presents potential of modelling and predicting noise level around the section of motorway A2 Komorniki - Krzesiny. The models were worked out on the basis of sound levels registered in three stages of research connected with phases of utilization of this motorway (measurement of acoustic background without traffic, measurements after opening section Komorniki - Krzesiny and noise measurement after opening section Nowy Tomy?l - Konin). The models were verified on the basis of actual number of vehicles which passed by section Komorniki - Krzesiny on random day and at random hour.

  19. Stathmin Protein Level, a Potential Predictive Marker for Taxane Treatment Response in Endometrial Cancer

    PubMed Central

    Werner, Henrica M. J.; Trovik, Jone; Halle, Mari K.; Wik, Elisabeth; Akslen, Lars A.; Birkeland, Even; Bredholt, Therese; Tangen, Ingvild L.; Krakstad, Camilla; Salvesen, Helga B.

    2014-01-01

    Stathmin is a prognostic marker in many cancers, including endometrial cancer. Preclinical studies, predominantly in breast cancer, have suggested that stathmin may additionally be a predictive marker for response to paclitaxel. We first evaluated the response to paclitaxel in endometrial cancer cell lines before and after stathmin knock-down. Subsequently we investigated the clinical response to paclitaxel containing chemotherapy in metastatic endometrial cancer in relation to stathmin protein level in tumors. Stathmin level was also determined in metastatic lesions, analyzing changes in biomarker status on disease progression. Knock-down of stathmin improved sensitivity to paclitaxel in endometrial carcinoma cell lines with both naturally higher and lower sensitivity to paclitaxel. In clinical samples, high stathmin level was demonstrated to be associated with poor response to paclitaxel containing chemotherapy and to reduced disease specific survival only in patients treated with such combination. Stathmin level increased significantly from primary to metastatic lesions. This study suggests, supported by both preclinical and clinical data, that stathmin could be a predictive biomarker for response to paclitaxel treatment in endometrial cancer. Re-assessment of stathmin level in metastatic lesions prior to treatment start may be relevant. Also, validation in a randomized clinical trial will be important. PMID:24587245

  20. Prediction of the alveolar bone level after the extraction of maxillary anterior teeth with severe periodontitis

    PubMed Central

    2015-01-01

    Purpose After extraction, the alveolar bone tends to undergo atrophy in three-dimensions. The amount of alveolar bone loss in the horizontal dimension has been reported to be greater than the amount of bone loss in the vertical dimension, and is most pronounced in the buccal aspect. The aim of this study was to monitor the predictive alveolar bone level following the extraction of anterior teeth seriously involved with advanced chronic periodontitis. Methods This study included 25 patients with advanced chronic periodontitis, whose maxillary anterior teeth had been extracted due to extensive attachment loss more than one year before the study. Periapical radiographs were analyzed to assess the vertical level of alveolar bone surrounding the edentulous area. An imaginary line connecting the mesial and the distal ends of the alveolar crest facing the adjacent tooth was arbitrarily created. Several representative coordinates were established in the horizontal direction, and the vertical distance from the imaginary line to the alveolar crest was measured at each coordinate for each patient using image analysis software. Regression functions predicting the vertical level of the alveolar bone in the maxillary anterior edentulous area were identified for each patient. Results The regression functions demonstrated a tendency to converge to parabolic shapes. The predicted maximum distance between the imaginary line and the alveolar bone calculated using the regression function was 1.43±0.65 mm. No significant differences were found between the expected and actual maximum distances. Likewise, the predicted and actual maximum horizontal distances did not show any significant differences. The distance from the alveolar bone crest to the imaginary lines was not influenced by the mesio-distal spans of the edentulous area. Conclusions After extraction, the vertical level of the alveolar ridge increased to become closer to the reference line connecting the mesial and distal alveolar crests.

  1. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  2. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  3. Validation-comparison of predicted and measured levels in industrial spaces

    NASA Astrophysics Data System (ADS)

    Probst, Wolfgang

    2002-11-01

    Financed by the German Federal Agency for Labor and Social Affairs, several methods of calculating the noise propagation in industrial halls were used for about 150 halls and compared with measurements. With all noise sources, such as machines and equipment stopped, a dodecahedron loudspeaker emitting broadband noise was used, and the octave-band levels were measured on different propagation paths. The room geometry and equipment in the room were entered into uniform datasets, the calculation methods were applied to each dataset, and the results in terms of deviations between calculated and measured values were evaluated statistically. The prediction method with the smallest deviations was chosen for further evaluation. This method, which uses mirror images with approximations and takes into account diffraction with a method first developed by Kuttruff and extended by Jovicic, uses mean values for fittings and absorption at walls and ceilings. This method has been incorporated into VDI 3760, and will be extended in the future to take into account screening by single objects and the real distribution of absorptive materials on surfaces. Representative experimental results, calculation techniques, predicted levels, and deviations between measured and predicted levels are presented.

  4. Borehole sounding device with sealed depth and water level sensors

    DOEpatents

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  5. An Empirical Approach to Predicting Effects of Climate Change on Stream Water Chemistry

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Hawkins, C. P.

    2014-12-01

    Climate change may affect stream solute concentrations by three mechanisms: dilution associated with increased precipitation, evaporative concentration associated with increased temperature, and changes in solute inputs associated with changes in climate-driven weathering. We developed empirical models predicting base-flow water chemistry from watershed geology, soils, and climate for 1975 individual stream sites across the conterminous USA. We then predicted future solute concentrations (2065 and 2099) by applying down-scaled global climate model predictions to these models. The electrical conductivity model (EC, model R2 = 0.78) predicted mean increases in EC of 19 ?S/cm by 2065 and 40 ?S/cm by 2099. However predicted responses for individual streams ranged from a 43% decrease to a 4x increase. Streams with the greatest predicted decreases occurred in the southern Rocky Mountains and Mid-West, whereas southern California and Sierra Nevada streams showed the greatest increases. Generally, streams in dry areas underlain by non-calcareous rocks were predicted to be the most vulnerable to increases in EC associated with climate change. Predicted changes in other water chemistry parameters (e.g., Acid Neutralization Capacity (ANC), SO4, and Ca) were similar to EC, although the magnitude of ANC and SO4 change was greater. Predicted changes in ANC and SO4 are in general agreement with those changes already observed in seven locations with long term records.

  6. Model Predictive Control application for real time operation of controlled structures for the Water Authority Noorderzijlvest, The Netherlands

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Gooijer, Jan; Knot, Floris; Talsma, Jan

    2015-04-01

    In the Netherlands, flood protection has always been a key issue to protect settlements against storm surges and riverine floods. Whereas flood protection traditionally focused on structural measures, nowadays the availability of meteorological and hydrological forecasts enable the application of more advanced real-time control techniques for operating the existing hydraulic infrastructure in an anticipatory and more efficient way. Model Predictive Control (MPC) is a powerful technique to derive optimal control variables with the help of model based predictions evaluated against a control objective. In a project for the regional water authority Noorderzijlvest in the north of the Netherlands, it has been shown that MPC can increase the safety level of the system during flood events by an anticipatory pre-release of water. Furthermore, energy costs of pumps can be reduced by making tactical use of the water storage and shifting pump activities during normal operating conditions to off-peak hours. In this way cheap energy is used in combination of gravity flow through gates during low tide periods. MPC has now been implemented for daily operational use of the whole water system of the water authority Noorderzijlvest. The system developed to a real time decision support system which not only supports the daily operation but is able to directly implement the optimal control settings at the structures. We explain how we set-up and calibrated a prediction model (RTC-Tools) that is accurate and fast enough for optimization purposes, and how we integrated it in the operational flood early warning system (Delft-FEWS). Beside the prediction model, the weights and the factors of the objective function are an important element of MPC, since they shape the control objective. We developed special features in Delft-FEWS to allow the operators to adjust the objective function in order to meet changing requirements and to evaluate different control strategies.

  7. Predicting spatial kelp abundance in shallow coastal waters using the acoustic ground discrimination system RoxAnn

    NASA Astrophysics Data System (ADS)

    Mielck, F.; Bartsch, I.; Hass, H. C.; Wölfl, A.-C.; Bürk, D.; Betzler, C.

    2014-04-01

    Kelp forests represent a major habitat type in coastal waters worldwide and their structure and distribution is predicted to change due to global warming. Despite their ecological and economical importance, there is still a lack of reliable spatial information on their abundance and distribution. In recent years, various hydroacoustic mapping techniques for sublittoral environments evolved. However, in turbid coastal waters, such as off the island of Helgoland (Germany, North Sea), the kelp vegetation is present in shallow water depths normally excluded from hydroacoustic surveys. In this study, single beam survey data consisting of the two seafloor parameters roughness and hardness were obtained with RoxAnn from water depth between 2 and 18 m. Our primary aim was to reliably detect the kelp forest habitat with different densities and distinguish it from other vegetated zones. Five habitat classes were identified using underwater-video and were applied for classification of acoustic signatures. Subsequently, spatial prediction maps were produced via two classification approaches: Linear discriminant analysis (LDA) and manual classification routine (MC). LDA was able to distinguish dense kelp forest from other habitats (i.e. mixed seaweed vegetation, sand, and barren bedrock), but no variances in kelp density. In contrast, MC also provided information on medium dense kelp distribution which is characterized by intermediate roughness and hardness values evoked by reduced kelp abundances. The prediction maps reach accordance levels of 62% (LDA) and 68% (MC). The presence of vegetation (kelp and mixed seaweed vegetation) was determined with higher prediction abilities of 75% (LDA) and 76% (MC). Since the different habitat classes reveal acoustic signatures that strongly overlap, the manual classification method was more appropriate for separating different kelp forest densities and low-lying vegetation. It became evident that the occurrence of kelp in this area is not simply linked to water depth. Moreover, this study shows that the two seafloor parameters collected with RoxAnn are suitable indicators for the discrimination of different densely vegetated seafloor habitats in shallow environments.

  8. Predicting sub-grid variability of soil water content from basic soil information

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Bogena, Heye; Huisman, Johan Alexander; Vanderborght, Jan; Schuh, Max; Priesack, Eckart; Vereecken, Harry

    2015-04-01

    Knowledge of unresolved soil water content variability within model grid cells (i.e. sub-grid variability) is important for accurate predictions of land-surface energy and hydrologic fluxes. Here, we derived a closed-form expression to describe how soil water content variability depends on mean soil water content using stochastic analysis of 1D unsaturated gravitational flow based on the van Genuchten-Mualem (VGM) model. A sensitivity analysis of this closed-form expression showed that the n parameter strongly influenced both the shape and magnitude of the maximum of this relationship. In a next step, the closed-form expression was used to predict soil water content variability for eight datasets with varying soil texture using VGM parameters obtained from pedotransfer functions that rely on readily available soil information. Generally, there was good agreement between observed and predicted soil water content variability despite the obvious simplifications that were used to derive the closed-form expression (e.g. gravity flow in dry soils). A simplified closed-form expression that neglected the effect of pressure head fluctuations showed that the good performance in the dry soil range is related to the dominant role of the variability in MVG parameters determining water retention as compared to the effect of water flow. Furthermore, the novel closed-form expression was successfully used to inversely estimate the variability of hydraulic properties from observed data on soil water content variability from several test sites in Germany, China and Australia.

  9. Systemic Inflammatory Response and Serum Lipopolysaccharide Levels Predict Multiple Organ Failure and Death in Alcoholic Hepatitis

    PubMed Central

    Michelena, Javier; Altamirano, José; Abraldes, Juan G.; Affò, Silvia; Morales-Ibanez, Oriol; Sancho-Bru, Pau; Dominguez, Marlene; García-Pagán, Juan Carlos; Fernández, Javier; Arroyo, Vicente; Ginès, Pere; Louvet, Alexandre; Mathurin, Philippe; Mehal, Wajahat Z.; Caballería, Juan; Bataller, Ramón

    2015-01-01

    Alcoholic hepatitis (AH) frequently progresses to multiple organ failure (MOF) and death. However, the driving factors are largely unknown. At admission, patients with AH often show criteria of systemic inflammatory response syndrome (SIRS) even in the absence of an infection. We hypothesize that the presence of SIRS may predispose to MOF and death. To test this hypothesis, we studied a cohort including 162 patients with biopsy-proven AH. The presence of SIRS and infections was assessed in all patients, and multivariate analyses identified variables independently associated with MOF and 90-day mortality. At admission, 32 (19.8%) patients were diagnosed with a bacterial infection, while 75 (46.3%) fulfilled SIRS criteria; 58 patients (35.8%) developed MOF during hospitalization. Short-term mortality was significantly higher among patients who developed MOF (62.1% versus 3.8%, P <0.001). The presence of SIRS was a major predictor of MOF (odds ratio = 2.69, P=0.025) and strongly correlated with mortality. Importantly, the course of patients with SIRS with and without infection was similar in terms of MOF development and short-term mortality. Finally, we sought to identify serum markers that differentiate SIRS with and without infection. We studied serum levels of high-sensitivity C-reactive protein, procalcitonin, and lipopolysaccharide at admission. All of them predicted mortality. Procalcitonin, but not high-sensitivity C-reactive protein, serum levels identified those patients with SIRS and infection. Lipopolysaccharide serum levels predicted MOF and the response to prednisolone. Conclusion In the presence or absence of infections, SIRS is a major determinant of MOF and mortality in AH, and the mechanisms involved in the development of SIRS should be investigated; procalcitonin serum levels can help to identify patients with infection, and lipopolysaccharide levels may help to predict mortality and the response to steroids. PMID:25761863

  10. Prediction of shock-induced cavitation in water

    NASA Astrophysics Data System (ADS)

    Brundage, A.

    2014-05-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading have wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over preexisting CTH models such as the SESAME EOS for capturing cavitation.

  11. Prediction of Shock-Induced Cavitation in Water

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron

    2013-06-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading has wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over pre-existing CTH models such as the SESAME EOS for capturing cavitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy/NNSA under contract DE-AC04-94AL85000.

  12. Analysis of water levels in the Frenchman Flat area, Nevada Test Site

    USGS Publications Warehouse

    Bright, D.J.; Watkins, S.A.; Lisle, B.A.

    2001-01-01

    Analysis of water levels in 21 wells in the Frenchman Flat area, Nevada Test Site, provides information on the accuracy of hydraulic-head calculations, temporal water-level trends, and potential causes of water-level fluctuations. Accurate hydraulic heads are particularly important in Frenchman Flat where the hydraulic gradients are relatively flat (less than 1 foot per mile) in the alluvial aquifer. Temporal water-level trends with magnitudes near or exceeding the regional hydraulic gradient may have a substantial effect on ground-water flow directions. Water-level measurements can be adjusted for the effects of barometric pressure, formation water density (from water-temperature measurements), borehole deviation, and land-surface altitude in selected wells in the Frenchman Flat area. Water levels in one well were adjusted for the effect of density; this adjustment was significantly greater (about 17 feet) than the adjustment of water levels for barometric pressure, borehole deviation, or land-surface altitude (less than about 4 feet). Water-level measurements from five wells exhibited trends that were statistically and hydrologically significant. Statistically significant water-level trends were observed for three wells completed in the alluvial aquifer (WW-5a, UE-5n, and PW-3), for one well completed in the carbonate aquifer (SM-23), and for one well completed in the quartzite confining unit (Army-6a). Potential causes of water-level fluctuations in wells in the Frenchman Flat area include changes in atmospheric conditions (precipitation and barometric pressure), Earth tides, seismic activity, past underground nuclear testing, and nearby pumping. Periodic water-level measurements in some wells completed in the carbonate aquifer indicate cyclic-type water-level fluctuations that generally correlate with longer term changes (more than 5 years) in precipitation. Ground-water pumping fromthe alluvial aquifer at well WW-5c and pumping and discharge from well RNM-2s appear to cause water-level fluctuations in nearby observation wells. The remaining known sources of water-level fluctuations do not appear to substantially affect water-level changes (seismic activity and underground nuclear testing) or do not affect changes over a period of more than 1 year (barometric pressure and Earth tides) in wells in the Frenchman Flat area.

  13. Analysis of water levels in the Frenchman Flat area, Nevada Test Site

    SciTech Connect

    Bright, D.J.; Watkins, S.A.; Lisle, B.A.

    2001-04-18

    Analysis of water levels in 21 wells in the Frenchman Flat area, Nevada Test Site, provides information on the accuracy of hydraulic-head calculations, temporal water-level trends, and potential causes of water-level fluctuations. Accurate hydraulic heads are particularly important in Frenchman Flat where the hydraulic gradients are relatively flat (less than 1 foot per mile) in the alluvial aquifer. Temporal water-level trends with magnitudes near or exceeding the regional hydraulic gradient may have a substantial effect on ground-water flow directions. Water-level measurements can be adjusted for the effects of barometric pressure, formation water density (from water-temperature measurements), borehole deviation, and land-surface altitude in selected wells in the Frenchman Flat area. Water levels in one well were adjusted for the effect of density; this adjustment was significantly greater (about 17 feet) than the adjustment of water levels for barometric pressure, borehole deviation, or land-surface altitude (less than about 4 feet). Water-level measurements from five wells exhibited trends that were statistically and hydrologically significant. Statistically significant water-level trends were observed for three wells completed in the alluvial aquifer (WW-5a, UE-5n, and PW-3), for one well completed in the carbonate aquifer (SM-23), and for one well completed in the quartzite confining unit (Army-6a). Potential causes of water-level fluctuations in wells in the Frenchman Flat area include changes in atmospheric conditions (precipitation and barometric pressure), Earth tides, seismic activity, past underground nuclear testing, and nearby pumping. Periodic water-level measurements in some wells completed in the carbonate aquifer indicate cyclic-type water-level fluctuations that generally correlate with longer term changes (more than 5 years) in precipitation. Ground-water pumping from the alluvial aquifer at well WW-5c and pumping and discharge from well RNM- 2s appear to cause water-level fluctuations in nearby observation wells. The remaining known sources of water-level fluctuations do not appear to substantially affect water-level changes (seismic activity and underground nuclear testing) or do not affect changes over a period of more than 1 year (barometric pressure and Earth tides) in wells in the Frenchman Flat area.

  14. Understanding Variability in Beach Slope to Improve Forecasts of Storm-induced Water Levels

    NASA Astrophysics Data System (ADS)

    Doran, K. S.; Stockdon, H. F.; Long, J.

    2014-12-01

    The National Assessment of Hurricane-Induced Coastal Erosion Hazards combines measurements of beach morphology with storm hydrodynamics to produce forecasts of coastal change during storms for the Gulf of Mexico and Atlantic coastlines of the United States. Wave-induced water levels are estimated using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon et al. (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. Seasonal and storm-induced changes in beach slope can lead to differences on the order of a meter in wave runup elevation, making accurate specification of this parameter essential to skillful forecasts of coastal change. Spatial variation in beach slope is accounted for through alongshore averaging, but temporal variability in beach slope is not included in the final computation of the likelihood of coastal change. Additionally, input morphology may be years old and potentially very different than the conditions present during forecast storm. In order to improve our forecasts of hurricane-induced coastal erosion hazards, the temporal variability of beach slope must be included in the final uncertainty of modeled wave-induced water levels. Frequently collected field measurements of lidar-based beach morphology are examined for study sites in Duck, North Carolina, Treasure Island, Florida, Assateague Island, Virginia, and Dauphin Island, Alabama, with some records extending over a period of 15 years. Understanding the variability of slopes at these sites will help provide estimates of associated water level uncertainty which can then be applied to other areas where lidar observations are infrequent, and improve the overall skill of future forecasts of storm-induced coastal change. Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger Jr, A. H. (2006). Empirical parameterization of setup,swash, and runup. Coastal engineering, 53(7), 573-588.

  15. Exploratory multivariate modeling and prediction of the physico-chemical properties of surface water and groundwater

    NASA Astrophysics Data System (ADS)

    Ayoko, Godwin A.; Singh, Kirpal; Balerea, Steven; Kokot, Serge

    2007-03-01

    SummaryPhysico-chemical properties of surface water and groundwater samples from some developing countries have been subjected to multivariate analyses by the non-parametric multi-criteria decision-making methods, PROMETHEE and GAIA. Complete ranking information necessary to select one source of water in preference to all others was obtained, and this enabled relationships between the physico-chemical properties and water quality to be assessed. Thus, the ranking of the quality of the water bodies was found to be strongly dependent on the total dissolved solid, phosphate, sulfate, ammonia-nitrogen, calcium, iron, chloride, magnesium, zinc, nitrate and fluoride contents of the waters. However, potassium, manganese and zinc composition showed the least influence in differentiating the water bodies. To model and predict the water quality influencing parameters, partial least squares analyses were carried out on a matrix made up of the results of water quality assessment studies carried out in Nigeria, Papua New Guinea, Egypt, Thailand and India/Pakistan. The results showed that the total dissolved solid, calcium, sulfate, sodium and chloride contents can be used to predict a wide range of physico-chemical characteristics of water. The potential implications of these observations on the financial and opportunity costs associated with elaborate water quality monitoring are discussed.

  16. STATISTICAL PROCEDURES FOR DETERMINATION AND VERIFICATION OF MINIMUM REPORTING LEVELS FOR DRINKING WATER METHODS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) Office of Ground Water and Drinking Water (OGWDW) has developed a single-laboratory quantitation procedure: the lowest concentration minimum reporting level (LCMRL). The LCMRL is the lowest true concentration for which fu...

  17. 26. JUNCTION STRUCTURE. WATER LEVEL 1190FT, INNER RING MIXER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. JUNCTION STRUCTURE. WATER LEVEL 1190FT, INNER RING MIXER OF STATE AND COLORADO, WATER EXITS THROUGH OUTER RING. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  18. Prediction of background levels for the Wind WAVES instrument and implications for the galactic background radiation

    NASA Astrophysics Data System (ADS)

    Hillan, D. S.; Cairns, Iver H.; Robinson, P. A.; Mohamed, A.

    2010-06-01

    We investigate and predict the observed background levels for the TNR, RAD1, and RAD2 receivers when connected to the X, Y, and Z antennas of the WAVES instrument on the spacecraft Wind. The receivers are connected to either a single antenna, in “SEP” mode, or a combination of antennas, in “SUM” mode. With the TNR receiver in SEP (X) mode, the predicted backgrounds agree to within 20% when modeled using a two component model for the quasi-thermal plasma noise (QTN). Calibrating the RAD1 in SEP (X) mode observations against TNR allows us to calculate the relative receiver gain GR1 = 1.43 ± 0.18. Using the RAD1 data in SUM (X+Z) mode, the ratio of antenna gains is found to be R = 6.5, in agreement with preflight measurements. Observed differences between the SEP (X) and SUM (X+Z) modes are explained for the first time, and the predicted levels of QTN and galactic background are found to agree to within 20%. RAD2 is also calibrated against RAD1 and TNR, yielding a total gain GR2Gy = 2.5 ± 0.3. Differences between the predicted and observed galactic background spectra are used to estimate the effective antenna lengths for the X and Y antennas, which are found to be between the physical monopole antenna length L and the Hansen (1981) prediction of $\\sqrt{(2/3)L. The analyses are consistent with the Novaco and Brown (1978) galactic background model, which decreases much faster than that of Cane (1979). Our model background spectrum is useful for theory-data comparisons of type II and III bursts.

  19. Correlation between predicted and observed levels of airborne tritium at Lawrence Livermore Laboratory site boundary

    SciTech Connect

    Lindeken, C.L.; Silver, W.J.; Toy, A.J.; White, J.H.

    1980-02-19

    At the Lawrence Livermore Laboratory, a computer code based on the Gaussian plume model is used to estimate radiation doses from routine or accidental release of airborne radioactive material. Routine releases of tritium have been used as a test of the overall uncertainty associated with these estimates. The ration of concentration to release rate at distances from the two principal release points to each of six site boundary sampling locations has been calcuated using local meteorological data. The concentration of airborne tritiated water vapor is continuously measured at the six sampling stations as part of the Laboratory's environmental monitoring program. Comparison of predicted with observed annual tritiated water concentrations in 1978 showed an average ratio of 2.6 with a range of from 0.97 to 5.8.

