Science.gov

Sample records for water level predictions

  1. Considering rating curve uncertainty in water level predictions

    NASA Astrophysics Data System (ADS)

    Sikorska, A. E.; Scheidegger, A.; Banasik, K.; Rieckermann, J.

    2013-11-01

    Streamflow cannot be measured directly and is typically derived with a rating curve model. Unfortunately, this causes uncertainties in the streamflow data and also influences the calibration of rainfall-runoff models if they are conditioned on such data. However, it is currently unknown to what extent these uncertainties propagate to rainfall-runoff predictions. This study therefore presents a quantitative approach to rigorously consider the impact of the rating curve on the prediction uncertainty of water levels. The uncertainty analysis is performed within a formal Bayesian framework and the contributions of rating curve versus rainfall-runoff model parameters to the total predictive uncertainty are addressed. A major benefit of the approach is its independence from the applied rainfall-runoff model and rating curve. In addition, it only requires already existing hydrometric data. The approach was successfully demonstrated on a small catchment in Poland, where a dedicated monitoring campaign was performed in 2011. The results of our case study indicate that the uncertainty in calibration data derived by the rating curve method may be of the same relevance as rainfall-runoff model parameters themselves. A conceptual limitation of the approach presented is that it is limited to water level predictions. Nevertheless, regarding flood level predictions, the Bayesian framework seems very promising because it (i) enables the modeler to incorporate informal knowledge from easily accessible information and (ii) better assesses the individual error contributions. Especially the latter is important to improve the predictive capability of hydrological models.

  2. Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations

    NASA Astrophysics Data System (ADS)

    Cai, H.; Savenije, H. H. G.; Jiang, C.

    2014-10-01

    As the tidal wave propagates into an estuary, the tidally averaged water level tends to rise in landward direction due to the density difference between saline and fresh water and the asymmetry of the friction. The effect of friction on the residual slope is even more remarkable when accounting for fresh water discharge. In this study, we investigate the influence of river discharge on tidal wave propagation in the Yangtze estuary with specific attention to residual water level slope. This is done by using a one-dimensional analytical model for tidal hydrodynamics accounting for the residual water level. We demonstrate the importance of the residual slope on tidal dynamics and use it to improve the prediction of the tidal propagation in estuaries (i.e. tidal damping, velocity amplitude, wave celerity and phase lag), especially when the influence of river discharge is significant. Finally, we develop a new inverse analytical approach for estimating fresh water discharge on the basis of tidal water level observations along the estuary, which can be used as a tool to obtain information on the river discharge that is otherwise difficult to measure in the tidal region.

  3. Predicting Atrazine Levels in Water Utility Intake Water for MCL Compliance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To protect human health, atrazine concentrations in drinking water must not exceed its maximum contaminant level (MCL) of 3 ug/L. The United States Environmental Protection Agency (USEPA) mandates that municipal water providers sample quarterly to determine MCL compliance. Atrazine levels were mon...

  4. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    SciTech Connect

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions.

  5. Prediction of water seepage into a geologic repository for high-level radioactive waste

    SciTech Connect

    Birkholzer, Jens; Mukhophadhyay, Sumit; Tsang, Yvonne

    2003-07-07

    Predicting the amount of water that may seep into waste emplacement drifts is important for assessing the performance of the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada. The repository would be located in thick, partially saturated fractured tuff that will be heated to above-boiling temperatures as a result of heat generation from the decay of nuclear waste. Since infiltrating water will be subject to vigorous boiling for a significant time period, the superheated rock zone (i.e., rock temperature above the boiling point of water) can form an effective vaporization barrier that reduces the possibility of water arrival at emplacement drifts. In this paper, we analyze the behavior of episodic preferential flow events that penetrate the hot fractured rock, evaluate the impact of such flow behavior on the effectiveness of the vaporization barrier, and discuss the implications for the performance assessment of the repository. A semi-analytical solution is utilized to determine the complex flow processes in the hot rock environment. The solution is applied at several discrete times after emplacement, covering the time period of strongly elevated temperatures at Yucca Mountain.

  6. Interpretation of changes in water level accompanying fault creep and implications for earthquake prediction.

    USGS Publications Warehouse

    Wesson, R.L.

    1981-01-01

    Quantitative calculations for the effect of a fault creep event on observations of changes in water level in wells provide an approach to the tectonic interpretation of these phenomena. For the pore pressure field associated with an idealized creep event having an exponential displacement versus time curve, an analytic expression has been obtained in terms of exponential-integral functions. The pore pressure versus time curves for observation points near the fault are pulselike; a sharp pressure increase (or decrease, depending on the direction of propagation) is followed by more gradual decay to the normal level after the creep event. The time function of the water level change may be obtained by applying the filter - derived by A.G.Johnson and others to determine the influence of atmospheric pressure on water level - to the analytic pore pressure versus time curves. The resulting water level curves show a fairly rapid increase (or decrease) and then a very gradual return to normal. The results of this analytic model do not reproduce the steplike changes in water level observed by Johnson and others. If the procedure used to obtain the water level from the pore pressure is correct, these results suggest that steplike changes in water level are not produced by smoothly propagating creep events but by creep events that propagate discontinuously, by changes in the bulk properties of the region around the well, or by some other mechanism.-Author

  7. Dynamic neural networks for real-time water level predictions of sewerage systems - covering gauged and ungauged sites

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2010-04-01

    In this research, we propose recurrent neural networks (RNNs) to build a relationship between rainfalls and water level patterns of an urban sewerage system based on historical torrential rain/storm events. The RNN allows a signal to propagate in backward direction which gives this network a dynamic memory to effectively deal with time-varying systems. The RNN is implemented at both gauged and ungauged sites for 5-, 10-, 15-, and 20-min-ahead water level predictions. The results show that the RNN is capable of learning the nonlinear sewerage system and producing satisfactory predictions at the gauged sites. Concerning the ungauged sites, there are no historical data of water level to support prediction. In order to overcome such problem, a set of synthetic data, generated from a storm water management model (SWMM) under cautious verification process of applicability based on the data from nearby gauging stations, are introduced as the learning target to the training procedure of the RNN and moreover evaluating the performance of the RNN at the ungauged sites. The results demonstrate that the potential role of the SWMM coupled with nearby rainfall and water level information can be of great use in enhancing the capability of the RNN at the ungauged sites. Hence we can conclude that the RNN is an effective and suitable model for successfully predicting the water levels at both gauged and ungauged sites in urban sewerage systems.

  8. Construction and use of special drawdown scales for use in prediction of water-level changes throughout heavily pumped areas

    USGS Publications Warehouse

    Conover, C.S.; Reeder, H.O.

    1957-01-01

    Problem and Proposed Method of Solution Frequently the Theis nonequilibrium formula is use din the quantitative analyses that are part of many-ground-water investigations. The computations associated therewith may become quite involved and tedious, especially when dealing with predictions of the decline of water levels throughout large areas in which there are many discharging wells. The process of predicting future water-level declines can be greatly simplified and shortened by preparing a special draw-down scale for given conditions. Through use of such a scale much of the computation can be reduced to scaling the values sought from a map, on which the pumped wells have been spotted. The net drawdown effect, which is the sum of the water-level declines caused by the many individual pumped wells, can be determined readily for any desired point in the area. If the net drawdown effect is desired, a summation of the effects of all the pumped wells can be repeated for each point. By determining the water-level change at a number of points, for a given period of time, a contour map of predicted water-level changes for the multiple-well system can be drawn.

  9. Importance of Long-Term Cycles for Predicting Water Level Dynamics in Natural Lakes

    PubMed Central

    Garca Molinos, Jorge; Viana, Mafalda; Brennan, Michael; Donohue, Ian

    2015-01-01

    Lakes are disproportionately important ecosystems for humanity, containing 77% of the liquid surface freshwater on Earth and comprising key contributors to global biodiversity. With an ever-growing human demand for water and increasing climate uncertainty, there is pressing need for improved understanding of the underlying patterns of natural variability of water resources and consideration of their implications for water resource management and conservation. Here we use Bayesian harmonic regression models to characterise water level dynamics and study the influence of cyclic components in confounding estimation of long-term directional trends in water levels in natural Irish lakes. We found that the lakes were characterised by a common and well-defined annual seasonality and several inter-annual and inter-decadal cycles with strong transient behaviour over time. Importantly, failing to account for the longer-term cyclic components produced a significant overall underestimation of the trend effect. Our findings demonstrate the importance of contextualising lake water resource management to the specific physical setting of lakes. PMID:25757071

  10. Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites

    NASA Astrophysics Data System (ADS)

    Chiang, Yen-Ming; Chang, Li-Chiu; Tsai, Meng-Jung; Wang, Yi-Fung; Chang, Fi-John

    2010-07-01

    In this research, we propose recurrent neural networks (RNNs) to build a relationship between rainfalls and water level patterns of an urban sewerage system based on historical torrential rain/storm events. The RNN allows signals to propagate in both forward and backward directions, which offers the network dynamic memories. Besides, the information at the current time-step with a feedback operation can yield a time-delay unit that provides internal input information at the next time-step to effectively deal with time-varying systems. The RNN is implemented at both gauged and ungauged sites for 5-, 10-, 15-, and 20-min-ahead water level predictions. The results show that the RNN is capable of learning the nonlinear sewerage system and producing satisfactory predictions at the gauged sites. Concerning the ungauged sites, there are no historical data of water level to support prediction. In order to overcome such problem, a set of synthetic data, generated from a storm water management model (SWMM) under cautious verification process of applicability based on the data from nearby gauging stations, are introduced as the learning target to the training procedure of the RNN and moreover evaluating the performance of the RNN at the ungauged sites. The results demonstrate that the potential role of the SWMM coupled with nearby rainfall and water level information can be of great use in enhancing the capability of the RNN at the ungauged sites. Hence we can conclude that the RNN is an effective and suitable model for successfully predicting the water levels at both gauged and ungauged sites in urban sewerage systems.

  11. How historical information can improve extreme coastal water levels probability prediction: application to the Xynthia event at La Rochelle (France)

    NASA Astrophysics Data System (ADS)

    Bulteau, T.; Idier, D.; Lambert, J.; Garcin, M.

    2014-11-01

    The knowledge of extreme coastal water levels is useful for coastal flooding studies or the design of coastal defences. While deriving such extremes with standard analyses using tide gauge measurements, one often needs to deal with limited effective duration of observation which can result in large statistical uncertainties. This is even truer when one faces the issue of outliers, those particularly extreme values distant from the others which increase the uncertainty on the results. In this study, we investigate how historical information, even partial, of past events reported in archives can reduce statistical uncertainties and relativize such outlying observations. A Bayesian Markov Chain Monte Carlo method is developed to tackle this issue. We apply this method to the site of La Rochelle (France), where the storm Xynthia in 2010 generated a water level considered so far as an outlier. Based on 30 years of tide gauge measurements and 8 historical events, the analysis shows that: (1) integrating historical information in the analysis greatly reduces statistical uncertainties on return levels (2) Xynthia's water level no longer appears as an outlier, (3) we could have reasonably predicted the annual exceedance probability of that level beforehand (predictive probability for 2010 based on data till end of 2009 of the same order of magnitude as the standard estimative probability using data till end of 2010). Such results illustrate the usefulness of historical information in extreme value analyses of coastal water levels, as well as the relevance of the proposed method to integrate heterogeneous data in such analyses.

  12. The Prediction of Tritium Level Reduction of Wolsong NPPs by Heavy Water Detritiation with WTRF

    SciTech Connect

    Song, K.M.; Lee, S.J.; Lee, S.K.; Sohn, S.H.; Eum, H.M.; Kim, C.-S.

    2005-07-15

    The amount of the tritium removed from the Wolsong NPPs after the WTRF operation start was simulated through the modeling of the tritium balance between the Wolsong NPPs and the WTRF. Five WTRF operating scenarios were proposed and the profiles of the tritium level depending on these scenarios were obtained from the simulation. It was predicted that about 9x10{sup 17} Bq/yr of tritium would be removed in the beginning of WTRF operation. However the tritium levels in the moderators will be steadily reduced and saturated less than 3x10{sup 11} Bq/kg in 2013, and then about 2x10{sup 17} Bq/yr of tritium will be removed from the Wolsong NPPs by the WTRF operation.

  13. Digital-model analysis to predict water levels in a well field near Columbus, Indiana

    USGS Publications Warehouse

    Planert, Michael

    1976-01-01

    Columbus, Indiana, obtains its water supply from six municipally owned wells southwest of the city. The wells are screened in an outwash sand and gravel aquifer that was deposited by glacial melt water in a preglacial bedrock valley. The well field is midway between the East Fork White River and the western edge of the valley. A digital model was used to determine the effects of two pumping plans on the outwash sand and gravel aquifer. In pumping plan 1, a continuous pumping rate of 1,400 gallons per minute (gpm) for 10 years in each of the city 's six existing wells was simulated with the model. Model results of plan 1 indicate that the water levels in the area of the well field would be lowered more than 20 ft and that drawdowns in the wells would approach 35 ft after 10 years ' pumping. Pumping plan 2 had two stages of pumping. In the first, a continuous pumping rate of 1,400 gpm for 5 years in each of the city 's six existing wells was simulated with the model; the second stage of pumping plan 2 differed from stage 1 only in that five planned wells were added to the six existing wells. Model results of plan 2 indicate that water levels in the area of the well field would be lowered as much as 40 feet. Drawdown at two of the well sites would approach 60 ft, leaving less than 15 ft of the initial 70 ft of saturated thickness at the two wells after 10 years ' pumping. (Woodard-USGS)

  14. Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn River: a comparison

    NASA Astrophysics Data System (ADS)

    Lpez Lpez, P.; Verkade, J. S.; Weerts, A. H.; Solomatine, D. P.

    2014-09-01

    The present study comprises an intercomparison of different configurations of a statistical post-processor that is used to estimate predictive hydrological uncertainty. It builds on earlier work by Weerts, Winsemius and Verkade (2011; hereafter referred to as WWV2011), who used the quantile regression technique to estimate predictive hydrological uncertainty using a deterministic water level forecast as a predictor. The various configurations are designed to address two issues with the WWV2011 implementation: (i) quantile crossing, which causes non-strictly rising cumulative predictive distributions, and (ii) the use of linear quantile models to describe joint distributions that may not be strictly linear. Thus, four configurations were built: (i) a ''classical" quantile regression, (ii) a configuration that implements a non-crossing quantile technique, (iii) a configuration where quantile models are built in normal space after application of the normal quantile transformation (NQT) (similar to the implementation used by WWV2011), and (iv) a configuration that builds quantile model separately on separate domains of the predictor. Using each configuration, four reforecasting series of water levels at 14 stations in the upper Severn River were established. The quality of these four series was intercompared using a set of graphical and numerical verification metrics. Intercomparison showed that reliability and sharpness vary across configurations, but in none of the configurations do these two forecast quality aspects improve simultaneously. Further analysis shows that skills in terms of the Brier skill score, mean continuous ranked probability skill score and relative operating characteristic score is very similar across the four configurations.

  15. Alternative configurations of Quantile Regression for estimating predictive uncertainty in water level forecasts for the Upper Severn River: a comparison

    NASA Astrophysics Data System (ADS)

    Lpez Lpez, P.; Verkade, J. S.; Weerts, A. H.; Solomatine, D. P.

    2014-04-01

    The present study comprises an inter-comparison of different configurations of a statistical post-processor that is used to estimate predictive hydrological uncertainty. It builds on earlier work by Weerts et al. (2011, herinafter referred to as wwv2011), who used the Quantile Regression technique to estimate predictive hydrological uncertainty using a deterministic water level forecast as a predictor. The various configurations are designed to address two issues with the wwv2011 implementation: (i) quantile crossing, which causes non-strictly rising cumulative predictive distributions, and (ii) the use of linear quantile models to describe joint distributions that may not be strictly linear. Thus, four configurations were built: (i) the "as is" implementation used by wwv2011, (ii) a configuration that implements a non-crossing quantile technique, (iii) a configuration where quantile models are built in Normal space after application of the Normal Quantile Transform, and (iv) a configuration that builds quantile model separately on separate domains of the predictor. Using each, four re-forecasting series of water levels at fourteen stations in the Upper Severn River were established. The quality of these four series was inter-compared using a set of graphical and numerical verification metrics. Intercomparison showed that reliability and sharpness vary across configurations, but in none of the configurations do these two forecast quality aspects improve simultaneously. Further analysis shows that skills in terms of Brier Skill Score, mean Continuous Ranked Probability Skill Score and Relative Operating Characteristic Score is very similar across the four configurations.

  16. Predicted Changes in Interannual Water-Level Fluctuations Due to Climate Change and Its Implications for the Vegetation of the Florida Everglades

    NASA Astrophysics Data System (ADS)

    van der Valk, Arnold G.; Volin, John C.; Wetzel, Paul R.

    2015-04-01

    The number of dominant vegetation types (wet prairies, sawgrass flats, ridges and sloughs, sloughs, and tree islands) historically and currently found in the Everglades, FL, USA, as with other wetlands with standing water, appears to be primarily a function of the magnitude of interannual water-level fluctuations. Analyses of 40 years of water-depth data were used to estimate the magnitude of contemporary (baseline) water-level fluctuations in undisturbed ridge and slough landscapes. Baseline interannual water-level fluctuations above the soil surface were at least 1.5 m. Predicted changes in interannual water-level fluctuations in 2060 were examined for seven climate change scenarios. When rainfall is predicted to increase by 10 %, the wettest scenario, the interannual range of water-level fluctuation increases to 1.8 m above the soil surface in sloughs. When rainfall is predicted to decrease by 10 % and temperatures to increase by 1.5 °C, the driest scenario, the range of interannual range of water-level fluctuations is predicted to decrease to 1.2 m above the soil surface in sloughs. A change of 25-30 cm in interannual water-level fluctuations is needed to change the number of vegetation types in a wetland. This suggests that the two most extreme climate change scenarios could have a significant impact on the overall structure of wetland vegetation, i.e., the number of vegetation types or zones, found in the Everglades.

  17. Predicted changes in interannual water-level fluctuations due to climate change and its implications for the vegetation of the Florida Everglades.

    PubMed

    van der Valk, Arnold G; Volin, John C; Wetzel, Paul R

    2015-04-01

    The number of dominant vegetation types (wet prairies, sawgrass flats, ridges and sloughs, sloughs, and tree islands) historically and currently found in the Everglades, FL, USA, as with other wetlands with standing water, appears to be primarily a function of the magnitude of interannual water-level fluctuations. Analyses of 40 years of water-depth data were used to estimate the magnitude of contemporary (baseline) water-level fluctuations in undisturbed ridge and slough landscapes. Baseline interannual water-level fluctuations above the soil surface were at least 1.5 m. Predicted changes in interannual water-level fluctuations in 2060 were examined for seven climate change scenarios. When rainfall is predicted to increase by 10 %, the wettest scenario, the interannual range of water-level fluctuation increases to 1.8 m above the soil surface in sloughs. When rainfall is predicted to decrease by 10 % and temperatures to increase by 1.5 °C, the driest scenario, the range of interannual range of water-level fluctuations is predicted to decrease to 1.2 m above the soil surface in sloughs. A change of 25-30 cm in interannual water-level fluctuations is needed to change the number of vegetation types in a wetland. This suggests that the two most extreme climate change scenarios could have a significant impact on the overall structure of wetland vegetation, i.e., the number of vegetation types or zones, found in the Everglades. PMID:25566832

  18. Alternative configurations of Quantile Regression for estimating predictive uncertainty in water level forecasts for the Upper Severn River: a comparison

    NASA Astrophysics Data System (ADS)

    Lopez, Patricia; Verkade, Jan; Weerts, Albrecht; Solomatine, Dimitri

    2014-05-01

    Hydrological forecasting is subject to many sources of uncertainty, including those originating in initial state, boundary conditions, model structure and model parameters. Although uncertainty can be reduced, it can never be fully eliminated. Statistical post-processing techniques constitute an often used approach to estimate the hydrological predictive uncertainty, where a model of forecast error is built using a historical record of past forecasts and observations. The present study focuses on the use of the Quantile Regression (QR) technique as a hydrological post-processor. It estimates the predictive distribution of water levels using deterministic water level forecasts as predictors. This work aims to thoroughly verify uncertainty estimates using the implementation of QR that was applied in an operational setting in the UK National Flood Forecasting System, and to inter-compare forecast quality and skill in various, differing configurations of QR. These configurations are (i) 'classical' QR, (ii) QR constrained by a requirement that quantiles do not cross, (iii) QR derived on time series that have been transformed into the Normal domain (Normal Quantile Transformation - NQT), and (iv) a piecewise linear derivation of QR models. The QR configurations are applied to fourteen hydrological stations on the Upper Severn River with different catchments characteristics. Results of each QR configuration are conditionally verified for progressively higher flood levels, in terms of commonly used verification metrics and skill scores. These include Brier's probability score (BS), the continuous ranked probability score (CRPS) and corresponding skill scores as well as the Relative Operating Characteristic score (ROCS). Reliability diagrams are also presented and analysed. The results indicate that none of the four Quantile Regression configurations clearly outperforms the others.

  19. Ground-water-level monitoring for earthquake prediction; a progress report based on data collected in Southern California, 1976-79

    USGS Publications Warehouse

    Moyle, W.R., Jr.

    1980-01-01

    The U.S. Geological Survey is conducting a research program to determine if groundwater-level measurements can be used for earthquake prediction. Earlier studies suggest that water levels in wells may be responsive to small strains on the order of 10 to the minus 8th power to 10 to the minus 10th power (dimensionless). Water-level data being collected in the area of the southern California uplift show response to earthquakes and other natural and manmade effects. The data are presently (1979) being made ready for computer analysis. The completed analysis may indicate the presence of precursory earthquake information. (USGS)

  20. Improved sea level anomaly prediction through combination of data relationship analysis and genetic programming in Singapore Regional Waters

    NASA Astrophysics Data System (ADS)

    Kurniawan, Alamsyah; Ooi, Seng Keat; Babovic, Vladan

    2014-11-01

    With recent advances in measurement and information technology, there is an abundance of data available for analysis and modelling of hydrodynamic systems. Spatial and temporal data coverage, better quality and reliability of data modelling and data driven techniques have resulted in more favourable acceptance by the hydrodynamic community. The data mining tools and techniques are being applied in variety of hydro-informatics applications ranging from data mining for pattern discovery to data driven models and numerical model error correction. The present study explores the feasibility of applying mutual information theory by evaluating the amount of information contained in observed and prediction errors of non-tidal barotropic numerical modelling (i.e. assuming that the hydrodynamic model, available at this point, is best representation of the physics in the domain of interest) by relating them to variables that reflect the state at which the predictions are made such as input data, state variables and model output. In addition, the present study explores the possibility of employing genetic programming' (GP) as an offline data driven modelling tool to capture the sea level anomaly (SLA) dynamics and then using them for updating the numerical model prediction in real time applications. These results suggest that combination of data relationship analysis and GP models helps to improve the forecasting ability by providing information of significant predicative parameters. It is found that GP based SLA prediction error forecast model can provide significant improvement when applied as data assimilation schemes for updating the SLA prediction obtained from primary hydrodynamic models.

  1. Predicting pesticide environmental risk in intensive agricultural areas. II: Screening level risk assessment of complex mixtures in surface waters.

    PubMed

    Verro, Roberto; Finizio, Antonio; Otto, Stefan; Vighi, Marco

    2009-01-15

    In a previous article, a procedure for assessing pesticide ecotoxicological risk for surface water was applied to all active ingredients in a pilot basin. This data set has been used to assess the composition of pesticide mixtures that are likely to be present in surface waters as a consequence of pesticide emissions from the crops grown within the basin (maize, soybean, sugar beet, and vineyard). Temporal evolution of the mixture composition has been evaluated as a function of the different contamination patterns (drift and runoff). Ecotoxicological risk has been assessed for the mixtures released by individual crops and from all the relevant crops cultivated in the basin. The different role of drift and runoff, as well as the temporal trends of exposure and risk are compared. Daphnia is the most affected among the three indicator organisms considered, particularly from drift mixtures after insecticide application on vineyard. The highest risk for algae occurs during runoff events in spring. In most risk events, one or a few chemicals are usually responsible for more than 80% of the toxic potency of the mixture. The CA model for predicting mixture response is assumed to be a reliable approach for assessing risk for ecologically relevant pesticide mixtures. PMID:19238990

  2. Predicted water-level and water-quality effects of artificial recharge in the Upper Coachella Valley, California, using a finite-element digital model

    USGS Publications Warehouse

    Swain, Lindsay A.

    1978-01-01

    From 1936 to 1974, water levels declined more than 100 feet in the Palm Springs area and 60 feet in the Palm Desert area of the upper Coachella Valley, Calif. Water from the Colorado River Aqueduct is presently being recharged to the basin. The dissolved-solids concentration of native ground water in the recharge area is about 210 mg/liter and that of recharge water ranges from 600 to 750 mg/liter. A finite-element model indicates that without recharge the 1974 water levels in the Palm Springs area will decline 200 feet by the year 2000 because of pumpage. If the aquifer is recharged at a rate from about 7 ,500 acre-feet per year in 1973 increasing to 61,200 acre-feet per year in 1990 and thereafter, the water level in the Palm Springs area will decline about 20 feet below the 1974 level by 1991 and recover to the 1974 level by 2000. The solute-transport finite-element model of the recharge area indicates that the artificial recharge plume (bounded by the 300-mg/liter line) will move about 1.1 miles downgradient of the recharge ponds by 1981 and about 4.5 miles from the ponds by 2000. (Woodard-USGS)

  3. How historical information can improve estimation and prediction of extreme coastal water levels: application to the Xynthia event at La Rochelle (France)

    NASA Astrophysics Data System (ADS)

    Bulteau, T.; Idier, D.; Lambert, J.; Garcin, M.

    2015-06-01

    The knowledge of extreme coastal water levels is useful for coastal flooding studies or the design of coastal defences. While deriving such extremes with standard analyses using tide-gauge measurements, one often needs to deal with limited effective duration of observation which can result in large statistical uncertainties. This is even truer when one faces the issue of outliers, those particularly extreme values distant from the others which increase the uncertainty on the results. In this study, we investigate how historical information, even partial, of past events reported in archives can reduce statistical uncertainties and relativise such outlying observations. A Bayesian Markov chain Monte Carlo method is developed to tackle this issue. We apply this method to the site of La Rochelle (France), where the storm Xynthia in 2010 generated a water level considered so far as an outlier. Based on 30 years of tide-gauge measurements and 8 historical events, the analysis shows that (1) integrating historical information in the analysis greatly reduces statistical uncertainties on return levels (2) Xynthia's water level no longer appears as an outlier, (3) we could have reasonably predicted the annual exceedance probability of that level beforehand (predictive probability for 2010 based on data until the end of 2009 of the same order of magnitude as the standard estimative probability using data until the end of 2010). Such results illustrate the usefulness of historical information in extreme value analyses of coastal water levels, as well as the relevance of the proposed method to integrate heterogeneous data in such analyses.

  4. Sentence-Level Attachment Prediction

    NASA Astrophysics Data System (ADS)

    Albakour, M.-Dyaa; Kruschwitz, Udo; Lucas, Simon

    Attachment prediction is the task of automatically identifying email messages that should contain an attachment. This can be useful to tackle the problem of sending out emails but forgetting to include the relevant attachment (something that happens all too often). A common Information Retrieval (IR) approach in analyzing documents such as emails is to treat the entire document as a bag of words. Here we propose a finer-grained analysis to address the problem. We aim at identifying individual sentences within an email that refer to an attachment. If we detect any such sentence, we predict that the email should have an attachment. Using part of the Enron corpus for evaluation we find that our finer-grained approach outperforms previously reported document-level attachment prediction in similar evaluation settings.

  5. PREDICTION OF AIRCRAFT NOISE LEVELS

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1994-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources have been incorporated into a computer program for predicting aircraft noise levels either in flight or in ground test. The noise sources accounted for include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available in the program for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. The capacity to solve the geometrical relationships between an aircraft in flight and an observer on the ground has been included in the program to make it useful in evaluating noise estimates and footprints for various proposed engine installations. The program contains two main routines for employing the noise prediction routines. The first main routine consists of a procedure to calculate at various observer stations the time history of the noise from an aircraft flying at a specified set of speeds, orientations, and space coordinates. The various components of the noise are computed by the program. For each individual source, the noise levels are free field with no corrections for propagation losses other than spherical divergence. The total spectra may then be corrected for the usual effects of atmospheric attenuation, extra ground attenuation, ground reflection, and aircraft shielding. Next, the corresponding values of overall sound pressure level, perceived noise level, and tone-weighted perceived noise level are calculated. From the time history at each point, true effective perceived noise levels are calculated. Thus, values of effective perceived noise levels, maximum perceived noise levels, and tone-weighted perceived noise levels are found for a grid of specified points on the ground. The second main routine is designed to give the usual format of one-third octave sound pressure level values at a fixed radius for a number of user-selected angles, such as would simulate the ground acoustic testing of an engine. This computer program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 120K of 8 bit bytes. This program was developed in 1981.

  6. A neighborhood statistics model for predicting stream pathogen indicator levels.

    PubMed

    Pandey, Pramod K; Pasternack, Gregory B; Majumder, Mahbubul; Soupir, Michelle L; Kaiser, Mark S

    2015-03-01

    Because elevated levels of water-borne Escherichia coli in streams are a leading cause of water quality impairments in the U.S., water-quality managers need tools for predicting aqueous E. coli levels. Presently, E. coli levels may be predicted using complex mechanistic models that have a high degree of unchecked uncertainty or simpler statistical models. To assess spatio-temporal patterns of instream E. coli levels, herein we measured E. coli, a pathogen indicator, at 16 sites (at four different times) within the Squaw Creek watershed, Iowa, and subsequently, the Markov Random Field model was exploited to develop a neighborhood statistics model for predicting instream E. coli levels. Two observed covariates, local water temperature (degrees Celsius) and mean cross-sectional depth (meters), were used as inputs to the model. Predictions of E. coli levels in the water column were compared with independent observational data collected from 16 in-stream locations. The results revealed that spatio-temporal averages of predicted and observed E. coli levels were extremely close. Approximately 66% of individual predicted E. coli concentrations were within a factor of 2 of the observed values. In only one event, the difference between prediction and observation was beyond one order of magnitude. The mean of all predicted values at 16 locations was approximately 1% higher than the mean of the observed values. The approach presented here will be useful while assessing instream contaminations such as pathogen/pathogen indicator levels at the watershed scale. PMID:25694031

  7. Prediction of the air-water partition coefficient for perfluoro-2-methyl-3-pentanone using high-level Gaussian-4 composite theoretical methods.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2014-09-19

    The air-water partition coefficient (Kaw) of perfluoro-2-methyl-3-pentanone (PFMP) was estimated using the G4MP2/G4 levels of theory and the SMD solvation model. A suite of 31 fluorinated compounds was employed to calibrate the theoretical method. Excellent agreement between experimental and directly calculated Kaw values was obtained for the calibration compounds. The PCM solvation model was found to yield unsatisfactory Kaw estimates for fluorinated compounds at both levels of theory. The HENRYWIN Kaw estimation program also exhibited poor Kaw prediction performance on the training set. Based on the resulting regression equation for the calibration compounds, the G4MP2-SMD method constrained the estimated Kaw of PFMP to the range 5-8 10(-6)M atm(-1). The magnitude of this Kaw range indicates almost all PFMP released into the atmosphere or near the land-atmosphere interface will reside in the gas phase, with only minor quantities dissolved in the aqueous phase as the parent compound and/or its hydrate/hydrate conjugate base. Following discharge into aqueous systems not at equilibrium with the atmosphere, significant quantities of PFMP will be present as the dissolved parent compound and/or its hydrate/hydrate conjugate base. PMID:24967555

  8. Myeloperoxidase levels predict executive function.

    PubMed

    Haslacher, H; Perkmann, T; Lukas, I; Barth, A; Ponocny-Seliger, E; Michlmayr, M; Scheichenberger, V; Wagner, O; Winker, R

    2012-12-01

    The main purpose of the study was to investigate whether baseline myeloperoxidase (MPO) levels are associated with executive cognitive function in individuals with high physical activity. Baseline serum MPO levels of 56 elderly marathon runners and 58 controls were assessed by ELISA. Standardized tests were applied to survey domain-specific cognitive functions. Changes in brain morphology were visualized by magnetic resonance imaging (MRI). High baseline serum MPO levels correlated with worse outcome in tests assessing executive cognitive function in athletes but not in the control group (NAI maze test p<0.05, Trail Making Test ratio p<0.01). In control participants, subcortical white matter hyperintensities were associated with higher scores on the Geriatric Depression Scale (p<0.05), whereas athletes seem to be protected from this effect. During strenuous exercising, MPO as well as its educts may be elevated due to increased oxygen intake and excretion of pro-inflammatory mediators inducing host tissue damage via oxidative stress. This outweighs the potential benefits of physical activity on cognitive function. PMID:22855218

  9. Arsenic levels in Oregon waters.

    PubMed Central

    Stoner, J C; Whanger, P D; Weswig, P H

    1977-01-01

    The arsenic content of well water in certain areas of Oregon can range up to 30 to 40 times the U.S.P.H.S. Drinking Water Standard of 1962, where concentrations in excess of 50 ppb are grounds for rejection. The elevated arsenic levels in water are postulated to be due to volcanic deposits. Wells in central Lane County, Oregon, that are known to contain arsenic rich water are in an area underlain by a particular group of sedimentary and volcanic rocks, which geologists have named the Fischer formation. The arsenic levels in water from wells ranged from no detectable amounts to 2,000 ppb. In general the deeper wells contained higher arsenic water. The high arsenic waters are characterized by the small amounts of calcium and magnesium in relation to that of sodium, a high content of boron, and a high pH. Water from some hot springs in other areas of Oregon was found to range as high as 900 ppb arsenic. Arsenic blood levels ranged from 32 ppb for people living in areas where water is low in arsenic to 250 ppb for those living in areas where water is known to contain high levels of arsenic. Some health problems associated with consumption of arsenic-rich water are discussed. PMID:908291

  10. Streamflow and Water Level Measurements

    USGS Multimedia Gallery

    USGS scientists Joel Galloway and Dan Thomas prepare to take streamflow and water level measurements of the flooded Red River in downtown Fargo, ND. The USGS Red River of the North at Fargo streamgage can be seen in the background....

  11. Computer program to predict aircraft noise levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1981-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  12. Computer program to predict aircraft noise levels

    NASA Astrophysics Data System (ADS)

    Clark, B. J.

    1981-09-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  13. Groundwater Level Prediction using M5 Model Trees

    NASA Astrophysics Data System (ADS)

    Nalarajan, Nitha Ayinippully; Mohandas, C.

    2015-01-01

    Groundwater is an important resource, readily available and having high economic value and social benefit. Recently, it had been considered a dependable source of uncontaminated water. During the past two decades, increased rate of extraction and other greedy human actions have resulted in the groundwater crisis, both qualitatively and quantitatively. Under prevailing circumstances, the availability of predicted groundwater levels increase the importance of this valuable resource, as an aid in the planning of groundwater resources. For this purpose, data-driven prediction models are widely used in the present day world. M5 model tree (MT) is a popular soft computing method emerging as a promising method for numeric prediction, producing understandable models. The present study discusses the groundwater level predictions using MT employing only the historical groundwater levels from a groundwater monitoring well. The results showed that MT can be successively used for forecasting groundwater levels.

  14. Blood gene expression signatures predict exposure levels

    PubMed Central

    Bushel, P. R.; Heinloth, A. N.; Li, J.; Huang, L.; Chou, J. W.; Boorman, G. A.; Malarkey, D. E.; Houle, C. D.; Ward, S. M.; Wilson, R. E.; Fannin, R. D.; Russo, M. W.; Watkins, P. B.; Tennant, R. W.; Paules, R. S.

    2007-01-01

    To respond to potential adverse exposures properly, health care providers need accurate indicators of exposure levels. The indicators are particularly important in the case of acetaminophen (APAP) intoxication, the leading cause of liver failure in the U.S. We hypothesized that gene expression patterns derived from blood cells would provide useful indicators of acute exposure levels. To test this hypothesis, we used a blood gene expression data set from rats exposed to APAP to train classifiers in two prediction algorithms and to extract patterns for prediction using a profiling algorithm. Prediction accuracy was tested on a blinded, independent rat blood test data set and ranged from 88.9% to 95.8%. Genomic markers outperformed predictions based on traditional clinical parameters. The expression profiles of the predictor genes from the patterns extracted from the blood exhibited remarkable (97% accuracy) transtissue APAP exposure prediction when liver gene expression data were used as a test set. Analysis of human samples revealed separation of APAP-intoxicated patients from control individuals based on blood expression levels of human orthologs of the rat discriminatory genes. The major biological signal in the discriminating genes was activation of an inflammatory response after exposure to toxic doses of APAP. These results support the hypothesis that gene expression data from peripheral blood cells can provide valuable information about exposure levels, well before liver damage is detected by classical parameters. It also supports the potential use of genomic markers in the blood as surrogates for clinical markers of potential acute liver damage. PMID:17984051

  15. Modeling system for predicting enterococci levels at Holly Beach.

    PubMed

    Zhang, Zaihong; Deng, Zhiqiang; Rusch, Kelly A; Walker, Nan D

    2015-08-01

    This paper presents a new modeling system for nowcasting and forecasting enterococci levels in coastal recreation waters at any time during the day. The modeling system consists of (1) an artificial neural network (ANN) model for predicting the enterococci level at sunrise time, (2) a clear-sky solar radiation and turbidity correction to the ANN model, (3) remote sensing algorithms for turbidity, and (4) nowcasting/forecasting data. The first three components are also unique features of the new modeling system. While the component (1) is useful to beach monitoring programs requiring enterococci levels in early morning, the component (2) in combination with the component (1) makes it possible to predict the bacterial level in beach waters at any time during the day if the data from the components (3) and (4) are available. Therefore, predictions from the component (2) are of primary interest to beachgoers. The modeling system was developed using three years of swimming season data and validated using additional four years of independent data. Testing results showed that (1) the sunrise-time model correctly reproduced 82.63% of the advisories issued in seven years with a false positive rate of 2.65% and a false negative rate of 14.72%, and (2) the new modeling system was capable of predicting the temporal variability in enterococci levels in beach waters, ranging from hourly changes to daily cycles. The results demonstrate the efficacy of the new modeling system in predicting enterococci levels in coastal beach waters. Applications of the modeling system will improve the management of recreational beaches and protection of public health. PMID:26186681

  16. Bayesian Prediction and Projection of Sea Levels

    NASA Astrophysics Data System (ADS)

    Berliner, M.

    2014-12-01

    I will begin with a brief review of Bayesian hierarchical modeling and then turn to a model for sea levels. It is well-accepted that global sea levels have been rising in response to rising global temperatures. The strategy is the development of a Bayesian hierarchical model of sea levels. The hierarchical nature of the model is formulated to enable inference at various spatial scales. Further, temperature is incorporated in the model as a predictor or explanatory variable. Hence, information regarding future sea levels provided by the model rely on information regarding future temperatures. Forming predictions of future temperatures can be done in severalways, depending on the goals of the analysis. I consider two classes of goals. In the first we seek short-term or medium-range forecasts as in weather-like forecasting. In the second we seek projections of sea levels under various emissions scenarios as in studies of the impacts of climate change. I illustrate methods and results for each class and suggest how results can contribute to decision support.

  17. Predicting zinc binding at the proteome level

    PubMed Central

    Passerini, Andrea; Andreini, Claudia; Menchetti, Sauro; Rosato, Antonio; Frasconi, Paolo

    2007-01-01

    Background Metalloproteins are proteins capable of binding one or more metal ions, which may be required for their biological function, for regulation of their activities or for structural purposes. Metal-binding properties remain difficult to predict as well as to investigate experimentally at the whole-proteome level. Consequently, the current knowledge about metalloproteins is only partial. Results The present work reports on the development of a machine learning method for the prediction of the zinc-binding state of pairs of nearby amino-acids, using predictors based on support vector machines. The predictor was trained using chains containing zinc-binding sites and non-metalloproteins in order to provide positive and negative examples. Results based on strong non-redundancy tests prove that (1) zinc-binding residues can be predicted and (2) modelling the correlation between the binding state of nearby residues significantly improves performance. The trained predictor was then applied to the human proteome. The present results were in good agreement with the outcomes of previous, highly manually curated, efforts for the identification of human zinc-binding proteins. Some unprecedented zinc-binding sites could be identified, and were further validated through structural modelling. The software implementing the predictor is freely available at: Conclusion The proposed approach constitutes a highly automated tool for the identification of metalloproteins, which provides results of comparable quality with respect to highly manually refined predictions. The ability to model correlations between pairwise residues allows it to obtain a significant improvement over standard 1D based approaches. In addition, the method permits the identification of unprecedented metal sites, providing important hints for the work of experimentalists. PMID:17280606

  18. Satellite Water Impurity Marker (SWIM) for predicting seasonal cholera outbreaks

    NASA Astrophysics Data System (ADS)

    Jutla, A. S.; Akanda, A. S.; Islam, S.

    2011-12-01

    Prediction of outbreaks of cholera, a deadly water related disease, remains elusive. Since coastal brackish water provides a natural ecological niche for cholera bacteria and because a powerful evidence of new biotypes is emerging, it is highly unlikely that cholera will be fully eradicated. Therefore, it is necessary to develop cholera prediction model with several months' of lead time. Satellite based estimates of chlorophyll, a surrogate for phytoplankton abundance, has been associated with proliferation of cholera bacteria. However, survival of cholera bacteria in a variety of coastal ecological environment put constraints on predictive abilities of chlorophyll algorithm since it only measures greenness in coastal waters. Here, we propose a new remote sensing reflectance based statistical index: Satellite Water Impurity Marker, or SWIM. This statistical index estimates impurity levels in the coastal waters and is based on the variability observed in the difference between the blue (412nm) and green (555nm) wavelengths in coastal waters. The developed index is bounded between clear and impure water and shows the ability to predict cholera outbreaks in the Bengal Delta with a predicted r2 of 78% with two months lead time. We anticipate that a predictive system based on SWIM will provide essential lead time allowing effective intervention and mitigation strategies to be developed for other cholera endemic regions of the world.