  20. Parathyroid Hormone Levels May Predict Nonalcoholic Steatohepatitis in Morbidly Obese Patients

    PubMed Central

    Ghoghaei, Morteza; Taghdiri, Foad; Khajeh, Elias; Azmoudeh Ardalan, Farid; Sedaghat, Mojtaba; Hosseini Shirvani, Sepideh; Zarei, Shadi; Toolabi, Karamollah

    2015-01-01

    Background: Obesity as a worldwide health problem is associated with nonalcoholic steatohepatitis (NASH). Since severe liver injury may be present in asymptomatic obese patients and a definite diagnosis of nonalcoholic steatohepatitis can only be made after an invasive procedure of liver biopsy, there is a need for noninvasive methods to predict the probability of NASH. Objectives: To investigate the role of vitamin D endocrine system in predicting the probability of presence of NASH in asymptomatic morbidly obese candidates of bariatric surgery. Patients and Methods: From December 09 to March 11, every patient undergoing bariatric surgery had a liver biopsy. Nonalcoholic steatohepatitis was diagnosed using the Lee’s criteria, the baseline labs obtained and the association between laboratory data and presence of NASH assessed. Results: Forty-six patients (34 women, aged 36.5 ± 10.6 years) were analyzed. The mean levels of liver enzymes were significantly higher in the group with NASH (P value < 0.01). In an unadjusted logistic model, PTH was the only variable in vitamin D endocrine system which was significantly associated with NASH (odds ratio (OR): 1.04, 95%CI: 1.01 - 1.07). After adjustment for possible confounding factors, age (OR: 1.22, 95%CI: 1.00 - 1.50) and PTH (OR: 1.08, 95%CI: 1.01 - 1.16) were predictive factors for NASH (P value < 0.05). Conclusions: Elevated serum PTH level was the predictive factor for NASH in morbidly obese patients. Also, we reported elevated serum liver enzymes, high serum PTH levels and older age as predictors of NASH in patients seeking obesity surgical treatments. PMID:26300934

  1. A Bayesian network to predict vulnerability to sea-level rise: data report

    USGS Publications Warehouse

    Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert

    2011-01-01

    During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.

  2. Application of data assimilation for improved operational water level forecasting on the northwest European shelf and North Sea

    NASA Astrophysics Data System (ADS)

    Zijl, Firmijn; Sumihar, Julius; Verlaan, Martin

    2015-11-01

    For the Netherlands, accurate water level forecasting in the coastal region is crucial, since large areas of the land lie below sea level. During storm surges, detailed and timely water level forecasts provided by an operational storm surge forecasting system are necessary to support, for example, the decision to close the movable storm surge barriers in the Eastern Scheldt and the Rotterdam Waterway. In the past years, a new generation operational tide-surge model (Dutch Continental Shelf Model version 6) has been developed covering the northwest European continental shelf. In a previous study, a large effort has been put in representing relevant physical phenomena in this process model as well as reducing parameter uncertainty over a wide area. While this has resulted in very accurate water level representation (root-mean-square error (RMSE) ˜7-8 cm), during severe storm surges, the errors in the meteorological model forcing are generally non-negligible and can cause forecast errors of several decimetres. By integrating operationally available observational data in the forecast model by means of real-time data assimilation, the errors in the meteorological forcing are prevented from propagating to the hydrodynamic tide-surge model forecasts. This paper discusses the development of a computationally efficient steady-state Kalman filter to enhance the predictive quality for the shorter lead times by improving the system state at the start of the forecast. Besides evaluating the model quality against shelf-wide tide gauge observations for a year-long hindcast simulation, the predictive value of the Kalman filter is determined by comparing the forecast quality for various lead time intervals against the model without a steady-state Kalman filter. This shows that, even though the process model has a water level representation that is substantially better than that of other comparable operational models of this scale, substantial improvements in predictive quality in the first few hours are possible in an actual operational setting.

  3. Prediction of contaminant fate and transport in potable water systems using H2OFate

    NASA Astrophysics Data System (ADS)

    Devarakonda, Venkat; Manickavasagam, Sivakumar; VanBlaricum, Vicki; Ginsberg, Mark

    2009-05-01

    BlazeTech has recently developed a software called H2OFate to predict the fate and transport of chemical and biological contaminants in water distribution systems. This software includes models for the reactions of these contaminants with residual disinfectant in bulk water and at the pipe wall, and their adhesion/reactions with the pipe walls. This software can be interfaced with sensors through SCADA systems to monitor water distribution networks for contamination events and activate countermeasures, as needed. This paper presents results from parametric calculations carried out using H2OFate for a simulated contaminant release into a sample water distribution network.

  4. Predicting impacts of increased CO? and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA.

    PubMed

    Wu, Yiping; Liu, Shuguang; Gallant, Alisa L

    2012-07-15

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO(2) concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO(3)-N) load under hypothetical climate-sensitivity scenarios in terms of CO(2), precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO(2) concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO(3)-N load to streams, which could be beneficial, but a concomitant increase in NO(3)-N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin. PMID:22641243

  5. The Cold-Inducible RNA-Binding Protein (CIRP) Level in Peripheral Blood Predicts Sepsis Outcome

    PubMed Central

    Zhou, Yanyan; Dong, Haiyun; Zhong, Yanjun; Huang, Jia; Lv, Jianlei; Li, Jinxiu

    2015-01-01

    Objectives Sepsis is a lethal and complex clinical syndrome caused by infection or suspected infection. Cold-inducible RNA-binding protein (CIRP) is a widely distributed cold-shock protein that plays a proinflammatory role in sepsis and that may induce organ damage. However, clinical studies regarding the use of CIRP for the prognostic evaluation of sepsis are lacking. The purpose of this research was to investigate the prognostic significance of peripheral blood concentrations of CIRP in sepsis. Sepsis was assessed using several common measures, including the Acute Physiology and Chronic Health Evaluation II (APACHE II) score; the Sepsis-related Organ Failure Assessment (SOFA) score; the lactate, serum creatinine, and procalcitonin (PCT) levels; the white blood cell (WBC) count; and the neutrophil ratio (N%). Design Sixty-nine adult patients with sepsis were enrolled in this study. According to the mortality data from the hospital, 38 patients were survivors, and 31 were nonsurvivors. The plasma levels of the biomarkers were measured and the APACHE II and SOFA scores were calculated within 24 hours of patient enrollment into our study. The CIRP level was measured via ELISA. Results The plasma level of CIRP was significantly higher in the nonsurvivors than in the survivors (median (IQR) 4.99 (2.37–30.17) ng/mL and 1.68 (1.41–13.90) ng/mL, respectively; p = 0.013). The correlations of the CIRP level with the APACHE II score (r = 0.248, p = 0.040, n = 69), the SOFA score (r = 0.323, p = 0.007, n = 69), the serum creatinine level (r = 0.316, p = 0.008, n = 69), and the PCT level (r = 0.282, p = 0.019, n = 69) were significant. Receiver operator characteristic (ROC) curve analysis showed that the area under the ROC curve (AUC) for the CIRP level was 0.674 (p = 0.013). According to Cox proportional hazards models, the CIRP level independently predicts sepsis mortality. When the CIRP level in the peripheral blood increased by 10 ng/mL, the mortality risk increased by 1.05-fold (p = 0.012). Thus, the CIRP level reflects the degree of renal injury but does not predict the severity of sepsis or organ damage. Conclusion An elevated plasma concentration of CIRP was significantly associated with poor prognosis among patients with sepsis. Therefore, CIRP is a potential predictor of sepsis prognosis. PMID:26361390

  6. Analysis of water-level data in the Yucca Mountain area, Nevada, 1985--95

    SciTech Connect

    Graves, R.P.; Tucci, P.; O`Brien, G.M.

    1997-12-31

    From 1985 through 1995, a water-level network that consists of 28 wells for monitoring 36 depth intervals has been maintained in the Yucca Mountain area. The network includes wells that were measured manually, approximately monthly, and/or measured hourly with a transducer/data logger system. Manual water-level measurements were made with either calibrated steel tapes or single or multiconductor-cable units. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Annual mean water-level altitudes for all wells for the period 1985-95 ranged from 727.93 to 1,034.60 meters. The maximum range in water-level change between monthly measurements and/or monthly mean values was 12.22 meters in well USW H-3 lower interval, and the minimum range was 0.31 meter in wells UE-25 b-1 upper interval, and J-11. In 31 of the 36 depth intervals monitored, the range of water-level change was less than 1 meter. The range of standard deviation of all depth interval measurements for all wells that were monitored was 0.053 to 3.098 meters. No seasonal water-level trends were detected in any of the wells, and regional ground-water withdrawals did not appear to cause water-level changes. Most annual water-level fluctuations can be attributed to barometric and Earth-tide changes. Regional earthquakes, which occurred on June 28--29, 1992, might have simultaneously affected the water level in seven wells. Periods of rising and declining water levels were observed in most wells. However, 11 years of record were not sufficient to determine if these periods were cyclic. Because a goal of monitoring water levels at Yucca Mountain is to determine if there are water-level trends that could affect the potential repository, observed water-level changes over the period of this report may not be representative of the overall long-term trends in water levels.

  7. Water Resources Data, Georgia, 2001, Volume 2: Continuous ground-water level data, and periodic surface-water- and ground-water-quality data, Calendar Year 2001

    USGS Publications Warehouse

    Coffin, Robert; Grams, Susan C.; Cressler, Alan M.; Leeth, David C.

    2001-01-01

    Water resources data for the 2001 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2001, including: discharge records of 133 gaging stations; stage for 144 gaging stations; precipitation for 58 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 17 stations; the annual peak stage and annual peak discharge for 76 crest-stage partial-record stations; and miscellaneous streamflow measurements at 27 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2001, including continuous water-level records of 159 ground-water wells and periodic records at 138 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins. To obtain a copy of the CD version of this report, you may call the U.S. Geological Survey office in Atlanta at (770) 903-9100, or send e-mail to request the publication. Please include your name and mailing address in your e-mail.

  8. Site Level Climate Downscaling for Forecasting Water Balance Stress and Reslience of Acadian Boreal Trees

    NASA Astrophysics Data System (ADS)

    Brooks, B. G.; Serbin, S.

    2014-12-01

    A downscaling framework is presented and applied to physiological and climatic data for projecting future climate resilience of one key boreal tree species, black spruce, in Cape Breton Highlands, Nova Scotia. The technique is based on a combination of probabilistic downscaling methods and control system theory, which together are used to transform large-scale future climate input (air temperature, humidity) to local scale climate parameters important to plant biophysical processes (vapor pressure deficit). Large-scale forecast data from the Community Earth System Model were downscaled spatially then temporally based on the cumulative distributions and sub-daily patterns from corresponding observational data at North Mountain (Cape Breton). Validation over historical decades shows that this technique provides hourly temperature and vapor pressure deficit data accurate to within 0.7%. Further we applied these environmental factors to a species specific empirical model of stomatal conductance for black spruce to compare differences in predicted water regulation response when large-scale (ESM) data are used as drivers versus localized data transformed using this new site-level downscaling technique. We observe through this synthetic study that over historical to contemporary periods (1850-2006) differences between large-scale and localized forecasts of stomatal conductance were small but that future climate extremes (2006-2100) have a strong effect on derived water balance in black spruce. These results also suggest that black spruce in the Cape Breton Highlands may have biophysical responses to climate change that are not predicted by spatially coarse (1°) data, which does not include site level extremes that in this study are shown to strongly curb future growth rates in black spruce as present day climate extremes become common place.

  9. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE

    PubMed Central

    Ayton, Scott; Faux, Noel G.; Bush, Ashley I.; Weiner, Michael W.; Aisen, Paul; Petersen, Ronald; Jack Jr., Clifford R.; Jagust, William; Trojanowki, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Shaw, Leslie M.; Khachaturian, Zaven; Sorensen, Greg; Kuller, Lew; Raichle, Marc; Paul, Steven; Davies, Peter; Fillit, Howard; Hefti, Franz; Holtzman, Davie; Marcel Mesulam, M.; Potter, William; Snyder, Peter; Schwartz, Adam; Montine, Tom; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Jiminez, Gus; Harvey, Danielle; Bernstein, Matthew; Fox, Nick; Thompson, Paul; Schuff, Norbert; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Landau, Susan; Cairns, Nigel J.; Householder, Erin; Taylor-Reinwald, Lisa; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Crawford, Karen; Neu, Scott; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Faber, Kelley; Kim, Sungeun; Nho, Kwangsik; Thal, Leon; Buckholtz, Neil; Albert, Marylyn; Frank, Richard; Hsiao, John; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Carter, Raina; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Fleisher, Adam; Heidebrink, Judith L.; Lord, Joanne L.; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Grossman, Hillel; Mitsis, Effie; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; D'Agostino II, Daniel; Kielb, Stephanie; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Murali Doraiswamy, P.; Petrella, Jeffrey R.; Wong, Terence Z.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Saleem Ismail, M.; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H.S.; Lu, Po H.; Bartzokis, George; Graff-Radford, Neill R; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; Hunt, Cynthia; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristine; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Scott Turner, Raymond; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan N.; Belden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Hudson, Leon; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T-Y; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Santulli, Robert B.; Kitzmiller, Tamar J.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey

    2015-01-01

    Brain iron elevation is implicated in Alzheimer's disease (AD) pathogenesis, but the impact of iron on disease outcomes has not been previously explored in a longitudinal study. Ferritin is the major iron storage protein of the body; by using cerebrospinal fluid (CSF) levels of ferritin as an index, we explored whether brain iron status impacts longitudinal outcomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We show that baseline CSF ferritin levels were negatively associated with cognitive performance over 7 years in 91 cognitively normal, 144 mild cognitive impairment (MCI) and 67 AD subjects, and predicted MCI conversion to AD. Ferritin was strongly associated with CSF apolipoprotein E levels and was elevated by the Alzheimer's risk allele, APOE-?4. These findings reveal that elevated brain iron adversely impacts on AD progression, and introduce brain iron elevation as a possible mechanism for APOE-?4 being the major genetic risk factor for AD. PMID:25988319

  10. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE.

    PubMed

    Ayton, Scott; Faux, Noel G; Bush, Ashley I

    2015-01-01

    Brain iron elevation is implicated in Alzheimer's disease (AD) pathogenesis, but the impact of iron on disease outcomes has not been previously explored in a longitudinal study. Ferritin is the major iron storage protein of the body; by using cerebrospinal fluid (CSF) levels of ferritin as an index, we explored whether brain iron status impacts longitudinal outcomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We show that baseline CSF ferritin levels were negatively associated with cognitive performance over 7 years in 91 cognitively normal, 144 mild cognitive impairment (MCI) and 67 AD subjects, and predicted MCI conversion to AD. Ferritin was strongly associated with CSF apolipoprotein E levels and was elevated by the Alzheimer's risk allele, APOE-?4. These findings reveal that elevated brain iron adversely impacts on AD progression, and introduce brain iron elevation as a possible mechanism for APOE-?4 being the major genetic risk factor for AD. PMID:25988319

  11. Preoperative Serum CA125 Levels Predict the Prognosis in Hyperbilirubinemia Patients With Resectable Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Chen, Tao; Zhang, Min-Gui; Xu, Hua-Xiang; Wang, Wen-Quan; Liu, Liang; Yu, Xian-Jun

    2015-01-01

    Abstract Serum carbohydrate antigen 19-9 (CA19-9) is widely used to predict the prognosis for pancreatic ductal adenocarcinoma (PDAC). However, hyperbilirubinemia and the CA19-9 nonsecretor phenotype restrict the usage of serum CA19-9 alone. The goal of this study was to confirm the prognostic role of preoperative serum CA125 in PDAC, especially in patients with jaundice. A total of 211 patients with resected PDAC were eligible for this retrospective study, and were classified into 2 groups based on serum bilirubin levels. The prognostic significance of all clinicopathologic factors was evaluated by univariate and multivariate analyses, and the performance of each factor in predicting overall survival (OS) and recurrence-free survival (RFS) was compared. High preoperative CA125, high TNM stage, and lymph node metastasis were independent risk predictors for OS and RFS in all patients and the 2 subgroups, but high CA19-9 was only significant when considering all patients and those with nonelevated bilirubin. Using time-dependent receiver-operating characteristic analysis, better predictive performance for OS and RFS was observed for serum CA19-9 as compared to serum CA125 in these patients. High serum CA125 can independently predict poor prognosis. Importantly, in PDAC patients with hyperbilirubinemia, preoperative serum CA125 can predict the prognosis, whereas CA19-9 cannot. Preoperative CA19-9 had better predictive performance for survival than CA125, and the performance of CA19-9 did not decline between all patients and those with nonelevated bilirubin, but was significantly affected by hyperbilirubinemia. PMID:25984661

  12. Predicting hourly-based flow discharge hydrographs from level data using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Tayfur, Gokmen; Moramarco, Tommaso

    2008-04-01

    SummaryThis study developed a genetic algorithm model to predict flow rates at sites receiving significant lateral inflow. It predicts flow rate at a downstream station from flow stage measured at upstream and downstream stations. For this purpose, it constructed two different models: First is analogous to the rating curve model (RCM) of Moramarco et al. [Moramarco, M., Barbetta, S., Melone, F., Singh, V.P., 2005. Relating local stage and remote discharge with significant lateral inflow. J. Hydrologic Eng., ASCE, 10(1)] and the second is based on summation of contributions from upstream station and lateral inflows using kinematic wave approximation. The model was applied to predict flow rates at three different gauging stations located on Tiber River, Upper Tiber River Basin, Italy. The model used average wave travel time for each river reach and obtained average set of parameter values for all the events observed in the same river reach. The GA model was calibrated, for each river reach and for each formulation, by three events and tested against three other events. The results showed that the GA model produced satisfactory results and it was superior over the most recently developed rating curve method. This study further analyzed the case where only water surface elevation data were used in the input vector to predict flow rates. The results showed that using elevation data produces satisfactory results. This has an implication for predicting flow rates at ungauged river sites since the surface elevation data can be obtained without needing the detailed geometry of river section which could change significantly during a flood.

  13. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    PubMed

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. PMID:26140748

  14. Evaluating changes to reservoir rule curves using historical water-level data

    USGS Publications Warehouse

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Flood control reservoirs are typically managed through rule curves (i.e. target water levels) which control the storage and release timing of flood waters. Changes to rule curves are often contemplated and requested by various user groups and management agencies with no information available about the actual flood risk of such requests. Methods of estimating flood risk in reservoirs are not easily available to those unfamiliar with hydrological models that track water movement through a river basin. We developed a quantile regression model that uses readily available daily water-level data to estimate risk of spilling. Our model provided a relatively simple process for estimating the maximum applicable water level under a specific flood risk for any day of the year. This water level represents an upper-limit umbrella under which water levels can be operated in a variety of ways. Our model allows the visualization of water-level management under a user-specified flood risk and provides a framework for incorporating the effect of a changing environment on water-level management in reservoirs, but is not designed to replace existing hydrological models. The model can improve communication and collaboration among agencies responsible for managing natural resources dependent on reservoir water levels.

  15. Prediction of vegetation anomalies to improve food security and water management in India

    NASA Astrophysics Data System (ADS)

    Asoka, Akarsh; Mishra, Vimal

    2015-07-01

    Prediction of vegetation anomalies at regional scales is essential for management of food and water resources. Forecast of vegetation anomalies at 1-3 months lead time can help in decision making. Here we show that normalized difference vegetation index (NDVI) along with other hydroclimatic variables (soil moisture and sea surface temperature) can be effectively used to predict vegetation anomalies in India. The spatiotemporal analysis of NDVI showed significant greening over the region during the period of 1982-2013. The root-zone soil moisture showed a positive correlation with NDVI, whereas the El Niño-Southern Oscillation index (Nino 3.4) is negatively correlated in most of the regions. We extended this relationship to develop a model to predict NDVI in 1 to 3 months lead time. The predicted vegetation anomalies compare well with observations, which can be effectively utilized in early warning and better planning in water resources and agricultural sectors in India.

  16. First-Trimester Serum Acylcarnitine Levels to Predict Preeclampsia: A Metabolomics Approach

    PubMed Central

    Koster, Maria P. H.; Vreeken, Rob J.; Harms, Amy C.; Dane, Adrie D.; Kuc, Sylwia; Schielen, Peter C. J. I.; Hankemeier, Thomas; Berger, Ruud; Visser, Gerard H. A.; Pennings, Jeroen L. A.

    2015-01-01

    Objective. To expand the search for preeclampsia (PE) metabolomics biomarkers through the analysis of acylcarnitines in first-trimester maternal serum. Methods. This was a nested case-control study using serum from pregnant women, drawn between 8 and 14 weeks of gestational age. Metabolites were measured using an UPLC-MS/MS based method. Concentrations were compared between controls (n = 500) and early-onset- (EO-) PE (n = 68) or late-onset- (LO-) PE (n = 99) women. Metabolites with a false discovery rate <10% for both EO-PE and LO-PE were selected and added to prediction models based on maternal characteristics (MC), mean arterial pressure (MAP), and previously established biomarkers (PAPPA, PLGF, and taurine). Results. Twelve metabolites were significantly different between EO-PE women and controls, with effect levels between ?18% and 29%. For LO-PE, 11 metabolites were significantly different with effect sizes between ?8% and 24%. Nine metabolites were significantly different for both comparisons. The best prediction model for EO-PE consisted of MC, MAP, PAPPA, PLGF, taurine, and stearoylcarnitine (AUC = 0.784). The best prediction model for LO-PE consisted of MC, MAP, PAPPA, PLGF, and stearoylcarnitine (AUC = 0.700). Conclusion. This study identified stearoylcarnitine as a novel metabolomics biomarker for EO-PE and LO-PE. Nevertheless, metabolomics-based assays for predicting PE are not yet suitable for clinical implementation. PMID:26146448

  17. Predicting Trigger Level for Ice Jam Flooding of the lower Mohawk River using LiDAR and GIS

    NASA Astrophysics Data System (ADS)

    Foster, J.; Marsellos, A.; Garver, J.

    2011-12-01

    Ice jams are an annual occurrence along the Mohawk River in upstate New York. The jams commonly result in significant flooding especially when the progress of the ice is impeded by obstructions to the channel and flood plain. To minimize flooding hazards it is critical to know the trigger level of flooding so that we can better understand chronic jam points and simulate flooding events as jams occur as the lower Mohawk. A better understanding of jamming and trigger points may facilitate measures to reduce flooding and avoid the costly damage associated with these hazards. To determine the flood trigger level for one segment of the lower Mohawk we used Air-LiDAR elevation data to construct a digital elevation model to simulate a flooding event. The water flood simulation using a LiDAR elevation model allows accurate water level measurements for determining trigger levels of ice dam flooding. The study area comprises three sections of the lower Mohawk River from the (Before location) to the (After location), which are constrained by lock stations centered at the New York State Canal System Lock 9 (E9 Lock) and the B&M Rail Bridge at the Schenectady International (SI) Plant. This area is notorious for ice jams including one that resulted in a major flooding event on January 25th, 2010 which resulted in flood levels at 74.4 m in the upper portion of the second section of the study area (Lock 9) and at 73.4 m in the lower portion (SI plant). Minimum and maximum elevation levels were found to determine the values at which up stream water builds up and when flooding occurs. From these values, we are able to predict the flooding as the ice jam builds up and breaks as it progresses downstream. Similar methodology is applied to find the trigger points for flooding along other sections of the Mohawk River constrained by lock stations, and it may provide critical knowledge as to how to better manage the hazard of flooding due to ice jams.

  18. Human Impacts on Tides Overwhelm the Effect of Sea Level Risee on Extreme Water Levels in the Rhine-Meuse Delta

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Vellinga, N.; Hoekstra, P.; Van Der Vegt, M.; Zhang, W.

    2014-12-01

    Mean sea level rise receives ample attention in the literature. However, peak water levels, which are most important for flood vulnerability and salinity intrusion in tidal river networks, may not be linearly related with mean surface levels. To quantify tidal and subtidal water level changes and to link these changes to human intervention, 70 years of water level data for the Rhine-Meuse tidal river network is analysed using a variety of statistical methods. Using a novel parameterization of probability density functions, mean high and low water levels are examined, and extreme water levels are investigated by applying the combined Mann-Kendall and Pettitt tests to find trends and trend changes. Tidal water levels are studied based on harmonic analysis. Results show that the mean water levels throughout the system rise with the same pace as the mean sea level. However, high and low water levels do not show the same increase, and the spatial variability in decadal trends in high- and low water levels is high. High water and low water extremes generally decrease. Both the extreme water level analysis and the harmonic analysis display significant trend breaks in 1970, 1981 and 1997. These breaks can be attributed to the closure of the Haringvliet estuary, the removal of sluices and the removal of a dam, respectively, which radically alter the tidal motion. These results demonstrate that the direct human influence on the tidal motion can overwhelm the effect of mean sea level rise on water level extremes.

  19. Ground-water levels in water years 1984-86 and estimated ground-water pumpage in water years 1984-85, Carson Valley, Douglas County, Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1987-01-01

    Tabulations of groundwater level measurements made during the water years 1984-86 and summaries of estimated pumpage for water years 1984 and 1985 in Carson valley, Douglas County, Nevada, are included in this report. The data are being collected to provide a record of long-term groundwater changes and pumpage estimates that can be incorporated in a groundwater model change at a later date. (USGS)

  20. Water Wizards: School Program on Water Conservation for Third and Fourth Grade Levels.

    ERIC Educational Resources Information Center

    Massachusetts State Water Resources Authority, Boston.

    Water is precious. It is also easy to take for granted. Many people recognize that water is scarce in desert areas. but it is harder to realize that places like Massachusetts could face a shortage of pure drinking water. This manual provides teachers with curriculum resources to introduce concepts of water supply and water conservation to third…

  1. Predicting natural base-flow stream water chemistry in the western United States

    NASA Astrophysics Data System (ADS)

    Olson, John R.; Hawkins, Charles P.

    2012-02-01

    Robust predictions of stream solute concentrations expected under natural (reference) conditions would help establish more realistic water quality standards and improve stream ecological assessments. Models predicting solute concentrations from environmental factors would also help identify the relative importance of different factors that influence water chemistry. Although data are available describing the major factors controlling water chemistry (i.e., geology, climate, atmospheric deposition, soils, vegetation, topography), geologic maps do not adequately convey how rocks vary in their chemical and physical properties. We addressed this issue by associating rock chemical and physical properties with geological map units to produce continuous maps of percentages of CaO, MgO, S, uniaxial compressive strength, and hydraulic conductivity for western United States lithologies. We used catchment summaries of these geologic properties and other environmental factors to develop multiple linear regression (LR) and random forest (RF) models to predict base flow electrical conductivity (EC), acid neutralization capacity (ANC), Ca, Mg, and SO4. Models were derived from observations at 1414 reference-quality streams. RF models were superior to LR models, explaining 71% of the variance in EC, 61% in ANC, 92% in Ca, 58% in Mg, and 74% in SO4 when assessed with independent observations. The root-mean-square error for predictions on validation sites were all <11% of the range of observed values. The relative importance of different environmental factors in predicting stream chemistry varied among models, but on average rock chemistry > temperature > precipitation > soil = atmospheric deposition > vegetation > amount of rock/water contact > topography.

  2. Computational methodology to predict satellite system-level effects from impacts of untrackable space debris

    NASA Astrophysics Data System (ADS)

    Welty, N.; Rudolph, M.; Schäfer, F.; Apeldoorn, J.; Janovsky, R.

    2013-07-01

    This paper presents a computational methodology to predict the satellite system-level effects resulting from impacts of untrackable space debris particles. This approach seeks to improve on traditional risk assessment practices by looking beyond the structural penetration of the satellite and predicting the physical damage to internal components and the associated functional impairment caused by untrackable debris impacts. The proposed method combines a debris flux model with the Schäfer-Ryan-Lambert ballistic limit equation (BLE), which accounts for the inherent shielding of components positioned behind the spacecraft structure wall. Individual debris particle impact trajectories and component shadowing effects are considered and the failure probabilities of individual satellite components as a function of mission time are calculated. These results are correlated to expected functional impairment using a Boolean logic model of the system functional architecture considering the functional dependencies and redundancies within the system.

  3. Water quality management using statistical analysis and time-series prediction model

    NASA Astrophysics Data System (ADS)

    Parmar, Kulwinder Singh; Bhardwaj, Rashmi

    2014-12-01

    This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.

  4. B-Type Natriuretic Peptide Levels Predict Ventricular Arrhythmia Post Left Ventricular Assist Device Implantation.

    PubMed

    Hellman, Yaron; Malik, Adnan S; Lin, Hongbo; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Pickrell, Jeanette; Jani, Milena; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam

    2015-12-01

    B-type natriuretic peptide (BNP) levels have been shown to predict ventricular arrhythmia (VA) and sudden death in patients with heart failure. We sought to determine whether BNP levels before left ventricular assist device (LVAD) implantation can predict VA post LVAD implantation in advanced heart failure patients. We conducted a retrospective study consisting of patients who underwent LVAD implantation in our institution during the period of May 2009-March 2013. The study was limited to patients receiving a HeartMate II or HeartWare LVAD. Acute myocardial infarction patients were excluded. We compared between the patients who developed VA within 15 days post LVAD implantation to the patients without VA. A total of 85 patients underwent LVAD implantation during the study period. Eleven patients were excluded (five acute MI, four without BNP measurements, and two discharged earlier than 13 days post LVAD implantation). The incidence of VA was 31%, with 91% ventricular tachycardia (VT) and 9% ventricular fibrillation. BNP remained the single most powerful predictor of VA even after adjustment for other borderline significant factors in a multivariate logistic regression model (P?levels are a strong predictor of VA post LVAD implantation, surpassing previously described risk factors such as age and VT in the past. PMID:25864448

  5. Prediction of high level vibration test results by use of available inelastic analysis techniques

    SciTech Connect

    Hofmayer, C.H.; Park, Y.J. ); Costello, J.F. )

    1991-01-01

    As part of a cooperative study between the United States and Japan, the US Nuclear Regulatory Commission and the Ministry of International Trade and Industry of Japan agreed to perform a test program that would subject a large scale piping model to significant plastic strains under excitation conditions much greater than the design condition for nuclear power plants. The objective was to compare the results of the tests with state-of-the-art analyses. Comparisons were done at different excitation levels from elastic to elastic-plastic to levels where cracking was induced in the test model. The program was called the high Level Vibration Test (HLVT). The HLVT was performed on the seismic table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center in Japan. The test model was constructed by modifying the 1/2.5 scale model of one loop of a PWR primary coolant system which was previously tested by NUPEC as part of their seismic proving test program. A comparison of various analysis techniques with test results shows a higher prediction error in the detailed strain values than in the overall response values. This prediction error is magnified as the plasticity in the test model increases. There is no significant difference in the peak responses between the simplified and the detailed analyses. A comparison between various detailed finite element model runs indicates that the material properties and plasticity modeling have a significant impact on the plastic strain responses under dynamic loading reversals. 5 refs., 12 figs.

  6. Aquifer compaction and ground-water levels in south-central Arizona

    USGS Publications Warehouse

    Evans, Daniel W.; Pool, Donald R.

    2000-01-01

    As of 1998, the U.S. Geological Survey is monitoring water-level fluctuationa dn aquifer compaction at 19 wells that are fitted with borehole extensometers in the Eloy Basin, Stanfield Basin, Avra Valley, and Upper Santa Cruz Basin. Decreased ground-water pumping has resulted in water-level recoveries of more than 100 feet at a well near Eloy and almost 200 feet at a well in Avra Valley. Aquifer compaction has continued in both areas despite the large water-level recoveries in Eloy and the stable water levels in Avra Valley. Extensometer sites in the Upper Santa Cruz Basin have recorded as much as 50 feet of water-level decline and 0.2 feet of aquifer compaction during 1980 to 1996. Rates of compaction vary throughout the extensometer network, with the greater rates of compaction being associated with the more compressible sediments of Eloy and Stanfield Basins.

  7. Predicting product water quality from the 600-gallon-per-hour reverse-osmosis water-purification unit. Field water supply on the winter battlefield. Special report

    SciTech Connect

    Bouzoun, J.R.

    1988-02-01

    A preliminary equation for predicting the total dissolved solids (TDS) concentration in the product water from the 600-gph ROWPU is presented. The equation requires the raw water temperature and TDS concentration as input data. Both of these variables can be easily measured in the field. The equation is presently limited to raw-water TDS concentrations in the range of 800-900 mg/L. As data become available for a greater range of raw-water TDS concentrations, including seawater, the equation will be modified. The standard error of the estimate is 3.4 mg/L.

  8. Temporal and Spatial prediction of groundwater levels using Artificial Neural Networks, Fuzzy logic and Kriging interpolation.

    NASA Astrophysics Data System (ADS)

    Tapoglou, Evdokia; Karatzas, George P.; Trichakis, Ioannis C.; Varouchakis, Emmanouil A.

    2014-05-01

    The purpose of this study is to examine the use of Artificial Neural Networks (ANN) combined with kriging interpolation method, in order to simulate the hydraulic head both spatially and temporally. Initially, ANNs are used for the temporal simulation of the hydraulic head change. The results of the most appropriate ANNs, determined through a fuzzy logic system, are used as an input for the kriging algorithm where the spatial simulation is conducted. The proposed algorithm is tested in an area located across Isar River in Bayern, Germany and covers an area of approximately 7800 km2. The available data extend to a time period from 1/11/2008 to 31/10/2012 (1460 days) and include the hydraulic head at 64 wells, temperature and rainfall at 7 weather stations and surface water elevation at 5 monitoring stations. One feedforward ANN was trained for each of the 64 wells, where hydraulic head data are available, using a backpropagation algorithm. The most appropriate input parameters for each wells' ANN are determined considering their proximity to the measuring station, as well as their statistical characteristics. For the rainfall, the data for two consecutive time lags for best correlated weather station, as well as a third and fourth input from the second best correlated weather station, are used as an input. The surface water monitoring stations with the three best correlations for each well are also used in every case. Finally, the temperature for the best correlated weather station is used. Two different architectures are considered and the one with the best results is used henceforward. The output of the ANNs corresponds to the hydraulic head change per time step. These predictions are used in the kriging interpolation algorithm. However, not all 64 simulated values should be used. The appropriate neighborhood for each prediction point is constructed based not only on the distance between known and prediction points, but also on the training and testing error of the ANN. Therefore, the neighborhood of each prediction point is the best available. Then, the appropriate variogram is determined, by fitting the experimental variogram to a theoretical variogram model. Three models are examined, the linear, the exponential and the power-law. Finally, the hydraulic head change is predicted for every grid cell and for every time step used. All the algorithms used were developed in Visual Basic .NET, while the visualization of the results was performed in MATLAB using the .NET COM Interoperability. The results are evaluated using leave one out cross-validation and various performance indicators. The best results were achieved by using ANNs with two hidden layers, consisting of 20 and 15 nodes respectively and by using power-law variogram with the fuzzy logic system.

  9. A New Approach to Reconstruct Ancient Bottom Water Oxygen Levels

    NASA Astrophysics Data System (ADS)

    Rathburn, A. E.; Willingham, J.; Corliss, B. H.; Burkett, A. M.; Ziebis, W.

    2014-12-01

    Oxygen availability controls many biological and geochemical processes, and serves as an important indicator of paleoceanographic characteristics. Recent work has demonstrated a direct relationship between oxygen acquisition and pores on benthic foraminiferal tests. Epifaunal foraminifera (living near or above the sediment-water interface) are directly exposed to bottom water, and can occur in abundance in a wide range of seafloor environments. In this study, a novel approach using ArcGIS and image analysis techniques was used to determine the percentage of test chamber surface area covered by pores in living and recently living (Rose Bengal stained) epifaunal taxa (Cibicides, Cibicidoides and Planulina). Analyses of Scanning Electron Microscope images of 97 specimens collected from 20 deep-sea locations having different bottom water oxygen concentrations (0.04 to 6.20 ml/L) revealed a robust (R2= 0.729; p < 0.001), negative relationship between pore surface area on test chambers and ambient bottom water oxygen concentration. The resulting calibration curve serves as new, quantitative proxy to assess bottom water oxygen of ancient oceans.

  10. Influence of mouth status and water level on the macrophytes in a small temporarily open/closed estuary

    NASA Astrophysics Data System (ADS)

    Riddin, T.; Adams, J. B.

    2008-08-01

    The monthly responses of macrophytes in the East Kleinemonde Estuary were examined in relation to changes in physical factors between March 2006 and March 2007. The East Kleinemonde is a small temporarily open/closed system where the mouth breaches in response to high water levels (>2 m amsl) or following high river inflow. On breaching there is a rapid drop in water level that causes the submerged macrophytes to be exposed and they die as a result of desiccation. Salt marsh plants then establish in the vacant habitat. Correlation analysis showed that water level and duration of inundation influenced macrophyte cover abundance. Inundation for 3 months caused die-back of intertidal salt marsh. Under open and tidal conditions, intertidal salt marsh increased at a maximum monthly expansion rate of 25% change in cover. Supratidal salt marsh expanded at maximum monthly rates of 33% change in cover. Because of its position at a relatively high elevation compared to other vegetation, supratidal salt marsh was only affected by water levels of >1.8 m amsl and only after being inundated for 1-2 months. Submerged macrophytes developed in inundated areas when stable water levels were present for longer than 2 months at a monthly maximum expansion rate of 23% cover change. In this study macrophytes responded quickly to water level fluctuations and indicate that monthly monitoring is needed to provide an understanding of macrophyte response. This is the first study that reports on rates of macrophyte habitat development in temporarily open/closed estuaries. These data can be used in mouth management plans and freshwater requirement studies to predict the growth and establishment of a diversity of macrophyte habitats.

  11. Corrosion models for predictions of performance of high-level radioactive-waste containers

    SciTech Connect

    Farmer, J.C.; McCright, R.D.; Gdowski, G.E.

    1991-11-01

    The present plan for disposal of high-level radioactive waste in the US is to seal it in containers before emplacement in a geologic repository. A proposed site at Yucca Mountain, Nevada, is being evaluated for its suitability as a geologic repository. The containers will probably be made of either an austenitic or a copper-based alloy. Models of alloy degradation are being used to predict the long-term performance of the containers under repository conditions. The models are of uniform oxidation and corrosion, localized corrosion, and stress corrosion cracking, and are applicable to worst-case scenarios of container degradation. This paper reviews several of the models.

  12. Prediction of forest fires occurrences with area-level Poisson mixed models.

    PubMed

    Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo

    2015-05-01

    The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. PMID:25725387

  13. Conventional and simplified canopy temperature indices predict water stress in sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two indicators based on remotely-sensed canopy temperature were used in northern Colorado to monitor water stress in sunflower under six levels of regulated deficit irrigation. The two indicators included the widely-used Crop Water Stress Index (CWSI) and the new Degrees Above Non-stressed Canopy at...

  14. Toward a predictive model for water and carbon fluxes of non-native trees in urban habitats

    NASA Astrophysics Data System (ADS)

    McCarthy, H. R.; Jenerette, G. D.; Pataki, D. E.

    2008-12-01

    There is considerable interest in estimating uptake of water and carbon by urban trees, in order to assess some of the major costs and benefits associated with maintaining or expanding urban tree cover. However, making large-scale estimates of water and carbon fluxes is challenging in urban ecosystems, where community composition and environmental conditions are highly altered and experimental data is sparse. This is particularly true in regions such as southern California, where few trees are native, yet many species can flourish given supplemental irrigation. In such scenarios one practical way to scale water and carbon fluxes may be to identify reliable traits which can be used to predict gas exchange when trees are transplanted to a new environment. To test this approach, leaf level gas exchange measurements were conducted on eight common urban tree species within the Los Angeles basin. The objective was to determine how well gas exchange parameters, including maximum photosynthesis and stomatal conductance, sensitivity of stomatal conductance to vapor pressure deficit (VPD), and water use efficiency (WUE), can be predicted based on the native habitat and climate (temperature and precipitation) of each study species. All of the species studied naturally occur in humid tropical or subtropical climate zones where precipitation varies widely from ~400 - 3000 mm per year. We found Jacaranda (Jacaranda chelonia) and honey locust (Gleditsia triacanthos) to have the highest photosynthesis and reference (at VPD=1 kPa) conductance, and to be most sensitive to VPD. WUE was found to be greatest in Indian laurel fig (Ficus microcarpa), rose gum (Eucalyptus grandis) and Queensland lacebark (Brachychiton discolor). The relative ordering of maximum photosynthesis and conductance across species was not entirely predictable based on our current knowledge of the native habitats of each species: several other species had similar native climates to Jacaranda and honey locust, yet had lower photosynthesis and conductance. However, WUE generally followed the expected trends, with species predicted to have low conductance showing higher WUE. This implies that WUE is strongly genetically controlled and may be predictable with knowledge of imported species' native habitat. Other traits, such as leaf nitrogen and isotopes, are also being investigated as proxies for detailed gas exchange measurements in this ecosystem. Further refinement of predictive factors will facilitate conceptual and quantitative models that can be used for robust scaling of water and carbon fluxes from trees to urban regions.

  15. Predicting water quality at Santa Monica Beach: evaluation of five different models for public notification of unsafe swimming conditions.

    PubMed

    Thoe, W; Gold, M; Griesbach, A; Grimmer, M; Taggart, M L; Boehm, A B

    2014-12-15

    Bathing beaches are monitored for fecal indicator bacteria (FIB) to protect swimmers from unsafe conditions. However, FIB assays take ?24 h and water quality conditions can change dramatically in that time, so unsafe conditions cannot presently be identified in a timely manner. Statistical, data-driven predictive models use information on environmental conditions (i.e., rainfall, turbidity) to provide nowcasts of FIB concentrations. Their ability to predict real time FIB concentrations can make them more accurate at identifying unsafe conditions than the current method of using day or older FIB measurements. Predictive models are used in the Great Lakes, Hong Kong, and Scotland for beach management, but they are presently not used in California - the location of some of the world's most popular beaches. California beaches are unique as point source pollution has generally been mitigated, the summer bathing season receives little to no rainfall, and in situ measurements of turbidity and salinity are not readily available. These characteristics may make modeling FIB difficult, as many current FIB models rely heavily on rainfall or salinity. The current study investigates the potential for FIB models to predict water quality at a quintessential California Beach: Santa Monica Beach. This study compares the performance of five predictive models, multiple linear regression model, binary logistic regression model, partial least square regression model, artificial neural network, and classification tree, to predict concentrations of summertime fecal coliform and enterococci concentrations. Past measurements of bacterial concentration, storm drain condition, and tide level are found to be critical factors in the predictive models. The models perform better than the current beach management method. The classification tree models perform the best; for example they correctly predict 42% of beach postings due to fecal coliform exceedances during model validation, as compared to 28% by the current method. Artificial neural network is the second best model which minimizes the number of incorrect beach postings. The binary logistic regression model also gives promising results, comparable to classification tree, by adjusting the posting decision thresholds to maximize correct beach postings. This study indicates that predictive models hold promise as a beach management tool at Santa Monica Beach. However, there are opportunities to further refine predictive models. PMID:25262555

  16. Serum lipid levels in neighboring communities with chlorinated and nonchlorinated drinking water

    SciTech Connect

    Zeighami, E.A.; Watson, A.P.; Craun, G.F.

    1987-01-01

    The Wisconsin Heart Health Research Program was designed to ascertain levels of serum lipids and other clinical parameters among residents of a total of forty-six neighboring small communities in central Wisconsin. The purpose of the study was to determine whether distribution of serum lipids, blood pressure or thyroid hormones differed according to the chlorination of the water supply, or to the calcium and magnesium content (hardness) of the drinking water supply. This report examines the relationship of chlorination and water calcium to estimated community mean serum lipid levels. The estimated community means are adjusted for potential confounders, including age, education level, alcohol intake, smoking, dietary fat and dietary calcium. Serum cholesterol levels proved to be significantly higher in chlorinated communities for females. Levels of serum cholesterol were also higher in chlorinated communities for males, but differences were considerably smaller and not statistically significant. Low-density lipoprotein cholesterol levels were also higher in chlorinated communities for females (p = .06). Levels of high-density lipoprotein (HDL) cholesterol were higher in hard water communities than in soft water communities, although the p-value for the hardness term did not quite reach significance at p < .05 in either model. The regression of community mean HDL levels on both drinking water calcium and magnesium levels was positive, indicating increasing mean HDL levels with increasing calcium and/or magnesium content in the drinking water.

  17. Serum Gamma-Glutamyltransferase Levels Predict Mortality in Patients With Peritoneal Dialysis

    PubMed Central

    Park, Woo-Yeong; Kim, Su-Hyun; Kim, Young Ok; Jin, Dong Chan; Song, Ho Chul; Choi, Euy Jin; Kim, Yong Lim; Kim, Yon Su; Kang, Shin Wook; Kim, Nam Ho; Yang, Chul Woo; Kim, Yong Kyun

    2015-01-01

    Abstract Serum gamma-glutamyltransferase (GGT) level has been considered marker of oxidative stress as well as liver function. Serum GGT level has been reported to be associated with the mortality in hemodialysis patients. However, it is not well established whether serum GGT level is associated with all-cause mortality in peritoneal dialysis (PD) patients. The aim of this study was to determine the association between serum GGT levels and all-cause mortality in PD patients. PD patients were included from the Clinical Research Center registry for end-stage renal disease cohort, a multicenter prospective observational cohort study in Korea. Patients were categorized into 3 groups by tertile of serum GGT levels as follows: tertile 1, GGT??27?IU/L. Primary outcome was all-cause mortality. A total of 820 PD patients were included. The median follow-up period was 34 months. Kaplan–Meier analysis showed that the all-cause mortality rate was significantly different according to tertiles of GGT (P?=?0.001, log-rank). The multivariate Cox regression analysis showed that higher tertiles significantly associated with higher risk for all-cause mortality (tertile 2: hazard ratio [HR] 2.08, 95% confidence interval [CI], 1.17–3.72, P?=?0.013; tertile 3: HR 1.83, 95% CI, 1.04–3.22, P?=?0.035) in using tertile 1 as the reference group after adjusting for clinical variables. Our study demonstrated that high serum GGT levels were an independent risk factor for all-cause mortality in PD patients. Our findings suggest that serum GGT levels might be a useful biomarker to predict all-cause mortality in PD patients. PMID:26252286

  18. Psychological language on Twitter predicts county-level heart disease mortality.

    PubMed

    Eichstaedt, Johannes C; Schwartz, Hansen Andrew; Kern, Margaret L; Park, Gregory; Labarthe, Darwin R; Merchant, Raina M; Jha, Sneha; Agrawal, Megha; Dziurzynski, Lukasz A; Sap, Maarten; Weeg, Christopher; Larson, Emily E; Ungar, Lyle H; Seligman, Martin E P

    2015-02-01

    Hostility and chronic stress are known risk factors for heart disease, but they are costly to assess on a large scale. We used language expressed on Twitter to characterize community-level psychological correlates of age-adjusted mortality from atherosclerotic heart disease (AHD). Language patterns reflecting negative social relationships, disengagement, and negative emotions-especially anger-emerged as risk factors; positive emotions and psychological engagement emerged as protective factors. Most correlations remained significant after controlling for income and education. A cross-sectional regression model based only on Twitter language predicted AHD mortality significantly better than did a model that combined 10 common demographic, socioeconomic, and health risk factors, including smoking, diabetes, hypertension, and obesity. Capturing community psychological characteristics through social media is feasible, and these characteristics are strong markers of cardiovascular mortality at the community level. PMID:25605707

  19. Psychological Language on Twitter Predicts County-Level Heart Disease Mortality

    PubMed Central

    Eichstaedt, Johannes C.; Schwartz, Hansen Andrew; Kern, Margaret L.; Park, Gregory; Labarthe, Darwin R.; Merchant, Raina M.; Jha, Sneha; Agrawal, Megha; Dziurzynski, Lukasz A.; Sap, Maarten; Weeg, Christopher; Larson, Emily E.; Ungar, Lyle H.; Seligman, Martin E. P.