  19. Passive samplers accurately predict PAH levels in resident crayfish.

    PubMed

    Paulik, L Blair; Smith, Brian W; Bergmann, Alan J; Sower, Greg J; Forsberg, Norman D; Teeguarden, Justin G; Anderson, Kim A

    2016-02-15

    Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4±1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests that it could be easily adapted to predict contamination in other shellfish of concern. PMID:26674706

  20. Blind Prediction of Interfacial Water Positions in CAPRI

    PubMed Central

    Moal, Iain H.; Bates, Paul A.; Kastritis, Panagiotis L.; Melquiond, Adrien S.J.; Karaca, Ezgi; Schmitz, Christophe; van Dijk, Marc; Bonvin, Alexandre M.J.J.; Eisenstein, Miriam; Jiménez-García, Brian; Grosdidier, Solène; Solernou, Albert; Pérez-Cano, Laura; Pallara, Chiara; Fernández-Recio, Juan; Xu, Jianqing; Muthu, Pravin; Kilambi, Krishna Praneeth; Gray, Jeffrey J.; Grudinin, Sergei; Derevyanko, Georgy; Mitchell, Julie C.; Wieting, John; Kanamori, Eiji; Tsuchiya, Yuko; Murakami, Yoichi; Sarmiento, Joy; Standley, Daron M.; Shirota, Matsuyuki; Kinoshita, Kengo; Nakamura, Haruki; Chavent, Matthieu; Ritchie, David W.; Park, Hahnbeom; Ko, Junsu; Lee, Hasup; Seok, Chaok; Shen, Yang; Kozakov, Dima; Vajda, Sandor; Kundrotas, Petras J.; Vakser, Ilya A.; Pierce, Brian G.; Hwang, Howook; Vreven, Thom; Weng, Zhiping; Buch, Idit; Farkash, Efrat; Wolfson, Haim J.; Zacharias, Martin; Qin, Sanbo; Zhou, Huan-Xiang; Huang, Shen-You; Zou, Xiaoqin; Wojdyla, Justyna A.; Kleanthous, Colin; Wodak, Shoshana J.

    2015-01-01

    We report the first assessment of blind predictions of water positions at protein-protein interfaces, performed as part of the CAPRI (Critical Assessment of Predicted Interactions) community-wide experiment. Groups submitting docking predictions for the complex of the DNase domain of colicin E2 and Im2 immunity protein (CAPRI target 47), were invited to predict the positions of interfacial water molecules using the method of their choice. The predictions – 20 groups submitted a total of 195 models – were assessed by measuring the recall fraction of water-mediated protein contacts. Of the 176 high or medium quality docking models – a very good docking performance per se – only 44% had a recall fraction above 0.3, and a mere 6% above 0.5. The actual water positions were in general predicted to an accuracy level no better than 1.5 Å, and even in good models about half of the contacts represented false positives. This notwithstanding, three hotspot interface water positions were quite well predicted, and so was one of the water positions that is believed to stabilize the loop that confers specificity in these complexes. Overall the best interface water predictions was achieved by groups that also produced high quality docking models, indicating that accurate modelling of the protein portion is a determinant factor. The use of established molecular mechanics force fields, coupled to sampling and optimization procedures also seemed to confer an advantage. Insights gained from this analysis should help improve the prediction of protein-water interactions and their role in stabilizing protein complexes. PMID:24155158

  1. Predicting Trihalomethanes (THMs) in the New York City Water Supply

    NASA Astrophysics Data System (ADS)

    Mukundan, R.; Van Dreason, R.

    2013-12-01

    Chlorine, a commonly used disinfectant in most water supply systems, can combine with organic carbon to form disinfectant byproducts including carcinogenic trihalomethanes (THMs). We used water quality data from 24 monitoring sites within the New York City (NYC) water supply distribution system, measured between January 2009 and April 2012, to develop site-specific empirical models for predicting total trihalomethane (TTHM) levels. Terms in the model included various combinations of the following water quality parameters: total organic carbon, pH, specific conductivity, and water temperature. Reasonable estimates of TTHM levels were achieved with overall R2 of about 0.87 and predicted values within 5 μg/L of measured values. The relative importance of factors affecting TTHM formation was estimated by ranking the model regression coefficients. Site-specific models showed improved model performance statistics compared to a single model for the entire system most likely because the single model did not consider locational differences in the water treatment process. Although never out of compliance in 2011, the TTHM levels in the water supply increased following tropical storms Irene and Lee with 45% of the samples exceeding the 80 μg/L Maximum Contaminant Level (MCL) in October and November. This increase was explained by changes in water quality parameters, particularly by the increase in total organic carbon concentration and pH during this period.

  2. Predicting water intake by yearling feedlot steers.

    PubMed

    Sexson, J L; Wagner, J J; Engle, T E; Eickhoff, J

    2012-06-01

    Data from 4 separate beef cattle feedlot experiments, which were conducted at the Southeast Colorado Research Center (SECRC) in Lamar, CO, in 2001, 2003, 2004, and 2007, were utilized in a retrospective longitudinal study investigating possible relationships between daily water consumption (WC), DMI, and weather variables. The data set consisted of 8,209 records from 2001, 2003, 2004, and 2007, with pen based daily WC (Lanimal(-1)) and DMI measurements and calculated daily steer BW from April to October in each year. Daily weather data were obtained from the weather station located at Lamar Municipal Airport located approximately 1.9 km from SECRC. Data collected consisted of daily high, low, and mean temperature; high, low, and mean humidity; high, low, and mean sea level pressure; mean wind speed; total precipitation; and average daily wind direction (cosine of radians from due north). Univariate analysis demonstrated that the continuous variables of BW, humidity, and sea level pressure were negatively related (P < 0.0001), whereas DMI, temperature the previous day, daily temperature, change in temperature from the previous day, average wind speed, and the temperature-humidity index (THI) were positively related (P < 0.001) to daily WC. There was a trend (P < 0.06) for the cosine of wind direction (1 = due north and -1 = due south) to be negatively related to WC. The multivariate, parsimonious model predicting average daily WC included (P < 0.05) average humidity, average humidity squared, high temperature squared, high humidity squared, low temperature, low temperature squared, low humidity, average sea level pressure, average wind speed, average daily BW, high sea level pressure, low sea level pressure, high humidity, and low humidity. The generalized R(2) of the parsimonious multivariate model was 0.32. These results indicate that BW and numerous weather factors are related to WC by yearling feedlot steers. Dry matter intake had minimal impact on WC for yearling feedlot steers consuming steam-flaked corn-based high concentrate diets from mid-spring to early fall. PMID:22205664

  3. Ebola Blood Level May Predict Odds of Death, Study Says

    MedlinePLUS

    ... nlm.nih.gov/medlineplus/news/fullstory_155991.html Ebola Blood Level May Predict Odds of Death, Study ... Dec. 1, 2015 (HealthDay News) -- The levels of Ebola virus in a patient's blood can strongly predict ...

  4. Predicting ozone levels : A statistical model for predicting ozone levels in the Shuaiba Industrial Area, Kuwait.

    PubMed

    Abdul-Wahab, S; Bouhamra, W; Ettouney, H; Sowerby, B; Crittenden, B D

    1996-12-01

    This paper presents a statistical model that is capable of predicting ozone levels from precursor concentrations and meteorological conditions during daylight hours in the Shuaiba Industrial Area (SIA) of Kuwait. The model has been developed from ambient air quality data that was recorded for one year starting from December 1994 using an air pollution mobile monitoring station. The functional relationship between ozone level and the various independent variables has been determined by using a stepwise multiple regression modelling procedure. The model contains two terms that describe the dependence of ozone on nitrogen oxides (NOx) and nonmethane hydrocarbon precursor concentrations, and other terms that relate to wind direction, wind speed, sulphur dioxide (SO2) and solar energy. In the model, the levels of the precursors are inversely related to ozone concentration, whereas SO2 concentration, wind speed and solar radiation are positively correlated. Typically, 63 % of the variation in ozone levels can be explained by the levels of NOx. The model is shown to be statistically significant and model predictions and experimental observations are shown to be consistent. A detailed analysis of the ozone-temperature relationship is also presented; at temperatures less than 27 °C there is a positive correlation between temperature and ozone concentration whereas at temperatures greater than 27 °C a negative correlation is seen. This is the first time a non-monotonic relationship between ozone levels and temperature has been reported and discussed. PMID:24233416

  5. Ground-water-level monitoring and the importance of long-term water-level data

    USGS Publications Warehouse

    Taylor, Charles J.; Alley, William M.

    2001-01-01

    Water-level measurements from observation wells are the principal source of information about the effects of hydrologic stresses on ground-water systems. Long-term water-level data are required to address the effects of aquifer development and to compile a hydrologic record of water-level monitoring, uses of long-term water-level data, and improvements in the collection and accessibility of water-level data.

  6. Prediction uncertainty in basin-scale predictions of water quality

    NASA Astrophysics Data System (ADS)

    Starn, J. J.; Green, C. T.

    2011-12-01

    Upward trends in dissolved solids are occurring in some wells, ranging in depth from 100 to 1,250 feet, in the basin-fill aquifer in Salt Lake Valley, Utah. Possible sources and constituents of dissolved solids include mineral dissolution in native and recently recharged water (calcium, sulfate, and bicarbonate), surface water concentrated by evaporation (sodium and chloride), and application of road de-icing chemicals (sodium and chloride). A groundwater simulation model is being used to understand the trends. Model parameters are optimized using nonlinear regression to match tritium concentrations in samples from public-supply wells. Tritium is considered here to be conservative and non-sorbing, whereas dissolved solid chemistry is probably more complex. The migration of atmospheric tritium through the area where dissolved solids trends are observed provides some information on groundwater velocity in the area of interest. The effect of model cell size on accuracy of tritium concentration predictions is tested. In this case, a coarse model grid may be sufficient to understand the causes of the trends. The simulation strategy is to use an existing calibrated groundwater flow model with parameters (hydraulic conductivity, storativity, and boundary fluxes) regularized at previously calibrated values. An advective transport simulation of tritium, observed at 135 well locations (many of which were sampled multiple times), was calibrated by optimizing porosity parameter values regularized using pilot points. Two models are tested-a single porosity domain and a dual porosity domain with mass transfer. Sensitivity of the model parameters is affected by the model structure (large grid cells), model conceptualization (porosity domains), and data quality (locations and times of samples). Prediction uncertainty is assessed using a Monte Carlo simulation, and a comparison of the results for the two models indicates that parameter estimates are affected by real and numerical dispersion, particularly in the dual-domain porosity simulations, where the additional parameters can mimic the effect of dispersion. The multiple ways of simulating (or ignoring) dispersion affects parameter estimates, parameter uncertainty, and prediction uncertainty. Although prediction uncertainty can be high, a simplified interpretation of the model helps explain the trends in dissolved solids.

  7. Predicting Anthropogenic Noise Contributions to US Waters.

    PubMed

    Gedamke, Jason; Ferguson, Megan; Harrison, Jolie; Hatch, Leila; Henderson, Laurel; Porter, Michael B; Southall, Brandon L; Van Parijs, Sofie

    2016-01-01

    To increase understanding of the potential effects of chronic underwater noise in US waters, the National Oceanic and Atmospheric Administration (NOAA) organized two working groups in 2011, collectively called "CetSound," to develop tools to map the density and distribution of cetaceans (CetMap) and predict the contribution of human activities to underwater noise (SoundMap). The SoundMap effort utilized data on density, distribution, acoustic signatures of dominant noise sources, and environmental descriptors to map estimated temporal, spatial, and spectral contributions to background noise. These predicted soundscapes are an initial step toward assessing chronic anthropogenic noise impacts on the ocean's varied acoustic habitats and the animals utilizing them. PMID:26610977

  8. Selected water-level records for Oklahoma, 1976-1978

    USGS Publications Warehouse

    Goemaat, Robert L.; Spiser, Dannie E.

    1979-01-01

    A systematic program to collect water-level records in Oklahoma began in 1937. The objectives of this program are (1) to provide long-term records of water-level fluctuations in representative wells, (2) to facilitate the prediction of water-level trends and indicate future availability of ground-water supplies, and (3) to provide information for use in basic research. Water-level data in table 1 are from wells that are measured annually, prior to the irrigation season to achieve the most natural representation of the static water level. Water level measurements listed in the column under 1976 may have been made during December 1975 or January, February, March, April, or May 1976. Measurements listed in the column 1977 may have been made during December 1976 or January, February, March, or April 1977. Figure 1 shows the counties and number of wells therein, where data were obtained for this report. Records of water levels in Oklahoma are collected through a cooperative program by the U.S. Geological Survey and the Oklahoma Water Resources Board. The records are tabulated and published by the U.S. Geological Survey on an annual basis. The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those at the U.S. Geological Survey except for the Cheyenne Sandstone which is considered to be Purgatoire Sandstone by the Oklahoma Geological Survey (Robert O. Fay, Personal Communication, August 9, 1979).

  9. Models to predict water chemical cluster variables

    SciTech Connect

    Hakanson, L.

    1994-10-01

    This study is an attempt to quantify and rank variables of significance to predict mean values of lake pH and related variables (alkalinity, conductivity, hardness, etc.) in small glacial lakes. The work is based on a new and extensive set of data from 95 Swedish lakes and their catchment areas. Several empirical models based on catchment and lake morphometric parameters have been presented. These empirical models can only be used to predict mean values of these variables for lakes of the same type, and these models based on {open_quotes}geological{close_quotes} map parameters can evidently not be used for highly time-dependent and site-typical predictions. Various hypotheses concerning the factors regulating the mean values of the cluster variables were formulated and tested. Different statistical tests were used to separate random influences from causal. The most important {open_quotes}map parameters{close_quotes} were: the percent of rocks and open (=cultivated) land in the so-called near area to the lake [as determined with the drainage area zonation (DAZ) method], mean depth, linked to resuspension and the form and size of lakes, relief of the drainage area and lake area. Each of these variables only provides a limited degree of (statistical) explanation of the variability in mean annual values of pH and the water chemical cluster variables among the lakes. The predictability of some of the models can be markedly improved by accounting for the distribution of the characteristics in the drainage area. The variability in mean annual values of pH (and related variables) from other parameters, such as specific anthropogenic load, etc., may then be quantitatively differentiated from the impact of these {open_quotes}geological{close_quotes} parameters. This paper also gives a simple method to estimate natural, preindustrial reference values of these water chemical variables from the presented models. 39 refs., 21 figs., 12 tabs.

  10. Ground-water levels in observation wells in Oklahoma, 1975

    USGS Publications Warehouse

    Goemaat, Robert L.

    1977-01-01

    The objectives of the observation-well program are (1) to provide long-term records of water-level fluctuations in representative wells, (2) to facilitate the prediction of water-level trends and indicate the future availability of ground-water supplies, and (3) to provide information for use in basic research. These selected records serve as a framework to which other types of hydrologic data may be related. The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey.

  11. Quantifying and Predicting Outdoor Water Use in Los Angeles

    NASA Astrophysics Data System (ADS)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2012-12-01

    Residential water consumption is the largest urban water user and represents the largest potential for conservation according to a peer-reviewed study by the Pacific Institute in California (2003). Outdoor water use represents a large percentage of the residential water budget but significant uncertainties are associated with current estimates and predictive models. The objectives of the current study are to analyze the spatial and temporal trends in outdoor use, determine correlations to climate and vegetation patterns, and establish key drivers of outdoor use in Los Angeles. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Indoor use was estimated at the census tract level using a range of established models; with outdoor use then calculated as the residual between total and indoor use. The comparison of different estimates at the census tract level reveals significant variability between commonly-used outdoor use methods. Two of the Pacific Institute methods show that outdoor use percentages vary from 7%-10% to 60%-67% of total residential water use at the tract level across the City. A third tested method, based on average household size to model indoor use, presents a broader range of results, with outdoor use ranging from 2% to 93% of total water use. Climate variables, property characteristics as well as remotely-sensed vegetation indices and evapotranspiration estimates were also collected and aggregated at the census tract level for the same period. A linear regression model was developed using these variables to identify the key predictors of outdoor use for the study area. The residual and regression model estimates will serve to validate the development of a biophysical model including tree and grass cover areas, climate variables and high resolution evapotranspiration estimates. Ultimately, models will be used for predictions for a range of future climate and landscape scenarios. Finally, project results will inform water managers to implement efficient landscaping irrigation conservation strategies part of an integrated water resources management plan for sustainable regional water supply system in Southern California.

  12. Water level changes along the Norwegian coast

    NASA Astrophysics Data System (ADS)

    Plag, Hans-Peter

    1984-03-01

    The water level records of 11 stations from the Norwegian coast having the recording interval 1971 1972 in common have been analysed with a least squares algorithm. The results for the harmonic constants are compared to open ocean tide models and a good agreement is found. The variation of tidal parameters and mean sea level are calculated from a 70 years water level record from Bergen. An 18.6 yearly variation in amplitude and phase of the fortnightly tide Mf could be identified. Cross correlation techniques are used to investigate the nontidal part of the water level changes. Correlating the residuals of the analyses with each other, the main nontidal water level changes are found to be moving from south to north along the Norwegian coast, taking 20 hours to reach from Stavanger to Vads. The effect of local air pressure on sea level is modelled using transfer functions. Mean sea level changes in Bergen are found to correlate with changes in length of day and changes in global surface temperature.

  13. Modeling Tidal Water Levels for Canadian Coastal and Offshore waters

    NASA Astrophysics Data System (ADS)

    Robin, C. M. I.; MacAulay, P.; Nudds, S.; Godin, A.; de Lange Boom, B.; Bartlett, J.; Maltais, L.; Herron, T.; Craymer, M. R.; Veronneau, M.; Fadaie, K.

    2014-12-01

    IIn 2010, the Canadian Hydrographic Service initiated the Continuous Vertical Datum for Canadian Waters (CVDCW) project, the aim of which is to connect tidal water level datums (high and low water levels, chart datum, etc.) to a national geodetic reference frame over all Canadian tidal waters. Currently, water level datums are tied to a geodetic reference frame at approximately 400 tide stations which have been surveyed with GPS, whereas water levels vary significantly in space even a short distance away from tide stations. The CVDCW captures the relevant spatial variability between stations and offshore by integrating ocean models, gauge data (water level analyses and/or GPS observations), sea level trends, satellite altimetry, and a geoid model. The CVDCW will enable the use of Global Navigation Satellite System technologies (primarily GPS) for hydrographers and navigators. It will also be important for other users including oceanographers, environmental and climate scientists, surveyors and engineers. For instance, it will allow easier integration of hydrographic and terrestrial data, provide a baseline for storm surge modeling and climate change adaptation, and aid with practical issues such as sovereignty and the definition of the coastline. Once high and low water surfaces are complete, they will define a large portion of the vertical link between land and ocean, helping to delineate flooding thresholds and inter-tidal ecosystem zones and boundaries. Here we present an overview of the methodology using a set of prototype model results, and will outline features of interest for studies in coastal stability, climate change adaptation, and sea level change.

  14. Trihalomethanes formation in Iranian water supply systems: predicting and modeling.

    PubMed

    Babaei, Ali Akbar; Atari, Leila; Ahmadi, Mehdi; Ahmadiangali, Kambiz; Zamanzadeh, Mirzaman; Alavi, Nadali

    2015-09-01

    Trihalomethanes (THMs) were the first disinfection by-products discovered in drinking water and are classified as probable carcinogens. This study measures and models THMs formation at two drinking water distribution systems (WDS1 and WDS2) in Ahvaz City, Iran. The investigation was based on field-scale investigations and an intensive 36-week sampling program, from January to September 2011. The results showed total THM concentrations in the range 17.4-174.8 μg/L and 18.9-99.5 μg/L in WDS1 and WDS2, respectively. Except in a few cases, the THM concentrations in WDS1 and WDS2 were lower than the maximum contaminant level values. Using two-tailed Pearson correlation test, the water temperature, dissolved organic carbon, UV254, bromide ion (Br-), free residual chlorine, and chlorine dose were identified as the significant parameters for THMs formation in WDS2. Water temperature was the only significant parameter for THMs formation in WDS1. Based on the correlation results, a predictive model for THMs formation was developed using a multiple regression approach. A multiple linear regression model showed the best fit according to the coefficients of determination (R2) obtained for WDS1 (R2=0.47) and WDS2 (R2=0.54). Further correlation studies and analysis focusing on THMs formation are necessary to assess THMs concentration using the predictive models. PMID:26322772

  15. Reading Ground Water Levels with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  16. Hydro static water level systems at Fermilab

    SciTech Connect

    Volk, J.T.; Guerra, J.A.; Hansen, S.U.; Kiper, T.E.; Jostlein, H.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Singatulin, S.

    2006-09-01

    Several Hydrostatic Water Leveling systems (HLS) are in use at Fermilab. Three systems are used to monitor quadrupoles in the Tevatron and two systems are used to monitor ground motion for potential sites for the International Linear Collider (ILC). All systems use capacitive sensors to determine the water level of water in a pool. These pools are connected with tubing so that relative vertical shifts between sensors can be determined. There are low beta quadrupoles at the B0 and D0 interaction regions of Tevatron accelerator. These quadrupoles use BINP designed and built sensors and have a resolution of 1 micron. All regular lattice superconducting quadrupoles (a total of 204) in the Tevatron use a Fermilab designed system and have a resolution of 6 microns. Data on quadrupole motion due to quenches, changes in temperature will be presented. In addition data for ground motion for ILC studies caused by natural and cultural factors will be presented.

  17. Predicting Students' Homework Environment Management at the Secondary School Level

    ERIC Educational Resources Information Center

    Xu, Jianzhong

    2012-01-01

    The present study examined empirical models of variables posited to predict students' homework environment management at the secondary school level. The participants were 866 8th graders from 61 classes and 745 11th graders from 46 classes. Most of the variance in homework environment management occurred at the student level, with classmates'…

  18. Predicting Students' Homework Environment Management at the Secondary School Level

    ERIC Educational Resources Information Center

    Xu, Jianzhong

    2012-01-01

    The present study examined empirical models of variables posited to predict students' homework environment management at the secondary school level. The participants were 866 8th graders from 61 classes and 745 11th graders from 46 classes. Most of the variance in homework environment management occurred at the student level, with classmates'

  19. Monitoring Lake and Reservoir Level: Satellite Observations, Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Ricko, M.; Birkett, C. M.; Adler, R. F.; Carton, J.

    2013-12-01

    Satellite measurements of lake and reservoir water levels complement in situ observations by providing stage information for un-gauged basins and by filling data gaps in gauge records. However, different satellite radar altimeter-derived continental water level products may differ significantly owing to choice of satellites and data processing methods. To explore the impacts of these differences, a direct comparison between three different altimeter-based surface water level estimates (USDA/NASA GRLM, LEGOS and ESA-DMU) will be presented and products validated with lake level gauge time series for lakes and reservoirs of a variety of sizes and conditions. The availability of satellite-based rainfall (i.e., TRMM and GPCP) and satellite-based lake/reservoir levels offers exciting opportunities to estimate and monitor the hydrologic properties of the lake systems. Here, a simple water balance model is utilized to relate net freshwater flux on a catchment basin to lake/reservoir level. Focused on tropical lakes and reservoirs it allows a comparison of the flux to altimetric lake level estimates. The combined use of model, satellite-based rainfall, evaporation information and reanalysis products, can be used to output water-level hindcasts and seasonal future forecasts. Such a tool is fundamental for understanding present-day and future variations in lake/reservoir levels and enabling a better understand of climatic variations on inter-annual to inter-decadal time-scales. New model-derived water level estimates of lakes and reservoirs, on regional to global scales, would assist communities with interests in climate studies focusing on extreme events, such as floods and droughts, and be important for water resources management.

  20. Predicting high levels of multitasking reduces between-tasks interactions.

    PubMed

    Fischer, Rico; Dreisbach, Gesine

    2015-12-01

    The simultaneous handling of 2 tasks requires shielding of the prioritized primary task (T1) from interference caused by the secondary task (T2) processing. Such interactions between tasks (e.g., between-task interference, or crosstalk) depend on the similarity of both tasks and are especially pronounced when both tasks overlap strongly in time. In the present study we investigated whether between-tasks interference can be reduced when specific items do not predict the level of interference but instead the degree of temporal proximity between both tasks. We implemented an item-specific proportion manipulation of temporal task overlap (stimulus onset asynchrony [SOA]). Selected stimuli of T1 predicted high temporal task overlap (short SOAs) in 80% of trials, whereas other stimuli of T1 predicted low temporal task overlap (long SOAs) in 80% of trials. Results showed that the predictive value of T1 stimuli determined the adjustment of T1 shielding. That is, interference from the secondary task was significantly reduced for items predicting high temporal task overlap compared to items predicting low temporal task overlap. It is important to note that task shielding was not initiated by predicting the actual conflict level (i.e., whether T1 and T2 required compatible/incompatible responses) between tasks but by specific items predicting conditions in which 2 tasks are likely to interact (i.e., short vs. long SOA). These findings offer new insights into the specificity of contextual bottom-up regulations of cognitive control. PMID:26480246

  1. iCOLT: Seasonal prediction of water irrigation need in Emilia-Romagna (Italy)

    NASA Astrophysics Data System (ADS)

    Pavan, Valentina; Villani, Giulia; Spisni, Andrea; Pratizzoli, William; Tomei, Fausto; Botarelli, Lucio; Marletto, Vittorio

    2015-04-01

    Mediterranean regions are frequently exposed to water scarcity and an early assessment of the potential water requirements from summer crops is very important for water management at regional and Reclamation Consortia level. Since 2007, ARPA-SIMC has developed the operational climate service iColt (irrigazione e Classificazione delle cOLture in atto tramite Telerilevamento - irrigation and classification of crops by remote sensing), in order to monitor and predict potential water needs for crop irrigation at different geographical scales. iColt has three components: a) a classification of crops through a set of satellite images acquired at different phenological stages; b) calibrated multi-model ensemble seasonal predictions of climate indices, using as input the EUROSIP products; c) a crop water balance prediction by the model CRITERIA. The climate indices are predicted as input for a weather generator to produce an ensemble of daily meteorological time-series. The meteorological series together with the regional distribution of crops, classified by remote sensing, are used by the water balance and crop development model CRITERIA to assess the crop potential water requirement at geographical level during the following summer. CRITERIA includes an empirical model for computing the shallow water table through spring (observed ) and summer (predicted) meteorological data. The water requirements predictions are verified at the end of summer by forcing the water balance model using the observed meteorological data. The results obtained from 2011 to 2014 are described and show that the operational service has a better skill than the seasonal ensemble prediction products used as input. In all the years, the sign of the irrigation water requirements anomaly has been correctly forecasted. Furthermore, the system has shown to be able to capture the spatial variability of the predicted field. These encouraging results are thought to be due partly to the correct initialization of the shallow water table level, both in time and space, and partly to a good evaluation of the geographical distribution of crop classes with different water needs.

  2. How Temperature and Water levels affect Polar Mesospheric Cloud Formation

    NASA Astrophysics Data System (ADS)

    Smith, L. L.; Randall, C. E.; Harvey, V.

    2012-12-01

    Using the Cloud Imaging and Particle Size (CIPS) instrument data, which is part of the Aeronomy in the Mesosphere (AIM) mission, we compare the albedo and ice water content measurements of CIPS with the Navy Operation Global Atmospheric Prediction System - Advanced Level Phyiscs and High Altitude (NOGAPS-ALPHA) temperature and water vapor data in order to derive a greater understanding of cloud formation and physics. We particularly focus on data from June 2007 and July 2007 in this case study because of particular cloud structures and formations during this time period for future studies.

  3. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltrat...

  4. Development and evaluation of a water level proportional water sampler

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lange, A.; Doppler, T.

    2013-12-01

    We developed and adapted a new type of sampler for time-integrated, water level proportional water quality sampling (e.g. nutrients, contaminants and stable isotopes). Our samplers are designed for sampling small to mid-size streams based on the law of Hagen-Poiseuille, where a capillary (or a valve) limits the sampling aliquot by reducing the air flux out of a submersed plastic (HDPE) sampling container. They are good alternatives to battery-operated automated water samplers when working in remote areas, or at streams that are characterized by pronounced daily discharge variations such as glacier streams. We evaluated our samplers against standard automated water samplers (ISCO 2900 and ISCO 6712) during the snowmelt in the Black Forest and the Alps and tested them in remote glacial catchments in Iceland, Switzerland and Kyrgyzstan. The results clearly showed that our samplers are an adequate tool for time-integrated, water level proportional water sampling at remote test sites, as they do not need batteries, are relatively inexpensive, lightweight, and compact. They are well suited for headwater streams - especially when sampling for stable isotopes - as the sampled water is perfectly protected against evaporation. Moreover, our samplers have a reduced risk of icing in cold environments, as they are installed submersed in water, whereas automated samplers (typically installed outside the stream) may get clogged due to icing of hoses. Based on this study, we find these samplers to be an adequate replacement for automated samplers when time-integrated sampling or solute load estimates are the main monitoring tasks.

  5. Seasonal coastal sea level prediction using a dynamical model

    NASA Astrophysics Data System (ADS)

    McIntosh, Peter C.; Church, John A.; Miles, Elaine R.; Ridgway, Ken; Spillman, Claire M.

    2015-08-01

    Sea level varies on a range of time scales from tidal to decadal and centennial change. To date, little attention has been focussed on the prediction of interannual sea level anomalies. Here we demonstrate that forecasts of coastal sea level anomalies from the dynamical Predictive Ocean Atmosphere Model for Australia (POAMA) have significant skill throughout the equatorial Pacific and along the eastern boundaries of the Pacific and Indian Oceans at lead times out to 8 months. POAMA forecasts for the western Pacific generally have greater skill than persistence, particularly at longer lead times. POAMA also has comparable or greater skill than previously published statistical forecasts from both a Markov model and canonical correlation analysis. Our results indicate the capability of physically based models to address the challenge of providing skillful forecasts of seasonal sea level fluctuations for coastal communities over a broad area and at a range of lead times.

  6. GNSS-Reflectometry based water level monitoring

    NASA Astrophysics Data System (ADS)

    Beckheinrich, Jamila; Schn, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this context, issues related to the stochastic modeling of GPS observations are addressed and a first model is proposed. First results of water level derivation with precisions below decimeter level are presented. These results could then be used as an approximation for the next computation step: the ambiguities fixing.

  7. Statistical model predicts shoreline erosion rates due to sea level rise

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-12-01

    While sea level rise in the face of global warming is a well-acknowledged threat, providing estimates of the local impactthe information needed by planners to develop effective strategies against the rising watershas been difficult. Many attempts treat the global ocean as a giant bathtub, where increased water volume simply rises up and floods the land. Understandably, these approaches fall short of accurately estimating the impact of storms, sea level rise, and human influence on coastlines. The next extension toward an accurate longterm prediction of shoreline change necessarily includes a representation of the dynamic interaction between coastal features and the rising water.

  8. Hydrostatic Water Level Systems At Homestake DUSEL

    NASA Astrophysics Data System (ADS)

    Stetler, L. D.; Volk, J. T.

    2009-12-01

    Two arrays of Fermilab-style hydrostatic water level sensors have been installed in the former Homestake gold mine in Lead, SD, the site of the new Deep Underground Science and Engineering Laboratory (DUSEL). Sensors were constructed at Fermilab from 8.5 cm diameter PVC pipe (housing) that was sealed on the ends and fit with a proximity sensor. The instrument have a height of 10 cm. Two ports in each sensor housing provide for connectivity, the upper port for air and the bottom port for water. Multiple instruments connected in series provide a precise water level and differences in readings between successive sensors provide for ground tilt to be resolved. Sensor resolution is 5 ?m per count and has a range of approximately 1.25 cm. Data output from each sensor is relayed to a Fermilab-constructed readout card that also has temperature/relative humidity and barometric pressure sensors connected. All data are relayed out of the mine by fiber optic cable and can be recorded by Ethernet at remote locations. The current arrays have been installed on the 2000-ft level (610 m) and consist of six instruments in each array. Three sensors were placed in a N-S oriented drift and three in an E-W oriented drift. Using this orientation, it is anticipated that tilt direction may be resolved in addition to overall tilt magnitude. To date the data show passage of earth tides and frequency analysis has revealed five components to this signal, three associated with the semi-diurnal (~12.4 hr) and two with the diurnal (~24.9 hr) tides. Currently, installation methods are being analyzed between concrete pillar and rib-mounting using the existing setup on the 2000-ft level. Using these results, two additional arrays of Fermilab instruments will be installed on the 4550-ft and 4850-ft levels (1387 and 1478 m, respectively). In addition to Fermilab instruments, several high resolution Budker tiltmeters (1 ?m resolution) will be installed in the mine workings in the near future, some correlated to Fermilab instruments (for comparative analysis) and others in independent arrays. All tiltmeter data will be analyzed with water reduction data (currently being collected from the #6 winze as the mine is dewatered) and data from rock stress/fracture experiments to document net ground settling due to dewatering, potential collapse of stope areas and renewed excavation activities.

  9. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    SciTech Connect

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  10. NEWS: Improving Water and Energy Prediction through Integration

    NASA Astrophysics Data System (ADS)

    Belvedere, D. R.; Entin, J.; Houser, P.; Schiffer, R. A.

    2010-12-01

    The water and energy cycle is driven by a multiplicity of complex processes and interactions at all time and space scales, many of which are inadequately understood and poorly represented in model predictions. In addition, many of the components of the global water cycle prediction system are available, but not integrated; yet improved water and energy cycle process understanding and model prediction require inter-disciplinary integration of many traditional disciplines, including atmospheric, terrestrial and ocean scientists, observationalists, modelers and stakeholders, and weather, climate and geologic researchers. In 2003 NASA established the NASA Energy and Water cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. However, recognizing that, the broad objectives of energy and water cycling related climate research extend well beyond the purview of any single agency or program, and call for the support of many activities that are matched to each agency's respective roles and missions. This poster will highlight inter-disciplinary science results made possible through NEWS critical linkages (integration) by the four NEWS working groups listed below, NASA research programs and satellite missions, other agencies, and international efforts. Drought & Flood Extremes: including water and energy aspects of abrupt climate change Evaporation & Latent Heating: including both land and ocean Water and Energy Cycle Climatology: exploiting and influencing evolving observing systems Modeling & Water Cycle Prediction: fostering interaction with the global modeling community

  11. Water levels shape fishing participation in flood-control reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  12. Water Impact Prediction Tool for Recoverable Rockets

    NASA Technical Reports Server (NTRS)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a flight.

  13. The response of mire vegetation to water level drawdown

    NASA Astrophysics Data System (ADS)

    Kurki, Kirsi; Laine, Jukka; Vasander, Harri; Tuittila, Eeva-Stiina

    2010-05-01

    Mires have a significant role in climate change mitigation due to their enormous carbon storage and due to the fluxes of greenhouse gases between ecosystem and the atmosphere. Mire vegetation is controlled by ecohydrology, climate and by the competition of plants on light and nutrients. The water logged conditions create a challenging environment for both vascular plants and bryophytes; therefore majority of plants growing in these habitats are highly specialized. Global warming is predicted to affect mire vegetation indirectly through increased evapotranspiration leading to decreased water table levels down to 14-22 centimeters. Water level drawdown is likely to affect the vegetation composition and consequently the ecosystem functioning of mires. Previous studies covering the first years following water table level drawdown have shown that vascular plants benefit from a lower water table and hollow-specific Sphagnum species suffer. In addition to changes in plant abundances the diversity of plant communities decreases. The lawn and hollow communities of Sphagna and sedges are found to be the most sensitive plant groups. It has been shown that surveys on vegetation changes can have different results depending on the time scale. The short and long term responses are likely vary in heterogenous mire vegetation; therefore predictions can be done more reliably with longer surveys. We applied BACI (before-after-control-impact) experimental approach to study the responses of different functional mire plant groups to water level drawdown. There are 3 control plots, 3 treatment plots with moderate water level drawdown and 3 plots drained for forestry 40 years ago as a reference. The plots are located in meso-, oligo- and ombrotrophic sites in Lakkasuo (Orivesi, Finland). The vegetation was surveyed from permanent sampling points before ditching in 2000 and during the years 2001-2003 and 2009. The data was analyzed with NMDS (PC-Ord) and DCA (CANOCO). Overall results show that the control and treatment plots were similar before the treatment which is crucial in studies conducted with BACI- experimental design. The vegetation composition in the varied between the years also in the control plots following variation in weather conditions, i.e., growing season temperature and precipitation. The year 2003 stood out with lowest water table levels and with highest coverage of the evergreen vascular plants in all plots. By 2009 there was a dramatic decrease in sedge species cover. There seems to be more changes in bryophyte cover in mesotrophic sites than in ombrotrophic ones. Especially lawn-specific Sphagnum responded to water level drawdown. To quantify the impact of water level drawdown for different plant groups we used Principal Response Curves (CANOCO). Results show that all plant groups have a different short and long term response to water level drawdown. The first three years after ditching appeared to be a disturbance state. Only after that the vegetation started to adapt to the lowered water table conditions.

  14. County-Level Crop Yield Prediction Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Wagstaff, K. L.; Roper, A.; Lane, T.

    2007-12-01

    Early estimates of crop yield, particularly at a fine scale, can inform precision agriculture efforts. The USDA National Agricultural Statistics Service (NASS) currently provides estimates of yield on a monthly basis for each state. These estimates are based on phone interviews with farmers and in-situ examination of randomly selected plots. We seek to provide predictions at a much higher spatial resolution, on a more frequent basis, using remote sensing observations. We use publicly available data from the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments on the Aqua and Terra spacecraft. These observations have a spatial resolution of 250 m and consist of two spectral bands (red and infra-red) with a repeat period of 8 days. As part of the HARVIST (Heterogeneous Agricultural Research Via Interactive, Scalable Technology) project, we have created statistical crop yield models using historical MODIS data combined with the per-county yield reported by the USDA at the end of the growing season. In our approach, we analyze 100 randomly selected historical pixels from each county to generate a yield prediction for the county as a whole. We construct a time series for each pixel that consists of its NDVI (Normalized Difference Vegetation Index) value observed during each 8-day time period to date. We then cluster all pixels together to identify groups of distinct elements (different crops, bodies of water, urban areas, desert, etc.) and create a regression model for each one. For each crop of interest, the model that best predicts that crop's historical yield is selected. These models can then be applied to data from subsequent years to generate predictions for the future. We applied this approach to data from California and Kansas for corn and wheat. We found that, in general, the yield prediction error decreased as the harvest time approached. In California, distinctly different models were selected to predict corn and wheat, permitting specialization for each crop type. The best models from 2001 predicted yield for 2002 with a 10% (corn) and 23% (wheat) relative error three months before harvest. In Kansas, the 2001 models for corn and wheat were not well distinguished, providing good predictions for wheat (19% error three months before harvest) but poor predictions for corn (55% error three months before harvest). In post-analysis, we found that the 2001 pixel NDVI time series for Kansas are much more homogeneous than those for California, making it difficult to select crop-specific models. We are currently working on incorporating historical data from additional years, which will provide more diversity and potentially better predictions. We are also in the process of applying this technique to additional crops.

  15. Predicting ground level impacts of solid rocket motor testing

    NASA Technical Reports Server (NTRS)

    Douglas, Willard L.; Eagan, Ellen E.; Kennedy, Carolyn D.; Mccaleb, Rebecca C.

    1993-01-01

    Beginning in August of 1988 and continuing until the present, NASA at Stennis Space Center, Mississippi has conducted environmental monitoring of selected static test firings of the solid rocket motor used on the Space Shuttle. The purpose of the study was to assess the modeling protocol adapted for use in predicting plume behavior for the Advanced Solid Rocket Motor that is to be tested in Mississippi beginning in the mid-1990's. Both motors use an aluminum/ammonium perchlorate fuel that produces HCl and Al2O3 particulates as the major combustion products of concern. A combination of COMBUS.sr and PRISE.sr subroutines and the INPUFF model are used to predict the centerline stabilization height, the maximum concentration of HCl and Al2O3 at ground level, and distance to maximum concentration. Ground studies were conducted to evaluate the ability of the model to make these predictions. The modeling protocol was found to be conservative in the prediction of plume stabilization height and in the concentrations of the two emission products predicted.

  16. PTSD symptoms predict waking salivary cortisol levels in police officers.

    PubMed

    Neylan, Thomas C; Brunet, Alain; Pole, Nnamdi; Best, Suzanne R; Metzler, Thomas J; Yehuda, Rachel; Marmar, Charles R

    2005-05-01

    This study examines whether pre- or post-dexamethasone salivary cortisol is related to cumulative critical incident exposure, peritraumatic responses, or post-traumatic stress disorder (PTSD) symptom severity. Thirty active duty police officers completed the study protocol, which included measures of peritraumatic emotional distress, peritraumatic dissociation, duty-related trauma exposure, and PTSD symptoms. Salivary cortisol was consolidated into three outcome variables: (1) pre-dexamethasone free cortisol levels at 1, 30, 45, and 60 min after awakening, (2) post-dexamethasone cortisol levels at the identical wake times, and (3) percentage of cortisol suppression. Control variables included age, gender, average daily alcohol use, night shift work, routine work environment stressors, and salivary dexamethasone levels. Zero order correlations showed that greater levels of PTSD symptoms, peritraumatic distress, and peritraumatic dissociation were associated with lower levels of pre-dexamethasone cortisol levels on awakening, but were not associated with the other two cortisol variables. A trend was also noted for older subjects to have lower pre-dexamethasone cortisol on awakening. When these four predictors were entered simultaneously in a regression analysis, only age and PTSD symptom severity significantly predicted pre-dexamethasone awakening cortisol levels. These results replicate previous research indicating a relationship between greater PTSD symptoms and lower levels of basal cortisol on awakening, and extend this finding to a previously unstudied non-treatment seeking population, urban police. PMID:15694117

  17. Ground-water levels in observation wells in Oklahoma, 1963-64

    USGS Publications Warehouse

    Wood, P.R.

    1965-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1963-64), is the third of a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period of (1956-60). The second report, published in 1964, contains water-level records for the 2-year period (1961-62.) (available as photostat copy only)

  18. Water nanodroplets: Predictions of five model potentials

    NASA Astrophysics Data System (ADS)

    Kazachenko, Sergey; Thakkar, Ajit J.