    2015-01-01

    Hostility and chronic stress are known risk factors for heart disease, but they are costly to assess on a large scale. We used language expressed on Twitter to characterize community-level psychological correlates of age-adjusted mortality from atherosclerotic heart disease (AHD). Language patterns reflecting negative social relationships, disengagement, and negative emotions—especially anger—emerged as risk factors; positive emotions and psychological engagement emerged as protective factors. Most correlations remained significant after controlling for income and education. A cross-sectional regression model based only on Twitter language predicted AHD mortality significantly better than did a model that combined 10 common demographic, socioeconomic, and health risk factors, including smoking, diabetes, hypertension, and obesity. Capturing community psychological characteristics through social media is feasible, and these characteristics are strong markers of cardiovascular mortality at the community level. PMID:25605707

  20. Observations and estimates of wave-driven water level extremes at the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-10-01

    Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.

  1. Applying Water-Level Difference Control to Central Arizona Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Arizona Project (CAP) has been supplying Colorado River water to Central Arizona for roughly 25 years. The CAP canal is operated remotely with a Supervisory Control and Data Acquisition (SCADA) System. Gate position changes are made either manually or through the use of automatic control...

  2. Automatic Measurement of Water Levels by Using Image Identification Method in Open Channel

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Xue Yang, Jia

    2014-05-01

    Water level data is indispensable to hydrology research, and it is important information for hydraulic engineering and overall utilization of water resources. The information of water level can be transmitted to management office by the network so that the management office may well understand whether the river level is exceeding the warning line. The existing water level measurement method can only present water levels in a form of data without any of images, the methods which make data just be a data and lack the sense of reality. Those images such as the rising or overflow of river level that the existing measurement method cannot obtain simultaneously. Therefore, this research employs a newly, improved method for water level measurement. Through the Video Surveillance System to record the images on site, an image of water surface will be snapped, and then the snapped image will be pre-processed and be compared with its altitude reference value to obtain a water level altitude value. With the ever-growing technology, the application scope of image identification is widely in increase. This research attempts to use image identification technology to analyze water level automatically. The image observation method used in this research is one of non-contact water level gage but it is quite different from other ones; the image observation method is cheap and the facilities can be set up beside an embankment of river or near the houses, thus the impact coming from external factors will be significantly reduced, and a real scene picture will be transmitted through wireless transmission. According to the dynamic water flow test held in an indoor experimental channel, the results of the research indicated that all of error levels of water level identification were less than 2% which meant the image identification could achieve identification result at different water levels. This new measurement method can offer instant river level figures and on-site video so that a disaster prevention measures can be made accordingly. Keywords: Image identification; Water Level; Video surveillance system.

  3. Elevated lipoprotein (a) levels predict deep vein thrombosis in acute ischemic stroke patients.

    PubMed

    Yin, Dongliang; Shao, Peng; Liu, Yunling

    2016-01-01

    Lipoprotein (a) [Lp(a)] plays a crucial role in the pathogenesis of deep vein thrombosis (DVT). The purpose of this study was to investigate whether Lp(a) serum levels at admission could be a risk factor for DVT in Chinese patients with acute ischemic stroke (AIS). A total of 232 patients with AIS were included in the study. The patients were assessed for DVT using colour Doppler ultrasonography. We performed colour Doppler ultrasonography 15 days after the stroke and whenever clinically requested. The value of Lp(a) to predict the DVT was analyzed using logistic regression analysis after adjusting for the possible confounders. In our study, 44 out of the 232 patients (19.0%) were diagnosed with DVT at 15-day follow-up. Serum Lp(a) levels were higher in AIS with DVT than in those patients without DVT [656 (interquartile range, 521-898)?mg/l vs. 253 (interquartile range, 143-440)?mg/l; P<0.0001]. Increased risk of DVT associated with Lp(a) levels greater than or equal to 300?mg/l was found in the multivariate analysis [odds ratio 12.14, 95% confidence interval (CI): 3.08-42.09; P<0.0001]. Visible by the receiver operating characteristic, the optimal cutoff value of serum Lp(a) levels for predicting DVT was projected to be 420?mg/l, yielding a sensitivity of 88.5% and a specificity of 75.4%. With an area under the curve (AUC) of 0.89 (95% CI, 0.84-0.94), Lp(a) exhibited greater discrimination in predicting DVT compared with Hs-CRP (AUC, 0.77; 95% CI, 0.69-0.85; P<0.01), HCY (AUC, 0.76; 95% CI, 0.68-0.84; P<0.01), and NIHSS score (AUC, 0.74; 95% CI, 0.66-0.82; P<0.001). Elevated serum Lp(a) levels were independent predictors of DVT in AIS patients in China, revealing the critical role played by Lp(a) in the pathogenesis of DVT. PMID:26565807

  4. APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters.

    PubMed

    Bodrato, Marco; Vione, Davide

    2014-04-01

    The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of: photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species, namely ?OH, CO?(-)?, (1)O? and the triplet states of chromophoric dissolved organic matter, (3)CDOM*), water chemistry (nitrate, nitrite, bicarbonate, carbonate, bromide and dissolved organic carbon, DOC), and water depth (more specifically, the optical path length of sunlight in water). It applies to well-mixed surface water layers, including the epilimnion of stratified lakes, and the output data are average values over the considered water column. Based on intermediate formation yields from the parent compound via the different photochemical pathways, the software can also predict intermediate formation kinetics and overall yield. APEX is based on a photochemical model that has been validated against available field data of pollutant phototransformation, with good agreement between model predictions and field results. The APEX software makes allowance for different levels of knowledge of a photochemical system. For instance, the absorption spectrum of surface water can be used if known, or otherwise it can be modelled from the values of DOC. Also the direct photolysis quantum yield can be entered as a detailed wavelength trend, as a single value (constant or average), or it can be defined as a variable if unknown. APEX is based on the free software Octave. Additional applications are provided within APEX to assess the ?-level uncertainty of the results and the seasonal trend of photochemical processes. PMID:24356583

  5. Health Belief Model and Reasoned Action Theory in Predicting Water Saving Behaviors in Yazd, Iran

    PubMed Central

    Morowatisharifabad, Mohammad Ali; Momayyezi, Mahdieh; Ghaneian, Mohammad Taghi

    2012-01-01

    Background: People's behaviors and intentions about healthy behaviors depend on their beliefs, values, and knowledge about the issue. Various models of health education are used in deter¬mining predictors of different healthy behaviors but their efficacy in cultural behaviors, such as water saving behaviors, are not studied. The study was conducted to explain water saving beha¬viors in Yazd, Iran on the basis of Health Belief Model and Reasoned Action Theory. Methods: The cross-sectional study used random cluster sampling to recruit 200 heads of households to collect the data. The survey questionnaire was tested for its content validity and reliability. Analysis of data included descriptive statistics, simple correlation, hierarchical multiple regression. Results: Simple correlations between water saving behaviors and Reasoned Action Theory and Health Belief Model constructs were statistically significant. Health Belief Model and Reasoned Action Theory constructs explained 20.80% and 8.40% of the variances in water saving beha-viors, respectively. Perceived barriers were the strongest Predictor. Additionally, there was a sta¬tistically positive correlation between water saving behaviors and intention. Conclusion: In designing interventions aimed at water waste prevention, barriers of water saving behaviors should be addressed first, followed by people's attitude towards water saving. Health Belief Model constructs, with the exception of perceived severity and benefits, is more powerful than is Reasoned Action Theory in predicting water saving behavior and may be used as a framework for educational interventions aimed at improving water saving behaviors. PMID:24688927

  6. Projections of extreme water level events for atolls in the western Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-12-01

    Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.

  7. There is a clear need in the public health and water resource management communities to develop modeling systems which provide robust predictions of water quality

    E-print Network

    contribution to the nearshore water quality. Specifically, it assumes that pollution introducedBackground There is a clear need in the public health and water resource management communities to develop modeling systems which provide robust predictions of water quality and water quality standard

  8. Combining ARS Process-Based Water and Wind Erosion Prediction Technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion process research in the United States has long been separated by location, experimental data collection, and prediction technologies. Erosion experiment stations were established in the l930’s throughout the country, however most examined erosion by water while a few in the Plains states we...

  9. CRITICAL ADAPTATIONS IN AGRICULTURAL WATER MANAGEMENT IN PUERTO RICO VIS--VIS CLIMATE CHANGE PREDICTIONS

    E-print Network

    Gilbes, Fernando

    CRITICAL ADAPTATIONS IN AGRICULTURAL WATER MANAGEMENT IN PUERTO RICO VIS-À-VIS CLIMATE CHANGE PREDICTIONS Eric W. Harmsen Dept. of Agricultural and Biosystems Engineering University of Puerto Rico at Mayaguez eric.harmsen@upr.edu The drought of 2015 has dramatically demonstrated how vulnerable Puerto Rico

  10. Climate, stream flow prediction and water management in northeast Brazil: societal trends and forecast value

    E-print Network

    Arumugam, Sankar

    Climate, stream flow prediction and water management in northeast Brazil: societal trends that echo global debates. Our qualitative analysis, based upon extensive fieldwork with farmers, agencies drought has long been identified as a critical factor in the state's economy, ecology, culture

  11. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  12. Predicting Plausible Impacts of Sets of Climate and Land Use Change Scenarios on Water Resources

    EPA Science Inventory

    Global changes in climate and land use can alTect the quantity and quality of water resources. Hence, we need a methodology to predict these ramifications. Using the Little Miami River (LMR) watershed as a case study, this paper describes a spatial analytical approach integrating...

  13. A physically-based model to predict the water retention curve from basic geotechnical properties

    E-print Network

    Aubertin, Michel

    A physically-based model to predict the water retention curve from basic geotechnical properties M-UQAT Chair on Environment and Mine Wastes Management. Canadian Geotechnical Journal MS # 02-001 Originally retention curve from basic geotechnical properties M. AUBERTINA,1* , M. MBONIMPAA,1 , B. BUSSIÈREB,1 , and R

  14. Optical Properties of Three Beach Waters: Implications for Predictive Modeling of Enterococci

    EPA Science Inventory

    Sunlight plays an important role in the inactivation of fecal indicator bacteria in recreational waters. Solar radiation can explain temporal trends in bacterial counts and is commonly used as an explanatory variable in predictive models. Broadband surface radiation provides a ba...

  15. Verifying Predictions of Water and Current Distributions in a Serpentine Flow Field Polymer Electrolyte Membrane

    E-print Network

    Van Zee, John W.

    Verifying Predictions of Water and Current Distributions in a Serpentine Flow Field Polymer electrolyte membrane fuel cell with a serpentine flow path. The model includes the gas diffusion layer In this study, the previously reported 3D model of Ref. 15 was exercised for a serpentine channel flow

  16. PREDICTION OF OCTANOL/WATER PARTITION COEFFICIENT (KOW) WITH ALGORITHMICALLY DERIVED VARIABLES

    EPA Science Inventory

    A statistical model was developed with algorithmically derived independent variables based on chemical structure for prediction of octanol/water partition coefficients (Kow) measured for more than 4,000 chemicals. he procedure first classified the chemicals into 14 groups based o...

  17. WATER EROSION PREDICTION PROJECT (WEPP) TECHNOLOGY FOR ASSESSMENT OF RUNOFF, SOIL LOSS AND SEDIMENT YIELD POTENTIAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Erosion Prediction Project (WEPP) model is a process-based, distributed parameter, continuous simulation computer program for estimation of runoff, soil loss and sediment yield from fields and small watersheds. In addition to having large databases for application to a multitude of U.S. s...

  18. Five Years Later: Predicting Student Use of Journals in a New Water Resources Graduate Program

    ERIC Educational Resources Information Center

    Wirth, Andrea A.; Mellinger, Margaret

    2011-01-01

    Using citation analysis, the authors examined the journals cited in theses and dissertations over the first five years of the Water Resources Graduate Program at Oregon State University. These journal titles were compared to the titles predicted as being important in the 2003 Oregon State University Libraries new program (Category I) review. A…

  19. SEASONAL SOIL MOISTURE PREDICTION USING A CLIMATE-PLANT-SOIL COUPLED AGROECOSYSTEM WATER MANAGEMENT MODEL

    E-print Network

    Takle, Eugene S.

    3.13 SEASONAL SOIL MOISTURE PREDICTION USING A CLIMATE-PLANT-SOIL COUPLED AGROECOSYSTEM WATER of soil moisture is given at grid resolution that is too coarse to resolve prominent weather systems on a quasi real-time basis, forecasting soil moisture, precipitation, temperature, and other variables

  20. SELENIUM LEVELS IN HUMAN BLOOD, URINE, AND HAIR IN RESPONSE TO EXPOSURE VIA DRINKING WATER

    EPA Science Inventory

    Blood, hair, urine and tap water samples were obtained from participants in a population exposed to varying amounts of selenium via water from home wells. Concentrations of selenium in urine and hair produced significant positive correlations with well-water selenium levels. Bloo...

  1. Ground-water levels in Wyoming, January 1986 through September 1995

    USGS Publications Warehouse

    Mason, J.P.; Green, S.L.

    1996-01-01

    Water levels were measured in a network of 81 observation wells in Wyoming as of September 1995. The wells are located mainly in areas where ground water is used in large quantities for irrigation or municipal purposes. Water-level data were collected at 74 of the 81 observation wells by Wyoming State Engineer personnel; data at theremaining 7 wells were collected by the U.S. Geological Survey. This report contains hydrographs for 81 observation wells showing water-level fluctuations from January 1986 through September 1995. Included in the report are maps showing location of the observation wells and tableslisting observation-well depths, use of water, principal geologic source, records available, and highest and lowest water levels for the period ofrecord.

  2. The status of streamflow and ground-water-level monitoring networks in Maryland, 2005

    USGS Publications Warehouse

    Gerhart, James M.; Cleaves, Emery T.

    2005-01-01

    The monitoring of streamflow and ground-water levels in Maryland is vitally important to the effective management and protection of the State?s water resources. Streamflow and ground-water-level monitoring networks have been operated for many years in Maryland, and in recent years, these networks have been redesigned to improve their efficiency. Unfortunately, these networks are increasingly at risk due to reduced and fluctuating funding from Federal, State, and local agencies. Stable, long-term funding is necessary to ensure that these networks will continue to provide valuable water data for use by State and local water-resources managers.

  3. Phase separation predicted to induce water-rich channels in fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Herbst, Daniel; Witten, Thomas; Tsai, Tsung-Han; Coughlin, Bryan; Maes, Ashley; Herring, Andrew

    2015-03-01

    Fuel cells are a promising alternative energy technology that convert chemical fuel directly into electric power. One important fundamental property is exactly how and where water is absorbed in the polyelectrolyte membrane. Previous theoretical studies have used idealized parameters. In this talk, I show how we made a rigorous connection to experiment to make parameter-free predictions of the water-swelling behavior, using self-consistent field theory. The model block co-polymers we studied form alternating hydrophilic/hydrophobic lamellar domains that absorb water in humid air. I will show how simple measurements of the hydrophilic portion in solution lead to predictions of non-uniform water distribution in the membrane, and compare the results to x-ray scattering. The results suggest locally near-uniform water distributions. In special cases, however, each hydrophilic lamella phase-separates, forming an additional water-rich lamella down the center, a beneficial arrangement for ion conductivity. A small amount of water enhances conductivity most when it is partitioned into such channels, improving fuel-cell performance. MURI #W911NF-10-1-0520.

  4. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes

    USGS Publications Warehouse

    Chiou, C.T.; Schmedding, D.W.; Manes, M.

    2005-01-01

    A volume-fraction-based solvent-water partition model for dilute solutes, in which the partition coefficient shows a dependence on solute molar volume (V??), is adapted to predict the octanol-water partition coefficient (K ow) from the liquid or supercooled-liquid solute water solubility (Sw), or vice versa. The established correlation is tested for a wide range of industrial compounds and pesticides (e.g., halogenated aliphatic hydrocarbons, alkylbenzenes, halogenated benzenes, ethers, esters, PAHs, PCBs, organochlorines, organophosphates, carbamates, and amidesureas-triazines), which comprise a total of 215 test compounds spanning about 10 orders of magnitude in Sw and 8.5 orders of magnitude in Kow. Except for phenols and alcohols, which require special considerations of the Kow data, the correlation predicts the Kow within 0.1 log units for most compounds, much independent of the compound type or the magnitude in K ow. With reliable Sw and V data for compounds of interest, the correlation provides an effective means for either predicting the unavailable log Kow values or verifying the reliability of the reported log Kow data. ?? 2005 American Chemical Society.

  5. Controller Strategies for Automation Tool Use under Varying Levels of Trajectory Prediction Uncertainty

    NASA Technical Reports Server (NTRS)

    Morey, Susan; Prevot, Thomas; Mercer, Joey; Martin, Lynne; Bienert, Nancy; Cabrall, Christopher; Hunt, Sarah; Homola, Jeffrey; Kraut, Joshua

    2013-01-01

    A human-in-the-loop simulation was conducted to examine the effects of varying levels of trajectory prediction uncertainty on air traffic controller workload and performance, as well as how strategies and the use of decision support tools change in response. This paper focuses on the strategies employed by two controllers from separate teams who worked in parallel but independently under identical conditions (airspace, arrival traffic, tools) with the goal of ensuring schedule conformance and safe separation for a dense arrival flow in en route airspace. Despite differences in strategy and methods, both controllers achieved high levels of schedule conformance and safe separation. Overall, results show that trajectory uncertainties introduced by wind and aircraft performance prediction errors do not affect the controllers' ability to manage traffic. Controller strategies were fairly robust to changes in error, though strategies were affected by the amount of delay to absorb (scheduled time of arrival minus estimated time of arrival). Using the results and observations, this paper proposes an ability to dynamically customize the display of information including delay time based on observed error to better accommodate different strategies and objectives.

  6. Protein pheromone expression levels predict and respond to the formation of social dominance networks.

    PubMed

    Nelson, A C; Cunningham, C B; Ruff, J S; Potts, W K

    2015-06-01

    Communication signals are key regulators of social networks and are thought to be under selective pressure to honestly reflect social status, including dominance status. The odours of dominants and nondominants differentially influence behaviour, and identification of the specific pheromones associated with, and predictive of, dominance status is essential for understanding the mechanisms of network formation and maintenance. In mice, major urinary proteins (MUPs) are excreted in extraordinary large quantities and expression level has been hypothesized to provide an honest signal of dominance status. Here, we evaluate whether MUPs are associated with dominance in wild-derived mice by analysing expression levels before, during and after competition for reproductive resources over 3 days. During competition, dominant males have 24% greater urinary MUP expression than nondominants. The MUP darcin, a pheromone that stimulates female attraction, is predictive of dominance status: dominant males have higher darcin expression before competition. Dominants also have a higher ratio of darcin to other MUPs before and during competition. These differences appear transient, because there are no differences in MUPs or darcin after competition. We also find MUP expression is affected by sire dominance status: socially naive sons of dominant males have lower MUP expression, but this apparent repression is released during competition. A requisite condition for the evolution of communication signals is honesty, and we provide novel insight into pheromones and social networks by showing that MUP and darcin expression is a reliable signal of dominance status, a primary determinant of male fitness in many species. PMID:25867293

  7. Serum hepatitis B surface antigen levels predict treatment response to nucleos(t)ide analogues

    PubMed Central

    Chen, Chien-Hung; Chiu, Yi-Chun; Lu, Sheng-Nan; Lee, Chuan-Mo; Wang, Jing-Houng; Hu, Tsung-Hui; Hung, Chao-Hung

    2014-01-01

    Quantification of hepatitis B surface antigen (HBsAg) has been suggested to be helpful in the management of chronic hepatitis B (CHB) patients. Nucleos(t)ide analogs (NAs) are the therapy of choice for CHB and are used in the majority of CHB patients. NAs are able to induce hepatitis B virus (HBV) viral suppression, normalization of alanine aminotransferase (ALT) levels, and improvement in liver histology. Automated quantitative assays for serum HBsAg have recently become available, facilitating standardized quantification of serum HBsAg. This has led to increased interest in the clinical application of quantitative serum HBsAg for predicting therapeutic response to NAs. Recent studies have shown that a decline in serum HBsAg levels in patients receiving peginterferon may signal successful induction of immune control over HBV, and can therefore be used to predict therapeutic response. NA treatment typically induces a less rapid decline in HBsAg than interferon treatment; it has been estimated that full HBsAg clearance can require decades of NA treatment. However, a rapid HBsAg decline during NA therapy may identify patients who will show clearance of HBsAg. Currently, there is no consensus on the clinical utility of serum HBsAg monitoring for evaluating patient responses to NA therapy. This review focuses on recent findings regarding the potential application of HBsAg quantification in the management of CHB patients receiving NA therapy. PMID:24976706

  8. An objective method for 3D quality prediction using visual annoyance and acceptability level

    NASA Astrophysics Data System (ADS)

    Khaustova, Darya; Fournier, Jérôme; Wyckens, Emmanuel; Le Meur, Olivier

    2015-03-01

    This study proposes a new objective metric for video quality assessment. It predicts the impact of technical quality parameters relevant to visual discomfort on human perception. The proposed metric is based on a 3-level color scale: (1) Green - not annoying, (2) Orange - annoying but acceptable, (3) Red - not acceptable. Therefore, each color category reflects viewers' judgment based on stimulus acceptability and induced visual annoyance. The boundary between the "Green" and "Orange" categories defines the visual annoyance threshold, while the boundary between the "Orange" and "Red" categories defines the acceptability threshold. Once the technical quality parameters are measured, they are compared to perceptual thresholds. Such comparison allows estimating the quality of the 3D video sequence. Besides, the proposed metric is adjustable to service or production requirements by changing the percentage of acceptability and/or visual annoyance. The performance of the metric is evaluated in a subjective experiment that uses three stereoscopic scenes. Five view asymmetries with four degradation levels were introduced into initial test content. The results demonstrate high correlations between subjective scores and objective predictions for all view asymmetries.

  9. Prediction of the level of ionospheric scintillation at equatorial latitudes in Brazil using a neural network

    NASA Astrophysics Data System (ADS)

    Lima, G. R. T.; Stephany, S.; Paula, E. R.; Batista, I. S.; Abdu, M. A.

    2015-08-01

    Electron density irregularity structures, often associated with ionospheric plasma bubbles, drive amplitude and phase fluctuations in radio signals that, in turn, create a phenomenon known as ionospheric scintillation. The phenomenon occurs frequently around the magnetic equator where plasma instability mechanisms generate postsunset plasma bubbles and density depletions. A previous correlation study suggested that scintillation at the magnetic equator may provide a forecast of subsequent scintillation at the equatorial ionization anomaly southern peak. In this work, it is proposed to predict the level of scintillation over São Luís (2.52°S, 44.3°W; dip latitude: ~2.5°S) near the magnetic equator with lead time of hours but without specifying the moment at which the scintillation starts or ends. A collection of extended databases relating scintillation to ionospheric variables for São Luís is employed to perform the training of an artificial neural network with a new architecture. Two classes are considered, not strong (null/weak/moderate) and strong scintillation. An innovative scheme preprocesses the data taking into account similarities of the values of the variables for the same class. A formerly proposed resampling heuristic is employed to provide a balanced number of tuples of each class in the training set. Tests were performed showing that the proposed neural network is able to predict the level of scintillation over the station on the evening ahead of the data sample considered between 17:30 and 19:00 LT.

  10. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes

    NASA Astrophysics Data System (ADS)

    Roeloffs, Evelyn A.

    1998-01-01

    Coseismic water level rises in the 30-m deep Bourdieu Valley (BV) well near Parkfield, California, have occurred in response to three local and five distant earthquakes. Coseismic changes in static strain cannot explain these water level rises because (1) the well is insensitive to strain at tidal periods; (2) for the distant earthquakes, the expected coseismic static strain is extremely small; and (3) the water level response is of the incorrect sign for the local earthquakes. These water level changes must therefore be caused by seismic waves, but unlike seismic water level oscillations, they are monotonic, persist for days or weeks, and seem to be caused by waves with periods of several seconds rather than long-period surface waves. Other investigators have reported a similar phenomenon in Japan. Certain wells consistently exhibit this type of coseismic water level change, which is always in the same direction, regardless of the earthquake's azimuth or focal mechanism, and approximately proportional to the inverse square of hypocentral distance. To date, the coseismic water level rises in the B V well have never exceeded the seasonal water level maximum, although their sizes are relatively well correlated with earthquake magnitude and distance. The frequency independence of the well's response to barometric pressure in the frequency band 0.1 to 0.7 cpd implies that the aquifer is fairly well confined. High aquifer compressibility, probably due to a gas phase in the pore space, is the most likely reason why the well does not respond to Earth tides. The phase and amplitude relationships between the seasonal water level and precipitation cycles constrain the horizontal hydraulic diffusivity to within a factor of 4.5, bounding hypothetical earthquake-induced changes in aquifer hydraulic properties. Moreover, changes of hydraulic conductivity and/or diffusivity throughout the aquifer would not be expected to change the water level in the same direction at every time of the year. The first 2.5 days of a typical coseismic water level rise could be caused by a small coseismic discharge decrease at a point several tens of meters from the well. Alternatively, the entire coseismic water level signal could represent diffusion of an abrupt coseismic pore pressure increase within several meters of the well, produced by a mechanism akin to that of liquefaction. The coseismic water level changes in the BV well resemble, and may share a mechanism with, coseismic water level, stream discharge, and groundwater temperature changes at other locations where preearthquake changes have also been reported. No preearthquake changes have been observed at the BV well site, however.

  11. Preliminary validation of the NIES Level 2 water vapour product from GOSAT SWIR measurements

    NASA Astrophysics Data System (ADS)

    Dupuy, E.; Morino, I.; Yoshida, Y.; Uchino, O.; Matsunaga, T.; Yokota, T.

    2013-12-01

    The Greenhouse gases Observing SATellite (GOSAT) has been providing continuous measurements of tropospheric greenhouse gases for more than four years. Aside from the main target gases: carbon dioxide (CO2) and methane (CH4), water vapour (H2O) is also retrieved in the short-wavelength infrared (SWIR) spectral range. Along with CO2 and CH4, H2O is a major greenhouse gas. Therefore, in order to use the GOSAT water vapour data in reliable climate model predictions, it is crucial to assess the quality of the SWIR H2O retrievals. This work presents preliminary results of the validation of the H2O column amount retrieved from SWIR spectra by the National Institute for Environmental Studies (NIES, Tsukuba, Japan). We show and discuss initial comparisons for version 02.11 of the NIES Level 2 H2O product. The correlative datasets include ground-based measurements from high-resolution Fourier Transform Spectrometer (FTS) instruments participating in the Total Carbon Column Observing Network (TCCON), as well as radiosonde measurements.

  12. Procalcitonin Level and Its Predictive Effect on Mortality in Crimean-Congo Hemorrhagic Fever Patients.

    PubMed

    Gul, Serdar; Ozturk, Dogan Baris; Kisa, Ucler; Kacmaz, Birgul; Yesilyurt, Murat

    2015-11-20

    Crimean-Congo hemorrhagic fever (CCHF) is a potentially fatal disease which is endemic to Turkey. We aimed to investigate the procalcitonin levels and their prognostic value over fatality in CCHF patients. The sera were harvested from patients who were diagnosed with CCHF within the first 2 days of the onset of their symptoms. The patients were divided into 2 groups according to their survival status: fatal or non-fatal. The biochemical and hematological parameters were studied in the Biochemistry Laboratory of Sorgun City Hospital. The sera were stored at -80? until testing for procalcitonin, and the procalcitonin levels were assayed by ELISA at the Biochemistry Laboratory of Kirikkale University. Forty- eight patients were included in the study, with 8 and 40 patients in the fatal and non-fatal groups, respectively. While the procalcitonin level was high in all patients in the fatal group, the same was observed in 30 patients in the non-fatal group (75%). The mean value of procalcitonin was 1.12 ng/ml in the fatal group and was 0.21 ng/ml in the non-fatal group (P = 0.003). According to the results of our study, the procalcitonin levels in the first 2 days of the onset of the symptoms might be helpful for predicting fatality in CCHF patients. PMID:25866108

  13. Analytical Versus Numerical Estimates of Water-Level Declines Caused by Pumping, and a Case Study of the Iao Aquifer, Maui, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Meyer, William

    2001-01-01

    Comparisons were made between model-calculated water levels from a one-dimensional analytical model referred to as RAM (Robust Analytical Model) and those from numerical ground-water flow models using a sharp-interface model code. RAM incorporates the horizontal-flow assumption and the Ghyben-Herzberg relation to represent flow in a one-dimensional unconfined aquifer that contains a body of freshwater floating on denser saltwater. RAM does not account for the presence of a low-permeability coastal confining unit (caprock), which impedes the discharge of fresh ground water from the aquifer to the ocean, nor for the spatial distribution of ground-water withdrawals from wells, which is significant because water-level declines are greatest in the vicinity of withdrawal wells. Numerical ground-water flow models can readily account for discharge through a coastal confining unit and for the spatial distribution of ground-water withdrawals from wells. For a given aquifer hydraulic-conductivity value, recharge rate, and withdrawal rate, model-calculated steady-state water-level declines from RAM can be significantly less than those from numerical ground-water flow models. The differences between model-calculated water-level declines from RAM and those from numerical models are partly dependent on the hydraulic properties of the aquifer system and the spatial distribution of ground-water withdrawals from wells. RAM invariably predicts the greatest water-level declines at the inland extent of the aquifer where the freshwater body is thickest and the potential for saltwater intrusion is lowest. For cases in which a low-permeability confining unit overlies the aquifer near the coast, however, water-level declines calculated from numerical models may exceed those from RAM even at the inland extent of the aquifer. Since 1990, RAM has been used by the State of Hawaii Commission on Water Resource Management for establishing sustainable-yield values for the State?s aquifers. Data from the Iao aquifer, which lies on the northeastern flank of the West Maui Volcano and which is confined near the coast by caprock, are now available to evaluate the predictive capability of RAM for this system. In 1995 and 1996, withdrawal from the Iao aquifer reached the 20 million gallon per day sustainable-yield value derived using RAM. However, even before 1996, water levels in the aquifer had declined significantly below those predicted by RAM, and continued to decline in 1997. To halt the decline of water levels and to preclude the intrusion of salt-water into the four major well fields in the aquifer, it was necessary to reduce withdrawal from the aquifer system below the sustainable-yield value derived using RAM. In the Iao aquifer, the decline of measured water levels below those predicted by RAM is consistent with the results of the numerical model analysis. Relative to model-calculated water-level declines from numerical ground-water flow models, (1) RAM underestimates water-level declines in areas where a low-permeability confining unit exists, and (2) RAM underestimates water-level declines in the vicinity of withdrawal wells.

  14. Improving and testing geochemical speciation predictions of metal ions in natural waters.

    PubMed

    Ahmed, Imad A M; Hamilton-Taylor, John; Bieroza, Magdalena; Zhang, Hao; Davison, William

    2014-12-15

    The ability of WHAM VII and NICA-Donnan models to predict free-ion activities of Cu in natural waters was examined from two perspectives, (i) the presence of EDTA and NTA contaminants, (ii) the need to improve estimates of HA and FA concentrations. Potentiometric responses of a Cu(II) ion-selective electrode were investigated in five assays containing dissolved organic matter (DOM) isolated from a series of polluted (urban) and relatively unpolluted (upland) streams in northern England. The [Cu]/[DOC] ratio in these assays spanned an environmentally realistic range of ?1-500 ?mol/g. Reasonably good agreement between measured and predicted Cu(2+) activities was obtained with both WHAM VII and NICA-Donnan models, assuming 65% of DOM as fulvic acid and including the measured EDTA and NTA concentrations, but generally the models overestimated the activities by a factor of ?2. In contrast, the models over-predicted the Cu(2+) activities by up to 2 orders of magnitude at low [Cu]/[DOC] ratios in urban waters if anthropogenic ligands were not included in the model simulations. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy was used to measure the functional properties of the isolated DOM and to estimate the fractions of FA and HA present. Using these fractions in the models gave improvements in predictions compared to the 65% FA assumption, as shown by higher correlations, reduced error and reduced bias. These results highlight various issues with the use of the available speciation models for predicting free ion concentrations in natural waters, such as the use of the Biotic Ligand Model (BLM) for the derivation of environmental standards. It is clearly necessary to measure EDTA and NTA in waters with urban influences, while fluorescence measurements offer the possibility of appreciably improving the accuracy of predictions. PMID:25286438

  15. Incorporating inter-relationships between different levels of genomic data into cancer clinical outcome prediction

    PubMed Central

    Kim, Dokyoon; Shin, Hyunjung; Sohn, Kyung-Ah; Verma, Anurag; Ritchie, Marylyn D.

    2015-01-01

    In order to improve our understanding of cancer and develop multi-layered theoretical models for the underlying mechanism, it is essential to have enhanced understanding of the interactions between multiple levels of genomic data that contribute to tumor formation and progression. Although there exist recent approaches such as a graph-based framework that integrates multi-omics data including copy number alteration, methylation, gene expression, and miRNA data for cancer clinical outcome prediction, most of previous methods treat each genomic data as independent and the possible interplay between them is not explicitly incorporated to the model. However, cancer is dysregulated by multiple levels in the biological system through genomic, epigenomic, transcriptomic, and proteomic level. Thus, genomic features are likely to interact with other genomic features in the different genomic levels. In order to deepen our knowledge, it would be desirable to incorporate such inter-relationship information when integrating multi-omics data for cancer clinical outcome prediction. In this study, we propose a new graph-based framework that integrates not only multi-omics data but inter-relationship between them for better elucidating cancer clinical outcomes. In order to highlight the validity of the proposed framework, serous cystadenocarcinoma data from TCGA was adopted as a pilot task. The proposed model incorporating inter-relationship between different genomic features showed significantly improved performance compared to the model that does not consider inter-relationship when integrating multi-omics data. For the pair between miRNA and gene expression data, the model integrating miRNA, for example, gene expression, and inter-relationship between them with an AUC of 0.8476 (REI) outperformed the model combining miRNA and gene expression data with an AUC of 0.8404. Similar results were also obtained for other pairs between different levels of genomic data. Integration of different levels of data and inter-relationship between them can aid in extracting new biological knowledge by drawing an integrative conclusion from many pieces of information collected from diverse types of genomic data, eventually leading to more effective screening strategies and alternative therapies that may improve outcomes. PMID:24561168

  16. Effects of Water Level on Three Wetlands Soil Seed Banks on the Tibetan Plateau

    PubMed Central

    Ma, Miaojun; Ma, Zhen; Du, Guozhen

    2014-01-01

    Background Although the effect of water level on germination in soil seed banks has been documented in many ecosystems, the mechanism is not fully understood, and to date no empirical studies on this subject exist. Further, no work has been done on the effect of water level on seed banks of drying and saline-alkaline wetlands in alpine areas on the Tibetan Plateau. Methodology We examined the effects of water level (0 cm, 5 cm and 10 cm) on seed germination and seedling establishment from soil seed banks at 0–5 cm and 5–10 cm depths in typical, drying, and saline-alkaline wetlands. We also explore the potential role of soil seed bank in restoration of drying and saline-alkaline wetlands. Principal Findings Species richness decreased with increase in water level, but there almost no change in seed density. A huge difference exists in species composition of the seed bank among different water levels in all three wetlands, especially between 0 cm and 5 cm and 0 cm and 10 cm. Similarity of species composition between seed bank and plant community was higher in 0 cm water level in drying wetland than in the other two wetlands. The similarity was much higher in 0 cm water level than in 5 cm and 10 cm water levels in all three wetlands. Species composition of the alpine wetland plant community changed significantly after drying and salinization, however, species composition of the seed bank was unchanged regardless of the environment change. Conclusions/Significance Water level greatly affects seed bank recruitment and plant community establishment. Further, different water levels in restored habitats are likely to determine its species composition of the plant community. The seed bank is important in restoration of degraded wetlands. Successful restoration of drying and salinization wetlands could depend on the seed bank. PMID:24984070

  17. Experimental and predicted cavitation performance of an 80.6 deg helical inducer in high temperature water

    NASA Technical Reports Server (NTRS)

    Kovich, G.

    1972-01-01

    The cavitating performance of a stainless steel 80.6 degree flat-plate helical inducer was investigated in water over a range of liquid temperatures and flow coefficients. A semi-empirical prediction method was used to compare predicted values of required net positive suction head in water with experimental values obtained in water. Good agreement was obtained between predicted and experimental data in water. The required net positive suction head in water decreased with increasing temperature and increased with flow coefficient, similar to that observed for a like inducer in liquid hydrogen.

  18. Changes in Water Levels and Storage in the High Plains Aquifer, Predevelopment to 2007

    USGS Publications Warehouse

    McGuire, V.L.

    2009-01-01

    The High Plains aquifer underlies 111.6 million acres (174,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the primary agricultural regions in the Nation. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with ground water in the aquifer area. By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (Luckey and others, 1981). In response to these water-level declines, the U.S. Geological Survey (USGS), in collaboration with numerous Federal, State, and local water-resources agencies, began monitoring more than 7,000 wells in 1988 to assess annual water-level changes in the aquifer. This fact sheet summarizes changes in water levels and drainable water in storage in the High Plains aquifer from predevelopment (before about 1950) to 2007 and serves as a companion product to a USGS report that presents more detailed and technical information about water-level and storage changes in the High Plains aquifer during this period (McGuire, 2009).

  19. An Analysis of Historical Impacts of Water Resources Development on Water Levels of the Mekong River (Invited)

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; Arias, M. E.; Piman, T.

    2013-12-01

    The rapid rate of water resources development in the Mekong basin of Southeast Asia is a cause for concern due to potential impacts on highly valued fisheries and natural ecosystems. Historical water levels of the Mekong were analyzed by comparing pre and post 1991 daily data of 6 stations along the mainstream from Chiang Sean, in northern Lao PDR and Thailand, to Stung Treng, in Cambodia, and the Pre Kdam station near the Tonle Sap Lake in the lower Mekong floodplain using the Indicators of Hydrological Alteration (IHA) software. The year 1991 marks a turning point in the rate of development in the basin, with the start of development of mainstream dams in the upper Mekong and accelerated hydropower and irrigation development in key tributaries. Observed changes in water level patterns along the Mekong were linked to temporal and spatial water resources development from 1960 to 2010. Variations in climate were accounted for and are important, but they were not observed to be the main causes of changes in key hydrological indicators related to ecosystem productivity. The development of mainstream dams in the upper Mekong basin in the post 1991 period resulted in a significant change of seasonal water levels, raise rates, fall rates, and the number of water level fluctuations at Chiang Sean. This effect diminishes downstream until it becomes negligible at the Mukdahan monitoring station in Thailand, which represents a drainage area of over 50% of the total Mekong Basin. Further downstream at Pakse station in Southern Lao PDR, changes in hydrological indicators post 1991 were observed to be significant again, which can be directly attributed to water resource development in the Chi and Mun River basins in Northeastern Thailand. A reduction of 23% and 11% in water level raising rates and fall rates, respectively at Prek Kdam, provides clear evidence of a diminished flood pulse of the Tonle Sap Lake in the post 1991 period. Given the observed water level alterations from 1991 to 2010 as a result of water infrastructure development, we can extrapolate that future proposed development in the key transboundary Srepok, Sesan and Sekong basins of the Lower Mekong will have an even greater effect on the flood pulse of the Tonle Sap. Although much focus has been placed on impacts of mainstream dams in the upper Mekong, our analysis clearly shows that tributary development in the lower Mekong has already affected water level patterns significantly, particularly in the dry season. Through subsequent modeling we infer how future development could further impact water flows and livelihoods, and thus improve regional impact assessments. The analysis and methods can be translated to other river systems around the world undergoing rapid water resources development.

  20. Water pollution risk simulation and prediction in the main canal of the South-to-North Water Transfer Project

    NASA Astrophysics Data System (ADS)

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Cheng, Xi

    2014-11-01

    The middle route of the South-to-North Water Transfer Project (MRP) will divert water to Beijing Tuancheng Lake from Taocha in the Danjiangkou reservoir located in the Hubei province of China. The MRP is composed of a long canal and complex hydraulic structures and will transfer water in open channel areas to provide drinking water for Beijing, Shijiazhuang and other cities under extremely strict water quality requirements. A large number of vehicular accidents, occurred on the many highway bridges across the main canal would cause significant water pollution in the main canal. To ensure that water quality is maintained during the diversion process, the effects of pollutants on water quality due to sudden pollution accidents were simulated and analyzed in this paper. The MIKE11 HD module was used to calculate the hydraulic characteristics of the 42-km Xishi-to-Beijuma River channel of the MRP. Six types of hydraulic structures, including inverted siphons, gates, highway bridges, culverts and tunnels, were included in this model. Based on the hydrodynamic model, the MIKE11 AD module, which is one-dimensional advection dispersion model, was built for TP, NH3-N, CODMn and F. The validated results showed that the computed values agreed well with the measured values. In accordance with transportation data across the Dianbei Highway Bridge, the effects of traffic accidents on the bridge on water quality were analyzed. Based on simulated scenarios with three discharge rates (ranged from 12 m3/s to 17 m3/s, 40 m3/s, and 60 m3/s) and three pollution loading concentration levels (5 t, 10 t and 20 t) when trucks spill their contents (i.e., phosphate fertilizer, cyanide, oil and chromium solution) into the channel, emergency measures were proposed. Reasonable solutions to ensure the water quality with regard to the various types of pollutants were proposed, including treating polluted water, maintaining materials, and personnel reserves.

  1. Environmental Factors Predicting Blood Lead Levels in Pregnant Women in the UK: The ALSPAC Study

    PubMed Central

    Taylor, Caroline M.; Golding, Jean; Hibbeln, Joseph; Emond, Alan M.

    2013-01-01

    Background Lead is a widespread environmental toxin. The behaviour and academic performance of children can be adversely affected even at low blood lead levels (BLL) of 5–10 µg/dl. An important contribution to the infant's lead load is provided by maternal transfer during pregnancy. Objectives Our aim was to determine BLL in a large cohort of pregnant women in the UK and to identify the factors that contribute to BLL in pregnant women. Methods Pregnant women resident in the Avon area of the UK were enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC) in 1991–1992. Whole blood samples were collected at median gestational age of 11 weeks and analysed by inductively coupled plasma dynamic reaction cell mass spectrometry (n?=?4285). Self-completion postal questionnaires were used to collect data during pregnancy on lifestyle, diet and other environmental exposures. Statistical analysis was carried out with SPSS v19. Results The mean±SD BLL was 3.67±1.47 (median 3.41, range 0.41–19.14) µg/dl. Higher educational qualification was found to be one of the strongest independent predictor of BLL in an adjusted backwards stepwise logistic regression to predict maternal BLL <5 or ?5 µg/dl (odds ratio 1.26, 95% confidence interval 1.12–1.42; p<0.001). Other predictive factors included cigarette smoking, alcohol and coffee drinking, and heating the home with a coal fire, with some evidence for iron and calcium intake having protective effects. Conclusion The mean BLL in this group of pregnant women is higher than has been found in similar populations in developed countries. The finding that high education attainment was independently associated with higher BLL was unexpected and currently unexplained. Reduction in maternal lead levels can best be undertaken by reducing intake of the social drugs cigarettes, alcohol and caffeine, although further investigation of the effect of calcium on lead levels is needed. PMID:24039753

  2. Bridge over Troubled Waters: Training for Department Level Supervisors.

    ERIC Educational Resources Information Center

    Cook, Gillian E.; Skipper, Barbara L.

    A clinical supervision training program has provided department level coordinators with support in their role as a bridge between administrators and teachers in six high schools and nine middle schools in a San Antonio, Texas, school district. This paper identifies major characteristics of the training program's model, describes the program, and…

  3. A SCREENING ASSESSMENT OF THE RELATIVE VULNERABILITY OF COASTAL WATER SUPPLIES TO SALT WATER INTRUSION CAUSED BY SEA LEVEL RISE

    EPA Science Inventory

    Sea levels have risen from four to eight inches in the 20th century, and model projections suggest an additional rise of 8 to 15 inches is possible during the 21st century. Rising sea levels can increase the upstream extent of salt water influence in coastal aquifers. In coasta...

  4. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect

    P. Tucci

    2001-12-20

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

  5. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    NASA Astrophysics Data System (ADS)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2010-10-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale discharge and nitrate loads. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate the groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements simulates better nitrate loads and better predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  6. Serum Gamma-Glutamyltransferase Levels Predict Clinical Outcomes in Hemodialysis Patients

    PubMed Central

    Kim, Su-Hyun; Kim, Young Ok; Jin, Dong Chan; Song, Ho Chul; Choi, Euy Jin; Kim, Yong-Lim; Kim, Yon-Su; Kang, Shin-Wook; Kim, Nam-Ho; Yang, Chul Woo; Kim, Yong Kyun

    2015-01-01

    Background Gamma-glutamyltransferase (GGT) is a biomarker of liver injury. GGT has also been reported to be a marker of oxidative stress and a predictor of mortality in the general population. Hemodialysis (HD) patients suffer from oxidative stress. The aim of our study was to investigate the relationship between serum GGT levels and clinical outcomes in HD patients. Methods A total of 1,634 HD patients were enrolled from the Clinical Research Center registry for end-stage renal disease, a prospective cohort in Korea. Patients were categorized into three groups by tertiles of serum GGT levels. The primary outcome was all-cause, cardiovascular, or infection-related mortality and hospitalization. Results During the median follow-up period of 30 months, the highest tertile of serum GGT levels had a significantly higher risk for all-cause mortality (hazard ratio (HR) 2.39, 95% confidence interval (CI), 1.55–3.69, P<0.001), cardiovascular mortality (HR 2.14, 95% CI, 1.07–4.26, P = 0.031) and infection-related mortality (HR 3.07, 95% CI, 1.30–7.25, P = 0.011) using tertile 1 as the reference group after adjusting for clinical variables including liver diseases. The highest tertile also had a significantly higher risk for first hospitalization (HR 1.22, 95% CI, 1.00–1.48, P = 0.048) and cardiovascular hospitalization (HR 1.42, 95% CI, 1.06–1.92, P = 0.028). Conclusions Our data demonstrate that high serum GGT levels were an independent risk factor for all-cause, cardiovascular, and infection-related mortality, as well as cardiovascular hospitalization in HD patients. These findings suggest that serum GGT levels might be a useful biomarker to predict clinical outcomes in HD patients. PMID:26376075

  7. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  8. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  9. Quantitative evaluation of the impact of bather density on levels of human-virulent microsporidian spores in recreational water.