    2013-05-01

    Putative global minima for five intermolecular potential energy models are reported for water clusters (H2O)n with n ? 55. The models studied include three empirical, pairwise-additive potential energy surfaces, TIP4P, TIP4P-Ew, and TIP4P/2005, which use fixed point charges and rigid monomers. The other two, TTM2.1-F and AMOEBA, are polarizable, include non-additive inductive effects, have flexible monomers, and were parametrized, at least partially, using ab initio data. The n = 51 cluster has the same structure and is exceptionally stable for all five potentials. A structured inner core can be seen in cage clusters with n > 37. Periplanar rings, branched rings, and coils are among the structural motifs of the inner core.

  19. Water Habitat Study: Prediction Makes It More Meaningful.

    ERIC Educational Resources Information Center

    Glasgow, Dennis R.

    1982-01-01

    Suggests a teaching strategy for water habitat studies to help students make a meaningful connection between physiochemical data (dissolved oxygen content, pH, and water temperature) and biological specimens they collect. Involves constructing a poster and using it to make predictions. Provides sample poster. (DC)

  20. Tampa Bay Water Clarity Model (TBWCM): As a Predictive Tool

    EPA Science Inventory

    The Tampa Bay Water Clarity Model was developed as a predictive tool for estimating the impact of changing nutrient loads on water clarity as measured by secchi depth. The model combines a physical mixing model with an irradiance model and nutrient cycling model. A 10 segment bi...

  1. Predicting 'very poor' beach water quality gradings using classification tree.

    PubMed

    Thoe, Wai; Choi, King Wah; Lee, Joseph Hun-Wei

    2016-02-01

    A beach water quality prediction system has been developed in Hong Kong using multiple linear regression (MLR) models. However, linear models are found to be weak at capturing the infrequent 'very poor' water quality occasions when Escherichia coli (E. coli) concentration exceeds 610 counts/100 mL. This study uses a classification tree to increase the accuracy in predicting the 'very poor' water quality events at three Hong Kong beaches affected either by non-point source or point source pollution. Binary-output classification trees (to predict whether E. coli concentration exceeds 610 counts/100 mL) are developed over the periods before and after the implementation of the Harbour Area Treatment Scheme, when systematic changes in water quality were observed. Results show that classification trees can capture more 'very poor' events in both periods when compared to the corresponding linear models, with an increase in correct positives by an average of 20%. Classification trees are also developed at two beaches to predict the four-category Beach Water Quality Indices. They perform worse than the binary tree and give excessive false alarms of 'very poor' events. Finally, a combined modelling approach using both MLR model and classification tree is proposed to enhance the beach water quality prediction system for Hong Kong. PMID:26837834

  2. Ground-water levels in observation wells in Oklahoma, 1961-62

    USGS Publications Warehouse

    Wood, P.R.; Moeller, M.D.

    1964-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; and (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1960-62), is the second of a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period of (1956-60). (available as photostat copy only)

  3. Seasonal Predictability of Water Scarcity at the Global Scale

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Winsemius, Hessel; Dutra, Emanuel; Beckers, Joost; Brolsma, Reinder; van Beek, Rens; Pappenberger, Florian; Westerhoff, Rogier; Bierkens, Marc

    2013-04-01

    Timely indication of water scarcity is most important for early mitigation of serious water and food shortages across the globe. Within the EU FP7 GLOWASIS project a pre-validated GMES Global Service for Water Scarcity Information has been set up and tested. The service uses the global hydrological model PCR-GLOBWB to compute water fluxes and establishes monthly water scarcity by combining the outputs from PCR-GLOBWB with a number of water demands. The service has been set up in the forecast shell Delft-FEWS. In this contribution, we evaluate the skill of the system across the globe in terms of forecasting a number of drought and water scarcity related indicators such as the water scarcity index, river discharge, soil moisture content and actual evaporation. First, we test how much skill is gained from memory by comparing skill from an Ensermble Streamflow Prediction (ESP) and reverse ESP (revESP) experiment using ERAInterim precipitation (GPCP corrected), temperature and Penman Monteith potential evaporation. From these experiments, critical lead times are derived for water scarcity, discharge and other hydrologic variables indicating the relative importance of initial condition versus meteorological forcing (at 0.5 degree resolution). Subsequently, from a seasonal hydrological hindcast of 30 years (1981-2010) the added value of ECMWF seasonal forecasts (with and without bias correction) over climatological forecasts (e.g. ESP) is evaluated by looking qualitatively at the 'actual skill' of the water scarcity forecasts for individual water scarcity/drought events over the globe. The first analyses show that predictability of water scarcity is highly variable across the globe (per season and location). In some areas water scarcity is predictable at least up to three month lead time.

  4. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions, flood potential and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of water variability over the 20th century, which forms the background climatology to which current conditions can be assessed. Future changes in water availability and drought risk are quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. For regions with lack of on-the-ground data we are field-testing low-cost environmental sensors and along with new satellite products for terrestrial hydrology and vegetation, integrating these into the system for improved monitoring and prediction. We provide an overview of the system and some examples of real-world applications to flood and drought events, with a focus on Africa.

  5. Ground-water levels in Anchorage, Alaska, 1985

    USGS Publications Warehouse

    Glass, R.L.

    1987-01-01

    Water-level data collected during 1985 for 146 Anchorage wells deeper than 40 feet are presented. Hydrographs of water levels in 20 wells for the period 1970 through 1985 are also given. The report describes groundwater conditions and seasonal fluctuations in water levels, and includes pumpage figures and well-construction data. (USGS)

  6. County Level Assessment of Impaired Waters and Gastrointestinal Infections

    EPA Science Inventory

    Water quality data are measured at a watershed level and health data are organized at different levels of aggregation therefore, assessing the population-level impact of water quality on health can be difficult. To address this discrepancy and enable the consideration of water ...

  7. Recent and late quaternary changes in water level

    NASA Technical Reports Server (NTRS)

    Walcott, R. I.

    1975-01-01

    Water level changes of both the Great Lakes and the sea are described along with methods of analyzing water level data. The influence of elastic deformation of the earth and viscosity is discussed. Causes of water level changes reviewed include: earth movements, geoid changes, storm surges or meteorological phenomena, and melting ice in Antarctica, Greenland, and the mountain glaciers.

  8. Predicting impacts from water conservation and energy development on the Salton Sea, California

    SciTech Connect

    Kratzer, C.R.; Dritschilo, W.; Hannah, L.J.; Broutman, M.A.

    1985-08-01

    An input-output model was developed to predict changes in Salton Sea salinity and water level until the year 2000 due to proposed water conservation efforts and geothermal and solar pond energy developments. The model SALINP provided good agreement with the observed salinities for 1960-80. While SALINP was not overly sensitive to one-year changes in any of the major inputs, a change in the historical means of the Imperial Valley runoff and evaporative loss inputs produced a significant effect on future predictions. The proposed water conservation measures caused the predicted Salton Sea salinity for 2000 to greatly exceed 40,000 ppm, the level at which adverse effects to wildlife are believed to occur. The possible geothermal development also produced predicted salinities considerably above 40,000 ppm. The salinity predictions for solar ponds by themselves and in conjunction with geothermal development were below 45,000 ppm for 2000. The solar pond and geothermal combination also resulted in a predicted lowering of the natural water level by 5 to 7 feet by 2000.

  9. Predictive modelling of the mine water rebound in an old abandoned Dongwon mine in Korea

    NASA Astrophysics Data System (ADS)

    Baek, Hwanjo; Kim, Daehoon; Park, Seunghwan; Kim, Gyoungman

    2014-05-01

    The closure of over three-hundred deep coal mines in Korea since the late-1980s, primarily due to the energy and environmental concerns, has produced significant side effects. One of the major challenges is to assess the risk from mine water rebound to overlying aquifers and surface waters, which can produce significant environmental hazards. Some numerical models such as VSS-NET, GRAM and MODFLOW have been developed to predict the quantity, timing and location of discharges resulting from mine water rebound. In this study, we developed a GRAM-based windows program for mine water rebound modelling in abandoned deep mine systems. The program consists of the simulation engine and the GUI modules, each has several subroutines. Changes in mine water level of the Dongwon coal mine, presumably hydrogeologically connected to nearby old abandoned mines, has been monitored after the mine was finally closed in 2005. The water level in the vertical shaft rised up to 420m during the period of 3 years. The system was modelled as two ponds connected by a pipe. Input data include the areas of each pond, catchment areas, the storage coefficient, etc. The predicted changes in the mine water level was very similar to the observed data in the field. For this modelling, in fact, some of the input variable were roughly assumed to match the field data. Nevertheless, this program can be effectively applied to predict the rising of the mine water after the mine closure.

  10. Ground-water levels in observation wells in Oklahoma, 1969-70

    USGS Publications Warehouse

    Moore, R.L.

    1972-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. In addition to the water-supply papers, the U.S. Geological Survey, cooperation with the Oklahoma Water Resources Board, has published the following informal reports on water levels in Oklahoma. Ground-water levels in observations wells in Oklahoma, 1956-60 Ground-water levels in observations wells in Oklahoma, 1961-62 Ground-water levels in observations wells in Oklahoma, 1963-64 Ground-water levels in observations wells in Oklahoma, 1965-66 Ground-water levels in observations wells in Oklahoma, 1967-68 Records of water-level measurements in wells in the Oklahoma Panhandle, 1966-70 Records of water-level measurements in wells in the Oklahoma Panhandle, 1971-72 The basic observation-well network in Oklahoma during the period 1969-70 included the following counties: Alfalfa, Beaver, Beckham, Caddo, Cimarron, Cleveland, Garfield, Garvin, Grady, Greer, Harmon, Jackson, Kingfisher, LeFlore, Major, Muskogee, Oklahoma, Payne, Pontotoc, Rogers, Sequoyah, Texas, Tillman, Wagoner, Washita, and Woodward. Table 2 includes the basic observation-well network and other wells measured by the U.S. Geological Survey. The data in this report were compiled and prepared for publication under the cooperative agreement for ground-water investigations in Oklahoma between the Oklahoma Water Resources Board, the U.S. Army Corps of Engineers, the Oklahoma Geological Survey, and the U.S. Geological Survey.

  11. Analytical approach for determining the mean water level profile in an estuary with substantial fresh water discharge

    NASA Astrophysics Data System (ADS)

    Cai, H.; Savenije, H. H. G.; Jiang, C.; Zhao, L.; Yang, Q.

    2015-08-01

    Although modestly, the mean water level in estuaries rises in landward direction induced by a combination of the salinity gradient, the tidal asymmetry, and the backwater effect. The water level slope is increased by the fresh water discharge. However, the interactions between tide and river flow and their individual contributions to the rise of the mean water level along the estuary are not yet completely understood. In this study, we adopt an analytical approach to describe the tidal wave propagation under the influence of fresh water discharge, in which the friction term is approximated by a Chebyshev polynomials approach. The analytical model is used to quantify the contributions made by tide, river, and tide-river interaction to the water level slope along the estuary. Subsequently, the method is applied to the Yangtze estuary under a wide range of river discharge conditions and the influence of tidal amplitude and fresh water discharge on the longitudinal variation of mean water level is explored. The proposed method is particularly useful for accurately predicting water levels and the frequency of extreme high water, relevant for water management and flood control.

  12. Prediction of final error level in learning and repetitive control

    NASA Astrophysics Data System (ADS)

    Levoci, Peter A.

    Repetitive control (RC) is a field that creates controllers to eliminate the effects of periodic disturbances on a feedback control system. The methods have applications in spacecraft problems, to isolate fine pointing equipment from periodic vibration disturbances such as slight imbalances in momentum wheels or cryogenic pumps. A closely related field of control design is iterative learning control (ILC) which aims to eliminate tracking error in a task that repeats, each time starting from the same initial condition. Experiments done on a robot at NASA Langley Research Center showed that the final error levels produced by different candidate repetitive and learning controllers can be very different, even when each controller is analytically proven to converge to zero error in the deterministic case. Real world plant and measurement noise and quantization noise (from analog to digital and digital to analog converters) in these control methods are acted on as if they were error sources that will repeat and should be cancelled, which implies that the algorithms amplify such errors. Methods are developed that predict the final error levels of general first order ILC, of higher order ILC including current cycle learning, and of general RC, in the presence of noise, using frequency response methods. The method involves much less computation than the corresponding time domain approach that involves large matrices. The time domain approach was previously developed for ILC and handles a certain class of ILC methods. Here methods are created to include zero-phase filtering that is very important in creating practical designs. Also, time domain methods are developed for higher order ILC and for repetitive control. Since RC and ILC must be implemented digitally, all of these methods predict final error levels at the sample times. It is shown here that RC can easily converge to small error levels between sample times, but that ILC in most applications will have large and diverging intersample error if in fact zero error is reached at the sample times. This is independent of the ILC law used, and is purely a property of the physical system. Methods are developed to address this issue.

  13. Neural networks for predicting chilled water demand in buildings

    SciTech Connect

    Hittle, D.C.; Flocken, P.A.; Anderson, C.W.

    1996-12-31

    A neural network was designed, trained, and tested to predict chilled water demands. The input data to the neural network included temperature, wet bulb temperature, 24 hours of past loads, a day-of-the-week indicator, an hour-of-the-day indicator, and a holiday indicator. A two-layer network was used to predict the chilled water demand for the current hour plus 23 hours into the future. Therefore, the output of the neutral network consisted of 24 outputs, each representing a chilled water demand forecast. A hidden layer was used in the neural network consisting of 20 hidden units. A variety of network configurations were tested, as were learning algorithms, learning rates, and network threshold types (unipolar, bipolar or linear). The coefficient of determination, R2, measured how well the network predicted into the future. In general, the network training was smooth and the resulting network predicted the future chilled water demand with a coefficient of determination greater than 0.9, even for 24-hour ahead forecasts. This paper discusses the network design training protocol and results of the performance of the network on test data.

  14. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillsl...

  15. Predicting Effects of Water Regime Changes on Waterbirds: Insights from Staging Swans.

    PubMed

    Nolet, Bart A; Gyimesi, Abel; van Krimpen, Roderick R D; de Boer, Willem F; Stillman, Richard A

    2016-01-01

    Predicting the environmental impact of a proposed development is notoriously difficult, especially when future conditions fall outside the current range of conditions. Individual-based approaches have been developed and applied to predict the impact of environmental changes on wintering and staging coastal bird populations. How many birds make use of staging sites is mostly determined by food availability and accessibility, which in the case of many waterbirds in turn is affected by water level. Many water systems are regulated and water levels are maintained at target levels, set by management authorities. We used an individual-based modelling framework (MORPH) to analyse how different target water levels affect the number of migratory Bewick's swans Cygnus columbianus bewickii staging at a shallow freshwater lake (Lauwersmeer, the Netherlands) in autumn. As an emerging property of the model, we found strong non-linear responses of swan usage to changes in water level, with a sudden drop in peak numbers as well as bird-days with a 0.20 m rise above the current target water level. Such strong non-linear responses are probably common and should be taken into account in environmental impact assessments. PMID:26862895

  16. Predicting Effects of Water Regime Changes on Waterbirds: Insights from Staging Swans

    PubMed Central

    Nolet, Bart A.; Gyimesi, Abel; van Krimpen, Roderick R. D.; de Boer, Willem F.; Stillman, Richard A.

    2016-01-01

    Predicting the environmental impact of a proposed development is notoriously difficult, especially when future conditions fall outside the current range of conditions. Individual-based approaches have been developed and applied to predict the impact of environmental changes on wintering and staging coastal bird populations. How many birds make use of staging sites is mostly determined by food availability and accessibility, which in the case of many waterbirds in turn is affected by water level. Many water systems are regulated and water levels are maintained at target levels, set by management authorities. We used an individual-based modelling framework (MORPH) to analyse how different target water levels affect the number of migratory Bewick’s swans Cygnus columbianus bewickii staging at a shallow freshwater lake (Lauwersmeer, the Netherlands) in autumn. As an emerging property of the model, we found strong non-linear responses of swan usage to changes in water level, with a sudden drop in peak numbers as well as bird-days with a 0.20 m rise above the current target water level. Such strong non-linear responses are probably common and should be taken into account in environmental impact assessments. PMID:26862895

  17. Predicting stream water quality using artificial neural networks (ANN)

    SciTech Connect

    Bowers, J.A.

    2000-05-17

    Predicting point and nonpoint source runoff of dissolved and suspended materials into their receiving streams is important to protecting water quality and traditionally has been modeled using deterministic or statistical methods. The purpose of this study was to predict water quality in small streams using an Artificial Neural Network (ANN). The selected input variables were local precipitation, stream flow rates and turbidity for the initial prediction of suspended solids in the stream. A single hidden-layer feedforward neural network using backpropagation learning algorithms was developed with a detailed analysis of model design of those factors affecting successful implementation of the model. All features of a feedforward neural model were investigated including training set creation, number and layers of neurons, neural activation functions, and backpropagation algorithms. Least-squares regression was used to compare model predictions with test data sets. Most of the model configurations offered excellent predictive capabilities. Using either the logistic or the hyperbolic tangent neural activation function did not significantly affect predicted results. This was also true for the two learning algorithms tested, the Levenberg-Marquardt and Polak-Ribiere conjugate-gradient descent methods. The most important step during model development and training was the representative selection of data records for training of the model.

  18. Variation in the sensitivity of predicted levels of atmospheric organic particulate matter (OPM).

    PubMed

    Pankow, James F; Chang, Elsa I

    2008-10-01

    This study examines the sensitivity in predicted levels of atmospheric organic particulate matter (M(o), microg m(-3)) to changes in the governing gas/particle partitioning constants and the tau(I) (levels of condensable organic compounds, microg m(-3)). M(o) is given by the difference between sigma tau(i) and the corresponding sum for the gas-phase levels. It is demonstrated that the sensitivity in predicted M(o) levels increases rapidly as M(o) becomes very small relative to sigma tau(i): as the tau(i), decrease, the gas phase becomes increasingly capable of holding the majority of all tau(i) and small changes in system parameters can cause large relative changes in M(o). These effects are illustrated using predictions for two values of the reacted hydrocarbon concentration (deltaHC) for each of three secondary organic aerosol systems for relative humidity (RH) = 20-80%. Specific structures for the oxidation products allows consideration of the effects of varying activity coefficients and water uptake. At low M(o)/sigma tau(i) (as may be found in the atmosphere away from sources and at warm temperatures), relatively small errors in model input parameters (e.g., vapor pressures, vaporization enthalpies, activity coefficient parameters, and the tau(i) values for low volatility compounds) will be amplified into large errors in the predicted M(o) values. PMID:18939565

  19. Drought-trigger ground-water levels and analysis of historical water-level trends in Chester County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    1996-01-01

    The Chester County observation-well network was established in 1973 through a cooperative agreement between the Chester County Water Resources Authority (CCWRA) and the U.S. Geological Survey. The network was established to monitor local ground-water levels, to determine drought conditions, and to monitor ground-water-level trends. Drought-warning and drought-emergency water-level triggers were determined for 20 of the 23 wells in the Chester County observation-well network. A statistical test to determine either rising or declining water-level trends was performed on data for all wells in the network. Water-level data from both of these wells showed a rising trend. A decrease in ground-water pumping in the area near these wells was probably the reason for the rise in water levels.

  20. Water levels in the Yucca Mountain area, Nevada, 1993

    SciTech Connect

    Tucci, P.; Goemaat, R.L.; Burkhardt, D.J.

    1996-07-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1993. Seventeen wells were monitored periodically, generally on a monthly basis, and 11 wells representing 18 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,034 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1993. Water levels were an average of about 0.04 meter lower than 1992 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data.

  1. Ground-water levels in observation wells in Oklahoma, 1967-68

    USGS Publications Warehouse

    Bingham, R.H.

    1969-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1967-68), is the fifth in a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 2-year period of (1961-62); the second report, published in 1964, contains water-level records for the 2-year period (1961-62); the third report, published in 1965, contains water-level records for the 2-year period (1963-64); and the fourth report contains water-level records for the 2-year period (1965-66).

  2. Ensemble streamflow prediction adjustment for upstream water use and regulation

    NASA Astrophysics Data System (ADS)

    Georgakakos, Aris P.; Yao, Huaming; Georgakakos, Konstantine P.

    2014-11-01

    Hydrologic model forecasts are commonly biased in watersheds where water use and regulation activities cause flow alterations. Furthermore, direct accounting of such biases in forecast preparation is impractical as the information required is extensive and usually unavailable. This article introduces a new method to characterize the aggregate flow alteration biases and associated uncertainty in watersheds with important but largely undocumented water use and regulation activities. It also uses these assessments to adjust the ensemble streamflow predictions at downstream locations. The method includes procedures to (a) detect the presence of significant upstream regulation and water use influences; (b) correct the ensemble streamflow predictions and associated uncertainty for any biases in periods when such influences are detectable; and (c) assess the adjusted forecast reliability improvements. Applications in three watersheds of the American River in California demonstrate that the new method leads to significant forecast skill improvements and is also readily applicable to other regions.

  3. Predicting Salmonella Populations from Biological, Chemical, and Physical Indicators in Florida Surface Waters

    PubMed Central

    McEgan, Rachel; Mootian, Gabriel; Goodridge, Lawrence D.; Schaffner, Donald W.

    2013-01-01

    Coliforms, Escherichia coli, and various physicochemical water characteristics have been suggested as indicators of microbial water quality or index organisms for pathogen populations. The relationship between the presence and/or concentration of Salmonella and biological, physical, or chemical indicators in Central Florida surface water samples over 12 consecutive months was explored. Samples were taken monthly for 12 months from 18 locations throughout Central Florida (n = 202). Air and water temperature, pH, oxidation-reduction potential (ORP), turbidity, and conductivity were measured. Weather data were obtained from nearby weather stations. Aerobic plate counts and most probable numbers (MPN) for Salmonella, E. coli, and coliforms were performed. Weak linear relationships existed between biological indicators (E. coli/coliforms) and Salmonella levels (R2 < 0.1) and between physicochemical indicators and Salmonella levels (R2 < 0.1). The average rainfall (previous day, week, and month) before sampling did not correlate well with bacterial levels. Logistic regression analysis showed that E. coli concentration can predict the probability of enumerating selected Salmonella levels. The lack of good correlations between biological indicators and Salmonella levels and between physicochemical indicators and Salmonella levels shows that the relationship between pathogens and indicators is complex. However, Escherichia coli provides a reasonable way to predict Salmonella levels in Central Florida surface water through logistic regression. PMID:23624476

  4. Weather and Prey Predict Mammals' Visitation to Water.

    PubMed

    Harris, Grant; Sanderson, James G; Erz, Jon; Lehnen, Sarah E; Butler, Matthew J

    2015-01-01

    Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs. PMID:26560518

  5. Weather and Prey Predict Mammals’ Visitation to Water

    PubMed Central

    Harris, Grant; Sanderson, James G.; Erz, Jon; Lehnen, Sarah E.; Butler, Matthew J.

    2015-01-01

    Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs. PMID:26560518

  6. A multivariate linear regression model for predicting children's blood lead levels based on soil lead levels: A study at four Superfund sites

    SciTech Connect

    Lewin, M.D.; Sarasua, S.; Jones, P.A. . Div. of Health Studies)

    1999-07-01

    For the purpose of examining the association between blood lead levels and household-specific soil lead levels, the authors used a multivariate linear regression model to find a slope factor relating soil lead levels to blood lead levels. They used previously collected data from the Agency for Toxic Substances and Disease Registry's (ATSDR's) multisite lead and cadmium study. The data included in the blood lead measurements of 1,015 children aged 6--71 months, and corresponding household-specific environmental samples. The environmental samples included lead in soil, house dust, interior paint, and tap water. After adjusting for income, education or the parents, presence of a smoker in the household, sex, and dust lead, and using a double log transformation, they found a slope factor of 0.1388 with a 95% confidence interval of 0.09--0.19 for the dose-response relationship between the natural log of the soil lead level and the natural log of the blood lead level. The predicted blood lead level corresponding to a soil lead level of 500 mg/kg was 5.99 [micro]g/kg with a 95% prediction interval of 2.08--17.29. Predicted values and their corresponding prediction intervals varied by covariate level. The model shows that increased soil lead level is associated with elevated blood leads in children, but that predictions based on this regression model are subject to high levels of uncertainty and variability.

  7. 26. Mechanical float gages used to monitor level of water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Mechanical float gages used to monitor level of water in the filtration bed reservoir. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  8. Predicting Risk from Radon in Source Waters from Water Quality Parameters

    EPA Science Inventory

    Overall, 47 groundwater samples were collected from 45 small community water systems (CWSs) and analyzed for radon and other water quality constituents. In general, groundwater from unconsolidated deposits and sedimentary rocks had lower average radon levels (ranging from 223 to...

  9. Ground-water levels in observation wells in Oklahoma, 1965-66

    USGS Publications Warehouse

    Hart, D.L., Jr.

    1967-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1965-66), is the fourth in a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 2-year period of (1961-62); the second report, published in 1964, contains water-level records for the 2-year period (1961-62); and the third report, published in 1965, contains water-level records for the 2-year period (1963-64). (available as photostat copy only)

  10. Assessing the effect of different river water level interpolation schemes on modeled groundwater residence times

    NASA Astrophysics Data System (ADS)

    Diem, Samuel; Renard, Philippe; Schirmer, Mario

    2014-03-01

    Obtaining a quantitative understanding of river-groundwater interactions is of high practical relevance, for instance within the context of riverbank filtration and river restoration. Modeling interactions between river and groundwater requires knowledge of the river's spatiotemporal water level distribution. The dynamic nature of riverbed morphology in restored river reaches might result in complex river water level distributions, including disconnected river branches, nonlinear longitudinal water level profiles and morphologically induced lateral water level gradients. Recently, two new methods were proposed to accurately and efficiently capture 2D water level distributions of dynamic rivers. In this study, we assessed the predictive capability of these methods with respect to simulated groundwater residence times. Both methods were used to generate surface water level distributions of a 1.2 km long partly restored river reach of the Thur River in northeastern Switzerland. We then assigned these water level distributions as boundary conditions to a 3D steady-state groundwater flow and transport model. When applying either of the new methods, the calibration-constrained groundwater flow field accurately predicted the spatial distribution of groundwater residence times; deviations were within a range of 30% when compared to residence times obtained using a reference method. We further tested the sensitivity of the simulated groundwater residence times to a simplified river water level distribution. The negligence of lateral river water level gradients of 20-30 cm on a length of 200 m caused errors of 40-80% in the calibration-constrained groundwater residence time distribution compared to results that included lateral water level gradients. The additional assumption of a linear water level distribution in longitudinal river direction led to deviations from the complete river water level distribution of up to 50 cm, which caused wide-spread errors in simulated groundwater residence times of 200-500%. For an accurate simulation of groundwater residence times, it is therefore imperative that the longitudinal water level distribution is correctly captured and described. Based on the confirmed predictive capability of the new methods to estimate 2D river water level distributions, we can recommend their application to future studies that model dynamic river-groundwater systems.

  11. Predicting tree water use and drought tolerance from leaf traits in the Los Angeles urban ecosystem

    NASA Astrophysics Data System (ADS)

    John, G. P.; Scoffoni, C.; Sack, L.

    2013-12-01

    Urban green space provides a suite of valuable ecosystem services. In semiarid systems, like Los Angeles, trees rely primarily on irrigation water for transpiration. Managers may need to reduce irrigation associated with urban trees given climate change, urban expansion, and the steady decrease in available freshwater. While leaf and whole plant water relations have been extensively studied, we are only now gaining a detailed understanding of diverse leaf anatomical designs, and their use for predicting physiology and water use at landscape scale. For 50 diverse urban species, we quantified leaf anatomical and physiological traits important to tree drought tolerance and water use efficiency including turgor loss point, vein architecture, cellular anatomy, leaf mass per unit area, and petiole and leaf dimensions. We hypothesized detailed relationships to develop models relating leaf functional traits to tree water relations. These models provide key insights regarding the role of anatomical designs in leaf stress tolerance and water use efficiency. Additionally we predicted how traits measured at the leaf level would scale with existing data for individuals at the whole plant level. We tested our predictions by determining correlations between leaf level anatomical traits and drought tolerance. Additionally, we determined correlations between functional traits, physiology and water use, and the climate of origin for the urban species. Leaf level measurements will be valuable for rapid estimation of more difficult to measure whole plant water relations traits important at the landscape scale. The Los Angeles urban ecosystem can serve as a model for other semiarid system and provide more informed system wide water conservation strategies.

  12. Neural Affective Mechanisms Predict Market-Level Microlending.

    PubMed

    Genevsky, Alexander; Knutson, Brian

    2015-09-01

    Humans sometimes share with others whom they may never meet or know, in violation of the dictates of pure self-interest. Research has not established which neuropsychological mechanisms support lending decisions, nor whether their influence extends to markets involving significant financial incentives. In two studies, we found that neural affective mechanisms influence the success of requests for microloans. In a large Internet database of microloan requests (N = 13,500), we found that positive affective features of photographs promoted the success of those requests. We then established that neural activity (i.e., in the nucleus accumbens) and self-reported positive arousal in a neuroimaging sample (N = 28) predicted the success of loan requests on the Internet, above and beyond the effects of the neuroimaging sample's own choices (i.e., to lend or not). These findings suggest that elicitation of positive arousal can promote the success of loan requests, both in the laboratory and on the Internet. They also highlight affective neuroscience's potential to probe neuropsychological mechanisms that drive microlending, enhance the effectiveness of loan requests, and forecast market-level behavior. PMID:26187248

  13. Neural Affective Mechanisms Predict Market-Level Microlending

    PubMed Central

    Genevsky, Alexander; Knutson, Brian

    2015-01-01

    Humans sometimes share with others whom they may never meet or know, in violation of the dictates of pure self-interest. Research has not established which neuropsychological mechanisms support lending decisions, nor whether their influence extends to markets involving significant financial incentives. In two studies, we found that neural affective mechanisms influence the success of requests for microloans. In a large Internet database of microloan requests (N = 13,500), we found that positive affective features of photographs promoted the success of those requests. We then established that neural activity (i.e., in the nucleus accumbens) and self-reported positive arousal in a neuroimaging sample (N = 28) predicted the success of loan requests on the Internet, above and beyond the effects of the neuroimaging sample’s own choices (i.e., to lend or not). These findings suggest that elicitation of positive arousal can promote the success of loan requests, both in the laboratory and on the Internet. They also highlight affective neuroscience’s potential to probe neuropsychological mechanisms that drive microlending, enhance the effectiveness of loan requests, and forecast market-level behavior. PMID:26187248

  14. Predicting and mapping soil available water capacity in Korea

    PubMed Central

    Hong, Suk Young; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at −10 and −1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at −10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils. PMID:23646290

  15. PERSPECTIVE FROM WATER LEVEL, SOUTHEAST BY 165 DEGREES. Wright's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE FROM WATER LEVEL, SOUTHEAST BY 165 DEGREES. - Wright's Bridge, Spanning Sugar River, former Boston & Maine Railroad (originally Concord & Claremont Railroad), Claremont, Sullivan County, NH

  16. Water levels in the Yucca Mountain area, Nevada, 1995

    SciTech Connect

    Graves, R.P.; Goemaat, R.L.

    1998-09-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1995. Seventeen wells representing 18 depth intervals were monitored periodically, generally on a monthly basis, 2 wells representing 3 depth intervals were monitored hourly, and 9 wells representing 15 depth intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and/or pressure transducers. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1995. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1995. Mean water level altitudes were only an average of about 0.01 meters higher than 1994 mean water level altitudes. A single-well aquifer test was conducted on well UE-25 WT{number_sign}12 during August and September 1995. Well USW 0-2 was also pumped during October and November 1995, in preparation for single-well aquifer test at that well. All data were acquired in accordance with a quality-assurance program to support the reliability of the data.

  17. Water levels in the Yucca Mountain area, Nevada, 1994

    SciTech Connect

    Graves, R.P.; Tucci, P.; Goemaat, R.L.

    1996-12-31

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1994. Twelve wells representing 13 intervals were monitored periodically, generally on a monthly basis, 6 wells representing 10 intervals were monitored hourly, and 10 wells representing 13 intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks, except one, that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and pressure transducers. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1994. The mean-annual water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1994. Water levels were only an average of about 0.01 meters lower than 1993 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data.

  18. Water hammer prediction and control: the Green's function method

    NASA Astrophysics Data System (ADS)

    Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi

    2012-04-01

    By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.

  19. Impact of Plumbing Age on Copper Levels in Drinking Water

    EPA Science Inventory

    Theory and limited practical experiences suggest that higher copper levels in drinking water tap samples are typically associated with newer plumbing systems, and levels decrease with increasing plumbing age. Past researchers have developed a conceptual model to explain the agin...

  20. Prediction of the safety level to an installation of the tritium process through predictive maintenance

    SciTech Connect

    Anghel, V.

    2008-07-15

    The safety level for personnel and environment to a nuclear installation is given in generally by the technological process quality of operation and maintenance and in particular by a lot of technical, technological, economic and human factors. The maintenance role is fundamental because it has to quantify all the technical, economic and human elements as an integrated system for it creates an important feedback for activities concerning the life cycle of the nuclear installation. In maintenance activities as in any dynamic area, new elements appear continuously which, sometimes require new approaches. The theory of fuzzy logic and the software LabVIEW supplied to the Nuclear Detritiation Plant (NDP) is part of National Research and Development Inst. for Cryogenics and Isotopic Technologies-ICIT, Rm.Valcea, used for predictive maintenance to assure safety operation. The final aim is to achieve the best practices for maintenance of the Plant that processes tritium. (authors)

  1. A siphon gage for monitoring surface-water levels

    USGS Publications Warehouse

    McCobb, T.D.; LeBlanc, D.R.; Socolow, R.S.

    1999-01-01

    A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.

  2. Measuring Water Levels in the Eastern Snake River Plain Aquifer

    USGS Multimedia Gallery

    USGS hydrologic technician Jayson Blom collects a water-level measurement at a monitoring well on the U.S. Department of Energy's Idaho National Laboratory site. During the summer of 2014, water levels measured at the site reached all-time lows....

  3. Evaluating a microbial water quality prediction model for beach management under the revised EU Bathing Water Directive.

    PubMed

    Bedri, Zeinab; Corkery, Aisling; O'Sullivan, John J; Deering, Louise A; Demeter, Katalin; Meijer, Wim G; O'Hare, Gregory; Masterson, Bartholomew

    2016-02-01

    The revised Bathing Water Directive (2006/7/EC) requires EU member states to minimise the risk to public health from faecal pollution at bathing waters through improved monitoring and management approaches. While increasingly sophisticated measurement methods (such as microbial source tracking) assist in the management of bathing water resources, the use of deterministic predictive models for this purpose, while having the potential to provide decision making support, remains less common. This study explores an integrated, deterministic catchment-coastal hydro-environmental model as a decision-making tool for beach management which, based on advance predictions of bathing water quality, can inform beach managers on appropriate management actions (to prohibit bathing or advise the public not to bathe) in the event of a poor water quality forecast. The model provides a 'moving window' five-day forecast of Escherichia coli levels at a bathing water compliance point off the Irish coast and the accuracy of bathing water management decisions were investigated for model predictions under two scenarios over the period from the 11th August to the 5th September, 2012. Decisions for Scenario 1 were based on model predictions where rainfall forecasts from a meteorological source (www.yr.no) were used to drive the rainfall-runoff processes in the catchment component of the model, and for Scenario 2, were based on predictions that were improved by incorporating real-time rainfall data from a sensor network within the catchment into the forecasted meteorological input data. The accuracy of the model in the decision-making process was assessed using the contingency table and its metrics. The predictive model gave reasonable outputs to support appropriate decision making for public health protection. Scenario 1 provided real-time predictions that, on 77% of instances during the study period where both predicted and E. coli concentrations were available, would correctly inform a beach manager to either take action to mitigate for poor bathing water quality or take no action. However, Scenario 1 also provided data to support a decision to take action (when none was necessary - a type I error) in 4% of instances and to take no action (when action was required - a type II error) in 19% of the instances analysed. Type II errors are critical in terms of public health protection given that for this error, bathers can be exposed to risks from poor bathing water quality. Scenario 2, on the other hand, provided predictions that would support correct management actions for 79% of the instances but would result in type I and type II errors for 4% and 17% of the instances respectively. Comparison of Scenarios 1 and 2 for this study indicate that Scenario 2 gave a marginally better overall performance in terms of supporting correct management decisions, as it provided data that could result in a lower occurrence of the more critical type II errors. Given that the 28 member states of the European Union are required to engage with the public health provisions of the revised Bathing Water Directive, issues of compliance, pertaining particularly to the management of bathing water resources, remain topical. Decision supports for managing bathing waters in the context of the Directive are likely to become the focus of much attention and although, the current study has been validated in bathing waters off the east coast of Ireland, the approach of using a deterministic and integrated catchment-coastal model for such purposes is easily transferable to other bathing water jurisdictions. PMID:26613350

  4. Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles

    NASA Astrophysics Data System (ADS)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2012-04-01

    Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A genetic algorithm based model (Shuffled Complex Evolution-UA; SCE-UA) is also being developed to provide estimates of the predictions and parameters uncertainties and to compare against the linear regression models. Ultimately, models will be selected to undertake predictions for a range of climate change and landscape scenarios. Finally, project results will contribute to a better understanding of water demand to help predict future water use and implement targeted landscaping conservation programs to maintain sustainable water needs for a growing population under uncertain climate variability.

  5. Striatal volume predicts level of video game skill acquisition.

    PubMed

    Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Prakash, Ruchika S; Voss, Michelle W; Graybiel, Ann M; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F

    2010-11-01

    Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks. PMID:20089946

  6. Predictive control of water distribution in the Dutch National Hydrological Instrument (NHI)

    NASA Astrophysics Data System (ADS)

    Talsma, J.; Patzke, S.; Becker, B. P. J.; Schwanenberg, D.; Jansen, M.

    2012-04-01

    In the Netherlands, water is extracted from rivers, lakes and canals for drinking water supply as well as industrial, agricultural and environmental water demands. These water extractions must be managed in such a way that constraints such as water quality, safety and minimum water levels for navigation are maintained as long as possible. The National Hydrological Instrument (NHI) has been developed for modeling the water distribution in the Netherlands and supporting the development of water management strategies. It is also integrated into the national Dutch forecasting system for predicting dry periods and their impacts on water supply, agriculture, aquatic ecosystems and navigation. With such setup, the NHI will be a fundamental tool for drought forecast in the Netherlands. The NHI consists of a groundwater model (MODFLOW), an unsaturated zone model (Metaswap) and surface water models which interact with each other in every time step via an OpenMI interface. The surface water models consist of a hydrological model MOZART for representing the regional catchments and computing a desired water demand, a SOBEK open channel flow model for flow routing in the network of the larger rivers, lakes and canals, and a real-time control component (RTC-Tools). The latter links the water demand generated by MOZART to the availably supply in the network for generating optimum water allocation policies within the prediction horizon of 10 days of the operational forecasting system. The approach relies on predictive control consisting of a simplified internal model of the network within a system-wide optimization algorithm. In a period of water shortages, the user can refine the water allocation by defining specific objectives and related priorities. Finally, the optimum water extractions from RTC-Tools are passed back to MOZART and SOBEK as allocated values. The RTC-Tools integration into the NHI is an ongoing activity. We present the new functionality based on a pilot system and demonstrate the ability of the approach dealing with different drought situations and distributed, prioritized water demands. Furthermore, we discuss the added value of the approach compared to previous NHI set-ups focusing in particular on operational drought management features.

  7. Predicting habitat distribution to conserve seagrass threatened by sea level rise

    NASA Astrophysics Data System (ADS)

    Saunders, M. I.; Baldock, T.; Brown, C. J.; Callaghan, D. P.; Golshani, A.; Hamylton, S.; Hoegh-guldberg, O.; Leon, J. X.; Lovelock, C. E.; Lyons, M. B.; O'Brien, K.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.

    2013-12-01

    Sea level rise (SLR) over the 21st century will cause significant redistribution of valuable coastal habitats. Seagrasses form extensive and highly productive meadows in shallow coastal seas support high biodiversity, including economically valuable and threatened species. Predictive habitat models can inform local management actions that will be required to conserve seagrass faced with multiple stressors. We developed novel modelling approaches, based on extensive field data sets, to examine the effects of sea level rise and other stressors on two representative seagrass habitats in Australia. First, we modelled interactive effects of SLR, water clarity and adjacent land use on estuarine seagrass meadows in Moreton Bay, Southeast Queensland. The extent of suitable seagrass habitat was predicted to decline by 17% by 2100 due to SLR alone, but losses were predicted to be significantly reduced through improvements in water quality (Fig 1a) and by allowing space for seagrass migration with inundation. The rate of sedimentation in seagrass strongly affected the area of suitable habitat for seagrass in sea level rise scenarios (Fig 1b). Further research to understand spatial, temporal and environmental variability of sediment accretion in seagrass is required. Second, we modelled changes in wave energy distribution due to predicted SLR in a linked coral reef and seagrass ecosystem at Lizard Island, Great Barrier Reef. Scenarios where the water depth over the coral reef deepened due to SLR and minimal reef accretion, resulted in larger waves propagating shoreward, changing the existing hydrodynamic conditions sufficiently to reduce area of suitable habitat for seagrass. In a scenario where accretion of the coral reef was severely compromised (e.g. warming, acidification, overfishing), the probability of the presence of seagrass declined significantly. Management to maintain coral health will therefore also benefit seagrasses subject to SLR in reef environments. Further disentangling direct and indirect effects of climate change on seagrass will be necessary to inform management of these valuable coastal ecosystems. Models such as these will be important sources of information for management agencies, which require specific information on the likely impacts of sea level rise in coastal areas.

  8. Ground-water levels in observation wells in Oklahoma, 1971-74

    USGS Publications Warehouse

    Goemaat, Robert L.

    1976-01-01

    The objectives of the observation-well program are (1) to provide long-term records of water-level fluctuations in representative wells, (2) to facilitate the prediction of water-level trends and indicate the future availability of ground-water supplies, and (3) to provide information for use in basic research. These selected records serve as a framework to which other types of hydrologic data may be related. The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey.

  9. Predicting recreational water quality advisories: A comparison of statistical methods

    USGS Publications Warehouse

    Brooks, Wesley R.; Corsi, Steven R.; Fienen, Michael N.; Carvin, Rebecca B.

    2016-01-01

    Epidemiological studies indicate that fecal indicator bacteria (FIB) in beach water are associated with illnesses among people having contact with the water. In order to mitigate public health impacts, many beaches are posted with an advisory when the concentration of FIB exceeds a beach action value. The most commonly used method of measuring FIB concentration takes 18–24 h before returning a result. In order to avoid the 24 h lag, it has become common to ”nowcast” the FIB concentration using statistical regressions on environmental surrogate variables. Most commonly, nowcast models are estimated using ordinary least squares regression, but other regression methods from the statistical and machine learning literature are sometimes used. This study compares 14 regression methods across 7 Wisconsin beaches to identify which consistently produces the most accurate predictions. A random forest model is identified as the most accurate, followed by multiple regression fit using the adaptive LASSO.

  10. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    SciTech Connect

    Crawford, C; Ned Bibler, N

    2009-04-15

    In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in the waste. The difference in the two models has led to the questions of how different are the results predicted by the two models and which model predicts the more conservative (larger) G values. More conservative G values would predict higher H{sub 2} generation rates that would require higher ventilation rates in the SRS tanks. This report compares predictions based on the two models at various nitrate and nitrite concentrations in the SRS HLW tanks for both beta/gamma and for alpha radiation. It also compares predicted G values with those determined by actually measuring the H{sub 2} production from four SRS HLW tanks (Tanks 32H, 35H, 39H, and 42H). Lastly, the H{sub 2} generation rates predicted by the two models are compared for the 47 active SRS high level waste tanks using the most recent tank nitrate and nitrite concentrations and the beta/gamma and alpha heat loads for each tank. The predictions of the models for total H{sub 2} generation rates from the 47 active SRS waste were, for the most part, similar. For example, the predictions for both models applied to 25 tanks agreed within {+-}10% of each other. For the remaining 22 tanks, the SRS prediction was more conservative for 9 tanks (maximum 29% higher) and the Hanford prediction was more conservative for 13 tanks (maximum 19% higher). When comparing G values predicted by the equations presuming only alpha radiation or only beta/gamma was present the results were somewhat different. The results of predictions for alpha radiation, at the 47 current nitrate and nitrite concentrations in the SRS tanks indicated that all the SRS predictions were higher (up to 30%) than the Hanford predictions and thus more conservative. For beta/gamma radiation the predictions for both models agreed to {+-}10% for 18 of the combinations, the Hanford model predicted higher values (11 up to 17%) for 25 of the concentrations considered, and the SRS model predicted higher G values for the remaining two combinations (12 and 17%). For the four SRS tanks, where we compared measured G values to those predicted by the two different models, the results for two tanks (Tanks 35 and 39) were in good agreement with predictions from both models. For the other two tanks (Tanks 32 and 42) the predictions of both models were conservative. The predictions were 3 to 4X higher than the measured G values for H{sub 2} production.

  11. Predicting Change in Eelgrass Distribution Due to Sea Level Rise

    EPA Science Inventory

    The eelgrass species Zostera marina is the dominant estuarine seagrass on the Pacific Northwest coast of North America and provides important ecosystem services and functions. The loss of eelgrass bed acreage due to environmental pressures is of world-wide concern, yet predicted ...

  12. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.

    PubMed

    Aregawi, Wondwosen A; Abera, Metadel K; Fanta, Solomon W; Verboven, Pieter; Nicolai, Bart

    2014-11-19

    A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus??domestica Borkh. cv. 'Jonagold') during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick's second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell's rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range (?> 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation. PMID:25347182

  13. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model

    NASA Astrophysics Data System (ADS)

    Aregawi, Wondwosen A.; Abera, Metadel K.; Fanta, Solomon W.; Verboven, Pieter; Nicolai, Bart

    2014-11-01

    A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. ‘Jonagold’) during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick’s second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell’s rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range ( > 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.

  14. Predicting doubly labeled water energy expenditure from ambulatory activity.

    PubMed

    Tudor-Locke, Catrine; Martin, Corby K; Brashear, Meghan M; Rood, Jennifer C; Katzmarzyk, Peter T; Johnson, William D

    2012-12-01

    The purpose of this study was to evaluate the potential for using accelerometer-determined ambulatory activity indicators (steps per day and cadence) to predict total energy expenditure (TEE) and physical activity energy expenditure (PAEE) derived from doubly labeled water (DLW). Twenty men and 34 women (20-36 years of age) provided complete anthropometric, accelerometer, resting metabolic rate (RMR), and DLW data. TEE and PAEE were determined for the same week that accelerometers were worn during waking hours. Accelerometer data included mean steps per day, peak 30-min cadence (average steps per minute for the highest 30 min of the day), and time spent in each incremental cadence band: 0 (nonmovement), 1-19 (incidental movement), 20-39 (sporadic movement), 40-59 (purposeful steps), 60-79 (slow walking), 80-99 (medium walking), 100-119 (brisk walking), and 120+ stepsmin(-1) (indicative of all faster ambulatory activities). Regression analyses were employed to develop sex-specific equations for predicting TEE and PAEE. The final model predicting TEE included body weight, steps per day, and time in incremental cadence bands and explained 79% (men) and 65% (women) of the variability. The final model predicting PAEE included peak 30-min cadence, steps per day, and time in cadence bands and explained 76% (men) and 46% (women) of the variability. Time in cadence bands alone explained 39%-73% of the variability in TEE and 30%-63% of the variability in PAEE. Prediction models were stronger for men than for women. PMID:22963352

  15. Predicting groundwater level fluctuations with meteorological effect implicationsA comparative study among soft computing techniques

    NASA Astrophysics Data System (ADS)

    Shiri, Jalal; Kisi, Ozgur; Yoon, Heesung; Lee, Kang-Kun; Hossein Nazemi, Amir

    2013-07-01

    The knowledge of groundwater table fluctuations is important in agricultural lands as well as in the studies related to groundwater utilization and management levels. This paper investigates the abilities of Gene Expression Programming (GEP), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANN) and Support Vector Machine (SVM) techniques for groundwater level forecasting in following day up to 7-day prediction intervals. Several input combinations comprising water table level, rainfall and evapotranspiration values from Hongcheon Well station (South Korea), covering a period of eight years (2001-2008) were used to develop and test the applied models. The data from the first six years were used for developing (training) the applied models and the last two years data were reserved for testing. A comparison was also made between the forecasts provided by these models and the Auto-Regressive Moving Average (ARMA) technique. Based on the comparisons, it was found that the GEP models could be employed successfully in forecasting water table level fluctuations up to 7 days beyond data records.

  16. Developing and implementing the use of predictive models for estimating water quality at Great Lakes beaches

    USGS Publications Warehouse

    Francy, Donna S.; Brady, Amie M.G.; Carvin, Rebecca B.; Corsi, Steven R.; Fuller, Lori M.; Harrison, John H.; Hayhurst, Brett A.; Lant, Jeremiah; Nevers, Meredith B.; Terrio, Paul J.; Zimmerman, Tammy M.

    2013-01-01

    Predictive models have been used at beaches to improve the timeliness and accuracy of recreational water-quality assessments over the most common current approach to water-quality monitoring, which relies on culturing fecal-indicator bacteria such as Escherichia coli (E. coli.). Beach-specific predictive models use environmental and water-quality variables that are easily and quickly measured as surrogates to estimate concentrations of fecal-indicator bacteria or to provide the probability that a State recreational water-quality standard will be exceeded. When predictive models are used for beach closure or advisory decisions, they are referred to as “nowcasts.” During the recreational seasons of 2010-12, the U.S. Geological Survey (USGS), in cooperation with 23 local and State agencies, worked to improve existing nowcasts at 4 beaches, validate predictive models at another 38 beaches, and collect data for predictive-model development at 7 beaches throughout the Great Lakes. This report summarizes efforts to collect data and develop predictive models by multiple agencies and to compile existing information on the beaches and beach-monitoring programs into one comprehensive report. Local agencies measured E. coli concentrations and variables expected to affect E. coli concentrations such as wave height, turbidity, water temperature, and numbers of birds at the time of sampling. In addition to these field measurements, equipment was installed by the USGS or local agencies at or near several beaches to collect water-quality and metrological measurements in near real time, including nearshore buoys, weather stations, and tributary staff gages and monitors. The USGS worked with local agencies to retrieve data from existing sources either manually or by use of tools designed specifically to compile and process data for predictive-model development. Predictive models were developed by use of linear regression and (or) partial least squares techniques for 42 beaches that had at least 2 years of data (2010-11 and sometimes earlier) and for 1 beach that had 1 year of data. For most models, software designed for model development by the U.S. Environmental Protection Agency (Virtual Beach) was used. The selected model for each beach was based on a combination of explanatory variables including, most commonly, turbidity, day of the year, change in lake level over 24 hours, wave height, wind direction and speed, and antecedent rainfall for various time periods. Forty-two predictive models were validated against data collected during an independent year (2012) and compared to the current method for assessing recreational water quality-using the previous day’s E. coli concentration (persistence model). Goals for good predictive-model performance were responses that were at least 5 percent greater than the persistence model and overall correct responses greater than or equal to 80 percent, sensitivities (percentage of exceedances of the bathing-water standard that were correctly predicted by the model) greater than or equal to 50 percent, and specificities (percentage of nonexceedances correctly predicted by the model) greater than or equal to 85 percent. Out of 42 predictive models, 24 models yielded over-all correct responses that were at least 5 percent greater than the use of the persistence model. Predictive-model responses met the performance goals more often than the persistence-model responses in terms of overall correctness (28 versus 17 models, respectively), sensitivity (17 versus 4 models), and specificity (34 versus 25 models). Gaining knowledge of each beach and the factors that affect E. coli concentrations is important for developing good predictive models. Collection of additional years of data with a wide range of environmental conditions may also help to improve future model performance. The USGS will continue to work with local agencies in 2013 and beyond to develop and validate predictive models at beaches and improve existing nowcasts, restructuring monitoring activities to accommodate future uncertainties in funding and resources.

  17. Parameter estimation techniques and uncertainty in ground water flow model predictions

    SciTech Connect

    Zimmerman, D.A. ); Davis, P.A. )

    1990-01-01

    Quantification of uncertainty in predictions of nuclear waste repository performance is a requirement of Nuclear Regulatory Commission regulations governing the licensing of proposed geologic repositories for high-level radioactive waste disposal. One of the major uncertainties in these predictions is in estimating the ground-water travel time of radionuclides migrating from the repository to the accessible environment. The cause of much of this uncertainty has been attributed to a lack of knowledge about the hydrogeologic properties that control the movement of radionuclides through the aquifers. A major reason for this lack of knowledge is the paucity of data that is typically available for characterizing complex ground-water flow systems. Because of this, considerable effort has been put into developing parameter estimation techniques that infer property values in regions where no measurements exist. Currently, no single technique has been shown to be superior or even consistently conservative with respect to predictions of ground-water travel time. This work was undertaken to compare a number of parameter estimation techniques and to evaluate how differences in the parameter estimates and the estimation errors are reflected in the behavior of the flow model predictions. That is, we wished to determine to what degree uncertainties in flow model predictions may be affected simply by the choice of parameter estimation technique used. 3 refs., 2 figs.

  18. Effects of Barometric Fluctuations on Well Water-Level Measurements and Aquifer Test Data

    SciTech Connect

    FA Spane, Jr.

    1999-12-16

    The Pacific Northwest National Laboratory, as part of the Hanford Groundwater Monitoring Project, examines the potential for offsite migration of contamination within underlying aquifer systems. Well water-level elevation measurements from selected wells within these aquifer systems commonly form the basis for delineating groundwater-flow patterns (i.e., flow direction and hydraulic gradient). In addition, the analysis of water-level responses obtained in wells during hydrologic tests provides estimates of hydraulic properties that are important for evaluating groundwater-flow velocity and transport characteristics. Barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These barometric effects may lead to erroneous indications of hydraulic head within the aquifer. Total hydraulic head (i.e., sum of the water-table elevation and the atmospheric pressure at the water-table surface) within the aquifer, not well water-level elevation, is the hydrologic parameter for determining groundwater-flow direction and hydraulic gradient conditions. Temporal variations in barometric pressure may also adversely affect well water-level responses obtained during hydrologic tests. If significant, adjustments or removal of these barometric effects from the test-response record may be required for quantitative hydraulic property determination. This report examines the effects of barometric fluctuations on well water-level measurements and evaluates adjustment and removal methods for determining areal aquifer head conditions and aquifer test analysis. Two examples of Hanford Site unconfined aquifer tests are examined that demonstrate barometric response analysis and illustrate the predictive/removal capabilities of various methods for well water-level and aquifer total head values. Good predictive/removal characteristics were demonstrated with best corrective results provided by multiple-regression deconvolution methods.

  19. 1. East side of lower dam shown with water level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. East side of lower dam shown with water level dropped. VIEW WEST - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  20. 9. Close general view of movable span from water level, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Close general view of movable span from water level, from west to cast piers, showing remnants of bumper piers. VIEW NORTHEAST - Broadway Bridge, Spanning Foundry Street, MBTA Yard, Fort Point Channel, & Lehigh Street, Boston, Suffolk County, MA

  1. 8. General view of movable span from water level, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. General view of movable span from water level, showing piers turntable, movable span, parts of west land span and east viaduct. VIEW NORTHEAST - Broadway Bridge, Spanning Foundry Street, MBTA Yard, Fort Point Channel, & Lehigh Street, Boston, Suffolk County, MA

  2. 17. INTERIOR OF 1814 MILL TAILRACE WITH LEVEL OF WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR OF 1814 MILL TAILRACE WITH LEVEL OF WATER BELOW DAM EVIDENT. WALL DIMLY VISIBLE AT REAR IS BRICKED UP ARCH IN FOUNDATION WALL OF THE MILL. - Boston Manufacturing Company, 144-190 Moody Street, Waltham, Middlesex County, MA

  3. Trace-level mercury removal from surface water

    SciTech Connect

    Klasson, K.T.; Bostick, D.T.

    1998-06-01

    Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, most of the data published thus far do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. Mercury was successfully removed from surface water via adsorption onto Ionac SR-4 and Mersorb resins to levels below the target goal of 12 ng/L in batch studies. A thiol-based resin performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1,000 gal of water.

  4. 3. View of Santa Elena, looking from water level (Note: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of Santa Elena, looking from water level (Note: The lighthouse of Del Morro is just visible in the background) - Murallas del Viejo San Juan, Baluarte de Santa Elena, San Juan, San Juan Municipio, PR

  5. Developing Landscape Level Indicators for Predicting Watershed Condition

    EPA Science Inventory

    Drainage basins (watersheds) exert a strong influence on the condition of water bodies such as streams and lakes. Watersheds and associated aquatic systems respond differently to stressors (e.g., land use change) or restoration activities depending on the climatic setting, bedroc...

  6. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    NASA Technical Reports Server (NTRS)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  7. Water levels through 1989 in bedrock aquifers in South Dakota

    USGS Publications Warehouse

    Winter, Douglas R.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the South Dakota Department of Environmental and Natural Resources, has collected water-level data for 237 wells completed in bedrock aquifers throughout South Dakota. The water levels are presented in hydrographs in the main body of the report and in tables in a Supplemental Information section at the end of the report. The data are organized by county, in alphabetical order.

  8. Ground-water levels in Arkansas, Spring 1984

    SciTech Connect

    Edds, J.

    1984-01-01

    The report contains 680 ground-water level measurements made in observation wells in Arkansas in the Spring of 1984. In addition, the report contains well hydrographs relating to the alluvial aquifer and the Sparta Sand and Memphis Sand aquifers, the most important aquifers with respect to ground-water availability and use in Arkansas. 18 refs., 14 tabs.

  9. Data assimilation in optimizing and integrating soil and water quality water model predictions at different scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relevant data about subsurface water flow and solute transport at relatively large scales that are of interest to the public are inherently laborious and in most cases simply impossible to obtain. Upscaling in which fine-scale models and data are used to predict changes at the coarser scales is the...

  10. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool

    NASA Astrophysics Data System (ADS)

    Paaijmans, Krijn P.; Heusinkveld, Bert G.; Jacobs, Adrie F. G.

    2008-11-01

    Water temperature is a critical regulator in the growth and development of malaria mosquito immatures, as they are poikilothermic. Measuring or estimating the diurnal temperature ranges to which these immatures are exposed is of the utmost importance, as these immatures will develop into adults that can transmit malaria. Recent attempts to predict the daily water temperature dynamics in mosquito breeding sites in Kenya have been successful. However, the developed model may be too complex, as the sophisticated equipment that was used for detailed meteorological observations is not widely distributed in Africa, making it difficult to predict the daily water temperature dynamics on a local scale. Therefore, we compared two energy budget models with earlier made observations of the daily water temperature dynamics in a small, shallow and clear water pool (diameter 0.96 m, depth 0.32 m) in Kenya. This paper describes (1) a complex 1-Dimensional model, and (2) a simplified second model, and (3) shows that both models mimic the water temperature dynamics in the water pool accurately. The latter model has the advantage that it only needs common weather data (air temperature, air humidity, wind speed and cloud cover) to estimate the diurnal temperature dynamics in breeding sites of African malaria mosquitoes.

  11. PLIO: a generic tool for real-time operational predictive optimal control of water networks.

    PubMed

    Cembrano, G; Quevedo, J; Puig, V; Pérez, R; Figueras, J; Verdejo, J M; Escaler, I; Ramón, G; Barnet, G; Rodríguez, P; Casas, M

    2011-01-01

    This paper presents a generic tool, named PLIO, that allows to implement the real-time operational control of water networks. Control strategies are generated using predictive optimal control techniques. This tool allows the flow management in a large water supply and distribution system including reservoirs, open-flow channels for water transport, water treatment plants, pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas to meet future demands with appropriate pressure levels, optimizing operational goals such as network safety volumes and flow control stability. PLIO allows to build the network model graphically and then to automatically generate the model equations used by the predictive optimal controller. Additionally, PLIO can work off-line (in simulation) and on-line (in real-time mode). The case study of Santiago-Chile is presented to exemplify the control results obtained using PLIO off-line (in simulation). PMID:22097020

  12. Dissolved oxygen levels in estuarine and coastal waters around Ireland.

    PubMed

    O'Boyle, Shane; McDermott, Georgina; Wilkes, Robert

    2009-11-01

    This paper presents the status of summer oxygen conditions in estuarine and coastal waters around Ireland between 2003 and 2007. Of the 95 water bodies surveyed, 85 had oxygen levels sufficient to support aquatic life. This corresponds to a surface area of 3125 km(2) or 99.4% of the total area assessed. Ten water bodies, representing a surface area of 20.2 km(2), were deficient in oxygen but still capable of supporting most aquatic life. No evidence of hypoxia (<2.0mg/l O(2)) or anoxia (<0.2mg/l O(2)) was found. Dissolved oxygen conditions in a number of estuaries continue to improve, probably due to improved municipal waste water treatment. The implementation of measures contained in both the Nitrates and Urban Waste Water Treatment Directives, together with those of the Water Framework Directive, should ensure areas of oxygen deficiency are eliminated from Irish waters. PMID:19665737

  13. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  14. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  15. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  16. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  17. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  18. Prediction of corrosion rates of water distribution pipelines according to aggressive corrosive water in Korea.

    PubMed

    Chung, W S; Yu, M J; Lee, H D

    2004-01-01

    The drinking water network serving Korea has been used for almost 100 years. Therefore, pipelines have suffered various degrees of deterioration due to aggressive environments. The pipe breaks were caused by in-external corrosion, water hammer, surface loading, etc. In this paper, we focused on describing corrosion status in water distribution pipes in Korea and reviewing some methods to predict corrosion rates. Results indicate that corrosive water of lakes was more aggressive than river water and the winter was more aggressive compared to other seasons. The roughness growth rates of Dongbok lake showed 0.23 mm/year. The high variation of corrosion rates is controlled by the aging pipes and smaller diameter. Also the phenolphthalein test on a cementitious core of cement mortar lined ductile cast iron pipe indicated the pipes over 15 years old had lost 50-100% of their lime active cross sectional area. PMID:14982159

  19. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    PubMed Central

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  20. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    PubMed

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  1. Should a water colour parameter be included in lake total phosphorus prediction models used for the Water Framework Directive?

    PubMed

    Vinogradoff, Susan I; Oliver, Ian W

    2015-01-01

    Under the Water Framework Directive (WFD) lakes are classified according to a variety of criteria. This classification facilitates state of the environment assessments and helps identify work needed to achieve the objectives of the WFD, which are broadly to maintain and/or restore water quality and ecological status at a level recognised as good or high. To achieve high or good status, lakes must meet a criterion for total phosphorus (TP) that is linked to a predicted reference condition value that is derived by various models. Lakes which fail to meet good status may require expensive remedial actions to be undertaken, thus accurate identification of the reference condition TP concentration is vital for effective environmental management. However, the models currently employed could be improved for some regions, particularly those with carbon rich soils. By examining 19 reference condition lakes (i.e. lakes essentially non-impacted by humans) in peaty areas of Scotland, we found that a simple parameter linked to water colour and humic substances was a better predictor of TP than the currently employed models (R(2) 0.585 vs R(2)<0.01). Therefore, for Scotland and elsewhere, in regions with carbon rich soils and lakes with humic waters the TP predictive models could be improved by development and incorporation of a parameter related to water colour and humic components. PMID:25262390

  2. Validation of Aircraft Noise Prediction Models at Low Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Hobbs, Christopher M.; Plotkin, Kenneth J.; Stusnick, Eric; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Aircraft noise measurements were made at Denver International Airport for a period of four weeks. Detailed operational information was provided by airline operators which enabled noise levels to be predicted using the FAA's Integrated Noise Model. Several thrust prediction techniques were evaluated. Measured sound exposure levels for departure operations were found to be 4 to 10 dB higher than predicted, depending on the thrust prediction technique employed. Differences between measured and predicted levels are shown to be related to atmospheric conditions present at the aircraft altitude.

  3. Transient response of Salix cuttings to changing water level regimes

    NASA Astrophysics Data System (ADS)

    Gorla, L.; Signarbieux, C.; Turberg, P.; Buttler, A.; Perona, P.

    2015-03-01

    Sustainable water management requires an understanding of the effects of flow regulation on riparian ecomorphological processes. We investigated the transient response of Salix viminalis by examining the effect of water-level regimes on its above-ground and below-ground biomass. Four sets of Salix cuttings, three juveniles (in the first growing season) and one mature (1 year old), were planted and initially grown under the same water-level regime for 1 month. We imposed three different water-level regime treatments representing natural variability, a seasonal trend with no peaks, and minimal flow (characteristic of hydropower) consisting of a constant water level and natural flood peaks. We measured sap flux, stem water potential, photosynthesis, growth parameters, and final root architecture. The mature cuttings were not affected by water table dynamics, but the juveniles displayed causal relationships between the changing water regime, plant growth, and root distribution during a 2 month transient period. For example, a 50% drop in mean sap flux corresponded with a -1.5 Mpa decrease in leaf water potential during the first day after the water regime was changed. In agreement with published field observations, the cuttings concentrated their roots close to the mean water table of the corresponding treatment, allowing survival under altered conditions and resilience to successive stress events. Juvenile development was strongly impacted by the minimum flow regime, leading to more than 60% reduction of both above-ground and below-ground biomass, with respect to the other treatments. Hence, we suggest avoiding minimum flow regimes where Salix restoration is prioritized.

  4. Determining return water levels at ungauged coastal sites: a case study for northern Germany

    NASA Astrophysics Data System (ADS)

    Arns, Arne; Wahl, Thomas; Haigh, Ivan D.; Jensen, Jürgen

    2015-04-01

    We estimate return periods and levels of extreme still water levels for the highly vulnerable and historically and culturally important small marsh islands known as the Halligen, located in the Wadden Sea offshore of the coast of northern Germany. This is a challenging task as only few water level records are available for this region, and they are currently too short to apply traditional extreme value analysis methods. Therefore, we use the Regional Frequency Analysis (RFA) approach. This originates from hydrology but has been used before in several coastal studies and is also currently applied by the local federal administration responsible for coastal protection in the study area. The RFA enables us to indirectly estimate return levels by transferring hydrological information from gauged to related ungauged sites. Our analyses highlight that this methodology has some drawbacks and may over- or underestimate return levels compared to direct analyses using station data. To overcome these issues, we present an alternative approach, combining numerical and statistical models. First, we produced a numerical multidecadal model hindcast of water levels for the entire North Sea. Predicted water levels from the hindcast are bias corrected using the information from the available tide gauge records. Hence, the simulated water levels agree well with the measured water levels at gauged sites. The bias correction is then interpolated spatially to obtain correction functions for the simulated water levels at each coastal and island model grid point in the study area. Using a recommended procedure to conduct extreme value analyses from a companion study, return water levels suitable for coastal infrastructure design are estimated continuously along the entire coastline of the study area, including the offshore islands. A similar methodology can be applied in other regions of the world where tide gauge observations are sparse.

  5. Expanded prediction equations of human sweat loss and water needs.

    PubMed

    Gonzalez, R R; Cheuvront, S N; Montain, S J; Goodman, D A; Blanchard, L A; Berglund, L G; Sawka, M N

    2009-08-01

    The Institute of Medicine expressed a need for improved sweating rate (msw) prediction models that calculate hourly and daily water needs based on metabolic rate, clothing, and environment. More than 25 years ago, the original Shapiro prediction equation (OSE) was formulated as msw (g.m(-2).h(-1))=27.9.Ereq.(Emax)(-0.455), where Ereq is required evaporative heat loss and Emax is maximum evaporative power of the environment; OSE was developed for a limited set of environments, exposures times, and clothing systems. Recent evidence shows that OSE often overpredicts fluid needs. Our study developed a corrected OSE and a new msw prediction equation by using independent data sets from a wide range of environmental conditions, metabolic rates (rest to 500 observations) by using a variety of metabolic rates over a range of environmental conditions (ambient temperature, 15-46 degrees C; water vapor pressure, 0.27-4.45 kPa; wind speed, 0.4-2.5 m/s), clothing, and equipment combinations and durations (2-8 h). Data are expressed as grams per square meter per hour and were analyzed using fuzzy piecewise regression. OSE overpredicted sweating rates (P<0.003) compared with observed msw. Both the correction equation (OSEC), msw=147.exp (0.0012.OSE), and a new piecewise (PW) equation, msw=147+1.527.Ereq-0.87.Emax were derived, compared with OSE, and then cross-validated against independent data (21 males and 9 females; >200 observations). OSEC and PW were more accurate predictors of sweating rate (58 and 65% more accurate, P<0.01) and produced minimal error (standard error estimate<100 g.m(-2).h(-1)) for conditions both within and outside the original OSE domain of validity. The new equations provide for more accurate sweat predictions over a broader range of conditions with applications to public health, military, occupational, and sports medicine settings. PMID:19407259

  6. Water levels in bedrock aquifers in South Dakota

    USGS Publications Warehouse

    Bradford, Wendell L.

    1981-01-01

    This report on water levels in bedrock aquifers in South Dakota is the result of a continuing investigation begun in 1959 by the U.S. Geological Survey in cooperation with the South Dakota Department of Water and Natural Resources. The purpose of the investigation is to collect data on the artesian water supply in the bedrock aquifers and to present these data in data reports that will aid in planning the use and conservation of water from these aquifers in South Dakota. The locations of wells were data have been collected are included. (USGS)

  7. ELEVATED LEVELS OF SODIUM IN COMMUNITY DRINKING WATER

    EPA Science Inventory

    A comparison study of students from towns with differing levels of sodium in drinking water revealed statistically significantly higher blood pressure distributions among the students from the town with high sodium levels. Differences were found in both systolic and diastolic rea...

  8. Impact of Plumbing Age on Copper Levels in Drinking Water

    EPA Science Inventory

    Theory and limited practical experiences suggest that higher copper levels in drinking water tap samples are typically associated with newer plumbing systems, and levels decrease with increasing plumbing age. Past researchers have developed a conceptual model to explain the “agin...

  9. Predicting the Proficiency Level of Language Learners Using Lexical Indices

    ERIC Educational Resources Information Center

    Crossley, Scott A.; Salsbury, Tom; McNamara, Danielle S.

    2012-01-01

    This study explores how second language (L2) texts written by learners at various proficiency levels can be classified using computational indices that characterize lexical competence. For this study, 100 writing samples taken from 100 L2 learners were analyzed using lexical indices reported by the computational tool Coh-Metrix. The L2 writing

  10. A statistical model for water quality predictions from a river discharge using coastal observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  11. Effects of water turbidity and salt concentration levels on penetration of solar radiation under water

    SciTech Connect

    Wang, J.; Seyed-Yagoobi, J. )

    1994-05-01

    Two large, outdoor tanks were constructed in order to investigate the effects of water turbidity and salt concentration levels at various depths of water on penetration of solar radiation. These experiments were followed by a laboratory investigation that measured spectral transmittance and the extinction coefficient of water at different salt concentrations and turbidity levels. Both the outdoor and laboratory results indicate that the salt concentration level does not significantly affect solar radiation penetration. However, water clarity, quantified in terms of the turbidity level, plays a critical role on the magnitude of the solar radiation penetration, with the effect of turbidity on penetration increasing with the depth of water. A best-fit model is developed that gives the solar radiation penetration as a function of turbidity level and depth of water.

  12. Orion Crew Member Injury Predictions during Land and Water Landings

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Littell, Justin D.; Fasanella, Edwin L.; Tabiei, Ala

    2008-01-01

    A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.

  13. Analysis for water level data for Everglades National Park, Florida

    USGS Publications Warehouse

    Buchanan, T.J.; Hartwell, J.H.

    1972-01-01

    Stage-duration curves were developed for five gaging stations in Everglades National Park, Florida. Four of the five curves show similar characteristics with an increase in the slope when the water level is below land surface. Monthly stage-duration curves, developed for one of the stations, reflect the seasonal trends of the water level. Recession curves were prepared for the same five stations. These curves represent the average water-level decline during periods of little or no rainfall. They show the decline in level at the end of 10, 20, and 60 days for any given initial stage. A family of curves was also prepared to give the recession from various initial stages for any period up to 60 days.

  14. Numerical simulation of the impacts of water level variation on water age in Dahuofang Reservoir

    NASA Astrophysics Data System (ADS)

    Li, Xinwen; Shen, Yongming

    2015-06-01

    The transport timescales were investigated in response to water level variation under different constant flow rates in Dahuofang Reservoir. The concept of water age was applied to quantify the transport timescales. A three-dimensional hydrodynamic model was developed based on the Environmental Fluid Dynamics Code (EFDC). The model was calibrated for water surface elevation and temperature profiles from April 1, 2008 to October 31, 2008. Comparisons of observed and modeled data showed that the model reproduced the water level fluctuation and thermal stratification during warm season and vertical mixing during cold season fairly well. The calibrated model was then applied to investigate the response of water age to water level changes in Dahuofang Reservoir. Model results showed that water age increases from confluence toward dam zone. In the vertical direction, the water age is relatively uniform at upstream and stratifies further downstream, with a larger value at bottom layer than at surface layer. Comparisons demonstrated that water level variation has a significant impact on transport timescales in the reservoir. The impact of water level drawdown on water age is stronger at bottom layer than at surface layer. Under high flow conditions, the water age decreases 0-20 days at surface layer and 15-25 days at bottom layer. Under mean flow conditions, the water age decreases 20-30 days at surface layer and 30-50 days at bottom layer. Furthermore, the impact is minor in the upstream and increases further downstream. The vertical stratification of water age weakens as the water level decreases. This study provides a numerical tool to quantify the transport timescale in Dahuofang Reservoir and supports adaptive management of regional water resources by local authorities.

  15. Inter-comparison of time series models of lake levels predicted by several modeling strategies

    NASA Astrophysics Data System (ADS)

    Khatibi, R.; Ghorbani, M. A.; Naghipour, L.; Jothiprakash, V.; Fathima, T. A.; Fazelifard, M. H.

    2014-04-01

    Five modeling strategies are employed to analyze water level time series of six lakes with different physical characteristics such as shape, size, altitude and range of variations. The models comprise chaos theory, Auto-Regressive Integrated Moving Average (ARIMA) - treated for seasonality and hence SARIMA, Artificial Neural Networks (ANN), Gene Expression Programming (GEP) and Multiple Linear Regression (MLR). Each is formulated on a different premise with different underlying assumptions. Chaos theory is elaborated in a greater detail as it is customary to identify the existence of chaotic signals by a number of techniques (e.g. average mutual information and false nearest neighbors) and future values are predicted using the Nonlinear Local Prediction (NLP) technique. This paper takes a critical view of past inter-comparison studies seeking a superior performance, against which it is reported that (i) the performances of all five modeling strategies vary from good to poor, hampering the recommendation of a clear-cut predictive model; (ii) the performances of the datasets of two cases are consistently better with all five modeling strategies; (iii) in other cases, their performances are poor but the results can still be fit-for-purpose; (iv) the simultaneous good performances of NLP and SARIMA pull their underlying assumptions to different ends, which cannot be reconciled. A number of arguments are presented including the culture of pluralism, according to which the various modeling strategies facilitate an insight into the data from different vantages.

  16. Great Lakes Water Levels Bounce Back After Record Lows

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-12-01

    Water levels in the Great Lakes have rebounded dramatically from historic lows in December 2012 and January 2013, though the levels still remain lower than average in some of the lakes, scientists with the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers said during a 20 November briefing. The low lake levels had hampered shipping and other commercial and recreational uses of the waterways.

  17. Predicting Airborne Particle Levels Aboard Washington State School Buses

    PubMed Central

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Liu, L.-J. Sally

    2008-01-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits. To assess onboard concentrations, continuous PM2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM2.5 levels, ambient weather, and bus and route characteristics. Concentrations aboard school buses (21 ?g/m3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM2.5 levels between the buses and lead vehicles indicated an average of 7 ?g/m3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics. PMID:18985175

  18. Predicting airborne particle levels aboard Washington State school buses

    NASA Astrophysics Data System (ADS)

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Sally Liu, L.-J.

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM 2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission reducing retrofits. To assess onboard concentrations, continuous PM 2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least squares regression models for PM 2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM 2.5 levels, ambient weather, and bus and route characteristics. Average concentrations aboard school buses (21 ?g m -3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM 2.5 levels between the buses and lead vehicles indicated an average of 7 ?g m -3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM 2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross-validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics.

  19. Predicted Transport Of Pyrethroid Insecticides From An Urban Landscape To Surface Water

    PubMed Central

    Jorgenson, Brant; Brown, Larry; Fleishman, Erica; Macneale, Kate; Schlenk, Daniel; Scholz, Nat; Spromberg, Julann; Werner, Inge; Weston, Don; Young, Thomas M.; Zhang, Minghua; Zhao, Qingfu

    2014-01-01

    We developed a simple screening-level model of exposure of aquatic species to pyrethroid insecticides for the lower American River watershed (California, USA). The model incorporated both empirically derived washoff functions based on existing, small-scale precipitation simulations and empirical data on pyrethroid insecticide use and watershed properties for Sacramento County, California. We calibrated the model to in-stream monitoring data and used it to predict daily river pyrethroid concentration from 1995 through 2010. The model predicted a marked increase in pyrethroid toxic units starting in 2000, coincident with an observed watershed-wide increase in pyrethroid use. After 2000, approximately 70% of the predicted total toxic unit exposure in the watershed was associated with the pyrethroids bifenthrin and cyfluthrin. Pyrethroid applications for above-ground structural pest control on the basis of suspension concentrate product formulations accounted for greater than 97% of the predicted total toxic unit exposure. Projected application of mitigation strategies, such as curtailment of structural perimeter band and barrier treatments as recently adopted by the California Department of Pesticide Regulation, reduced predicted total toxic unit exposure by 84%. The model also predicted that similar reductions in surface water concentrations of pyrethroids could be achieved through a switch from suspension concentrate categorized products to emulsifiable concentrate categorized products without restrictions on current use practice. Even with these mitigation actions, the predicted concentration of some pyrethroids would continue to exceed chronic aquatic life criteria. PMID:24115122

  20. Predicting Water Activity for Complex Wastes with Solvation Cluster Equilibria (SCE) - 12042

    SciTech Connect

    Agnew, S.F.; Reynolds, J.G.; Johnston, C.T.

    2012-07-01

    Predicting an electrolyte mixture's water activity, i.e. the ratio of water vapor pressure over a solution with that of pure water, in principle reveals both boiling point and solubilities for that mixture. Better predictions of these properties helps support the ongoing missions to concentrate complex nuclear waste mixtures in order to conserve tank space and improved predictions of water activity will help. A new approach for predicting water activity, the solvation cluster equilibria (SCE) model, uses pure electrolyte water activities to predict water activity for a complex mixture of those electrolytes. An SCE function based on electrolyte hydration free energy and a standard Debye- Hueckel (DH) charge compression fits each pure electrolyte's water activity with three parameters. Given these pure electrolyte water activities, the SCE predicts any mixture water activity over a large range of concentration with an additional parameter for each mixture vector, the multinarity. In contrast to ionic strength, which scales with concentration, multinarity is related to the relative proportion of electrolytes in a mixture and can either increase or decrease the water activity prediction over a broad range of concentration for that mixture. The SCE model predicts water activity for complex electrolyte mixtures based on the water activities of pure electrolytes. Three parameter SCE functions fit the water activities of pure electrolytes and along with a single multinarity parameter for each mixture vector then predict the mixture water activity. Predictions of water activity can in principle predict solution electrolyte activity and this relationship will be explored in the future. Predicting electrolyte activities for complex mixtures provides a means of determining solubilities for each electrolyte. Although there are a number of reports [9, 10, 11] of water activity models for pure and binary mixtures of electrolytes, none of them compare measured versus calculated water activity for more complex mixtures. (authors)

  1. Predicting Stability of Air--Water Interface on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Emami, B.; Vahedi Tafreshi, H.; Gad-El-Hak, M.; Tepper, G. C.

    2011-11-01

    In this work, two different methodologies for predicting the stability of the air-water interface on submerged superhydrophobic surfaces are presented. The first method is an analytical approach developed by balancing the hydrostatic pressure with the capillary forces over the interface, and results in a second-order partial differential equation. The solution to this equation provides the 3-D interface shape and the critical pressure beyond which the superhydrophobic surface departs from the Cassie state. The second method presented here is an approximate numerical technique based on the so called Full Morphology method in which the Young-Laplace equation is used to relate a capillary pressure to the most constricted opening of the pore space between the peaks of the surface roughness. Predictions of the methods presented in this study are compared with the available studies in the literature (Applied Physics Letters 98:20, 203106, 2011). Financial support from DARPA, contract number W91CRB-10-1-0003, is acknowledged.

  2. Methodology for predicting cooling water effects on fish

    SciTech Connect

    Cakiroglu, C.; Yurteri, C.

    1998-07-01

    The mathematical model presented here predicts the long-term effects of once-through cooling water systems on local fish populations. The fish life cycle model simulates different life stages of fish by using appropriate expressions representing growth and mortality rates. The heart of the developed modeling approach is the prediction of plant-caused reduction in total fish population by estimating recruitment to adult population with and without entrainment of ichthyoplankton and impingement of small fish. The model was applied to a local fish species, gilthead (Aparus aurata), for the case of a proposed power plant in the Aegean region of Turkey. The simulations indicate that entrainment and impingement may lead to a population reduction of about 2% to 8% in the long run. In many cases, an impact of this size can be considered rather unimportant. In the case of sensitive and ecologically values species facing extinction, however, necessary precautions should be taken to minimize or totally avoid such an impact.

  3. A Methylmercury Prediction Too For Surface Waters Across The Contiguous United States (Invited)

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, D. P.; Booth, N.; Lutz, M.; Fienen, M. N.; Saltman, T.

    2009-12-01

    About 20 years ago, researchers at a few locations across the globe discovered high levels of mercury in fish from remote settings lacking any obvious mercury source. We now know that for most locations atmospheric deposition is the dominant mercury source, and that mercury methylation is the key process that translates low mercury loading rates into relatively high levels in top predators of aquatic food webs. Presently, almost all US states have advisories for elevated levels of mercury in sport fish, and as a result there is considerable public awareness and concern for this nearly ubiquitous contaminant issue. In some states, “statewide” advisories have been issued because elevated fish mercury levels are so common, or the state has no effective way to monitor thousands of lakes, reservoirs, wetlands, and streams. As such, resource managers and public health officials have limited options for informing the public on of where elevated mercury concentrations in sport fish are more likely to occur than others. This project provides, for the first time, a national map of predicted (modeled) methylmercury concentrations in surface waters, which is the most toxic and bioaccumulative form of mercury in the environment. The map is the result of over two decades of research that resulted in the formulation of conceptual models of the mercury methylation process, which is strongly governed by environmental conditions - specifically hydrologic landscapes and water quality. The resulting predictive map shows clear regional trends in the distribution of methylmercury concentrations in surface waters. East of the Mississippi, the Gulf and southeastern Atlantic coast, the northeast, the lower Mississippi valley, and Great Lakes area are predicted to have generally higher environmental methylmercury levels. Higher-elevation, well-drained areas of Appalachia are predicted to have relatively lower methylmercury abundance. Other than the prairie pothole region, in the western US incessant regional patterns are less clear. However, the full range of predicted methylmercury levels are predicted to occur in western US watersheds. Lastly, although this map is being presented at the continental US scale, the principles used to generate the modeled results can easily applied to data sets that represent a range of geographic scales.