    PubMed

    Graczyk, Thaddeus K; Sunderland, Deirdre; Tamang, Leena; Shields, Timothy M; Lucy, Frances E; Breysse, Patrick N

    2007-07-01

    Microsporidial gastroenteritis, a serious disease of immunocompromised people, can have a waterborne etiology. During summer months, samples of recreational bathing waters were tested weekly for human-virulent microsporidian spores and water quality parameters in association with high and low bather numbers during weekends and weekdays, respectively. Enterocytozoon bieneusi spores were detected in 59% of weekend (n = 27) and 30% of weekday (n = 33) samples, and Encephalitozoon intestinalis spores were concomitant in a single weekend sample; the overall prevalence was 43%. The numbers of bathers, water turbidity levels, prevalences of spore-positive samples, and concentrations of spores were significantly higher for weekend than for weekday samples; P values were <0.001, <0.04, <0.03, and <0.04, respectively. Water turbidity and the concentration of waterborne spores were significantly correlated with bather density, with P values of <0.001 and <0.01, respectively. As all water samples were collected on days deemed acceptable for bathing by fecal bacterial standards, this study reinforces the scientific doubt about the reliability of bacterial indicators in predicting human waterborne pathogens. The study provides evidence that bathing in public waters can result in exposure to potentially viable microsporidian spores and that body contact recreation in potable water can play a role in the epidemiology of microsporidiosis. The study indicates that resuspension of bottom sediments by bathers resulted in elevated turbidity values and implies that the microbial load from both sediments and bathers can act as nonpoint sources for the contamination of recreational waters with Enterocytozoon bieneusi spores. Both these mechanisms can be considered for implementation in predictive models for contamination with microsporidian spores. PMID:17483272

  10. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    SciTech Connect

    O`Brien, G.M.

    1993-07-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p {number_sign}1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p {number_sign}1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells.

  11. Can blood or follicular fluid levels of presepsin predict reproductive outcomes in ART; a preliminary study

    PubMed Central

    Ovayolu, Ali; Özdamar, Özkan; Gün, ?smet; Arslanbuga, Cansev Y?lmaz; Sofuo?lu, Kenan; Tunal?, Gülden; Topuz, Samet

    2015-01-01

    Many stages of COH protocols are considered to potentiate a state of systemic inflammation. The limit beyond which inflammation has negative impacts on the formation of conception and the reproductive outcomes are compromised still remains unclear. Presepsin is a novel biomarker for diagnosing systemic inflammation and sepsis. We aimed to investigate whether plasma and follicular fluid presepsin values on oocyte pick-up (OPU) day, embryo transfer (ET) day and pregnancy test (PT) days could predict reproductive outcomes during IVF treatment in women with UEI. Patients were assigned to two groups according to pregnancy test results; pregnant (Group 1) and non-pregnant (Group 2). From all patients included in the study, 2 cc of venous blood was sampled on the three days and follicular fluid (FF) was collected during oocyte retrieval. Plasma presepsin, CRP and WBC values and FF presepsin values were measured and compared between the 2 groups. There was no significant difference between FF and plasma presepsin levels on the OPU day (298±797.4 ve 352.9±657.1; P=0.701, respectively). Plasma WBC, CRP and presepsin levels on the OPU, ET and PT days and FF presepsin levels on OPU day were not different between the 2 groups. Plasma presepsin course on the separate 3 days were different between the groups. PMID:26221358

  12. Map of the Carpinteria area and vicinity, Santa Barbara County, California, showing water-level contours for March 1983, and net change in water level between March 1982 and March 1983

    USGS Publications Warehouse

    Moyle, W.R., Jr.

    1984-01-01

    A water-level contour map of the Carpinteria area, California, was constructed using 34 water-level measurements made by the Carpinteria County Water District in March 1983. Also shown on the map are five hydrographs that show water-level fluctuations in each well between 1978 and 1983. In addition, a water-level net-change map for March 1982 to March 1983 is shown. (USGS)

  13. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter

    USGS Publications Warehouse

    Kim, Jin-Woo; Lu, Zhong; Jones, John W.; Shum, C.K.; Lee, Hyongki; Jia, Yuanyuan

    2014-01-01

    The Florida Everglades plays a significant role in controlling floods, improving water quality, supporting ecosystems, and maintaining biodiversity in south Florida. Adaptive restoration and management of the Everglades requires the best information possible regarding wetland hydrology. We developed a new and innovative approach to quantify spatial and temporal variations in wetland water levels within the Everglades, Florida. We observed high correlations between water level measured at in situ gages and L-band SAR backscatter coefficients in the freshwater marsh, though C-band SAR backscatter has no close relationship with water level. Here we illustrate the complementarity of SAR backscatter coefficient differencing and interferometry (InSAR) for improved estimation of high spatial resolution water level variations in the Everglades. This technique has a certain limitation in applying to swamp forests with dense vegetation cover, but we conclude that this new method is promising in future applications to wetland hydrology research.

  14. Description and effects of 1988 drought on ground-water levels, streamflow, and reservoir levels in Indiana

    USGS Publications Warehouse

    Fowler, K.K.

    1992-01-01

    Documentation of the 1988 drought in Indiana was undertaken to aid water-management agencies and planners concerned with periods of below-normal precipitation and their effect on commercial, agricultural, and residential water use. Precipitation, temperature, Palmer Drought Severity Indices, and ground- and surface-water levels from water years 1988 and 1989 were compared to the historical record to evaluate severity, extent, and duration of the 1988 drought in Indiana. Three types of drought-climatological, hydrologic, and agricultural--occurred in most of Indiana during water years 1988 and 1989. The drought began toward the end of calendar year 1987 as annual precipitation decreased to 4.6 inches below the long term mean. By the end of September 1988, statewide precipitation deficits had increased to almost 8 inches below normal. High temperatures during the summer months increased the stress on crops, livestock, and people. Northwest Indiana experienced the second warmest June-August on record. Palmer Drought Severity Indices indicated that a moderate-to-severe drought had occurred in Indiana during most of 1988. Ground-water levels were affected substantially in many areas of the State. Record low-water levels were observed at 12 of the 20 monitoring wells included in this report. A go-day ground-water emergency was declared in parts of northwestern Indiana. Streamflow throughout the State was affected to varying degrees by the drought. Annual mean discharge in some rivers was only slightly less than the mean annual discharge, while others flowed at less than half that value. The effects of low streamflows were felt by many as electric power plants reduced or ceased production and public-water utilities requested conservation measures by their customers. Major reservoirs in the State approached or reached record low levels, causing water supplies as well as recreational activities to be diminished. Most major crops produced in Indiana were affected by the dry conditions. Average yields in 1988 ranged from 50 to 86 percent of 1987 yields.

  15. Interest Level in 2-Year-Olds with Autism Spectrum Disorder Predicts Rate of Verbal, Nonverbal, and Adaptive Skill Acquisition

    ERIC Educational Resources Information Center

    Klintwall, Lars; Macari, Suzanne; Eikeseth, Svein; Chawarska, Katarzyna

    2015-01-01

    Recent studies have suggested that skill acquisition rates for children with autism spectrum disorders receiving early interventions can be predicted by child motivation. We examined whether level of interest during an Autism Diagnostic Observation Schedule assessment at 2?years predicts subsequent rates of verbal, nonverbal, and adaptive skill…

  16. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    PubMed

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions of coal seams. PMID:26161959

  17. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine

    PubMed Central

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions of coal seams. PMID:26161959

  18. Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity

    NASA Astrophysics Data System (ADS)

    Povak, Nicholas A.; Hessburg, Paul F.; Reynolds, Keith M.; Sullivan, Timothy J.; McDonnell, Todd C.; Salter, R. Brion

    2013-06-01

    In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially affected biota, and create resource protection strategies. In this study, we developed correlative models to predict the acid neutralizing capacity (ANC) of streams across the southern Appalachian Mountain region, USA. Models were developed using stream water chemistry data from 933 sampled locations and continuous maps of pertinent environmental and climatic predictors. Environmental predictors were averaged across the upslope contributing area for each sampled stream location and submitted to both statistical and machine-learning regression models. Predictor variables represented key aspects of the contributing geology, soils, climate, topography, and acidic deposition. To reduce model error rates, we employed hurdle modeling to screen out well-buffered sites and predict continuous ANC for the remainder of the stream network. Models predicted acid-sensitive streams in forested watersheds with small contributing areas, siliceous lithologies, cool and moist environments, low clay content soils, and moderate or higher dry sulfur deposition. Our results confirmed findings from other studies and further identified several influential climatic variables and variable interactions. Model predictions indicated that one quarter of the total stream network was sensitive to additional sulfur inputs (i.e., ANC < 100 µeq L-1), while <10% displayed much lower ANC (<50 µeq L-1). These methods may be readily adapted in other regions to assess stream water quality and potential biotic sensitivity to acidic inputs.

  19. Application of Method of Variation to Analyze and Predict Human Induced Modifications of Water Resource Systems

    NASA Astrophysics Data System (ADS)

    Dessu, S. B.; Melesse, A. M.; Mahadev, B.; McClain, M.

    2010-12-01

    Water resource systems have often used gravitational surface and subsurface flows because of their practicality in hydrological modeling and prediction. Activities such as inter/intra-basin water transfer, the use of small pumps and the construction of micro-ponds challenge the tradition of natural rivers as water resource management unit. On the contrary, precipitation is barely affected by topography and plot harvesting in wet regions can be more manageable than diverting from rivers. Therefore, it is indicative to attend to systems where precipitation drives the dynamics while the internal mechanics constitutes spectrum of human activity and decision in a network of plots. The trade-in volume and path of harvested precipitation depends on water balance, energy balance and the kinematics of supply and demand. Method of variation can be used to understand and predict the implication of local excess precipitation harvest and exchange on the natural water system. A system model was developed using the variational form of Euler-Bernoulli’s equation for the Kenyan Mara River basin. Satellite derived digital elevation models, precipitation estimates, and surface properties such as fractional impervious surface area, are used to estimate the available water resource. Four management conditions are imposed in the model: gravitational flow, open water extraction and high water use investment at upstream and downstream respectively. According to the model, the first management maintains the basin status quo while the open source management could induce externality. The high water market at the upstream in the third management offers more than 50% of the basin-wide total revenue to the upper third section of the basin thus may promote more harvesting. The open source and upstream exploitation suggest potential drop of water availability to downstream. The model exposed the latent potential of economic gradient to reconfigure the flow network along the direction where the marginal benefit is maximized. Therefore, the variation model can help to predict the possible human induced modification of natural water system in order to gain the maximum productivity and benefit.

  20. Spatial Variability Of Sea Level Rise Due To Water Impoundment Behind Dams

    NASA Astrophysics Data System (ADS)

    Fiedler, J. W.; Conrad, C. P.

    2009-12-01

    Recent estimates suggest that dams have impounded ~10,800 km3 of water since 1900, reducing global sea level by -30.0 mm and decreasing the apparent rate of sea level rise. This redistribution of ocean water causes spatial variability in sea level. As water is removed from the ocean and impounded on land within dammed artificial reservoirs, a net mass load is added to the continents. The new load depresses the earth’s crust, and elevates the geoid that defines the ocean surface. Together these effects increase relative sea level (RSL) and thus regions near large dams experience smaller RSL drop than regions remote from continental water storage. As a result, RSL drop is greatest in the Pacific and the southern hemisphere and smaller in the northern hemisphere near the continents. The effect of water impoundment on sea level is greatest from 1960 to 1990, when dam building was most prolific. Sea level records during this time must be reconstructed with long-duration tide gauges, which on average measure ~70% of the actual sea level drop due to reservoir building. Regional patterns of RSL drop due to dams cause variations in tide gauge measurements, which measure ~110% of average sea level drop in the Pacific and ~40% of average sea level drop in northeast North America. Correcting the tide gauges for these patterns may have important implications for constraining sea level variability from melting sources, favoring northern sources of glacial unloading such as Greenland.

  1. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters

    PubMed Central

    2014-01-01

    This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE?=?25.1 mg/L, r?=?0.83 and for prediction of COD was RMSE?=?49.4 mg/L, r?=?0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676

  2. Simulated water-level responses, ground-water fluxes, and storage changes for recharge scenarios along Rillito Creek, Tucson, Arizona

    USGS Publications Warehouse

    Hoffmann, John P.; Leake, Stanley A.

    2005-01-01

    A local ground-water flow model is used to simulate four recharge scenarios along Rillito Creek in northern Tucson to evaluate mitigating effects on ground-water deficits and water-level declines in Tucson's Central Well Field. The local model, which derives boundary conditions from a basin-scale model, spans the 12-mile reach of Rillito Creek and extends 9 miles south into the Central Well Field. Recharge scenarios along Rillito Creek range from 5,000 to 60,000 acre-feet per year and are simulated to begin in 2005 and extend through 2225 to estimate long-term changes in ground-water level, ground-water storage, ground-water flux, and evapotranspiration. The base case for comparison of simulated water levels and flows, referred to as scenario A, uses a long-term recharge rate of 5,000 acre-feet per year to 2225. Scenario B, which increases the recharge along Rillito Creek by 9,500 acre-feet per year, has simulated water-level rises beneath Rillito Creek that range from about 53 feet to 86 feet. Water-level rises within the Central Well Field range from about 60 feet to 80 feet. More than half of these rises occur by 2050, and more than 95 percent occur by 2188. Scenario C, which increases the recharge along Rillito Creek by 16,700 acre-feet per year relative to scenario A, has simulated water-level rises beneath Rillito Creek that range from about 71 feet to 102 feet. Water-level rises within the Central Well Field range from about 80 feet to 95 feet. More than half of the rises occur by 2036, and more than 95 percent occur by 2100. Scenario D, which initially increases the recharge rate by about 55,000 acre-feet per year relative to scenario A, resulted in simulated water levels that rise to land surface along Rillito Creek. This rise in water level resulted in rejected recharge. As the water table continued to rise, the area of stream-channel surface intersected by the water table increased causing continual decline in the recharge rate until a long-term recharge rate of about 34,000 acre-feet per year was sustained. The long-term recharge rate for scenario D is about 29,000 acre-feet per year greater than the long-term recharge rate for scenario A. Simulated long-term water-level rises beneath Rillito Creek range from about 97 feet to 131 feet, resulting in water levels near or at the land surface. Shallow depths to water associated with this scenario have implications for contamination owing to the presence of landfills within or adjacent to Rillito Creek. Water-level rises for cells within the Central Well Field range from about 96 feet to 109 feet. More than half of the water-level rises occur by 2018 and more than 95 percent occur by 2041. Almost all the increased water added to the ground-water system in the recharge scenarios can be accounted for by a combination of increased storage near Rillito Creek, ground-water flux to the south, ground-water flux to the northwest, and increased discharge as evapotranspiration along Rillito Creek. The percentage of newly added water accounted for by storage changes is large relative to the percentage accounted for by changes in flux and evapotranspiration at the onset of each scenario; however, the changes in storage become smaller throughout the simulation, and the long-term component accounted for by storage is minimal. Long-term ground-water fluxes to the south increase by about 3,300, 4,840, and 7,500 acre-feet per year for scenarios B, C, and D, respectively. The percentage of increased recharge that flows south toward the Central Well Field, therefore, is 35, 29, and 26 percent for scenarios B, C, and D, respectively. Long-term ground-water fluxes to the northwest increase by about 3,100, 3,900, and 6,980 acre-feet per year for scenarios B, C, and D, respectively. The long-term percentage of increased recharge flowing northwestward is about 31, 25, and 21 percent for scenarios B, C, and D, respectively. Shallow ground-water evapotranspiration along Rillito Creek incr

  3. Links between type E botulism outbreaks, lake levels, and surface water temperatures in Lake Michigan, 1963-2008

    USGS Publications Warehouse

    Lafrancois, Brenda Moraska; Riley, Stephen C.; Blehert, David S.; Ballmann, Anne E.

    2011-01-01

    Relationships between large-scale environmental factors and the incidence of type E avian botulism outbreaks in Lake Michigan were examined from 1963 to 2008. Avian botulism outbreaks most frequently occurred in years with low mean annual water levels, and lake levels were significantly lower in outbreak years than in non-outbreak years. Mean surface water temperatures in northern Lake Michigan during the period when type E outbreaks tend to occur (July through September) were significantly higher in outbreak years than in non-outbreak years. Trends in fish populations did not strongly correlate with botulism outbreaks, although botulism outbreaks in the 1960s coincided with high alewife abundance, and recent botulism outbreaks coincided with rapidly increasing round goby abundance. Botulism outbreaks occurred cyclically, and the frequency of outbreaks did not increase over the period of record. Climate change scenarios for the Great Lakes predict lower water levels and warmer water temperatures. As a consequence, the frequency and magnitude of type E botulism outbreaks in the Great Lakes may increase.

  4. A Screening-Level Hydroeconomic Model of South Florida Water Resources System

    NASA Astrophysics Data System (ADS)

    Mirchi, A.; Watkins, D. W., Jr.; Flaxman, M.; Wiesmann, D.

    2014-12-01

    South Florida's water resources management is characterized by system-wide tradeoffs associated with maintaining the ecological integrity of natural environments such as the Everglades while meeting the water demands of the agricultural sector and growing urban areas. As these tradeoffs become more pronounced due to pressures from climate change, sea level rise, and population growth, it will be increasingly challenging for policy makers and stakeholders to reach consensus on water resources management objectives and planning horizons. A hydroeconomic optimization model of south Florida's water resources system is developed to incorporate the value of water for preserving ecosystem services alongside water supplies to the Everglades Agricultural Area and urban areas. Results of this screening-level network flow model facilitate quantitative analysis and provide insights for long-term adaptive management strategies for the region's water resources.

  5. Computational Approaches to Analyze and Predict Small Molecule Transport and Distribution at Cellular and Subcellular Levels

    PubMed Central

    Ah Min, Kyoung; Zhang, Xinyuan; Yu, Jing-yu; Rosania, Gus R.

    2013-01-01

    Quantitative structure-activity relationship (QSAR) studies and mechanistic mathematical modeling approaches have been independently employed for analyzing and predicting the transport and distribution of small molecule chemical agents in living organisms. Both of these computational approaches have been useful to interpret experiments measuring the transport properties of small molecule chemical agents, in vitro and in vivo. Nevertheless, mechanistic cell-based pharmacokinetic models have been especially useful to guide the design of experiments probing the molecular pathways underlying small molecule transport phenomena. Unlike QSAR models, mechanistic models can be integrated from microscopic to macroscopic levels, to analyze the spatiotemporal dynamics of small molecule chemical agents from intracellular organelles to whole organs, well beyond the experiments and training data sets upon which the models are based. Based on differential equations, mechanistic models can also be integrated with other differential equations-based systems biology models of biochemical networks or signaling pathways. Although the origin and evolution of mathematical modeling approaches aimed at predicting drug transport and distribution has occurred independently from systems biology, we propose that the incorporation of mechanistic cell-based computational models of drug transport and distribution into a systems biology modeling framework is a logical next-step for the advancement of systems pharmacology research. PMID:24218242

  6. Systems pharmacology to predict drug toxicity: integration across levels of biological organization.

    PubMed

    Bai, Jane P F; Abernethy, Darrell R

    2013-01-01

    To achieve sensitive and specific mechanism-based prediction of drug toxicity, the tools of systems pharmacology will be integrated using structured ontological approaches, analytics, mathematics, and statistics. Success of this effort is based on the assumption that a systems network that consists of drug-induced perturbations of physiological functions can be characterized. This network spans the hierarchy of biological organization, from gene to mRNA to protein to intracellular organelle to cell to organ to organism. It is populated with data from each of these levels of biological organization. These data, from disparate sources, include the published literature, drug development archives of all approved drugs and drug candidates that did not complete development, and various toxicity databases and adverse event reporting systems. The network contains interrelated genomics, transcriptomics, and metabolomics data, as well as organ and physiological functional data that are derived from the universe of information that describes and analyzes drug toxicity. Here we describe advances in bioinformatics, computer sciences, next-generation sequencing, and systems biology that create the opportunity for integrated systems pharmacology-based prediction of drug safety. PMID:23140241

  7. [Simulation and prediction of water environmental carrying capacity in Liaoning Province based on system dynamics model].

    PubMed

    Wang, Jian; Li, Xue-liang; Li, Fa-yun; Bao, Hong-xu

    2009-09-01

    By the methods of system dynamics, a water environmental carrying capacity (WECC) model was constructed, and the dynamic trend of the WECC in Liaoning Province was simulated by using this model, in combining with analytical hierarchy process (AHP) and the vector norm method. It was predicted that under the conditions of maintaining present development schemes, the WECC in this province in 2000-2050 would be decreased year after year. Only increasing water resources supply while not implementing scientific and rational management of water environment could not improve the regional WECC, and the integration of searching for new and saving present water resources with controlling wastewater pollution and reducing sewage discharge would be the only effective way to improve the WECC and the coordinated development of economy, society, and environment in Liaoning. PMID:20030148

  8. Circulating Lipocalin 2 Levels Predict Fracture-Related Hospitalizations in Elderly Women: A Prospective Cohort Study.

    PubMed

    Lim, Wai H; Wong, Germaine; Lim, Ee M; Byrnes, Elizabeth; Zhu, Kun; Devine, Amanda; Pavlos, Nathan J; Prince, Richard L; Lewis, Joshua R

    2015-11-01

    Lipocalin 2 (LCN2) or neutrophil gelatinase-associated lipocalin (NGAL) is expressed in a wide range of cells and pathological states. Mounting evidence suggests lipocalin 2 may be an important regulator of bone homeostasis. Recently it has been suggested LCN2 is a novel mechanoresponsive gene central to the pathological response to low mechanical force. We undertook a prospective study of 1009 elderly women over 70 years of age to study the association between circulating LCN2 and potential associated variables, including estimated glomerular filtration rate, physical activity, and baseline measures of hip bone density and heel bone quality. Osteoporotic fractures requiring hospitalizations were identified from the Western Australian Data Linkage System. Over 14.5 years, 272 (27%) of women sustained an osteoporotic fracture-related hospitalization; of these, 101 were hip fractures. Circulating LCN2 levels were correlated with body mass index and estimated glomerular filtration rate (r?=?0.249, p?levels above the median (76.6?ng/mL), there was an 80% to 81% increase in the risk of any osteoporotic or hip fracture (HR?=?1.81, 95% CI 1.38-2.36, p?levels predict future risk of osteoporotic fractures requiring hospitalization. Measurement of LCN2 levels may improve fracture prediction in addition to current fracture risk factors in the elderly, particularly in those with impaired renal function. © 2015 American Society for Bone and Mineral Research. PMID:25939604

  9. Levels of major and trace elements, including rare earth elements, and ²³?U in Croatian tap waters.

    PubMed

    Fiket, Željka; Rožmari?, Martina; Krmpoti?, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters. PMID:25430011

  10. The Design and Evaluation of Prototype Eco-Feedback Displays for Fixture-Level Water Usage Data

    E-print Network

    Daume III, Hal

    The Design and Evaluation of Prototype Eco-Feedback Displays for Fixture-Level Water Usage Data sensing systems, however, can provide detailed usage data at the level of individual water fixtures (i.e., fixture-level) water usage data. Our work is inspired by emerging technologies that can sense water usage

  11. Summary of recovered historical ground-water-level data for Michigan, 1934-2005

    USGS Publications Warehouse

    Cornett, Cassaundra L.; Crowley, Suzanne L.; McGowan, Rose M.; Blumer, Stephen P.; Reeves, Howard W.

    2006-01-01

    This report documents ground-water-level data-recovery efforts performed by the USGS Michigan Water Science Center and provides nearly three-hundred hydrographs generated from these recovered data. Data recovery is the process of verifying and transcribing data from paper files into the USGS National Water Information System (NWIS) electronic databases appropriate for ground-water-level data. Entering these data into the NWIS databases makes them more useful for USGS analysis and also makes them available to the public through the internet.

  12. Predictive Modeling of Large-Scale Commercial Water Desalination Plants: Data-Based Neural Network and Model-Based Process

    E-print Network

    Liu, Y. A.

    Predictive Modeling of Large-Scale Commercial Water Desalination Plants: Data-Based Neural Network for developing predictive models for large-scale commercial water desalination plants by (1) a data (MSF) and reverse osmosis (RO) desalination plants in the world. Our resulting neural network

  13. Stability of low levels of perchlorate in drinking water and natural water samples

    USGS Publications Warehouse

    Stetson, S.J.; Wanty, R.B.; Helsel, D.R.; Kalkhoff, S.J.; Macalady, D.L.