  4. Predicting gene expression levels from codon biases in ?-proteobacterial genomes

    PubMed Central

    Karlin, Samuel; Barnett, Melanie J.; Campbell, Allan M.; Fisher, Robert F.; Mrzek, Jan

    2003-01-01

    Predicted highly expressed (PHX) genes in five currently available high G+C complete ?-proteobacterial genomes are analyzed. These include: the nitrogen-fixing plant symbionts Sinorhizobium meliloti (SINME) and Mesorhizobium loti (MESLO), the nonpathogenic aquatic bacterium Caulobacter crescentus (CAUCR), the plant pathogen Agrobacterium tumefaciens (AGRTU), and the mammalian pathogen Brucella melitensis (BRUME). Three of these genomes, SINME, AGRTU, and BRUME, contain multiple chromosomes or megaplasmids (>1 Mb length). PHX genes in these genomes are concentrated mainly in the major (largest) chromosome with few PHX genes found in the secondary chromosomes and megaplasmids. Tricarboxylic acid cycle and aerobic respiration genes are strongly PHX in all five genomes, whereas anaerobic pathways of glycolysis and fermentation are mostly not PHX. Only in MESLO (but not SINME) and BRUME are most glycolysis genes PHX. Many flagellar genes are PHX in MESLO and CAUCR, but mostly are not PHX in SINME and AGRTU. The nonmotile BRUME also carries many flagellar genes but these are generally not PHX and all but one are located in the second chromosome. CAUCR stands out among available prokaryotic genomes with 25 PHX TonB-dependent receptors. These are putatively involved in uptake of iron ions and other nonsoluble compounds. PMID:12775761

  5. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  6. Monitoring water levels by integrating optical and synthetic aperture radar water masks with lidar DEMs

    NASA Astrophysics Data System (ADS)

    Hopkinson, C.; Brisco, B.; Patterson, S.

    2014-12-01

    The ability to map and monitor wetland and lake open water extent and levels across the landscape allows improved estimates of watershed water balance, surface storage and flood inundation. The study presents open water classifications over the wetland dominated Sheppard Slough watershed east of Calgary in western Canada using parallel temporal imagery captured from the RapidEye and RadarSat satellites throughout 2013, a year of widespread and costly flood inundation in this region. The optical and SAR-based temporal image stacks were integrated with a high-resolution lidar DEM in order to delineate regions of inundation on the DEM surface. GIS techniques were developed to extract lidar-derived water surface elevations and track the spatio-temporal variation in pond and lake water level across the watershed. Water bodies were assigned unique identifiers so that levels could be tracked and linked to their associated watershed channel reach. The procedure of optical image classification through to merging of individual water bodies into watershed channel topology and extracting reach water levels has been automated within python scripts. The presentation will describe: i) the procedures used; ii) a comparison of the SAR and optical classification and water level extraction results; iii) a discussion of the spatio-temporal variations in water level across the Sheppard Slough watershed; and iv) a commentary on how the approach could be implemented for web-based operational monitoring and as simulation initialisation inputs for flood inundation model studies.

  7. Water PMF for predicting the properties of water molecules in protein binding site.

    PubMed

    Zheng, Mingyue; Li, Yanlian; Xiong, Bing; Jiang, Hualiang; Shen, Jingkang

    2013-03-15

    Water is an important component in living systems and deserves better understanding in chemistry and biology. However, due to the difficulty of investigating the water functions in protein structures, it is usually ignored in computational modeling, especially in the field of computer-aided drug design. Here, using the potential of mean forces (PMFs) approach, we constructed a water PMF (wPMF) based on 3946 non-redundant high resolution crystal structures. The extracted wPMF potential was first used to investigate the structure pattern of water and analyze the residue hydrophilicity. Then, the relationship between wPMF score and the B factor value of crystal waters was studied. It was found that wPMF agrees well with some previously reported experimental observations. In addition, the wPMF score was also tested in parallel with 3D-RISM to measure the ability of retrieving experimentally observed waters, and showed comparable performance but with much less computational cost. In the end, we proposed a grid-based clustering scheme together with a distance weighted wPMF score to further extend wPMF to predict the potential hydration sites of protein structure. From the test, this approach can predict the hydration site at the accuracy about 80% when the calculated score lower than -4.0. It also allows the assessment of whether or not a given water molecule should be targeted for displacement in ligand design. Overall, the wPMF presented here provides an optional solution to many water related computational modeling problems, some of which can be highly valuable as part of a rational drug design strategy. PMID:23114863

  8. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water.

    PubMed

    Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2015-11-01

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater, calculate the resultant gray water footprints (GWFs), and relate the GWFs per river basin to runoff to calculate the N-related water pollution level (WPL) per catchment. The accumulated global GWF related to anthropogenic N loads in the period 2002-2010 was 1310(12) m3/y. China contributed about 45% to the global total. Three quarters of the GWF related to N loads came from diffuse sources (agriculture), 23% from domestic point sources and 2% from industrial point sources. Among the crops, production of cereals had the largest contribution to the N-related GWF (18%), followed by vegetables (15%) and oil crops (11%). The river basins with WPL>1 (where the N load exceeds the basin's assimilation capacity), cover about 17% of the global land area, contribute about 9% of the global river discharge, and provide residence to 48% of the global population. PMID:26440220

  9. Multiple metals predict prolactin and thyrotropin (TSH) levels in men

    SciTech Connect

    Meeker, John D.; Rossano, Mary G.; Protas, Bridget; Diamond, Michael P.; Puscheck, Elizabeth; Daly, Douglas; Paneth, Nigel; Wirth, Julia J.; Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI

    2009-10-15

    Exposure to a number of metals can affect neuroendocrine and thyroid signaling, which can result in adverse effects on development, behavior, metabolism, reproduction, and other functions. The present study assessed the relationship between metal concentrations in blood and serum prolactin (PRL) and thyrotropin (TSH) levels, markers of dopaminergic, and thyroid function, respectively, among men participating in a study of environmental influences on male reproductive health. Blood samples from 219 men were analyzed for concentrations of 11 metals and serum levels of PRL and TSH. In multiple linear regression models adjusted for age, BMI and smoking, PRL was inversely associated with arsenic, cadmium, copper, lead, manganese, molybdenum, and zinc, but positively associated with chromium. Several of these associations (Cd, Pb, Mo) are consistent with limited studies in humans or animals, and a number of the relationships (Cr, Cu, Pb, Mo) remained when additionally considering multiple metals in the model. Lead and copper were associated with non-monotonic decrease in TSH, while arsenic was associated with a dose-dependent increase in TSH. For arsenic these findings were consistent with recent experimental studies where arsenic inhibited enzymes involved in thyroid hormone synthesis and signaling. More research is needed for a better understanding of the role of metals in neuroendocrine and thyroid function and related health implications.

  10. Level of evidence for reasonable assurance guides to prediction

    SciTech Connect

    Schweitzer, D.G.; Sastre, C.

    1987-04-01

    Over the past years, the DOE Contractors have produced a great deal of work that has been extensively reviewed and criticized by the Nuclear Regulatory Commission (NRC), the Materials Review Board (MRB) of the DOE, the Advisory Committee on Reactor Safeguards (ACRS), and the technical support group at Brookhaven National Laboratory (BNL). Common aspects of the reviews and criticisms have provided information on the level of evidence required by the scientific community to defend performance claims. Important indicators of the type of evidence that the NRC will require for favorable decisions of reasonable assurance also can be obtained from 10 CFR 60 and its rationale, from NRC guides and Technical Position papers, from past reviews of the DOE programs by NRC Contractors, and from the use of reasonable assurance by the NRC in its 1984 Waste Confidence Decision. This report describes general concepts related to the acceptability and unacceptability of the level of evidence needed to defend claims with reasonable assurance. The concepts were formulated on the basis of analyses of the NRC position papers, and of common aspects of the reviews and criticisms dealing with compliance demonstration.

  11. Interpersonal Stressors Predict Ghrelin and Leptin Levels in Women

    PubMed Central

    Jaremka, Lisa M.; Belury, Martha A.; Andridge, Rebecca R.; Malarkey, William B.; Glaser, Ronald; Christian, Lisa; Emery, Charles F.; Kiecolt-Glaser, Janice K.

    2014-01-01

    Objective Stressful events enhance risk for weight gain and adiposity. Ghrelin and leptin, two hormones that are implicated in appetite regulation, may link stressful events to weight gain; a number of rodent studies suggest that stressors increase ghrelin production. The present study investigated the links among daily stressors, ghrelin and leptin, and dietary intake in humans. Method Women (N = 50) completed three study appointments that were scheduled at least 2 weeks apart. At each visit, women arrived fasting and ate a standardized breakfast and lunch. Blood samples were collected 45 minutes after each meal. Women completed a self-report version of the Daily Inventory of Stressful Events (DISE) at each appointment. Two composites were created from the DISE data, reflecting the number of stressors that did and did not involve interpersonal tension. Results Women who experienced more stressors involving interpersonal tension had higher ghrelin and lower leptin levels than those who experienced fewer interpersonal stressors. Furthermore, women who experienced more interpersonal stressors had a diet that was higher in calories, fat, carbohydrates, protein, sugar, sodium, and fiber, and marginally higher in cholesterol, vegetables (but not fruits), vitamin A, and vitamin C. Stressors that did not involve interpersonal tension were unrelated to ghrelin and leptin levels or any of the dietary components examined. Conclusions These data suggest that ghrelin and leptin may link daily interpersonal stressors to weight gain and obesity. PMID:25032903

  12. Reduction in predicted survival times in cold water due to wind and waves.

    PubMed

    Power, Jonathan; Simões Ré, António; Barwood, Martin; Tikuisis, Peter; Tipton, Michael

    2015-07-01

    Recent marine accidents have called into question the level of protection provided by immersion suits in real (harsh) life situations. Two immersion suit studies, one dry and the other with 500 mL of water underneath the suit, were conducted in cold water with 10-12 males in each to test body heat loss under three environmental conditions: calm, as mandated for immersion suit certification, and two combinations of wind plus waves to simulate conditions typically found offshore. In both studies mean skin heat loss was higher in wind and waves vs. calm; deep body temperature and oxygen consumption were not different. Mean survival time predictions exceeded 36 h for all conditions in the first study but were markedly less in the second in both calm and wind and waves. Immersion suit protection and consequential predicted survival times under realistic environmental conditions and with leakage are reduced relative to calm conditions. PMID:25766418

  13. Subsidence at the Fairport Harbor Water Level Gauge

    NASA Astrophysics Data System (ADS)

    Conner, D. A.

    2014-12-01

    SUBSIDENCE AT THE FAIRPORT HARBOR WATER LEVEL GAUGE I will provide information on methods being used to monitor Lake Erie water levels and earth movement at Fairport Harbor, Ohio. Glacial Isostatic Adjustment (GIA) is responsible for vertical movement throughout the Great Lakes region. Fairport Harbor is also experiencing vertical movement due to salt mining, so the nearby water level gauge operated by the National Oceanic and Atmospheric Administration (NOAA) is affected by both GIA and mining. NOAA's National Geodetic Survey (NGS) defines and maintains the National Spatial Reference System (NSRS). The NSRS includes a network of permanently marked points; a consistent, accurate, and up-to-date national shoreline; a network of Continuously Operating Reference Stations (CORS) which supports three-dimensional positioning activities; and a set of accurate models describing dynamic, geophysical processes that affect spatial measurements. The NSRS provides the spatial reference foundation for transportation, mapping, charting and a multitude of scientific and engineering applications. Fundamental elements of geodetic infrastructure include GPS CORS (3-D), water level and tide gauges (height) and a system of vertical bench marks (height). When two or more of these elements converge they may provide an independent determination of position and vertical stability as is the case here at the Fairport Harbor water level gauge. Analysis of GPS, leveling and water level data reveal that this gauge is subsiding at about 2-3 mm/year, independent of the effects of GIA. Analysis of data from the nearby OHLA GPS CORS shows it subsiding at about 4 mm/yr, four times faster than expected due to GIA alone. A long history of salt mine activity in the area is known to geologists but it came as a surprise to other scientists.

  14. Regional and State Level Water Scarcity Report: Northeast United States

    NASA Astrophysics Data System (ADS)

    Nicoletti, C. K.; Lopez-Morales, C. A.; Hoover, J. H.; Voigt, B. G.; Vorosmarty, C. J.; Mohammed, I. N.

    2010-12-01

    There are an abundance of large-scale, coarse resolution global water scarcity studies, but the existing literature fails to address regional and state specific scarcity measures. Moreover, while environmental water requirements are an integral factor in the development and implementation of sustainable water management practices, only recently has this notion been introduced to water scarcity research. In this paper, we argue that developing a preliminary measure of water scarcity, at the regional and state levels, will allow for more informed policy development. The goal of this study is to generate a more comprehensive understanding of water scarcity in the Northeast, by gathering fine scale data, applying a consistent methodology to the calculation of a scarcity index, and analyzing the results to see relative trends in spatio-temporal water scarcity. Public supply, irrigation, rural, industrial and thermo-power withdrawals have been compiled from USGS state water use publications from 1950 to 1985. Using the WBMplus water model runoff data, state specific in-stream environmental water requirements were calculated using the accepted hydro-ecological methodology. Water scarcity was then calculated as a ratio of water withdrawals to total available water minus environmental flow requirements for the system. In so doing, this study generates a spatially explicit and temporally varying water scarcity indicator (WSI) for the Northeastern United States between 1950 and 2000 at the regional and state levels at a five-year time interval. Calculation of a spatial and temporal water scarcity indicator enabled us to identify regions and specific states that were: slightly exploited (WSI < 0.3), moderately exploited (0.31.0). The minimum environmental water requirements to maintain in-stream aquatic and riparian ecosystems for the Northeastern states ranged between 27.5 to 36.3 percent of the mean annual runoff within Vermont and Maryland, respectively. The regional WSI values ranged between 0.199 in 1950 and 0.512 in 1995, indicating increasing water scarcity over time as population and employment growth has placed greater demands on water resources. Additionally, our study revealed that in 1980, Massachusetts, Pennsylvania and New Jersey scarcity levels were 0.733, 0.790 and 0.857, respectively. Although the Northeastern United States is commonly perceived as a water rich region, moderate to heavily exploited levels of water stress were observed over the time period when a finer spatial scale is utilized. Water scarcity indicator values were disaggregated by state for each time period and illustrated using a series of maps. Additional descriptive statistics were used to elucidate the differences in water scarcity between states over time.

  15. Perchlorate levels in soil and waters from the Atacama Desert.

    PubMed

    Calderón, R; Palma, P; Parker, D; Molina, M; Godoy, F A; Escudey, M

    2014-02-01

    Perchlorate is an anion that originates as a contaminant in ground and surface waters. The presence of perchlorate in soil and water samples from northern Chile (Atacama Desert) was investigated by ion chromatography-electrospray mass spectrometry. Results indicated that perchlorate was found in five of seven soils (cultivated and uncultivated) ranging from 290 ± 1 to 2,565 ± 2 μg/kg. The greatest concentration of perchlorate was detected in Humberstone soil (2,565 ± 2 μg/kg) associated with nitrate deposits. Perchlorate levels in Chilean soils are greater than those reported for uncultivated soils in the United States. Perchlorate was also found in superficial running water ranging from 744 ± 0.01 to 1,480 ± 0.02 μg/L. Perchlorate water concentration is 30-60 times greater than levels established by the United States Environmental Protection Agency (24.5 μg/L) for drinking. PMID:24165784

  16. Predicting water quality data in an unfilled reservoir using microcosm sediment-water simulation.

    PubMed

    Craft, D

    1985-12-01

    The technique of microcosm sediment-water simulation was used to obtain predictive water quality data for the proposed Jordanelle Reservoir, Heber City, Utah. Sediment-water microcosms were prepared for four sites located in the north arm of the reservoir basin, including two sites located in an abandoned acid mine tailings pond. Data obtained from the tailings pond microcosms indicated that low pH water and high trace metal concentrations may exist in this area of the reservoir. These data suggested that the tailings material should be contained or removed prior to reservoir filling. Other sites in the reservoir basin exhibited water quality considered normal for reservoirs of similar elevation and basin geology. Near the proposed dam, anaerobic conditions could develop rapidly due to available concentrations of organic carbon, and the subsequent release of Zn, Fe, and Mn may pose a water quality problem. At the sampling site near Keetley, simulation data indicated that anaerobic conditions will not develop as quickly or be as severe as conditions expected near the dam. Overall, the availability of nitrogen and phosphorus in the Provo River and Jordanelle sediments indicated that problems with algal blooms may exist in the reservoir. Also presented is a brief discussion of the advantages and disadvantages associated with microcosm sediment-water simulation. PMID:24213801

  17. Predicting Group-Level Outcome Variables from Variables Measured at the Individual Level: A Latent Variable Multilevel Model

    ERIC Educational Resources Information Center

    Croon, Marcel A.; van Veldhoven, Marc J. P. M.

    2007-01-01

    In multilevel modeling, one often distinguishes between macro-micro and micro-macro situations. In a macro-micro multilevel situation, a dependent variable measured at the lower level is predicted or explained by variables measured at that lower or a higher level. In a micro-macro multilevel situation, a dependent variable defined at the higher

  18. Measuring Water Level Fluctuations of two Connected Wetlands in the Dominican Republic Using InSAR

    NASA Astrophysics Data System (ADS)

    Pichardo Marcano, M. D.; Liu, L.; Zebker, H. A.

    2012-12-01

    Wetlands are ecosystems of high endemism and great biodiversity. Using the double-reflected radar waves off the water surface and trunks of inundated vegetation, Interferometric Synthetic Aperture Radar (InSAR) is capable of measuring water level fluctuations from space at a cm-level accuracy in these ecosystems with emergent vegetation. InSAR can provide a high spatial resolution over a large area that the more traditional terrestrial-based methods lack. In this study, we applied InSAR to study the seasonal variations in water level of the wetlands near two lakes in the southwest of the Dominican Republic: Lake Enriquillo, a highly saline lake designated as a Wetland of International Importance under the Ramsar Convention in 2002, and Laguna del Limon. Both lake-wetland systems are located in the Jaragua-Bahoruco-Enriquillo Biosphere Reserve. Since 2003 the water level of Lake Enriquillo has increased drastically and caused the evacuation of many farmers from nearby villages. Lake level changes also affected the habitats of several native and migratory species. We used the data acquired by the Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor on board of the Japanese Advanced Land Observation Satellite (ALOS) from October 2008 to January 2011. For the smaller lake, Laguna del Limon, we found a seasonal variation of 10-15 centimeters. This result was confirmed using two different satellite paths. For Lake Enriquillo we found a net decrease of about 20 centimeters in the water level from September 2009 to January 2011. This result agrees with an independent estimation based on lake hydrodynamics model predictions. In addition, our InSAR-based time series of lake level fluctuations revealed distinct behaviors of the two wetlands. For the Lake Enriquillo we found a continuous decrease in the water level throughout 2010 with a brief increase of the water level during the summer months, while for Laguna del Limon during the summer months the water level decreased and the lake presented a net increase in the water level. The decrease in water level for Lake Enriquillo can be explained by the reduce precipitation rate in 2010 compared to previous years. We demonstrate that InSAR is an effective way to measure water level fluctuations at wetlands in this region. The same method could be applied to other wetlands in the area to fully understand the complex hydrology of the connected wetland systems and the impacts of the hydrological changes on the environment and local human community.

  19. Wii mote as hydrological sensor: observation of water level fluctuations

    NASA Astrophysics Data System (ADS)

    Luxemburg, W.; Hut, R.; Weijs, S.; Hegnauer, M.

    2009-12-01

    The input device of the Nintendo Wii, the Wii-mote offers scientist a multitude of cheap, high quality sensors; ideal for proof of concept testing. For a specific application, i.e. the water level fluctuation in a floating evaporation pan the Wii-mote was tested as the observing device. It is shown that the controller can observe movements with high enough temporal and spatial resolution of up to 4 infrared LEDs to describe water level movements. Floating pans positioned in lakes and reservoirs better represent open water evaporation than evaporation pans installed on land. On the other hand performing water level measurements in a floating pan is more complicated due to movement of the pan and wave activities in the pan. The Wii-mote was mounted on the side of a standard class A-pan and a float was placed in the middle of the pan, with 4 LEDs on top moving along a fixed bar. The information that the Wii-mote wirelessly sends by blue tooth was captured on a laptop. With a MATLAB routine this data was converted into movement of the LEDs relatively to the controller. The observations show that wave activities are nicely captured with a typical spatial resolution smaller than 0.1 mm in our set-up and a temporal resolution of maximum 100 Hz. A frequency domain filter was applied to the observed datasets to obtain average water levels. In our laboratory setting the pan was placed in a large basin with a wave generator. A constant, but small, rate of water was added to the evaporation pan. The average pan levels from the filtered datasets showed systematically lower levels compared to the level without any wave activities. This is a typical effect of waves that occur in shallow basins. However, the added water with rates up to 5 mm/hour were clearly recognized in the filtered datasets which indicates that the Wii-mote is very well capable as a sensor for water level observations.

  20. Thymidylate synthase mRNA levels in plasma and tumor as potential predictive biomarkers for raltitrexed sensitivity in gastric cancer.

    PubMed

    Shen, Jie; Wang, Hao; Wei, Jia; Yu, Lixia; Xie, Li; Qian, Xiaoping; Zou, Zhengyun; Liu, Baorui; Guan, Wenxian

    2012-09-15

    Different chemotherapeutic agents currently available are effective only in certain subsets of patients. Predictive biomarkers will be helpful in choosing those agents and can improve the clinical efficiency by a more personalized chemotherapeutic approach. Raltitrexed is a novel water-soluble quinazoline folate analogue and can improve the efficiency of gastric cancer treatment, but its predictive biomarker remains unclear. The aim of our study was to investigate the role of plasma and tumor thymidylate synthase (TS) mRNA levels as predictive biomarkers for raltitrexed in gastric cancer. In total, 125 freshly removed gastric tumor specimens and corresponding blood samples before surgery were collected. Raltitrexed sensitivity was determined by histoculture drug response assay procedures. TS mRNA levels in tumor and plasma were determined by quantitative reverse transcription polymerase chain reaction. Plasma TS mRNA level in cancer patients was significantly higher than in healthy subjects (p = 0.009) and was significantly correlated with TS mRNA level in tumor tissues (r = 0.665, p < 0.001). Tumor and plasma TS mRNA expression levels were significantly lower in raltitrexed-sensitive group than in resistant group (p = 0.007 and 0.013, respectively). The sensitivity and accuracy of raltitrexed sensitivity prediction based on plasma TS mRNA levels were 82 and 60%, respectively, whereas the prediction based on tumor TS mRNA reached 70% sensitivity and 68% accuracy. These results indicate that TS mRNA level in plasma can mirror tumor TS mRNA level, and both of them can be used to predict raltitrexed sensitivity in gastric cancer. PMID:22422354

  1. Significance of steam separator models for BWR water level transients

    SciTech Connect

    Akiyama, T.; Shida, T.; Shibuya, A.

    1988-01-01

    The loss-of-power accident (LOPA) test is required in the series of startup tests for a new plant. In this test, the reactor water level goes down further than in other tests, but it stays a sufficient margin above the lower limit level. However, there is a tendency for simulation results to give an overly conservative water level response compared with test data. Such a situation requires greater standby pump capacity in the feedwater system. After reviewing several possible model improvements, it was noted that the performance of the steam separator has a significant effect on the reactor water level calculation for this event. To develop an improved model, the inverse problem approach (IPA) was applied. The IPA consists of three main procedures: (a) state estimation from the sensed signal, (b) forced simulation to replace the method variable with the estimated state, and (c) introducing hypothetical parameters and tracing them so that the difference between calculated and measured reactor water levels is minimized during the simulation. The simulation results are summarized.

  2. CALCULATION OF NONLINEAR CONFIDENCE AND PREDICTION INTERVALS FOR GROUND-WATER FLOW MODELS.

    USGS Publications Warehouse

    Cooley, Richard L.; Vecchia, Aldo V.

    1987-01-01

    A method is derived to efficiently compute nonlinear confidence and prediction intervals on any function of parameters derived as output from a mathematical model of a physical system. The method is applied to the problem of obtaining confidence and prediction intervals for manually-calibrated ground-water flow models. To obtain confidence and prediction intervals resulting from uncertainties in parameters, the calibrated model and information on extreme ranges and ordering of the model parameters within one or more independent groups are required. If random errors in the dependent variable are present in addition to uncertainties in parameters, then calculation of prediction intervals also requires information on the extreme range of error expected. A simple Monte Carlo method is used to compute the quantiles necessary to establish probability levels for the confidence and prediction intervals. Application of the method to a hypothetical example showed that inclusion of random errors in the dependent variable in addition to uncertainties in parameters can considerably widen the prediction intervals.

  3. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    PubMed Central

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality. One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367–557) in patients with AAS and 383 U/L (IQR 331–460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37–51) and the specificity was 73% (95% CI 69–76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH ≥ 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11–4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable and in nonsurgically treated patients. Plasma LDH constitutes a biomarker of poor outcome in patients with AAS. LDH is a rapid and universally available assay that could be used to improve risk stratification and to individualize treatment in patient groups where options are controversial. PMID:26871831

  4. Fuzzy logic model of lake water level fluctuations in Lake Van, Turkey

    NASA Astrophysics Data System (ADS)

    Altunkaynak, A.; ?en, Z.

    2007-11-01

    Lake Van is one of the largest terminal lakes in the world. In recent years, significant lake level fluctuations have occurred and can be related to global climatic change. This fluctuation sometimes exhibits abrupt shifts. Floods originating from the lake can cause considerable damage and loss in agriculture and urban areas. Therefore, water level forecasting plays a significant role in planning and design. This study is aimed at predicting future lake levels from past rainfall amounts and water level records. A dynamical change of the lake level is evaluated by the fuzzy approach. The fuzzy inference system has the ability to use fuzzy membership functions that include the uncertainties of the concerned event. This method is applied for Lake Van, in east Turkey. Furthermore, model capabilities are compared with ARMAX model. It is shown that lower absolute errors are obtained with the Takagi-Sugeno fuzzy approach than with the ARMAX model.

  5. Empirical prediction of peak pressure levels in anthropogenic impulsive noise. Part I: Airgun arrays signals.

    PubMed

    Galindo-Romero, Marta; Lippert, Tristan; Gavrilov, Alexander

    2015-12-01

    This paper presents an empirical linear equation to predict peak pressure level of anthropogenic impulsive signals based on its correlation with the sound exposure level. The regression coefficients are shown to be weakly dependent on the environmental characteristics but governed by the source type and parameters. The equation can be applied to values of the sound exposure level predicted with a numerical model, which provides a significant improvement in the prediction of the peak pressure level. Part I presents the analysis for airgun arrays signals, and Part II considers the application of the empirical equation to offshore impact piling noise. PMID:26723364

  6. The effects of water levels on Two Lake Ontario Wetlands

    USGS Publications Warehouse

    Busch, Wolf-Dieter N.; Osborn, Ronald G.; Auble, Gregor T.

    1990-01-01

    Lake Ontario's water levels have been regulated since 1959, after the completion of the St. Lawrence River navigation and hydropower development project. The plan used to guide the regulation (1958-D) has been in effect since 1963 (Bryce, 1982). The purpose of the regulation was to prevent extreme high-water levels which increased erosion on the south shore of Lake Ontario, while protecting the interests of commercial navigation and hydropower production in the St. Lawrence River (T. Brown, personal communication, member of the Board of Control). Major user groups have sought further reductions in the range of lake level fluctuations. However, the biological resources, especially the lake influenced wetlands, benefit from the waterlevel fluctuations. Great Lakes wetlands are the most important habitat for wildlife of the region (Tilton and Schwegler, 1978). We provide information here on the responses of wetland plant communities in two wetlands to changes in lake levels over time.

  7. Improving frost-simulation subroutines of the Water Erosion Prediction Project (WEPP) model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion models play an important role in assessing the influence of human activities on the environment. For cold areas, adequate frost simulation is crucial for predicting surface runoff and water erosion. The Water Erosion Prediction Project (WEPP) model, physically-based erosion-prediction softwa...

  8. Politics of innovation in multi-level water governance systems

    NASA Astrophysics Data System (ADS)

    Daniell, Katherine A.; Coombes, Peter J.; White, Ian

    2014-11-01

    Innovations are being proposed in many countries in order to support change towards more sustainable and water secure futures. However, the extent to which they can be implemented is subject to complex politics and powerful coalitions across multi-level governance systems and scales of interest. Exactly how innovation uptake can be best facilitated or blocked in these complex systems is thus a matter of important practical and research interest in water cycle management. From intervention research studies in Australia, China and Bulgaria, this paper seeks to describe and analyse the behind-the-scenes struggles and coalition-building that occurs between water utility providers, private companies, experts, communities and all levels of government in an effort to support or block specific innovations. The research findings suggest that in order to ensure successful passage of the proposed innovations, champions for it are required from at least two administrative levels, including one with innovation implementation capacity, as part of a larger supportive coalition. Higher governance levels can play an important enabling role in facilitating the passage of certain types of innovations that may be in competition with currently entrenched systems of water management. Due to a range of natural biases, experts on certain innovations and disciplines may form part of supporting or blocking coalitions but their evaluations of worth for water system sustainability and security are likely to be subject to competing claims based on different values and expertise, so may not necessarily be of use in resolving questions of "best courses of action". This remains a political values-based decision to be negotiated through the receiving multi-level water governance system.

  9. Hydrologic effects on water level changes associated with episodic fault creep near Parkfield, California

    USGS Publications Warehouse

    Roeloffs, E.A.; Burford, S.S.; Riley, F.S.; Records, A.W.

    1989-01-01

    As part of the Parkfield, California, earthquake prediction experiment, water level is monitored in a well 460 m from the main trace of the San Andreas fault on Middle Mountain, in the preparation zone of the anticipated Parkfield earthquake. The well configuration allows water level to be monitored in two fluid reservoirs at depths of 85 and 250 m below land surface. During 1987, water level changes were recorded during 12 of the 18 episodes of accelerated fault creep detected by a creep meter spanning the fault trace 750 m northwest of the well. The creep-related water level changes in the shallow reservoir have durations of less than 1 day, whereas in the deeper reservoir the changes persist for as long as 2 months. These data suggest that the transient nature of the water level changes in the shallow interval is due to vertical flow to the water table and is not evidence that creep events propagate past the well. -from Authors

  10. On the crystallographic accuracy of structure prediction by implicit water models: Tests for cyclic peptides

    NASA Astrophysics Data System (ADS)

    Goldtzvik, Yonathan; Goldstein, Moshe; Benny Gerber, R.

    2013-03-01

    Five small cyclic peptides and four implicit water models, were selected for this study. DEEPSAM, a structure prediction algorithm built upon TINKER, was used. Structures predicted using implicit water models were compared with experimental data, and with predictions calculated in the gas phase. The existence of very accurate X-ray crystallographic data allowed firm and conclusive comparisons between predictions and experiment. The introduction of implicit water models into the calculations improved the RMSD from experiment by about 13% compared with computations neglecting the presence of water. GBSA is shown to be consistently the best implicit water model.

  11. Intermediate Period Response of Water Levels in Wells to Crustal Strain: Sensitivity and Noise Level

    NASA Astrophysics Data System (ADS)

    Rojstaczer, Stuart

    1988-11-01

    The response of water levels in wells to earth tides indicates that wells can be used to detect small crustal strain. Vertical groundwater flow between the well intake and the water table can significantly attenuate this sensitivity. The attenuation of strain sensitivity as a function of frequency can be inferred from the response of water wells to atmospheric loading. For the wells examined in this study, significant attenuation due to water table drainage can occur when strain accumulates gradually over periods of days to weeks. Despite the presence of attenuation the wells are still sensitive strain meters over this range in period. At a frequency of 2.5 cycles/day, the noise level of the water level records examined is -130 dB relative to 1 strain2/Hz. This noise level is about the same as that reported for dilatometers and wire strain meters, but is at least 10 dB higher than that reported for laser strain meters. In the frequency band of 0.025 to 2.5 cycles/day, the noise level of the water level records examined increases roughly 25 dB-per-decade decrease in frequency. Some of this noise is due to the influence of atmospheric loading. When the effects of atmospheric loading are removed from the record, the noise level is reduced to roughly 20 dB-per-decade for frequencies above 0.08 cycles/day, a rate typical of high-quality strain meters. For periods slightly less than a month, the wells have a lower noise level in terms of areal strain than that of the best geodetic distance measurements.

  12. Effect of Increased Water Vapor Levels on TBC Lifetime

    SciTech Connect

    Pint, Bruce A; Garner, George Walter; Lowe, Tracie M; Haynes, James A; Zhang, Ying

    2011-01-01

    To investigate the effect of increased water vapor levels on thermal barrier coating (TBC) lifetime, furnace cycle tests were performed at 1150 C in air with 10 vol.% water vapor (similar to natural gas combustion) and 90 vol.%. Either Pt diffusion or Pt-modified aluminide bond coatings were applied to specimens from the same batch of a commercial second-generation single-crystal superalloy and commercial vapor-deposited yttria-stabilized zirconia (YSZ) top coats were applied. Three coatings of each type were furnace cycled to failure to compare the average lifetimes obtained in dry O{sub 2}, using the same superalloy batch and coating types. Average lifetimes with Pt diffusion coatings were unaffected by the addition of water vapor. In contrast, the average lifetime of Pt-modified aluminide coatings was reduced by more than 50% with 10% water vapor but only slightly reduced by 90% water vapor. Based on roughness measurements from similar specimens without a YSZ coating, the addition of 10% water vapor increased the rate of coating roughening more than 90% water vapor. Qualitatively, the amount of {beta}-phase depletion in the coatings exposed in 10% water vapor did not appear to be accelerated.

  13. Predictive value of the efficacy of tolvaptan in liver cirrhosis patients using free water clearance

    PubMed Central

    MIYAAKI, HISAMITSU; NAKAMURA, YUTAKA; ICHIKAWA, TATSUKI; TAURA, NAOTA; MIUMA, SATOSHI; SHIBATA, HIDETAKA; HONDA, TAKUYA; NAKAO, KAZUHIKO

    2015-01-01

    Tolvaptan, an arginine vasopressin V2 antagonist, is available for patients with refractory ascites. Free water clearance was evaluated as a predictor of tolvaptan efficacy. Twenty-one patients with refractory ascites were enrolled in the present study. Liver function test, renal function test, urine volume, free water clearance and osmotic pressure were measured at baseline (day 0) and for each dose of tolvaptan (1.875, 3.75 and 7.5 mg), and compared for efficacy. Tolvaptan increased urine volume and free water clearance decreased osmotic pressure at each dose of tolvaptan, compared to pretreatment levels. Compared to baseline, an increased volume of free water clearance at 1.875 mg of tolvaptan showed a significant correlation with body weight reduction (r=0.480 and P=0.028). Any factors (age, liver function test and renal function test) at pretreatment showed no significant correlation with body weight reduction. An increased volume of urine and osmotic pressure at each dose was not significantly correlated with the tolvaptan effect. Compared to baseline, an increased volume of free water clearance at 1.875 mg of tolvaptan in responders was significantly increased, compared to non-responders (270241 ml/day: 27257 ml/day; P=0.042). In conclusion, an increased volume of free water clearance on day 1 was significantly associated with body weight reduction. Free water clearance could be a simple and useful marker for the prediction of tolvaptan efficacy. PMID:26623035

  14. Predictive analyses of ground-water discharges in the Willow Creek Watershed, northeast Nebraska

    USGS Publications Warehouse

    Dugan, Jack T.; Lappala, E.G.

    1978-01-01

    Ground-water discharge to Willow Creek in northeast Nebraska was predicted with a digital model of the ground-water/surface-water system. Recharge and irrigation requirements were determined with a model of the soil zone. The regional aquifer is Pliocene and Pleistocene sands and gravels. Water in the regional aquifer is unconfined in the western part of the watershed and confined in the eastern part. The confining layer is Pleistocene eolian silts with very fine sand interbeds overlying a basal clay. Where the regional aquifer is unconfined, perennial flow of Willow Creek is sustained by ground-water discharge. Where it is confined, the low hydraulic conductivity of the confining beds isolates the regional aquifer from Willow Creek. Adequate agreement between simulated and observed streamflows and water levels during 1975 and 1976 was obtained by modifying initial estimates of hydraulic conductivity and specific storage. The future perennial flow of Willow Creek was simulated by superimposing six patterns of ground-water withdrawals upon variations in recharge for a monthly climatic sequence identical with the period 1931-34. These analyses showed that the perennial monthly flows would be less than 12 cubic feet per second at least 50 percent of the time. (Woodard-USGS)

  15. Comparison of numerical models for predicting ground water rebound in abandoned deep mine systems

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Baek, H.; Kim, D.

    2012-12-01

    Cessation of dewatering usually results in ground water rebound after closing a deep underground mine because the mind voids and surrounding strata flood up to the levels of decant points such as shafts and drifts. Several numerical models have been developed to predict the timing, magnitude and location of discharges resulting from ground water rebound. We compared the numerical models such as VSS-NET, GRAM and MODFLOW codes at different spatial and time scales. Based on the comparisons, a new strategy is established to develop a program for ground water rebound modeling in abandoned deep mine systems. This presentation describes the new strategy and its application to an abandoned underground mine in Korea.

  16. Changes in copper water-effect ratios in toxicity tests conducted at varying water hardness levels

    SciTech Connect

    Cohen, A.S.; Brady, M.D.; Stubblefield, W.A.

    1995-12-31

    Side-by-side acute toxicity tests (Oncorhynchus mykiss and Ceriodaphnia dubia) were conducted in SITE waters collected from a western Montana river and in laboratory waters reconstituted to match the hardness and alkalinity of the SITE water samples. Tests were conducted according to USEPA guidance on the determination and use of Water-Effect Ratios (WER). Multiple WERS, calculated as the ratio of LC50 values from SITE and LAB water tests, were regressed against water hardness and provided significant correlations (r{sup 2}=0.7 to 0.8 (logarithmic)). WERs increased with decreasing water hardness ranging from 1.1 at 282 mg/l hardness to 8.9 at 60 mg/l hardness. Additional tests showed that WER values for single water samples tested at multiple hardness levels (samples augmented with calcium and magnesium salts) again significantly correlated with water hardness. These results are independent of the known ameliorating effect of water hardness on metals toxicity, since WERs compared LC50s for tests conducted at identical water hardness levels. One explanation for this hardness-WER relationship may be that both hardness and certain other toxicity-reducing water quality parameters (e.g., suspended solids, organic carbon) compete in providing protection from the toxic effects of metals in surface waters. As hardness decreases, the importance of these other water quality parameters may increase, thus enhancing the difference between toxicity in soft laboratory reconstituted waters (lacking organic enrichment or suspended solids) and soft site-waters. These results have potentially important implications for the application of national Ambient Water Quality Criteria (Gold Book values) to soft surface waters moderately enriched in organic carbon, suspended solids, or other toxicity-mitigating factors.

  17. Ensemble approach for projections of return periods of extreme water levels in Estonian waters

    NASA Astrophysics Data System (ADS)

    Eelsalu, Maris; Soomere, Tarmo; Pindsoo, Katri; Lagemaa, Priidik

    2014-12-01

    The contribution of various drivers to the water level in the eastern Baltic Sea and the presence of outliers in the time series of observed and hindcast water level lead to large spreading of projections of future extreme water levels. We explore the options for using an ensemble of projections to more reliably evaluate return periods of extreme water levels. An example of such an ensemble is constructed by means of fitting several sets of block maxima (annual maxima and stormy season maxima) with a Generalised Extreme Value, Gumbel and Weibull distribution. The ensemble involves projections based on two data sets (resolution of 6 h and 1 h) hindcast by the Rossby Centre Ocean model (RCO; Swedish Meteorological and Hydrological Institute) and observed data from four representative sites along the Estonian coast. The observed data are transferred into the grid cells of the RCO model using the HIROMB model and a linear regression. For coastal segments where the observations represent the offshore water level well, the overall appearance of the ensembles signals that the errors of single projections are randomly distributed and that the median of the ensemble provides a sensible projection. For locations where the observed water level involves local effects (e.g. wave set-up) the block maxima are split into clearly separated populations. The resulting ensemble consists of two distinct clusters, the difference between which can be interpreted as a measure of the impact of local features on the water level observations.

  18. Low-level measurements of tritium in water.

    PubMed

    Villa, M; Manjn, G

    2004-01-01

    Using a liquid scintillation counter, an experimental procedure for measuring low-level activity concentrations of tritium in environmental water has been developed by our laboratory, using the electrolytic tritium enrichment. Additionally, some quality tests were applied in order to assure the goodness of the method. Well-known water samples collected in the Tagus River (West of Spain) and the Danube River (Bulgaria), both affected by nuclear plant releases, were analysed and results were compared to previous data. The analytical procedure was applied to drinking water samples from the public water supply of Seville and mineral waters from different springs in Spain in order to characterize its origin. Due to the very low levels of tritium in the analysed samples, some results were reported as lower than the minimum detectable activity concentration (MDA). However, the count rate of these measurements was over the background count rate of LS counter in all the cases. For that reason, an exhaustive discussion about the meaning of the MDA, using an experimental essay, was made in order to establish a rigorous criterion that leads to a reliable value in the case of low-level measurements. PMID:15177365

  19. [Relationship between groundwater level in riparian wetlands and water level in the river].

    PubMed

    Xu, Hua-Shan; Zhao, Tong-Qian; Meng, Hong-Qi; Xu, Zong-Xue; Ma, Chao-Hong

    2011-02-01

    The development and degradation processes of riparian wetlands are significantly affected by river hydrological processes. By observing the variation of groundwater levels in riparian wetlands at the Kouma section of the Yellow River Wetland, especially that during the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between groundwater level in riparian wetlands and flood water level in the river is studied. The results show that groundwater level in riparian wetlands is significantly affected by water level in the river investigated. There is a negative exponential relationship between groundwater level and the distance between wells and river. The correlation coefficient shows the maximum (R2 > 0.98) during the period of regulation for water and sediment. Affected by the cultivation system in the flooding area, distance between monitoring wells and river bank, water level in the river variation of groundwater level in the wetland changed greatly. In artificial wetland, which is far from the river, the inter-annual variation in groundwater levels show a " (see symbol)" shape, while in the farmland, which is close to the river, the inter-annual variation of groundwater levels show a big peak. The groundwater level 400 m from the river is affected by flood events obviously, that in the area which is less than 200 m from the river is significantly affected by flood events in the area which is especially less than that in the area that is less than 100 m from the river, the groundwater level is affected by flood events intensively. The result indicated that there was a very close relationship between groundwater and surface water, and it was the hydrological ecotone between groundwater of riparian wetlands and the river. It is very important that rational protection for this region (very important for the area which is less than 100 m from the river, important for the area that is between 100 m and 200 m from the river) is critical for the conservation of water quality in the river and groundwater quality. PMID:21528555

  20. Water Erosion Prediction Project (WEPP) –Development History, Model Capabilities and Future Enhancements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Erosion Prediction Project (WEPP) was initiated in August 1985 to develop new generation water erosion prediction technology for use by federal agencies involved in soil and water conservation and environmental planning and assessment. Developed by USDA-ARS as a replacement for empirically...