    2006-01-01

    Perchlorate ion (ClO4-) is an environmental contaminant of growing concern due to its potential human health effects, impact on aquatic and land animals, and widespread occurrence throughout the United States. The determination of perchlorate cannot normally be carried out in the field. As such, water samples for perchlorate analysis are often shipped to a central laboratory, where they may be stored for a significant period before analysis. The stability of perchlorate ion in various types of commonly encountered water samples has not been generally examined-the effect of such storage is thus not known. In the present study, the long-term stability of perchlorate ion in deionized water, tap water, ground water, and surface water was examined. Sample sets containing approximately 1000, 100, 1.0, and 0.5 ??g l-1 perchlorate ion in deionized water and also in local tap water were formulated. These samples were analyzed by ion chromatography for perchlorate ion concentration against freshly prepared standards every 24 h for the first 7 days, biweekly for the next 4 weeks, and periodically after that for a total of 400 or 610 days for the two lowest concentrations and a total of 428 or 638 days for the high concentrations. Ground and surface water samples containing perchlorate were collected, held and analyzed for perchlorate concentration periodically over at least 360 days. All samples except for the surface water samples were found to be stable for the duration of the study, allowing for holding times of at least 300 days for ground water samples and at least 90 days for surface water samples. ?? 2006 Elsevier B.V. All rights reserved.

  14. Penetration Barrier of Water through Graphynes' Pores: First-Principles Predictions and Force Field Optimization.

    PubMed

    Bartolomei, Massimiliano; Carmona-Novillo, Estela; Hernández, Marta I; Campos-Martínez, José; Pirani, Fernando; Giorgi, Giacomo; Yamashita, Koichi

    2014-02-20

    Graphynes are novel two-dimensional carbon-based materials that have been proposed as molecular filters, especially for water purification technologies. We carry out first-principles electronic structure calculations at the MP2C level of theory to assess the interaction between water and graphyne, graphdiyne, and graphtriyne pores. The computed penetration barriers suggest that water transport is unfeasible through graphyne while being unimpeded for graphtriyne. For graphdiyne, with a pore size almost matching that of water, a low barrier is found that in turn disappears if an active hydrogen bond with an additional water molecule on the opposite side of the opening is considered. Thus, in contrast with previous determinations, our results do not exclude graphdiyne as a promising membrane for water filtration. In fact, present calculations lead to water permeation probabilities that are 2 orders of magnitude larger than estimations based on common force fields. A new pair potential for the water-carbon noncovalent component of the interaction is proposed for molecular dynamics simulations involving graphdiyne and water. PMID:26270848

  15. [Comparison of different methods of interpretation for the prediction of body water by heavy water dilution method: application in the male goat].

    PubMed

    Schmidely, P; Robeli, J; Bas, P

    1989-01-01

    Deuterium oxide dilution space (DS) predicted by a 1 or 2 compartment kinetic model was used to estimate total body water in male kids. Empty body water (EBW), total body water at slaughter (TBW) and total body water calculated in the middle of day of injection (TBWM) were predicted with more accuracy by 2 compartment models. Residual standard deviation for EBW, TBW and TBWM estimated from a 2 open compartment model was 939 g, 464 g and 450 g respectively. Measurement of DS provides an accurate method to determine body water content and body composition. PMID:2692598

  16. Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles

    SciTech Connect

    Spagnoli, D.; Gilbert, B.; Waychunas, G.A.; Banfield, J. F.

    2009-05-15

    Compared with macroscopic surfaces, the structure of water around nanoparticles is difficult to probe directly. We used molecular dynamics simulations to investigate the effects of particle size and morphology on the time-averaged structure and the dynamics of water molecules around two sizes of hematite ({alpha}-Fe{sub 2}O{sub 3}) nanoparticles. Interrogation of the simulations via atomic density maps, radial distribution functions and bound water residence times provide insight into the relationships between particle size and morphology and the behavior of interfacial water. Both 1.6 and 2.7 nm particles are predicted to cause the formation of ordered water regions close to the nanoparticle surface, but the extent of localization and ordering, the connectivity between regions of bound water, and the rates of molecular exchange between inner and outer regions are all affected by particle size and morphology. These findings are anticipated to be relevant to understanding the rates of interfacial processes involving water exchange and the transport of aqueous ions to surface sites.

  17. PREDICTION OF PESTICIDE RISKS TO HUMAN HEALTH BY DRINKING WATER EXTRACTED FROM UNDERGROUND SOURCES.

    PubMed

    Antonenko, A; Vavrinevych, O; Omelchuk, S; Korshun, M

    2015-01-01

    The aim of our work was to develop the method of prediction of the risk of contamination of groundwater with different classes' fungicides in soil and climatic conditions of Ukraine and other European countries, as well as hygienic assessment of their impact on public health. The calculation and comparative evaluation of various indices of pesticides migration into groundwater were conducted. It was established that the most optimal and complete is an LEACN index according to which in soil and climatic conditions of Ukraine the risk of contamination of ground and surface water by all studied fungicides is low, except penconazole and tebuconazole for which there is medium contamination risk. We have developed a method of integrated assessment of the potential hazard of pesticide exposure on the human organism when it enters ground and surface waters, which are intensive used for drinking water supplying. Integral index of this method - IGCHI - is obtained by adding of scores assigned to main indicators characterizing the danger to humans in pesticides gets into the water: index of leaching (LEAC?), half life period in water (DT50) and the allowable daily intake (ADI). According developed method all studied fungicides are low hazard for human, except benalaxy-M and tebuconazole which are hazard and highly hazard, respectively. It was established that, benalaxy-M is hazard when it leached into groundwater and surface water, tebuconazole is highly hazard, which is primarily due to their high stability in water (in both cases) and significant potential for leaching (in the latter case). PMID:26177143

  18. Natural 'background' soil water repellency in conifer forests: its prediction and relationship to wildfire occurrence

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan; Woods, Scott; Martin, Deborah; Casimiro, Marta

    2013-04-01

    Soils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites (n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by col- lecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were fur- ther analyzed for repellency using WDPT and contact angle (hsl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species (Pinus ponderosa, Pinus contorta, Picea engelma- nii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long- unburnt conifer forest soils of the north-western USA is therefore incorrect. It follows that, where pre-fire water repellency levels are not known or highly variable, post-fire soil water repellency conditions are an unreliable indicator in classifying soil burn severity. The terrain and soil variables examined showed, overall, no convincing relationship with the repellency levels observed (R2 < 0.15) except that repellency was limited in soils (i) developed over meta-sedimen- tary lithology and (ii) with clay contents >4%. This suggests that water repellency levels cannot be pre- dicted with confidence from common terrain or soil variables. This work is presented in the memory of the late Scott Woods, who was instrumental in the success of this study and an inspiration to us all.

  19. Predicting the Reactivity of Hydride Donors in Water: Thermodynamic Constants for Hydrogen

    SciTech Connect

    Connelly, Samantha J.; Wiedner, Eric S.; Appel, Aaron M.

    2015-01-01

    Chemical reactivity of hydride complexes can be predicted by comparing bond strengths for homolytic and heterolytic cleavage of bonds to hydrogen. To determine these bond strengths, thermodynamic constants for H+, H•, H–, and H2 are essential and need to be used uniformly to enable the prediction of reactivity and equilibria. One of the largest challenges is quantifying the stability of solvated H– in water, which is discussed. Due to discrepancies in the literature for the constants used in water, we propose the use of a set of self-consistent constants with convenient standard states. The work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences.

  20. Understanding the connection of extreme water levels to mortality in the megacity Dhaka

    NASA Astrophysics Data System (ADS)

    Thiele-Eich, Insa; Burkart, Katrin; Simmer, Clemens

    2015-04-01

    To quantitatively assess the impact of extreme water levels on a local scale we study both low and high water levels and their connection to mortality in the megacity Dhaka. Dhaka is currently threatened by a range of natural hazards such as earth quakes, tropical cyclones and - on an almost annual basis - flooding . Flooding in the megacity is largely determined by the close proximity to the confluence of the Ganges and Brahmaputra rivers upstream as well as the conjunction with the Meghna river further downstream. The risk of flooding is aggravated through rapid urbanization and concurrent encroachment on retention areas, as well as increasing problems with both the natural and man-made drainage system. A growing population, continuing urbanization and climate change are all expected to worsen the situation in Dhaka. This prompted us to study historical trends in extreme water levels using over 100 years of daily water level data with respect to trends in frequency, magnitude and duration, focusing on rare but particularly high-risk events using extreme-value theory. In a further step, the complex link between water levels and mortality are studied using a distributed lag non-linear model with mortality data available on a daily basis for a five-year period (2003-2007). Our analysis suggests that water levels have indeed changed over the course of the past century. While the magnitude and duration of average flood events decreased, the frequency of extreme flood events has increased. Low water levels have also changed, with a significant decrease in the annual minimum water level when comparing the time periods 1909-1939 and 1979-2009. Results further indicate that for the period of 2003-2007, which entails two major flood events in 2004 and 2007, high water levels do not lead to a significant increase in relative mortality, which indicates a good level of adaptation and capacity to cope with flooding. However, following low water levels, an increase in mortality could be found. This is particularly alarming as low water levels have continuously decreased over the past 100 years. Thus, to ensure the population is capable of coping with future climate change, we stress the importance of not only continuing and improving the current adaptation measures for flooding, but to also prepare the population for drought events.

  1. Trends in Water Level and Flooding in Dhaka, Bangladesh and Their Impact on Mortality

    PubMed Central

    Thiele-Eich, Insa; Burkart, Katrin; Simmer, Clemens

    2015-01-01

    Climate change is expected to impact flooding in many highly populated coastal regions, including Dhaka (Bangladesh), which is currently among the fastest growing cities in the world. In the past, high mortality counts have been associated with extreme flood events. We first analyzed daily water levels of the past 100 years in order to detect potential shifts in extremes. A distributed lag non-linear model was then used to examine the connection between water levels and mortality. Results indicate that for the period of 2003–2007, which entails two major flood events in 2004 and 2007, high water levels do not lead to a significant increase in relative mortality, which indicates a good level of adaptation and capacity to cope with flooding. However, following low water levels, an increase in mortality could be found. As our trend analysis of past water levels shows that minimum water levels have decreased during the past 100 years, action should be taken to ensure that the exposed population is also well-adapted to drought. PMID:25648177

  2. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress

    NASA Astrophysics Data System (ADS)

    Zhao, Chunjiang; Liu, Liangyun; Wang, Jihua; Huang, Wenjiang; Song, Xiaoyu; Li, Cunjun

    2005-05-01

    Advanced site-specific knowledge of grain protein content of winter wheat from remote sensing data would provide opportunities to manage grain harvest differently, and to maximize output by adjusting input in fields. In this study, remote sensing data were utilized to predict grain protein content. Firstly, the leaf nitrogen content at winter wheat anthesis stage was proved to be significantly correlated with grain protein content ( R2 = 0.36), and spectral indices significantly correlated to leaf nitrogen content at anthesis stage were potential indicators for grain protein content. The vegetation index, VI green, derived from the canopy spectral reflectance at green and red bands, was significantly correlated to the leaf nitrogen content at anthesis stage, and also highly significantly correlated to the final grain protein content ( R2 = 0.46). Secondly, the external conditions, such as irrigation, fertilization and temperature, had important influence on grain quality. Water stress at grain filling stage can increase grain protein content, and leaf water content is closely related to irrigation levels, therefore, the spectral indices correlated to leaf water content can be potential indicators for grain protein content. The spectral reflectance of TM channel 5 derived from canopy spectra or image data at grain filling stage was all significantly correlated to grain protein content ( R2 = 0.31 and 0.37, respectively). Finally, not only this study proved the feasibility of using remote sensing data to predict grain protein content, but it also provided a tentative prediction of the grain protein content in Beijing area using the reflectance image of TM channel 5.

  3. Coupling Terrestrial and Atmospheric Water Dynamics to Improve Prediction in a Changing Environment

    E-print Network

    Lyon, Steve W.; Dominguez, Francina; Gochis, David J.; Brunsell, Nathaniel A.; Castro, Christopher; Chow, Fotini K.; Fan, Ying; Fuka, Daniel; Hong, Yang; Kucera, Paul A.; Nesbitt, Stephen W.; Salzmann, Nadine; Schmidli, Juerg; Snyder, Peter K.; Teuling, Adriaam J.; Twine, Tracy E.; Levis, Samuel; Lundquist, Jessica D.; Salvucci, Guido D.; Sealy, Andrea M.; Walter, M. Todd

    2008-09-01

    and characterizing feedback interactions and their atten- dant spatial and temporal scales—important for cou- pling terrestrial and atmospheric water dynamics. The primary focus of this forum is on improved process understanding, rather than operational products..., as the possibility of incorporating more realistic physics into operational models is computationally prohibitive. We approached the subject of improved predictability through better process understanding by focusing on the following three framework questions...

  4. Hippocampal Neurogenesis Levels Predict WATERMAZE Search Strategies in the Aging Brain

    PubMed Central

    Choquette, Will; Gothard, Russ; Simpson, Jessica M.; Christie, Brian R.

    2013-01-01

    The hippocampus plays a crucial role in the formation of spatial memories, and it is thought that adult hippocampal neurogenesis may participate in this form of learning. To better elucidate the relationship between neurogenesis and spatial learning, we examined both across the entire life span of mice. We found that cell proliferation, neuronal differentiation, and neurogenesis significantly decrease with age, and that there is an abrupt reduction in these processes early on, between 1.5-3 months of age. After this, the neurogenic capacity continues to decline steadily. The initial abrupt decline in adult neurogenesis was paralleled by a significant reduction in Morris Water Maze performance, however overall learning and memory remained constant thereafter. Further analysis of the search strategies employed revealed that reductions in neurogenesis in the aging brain were strongly correlated with the adoption of spatially imprecise search strategies. Overall, performance measures of learning and memory in the Morris Water Maze were maintained at relatively constant levels in aging animals due to an increase in the use of spatially imprecise search strategies. PMID:24086453

  5. Statistical prediction intervals for the evaluation of ground-water quality

    SciTech Connect

    Gibbons, R.D.

    1987-07-01

    Factors for a normal distribution are given such that one may be 99% confident that the two-sided prediction interval chi-bar +- rs or the one-sided prediction several chi-bar + rs will contain all of the kappa future values, where chi-bar and s are the sample means and standard deviation obtained from n previous values. In the context of ground-water monitoring, the future samples may represent new monitoring values at each of kappa downgradient wells, and the n previous values might be the historical monitoring results for one or more upgradient wells. The Tables provided in this paper allow the computation of one-sided and two-sided 99% prediction intervals for previous sample sizes of n = 4 to 100 and future samples of kappa = 1 to 100. Modification of these intervals for log-normally distributed data is also presented.

  6. Changes in Water Levels and Storage in the High Plains Aquifer, Predevelopment to 2005

    USGS Publications Warehouse

    McGuire, V.L.

    2007-01-01

    The High Plains aquifer underlies 111.4 million acres (174,000 square miles) in parts of eight States-Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the major agricultural regions in the world. Water-level declines began in parts of the High Plains aquifer soon after the beginning of extensive ground-water irrigation. By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (Luckey and others, 1981). In response to these water-level declines, the U.S. Geological Survey (USGS), in cooperation with numerous Federal, State, and local water-resources agencies, began monitoring more than 7,000 wells in 1988 to assess annual water-level change in the aquifer. A report by the USGS, 'Water-Level Changes in the High Plains Aquifer, Predevelopment to 2005 and 2003 to 2005' (McGuire, 2007), shows the areas of substantial water-level changes in the aquifer from the time prior to substantial ground-water irrigation development (predevelopment or about 1950) to 2005 (fig. 1). In parts of the area, farmers began using ground water for irrigation extensively in the 1930s and 1940s. Estimated irrigated acreage in the area overlying the High Plains aquifer increased rapidly from 1940 to 1980 and changed slightly from 1980 to 2002: 1949-2.1 million acres, 1980-13.7 million acres, 1997-13.9 million acres, 2002-12.7 million acres. Irrigated acres in 2002 were 12 percent of the aquifer area, not including the areas with little or no saturated thickness (McGuire, 2007). Ground-water withdrawals for irrigation and other uses are compiled and reported by the USGS and agencies in each State about every 5 years. Ground-water withdrawals from the High Plains aquifer for irrigation increased from 4 to 19 million acre-feet from 1949 to 1974. Ground-water withdrawals for irrigation in 1980, 1985, 1990, and 1995 were from 4 to 18 percent less than withdrawals for irrigation in 1974. Ground-water withdrawals from the aquifer for irrigation in 2000 were 21 million acre-feet (McGuire, 2007). Water-level changes in the aquifer result from an imbalance between discharge and recharge. Discharge is primarily ground-water withdrawals for irrigation. Discharge also includes evapotranspiration, where the water table is near the land surface, and seepage to streams and springs, where the water table intersects with the land surface. Recharge is primarily from precipitation. Other sources of recharge are irrigation return flow and seepage from streams, canals, and reservoirs. Water-level declines may result in increased costs for ground-water withdrawals because of increased pumping lift and decreased well yields (Taylor and Alley, 2001). Water-level declines also can affect ground-water availability, surface-water flow, and near-stream (riparian) habitat areas (Alley and others, 1999).

  7. Estimating water supply arsenic levels in the New England bladder cancer study

    USGS Publications Warehouse

    Nuckols, John R.; Beane Freeman, Laura E.; Lubin, Jay H.; Airola, Matthew S.; Baris, Dalsu; Ayotte, Joseph D.; Taylor, Anne; Paulu, Chris; Karagas, Margaret R.; Colt, Joanne; Ward, Mary H.; Huang, An-Tsun; Bress, William; Cherala, Sai; Silverman, Debra T.; Cantor, Kenneth P.

    2011-01-01

    Conclusions: We used a different validation procedure for each of the three methods, and found our estimated levels to be comparable with available measured concentrations. This methodology allowed us to calculate potential drinking water exposure over long periods.

  8. PhD project opportunity on the resilience of lake ecosystems to water-level manipulation

    E-print Network

    Wapstra, Erik

    focuses on lakes that have their water-level manipulated for hydro electricity and irrigation supply as a source of nutrients and the effect of macrophyte beds on shear stress and sediment resuspension within

  9. Emissions Prediction and Measurement for Liquid-Fueled TVC Combustor with and without Water Injection

    NASA Technical Reports Server (NTRS)

    Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.

  10. Integrative sensing and prediction of urban water for sustainable cities (iSPUW)

    NASA Astrophysics Data System (ADS)

    Seo, D. J.; Fang, N. Z.; Yu, X.; Zink, M.; Gao, J.; Kerkez, B.

    2014-12-01

    We describe a newly launched project in the Dallas-Fort Worth Metroplex (DFW) area to develop a cyber-physical prototype system that integrates advanced sensing, modeling and prediction of urban water, to support its early adoption by a spectrum of users and stakeholders, and to educate a new generation of future sustainability scientists and engineers. The project utilizes the very high-resolution precipitation and other sensing capabilities uniquely available in DFW as well as crowdsourcing and cloud computing to advance understanding of the urban water cycle and to improve urban sustainability from transient shocks of heavy-to-extreme precipitation under climate change and urbanization. All available water information from observations and models will be fused objectively via advanced data assimilation to produce the best estimate of the state of the uncertain system. Modeling, prediction and decision support tools will be developed in the ensemble framework to increase the information content of the analysis and prediction and to support risk-based decision making.

  11. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  12. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; Arias, M. E.; Piman, T.

    2014-11-01

    The rapid rate of water infrastructure development in the Mekong Basin is a cause for concern due to its potential impact on fisheries and downstream natural ecosystems. In this paper, we analyze the historical water levels of the Mekong River and Tonle Sap system by comparing pre- and post-1991 daily observations from six stations along the Mekong mainstream from Chiang Saen (northern Thailand), to Stung Treng (Cambodia), and the Prek Kdam station on the Tonle Sap River. Observed alterations in water level patterns along the Mekong are linked to temporal and spatial trends in water infrastructure development from 1960 to 2010. We argue that variations in historical climatic factors are important, but they are not the main cause of observed changes in key hydrological indicators related to ecosystem productivity. Our analysis shows that the development of mainstream dams in the upper Mekong Basin in the post-1991 period may have resulted in a modest increase of 30-day minimum levels (+17%), but significant increases in fall rates (+42%) and the number of water level fluctuations (+75%) observed in Chiang Saen. This effect diminishes downstream until it becomes negligible at Mukdahan (northeast Thailand), which represents a drainage area of over 50% of the total Mekong Basin. Further downstream at Pakse (southern Laos), alterations to the number of fluctuations and rise rate became strongly significant after 1991. The observed alterations slowly decrease downstream, but modified rise rates, fall rates, and dry season water levels were still quantifiable and significant as far as Prek Kdam. This paper provides the first set of evidence of hydrological alterations in the Mekong beyond the Chinese dam cascade in the upper Mekong. Given the evident alterations at Pakse and downstream, post-1991 changes could also be directly attributed to water infrastructure development in the Chi and Mun basins of Thailand. A reduction of 23 and 11% in the water raising and falling rates respectively at Prek Kdam provides evidence of a diminished Tonle Sap flood pulse in the post-1991 period. Given the observed water level alterations from 1991 to 2010 as a result of water infrastructure development, we can extrapolate that future development in the mainstream and the key transboundary Srepok, Sesan, and Sekong sub-basins will have an even greater effect on the Tonle Sap flood regime, the lower Mekong floodplain, and the delta.

  13. The Relations between Lower and Higher Level Comprehension Skills and Their Role in Prediction of Early Reading Comprehension

    ERIC Educational Resources Information Center

    Silva, Macarena; Cain, Kate

    2015-01-01

    This study of 4- to 6-year-olds had 2 aims: first, to determine how lower level comprehension skills (receptive vocabulary and grammar) and verbal memory support early higher level comprehension skills (inference and literal story comprehension), and second, to establish the predictive power of these skills on subsequent reading comprehension.…

  14. DAHITI - an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry

    NASA Astrophysics Data System (ADS)

    Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F.

    2015-10-01

    Satellite altimetry has been designed for sea level monitoring over open ocean areas. However, for some years, this technology has also been used to retrieve water levels from reservoirs, wetlands and in general any inland water body, although the radar altimetry technique has been especially applied to rivers and lakes. In this paper, a new approach for the estimation of inland water level time series is described. It is used for the computation of time series of rivers and lakes available through the web service "Database for Hydrological Time Series over Inland Waters" (DAHITI). The new method is based on an extended outlier rejection and a Kalman filter approach incorporating cross-calibrated multi-mission altimeter data from Envisat, ERS-2, Jason-1, Jason-2, TOPEX/Poseidon, and SARAL/AltiKa, including their uncertainties. The paper presents water level time series for a variety of lakes and rivers in North and South America featuring different characteristics such as shape, lake extent, river width, and data coverage. A comprehensive validation is performed by comparisons with in situ gauge data and results from external inland altimeter databases. The new approach yields rms differences with respect to in situ data between 4 and 36 cm for lakes and 8 and 114 cm for rivers. For most study cases, more accurate height information than from other available altimeter databases can be achieved.

  15. Analysis of environmental issues related to small-scale hydroelectric development. III. Water level fluctuation

    SciTech Connect

    Hildebrand, S.G.

    1980-10-01

    Potential environmental impacts in reservoirs and downstream river reaches below dams that may be caused by the water level fluctuation resulting from development and operation of small scale (under 25MW) hydroelectric projects are identified. The impacts discussed will be of potential concern at only those small-scale hydroelectric projects that are operated in a store and release (peaking) mode. Potential impacts on physical and chemical characteristics in reservoirs resulting from water level fluctuation include resuspension and redistribution of bank and bed sediment; leaching of soluble organic matter from sediment in the littoral zone; and changes in water quality resulting from changes in sediment and nutrient trap efficiency. Potential impacts on reservoir biota as a result of water level fluctuation include habitat destruction and the resulting partial or total loss of aquatic species; changes in habitat quality, which result in reduced standing crop and production of aquatic biota; and possible shifts in species diversity. The potential physical effects of water level fluctuation on downstream systems below dams are streambed and bank erosion and water quality problems related to resuspension and redistribution of these materials. Potential biological impacts of water level fluctuation on downstream systems below dams result from changes in current velocity, habitat reduction, and alteration in food supply. These alterations, either singly or in combination, can adversely affect aquatic populations below dams. The nature and potential significance of adverse impacts resulting from water level fluctuation are discussed. Recommendations for site-specific evaluation of water level fluctuation at small-scale hydroelectric projects are presented.

  16. A vision for an ultra-high resolution integrated water cycle observation and prediction system

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2013-05-01

    Society's welfare, progress, and sustainable economic growth—and life itself—depend on the abundance and vigorous cycling and replenishing of water throughout the global environment. The water cycle operates on a continuum of time and space scales and exchanges large amounts of energy as water undergoes phase changes and is moved from one part of the Earth system to another. We must move toward an integrated observation and prediction paradigm that addresses broad local-to-global science and application issues by realizing synergies associated with multiple, coordinated observations and prediction systems. A central challenge of a future water and energy cycle observation strategy is to progress from single variable water-cycle instruments to multivariable integrated instruments in electromagnetic-band families. The microwave range in the electromagnetic spectrum is ideally suited for sensing the state and abundance of water because of water's dielectric properties. Eventually, a dedicated high-resolution water-cycle microwave-based satellite mission may be possible based on large-aperture antenna technology that can harvest the synergy that would be afforded by simultaneous multichannel active and passive microwave measurements. A partial demonstration of these ideas can even be realized with existing microwave satellite observations to support advanced multivariate retrieval methods that can exploit the totality of the microwave spectral information. The simultaneous multichannel active and passive microwave retrieval would allow improved-accuracy retrievals that are not possible with isolated measurements. Furthermore, the simultaneous monitoring of several of the land, atmospheric, oceanic, and cryospheric states brings synergies that will substantially enhance understanding of the global water and energy cycle as a system. The multichannel approach also affords advantages to some constituent retrievals—for instance, simultaneous retrieval of vegetation biomass would improve soil-moisture retrieval by avoiding the need for auxiliary vegetation information. This multivariable water-cycle observation system must be integrated with high-resolution, application relevant prediction systems to optimize their information content and utility is addressing critical water cycle issues. One such vision is a real-time ultra-high resolution locally-moasiced global land modeling and assimilation system, that overlays regional high-fidelity information over a baseline global land prediction system. Such a system would provide the best possible local information for use in applications, while integrating and sharing information globally for diagnosing larger water cycle variability. In a sense, this would constitute a hydrologic telecommunication system, where the best local in-situ gage, Doppler radar, and weather station can be shared internationally, and integrated in a consistent manner with global observation platforms like the multivariable water cycle mission. To realize such a vision, large issues must be addressed, such as international data sharing policy, model-observation integration approaches that maintain local extremes while achieving global consistency, and methods for establishing error estimates and uncertainty.

  17. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure...Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure...secondary indicator may consist of a gage glass, or other acceptable device. Where...

  18. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure...Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure...secondary indicator may consist of a gage glass, or other acceptable device. Where...

  19. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure...Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure...secondary indicator may consist of a gage glass, or other acceptable device. Where...

  20. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure...Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure...secondary indicator may consist of a gage glass, or other acceptable device. Where...

  1. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure...Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure...secondary indicator may consist of a gage glass, or other acceptable device. Where...

  2. Pathway Evidence of How Musical Perception Predicts Word-Level Reading Ability in Children with Reading Difficulties

    PubMed Central

    Cogo-Moreira, Hugo; Brandão de Ávila, Clara Regina; Ploubidis, George B.; de Jesus Mari, Jair

    2013-01-01

    Objective To investigate whether specific domains of musical perception (temporal and melodic domains) predict the word-level reading skills of eight- to ten-year-old children (n = 235) with reading difficulties, normal quotient of intelligence, and no previous exposure to music education classes. Method A general-specific solution of the Montreal Battery of Evaluation of Amusia (MBEA), which underlies a musical perception construct and is constituted by three latent factors (the general, temporal, and the melodic domain), was regressed on word-level reading skills (rate of correct isolated words/non-words read per minute). Results General and melodic latent domains predicted word-level reading skills. PMID:24358358

  3. Prediction of light aircraft interior sound pressure level from the measured sound power flowing in to the cabin

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.

    1986-01-01

    The validity of the room equation of Crocker and Price (1982) for predicting the cabin interior sound pressure level was experimentally tested using a specially constructed setup for simultaneous measurements of transmitted sound intensity and interior sound pressure levels. Using measured values of the reverberation time and transmitted intensities, the equation was used to predict the space-averaged interior sound pressure level for three different fuselage conditions. The general agreement between the room equation and experimental test data is considered good enough for this equation to be used for preliminary design studies.

  4. The effects of water-level fluctuations on weekly tree growth in a southeastern USA swamp

    SciTech Connect

    Keeland, B.D.; Sharitz, R.R.

    1997-01-01

    Annual growth of wetland trees has been shown to be related to variations in hydrologic regimes, however the relationship between water level fluctuations and tree growth season has not been documented. In a study of weekly growth patterns of three wetland tree species in a southeastern forested wetland, transfer function modeling was used to examine relationships between tree growth and the weekly changes in water levels and weekly changes in the atmospheric water balance (precipitation minus potential evapotranspiration). An autoregressive-moving average model was fit to each time series of water-level changes (input series), and the selected model was then used to filter the tree-growth (output) time series. Cross-correlations between each input and output time series were examined and significant relationships between weekly changes in water levels and tree diameter were found for Nyssa sylvatica and Taxodium distichum trees growing at sites with periodic shallow flooding. There were no significant relationships between changing water levels and tree growth in areas with permanent flooding or soil saturation. Further, changes in growth of N. sylvatica, N. aquatica, and T. distichum were significantly cross-correlated with weekly changes in the atmospheric water balance at sites with either periodic or permanent flooding. 59 refs., 9 figs., 5 tabs.

  5. METHOD DEVELOPMENT FOR THE LOW-LEVEL DETERMINATION OF PERCHLORATE IN DRINKING WATER

    EPA Science Inventory

    Perchlorate anion has been found in numerous drinking water supplies at concentrations that recent studies indicate may adversely affect human health. In order to measure perchlorate at levels of health concern in drinking water, there is a need to be able to quantify perchlorat...

  6. Determination of Trace Level Triclosan in Water by Online Preconcentration and HPLC-UV Diode Array

    EPA Science Inventory

    An online high performance liquid chromatography (HPLC) method for the detection and quantification of trace levels of triclosan in water is discussed. Triclosan, an anti-bacterial agent, and related compounds have been shown to reach municipal waste waters through the disposal ...

  7. Data quality assurance in pressure transducer-based automatic water level monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Submersible pressure transducers integrated with data loggers have become relatively common water-level measuring devices used in flow or well water elevation measurements. However, drift, linearity, hysteresis and other problems can lead to erroneous data. Researchers at the USDA-ARS in Watkinsvill...

  8. An electrical device for computing theoretical draw-downs of ground-water levels

    USGS Publications Warehouse

    Remson, Irwin; Halstead, M.H.

    1955-01-01

    The construction, calibration and use of an electrical "slide rule" for computing theoretical drawdowns of ground-water levels are described. The instrument facilitates the computation of drawdowns under given conditions of discharge or recharge by means of the Theis nonequilibrium equation. It is simple to construct and use and can be a valuable aid in ground-water studies.   

  9. An Environmental Chemistry Experiment: The Determination of Radon Levels in Water.

    ERIC Educational Resources Information Center

    Welch, Lawrence E.; Mossman, Daniel M.

    1994-01-01

    Describes a radiation experiment developed to complement a new environmental chemistry laboratory curriculum. A scintillation counter is used to measure radon in water. The procedure relies on the fact that toluene will preferentially extract radon from water. Sample preparation is complete in less than 90 minutes. Because the level of…

  10. Context-dependent survival, fecundity and predicted population-level consequences of brucellosis in African buffalo.

    PubMed

    Gorsich, Erin E; Ezenwa, Vanessa O; Cross, Paul C; Bengis, Roy G; Jolles, Anna E

    2015-07-01

    Chronic infections may have negative impacts on wildlife populations, yet their effects are difficult to detect in the absence of long-term population monitoring. Brucella abortus, the bacteria responsible for bovine brucellosis, causes chronic infections and abortions in wild and domestic ungulates, but its impact on population dynamics is not well understood. We report infection patterns and fitness correlates of bovine brucellosis in African buffalo based on (1) 7 years of cross-sectional disease surveys and (2) a 4-year longitudinal study in Kruger National Park (KNP), South Africa. We then used a matrix population model to translate these observed patterns into predicted population-level effects. Annual brucellosis seroprevalence ranged from 8·7% (95% CI = 1·8-15·6) to 47·6% (95% CI = 35·1-60·1) increased with age until adulthood (>6) and varied by location within KNP. Animals were on average in worse condition after testing positive for brucellosis (F = -5·074, P < 0·0001), and infection was associated with a 2·0 (95% CI = 1·1-3·7) fold increase in mortality (?(2)  = 2·039, P = 0·036). Buffalo in low body condition were associated with lower reproductive success (F = 2·683, P = 0·034), but there was no association between brucellosis and pregnancy or being observed with a calf. For the range of body condition scores observed in the population, the model-predicted growth rate was ? = 1·11 (95% CI = 1·02-1·21) in herds without brucellosis and ? = 1·00 (95% CI = 0·85-1·16) when brucellosis seroprevalence was 30%. Our results suggest that brucellosis infection can potentially result in reduced population growth rates, but because these effects varied with demographic and environmental conditions, they may remain unseen without intensive, longitudinal monitoring. PMID:25714466

  11. Variability in water properties and predictability of sea surface temperature along Sanriku coast, Japan

    NASA Astrophysics Data System (ADS)

    Wagawa, Taku; Kuroda, Hiroshi; Ito, Shin-ichi; Kakehi, Shigeho; Yamanome, Takeshi; Tanaka, Kazushi; Endoh, Yuki; Kaga, Shinnosuke

    2015-07-01

    We investigated the main controlling factors and predictability of extreme sea surface temperature changes along the Sanriku coast (the east coast of the northern part of Japan's main island). We analyzed distributions of water properties and flow fields via intensive observations using a conductivity-temperature-depth profiler and a coastal water-temperature monitoring system from January 1998 to December 2012. Satellite altimetry and tide gauge data were also analyzed to investigate more widespread horizontal and temporal variation of the sea surface flow field. Anomalous temperature events (2 °C lower and higher than climatological monthly values) were observed in winter 2006 and fall 2010 and 2012 along the Sanriku coast. In winter (fall) 2006 (2010, 2012), we observed both unusually thick and wide cold/fresh (warm/saline) waters, corresponding to the Oyashio (Tsugaru Warm Current) waters. At that time, sea surface velocities of the Oyashio (Tsugaru Warm Current) along the Hokkaido coast (Tsugaru Strait) were also high. We propose new methods for predicting extreme temperature changes a few months in advance, based on current observations.

  12. Water level response in back-barrier bays unchanged following Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Aretxabaleta, Alfredo L.; Butman, Bradford; Ganju, Neil K.

    2014-05-01

    On 28-30 October 2012, Hurricane Sandy caused severe flooding along portions of the northeast coast of the United States and cut new inlets across barrier islands in New Jersey and New York. About 30% of the 20 highest daily maximum water levels observed between 2007 and 2013 in Barnegat and Great South Bay occurred in 5 months following Hurricane Sandy. Hurricane Sandy provided a rare opportunity to determine whether extreme events alter systems protected by barrier islands, leaving the mainland more vulnerable to flooding. Comparisons between water levels before and after Hurricane Sandy at bay stations and an offshore station show no significant differences in the transfer of sea level fluctuations from offshore to either bay following Sandy. The post-Hurricane Sandy bay high water levels reflected offshore sea levels caused by winter storms, not by barrier island breaching or geomorphic changes within the bays.

  13. Toward a Predictive Model of Hot Spring Water from Modern and Ancient Travertine1 Depositional Facies2

    E-print Network

    Goldenfeld, Nigel

    facies and the temperature, pH, and flux of hot spring11 water. Because advection dominates in these hot1 Toward a Predictive Model of Hot Spring Water from Modern and Ancient Travertine1 Depositional environment can be readily made.40 Most previous studies have included a combination of spring water chemistry

  14. Summary Understanding the responses of riparian trees to water availability is critical for predicting the effects of

    E-print Network

    Ehleringer, Jim

    isotope ratios (indicating less conservative water use) than did males. Furthermore, we found that male availability. We predict that with increasing precipitation and soil water availability, the representation, reduce soil water content and per- haps greatly reduce stream flow (National Assessment

  15. Changes in Breath Trihalomethane Levels Resulting from Household Water-Use Activities

    PubMed Central

    Gordon, Sydney M.; Brinkman, Marielle C.; Ashley, David L.; Blount, Benjamin C.; Lyu, Christopher; Masters, John; Singer, Philip C.

    2006-01-01

    Common household water-use activities such as showering, bathing, drinking, and washing clothes or dishes are potentially important contributors to individual exposure to trihalomethanes (THMs), the major class of disinfection by-products of water treated with chlorine. Previous studies have focused on showering or bathing activities. In this study, we selected 12 common water-use activities and determined which may lead to the greatest THM exposures and result in the greatest increase in the internal dose. Seven subjects performed the various water-use activities in two residences served by water utilities with relatively high and moderate total THM levels. To maintain a consistent exposure environment, the activities, exposure times, air exchange rates, water flows, water temperatures, and extraneous THM emissions to the indoor air were carefully controlled. Water, indoor air, blood, and exhaled-breath samples were collected during each exposure session for each activity, in accordance with a strict, well-defined protocol. Although showering (for 10 min) and bathing (for 14 min), as well as machine washing of clothes and opening mechanical dishwashers at the end of the cycle, resulted in substantial increases in indoor air chloroform concentrations, only showering and bathing caused significant increases in the breath chloroform levels. In the case of bromodichloromethane (BDCM), only bathing yielded a significantly higher air level in relation to the preexposure concentration. For chloroform from showering, strong correlations were observed for indoor air and exhaled breath, blood and exhaled breath, indoor air and blood, and tap water and blood. Only water and breath, and blood and breath were significantly associated for chloroform from bathing. For BDCM, significant correlations were obtained for blood and air, and blood and water from showering. Neither dibromochloromethane nor bromoform gave measurable breath concentrations for any of the activities investigated because of their much lower tap-water concentrations. Future studies will address the effects that changes in these common water-use activities may have on exposure. PMID:16581538

  16. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap System

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; Arias, M. E.; Piman, T.

    2014-04-01

    The rapid rate of water infrastructure development in the Mekong basin is a cause for concern due to its potential impact on fisheries and downstream natural ecosystems. In this paper we analyse the historical water levels of the Mekong River and Tonle Sap system by comparing pre and post 1991 daily observations from six stations along the Mekong mainstream from Chiang Sean (northern Laos), to Stung Treng (Cambodia), and the Prek Kdam station on the Tonle Sap River. Observed alterations in water level patterns along the Mekong are linked to temporal and spatial trends in water infrastructure development from 1960 to 2010. We argue that variations in historical climatic factors are important, but they are not the main cause of observed changes in key hydrological indicators related to ecosystem productivity. Our analysis shows that the development of mainstream dams in the upper Mekong basin in the post-1991 period have resulted in a significant increase of 7 day minimum (+91.6%), fall rates (+42%), and the number of water level fluctuations (+75) observed in Chiang Sean. This effect diminishes downstream until it becomes negligible at Mukdahan (northeast Thailand), which represents a drainage area of over 50% of the total Mekong Basin. Further downstream at Pakse (southern Laos), alterations to the number of fluctuations and rise rate became strongly significant after 1991. The observed alterations slowly decrease downstream, but modified rise rates, fall rates, and dry season water levels were still quantifiable and significant as far as Prek Kdam. This paper provides the first set of evidence of hydrological alterations in the Mekong beyond the Chinese dam cascade in the upper Mekong. Given the evident alterations with no precedence at Pakse and downstream, post-1991 changes can also be directly attributed to water infrastructure development in the Chi and Mun basins of Thailand. A reduction of 23 and 11% in the water raising and fall rates respectively at Prek Kdam provides evidence of a diminished Tonle Sap flood pulse in the post-1991 period. Given the observed water level alterations from 1991 to 2010 as a result of water infrastructure development, we can extrapolate that future development in the mainstream and the key transboundary Srepok, Sesan and Sekong subbasins will have an even greater effect on the Tonle Sap flood regime, the lower Mekong floodplain, and the delta.

  17. Comparison of total body water estimates from O-18 and bioelectrical response prediction equations

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Inners, L. Daniel; Stricklin, Marcella D.; Klein, Peter D.; Wong, William W.; Siconolfi, Steven F.

    1993-01-01

    Identification of an indirect, rapid means to measure total body water (TBW) during space flight may aid in quantifying hydration status and assist in countermeasure development. Bioelectrical response testing and hydrostatic weighing were performed on 27 subjects who ingested O-18, a naturally occurring isotope of oxygen, to measure true TBW. TBW estimates from three bioelectrical response prediction equations and fat-free mass (FFM) were compared to TBW measured from O-18. A repeated measures MANOVA with post-hoc Dunnett's Test indicated a significant (p less than 0.05) difference between TBW estimates from two of the three bioelectrical response prediction equations and O-18. TBW estimates from FFM and the Kushner & Schoeller (1986) equation yielded results that were similar to those given by O-18. Strong correlations existed between each prediction method and O-18; however, standard errors, identified through regression analyses, were higher for the bioelectrical response prediction equations compared to those derived from FFM. These findings suggest (1) the Kushner & Schoeller (1986) equation may provide a valid measure of TBW, (2) other TBW prediction equations need to be identified that have variability similar to that of FFM, and (3) bioelectrical estimates of TBW may prove valuable in quantifying hydration status during space flight.

  18. Spoil banks: Effects on a coastal marsh water-level regime

    NASA Astrophysics Data System (ADS)

    Swenson, Erick M.; Turner, R. E.

    1987-05-01

    Above- and below-ground water-level fluctuations were measured in the marshes south of New Orleans, Louisiana, between November 1982 and December 1983. The purpose of the program was to define the basic marsh water-level regime and to investigate how canal spoil banks may influence the water-level regime. Two study areas were used: (1) a control area, defined as a section of marsh with unrestricted hydrologic connection to an adjacent bayou; and, (2) a partially-impounded area, defined as an area with limited hydrologic connection to an adjacent bayou due to the presence of dredged canal spoil banks. Data sources included marsh water levels from gages deployed at three sites within the study areas and water levels from the adjacent bayous obtained from the tide gages of U.S. Army Corps of Engineers. Data from all marsh gage sites showed a similar pattern with a distinct surface and subsurface diurnal tidal signal superimposed upon other, larger scale events. These larger scale events correspond to the passage of weather fronts. The data also indicated that a significant amount of water-level fluctuation in the marshes occurs below ground. A comparison of the control area and the partially-impounded site indicated that the spoil banks changed the response of the marsh water levels to the forcing from the bayou, with the result that the partially-impounded area: (1) was flooded 141 hours more per month than the control area; (2) had fewer, but longer flooding events; (3) had fewer but longer drying events; and (4) reduced water exchange, both above and below ground.

  19. Prediction of micro-bubble dissolution characteristics in water and seawater

    SciTech Connect

    Kawahara, Akimaro; Sadatomi, Michio; Matsuura, Hidetoshi; Tominaga, Mayo; Noguchi, Masanori; Matsuyama, Fuminori

    2009-07-15

    This paper is concerned with the prediction of micro-bubble dissolution characteristics in water and seawater when microbubbles are generated by a Sadatomi-type micro-bubble generator (2003) with a spherical body in a flowing liquid tube. In the experiments, in order to know the effects of the salinity on the characteristics, tap water and an artificial seawater with different salt concentrations of 1 and 3 wt% were used as the test liquids. Parameters measured were the Sauter mean diameter of bubbles, d{sub BS}, the void fraction, {alpha}, the rising velocity of bubbles, u{sub G}, the interfacial area concentration, a, the volumetric mass transfer coefficient, K{sub L}a, and the liquid-side mass transfer coefficient, K{sub L}. In the analysis, for predicting {alpha}, K{sub L}a and K{sub L}, some correlations in the literatures were tested against the present data. Furthermore, in order to improve the predictability, new correlations were developed based on the present data. The prediction of K{sub L}a with the new correlation agreed well with Nishino et al.'s [T. Nishino, K. Terasaka, M. Ishida, Application for several micro-bubble generators for gas absorber, in: Proceedings of the Annual Meeting of the Japanese Society for Multiphase Flow, 2006, pp. 276-277 (in Japanese)] and Li and Tsuge's [P. Li, H. Tsuge, Water treatment by induced air flotation using microbubbles, Journal of Chemical Engineering of Japan 39 (2006) 896-903; P. Li, H. Tsuge, Ozone transfer in a new gas-induced contactor with microbubbles, Journal of Chemical Engineering of Japan 39 (2006) 1213-1220] data for different aeration systems using several different micro-bubble generators. (author)

  20. Predicted genetic gain and inbreeding depression with general inbreeding levels in selection candidates and offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods for predicting response in noninbred populations to recurrent selection methods for half-sib and self-progeny families has been very well developed in the literature. However, theory to predict improvement of inbred lines derived from a recombined population, as well the predicted change in...

  1. Predicting for thermodynamic instabilities in water/oil/surfactant microemulsions: A mesoscopic modelling approach

    SciTech Connect

    Duvail, Magali Zemb, Thomas; Dufrêche, Jean-François; Arleth, Lise

    2014-04-28

    The thermodynamics and structural properties of flexible and rigid nonionic water/oil/surfactant microemulsions have been investigated using a two level-cut Gaussian random field method based on the Helfrich formalism. Ternary stability diagrams and scattering spectra have been calculated for different surfactant rigidities and spontaneous curvatures. A more important contribution of the Gaussian elastic constants compared to the bending one is observed on the ternary stability diagrams. Furthermore, influence of the spontaneous curvature of the surfactant points out a displacement of the instability domains which corresponds to the difference between the spontaneous and effective curvatures. We enlighten that a continuous transition from a connected water in oil droplets to a frustrated locally lamellar (oil in water in oil droplets) microstructure is found to occur when increasing the temperature for an oil-rich microemulsion. This continuous transition translated in a shift in the scattering functions, points out that the phase inversion phenomenon occurs by a coalescence of the water droplets.

  2. Predicting for thermodynamic instabilities in water/oil/surfactant microemulsions: A mesoscopic modelling approach

    NASA Astrophysics Data System (ADS)

    Duvail, Magali; Arleth, Lise; Zemb, Thomas; Dufrêche, Jean-François

    2014-04-01

    The thermodynamics and structural properties of flexible and rigid nonionic water/oil/surfactant microemulsions have been investigated using a two level-cut Gaussian random field method based on the Helfrich formalism. Ternary stability diagrams and scattering spectra have been calculated for different surfactant rigidities and spontaneous curvatures. A more important contribution of the Gaussian elastic constants compared to the bending one is observed on the ternary stability diagrams. Furthermore, influence of the spontaneous curvature of the surfactant points out a displacement of the instability domains which corresponds to the difference between the spontaneous and effective curvatures. We enlighten that a continuous transition from a connected water in oil droplets to a frustrated locally lamellar (oil in water in oil droplets) microstructure is found to occur when increasing the temperature for an oil-rich microemulsion. This continuous transition translated in a shift in the scattering functions, points out that the phase inversion phenomenon occurs by a coalescence of the water droplets.

  3. Delaying future sea-level rise by storing water on1 Antarctica2

    E-print Network

    Levermann, Anders

    ; Meehl et al., 2005; Solomon11 et al., 2009; Wigley, 2005). Conservative estimates for this so-called sea1 Delaying future sea-level rise by storing water on1 Antarctica2 K. Frieler1 , M. Mengel1 , A.levermann@pik-potsdam.de)6 7 Abstract8 Even if greenho