  1. Water-level changes (1975-1998) in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Carlson, Carl S.; Phillips, Steven P.

    1998-01-01

    Antelope Valley is in the western part of the Mojave Desert in southern California, about 50 mi northeast of Los Angeles. Between 1975 and 1998, water levels in the valley have changed in response to a shift in ground-water use from agricultural to urban, declining in some areas and rising in others. A study to document these changes was conducted by the U.S. Geological Survey in cooperation with the Antelope Valley Water Group. This report presents the water-level data and the changes that occurred during this study period.

  2. Prediction of projectile ricochet behavior after water impact.

    PubMed

    Baillargeon, Yves; Bergeron, Guy

    2012-11-01

    Although not very common, forensic investigation related to projectile ricochet on water can be required when undesirable collateral damage occurs. Predicting the ricochet behavior of a projectile is challenging owing to numerous parameters involved: impact velocity, incident angle, projectile stability, angular velocity, etc. Ricochet characteristics of different projectiles (K50 BMG, 0.5-cal Ball M2, 0.5-cal AP-T C44, 7.62-mm Ball C21, and 5.56-mm Ball C77) were studied in a pool. The results are presented to assess projectile velocity after ricochet, ricochet angle, and projectile azimuth angle based on impact velocity or incident angle for each projectile type. The azimuth ranges show the highest variability at low postricochet velocity. The critical ricochet angles were ranging from 15 to 30. The average ricochet angles for all projectiles were pretty close for all projectiles at 2.5 and 10 incident angles for the range of velocities studied. PMID:22536929

  3. CAN FLUORIDATION AFFECT WATER LEAD LEVELS AND LEAD NEUROTOXICITY?

    EPA Science Inventory

    Recent reports have attempted to show that certain approaches to fluoridating potable water is linked to increased levels of lead(II) in the blood. We examine these claims in light of the established science and critically evaluate their significance. The completeness of nexafluo...

  4. TRIHALOMETHANE LEVELS IN HOME TAP WATER AND SEMEN QUALITY

    EPA Science Inventory

    Trihalomethane Levels in Home Tap Water and Semen Quality
    Laura Fenster, 1 Kirsten Waller, 2 Gayle Windham, 1 Tanya Henneman, 2 Meredith Anderson, 2 Pauline Mendola, 3 James W. Overstreet, 4 Shanna H. Swan5

    1California Department of Health Services, Division of Environm...

  5. Secular Global Changes in different Tidal High Water, Low Water and Range levels

    NASA Astrophysics Data System (ADS)

    Mawdsley, Robert; Haigh, Ivan; Wells, Neil

    2015-04-01

    Tides exert a major control on the coastal zone by influencing high sea levels and coastal flooding, navigation, sediment dynamics and ecology. Therefore, any changes to tides have wide ranging and important implications. In this paper, we uniquely assess secular changes in 15 regularly used tidal levels (five high water, five low water and five tidal ranges), which have direct practical applications. Using sea level data from 220 tide gauge sites, we found changes have occurred in all analysed tidal levels in many parts of the world. For the tidal levels assessed, between 36% and 63% of sites had trends significantly different (at 95% confidence level) from zero. At certain locations, the magnitude of the trends in tidal levels were similar to trends in mean sea level over the last century, with observed changes in tidal range and high water levels of over 5mm/yr and 2mm/yr respectively. More positive than negative trends were observed in tidal ranges and high water levels, and vice versa for low water levels. However we found no significant correlation between trends in mean sea level and any tidal levels. Spatially coherent trends were observed in some regions, including the north-east Pacific, German Bight and Australasia, and we also found that differences in trends occur between different tidal levels. This implies that analysing different tidal levels is important. Because changes in the tide are widespread and of similar magnitude to mean sea level rise at a number sites, changes in tides should be considered in coastal risk assessments.

  6. Water level oscillations in Monterey Bay and Harbor

    NASA Astrophysics Data System (ADS)

    Park, J.; Sweet, W. V.; Heitsenrether, R.

    2015-06-01

    Seiches are normal modes of water bodies responding to geophysical forcings with potential to significantly impact ecology and maritime operations. Analysis of high-frequency (1 Hz) water level data in Monterey, California, identifies harbor modes between 10 and 120 s that are attributed to specific geographic features. It is found that modal amplitude modulation arises from cross-modal interaction and that offshore wave energy is a primary driver of these modes. Synchronous coupling between modes is observed to significantly impact dynamic water levels. At lower frequencies with periods between 15 and 60 min, modes are independent of offshore wave energy, yet are continuously present. This is unexpected since seiches normally dissipate after cessation of the driving force, indicating an unknown forcing. Spectral and kinematic estimates of these low-frequency oscillations support the idea that a persistent anticyclonic mesoscale gyre adjacent to the bay is a potential mode driver, while discounting other sources.

  7. Water level oscillations in Monterey Bay and Harbor

    NASA Astrophysics Data System (ADS)

    Park, J.; Sweet, W.; Heitsenrether, R.

    2014-11-01

    Seiches are normal modes of water bodies responding to geophysical forcings with potential to significantly impact ecology and maritime operations. Analysis of high-frequency (1 Hz) water level data in Monterey California identifies Harbor modes between 10 and 120 s that are attributed with specific geographic features. It found that modal amplitude modulation arises from cross-modal interaction and that offshore wave energy is a primary driver of these modes. Synchronous coupling between modes is observed to significantly impact dynamic water levels. At lower frequencies between 15 and 60 min modes are independent of offshore wave energy, yet are continuously present. This is unexpected since seiches normally dissipate after cessation of the driving force, indicating an unknown forcing. Spectral and kinematic estimates of these low frequency oscillations supports the idea that a persistent anticyclonic mesoscale gyre adjacent to the Bay is a potential mode driver, while discounting other sources.

  8. Average County-Level IQ Predicts County-Level Disadvantage and Several County-Level Mortality Risk Rates

    ERIC Educational Resources Information Center

    Barnes, J. C.; Beaver, Kevin M.; Boutwell, Brian B.

    2013-01-01

    Research utilizing individual-level data has reported a link between intelligence (IQ) scores and health problems, including early mortality risk. A growing body of evidence has found similar associations at higher levels of aggregation such as the state- and national-level. At the same time, individual-level research has suggested the

  9. Water Level Dynamics in the Great Lakes of North America

    NASA Astrophysics Data System (ADS)

    Smigelski, J. R.; Tebbens, S. F.; Barton, C. C.

    2007-12-01

    Anthropogenic as well as natural fluctuations such as precipitation, runoff, snowmelt, retention time, evaporation, and outflow all contribute to water levels observed in the Great Lakes. Verified hourly water level data for five stations in Lake Michigan and four stations in Lake Superior were obtained from NOAA and examined. For each station, an hourly time series ranging from 20 to 30 years in duration was decimated to produce a time series with four hour intervals. Four distinct regions of scaling are observed with inflection points at approximately 1 day, 5 days, and 30 - 60 days. For time scales of less than one day, the power-scaling exponent (?) ranges from 0.1 to 0.5, indicating a white noise. From 1 day to 5 - 7 days, ? ranges from 1.5 to 2.6, indicating moderate to strong persistence which is probably due to frontal movements of weather systems. On timescales between 5 days and 30 - 60 days, ? ranges from 0.1 to 0.4, again indicating a white noise which may be due to monthly and seasonal weather variations within the Great Lakes System. Beyond 30 - 60 days, all stations exhibit strong persistence, with ? between 2.1 and 2.7. Barometric pressure and precipitation data also exhibit scaling with ? different from the water level data, but with breaks in slope occurring over the same period of time. The variations observed in the changing ? of water levels (environmental noise) are likely to have biological impacts on population dynamics of organisms, including rates of survival or extinction (Batchhelder and Powell 2002). Understanding biological-physical coupling and the impact of water level fluctuations is fundamental to ecosystem dynamics.

  10. Response in the trophic state of stratified lakes to changes in hydrology and water level: potential effects of climate change

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2011-01-01

    To determine how climate-induced changes in hydrology and water level may affect the trophic state (productivity) of stratified lakes, two relatively pristine dimictic temperate lakes in Wisconsin, USA, were examined. Both are closed-basin lakes that experience changes in water level and degradation in water quality during periods of high water. One, a seepage lake with no inlets or outlets, has a small drainage basin and hydrology dominated by precipitation and groundwater exchange causing small changes in water and phosphorus (P) loading, which resulted in small changes in water level, P concentrations, and productivity. The other, a terminal lake with inlets but no outlets, has a large drainage basin and hydrology dominated by runoff causing large changes in water and P loading, which resulted in large changes in water level, P concentrations, and productivity. Eutrophication models accurately predicted the effects of changes in hydrology, P loading, and water level on their trophic state. If climate changes, larger changes in hydrology and water levels than previously observed could occur. If this causes increased water and P loading, stratified (dimictic and monomictic) lakes are expected to experience higher water levels and become more eutrophic, especially those with large developed drainage basins.

  11. Global secular changes in different tidal high water, low water and range levels

    NASA Astrophysics Data System (ADS)

    Mawdsley, Robert J.; Haigh, Ivan D.; Wells, Neil C.

    2015-02-01

    Tides exert a major control on the coastal zone by influencing high sea levels and coastal flooding, navigation, sediment dynamics, and ecology. Therefore, any changes to tides have wide ranging and important implications. In this paper, we uniquely assess secular changes in 15 regularly used tidal levels (five high water, five low water and five tidal ranges), which have direct practical applications. Using sea level data from 220 tide gauge sites, we found changes have occured in all analyzed tidal levels in many parts of the world. For the tidal levels assessed, between 36% and 63% of sites had trends significantly different (at 95% confidence level) from zero. At certain locations, the magnitude of the trends in tidal levels were similar to trends in mean sea level over the last century, with observed changes in tidal range and high water levels of over 5 mm yr-1 and 2 mm yr-1, respectively. More positive than negative trends were observed in tidal ranges and high water levels, and vice versa for low water levels. However we found no significant correlation between trends in mean sea level (MSL) and any tidal levels. Spatially coherent trends were observed in some regions, including the north-east Pacific, German Bight and Australasia, and we also found that differences in trends occur between different tidal levels. This implies that analyzing different tidal levels is important. Because changes in the tide are widespread and of similar magnitude to MSL rise at a number sites, changes in tides should be considered in coastal risk assessments.

  12. Effect of pumpage on ground-water levels as modeled in Laramie County, Wyoming

    USGS Publications Warehouse

    Crist, Marvin A.

    1980-01-01

    Groundwater is being extensively developed for domestic, agricultural, and industrial use in a 2,320-square mile area in Laramie County, WY., bounded approximately by Horse Creek on the north, Nebraska on the east, Colorado on the south, and pre-Tertiary outcrops on the west. Currently (1977) about 47,300 acres of land are irrigated with groundwater. Groundwater levels are declining in some areas as much as 4 feet per year. The investigation was made to provide State water administrators with data on water-level changes resulting from present (1977) groundwater withdrawals and to provide a means of predicting the future effect of groundwater development. A digital model was developed of the hydrologic system in the post-Cretaceous rocks. The ability of the model to simulate the hydrologic system was determined by comparing the water-level changes measured at 37 observation wells located in areas of irrigation pumping with the water-level changes calculated by the model for 1971-77. Comparison of the measured and calculated changes showed agreement with a root-mean-square deviation of + or - 3.6 feet with 8 feet as the maximum deviation. It is concluded that the model adequately simulates present hydrologic conditions in the post-Cretaceous rocks and may be used to predict the effect of applied stress to the system. (USGS)

  13. Mountain Pine Beetle Impact on Stand-level Water Balance

    NASA Astrophysics Data System (ADS)

    Reilly, J. A.; Woods, S.

    2012-12-01

    The recent mountain pine beetle (MPB) epidemic has disturbed millions of hectares throughout the Rocky Mountain West. The most persistent effects of MPB infestation on the stand-level water balance are likely concomitant with the grey stage of the disturbance cycle. The grey stage occurs within 3 to 5 years of the initial infestation after the needles of an infected tree have turned red and fallen off due to tree death. Large numbers of grey-stage trees in a stand may remain on the landscape for up to 20 years, until windthrow or another disturbance sends them to the forest floor. The greater temporal persistence of the grey stage over antecedent stages suggested that an examination of the grey stage would best capture long-term effects of MPB disturbance on the forest water balance. In this study we hypothesized that changes to the forest canopy associated with MPB disturbance may affect the stand-level water balance. The needle loss and windthrow that follows MPB disturbance is expected to increase the amount of precipitation reaching the forest floor. Additionally, overstory evapotranspiration (ET) demand is expected to decrease as MPB-induced tree mortality increases within disturbed stands. The expected cumulative effect of MPB disturbance on the stand-level water balance is an increase in soil moisture due to increased precipitation inputs and reduced overstory ET. This study was conducted in Lubrecht Experimental Forest and adjacent Bureau of Land Management areas near Missoula, Montana. Sub-canopy measurements of soil moisture, precipitation (rain and snow water equivalent), overstory transpiration and micro-meteorological data (net radiation, temperature, wind speed, etc.) were collected in three 50 x 50 meter plots. The plots consisted of a uniform stand of grey-stage lodgepole pine, a uniform stand of non-infested lodgepole pine, and a recent clear-cut stand, which served as a control unit. Water balances for each stand were constructed using a mass-balance approach and compared to investigate how MPB disturbance affects the stand-level water balance. Preliminary results from the first of two years of data collection suggests wetter soils in the grey-stage stand compared to the non-infested and clear cut stands. Continued data collection and analysis will provide further insight into the partitioning of the stand-level water balance in the grey stage of MPB disturbance.

  14. Predicting Late Winter Dissolved Oxygen Levels in Arctic Lakes Using Morphology and Landscape Metrics

    NASA Astrophysics Data System (ADS)

    Leppi, Jason C.; Arp, Christopher D.; Whitman, Matthew S.

    2016-02-01

    Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.

  15. Development of predictive models for determining enterococci levels at Gulf Coast beaches.

    PubMed

    Zhang, Zaihong; Deng, Zhiqiang; Rusch, Kelly A

    2012-02-01

    The US EPA BEACH Act requires beach managers to issue swimming advisories when water quality standards are exceeded. While a number of methods/models have been proposed to meet the BEACH Act requirement, no systematic comparisons of different methods against the same data series are available in terms of relative performance of existing methods. This study presents and compares three models for nowcasting and forecasting enterococci levels at Gulf Coast beaches in Louisiana, USA. One was developed using the artificial neural network (ANN) in MATLAB Toolbox and the other two were based on the US EPA Virtual Beach (VB) Program. A total of 944 sets of environmental and bacteriological data were utilized. The data were collected and analyzed weekly during the swimming season (May-October) at six sites of the Holly Beach by Louisiana Beach Monitoring Program in the six year period of May 2005-October 2010. The ANN model includes 15 readily available environmental variables such as salinity, water temperature, wind speed and direction, tide level and type, weather type, and various combinations of antecedent rainfalls. The ANN model was trained, validated, and tested using 308, 103, and 103 data sets (collected in 2007, 2008, and 2009) with an average linear correlation coefficient (LCC) of 0.857 and a Root Mean Square Error (RMSE) of 0.336. The two VB models, including a linear transformation-based model and a nonlinear transformation-based model, were constructed using the same data sets. The linear VB model with 6 input variables achieved an LCC of 0.230 and an RMSE of 1.302 while the nonlinear VB model with 5 input variables produced an LCC of 0.337 and an RMSE of 1.205. In order to assess the predictive performance of the ANN and VB models, hindcasting was conducted using a total of 430 sets of independent environmental and bacteriological data collected at six Holly Beach sites in 2005, 2006, and 2010. The hindcasting results show that the ANN model is capable of predicting enterococci levels at the Holly Beach sites with an adjusted RMSE of 0.803 and LCC of 0.320 while the adjusted RMSE and LCC values are 1.815 and 0.354 for the linear VB model and 1.961 and 0.521 for the nonlinear VB model. The results indicate that the ANN model with 15 parameters performs better than the VB models with 6 or 5 parameters in terms of RMSE while VB models perform better than the ANN model in terms of LCC. The predictive models (especially the ANN and the nonlinear VB models) developed in this study in combination with readily available real-time environmental and weather forecast data can be utilized to nowcast and forecast beach water quality, greatly reducing the potential risk of contaminated beach waters to human health and improving beach management. While the models were developed specifically for the Holly Beach, Louisiana, the methods used in this paper are generally applicable to other coastal beaches. PMID:22130001

  16. Predicting Homework Time Management at the Secondary School Level: A Multilevel Analysis

    ERIC Educational Resources Information Center

    Xu, Jianzhong

    2010-01-01

    The purpose of this study is to test empirical models of variables posited to predict homework time management at the secondary school level. Student- and class-level predictors of homework time management were analyzed in a survey of 1895 students from 111 classes. Most of the variance in homework time management occurred at the student level,

  17. Assessing Risk in Operational Decisions Using Great Lakes Probabilistic Water Level Forecasts

    PubMed

    LEE; CLITES; KEILLOR

    1997-01-01

    / A method adapted from the National Weather Service's Extended Streamflow Prediction technique is applied retrospectively to three Great Lakes case studies to show how risk assessment using probabilistic monthly water level forecasts could have contributed to the decision-mak-ing process. The first case study examines the 1985 International Joint Commission (IJC) decision to store water in Lake Superior to reduce high levels on the downstream lakes. Probabilistic forecasts are generated for Lake Superior and Lakes Michigan-Huron and used with riparian inundation value functions to assess the relative impacts of the IJC's decision on riparian interests for both lakes. The second case study evaluates the risk of flooding at Milwaukee, Wisconsin, and the need to implement flood-control projects if Lake Michigan levels were to continue to rise above the October 1986 record. The third case study quantifies the risks of impaired municipal water works operation during the 1964-1965 period of extreme low water levels on Lakes Huron, St. Clair, Erie, and Ontario. Further refinements and other potential applications of the probabilistic forecast technique are discussed.KEY WORDS: Great Lakes; Water levels; Forecasting; Risk; Decision making PMID:8939784

  18. Water-level changes in the Ogallala aquifer, northwestern Oklahoma.

    USGS Publications Warehouse

    Havens, J.S.

    1985-01-01

    The Ogallala aquifer, that part of the High Plains aquifer in Oklahoma, is part of a regional aquifer system that underlies parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. In 1978 the US Geological Survey began a 5- year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop a capability for predicting aquifer response to various ground-water-management alternatives (Weeks, 1978). -from Author

  19. Predicting Impacts of tropical cyclones and sea-Level rise on beach mouse habitat

    USGS Publications Warehouse

    Chen, Qin; Wang, Hongqing; Wang, Lixia; Tawes, Robert; Rollman, Drew

    2014-01-01

    Alabama beach mouse (ABM) (Peromyscus polionotus ammobates) is an important component of the coastal dune ecosystem along the Gulf of Mexico. Due to habitat loss and degradation, ABM is federally listed as an endangered species. In this study, we examined the impacts of storm surge and wind waves, which are induced by hurricanes and sea-level rise (SLR), on the ABM habitat on Fort Morgan Peninsula, Alabama, using advanced storm surge and wind wave models and spatial analysis tools in geographic information systems (GIS). Statistical analyses of the long-term historical data enabled us to predict the extreme values of winds, wind waves, and water levels in the study area at different return periods. We developed a series of nested domains for both wave and surge modeling and validated the models using field observations of surge hydrographs and high watermarks of Hurricane Ivan (2004). We then developed wave atlases and flood maps corresponding to the extreme wind, surge and waves without SLR and with a 0.5 m of SLR by coupling the wave and surge prediction models. The flood maps were then merged with a map of ABM habitat to determine the extent and location of habitat impacted by the 100-year storm with and without SLR. Simulation results indicate that more than 82% of ABM habitat would be inundated in such an extreme storm event, especially under SLR, making ABM populations more vulnerable to future storm damage. These results have aided biologists, community planners, and other stakeholders in the identification, restoration and protection of key beach mouse habitat in Alabama. Methods outlined in this paper could also be used to assist in the conservation and recovery of imperiled coastal species elsewhere.

  20. Rising water levels and the future of southeastern Louisiana swamp forests

    USGS Publications Warehouse

    Conner, W.H.; Brody, M.

    1989-01-01

    An important factor contributing to the deterioration of wetland forests in Louisiana is increasing water levels resulting from eustatic sea-level rise and subsidence. Analyses of long-term water level records from the Barataria and Verret watersheds in southeastern Louisiana indicate an apparent sea level rise of about 1-m per century, mainly the result of subsidence. Permanent study plots were established in cypress-tupelo stands in these two watersheds. The tree, water level, and subsidence data collected in these plots were entered into the U.S. Fish and Wildlife Servicea??s FORFLO bottomland hardwood succession model to determine the long-term effects of rising water levels on forest structure. Analyses were made of 50a??100 years for a cypress-tupelo swamp site in each basin and a bottomland hardwood ridge in the Verret watershed. As flooding increased, less flood tolerant species were replaced by cypress-tupelo within 50 years. As flooding continued, the sites start to become nonforested. From the test analyses, the FORFLO model seems to be an excellent tool for predicting long-term changes in the swamp habitat of south Louisiana.

  1. Predictive Validity of Curriculum-Based Measures for English Learners at Varying English Proficiency Levels

    ERIC Educational Resources Information Center

    Kim, Jennifer Sun; Vanderwood, Michael L.; Lee, Catherine Y.

    2016-01-01

    This study examined the predictive validity of curriculum-based measures in reading for Spanish-speaking English learners (ELs) at various levels of English proficiency. Third-grade Spanish-speaking EL students were screened during the fall using DIBELS Oral Reading Fluency (DORF) and Daze. Predictive validity was examined in relation to spring

  2. A Bayesian network to predict coastal vulnerability to sea level rise

    USGS Publications Warehouse

    Gutierrez, B.T.; Plant, N.G.; Thieler, E.R.

    2011-01-01

    Sea level rise during the 21st century will have a wide range of effects on coastal environments, human development, and infrastructure in coastal areas. The broad range of complex factors influencing coastal systems contributes to large uncertainties in predicting long-term sea level rise impacts. Here we explore and demonstrate the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments of prediction uncertainty. A BN is used to define relationships between driving forces, geologic constraints, and coastal response for the U.S. Atlantic coast that include observations of local rates of relative sea level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline change rate. The BN is used to make probabilistic predictions of shoreline retreat in response to different future sea level rise rates. Results demonstrate that the probability of shoreline retreat increases with higher rates of sea level rise. Where more specific information is included, the probability of shoreline change increases in a number of cases, indicating more confident predictions. A hindcast evaluation of the BN indicates that the network correctly predicts 71% of the cases. Evaluation of the results using Brier skill and log likelihood ratio scores indicates that the network provides shoreline change predictions that are better than the prior probability. Shoreline change outcomes indicating stability (-1 1 m/yr) was not well predicted. We find that BNs can assimilate important factors contributing to coastal change in response to sea level rise and can make quantitative, probabilistic predictions that can be applied to coastal management decisions. Copyright ?? 2011 by the American Geophysical Union.

  3. Application of Excitation Function to the Prediction of RI Level Caused by Corona Discharge

    NASA Astrophysics Data System (ADS)

    Zhu, Lingyu; Ji, Shengchang; Hui, Sisi; Guo, Jun; Li, Yansong; Fu, Chenzhao

    2012-12-01

    Radio interference (RI), as an aftereffect of corona discharge, is an important research topic in the field of electromagnetic compatibility, where excitation function is applied broadly to the prediction of RI level. This paper presents the theory of excitation function method used in the RI level prediction. Then, some practical problems related to this method are discussed. The propagation procedure of corona current is solved by the phase-modal transformation, and the impedance matrix of multi transmission lines is calculated by a double logarithmic approximate model of Carson's Ground-Return impedance. At the same time, in order to calculate the RI level when total line corona is assumed, an analytical formula is deduced for integral operation. Based on the above solutions, an algorithm is presented and applied to the prediction of RI level of a practical overhead transmission line. Comparison of prediction and measurement results indicates that the algorithm proposed in this paper is effective and feasible.

  4. Prediction of the Caspian Sea level using ECMWF seasonal forecasts and reanalysis

    NASA Astrophysics Data System (ADS)

    Arpe, K.; Leroy, S. A. G.; Wetterhall, F.; Khan, V.; Hagemann, S.; Lahijani, H.

    2014-07-01

    The hydrological budget of the Caspian Sea (CS) is investigated using the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAi) and seasonal forecast (FCST) data with the aim of predicting the Caspian Sea Level (CSL) some months ahead. Precipitation and evaporation are used. After precipitation events over the Volga River, the discharge (Volga River discharge (VRD)) follows with delays, which are parameterized. The components of the water budget from ERAi and FCSTs are integrated to obtain time series of the CSL. Observations of the CSL and the VRD are used for comparison and tuning. The quality of ERAi data is sufficiently good to calculate the time variability of the CSL with a satisfactory accuracy. Already the storage of water within the Volga Basin allows forecasts of the CSL a few months ahead, and using the FCSTs of precipitation improves the CSL forecasts. The evaporation in the seasonal forecasts is deficient due to unrealistic sea surface temperatures over the CS. Impacts of different water budget terms on the CSL variability are shown by a variety of validation tools. The importance of precipitation anomalies over the catchment of the Volga River is confirmed, but also impacts from the two southern rivers (Sefidrud and Kura River) and the evaporation over the CS become obvious for some periods. When pushing the FCSTs beyond the limits of the seasonal FCSTs to 1 year, considerable forecast skill can still be found. Validating only FCSTs by the present approach, which show the same trend as one based on a statistical method, significantly enhances the skill scores.

  5. Movements of florida apple snails in relation to water levels and drying events

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Miller, S.J.; Percival, H.F.

    2002-01-01

    Florida apple snails (Pomacea Paludosa) apparently have only a limited tolerance to wetland drying events (although little direct evidence exists), but their populations routinely face dry downs under natural and managed water regimes. In this paper, we address speculation that apple snails respond to decreasing water levels and potential drying events by moving toward refugia that remain inundated. We monitored the movements of apple snails in central Florida, USA during drying events at the Blue Cypress Marsh (BC) and at Lake Kissimmee (LK). We monitored the weekly movements of 47 BC snails and 31 LK snails using radio-telemetry. Snails tended to stop moving when water depths were 10 cm. Snails moved along the greatest positive depth gradient (i.e., towards deeper water) when they encountered water depths between 10 and 20 cm. Snails tended to move toward shallower water in water depths ???50 cm, suggesting that snails were avoiding deep water areas such as canals and sloughs. Of the 11 BC snails originally located in the area that eventually went dry, three (27%) were found in deep water refugia by the end of the study. Only one of the 31 LK snails escaped the drying event by moving to deeper water. Our results indicate that some snails may opportunistically escape drying events through movement. The tendency to move toward deeper water was statistically significant and indicates that this behavioral trait might enhance survival when the spatial extent of a dry down is limited. However, as water level falls below 10 cm, snails stop moving and become stranded. As the spatial extent of a dry down increases, we predict that the number of snails stranded would increase proportionally. Stranded Pomacea paludosa must contend with dry marsh conditions, possibly by aestivation. Little more than anecdotal information has been published on P. paludosa aestivation, but it is a common adaptation among other apple snails (Caenogastropoda: Ampullaridae). ?? 2002, The Society of Wetland Scientists.

  6. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    SciTech Connect

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A; Ge, Y

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.

  7. Present and proposed ground-water-level program in Maine

    USGS Publications Warehouse

    Adamik, J.T.

    1984-01-01

    A statewide observation-well program was designed for Maine. Three networks were designed to provide reliable data to describe the effects of natural and manmade stress on water levels in the State. They are a climatic-effects network, a terrain-effects network, and a local-effects network. Review of the 32 observation wells in the current program showed that only 17 wells should be retained. Each of these wells was assigned to one of the three types of networks. Fourteen wells were deactivated because of reliability problems and one was deactivated because it provided redundant data. The installation of seven additional wells in climatic-effects network is the highest priority of the proposed program. The next priority is to install 22 additional wells in the terrain-effects network. Implementation of local-effects network sites will be responsive to increases in ground-water usage and the data needs of water-resources managers. (USGS)

  8. Prediction of water quality parameters from SAR images by using multivariate and texture analysis models

    NASA Astrophysics Data System (ADS)

    Shareef, Muntadher A.; Toumi, Abdelmalek; Khenchaf, Ali

    2014-10-01

    Remote sensing is one of the most important tools for monitoring and assisting to estimate and predict Water Quality parameters (WQPs). The traditional methods used for monitoring pollutants are generally relied on optical images. In this paper, we present a new approach based on the Synthetic Aperture Radar (SAR) images which we used to map the region of interest and to estimate the WQPs. To achieve this estimation quality, the texture analysis is exploited to improve the regression models. These models are established and developed to estimate six common concerned water quality parameters from texture parameters extracted from Terra SAR-X data. In this purpose, the Gray Level Cooccurrence Matrix (GLCM) is used to estimate several regression models using six texture parameters such as contrast, correlation, energy, homogeneity, entropy and variance. For each predicted model, an accuracy value is computed from the probability value given by the regression analysis model of each parameter. In order to validate our approach, we have used tow dataset of water region for training and test process. To evaluate and validate the proposed model, we applied it on the training set. In the last stage, we used the fuzzy K-means clustering to generalize the water quality estimation on the whole of water region extracted from segmented Terra SAR-X image. Also, the obtained results showed that there are a good statistical correlation between the in situ water quality and Terra SAR-X data, and also demonstrated that the characteristics obtained by texture analysis are able to monitor and predicate the distribution of WQPs in large rivers with high accuracy.

  9. Methods of measuring water levels in deep wells

    USGS Publications Warehouse

    Garber, M.S.; Koopman, F.C.

    1968-01-01

    Accurate measurement of water levels deeper than 1,000 feet in wells requires specialized equipment. Corrections for stretch and thermal expansion of measuring tapes must be considered, and other measuring devices must be calibrated periodically. Bore-hole deviation corrections also must be made. Devices for recording fluctuation of fluid level usually require mechanical modification for use at these depths. A multichannel recording device utilizing pressure transducers has been constructed. This device was originally designed to record aquifer response to nearby underground nuclear explosions but can also be used for recording data from multi-well pumping tests. Bottom-hole recording devices designed for oil-field use have been utilized in a limited manner. These devices were generally found to lack the precision required, in ground-water investigations at the Nevada Test Site but may be applicable in other areas. A newly developed bottom-hole recording pressure gauge of improved accuracy has been used with satisfactory results.

  10. Heavy metal levels in fish from coastal waters of Uruguay.

    PubMed

    Viana, F; Huertas, R; Danulat, E

    2005-05-01

    Copper, mercury, and zinc levels were determined in muscle and liver (N = 163) of seven fish species caught in coastal waters off Montevideo and Piriapolis (control site): Odontesthes spp., Mugil platanus, Micropogonias furnieri, Urophycis brasiliensis, Cynoscion guatucupa, Menticirrhus americanus, and Mustelus schmitti. The local population commonly uses these species for consumption. Heavy metal concentrations determined in this study were generally below those obtained for fish caught in Argentinean and Brazilian coastal waters, with some exceptions in the case of mercury and zinc. Based on copper, mercury, and zinc levels in muscle tissue, we conclude that the fish studied here are acceptable for human consumption. Nevertheless, it is recommended not to consume the fish liver (up to 466 microg Zn g(-1) dry weight in liver) nor large specimens of the investigated species. Regional programs involving the neighboring countries should be established to assess the fisheries resources and potential risks for human health. PMID:15883670

  11. Prediction of light aircraft interior sound pressure level using the room equation

    NASA Astrophysics Data System (ADS)

    Atwal, M.; Bernhard, R.

    1984-05-01

    The room equation is investigated for predicting interior sound level. The method makes use of an acoustic power balance, by equating net power flow into the cabin volume to power dissipated within the cabin using the room equation. The sound power level transmitted through the panels was calculated by multiplying the measured space averaged transmitted intensity for each panel by its surface area. The sound pressure level was obtained by summing the mean square sound pressures radiated from each panel. The data obtained supported the room equation model in predicting the cabin interior sound pressure level.

  12. Prediction of light aircraft interior sound pressure level using the room equation

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The room equation is investigated for predicting interior sound level. The method makes use of an acoustic power balance, by equating net power flow into the cabin volume to power dissipated within the cabin using the room equation. The sound power level transmitted through the panels was calculated by multiplying the measured space averaged transmitted intensity for each panel by its surface area. The sound pressure level was obtained by summing the mean square sound pressures radiated from each panel. The data obtained supported the room equation model in predicting the cabin interior sound pressure level.

  13. Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level

    NASA Astrophysics Data System (ADS)

    Gillies, Robert R.; Chung, Oi-Yu; Simon Wang, S.-Y.; DeRose, R. Justin; Sun, Yan

    2015-10-01

    Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover less than a century, forecasting the predominant yet under-represented decadal variability of the GSL level with such relatively short instrumental records poses a challenge. To overcome data limitations, this study assesses two options: (1) developing a model using the observational GSL elevation record of 137 years to predict itself; (2) incorporating the recently reconstructed GSL elevation that utilized 576 years worth of tree-ring records into the predictive model. It was found that the statistical models that combined the tree-ring reconstructed data with the observed data outperformed those that did not, in terms of reducing the root mean squared errors. Such predictive models can serve as a means toward practical water risk management.

  14. Response of Changes in Water Levels and Water Radon on the Observed Seismicity Along Longmenshan Fault

    NASA Astrophysics Data System (ADS)

    He, A.; Ye, Q.; Singh, R. P.

    2014-12-01

    In China, numerous subsurface, water well and spring parameters are being monitored through a large network of stations distributed in China sponsored by China Earthquake Administration (CEA). All the data from these network is managed by China Earthquake Network Center (CENC). In this paper, we have used numerous data available through CENC for the period 2002-2014 to study the behavior and characteristics of water radon. The observed parameters were also complimented by the water level, and rainfall. Our detailed analysis shows increase in the level prior to the earthquake. The radon content, groundwater level and rainfall show a positive correlation prior to the Wenchuan and Lushan earthquakes. The water radon concentrations change from one location to other which may be associated with the changes in ground water regime due to changes in stress regime and observed seismicity. We have also used satellite data to retrieve CO concentrations from many locations along Longmenshan Fault. At some location, changes in CO, water level and water radon show complimentary characteristics.

  15. Epidemiology can help predict urban water system failures

    NASA Astrophysics Data System (ADS)

    Palus, Shannon

    2014-11-01

    A broken water pipe can mean flooded streets, damaged property, disrupted traffic, and income loss for local businesses. In the summer of 2009, the water system of Los Angeles experienced an unprecedented 75 of these water main blowouts. Notably, two transmission mains burst just days apart.

  16. BIOASSAY PROCEDURE FOR PREDICTING COLIFORM BACTERIAL GROWTH IN DRINKING WATER

    EPA Science Inventory

    Water quality degradation due to the growth of microorganisms Is an area of concern for many water utilities. urrently the nutrient status of drinking water is difficult to measure and can only be defined in relative terms. o date, the procedures developed for determining the amo...

  17. BIOASSAY PROCEDURES FOR PREDICTING COLIFORM BACTERIAL GROWTH IN DRINKING WATER

    EPA Science Inventory

    Water quality degradation due to the growth of microorganisms is an area of concern for many water utilities. o date, the procedures developed or determining the amount of biodegradable material present in potable water have utilized heterotrophic non-coliform bacteria as bioassa...

  18. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  19. Remotely mapping river water quality using multivariate regression with prediction validation.

    SciTech Connect

    Stork, Christopher Lyle; Autry, Bradley C.

    2005-07-01

    Remote spectral sensing offers an attractive means of mapping river water quality over wide spatial regions. While previous research has focused on development of spectral indices and models to predict river water quality based on remote images, little attention has been paid to subsequent validation of these predictions. To address this oversight, we describe a retrospective analysis of remote, multispectral Compact Airborne Spectrographic Imager (CASI) images of the Ohio River and its Licking River and Little Miami River tributaries. In conjunction with the CASI acquisitions, ground truth measurements of chlorophyll-a concentration and turbidity were made for a small set of locations in the Ohio River. Partial least squares regression models relating the remote river images to ground truth measurements of chlorophyll-a concentration and turbidity for the Ohio River were developed. Employing these multivariate models, chlorophyll-a concentrations and turbidity levels were predicted in river pixels lacking ground truth measurements, generating detailed estimated water quality maps. An important but often neglected step in the regression process is to validate prediction results using a spectral residual statistic. For both the chlorophyll-a and turbidity regression models, a spectral residual value was calculated for each river pixel and compared to the associated statistical confidence limit for the model. These spectral residual statistic results revealed that while the chlorophyll-a and turbidity models could validly be applied to a vast majority of Ohio River and Licking River pixels, application of these models to Little Miami River pixels was inappropriate due to an unmodeled source of spectral variation.

  20. Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia)

    NASA Astrophysics Data System (ADS)

    Davies, Andrew J.; Wisshak, Max; Orr, James C.; Murray Roberts, J.

    2008-08-01

    Ecological-niche factor analysis (ENFA) was applied to the reef framework-forming cold-water coral Lophelia pertusa. The environmental tolerances of this species were assessed using readily available oceanographic data, including physical, chemical, and biological variables. L. pertusa was found at mean depths of 468 and 480 m on the regional and global scales and occupied a niche that included higher than average current speed and productivity, supporting the theory that their limited food supply is locally enhanced by currents. Most records occurred in areas with a salinity of 35, mean temperatures of 6.2-6.7 C and dissolved oxygen levels of 6.0-6.2 ml l -1. The majority of records were found in areas that were saturated with aragonite but had low concentration of nutrients (silicate, phosphate, and nitrate). Suitable habitat for L. pertusa was predicted using ENFA on a global and a regional scale that incorporated the north-east Atlantic Ocean. Regional prediction was reliable due to numerous presence points throughout the area, whereas global prediction was less reliable due to the paucity of presence data outside of the north-east Atlantic. However, the species niche was supported at each spatial scale. Predicted maps at the global scale reinforced the general consensus that the North Atlantic Ocean is a key region in the worldwide distribution of L. pertusa. Predictive modelling is an approach that can be applied to cold-water coral species to locate areas of suitable habitat for further study. It may also prove a useful tool to assist spatial planning of offshore marine protected areas. However, issues with eco-geographical datasets, including their coarse resolution and limited geographical coverage, currently restrict the scope of this approach.

  1. Understanding and predicting climate variations in the Middle East for sustainable water resource management and development

    NASA Astrophysics Data System (ADS)

    Samuels, Rana

    Water issues are a source of tension between Israelis and Palestinians. In the and region of the Middle East, water supply is not just scarce but also uncertain: It is not uncommon for annual rainfall to be as little as 60% or as much as 125% of the multiannual average. This combination of scarcity and uncertainty exacerbates the already strained economy and the already tensed political situation. The uncertainty could be alleviated if it were possible to better forecast water availability. Such forecasting is key not only for water planning and management, but also for economic policy and for political decision making. Water forecasts at multiple time scales are necessary for crop choice, aquifer operation and investments in desalination infrastructure. The unequivocal warming of the climate system adds another level of uncertainty as global and regional water cycles change. This makes the prediction of water availability an even greater challenge. Understanding the impact of climate change on precipitation can provide the information necessary for appropriate risk assessment and water planning. Unfortunately, current global circulation models (GCMs) are only able to predict long term climatic evolution at large scales but not local rainfall. The statistics of local precipitation are traditionally predicted using historical rainfall data. Obviously these data cannot anticipate changes that result from climate change. It is therefore clear that integration of the global information about climate evolution and local historical data is needed to provide the much needed predictions of regional water availability. Currently, there is no theoretical or computational framework that enables such integration for this region. In this dissertation both a conceptual framework and a computational platform for such integration are introduced. In particular, suite of models that link forecasts of climatic evolution under different CO2 emissions scenarios to observed rainfall data from local stations are developed. These are used to develop scenarios for local rainfall statistics such as average annual amounts, dry spells, wet spells and drought persistence. This suite of models can provide information that is not attainable from existing tools in terms of its spatial and temporal resolution. Specifically, the goal is to project the impact of established global climate change scenarios in this region and, how much of the change might be mitigated by proposed CO2 reduction strategies. A major problem in this enterprise is to find the best way to integrate global climatic information with local rainfall data. From the climatologic perspective the problem is to find the right teleconnections. That is, non local or global measurable phenomena that influence local rainfall in a way that could be characterized and quantified statistically. From the computational perspective the challenge is to model these subtle, nonlinear relationships and to downscale the global effects into local predictions. Climate simulations to the year 2100 under selected climate change scenarios are used. Overall, the suite of models developed and presented can be applied to answer most questions from the different water users and planners. Farmers and the irrigation community can ask "What is the probability of rain over the next week?" Policy makers can ask "How much desalination capacity will I need to meet demand 90% of the time in the climate change scenario over the next 20 years?" Aquifer managers can ask "What is the expected recharge rate of the aquifers over the next decade?" The use of climate driven answers to these questions will help the region better prepare and adapt to future shifts in water resources and availability.

  2. Effects of artificial-recharge experiments at Ship Creek alluvial fan on water levels at Spring Acres Subdivision, Anchorage, Alaska

    USGS Publications Warehouse

    Meyer, William; Patrick, Leslie

    1980-01-01

    The effect of the artificial recharge experiments on water levels at Spring Acres subdivision, Anchorage, Alaska, was evaluated using two digital models constructed to simulate groundwater movement and water-level rises induced by the artificial recharge. The models predicted that the artificial recharge would have caused water levels in the aquifer immediately underlying Spring Acres subdivision to rise 0.2 foot from May 20 to August 7, 1975. The models also predicted a total rise in groundwater levels of 1.1 feet at this location from July 16, 1973 to August 7, 1975, as a result of the artificial-recharge experiments. Water-level data collected from auger holes in March 1975 by a consulting firm for the contractor indicated a depth to water of 6-7 feet below land surface at Spring Acres subdivision at this time. Water levels measured in and near Spring Acres subdivision several years before and after the 1973-75 artificial-recharge experiments showed seasonal rises of 2 to 12.4 feet. A depth to water below land surface of 2.6 feet was measured 600 feet from the subdivision in 1971 and in the subdivision in 1977. Average measured depth to water in the area was 7.0 feet from early 1976 to September 1979. (USGS)

  3. A Study on Predicting Shinkansen Noise Levels Using the Sound Intensity Method

    NASA Astrophysics Data System (ADS)

    Okada, Tadashi

    The purpose of this paper is to demonstrate a new method developed to predict track wayside noise levels resulting from the passage of high-speed trains. The method calculates noise levels based on data acquired by the sound intensity method developed by the Central Japan Railway Company. This measurement method allows one to identify each sound source and its characteristics as well as identify how much each source contributes to the overall resulting noise level. Structure borne noise and multiple reflected noise between train car bodies and noise barriers are also studied. As a result of this study, a prediction method was created which can calculate and predict noise levels resulting from such various factors as structure, train type, train speed and noise barrier. Noise levels predicted during this study agreed well with those actually measured under various conditions, thus indicating the prediction method model resulting from the study is a useful tool to verify noise levels occurring at receiver positions. Furthermore, it can also verify in advance how much effect noise barriers or train source noise level reduction devices would have on noise reduction.

  4. A predictive coding framework for rapid neural dynamics during sentence-level language comprehension.

    PubMed

    Lewis, Ashley G; Bastiaansen, Marcel

    2015-07-01

    There is a growing literature investigating the relationship between oscillatory neural dynamics measured using electroencephalography (EEG) and/or magnetoencephalography (MEG), and sentence-level language comprehension. Recent proposals have suggested a strong link between predictive coding accounts of the hierarchical flow of information in the brain, and oscillatory neural dynamics in the beta and gamma frequency ranges. We propose that findings relating beta and gamma oscillations to sentence-level language comprehension might be unified under such a predictive coding account. Our suggestion is that oscillatory activity in the beta frequency range may reflect both the active maintenance of the current network configuration responsible for representing the sentence-level meaning under construction, and the top-down propagation of predictions to hierarchically lower processing levels based on that representation. In addition, we suggest that oscillatory activity in the low and middle gamma range reflect the matching of top-down predictions with bottom-up linguistic input, while evoked high gamma might reflect the propagation of bottom-up prediction errors to higher levels of the processing hierarchy. We also discuss some of the implications of this predictive coding framework, and we outline ideas for how these might be tested experimentally. PMID:25840879

  5. Demonstration of the Water Erosion Prediction Project (WEPP) internet interface and services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Erosion Prediction Project (WEPP) model is a process-based FORTRAN computer simulation program for prediction of runoff and soil erosion by water at hillslope profile, field, and small watershed scales. To effectively run the WEPP model and interpret results additional software has been de...

  6. Directly Predicting Water Quality Criteria from Physicochemical Properties of Transition Metals.

    PubMed

    Wang, Ying; Wu, Fengchang; Mu, Yunsong; Zeng, Eddy Y; Meng, Wei; Zhao, Xiaoli; Giesy, John P; Feng, Chenglian; Wang, Peifang; Liao, Haiqing; Chen, Cheng

    2016-01-01

    Transition metals are a group of elements widespread in aquatic environments that can be hazardous when concentrations exceeding threshold values. Due to insufficient data, criteria maximum concentrations (CMCs) of only seven transition metals for protecting aquatic life have been recommended by the USEPA. Hence, it is deemed necessary to develop empirical models for predicting the threshold values of water quality criteria (WQC) for other transition metals for which insufficient information on toxic potency is available. The present study established quantitative relationships between recommended CMCs and physicochemical parameters of seven transition metals, then used the developed relationships to predict CMCs for other transition metals. Seven of 26 physicochemical parameters examined were significantly correlated with the recommended CMCs. Based on this, five of the seven parameters were selected to construct a linear free energy model for predicting CMCs. The most relevant parameters were identified through principle component analysis, and the one with the best correlation with the recommended CMCs was a combination of covalent radius, ionic radius and electron density. Predicted values were largely consistent with their toxic potency values. The present study provides an alternative approach to develop screening threshold level for metals which have insufficient information to use traditional methods. PMID:26936420

  7. Directly Predicting Water Quality Criteria from Physicochemical Properties of Transition Metals

    PubMed Central

    Wang, Ying; Wu, Fengchang; Mu, Yunsong; Zeng, Eddy Y.; Meng, Wei; Zhao, Xiaoli; Giesy, John P.; Feng, Chenglian; Wang, Peifang; Liao, Haiqing; Chen, Cheng

    2016-01-01

    Transition metals are a group of elements widespread in aquatic environments that can be hazardous when concentrations exceeding threshold values. Due to insufficient data, criteria maximum concentrations (CMCs) of only seven transition metals for protecting aquatic life have been recommended by the USEPA. Hence, it is deemed necessary to develop empirical models for predicting the threshold values of water quality criteria (WQC) for other transition metals for which insufficient information on toxic potency is available. The present study established quantitative relationships between recommended CMCs and physicochemical parameters of seven transition metals, then used the developed relationships to predict CMCs for other transition metals. Seven of 26 physicochemical parameters examined were significantly correlated with the recommended CMCs. Based on this, five of the seven parameters were selected to construct a linear free energy model for predicting CMCs. The most relevant parameters were identified through principle component analysis, and the one with the best correlation with the recommended CMCs was a combination of covalent radius, ionic radius and electron density. Predicted values were largely consistent with their toxic potency values. The present study provides an alternative approach to develop screening threshold level for metals which have insufficient information to use traditional methods. PMID:26936420

  8. Directly Predicting Water Quality Criteria from Physicochemical Properties of Transition Metals

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Wu, Fengchang; Mu, Yunsong; Zeng, Eddy Y.; Meng, Wei; Zhao, Xiaoli; Giesy, John P.; Feng, Chenglian; Wang, Peifang; Liao, Haiqing; Chen, Cheng

    2016-03-01

    Transition metals are a group of elements widespread in aquatic environments that can be hazardous when concentrations exceeding threshold values. Due to insufficient data, criteria maximum concentrations (CMCs) of only seven transition metals for protecting aquatic life have been recommended by the USEPA. Hence, it is deemed necessary to develop empirical models for predicting the threshold values of water quality criteria (WQC) for other transition metals for which insufficient information on toxic potency is available. The present study established quantitative relationships between recommended CMCs and physicochemical parameters of seven transition metals, then used the developed relationships to predict CMCs for other transition metals. Seven of 26 physicochemical parameters examined were significantly correlated with the recommended CMCs. Based on this, five of the seven parameters were selected to construct a linear free energy model for predicting CMCs. The most relevant parameters were identified through principle component analysis, and the one with the best correlation with the recommended CMCs was a combination of covalent radius, ionic radius and electron density. Predicted values were largely consistent with their toxic potency values. The present study provides an alternative approach to develop screening threshold level for metals which have insufficient information to use traditional methods.

  9. Sea water intrusion by sea-level rise: scenarios for the 21st century.

    PubMed

    Loiciga, Hugo A; Pingel, Thomas J; Garcia, Elizabeth S

    2012-01-01

    This study presents a method to assess the contributions of 21st-century sea-level rise and groundwater extraction to sea water intrusion in coastal aquifers. Sea water intrusion is represented by the landward advance of the 10,000 mg/L iso-salinity line, a concentration of dissolved salts that renders groundwater unsuitable for human use. A mathematical formulation of the resolution of sea water intrusion among its causes was quantified via numerical simulation under scenarios of change in groundwater extraction and sea-level rise in the 21st century. The developed method is illustrated with simulations of sea water intrusion in the Seaside Area sub-basin near the City of Monterey, California (USA), where predictions of mean sea-level rise through the early 21st century range from 0.10 to 0.90 m due to increasing global mean surface temperature. The modeling simulation was carried out with a state-of-the-art numerical model that accounts for the effects of salinity on groundwater density and can approximate hydrostratigraphic geometry closely. Simulations of sea water intrusion corresponding to various combinations of groundwater extraction and sea-level rise established that groundwater extraction is the predominant driver of sea water intrusion in the study aquifer. The method presented in this work is applicable to coastal aquifers under a variety of other scenarios of change not considered in this work. For example, one could resolve what changes in groundwater extraction and/or sea level would cause specified levels of groundwater salinization at strategic locations and times. PMID:21352208

  10. Rapid and accurate prediction and scoring of water molecules in protein binding sites.

    PubMed

    Ross, Gregory A; Morris, Garrett M; Biggin, Philip C

    2012-01-01

    Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity. PMID:22396746

  11. Concurrent and Predictive Relations between Hormone Levels and Social-Emotional Functioning in Early Adolescence.

    ERIC Educational Resources Information Center

    Nottelmann, Editha D.; And Others

    Hormone levels and changes in hormone levels were evaluated three times across a 1-year period as concurrent and predictive correlates of the socio-emotional functioning of 56 boys 10- to 14-years-old and 52 girls 9- to 14-years-old who represented the five stages of Tanner's criteria of pubertal development. The hormone measures were serum levels…

  12. Noaa's Role in the Monitoring and Prediction of Sea-Level Rise: Historical Datasets and Scientific Gaps

    NASA Astrophysics Data System (ADS)

    Levinson, D. H.; Scholz, P. M.

    2010-12-01

    An overview of the monitoring and predictive capabilities of the National Oceanic and Atmospheric Administration (NOAA) related to long-term Sea-Level Rise (SLR) will be presented. In 2009 the agency undertook an internal assessment of its capabilities and gaps relevant to the monitoring and prediction of SLR, specifically addressing the development, application and availability of baseline datasets and derived products that are needed for accurately analyzing and predicting long-term SLR. The focus of this talk will be on those historical datasets, how they are applied to support decision-making, and the identification of gaps in the science and/or datasets. Factors relevant to NOAAs capabilities in historical data analysis and synthesis and in closing identified gaps will also be shown in terms of both internal and external drivers to the agency. In addition, examples of those data, capabilities and gaps related to monitoring and predicting absolute SLR versus relative SLR will be discussed, including: limitations in observational coverage, uncertainties associated with land motion and water reserves, and other changes in the geophysical environment that impact the global sea level budget. Finally, several recommendations and next steps were identified that the agency must address to improve its capabilities relevant to end users. Observed changes in global sea level since 1500 A.D., along with future predictions of sea level rise and its uncertainty projected out to 2100 A.D. Historical observations of global sea level are based on paleo-climate records before the late 1800s, followed by the period of in situ observations from tide gauges, and more recently supplemented with measurements from satellite altimeters since the early 1990s (adapted from Church et al. 2008).

  13. Wheat: Its water use, production and disease detection and prediction. [Kansas

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T. (Principal Investigator); Lenhert, D.; Niblett, C.; Manges, H.; Eversmeyer, M. G.

    1974-01-01

    The author has identified the following significant results. Discussed in this report are: (1) the effects of wheat disease on water use and yield; and (2) the use of ERTS-1 imagery in the evaluation of wheat growth and in the detection of disease severity. Leaf area index was linearly correlated with ratios MSS4:MSS5 and MSS5:MSS6. In an area of severe wheat streak mosaic virus infected fields, correlations of ERTS-1 digital counts with wheat yields and disease severity levels were significant at the 5% level for MSS bands 4 and 5 and band ratios 4/6 and 4/7. Data collection platforms were used to gather meteorological data for the early prediction of rust severity and economic loss.

  14. An economic prediction of the finer resolution level wavelet coefficients in electronic structure calculations.

    PubMed

    Nagy, Szilvia; Pipek, Jnos

    2015-11-25

    In wavelet based electronic structure calculations, introducing a new, finer resolution level is usually an expensive task, this is why often a two-level approximation is used with very fine starting resolution level. This process results in large matrices to calculate with and a large number of coefficients to be stored. In our previous work we have developed an adaptively refined solution scheme that determines the indices, where the refined basis functions are to be included, and later a method for predicting the next, finer resolution coefficients in a very economic way. In the present contribution, we would like to determine whether the method can be applied for predicting not only the first, but also the other, higher resolution level coefficients. Also the energy expectation values of the predicted wave functions are studied, as well as the scaling behaviour of the coefficients in the fine resolution limit. PMID:26176200

  15. West African Monsoon water cycle: 2. Assessment of numerical weather prediction water budgets

    NASA Astrophysics Data System (ADS)

    Meynadier, R.; Bock, O.; Gervois, S.; Guichard, F.; Redelsperger, J.-L.; Agust-Panareda, A.; Beljaars, A.

    2010-10-01

    Water budgets from European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA)-Interim and National Centers for Environmental Prediction (NCEP) Reanalysis I and II are intercompared and compared to GPS precipitable water and to the 6 year hybrid budget data set described in part 1 of this study. Deficiencies are evidenced in the reanalyses which are most pronounced over the Sahel. Results from operational models (ECMWF Integrated Forecast System, NCEP Global Forecast System, and ARPEGE-Tropiques) and the special ECMWF African Monsoon Multidisciplinary Analyses reanalysis confirm and help understanding these findings. A bias (1-2 mm d-1) in precipitation and evapotranspiration leads to an unrealistic view of West Africa as a moisture source during the summer. North of the rainband (13N-16N), moisture flux convergence (MFC) shows a minimum in the NCEP models and divergence in the ECMWF models not consistent with the hybrid data set. This feature, added to presence of a deep layer of northerly dry air advected at midlevels (800-400 hPa), is thought to block the development of deep convection in the models and the northward propagation of the monsoonal rainband. The northerly flow is part of a shallow meridional circulation that is driven by the Saharan heat low. This circulation appears too strong in some of the models, a possible consequence of the too-approximate representation of physical processes and land surface properties over the Sahel. In most of the models, evapotranspiration shows poor connection with precipitation. This is linked with large analysis increments in precipitable water, soil moisture, and MFC. Despite the large biases affecting the water budget components in the models, temporal variations (seasonal and interannual) might nevertheless be recovered with reasonable accuracy.

  16. Prediction of noise levels and annoyance from aircraft run-ups at Vancouver International Airport.

    PubMed

    Scherebnyj, Katrina; Hodgson, Murray

    2007-10-01

    Annoyance complaints resulting from engine run-ups have been increasing at Vancouver International Airport for several years. To assist the Airport in managing run-up noise levels, a prediction tool based on a Green's function parabolic equation (GFPE) model has been consolidated, evaluated, and applied. It was extended to include more realistic atmospheric and ground input parameters. Measurements were made of the noise-radiation characteristics of a CRJ200 jet aircraft. The GFPE model was validated by comparing predictions with results in the literature. A sensitivity analysis showed that predicted levels are relatively insensitive to small variations in geometry and ground impedance, but relatively sensitive to variations in wind speed, atmosphere type, and aircraft heading and power setting. Predicted noise levels were compared with levels measured at noise monitoring terminals. For the four cases for which all input information was available, agreement was within 10 dBA. For events for which some information had to be estimated, predictions were within 20 dBA. The predicted annoyance corresponding to the run-up events considered ranged from 1.8% to 9.5% of people awoken, suggesting that noise complaints can be expected. PMID:17902830

  17. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula

    NASA Astrophysics Data System (ADS)

    Nowosad, Jakub

    2015-10-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.

  18. Preconstruction and postconstruction ground-water levels, Lock and Dam 2, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study, using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 1 at mile 44 (kilometer 71) above the mouth of the Red River call for a pool elevation of 40 feet (12.2 meters) and will cause an average increase in river stage of 9 feet (2.7 meters). As a result, ground-water levels will be raised 1 foot (0.3 meter) or more within 4 miles (6.4 kilometers) of the river. The potentiometric surface may be near land surface in low-lying areas, and above land surface along the course of drainage features near the dam. The magnitude of ground-water-level fluctuations near the river will be reduced. (Woodard-USGS)

  19. Preconstruction and postconstruction ground-water levels, Lock and Dam 3, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.; Terry, J.E.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study, using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 3 at realined mile 111 (kilometer 179) above the mouth of the Red River call for a pool elevation of 87 feet (27 meters) and will cause an average increase in river stage ranging from 21 to 3.5 feet (l.4 to 1.1 meters). As a result, ground-water levels will be raised to near land surface in low areas east of the river from the damsite to Aloha and in a 0.5-mile (0.8-kilometer) strip along the west side extending 9 miles (14 kilometers) above the dam. The potentiometric surface may be above land surface locally near the dam. The magnitude of ground-water-level fluctuations near the river will be reduced to less than half the preconstruction range.

  20. Preconstruction and postconstruction ground-water levels, Lock and Dam 4, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.; Reed, J.E.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study, using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 4 at realined mile 154 (kilometer 250) above the mouth of the Red River call for a pool elevation of 115 feet (35 meters) and will cause an average increase in river stage ranging from 24 to 4.5 feet (7 to 1.4 meters). As a result, ground-water levels will be raised 1 foot (0.3 meter) or more between the Red River and Bayou Pierre from the dam to Coushatta , and below Campti, east of the river. The potentiometric surface may be at or near land surface in low areas between the Red River and Bayou Pierre, and above land surface locally upstream from the dam. The magnitude of ground-water-level fluctuations near the river will be reduced to less than half the present range.

  1. Preconstruction and postconstruction ground-water levels, Lock and Dam 2, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 2 at mile 87 (kilometer 140) above the mouth of the Red River call for a pool elevation of 58 feet (17.7 meters) and will cause an average increase in river stage of 12.5 feet (3.8 meters). As a result, ground-water levels will be raised 1 foot (0.3 meter) or more within 4 miles (6.4 kilometers) of the river and will be near land surface in low areas. The potentiometric surface may be as much as 1 to 2 feet (0.3 to 0.6 meter) above land surface south of Latanier along Chatlin Lake Canal and south of the Annandale area of Alexandria. The magnitude of ground-water-level fluctuations near the river will be reduced.

  2. Screening Experiments for Removal of Low-Level Tritiated Water

    SciTech Connect

    Kim, Yun Mi; Baney, Ronald; Powers, Kevin; Koopman, Ben; Tulenko, James

    2005-03-15

    Screening experiments for low levels of tritiated water (HTO) remediation based upon selective adsorption/desorption mechanisms utilizing equilibrium isotope effects have been carried out. Several organic and inorganic high surface area materials were investigated to assess their ability to selectively adsorb low concentrations of HTO. Ion-exchange resins with cation functionalities, chitosan, sodium alginate, and several inorganic media modified with metal cations exhibited promising results. Biomaterials, for example, chitosan and modified alginate, demonstrated positive results. Based on the literature and our preliminary testing, we postulate four possible mechanisms for selected tritium adsorption: hydrogen ion exchange, HTO coordination with surface cation sites, hydrogen bonding to surface basic sites, and secondary hydrogen bonding (structural water) in fine pores.

  3. Serum Creatinine Versus Plasma Methotrexate Levels to Predict Toxicities in Children Receiving High-dose Methotrexate.

    PubMed

    Tiwari, Priya; Thomas, M K; Pathania, Subha; Dhawan, Deepa; Gupta, Y K; Vishnubhatla, Sreenivas; Bakhshi, Sameer

    2015-11-01

    Facilities for measuring methotrexate (MTX) levels are not available everywhere, potentially limiting administration of high-dose methotrexate (HDMTX). We hypothesized that serum creatinine alteration after HDMTX administration predicts MTX clearance. Overall, 122 cycles in 50 patients of non-Hodgkin lymphoma or acute lymphoblastic leukemia aged ?18years receiving HDMTX were enrolled prospectively. Plasma MTX levels were measured at 12, 24, 36, 48, 60, and 72hours; serum creatinine was measured at baseline, 24, 48, and 72hours. Correlation of plasma MTX levels with creatinine levels and changes in creatinine from baseline (? creatinine) were evaluated. Plasma MTX levels at 72hours showed positive correlation with serum creatinine at 48hours (P = .011) and 72hours (P = .013) as also ? creatinine at 48hours (P = .042) and 72hours (P = .045). However, cut-off value of either creatinine or ? creatinine could not be established to reliably predict delayed MTX clearance. Greater than 50% ? creatinine at 48 and 72hours significantly predicted grade 3/4 leucopenia (P = .036 and P = .001, respectively) and thrombocytopenia (P = .012 and P = .009, respectively) but not mucositis (P = .827 and P = .910, respectively). Delayed MTX elimination did not predict any grade 3/4 toxicity. In spite of demonstration of significant correlation between serum creatinine and ? creatinine with plasma MTX levels at 72hours, cut-off value of either variable to predict MTX delay could not be established. Thus, either of these cannot be used as a surrogate for plasma MTX estimation. Interestingly, ? creatinine effectively predicted hematological toxicities, which were not predicted by delayed MTX clearance. PMID:26558505

  4. Processing of water level derived from water pressure data at the Time Series Station Spiekeroog

    NASA Astrophysics Data System (ADS)

    Holinde, L.; Badewien, T. H.; Freund, J. A.; Stanev, E. V.; Zielinski, O.

    2015-10-01

    The quality of water level time series data strongly varies with periods of high- and low-quality sensor data. In this paper we are presenting the processing steps which were used to generate high-quality water level data from water pressure measured at the Time Series Station (TSS) Spiekeroog. The TSS is positioned in a tidal inlet between the islands of Spiekeroog and Langeoog in the East Frisian Wadden Sea (southern North Sea). The processing steps will cover sensor drift, outlier identification, interpolation of data gaps and quality control. A central step is the removal of outliers. For this process an absolute threshold of 0.25 m 10 min-1 was selected which still keeps the water level increase and decrease during extreme events as shown during the quality control process. A second important feature of data processing is the interpolation of gappy data which is accomplished with a high certainty of generating trustworthy data. Applying these methods a 10-year data set (December 2002-December 2012) of water level information at the TSS was processed resulting in a 7-year time series (2005-2011). Supplementary data are available at doi:10.1594/PANGAEA.843740.

  5. Processing of water level derived from water pressure data at the Time Series Station Spiekeroog

    NASA Astrophysics Data System (ADS)

    Holinde, L.; Badewien, T. H.; Freund, J. A.; Stanev, E. V.; Zielinski, O.

    2015-04-01

    The quality of water level time series data strongly varies with periods of high and low quality sensor data. In this paper we are presenting the processing steps which were used to generate high quality water level data from water pressure measured at the Time Series Station (TSS) Spiekeroog. The TSS is positioned in a tidal inlet between the islands of Spiekeroog and Langeoog in the East Frisian Wadden Sea (southern North Sea). The processing steps will cover sensor drift, outlier identification, interpolation of data gaps and quality control. A central step is the removal of outliers. For this process an absolute threshold of 0.25 m/10 min was selected which still keeps the water level increase and decrease during extreme events as shown during the quality control process. A second important feature of data processing is the interpolation of gappy data which is accomplished with a high certainty of generating trustworthy data. Applying these methods a 10 years dataset of water level information at the TSS was processed and the results were submitted to WDC MARE data base system PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.843740).

  6. The Organochlorine Pesticides Residue Levels in Karun River Water

    PubMed Central

    Behfar, Abdolazim; Nazari, Zahra; Rabiee, Mohammad Hassan; Raeesi, Gholamreza; Oveisi, Mohammad Reza; Sadeghi, Nafiseh; Jannat, Behrooz

    2013-01-01

    Background The organochlorine pesticides (OCPs) are among the most commonly used in water streams around the world. Most of these contaminants are highly hydrophobic and persist in sediments of rivers and lakes. Studies have suggested that OCPs may affect the normal function of the human and wildlife endocrine systems. Objectives The aim of this study is to determine the concentrations of selected organochlorine pesticides residues [OP'DDT, PP'DDT, alderin, dieldrin, heptachlor, (α,ß,γ,δ) HCH, (α, ß) endosulfan and metoxychlor] in samples from Karun River water at Khuzestan province in Iran , by GC-µ-ECD. Materials and Methods Water was extracted with n-hexane and then purified by passing through a glass column packed with Florisil and Na2SO4, which was then eluted with ether: hexane solution v/v. Results In general, all of 12 investigated organochlorine pesticides (OCPs) were detected. Regardless of the kind of OCPs, the highest OCP pollution level in Karun River were seen from August to November 2009 ranging 71.43 – 89.34 µg/L, and the lowest were seen from Dec 2010 to March 2011 at levels of 22.25 - 22.64 µg/L. The highest and lowest mean concentrations of 12 investigated pesticides were ß-Endosulfan and pp' DDT with 28.51and 0.01 µg/L respectively. Conclusions Comparison of total organochlorine pesticides residues concentration with WHO guidelines revealed that the Karun River had total OCPs residues above the probable effect level (0.2-20 µg/L, P < 0.05), which could pose a risk to aquatic life. PMID:24624185

  7. Liquid-vapor equilibrium isotopic fractionation of water: How well can classical water models predict it?

    NASA Astrophysics Data System (ADS)

    Chialvo, Ariel A.; Horita, Juske

    2009-03-01

    The liquid-vapor equilibrium isotopic fractionation of water is determined by molecular-based simulation, via Gibbs ensemble Monte Carlo and isothermal-isochoric molecular dynamics involving two radically different but realistic models, the extended simple point charge, and the Gaussian charge polarizable models. The predicted temperature dependence of the liquid-vapor equilibrium isotopic fractionation factors for H2O18/H2O16, H2O17/H2O16, and H2H1O16/H21O16 are compared against the most accurate experimental datasets to assess the ability of these intermolecular potential models to describe quantum effects according to the Kirkwood-Wigner free energy perturbation ?2-expansion. Predictions of the vapor pressure isotopic effect for the H2O18/H2O16 and H2O17/H2O16 pairs are also presented in comparison with experimental data and two recently proposed thermodynamic modeling approaches. Finally, the simulation results are used to discuss some approximations behind the microscopic interpretation of isotopic fractionation based on the underlying rototranslational coupling.

  8. Liquid-Vapor Equilibrium Isotopic Fractionation of Water. How well can classical water models predict it?

    SciTech Connect

    Chialvo, Ariel A; Horita, Juske

    2009-01-01

    The liquid-vapor equilibrium isotopic fractionation of water is determined by molecular-based simulation, via Gibbs Ensemble Monte Carlo and isothermal-isochoric molecular dynamics involving two radically different but realistic models, the extended simple point charge (SPC/E) and the Gaussian charge polarizable (GCP) models. The predicted temperature dependence of the liquid-vapor equilibrium isotopic fractionation factors for H 2 18O / H 2 16O, H 2 17O / H 2 16O, and 2H 1H 16O / 1H 2 16O are compared against the most accurate experimental datasets to assess the ability of these intermolecular potential models to describe quantum effects according to the Kirkwood-Wigner free energy perturbation ! 2 !expansion. Predictions of the vapor pressure isotopic effect for the H 2 18O / H 2 16O and H 2 17O / H 2 16O pairs are also presented in comparison with experimental data and two recently proposed thermodynamic modeling approaches. Finally, the simulation results are used to discuss some approximations behind the microscopic interpretation of isotopic fractionation based on the underlying roto-translational coupling.

  9. Analysis of water-level fluctuations in Wisconsin wells

    USGS Publications Warehouse

    Patterson, G.L.; Zaporozec, A.

    1987-01-01

    Long-term trends are apparent on hydrographs of wells Br-46, Mr-2S, Pt-276, Ro-3, and Ve-8. The trend of average annual water levels has been generally increasing since the late 1950's and is in general agreement with the increasing trend of precipitation. Hydrographs of well Ve-8, which has the longest period of record in Wisconsin, indicate that the generally rising trend started even earlier at the end of an extensive drought period in the 1930's.

  10. Assessment and prediction of contaminant migration in ground water from chromite waste dump

    NASA Astrophysics Data System (ADS)

    Tiwary, R. K.; Dhakate, R.; Ananda Rao, V.; Singh, V. S.

    2005-08-01

    Sukinda chromite valley is one of the largest chromite deposits of the country and produces nearly 8% of chromite ore. It greatly contributes towards the economic development but at the same time deteriorates the natural environment. It is generally excavated by opencast mining method. In the Sukinda mining area, around 7.6 million tons of solid waste have been generated in the form of rejected minerals, overburden material/waste rock and sub-grade ore that may be resulting in environmental degradation, mainly causing lowering in the water table vis-à-vis deterioration in surface and ground water quality. The study conducted in and around one of the chromite mine of the valley reveals that the concentration of hexavalent chromium is found in the water samples of ground and surface water, mine effluents and seepage water. Hexavalent Chromium (Cr+6) have been found varying between 0.02 mg/l and 0.12 mg/l in mine effluents and 0.03 0.8 mg/l in shallow hand pumps and 0.05 and 1.22 mg/l in quarry seepage. The concentration of Cr+6 in Damsal nalah, the main surface water source in the area, is found varying between 0.03 mg/l and 0.14 mg/l and a increasing trend, which is in the downstream of mining activities, has been observed. Leachate study clearly shows that the soil lying in the vicinity of mine waste dump shows highest concentration of Cr+6. Contaminant migration in ground water depends upon various geohydrological conditions of the area. The study shows that aquifer resistivity varies between 15 Ωm to 150 Ωm and aquifer depth varies from 4 m to 26 m below ground level. The ground water flow and mass transport models were constructed with the help of geo-hydrological and geophysical informations using Visual Modflow software. Contaminant migration and path lines for 20 years have been predicted in two layers model of ground water. The study provided an insight into the likely migration of contaminant in ground water due to leaching from overburden dump of chromite ore and will be helpful in making strategic planning for limiting the contaminant migration in the ground water regime in and around the mining areas.

  11. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model

    NASA Astrophysics Data System (ADS)

    Chang, Juan; Wang, Genxu; Mao, Tianxu

    2015-10-01

    Suprapermafrost groundwater has an important role in the hydrologic cycle of the permafrost region. However, due to the notably harsh environmental conditions, there is little field monitoring data of groundwater systems, which has limited our understanding of permafrost groundwater dynamics. There is still no effective mathematical method and theory to be used for modeling and forecasting the variation in the permafrost groundwater. Two ANN models, one with three input variables (previous groundwater level, temperature and precipitation) and another with two input variables (temperature and precipitation only), were developed to simulate and predict the site-specific suprapermafrost groundwater level on the slope scale. The results indicate that the three input variable ANN model has superior real-time site-specific prediction capability and produces excellent accuracy performance in the simulation and forecasting of the variation in the suprapermafrost groundwater level. However, if there are no field observations of the suprapermafrost groundwater level, the ANN model developed using only the two input variables of the accessible climate data also has good accuracy and high validity in simulating and forecasting the suprapermafrost groundwater level variation to overcome the data limitations and parameter uncertainty. Under scenarios of the temperature increasing by 0.5 or 1.0 °C per 10 years, the suprapermafrost groundwater level is predicted to increase by 1.2-1.4% or 2.5-2.6% per year with precipitation increases of 10-20%, respectively. There were spatial variations in the responses of the suprapermafrost groundwater level to climate change on the slope scale. The variation ratio and the amplitude of the suprapermafrost groundwater level downslope are larger than those on the upper slope under climate warming. The obvious vulnerability and spatial variability of the suprapermafrost groundwater to climate change will impose intensive effects on the water cycle and alpine ecosystems in the permafrost region.

  12. Application of data assimilation for improving forecast of water levels and residual currents in Singapore regional waters

    NASA Astrophysics Data System (ADS)

    Karri, Rama Rao; Badwe, Abhijit; Wang, Xuan; El Serafy, Ghada; Sumihar, Julius; Babovic, Vladan; Gerritsen, Herman

    2013-01-01

    Hydrodynamic models are commonly used for predicting water levels and currents in the deep ocean, ocean margins and shelf seas. Their accuracy is typically limited by factors, such as the complexity of the coastal geometry and bathymetry, plus the uncertainty in the flow forcing (deep ocean tide, winds and pressure). In Southeast Asian waters with its strongly hydrodynamic characteristics, the lack of detailed marine observations (bathymetry and tides) for model validation is an additional factor limiting flow representation. This paper deals with the application of ensemble Kalman filter (EnKF)-based data assimilation with the purpose of improving the deterministic model forecast. The efficacy of the EnKF is analysed via a twin experiment conducted with the 2D barotropic Singapore regional model. The results show that the applied data assimilation can improve the forecasts significantly in this complex flow regime.

  13. Modelling wetland bird response to water level changes in the Lake Ontario - St. Lawrence River hydrosystem.

    PubMed

    Desgranges, Jean-Luc; Ingram, Joel; Drolet, Bruno; Morin, Jean; Savage, Caroline; Borcard, Daniel

    2006-02-01

    Lake Ontario and St. Lawrence River (LOSL) wetland bird abundance and diversity are greatly influenced by lake and river hydrology. Our study used an interdisciplinary ecosystem approach, blending avian and plant ecology, ecohydraulic, statistical ecology and modelling to evaluate potential impacts of water level fluctuations on indicator species representative of the wetland breeding bird assemblages in the entire LOSL freshwater system. Multi-year (2000-2003) bird surveys captured bird distribution and density in wetland habitats under varying degrees of water inandation, depth and fluctuation. Analyses revealed strong associations between estimated breeding pair densities and plant communities, water depth, and degree of water level fluctuation during the breeding season for a suite of wetland bird species using marsh, wet meadow, shrub swamp and treed swamp habitats. These quantitative associations were used to develop wetland bird performance indicators for use in a LOSL water regulation review study. Several bird species also nest at or near the water surface and are thus vulnerable to nest flooding or stranding. Changes to the seasonal hydrology of Lake Ontario and St. Lawrence River that result in an increased frequency or magnitude of these nest failure events may have a significant impact on regional population sustainability. Long term nest record databases were analyzed to create nesting flooding and stranding probability equations based on water level increases and decreases during the breeding season. These species-specific nesting relationships were incorporated into a reproduction index. Many breeding bird species were strongly associated with specific wetland plant communities. Predicted habitat suitability, as measured by estimated breeding pair density, can also change significantly within a specific wetland plant community based solely on changes in water depth during the breeding season. Three indicator species, Black Tern, Least Bittern and Virginia Rail were selected as key environmental performance indicators for alternate regulation plan comparisons. Water regulation criteria should be such that the long term diversity and abundance of wetland plant communities and frequency of spring flooding in marsh habitats during breeding are not reduced. Magnitude and frequency of water level change during the nesting season (May-July) can also adversely impact reproductive success of many wetland bird species. As such, regulation criteria that increase the seasonal magnitude and frequency of water level change may be detrimental to the long term viability of certain regional breeding bird populations. PMID:16518674

  14. Predicting energy requirement with pedometer-determined physical-activity level in women with chronic obstructive pulmonary disease

    PubMed Central

    Farooqi, Nighat; Slinde, Frode; Carlsson, Maine; Hglin, Lena; Sandstrm, Thomas

    2015-01-01

    Background In clinical practice, in the absence of objective measures, simple methods to predict energy requirement in patients with chronic obstructive pulmonary disease (COPD) needs to be evaluated. The aim of the present study was to evaluate predicted energy requirement in females with COPD using pedometer-determined physical activity level (PAL) multiplied by resting metabolic rate (RMR) equations. Methods Energy requirement was predicted in 18 women with COPD using pedometer-determined PAL multiplied by six different RMR equations (HarrisBenedict; Schofield; World Health Organization; Moore; Nordic Nutrition Recommendations; Nordenson). Total energy expenditure (TEE) was measured by the criterion method: doubly labeled water. The predicted energy requirement was compared with measured TEE using intraclass correlation coefficient (ICC) and BlandAltman analyses. Results The energy requirement predicted by pedometer-determined PAL multiplied by six different RMR equations was within a reasonable accuracy (10%) of the measured TEE for all equations except one (Nordenson equation). The ICC values between the criterion method (TEE) and predicted energy requirement were: HarrisBenedict, ICC =0.70, 95% confidence interval (CI) 0.230.89; Schofield, ICC =0.71, 95% CI 0.210.89; World Health Organization, ICC =0.74, 95% CI 0.330.90; Moore, ICC =0.69, 95% CI 0.210.88; Nordic Nutrition Recommendations, ICC =0.70, 95% CI 0.170.89; and Nordenson, ICC =0.40, 95% CI ?0.19 to 0.77. BlandAltman plots revealed no systematic bias for predicted energy requirement except for Nordenson estimates. Conclusion For clinical purposes, in absence of objective methods such as doubly labeled water method and motion sensors, energy requirement can be predicted using pedometer-determined PAL and common RMR equations. However, for assessment of nutritional status and for the purpose of giving nutritional treatment, a clinical judgment is important regarding when to accept a predicted energy requirement both at individual and group levels. PMID:26109854

  15. A screening level fate model of organic contaminants from advanced water treatment in a potable water supply reservoir.

    PubMed

    Hawker, Darryl W; Cumming, Janet L; Neale, Peta A; Bartkow, Michael E; Escher, Beate I

    2011-01-01

    Augmentation of potable water sources by planned indirect potable reuse of wastewater is being widely considered to address growing water shortages. Environmental buffers such as lakes and dams may act as one of a series of barriers to potable water contamination stemming from micropollutants in wastewater. In South-East Queensland, Australia, current government policy is to begin indirect potable reuse of water from reverse osmosis equipped advanced water treatment plants (AWTPs) when the combined capacity of its major storages is at 40% capacity. A total of 15 organic contaminants including NDMA and bisphenol A have been publically reported as detected in recycled water from one of South-East Queensland's AWTPs, while another 98 chemicals were analysed for, but found to be below their detection limit. To assess the natural attenuation in Lake Wivenhoe, a Level III fugacity based evaluative fate model was constructed using the maximum concentrations of these contaminants detected as input data. A parallel aquivalence based model was constructed for those contaminants, such as dichloroacetic acid, dalapon and triclopyr, which are ionised in the environment of Lake Wivenhoe. A total of 247 organic chemicals of interest, including disinfection by-products, pesticides, pharmaceuticals and personal care products, xenoestrogens and industrial chemicals, were evaluated with the model to assess their potential for natural attenuation. Out of the 15 detected chemicals, trihalomethanes are expected to volatilise with concentrations in the outflow from the dam approximately 400 times lower than influent from the AWTPs. Transformation processes in water are likely to be more significant for NDMA and pharmaceuticals such as salicylic acid and paracetamol as well as for caffeine and the herbicides dalapon and triclopyr. For hydrophobic contaminants such as cholesterol and phenolic xenoestrogens such as 4-nonylphenol, 4-t-octylphenol and bisphenol A, equilibrium between water and sediments will not be attained and hence fate processes such as removal in outflow are predicted to become relatively important. PMID:20851445

  16. Water-Level Measurements for the Coastal Plain Aquifers of South Carolina Prior to Development

    USGS Publications Warehouse

    Aucott, Walter R.; Speiran, Gary K.

    1984-01-01

    Tabulations of water-level measurements for the Coastal Plain aquifers of South Carolina representing water levels prior to man-made development are presented. Included with the tabulations are local well number, location, land-surface altitude, well depth, screened interval, depth to water, water- level altitude, and date measured. These water-level measurements were used in compiling regional potentiometric maps for the Coastal Plain aquifers. This data set will be useful in the planning for future water-resource development.

  17. Self-affinity and surface area dependent fluctuations of lake water level time series

    NASA Astrophysics Data System (ADS)

    Williams, Z.; Pelletier, J. D.

    2014-12-01

    Variability in lake water level time series is commonly attributed to variability in climatic and hydrologic forcing. We present a spectral analysis of water level time series for 185 globally distributed lakes that suggests a previously unidentified source of internal variability within coupled lake-aquifer systems. Water level fluctuations universally follow a power law scaling of the power spectrum over the range of 30 days to 10 years indicating that lake levels are a 1/f type noise. The slope of the log transformed power spectrum is shown to be a linear function of the logarithm (base 10) of lake surface area. To understand the processes underlying these spectral characteristics, we develop a simple numerical model for lake fluctuations based on the governing equations for groundwater flow in an unconfined aquifer with stochastic forcing. The model robustly produces 1/f type power spectra across all lake sizes and predicts surface area dependence of the power spectrum. The close agreement between simulation and natural data suggests that spatial and temporal stochasticity of mass inputs and diffusion of the groundwater table are key processes for understanding lake level variability.

  18. Assimilation of spatially distributed water levels into a shallow-water flood model. Part II: Use of a remote sensing image of Mosel River

    NASA Astrophysics Data System (ADS)

    Hostache, Renaud; Lai, Xijun; Monnier, Jérôme; Puech, Christian

    2010-09-01

    SummaryWith rapid flood extent mapping capabilities, Synthetic Aperture Radar (SAR) images of river inundation prove to be very relevant to operational flood management. In this context, a recently developed method provides distributed water levels from SAR images. Furthermore, in view of improving numerical flood prediction, a variational data assimilation method (4D-var) using such distributed water level has been developed in Part I of this study. This method combines an optimal sense remote sensing data (distributed water levels extracted from spatial images) and a 2D shallow water model. In the present article (Part II of the study), we also derive water levels with a ±40 cm average vertical uncertainty from a RADARSAT-1 image of a Mosel River flood event (1997, France). Assimilated in a 2D shallow water hydraulic model using the 4D-var developed method, these SAR derived spatially distributed water levels prove to be capable of enhancing model calibration. Indeed, the assimilation process can identify optimal Manning friction coefficients, at least in the river channel. Moreover, used as a guide for sensitivity analysis, remote sensing water levels allow also identifying some areas in the floodplain and the channel where Manning friction coefficients are homogeneous. This allows basing the spatial segmentation of roughness coefficient on floodplain hydraulic functioning.

  19. Roughness and discharge uncertainty propagation in water level calculations :

    NASA Astrophysics Data System (ADS)

    Goutal, Nicole; Arnaud, Aurelie; Goeury, Cedric; Ata, Riadh

    2015-04-01

    In hydraulics, water level simulations are necessary for variety of purposes, such as flood, hydraulic structures design etc. Knowledge of the uncertainty in flow depth estimation is crucial for risk assessment and hydraulic structures design. In hydraulics models, the sources of uncertainty are manifold : roughness coefficient, boundary conditions (discharge - geometry - data for calibration etc) . In the present study, we will investigate the effect of two key uncertainty sources on water level simulations in 1D - 2D hydraulic models : the roughness coefficient and the discharge quantile, i.e. the flow rate corresponding to a given return period. A Monte-Carlo method is used to propagate the input uncertainty through the model in case of a real case study on a 50 km reach of the Garonne river. The difficulty with the crude Monte-Carlo method is due to the convergence, for instance the approximation of quantile could be time consuming. It will be illustrated on a real case of river that we propose for a benchmark.

  20. [Surveillance of perchlorate level in leafy vegetables and bottled water].

    PubMed

    Takatsuki, Satoshi; Watanabe, Takahiro; Sakai, Takatoshi; Matsuda, Rieko; Maitani, Tamio

    2009-08-01

    Perchlorate (ClO(4)(-)) is both a naturally occurring and artificial compound, and it inhibits iodide uptake into the thyroid gland and disturbs thyroid function. It has been detected in many foods in the United States. In order to investigate perchlorate contamination in foods in Japan, perchlorate level in 82 leafy vegetable samples and 20 bottled mineral water samples was measured using a procedure based on the FDA's procedure, employing IC-MS/MS with (18)O(4)-labeled perchlorate as an internal standard. Among 82 leafy vegetable samples tested, perchlorate levels were under the LOQ (0.3 ng/g) in 3 samples and ranged from 0.3 ng/g to 29.7 ng/g in 79 samples. In 20 bottled water samples, perchlorate was under the LOQ (0.1 ng/mL) in 14 samples and ranged from 0.14 ng/mL to 0.35 ng/mL in 6 samples. PMID:19745587

  1. The prediction of en route noise levels for a DC-9 aircraft

    NASA Technical Reports Server (NTRS)

    Weir, Donald S.

    1988-01-01

    En route noise for advanced propfan powered aircraft has become an issue of concern for the Federal Aviation Administration. The NASA Aircraft Noise Prediction Program (ANOPP) is used to demonstrate the source noise and propagation effects for an aircraft in level flight up to 35,000 feet altitude. One-third octave band spectra of the source noise, atmospheric absorption loss, and received noise are presented. The predicted maximum A-weighted sound pressure level is compared to measured data from the Aeronautical Research Institute of Sweden. ANOPP is shown to be an effective tool in evaluating the en route noise characteristics of a DC-9 aircraft.

  2. A predictive theory of intentions to exit street-level prostitution.

    PubMed

    Cimino, Andrea N

    2012-10-01

    Street-level prostitution is notoriously difficult to escape and rarely do women exit prostitution on their first attempt or without experiencing serious negative consequences to their physical or mental health. Unfortunately, few theories exist that explain the exiting process and those that do exist are difficult to test quantitatively. This article applies the integrative model of behavioral prediction to examine intentions to exit prostitution through attitudes, norms, and self-efficacy beliefs that underlie a woman's intention to exit prostitution. Constructs unique prostitution--agency and societal context--enhance the model. This theory may explain and predict an exit from street-level prostitution. PMID:23136182

  3. Comparative Analysis of Seepage Losses From Nighttime Water Level Changes and Water Balance Methods

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Shukla, S.; Wu, C.

    2013-12-01

    Several techniques including Darcy's theory of one and two dimensional groundwater flow, seepage meters, and water balance have been used in the past to estimate seepage from impoundments such as reservoirs, ponds, and constructed wetlands. These methods result in varying level of errors in seepage estimates depending on method and biogeophysical setting to which they are applied. In this study, we explore a simple yet effective method of estimating groundwater fluxes for two stormwater impoundments (SIs) and a partially drained wetland located in agricultural areas using diurnal changes in surface water levels inside these systems. Days with no inflow, outflow, and rainfall were selected to minimize the effect of the error associated water balance components on seepage estimation. Difference in water levels between 20:00 hrs and 5:00 hrs was calculated for the selected days. Only nighttime change was considered keeping in mind the fact that evapotranspiration is negligible during night and hence, the change in water levels can be attributed to seepage alone. Seepage from the analysis of night-time change in the water levels was compared to the estimates from the water balance method with seepage being the residual component of the balance. Results show that seepage constitutes a large part of total outflow from the impoundments (29% and 17% for SI1 during 2008-2009 and 2009-2010 respectively, 30% for SI2 during 2009-2010 and seepage was greater than the total surface water outflow from SI2 during 2010-2011). Accuracy of this method varied from 5% to 41% for first and 4% to 29% for the second SI. Considering that errors as high as 100% have been reported with the use of Darcy's approach, the errors from our method are lower. The lower errors combined with ease of application without using the hydraulic conductivity values makes our approach feasible for other similar systems. Improved seepage estimate from the proposed method will result in quantification of nutrient fluxes from SI through subsurface pathways, which is likely to result in a more realistic representation of treatment efficiency of these impoundments. For instance, phosphorus treatment efficiency of SI1 for 2008-2009 was estimated to be -17% and -60% with and without seepage consideration, respectively. Key words: Groundwater flux, impoundment, wetland, water balance, Phosphorus, treatment efficiency.

  4. RELATIONSHIPS BETWEEN LEVELS OF HETEROTROPHIC BACTERIA AND WATER QUALITY PARAMETERS IN A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Conventional plating methods were used to quantify heterotrophic bacteria from a drinking water distribution system. Three media, plate count agar (PCA), R2A agar and sheep blood agar (TSA-SB) were used to determine heterotrophic plate count (HPC) levels. Grab samples were collec...

  5. Wind wave prediction in shallow water: Theory and applications

    SciTech Connect

    Cavaleri, L.; Rizzoli, P.M.

    1981-11-20

    A wind wave forecasting model is described, based upon the ray technique, which is specifically designed for shallow water areas. The model explicitly includes wave generation, refraction, and shoaling, while nonlinear dissipative processes (breaking and bottom fricton) are introduced through a suitable parametrization. The forecast is provided at a specified time and target position, in terms of a directional spectrum, from which the one-dimensional spectrum and the significant wave height are derived. The model has been used to hindcast storms both in shallow water (Northern Adriatic Sea) and in deep water conditions (Tyrrhenian Sea). The results have been compared with local measurements, and the rms error for the significant wave height is between 10 and 20%. A major problems has been found in the correct evaluation of the wind field.

  6. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    PubMed Central

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  7. Improved multi-level proteinprotein interaction prediction with semantic-based regularization

    PubMed Central

    2014-01-01

    Background Proteinprotein interactions can be seen as a hierarchical process occurring at three related levels: proteins bind by means of specific domains, which in turn form interfaces through patches of residues. Detailed knowledge about which domains and residues are involved in a given interaction has extensive applications to biology, including better understanding of the binding process and more efficient drug/enzyme design. Alas, most current interaction prediction methods do not identify which parts of a protein actually instantiate an interaction. Furthermore, they also fail to leverage the hierarchical nature of the problem, ignoring otherwise useful information available at the lower levels; when they do, they do not generate predictions that are guaranteed to be consistent between levels. Results Inspired by earlier ideas of Yip et al. (BMC Bioinformatics 10:241, 2009), in the present paper we view the problem as a multi-level learning task, with one task per level (proteins, domains and residues), and propose a machine learning method that collectively infers the binding state of all object pairs. Our method is based on Semantic Based Regularization (SBR), a flexible and theoretically sound machine learning framework that uses First Order Logic constraints to tie the learning tasks together. We introduce a set of biologically motivated rules that enforce consistent predictions between the hierarchy levels. Conclusions We study the empirical performance of our method using a standard validation procedure, and compare its performance against the only other existing multi-level prediction technique. We present results showing that our method substantially outperforms the competitor in several experimental settings, indicating that exploiting the hierarchical nature of the problem can lead to better predictions. In addition, our method is also guaranteed to produce interactions that are consistent with respect to the proteindomainresidue hierarchy. PMID:24725682

  8. An empirical method for predicting the mixing noise levels of subsonic circular and coaxial jets

    NASA Technical Reports Server (NTRS)

    Russell, J. W.

    1984-01-01

    An empirical method for predicting the static free field source noise levels of subsonic circular and coaxial jet flow streams is presented. The method was developed from an extensive data base of 817 jet tests obtained from five different government and industry sources in three nations. The prediction method defines the jet noise in terms of four components which are overall power level, power spectrum level, directivity index, and relative spectrum level. The values of these noise level components are defined on a grid consisting of seven frequency parameter values (Strouhal numbers) and seven directivity angles. The value of the noise level at each of these grid points is called a noise level coordinate and was defined as a function of five jet exhaust flow state parameters which are equivalent jet velocity, equivalent jet total temperature, the velocity ratio (outer stream to inner stream), temperature ratio, and area ratio. The functions were obtained by curve fitting in a least squares sense the noise level coordinates from the data base in a five dimensional flow state space using a third order Taylor series. The noise level coordinates define the component noise levels for all frequencies and directivities through a bicubic spline function.

  9. Comparative analysis of fuzzy inference systems for water consumption time series prediction

    NASA Astrophysics Data System (ADS)

    Firat, Mahmut; Turan, Mustafa Erkan; Yurdusev, Mehmet Ali

    2009-08-01

    SummaryTwo types of fuzzy inference systems (FIS) are used for predicting municipal water consumption time series. The FISs used include an adaptive neuro-fuzzy inference system (ANFIS) and a Mamdani fuzzy inference systems (MFIS). The prediction models are constructed based on the combination of the antecedent values of water consumptions. The performance of ANFIS and MFIS models in training and testing phases are compared with the observations and the best fit model is identified according to the selected performance criteria. The results demonstrated that the ANFIS model is superior to MFIS models and can be successfully applied for prediction of water consumption time series.

  10. Space-time model to predict tropospheric ozone concentration levels in an industrial region

    NASA Astrophysics Data System (ADS)

    Melo Durao, Rita; Joo Pereira, Maria; Soares, Amlcar

    2014-05-01

    The main goal of this work was to develop a space-time model to predict tropospheric ozone (O3) concentration levels in the surroundings of an industrial Portuguese region, Sines. Regional air quality monitoring network is composed by three conventional monitoring stations, which register hourly O3 concentrations levels on a high temporal resolution but with very low spatial resolution. To overcome the lack of spatial data to characterize ozone dispersion, O3 spatial patterns were obtained through several field campaigns of passive samplers (Radiello diffusive tubes) performed over time. This passive sampler allows collecting data on a high spatial density sampling design but for periods of time between 1 to 2 weeks for each campaign, obtaining O3 mean concentrations over this period. The proposed space-time model is based in a two steps methodology: 1. Time prediction of O3 concentration levels on monitoring stations location using Multilayer perceptron (MLP) networks. 2. Spatial prediction of O3 concentration levels for the Sines region using block simulation. The main advantages of applying MLP networks to predict pollutant concentrations are that MLP models do not need exhaustive information about measured pollutant concentrations, reaction mechanisms, meteorological parameters or emission pollutant concentrations, identifying and reproducing nonlinear relationships between the different predictor variables. The developed MLP models presented good performances with values reaching up to 78% of prediction success of O3 hourly concentrations levels. In the second step Block Sequential Simulation (BSSIM) algorithm is applied to predict spatial pattern of O3 concentration levels. This simulation method is based on direct sequential simulation (DSS) (Soares, 2001), which does not require a non-linear transformation of the main variable; hence, data with different supports can be jointly used in the same model. In this study we considered O3 concentrations measured/predicted in point locations but in different time supports. Hence, BSSIM algorithm allowed the integration of hourly O3 concentration predictions at monitoring station locations and block data such as O3 mean ozone concentrations over the passive samplers exposure period of time on their locations. Block data error was set for different weather conditions, based on the field campaigns exposed data periods. Preliminary results are quite satisfactory since Block simulation seems able to reproduce the relation between real and predicted values, guaranteeing that the implementation conditions of the stochastic simulation algorithm (variograms, histograms and correlation coefficient of each pair of variables) are reproduced in the final results.

  11. Theoretical Prediction of Thermal Diffusion in Water-Methanol, Water-Ethanol, and Water-Isopropanol Mixtures using the PC-SAFT Equation of State

    NASA Astrophysics Data System (ADS)

    Pan, Shu; Jiang, Charles; Yan, Yu; Kawaji, Masahiro; Saghir, M. Ziad

    2006-01-01

    In this paper, by combining the PC-SAFT equation of state (EOS) to the thermal diffusion models for non-associating mixtures, the theoretical prediction of thermal diffusion has been carried out for associating fluid mixtures including water-methanol, water-ethanol, and water-isopropanol. At first, the parameters of the PC-SAFT for water-methanol, water-ethanol, and water-isopropanol mixtures are optimized. Then, by comparing the predictive and experimental values of density and residual partial molar enthalpy in water-methanol, water-ethanol, and water-isopropanol mixtures, we demonstrate the capability of PC-SAFT EOS to reproduce reliable thermodynamic properties in these mixtures with a low to moderate water concentration. Finally, with the thermodynamic properties from the PC-SAFT, several thermal diffusion models available in the literature are extended to binary water-alcohol mixtures including water-methanol, water-ethanol, and water-isopropanol. The Firoozabadi model combined with the PC-SAFT EOS has shown an effective capability for predicting mixtures with a low to moderate water concentration.

  12. Concomitant prediction of function and fold at the domain level with GO-based profiles

    PubMed Central

    2013-01-01

    Predicting the function of newly sequenced proteins is crucial due to the pace at which these raw sequences are being obtained. Almost all resources for predicting protein function assign functional terms to whole chains, and do not distinguish which particular domain is responsible for the allocated function. This is not a limitation of the methodologies themselves but it is due to the fact that in the databases of functional annotations these methods use for transferring functional terms to new proteins, these annotations are done on a whole-chain basis. Nevertheless, domains are the basic evolutionary and often functional units of proteins. In many cases, the domains of a protein chain have distinct molecular functions, independent from each other. For that reason resources with functional annotations at the domain level, as well as methodologies for predicting function for individual domains adapted to these resources are required. We present a methodology for predicting the molecular function of individual domains, based on a previously developed database of functional annotations at the domain level. The approach, which we show outperforms a standard method based on sequence searches in assigning function, concomitantly predicts the structural fold of the domains and can give hints on the functionally important residues associated to the predicted function. PMID:23514233

  13. Plasma leptin levels are not predictive of dementia in patients with mild cognitive impairment

    PubMed Central

    Oania, Rafael; McEvoy, Linda K.

    2015-01-01

    Background: animal studies suggest a neuroprotective role for leptin, but human studies have shown mixed results. We examined whether plasma leptin levels in individuals with mild cognitive impairment (MCI) were related to cognitive function at baseline and whether higher leptin levels were associated with reduced risk of dementia. Methods: we categorised 352 MCI participants into sex-specific tertiles based on log-transformed fasting plasma leptin levels. In sex-stratified analyses, we investigated whether cognitive ability differed by leptin tertile. We also examined whether the risk of dementia over a 3-year follow-up period differed by leptin level. Analyses controlled for numerous potential confounding variables, including body mass index, hypertension and levels of blood insulin and C-reactive protein. Results: baseline cognitive ability did not differ as a function of leptin level, nor were higher leptin levels associated with reduced hazard of developing dementia. Controlling for related co-variates did not reveal any significant associations between leptin and dementia risk. Conclusion: in this cohort of older adults with MCI, plasma leptin level was not associated with cognitive function at baseline, nor did it predict risk of dementia. Other biological measures, such as volumetric MRI and cerebrospinal fluid protein levels, have demonstrated robust dementia prediction in this cohort. Thus, the current negative findings suggest that plasma leptin, on its own, is unlikely to become a useful clinical biomarker for Alzheimer's disease. Efforts to develop other blood-based biomarkers are needed. PMID:25349150

  14. Pretransplant uric acid levels may be predictive for prognosis of renal transplant donors.

    PubMed

    Kulah, Eyup

    2016-05-01

    Background The living kidney donor counseling prior to the operation may be helpful to learn how to properly care for the remaining single kidney for the rest of their lives. Worsening kidney function is associated with elevated serum uric acid (UA) levels. In this study, we compared the baseline laboratory findings of renal transplant donors with their follow-up laboratory values. Methods The study consisted of 173 adult donors including 91 females and 82 males with a mean age of 46.82 ± 11.31 years. The follow-up clinical and laboratory examinations were performed on the third day at the end of the first and the sixth months of the surgery. According to donor's creatinine levels we constituted two groups: high creatinine and normal creatinine. Results Patients within the high creatinine group had significantly higher mean serum UA levels when compared with the normal creatinine group. In multivariate analysis, among the other effective variables, UA level alone was found to be the most effective parameter predicting the post-transplant creatinine levels (p = 0.004, odds ratio: 12.4, 95% CI: 2.3-68.3) at sixth month post-transplantation. In the ROC analysis for the effects of UA, the following cutoff values were found: >6 mg/dL in men (sensitivity 81.3%, specificity 76.9%, positive predictive value 89.7%, negative predictive value 62.5%, accuracy 80%) and ≥5 mg/dL in women (sensitivity 72.2, specificity 74.4%, positive predictive value 89.7%, negative predictive value 62.5%, accuracy: 73.7%). Conclusion Pretransplant serum UA levels can give important clues regarding the renal functions of the donors during the postoperative period. PMID:26888379

  15. Project Water Science. General Science High School Level.

    ERIC Educational Resources Information Center

    Water Education Foundation, Sacramento, CA.

    This teacher's guide presents 12 hands-on laboratory activities for high school science classes that cover the environmental issue of water resources in California. The activities are separated into three sections. Five activities in the section on water quality address the topics of groundwater, water hardness, bottled water, water purity, and…

  16. Peak sound pressure and sound exposure level from underwater explosions in shallow water.

    PubMed

    Soloway, Alexander G; Dahl, Peter H

    2014-09-01

    Experimental measurements of the peak pressure and sound exposure level (SEL) from underwater explosions collected 7?km off the coast of Virginia Beach, Virginia are presented. The peak pressures are compared to results from previous studies and a semi-empirical equation that is a function of measurement range and charge weight, and are found to be in good agreement. An empirical equation for SEL that similarly employs a scaling approach involving charge weight and range is also presented and shows promise for the prediction of SEL in shallow water. PMID:25190424

  17. Predicting blood lead levels from current and past environmental data in Europe.

    PubMed

    Bierkens, J; Smolders, R; Van Holderbeke, M; Cornelis, C

    2011-11-01

    The present case study on lead in Europe illustrates the use of the Integrated Monitoring Framework Strategy to assess the health outcome of environmental pollution by evaluating the associations between lead in various environmental compartments (air, soil, dust, drinking water and diet) and lead concentrations in blood (B-Pb) for various age-related sub-populations. The case study was aimed to investigate whether environmental, exposure and biomonitoring data at general population level, covering all EU member states, could be integrated. Although blood lead has been monitored extensively in Europe, consistent datasets are not yet available. Data diverge with regard to objectives, regional scale, sampling years, gender, age groups and sample size. Significant correlations were found between B-Pb and the concentrations of Pb in air and diet. The significant decrease of the Pb in air over time from 0.31 ?g/m(3) (P95: 0.94; n=98) prior to 1990 to 0.045 ?g/m(3) (P95: 0.11; n=256) in 2007 (latest observations included) (?=-85%) corresponds to a decline in B-Pb by 48% and 57% in adult women and adult men, respectively. For pre-school children a more shallow decline in B-Pb of 16% was calculated over the same period. Similarly, the reduction in Pb-dietary intake from on average 68.7 ?g/d (P95: 161.6; n=19) in 1978 to 35.7 ?g/d (P95: 82.3; n=33) in the years post 2000 (?=-48%) is paralleled by a decline in B-Pb of 32, 33 and 19% in adult women, primary- and pre-school children, respectively. Insufficient data exist for other age groups to calculate statistically significant correlations. Although regression models have been derived to predict B-Pb for different sub-populations in Europe based on Pb concentrations in air and soil as well as dietary intake, it is concluded that the available data are insufficient to accurately predict actual and future simultaneous exposure to Pb from various environmental compartments, and as a consequence the health impact of Pb for various target populations at EU scale. At least due to data availability, air Pb remains the best predictor of B-Pb in the population. However, lead emission sources have largely been reduced and inhalation of lead in air is not causal to B-Pb levels. Therefore, there is a need of adequate data for Pb in soil and house dust, and in diet and drinking water as these are causal exposure sources with a longer Pb half-life than air. An extended and more harmonized surveillance system monitoring B-Pb, especially in children, is urgently required in order to identify, quantify and reduce still remaining sources of Pb exposure. PMID:21917298

  18. Predicted and Measured Modal Sound Power Levels for a Fan Ingesting Distorted Inflow

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2010-01-01

    Refinements have been made to a method for estimating the modal sound power levels of a ducted fan ingesting distorted inflow. By assuming that each propagating circumferential mode consists only of a single radial mode (the one with the highest cut-off ratio), circumferential mode sound power levels can be computed for a variety of inflow distortion patterns and operating speeds. Predictions from the refined theory have been compared to data from an experiment conducted in the Advanced Noise Control Fan at NASA Glenn Research Center. The inflow to the fan was distorted by inserting cylindrical rods radially into the inlet duct. The rods were placed at an axial location one rotor chord length upstream of the fan and arranged in both regular and irregular circumferential patterns. The fan was operated at 2000, 1800, and 1400 rpm. Acoustic pressure levels were measured in the fan inlet and exhaust ducts using the Rotating Rake fan mode measurement system. Far field sound pressure levels were also measured. It is shown that predicted trends in circumferential mode sound power levels closely match the experimental data for all operating speeds and distortion configurations tested. Insight gained through this work is being used to develop more advanced tools for predicting fan inflow distortion tone noise levels.

  19. Inflow, outflow, and water levels in Lake Michigan during the last part of the Wisconsin glaciation

    SciTech Connect

    Clayton, L.; Attig, J.W. ); Mickelson, D.M. . Dept. of Geology and Geophysics)

    1992-01-01

    Between about 14,000 and 10,000 B.P., water flowed to and from Lake Michigan through several channels connected with adjacent glacial lakes and the Mississippi basin. Inflow and outflow depend on lake-level fluctuations, but no known lake-level chronology for the Lake Michigan basin explains all the supposed facts. Several kinds of information can be use to construct such a chronology: elevations of beaches, elevations and locations of outlets, ice-margin positions, till stratigraphy, and glacial history relative to outlets and lake-sediment distribution. If the crustal rebound predicted by J.A. Clark (bracketed by glacial Lake Wisconsin and Door Peninsula water planes) is used as the basis for a lake-level chronology, lake elevations would have been much higher than previously recognized, beaches previously thought to be late glacial must be middle Holocene, and the predicted sequence of spillways from glacial Lake Oshkosh, in the Green Bay basin, to Lake Michigan seems incompatible with the till stratigraphy of the region. On the other hand, a hinge line model such as proposed by J.W. Goldthwait allows far less rebound than is required by their knowledge of present-day rebound and by the rebound interpreted from shore features of glacial Lake Wisconsin. Therefore major flaws exist in their understanding of the glacial chronology and stratigraphy, of the glacial lake deposits, or of the crustal rebound; the reconstructed of inflow and outflow will remain uncertain until these conflicts are resolved.

  20. Predicting cloud water variations in the GISS GCM

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Yao, Mao-Sung

    1990-01-01

    A cloud water parameterization under development for the NASA Goddard Institute for Space Studies (GISS) global climate model (GCM) is described. The scheme is based on the studies of Sundqvist (1978) and Sundqvist et al. (1989), with a number of additional features designed to mimic the effects of important microphysical and dynamic processes in clouds. Preliminary results on geographical and seasonal variations from simulations of the current climate are presented.

  1. Prediction of acute multiple sclerosis relapses by transcription levels of peripheral blood cells

    PubMed Central

    Gurevich, Michael; Tuller, Tamir; Rubinstein, Udi; Or-Bach, Rotem; Achiron, Anat

    2009-01-01

    Background The ability to predict the spatial frequency of relapses in multiple sclerosis (MS) would enable physicians to decide when to intervene more aggressively and to plan clinical trials more accurately. Methods In the current study our objective was to determine if subsets of genes can predict the time to the next acute relapse in patients with MS. Data-mining and predictive modeling tools were utilized to analyze a gene-expression dataset of 94 non-treated patients; 62 patients with definite MS and 32 patients with clinically isolated syndrome (CIS). The dataset included the expression levels of 10,594 genes and annotated sequences corresponding to 22,215 gene-transcripts that appear in the microarray. Results We designed a two stage predictor. The first stage predictor was based on the expression level of 10 genes, and predicted the time to next relapse with a resolution of 500 days (error rate 0.079, p < 0.001). If the predicted relapse was to occur in less than 500 days, a second stage predictor based on an additional different set of 9 genes was used to give a more accurate estimation of the time till the next relapse (in resolution of 50 days). The error rate of the second stage predictor was 2.3 fold lower than the error rate of random predictions (error rate = 0.35, p < 0.001). The predictors were further evaluated and found effective both for untreated MS patients and for MS patients that subsequently received immunomodulatory treatments after the initial testing (the error rate of the first level predictor was < 0.18 with p < 0.001 for all the patient groups). Conclusion We conclude that gene expression analysis is a valuable tool that can be used in clinical practice to predict future MS disease activity. Similar approach can be also useful for dealing with other autoimmune diseases that characterized by relapsing-remitting nature. PMID:19624813

  2. Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels

    PubMed Central

    2014-01-01

    Background Drug-induced nephrotoxicity causes acute kidney injury and chronic kidney diseases, and is a major reason for late-stage failures in the clinical trials of new drugs. Therefore, early, pre-clinical prediction of nephrotoxicity could help to prioritize drug candidates for further evaluations, and increase the success rates of clinical trials. Recently, an in vitro model for predicting renal-proximal-tubular-cell (PTC) toxicity based on the expression levels of two inflammatory markers, interleukin (IL)-6 and -8, has been described. However, this and other existing models usually use linear and manually determined thresholds to predict nephrotoxicity. Automated machine learning algorithms may improve these models, and produce more accurate and unbiased predictions. Results Here, we report a systematic comparison of the performances of four supervised classifiers, namely random forest, support vector machine, k-nearest-neighbor and naive Bayes classifiers, in predicting PTC toxicity based on IL-6 and -8 expression levels. Using a dataset of human primary PTCs treated with 41 well-characterized compounds that are toxic or not toxic to PTC, we found that random forest classifiers have the highest cross-validated classification performance (mean balanced accuracy = 87.8%, sensitivity = 89.4%, and specificity = 85.9%). Furthermore, we also found that IL-8 is more predictive than IL-6, but a combination of both markers gives higher classification accuracy. Finally, we also show that random forest classifiers trained automatically on the whole dataset have higher mean balanced accuracy than a previous threshold-based classifier constructed for the same dataset (99.3% vs. 80.7%). Conclusions Our results suggest that a random forest classifier can be used to automatically predict drug-induced PTC toxicity based on the expression levels of IL-6 and -8. PMID:25521947

  3. Genetic interactions for heat stress and production level: predicting foreign from domestic data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic by environmental interactions were estimated from U.S. national data by separately adding random regressions for heat stress (HS) and herd production level (HL) to the all-breed animal model to improve predictions of future records and rankings in other climate and production situations. Yie...

  4. Perceptions of Crowding: Predicting at the Residence, Neighborhood, and City Levels.

    ERIC Educational Resources Information Center

    Schmidt, Donald E.; And Others

    1979-01-01

    Details the results of a large-scale field study aimed at testing two theories on human crowding. Found that psychological factors are increasingly important for the prediction of crowding as one moved from the immediate residence to the less immediate city level. Implications, limitations and further results are discussed. (Author/MA)

  5. The Level of Quality of Work Life to Predict Work Alienation

    ERIC Educational Resources Information Center

    Erdem, Mustafa

    2014-01-01

    The current research aims to determine the level of elementary school teachers' quality of work life (QWL) to predict work alienation. The study was designed using the relational survey model. The research population consisted of 1096 teachers employed at 25 elementary schools within the city of Van in the academic year 2010- 2011, and 346

  6. Analysis of Predictive Factors that Influence Faculty Members Technology Adoption Level

    ERIC Educational Resources Information Center

    Sahin, Ismail; Thompson, Ann

    2007-01-01

    This quantitative study used the Learning/Adoption Trajectory model of technology adoption as a scaffold to investigate whether a faculty adoption level of instructional technology in the College of Education (COE) at a large midwestern university in the US can be predicted by the faculty members' responses to questionnaire items in four areas:…

  7. Strength and Comprehensiveness of District School Wellness Policies Predict Policy Implementation at the School Level

    ERIC Educational Resources Information Center

    Schwartz, Marlene B.; Henderson, Kathryn E.; Falbe, Jennifer; Novak, Sarah A.; Wharton, Christopher M.; Long, Michael W.; O'Connell, Meghan L.; Fiore, Susan S.

    2012-01-01

    Background: In 2006, all local education agencies in the United States participating in federal school meal programs were required to establish school wellness policies. This study documented the strength and comprehensiveness of 1 state's written district policies using a coding tool, and tested whether these traits predicted school-level

  8. Regulation of Motivation: Predicting Students' Homework Motivation Management at the Secondary School Level

    ERIC Educational Resources Information Center

    Xu, Jianzhong

    2014-01-01

    This study examines models of variables posited to predict students' homework motivation management (HMM), based on survey data from 866 8th graders (61 classes) and 745 11th graders (46 classes) in the south-eastern USA. Most of the variance in HMM occurred at the student level, with parent education as the only significant predictor at the

  9. Correlates of Achievement: Prediction and Cross-Validation for Intermediate Grade Levels.

    ERIC Educational Resources Information Center

    Marshall, Jon C.; Powers, Jerry M.

    A study was conducted to: (1) determine the simple and multiple correlation coefficients between selected educational/personal variables and academic achievement at intermediate grade levels as measured by the Iowa Tests of Basic Skills; (2) determine the multiple linear regression equations for predicting individual student achievement as

  10. Prediction of altimetric sea level anomalies using time series models based on spatial correlation

    NASA Astrophysics Data System (ADS)

    Mizi?ski, Bart?omiej; Niedzielski, Tomasz

    2014-05-01

    Sea level anomaly (SLA) times series, which are time-varying gridded data, can be modelled and predicted using time series methods. This approach has been shown to provide accurate forecasts within the Prognocean system, the novel infrastructure for anticipating sea level change designed and built at the University of Wroc?aw (Poland) which utilizes the real-time SLA data from Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO). The system runs a few models concurrently, and our ocean prediction experiment includes both uni- and multivariate time series methods. The univariate ones are: extrapolation of polynomial-harmonic model (PH), extrapolation of polynomial-harmonic model and autoregressive prediction (PH+AR), extrapolation of polynomial-harmonic model and self-exciting threshold autoregressive prediction (PH+SETAR). The following multivariate methods are used: extrapolation of polynomial-harmonic model and vector autoregressive prediction (PH+VAR), extrapolation of polynomial-harmonic model and generalized space-time autoregressive prediction (PH+GSTAR). As the aforementioned models and the corresponding forecasts are computed in real time, hence independently and in the same computational setting, we are allowed to compare the accuracies offered by the models. The objective of this work is to verify the hypothesis that the multivariate prediction techniques, which make use of cross-correlation and spatial correlation, perform better than the univariate ones. The analysis is based on the daily-fitted and updated time series models predicting the SLA data (lead time of two weeks) over several months when El Nio/Southern Oscillation (ENSO) was in its neutral state.

  11. Uncertainty estimation of water levels for the Mitch flood event in Tegucigalpa

    NASA Astrophysics Data System (ADS)

    Fuentes Andino, D. C.; Halldin, S.; Lundin, L.; Xu, C.

    2012-12-01

    Hurricane Mitch in 1998 left a devastating flood in Tegucigalpa, the capital city of Honduras. Simulation of elevated water surfaces provides a good way to understand the hydraulic mechanism of large flood events. In this study the one-dimensional HEC-RAS model for steady flow conditions together with the two-dimensional Lisflood-fp model were used to estimate the water level for the Mitch event in the river reaches at Tegucigalpa. Parameters uncertainty of the model was investigated using the generalized likelihood uncertainty estimation (GLUE) framework. Because of the extremely large magnitude of the Mitch flood, no hydrometric measurements were taken during the event. However, post-event indirect measurements of discharge and observed water levels were obtained in previous works by JICA and USGS. To overcome the problem of lacking direct hydrometric measurement data, uncertainty in the discharge was estimated. Both models could well define the value for channel roughness, though more dispersion resulted from the floodplain value. Analysis of the data interaction showed that there was a tradeoff between discharge at the outlet and floodplain roughness for the 1D model. The estimated discharge range at the outlet of the study area encompassed the value indirectly estimated by JICA, however the indirect method used by the USGS overestimated the value. If behavioral parameter sets can well reproduce water surface levels for past events such as Mitch, more reliable predictions for future events can be expected. The results acquired in this research will provide guidelines to deal with the problem of modeling past floods when no direct data was measured during the event, and to predict future large events taking uncertainty into account. The obtained range of the uncertain flood extension will be an outcome useful for decision makers.

  12. A biodynamic model predicting waterborne lead bioaccumulation in Gammarus pulex: Influence of water chemistry and in situ validation.

    PubMed

    Urien, N; Uher, E; Billoir, E; Geffard, O; Fechner, L C; Lebrun, J D

    2015-08-01

    Metals bioaccumulated in aquatic organisms are considered to be a good indicator of bioavailable metal contamination levels in freshwaters. However, bioaccumulation depends on the metal, the species, and the water chemistry that influences metal bioavailability. In the laboratory, a kinetic model was used to describe waterborne Pb bioaccumulated in Gammarus pulex. Uptake and elimination rate constants were successfully determined and the effect of Ca(2+) on Pb uptake was integrated into the model. Thereafter, accumulated Pb concentrations in organisms were predicted with the model and compared with those measured in native populations from the Seine watershed (France). The predictions had a good agreement with the bioaccumulation levels observed in native gammarids and particularly when the effect of calcium was considered. To conclude, kinetic parameters experimentally derived for Pb in G. pulex are applicable in environmental conditions. Moreover, the consideration of the water's chemistry is crucial for a reliable interpretation of bioaccumulation. PMID:25845358

  13. METHOD FOR QUANTIFYING THE PREDICTION UNCERTAINTIES ASSOCIATED WITH WATER QUALITY MODELS

    EPA Science Inventory

    Many environmental regulatory agencies depend on models to organize, understand, and utilize the information for regulatory decision-making. eneral analytical protocol was developed to quantify prediction rror associated with commonly used surface, water quality models. ts applic...

  14. PREDICTIVE MODELING OF LIGHT-INDUCED MORTALITY OF ENTEROCOCCI FAECALIS IN RECREATIONAL WATERS

    EPA Science Inventory

    One approach to predictive modeling of biological contamination of recreational waters involves the application of process-based approaches that consider microbial sources, hydrodynamic transport, and microbial fate. This presentation focuses on one important fate process, light-...

  15. Pattern conversion prediction about low water content water-oil flow based on terahertz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shaohua; Wang, Wei; Wang, Aifan; Wei, Yunfei; Hao, He; Sun, Shining; Zhao, Kun

    2015-11-01

    This paper aims at presenting an approach for the experimental flow pattern conversion prediction. The water-diesel mixture flowed in the horizontal square tube with water contents of 0, 0.7%, 1.5%, 2.0% and 2.3%, respectively. After the mixture flowed steadily, the sample cell, in horizontal direction, was transmitted by the terahertz radiation and the terahertz time domain spectra were obtained for all the water-diesel mixtures. There is a critical velocity VT to all of the mixtures. If the flow rate is slower than VT, the mixtures flow with water bubbly pattern, however, the mixtures will flow with the water foggy pattern and the loss of the THz ray increased rapidly when the rate is faster than VT. Consequently, the mixture pattern conversion can be predicted by detecting the turning point of the THz ray loss.

  16. Does Postevacuation ? -Human Chorionic Gonadotropin Level Predict the Persistent Gestational Trophoblastic Neoplasia?

    PubMed

    Mousavi, Azam Sadat; Karimi, Samieh; Modarres Gilani, Mitra; Akhavan, Setareh; Rezayof, Elahe

    2014-01-01

    ? -human chorionic gonadotropin (HCG) level is not a reliable marker for early identification of persistent gestational trophoblastic neoplasia (GTN) after evacuation of hydatidiform mole. Thus, this study was conducted to evaluate ? -HCG regression after evacuation as a predictive factor of malignant GTN in complete molar pregnancy. Methods. In this cross-sectional study, we evaluated a total of 260 patients with complete molar pregnancy. Sixteen of the 260 patients were excluded. Serum levels of HCG were measured in all patients before treatment and after evacuation. HCG level was measured weekly until it reached a level lower than 5?mIU/mL. Results. The only predictors of persistent GTN are HCG levels one and two weeks after evacuation. The cut-off point for the preevacuation HCG level was 6000?mIU/mL (area under the curve, AUC, 0.58; sensitivity, 38.53%; specificity, 77.4%), whereas cut-off points for HCG levels one and two weeks after evacuation were 6288?mIU/mL (AUC, 0.63; sensitivity, 50.46%; specificity, 77.0%) and 801?mIU/mL (AUC, 0.80; sensitivity, 79.82%; specificity, 71.64%), respectively. Conclusion. The rate of decrease of HCG level at two weeks after surgical evacuation is the most reliable and strongest predictive factor for the progression of molar pregnancies to persistent GTN. PMID:25006482

  17. Ground-water levels near the top of the water-table mound, western Cape Cod, Massachusetts, 2002-04

    USGS Publications Warehouse

    Massey, Andrew J.; Carlson, Carl S.; LeBlanc, Denis R.

    2006-01-01

    In January 2002 the U.S. Geological Survey began continuous water-level monitoring in three wells in the vicinity of the Southeast Ranges of Camp Edwards, near the Impact Area of the Massachusetts Military Reservation on Cape Cod. The purpose of this effort was to examine how water levels at sites with different unsaturated-zone thicknesses near the top of the water-table mound beneath western Cape Cod are affected by temporally variable recharge from precipitation, which is the sole source of water to the sand and gravel aquifer. The depths to water at the well sites are about 18, 30, and 101 feet below land surface. This report presents the first 3 years of water-level records and an estimate of aquifer recharge calculated from climatological measurements by the Jensen and Haise method and the Thornthwaite method. The water levels in the three wells varied temporally by about 4.5 feet during the study period. A comparison of the water levels with those measured in a nearby monitoring well with about 42 years of monthly measurements indicates that the 3-year monitoring period included the lowest water levels on western Cape Cod since the drought of the 1960's. The response of water levels to recharge was related to the depth to water. Water levels in the two wells with shallow depths to water responded quickly (within hours or days) to recharge, whereas the water-level response in the well with the greatest depth to water often lagged the recharge event by a month or more. The variations in the water levels among the wells changed as the location of the top of the water-table mound moved with the changing water-table altitude.

  18. Decadal predictability of soil water, vegetation, and wildfire frequency over North America

    NASA Astrophysics Data System (ADS)

    Chikamoto, Yoshimitsu; Timmermann, Axel; Stevenson, Samantha; DiNezio, Pedro; Langford, Sally

    2015-10-01

    The potential decadal predictability of land hydrological and biogeochemical variables in North America is examined using a 900-year-long pre-industrial control simulation, conducted with the NCAR Community Earth System Model (CESM) version 1.0.3. The leading modes of simulated North American precipitation and soil water storage are characterized essentially by qualitatively similar meridional seesaw patterns associated with the activity of the westerly jet. Whereas the corresponding precipitation variability can be described as a white noise stochastic process, power spectra of vertically integrated soil water exhibit significant redness on timescales of years to decades, since the predictability of soil water storage arises mostly from the integration of precipitation variability. As a result, damped persistence hindcasts following a 1st order Markov process are skillful with lead times of up to several years. This potential multi-year skill estimate is consistent with ensemble hindcasts conducted with the CESM for various initial conditions. Our control simulation further suggests that decadal variations in soil water storage also affect vegetation and wildfire occurrences. The long-term potential predictability of soil water variations in combination with the slow regrowth of vegetation after major disruptions leads to enhanced predictability on decadal timescales for vegetation, terrestrial carbon stock, and fire frequency, in particular in the Southern United States (US)/Mexico region. By contrast, the prediction skill of fire frequency in the Northern US is limited to 1 year. Our results demonstrate that skillful decadal predictions of soil water storage, carbon stock, and fire frequency are feasible with proper initialization of soil conditions. Although the potential predictability in our idealized modeling framework would overestimate the real predictability of the coupled climate-land-vegetation system, the decadal climate prediction may become beneficial for water resource management, forestry, and agriculture.

  19. Evaluation of Rock Mass Responses Using High Resolution Water-level Tiltmeter Arrays

    NASA Astrophysics Data System (ADS)

    Roberts, J. S.; Wang, H. F.; Fratta, D.; Stetler, L. D.; Volk, J. T.; Geox^Tm

    2010-12-01

    External forces act on the surface of the earth and produce deformation across all spatial and temporal scales. This research study focuses on the deformation evaluation of the rock-mass subjected to tidal, earthquake and surface forces. The events are monitored over horizontal distances of over 100 meters with tilt measurement arrays with a resolution of 10-8 radians. These measurements are obtained from hydrostatic leveling system (HLS) arrays that have been installed in the LaFarge mine in North Aurora, IL by Fermilab. Each sensor in the array is equipped with a water-filled reservoir beneath a capacitor. The amount of water in the reservoir is calculated as a function of the measured capacitance. Individual sensors are connected in a closed system via a water and air line. As the host rock expands and contracts sensors are raised relative to another and water is displaced. The water level in each reservoir is sent to a computer in the mine and recorded. In order to measure the tilt of the rock between two points, the difference in water levels between adjacent sensors is computed. The difference between the end sensors is also calculated to determine the larger-scale tilt of the array. The tiltmeters in LaFarge mine are supported by concrete pedestals installed on the floor of the drift. In the Homestake mine the tiltmeters are placed on similar pedestals, as well as platforms made of artificial wood decking. These platforms are fixed to the wall of the drift with a rock bolt. Time and frequency domain analyses were performed on time series ranging from hours to six months to capture relevant time scales including the response to the 2010 Chile Earthquake (hour-long scale), the stages of the moon (month scale), Fox River floods (flooding week long scales and pressure dissipation month-long scales). By monitoring tiltmeter array responses to different forces, we aim at making predictions about the material properties of rock masses.

  20. Multi-level machine learning prediction of proteinprotein interactions in Saccharomyces cerevisiae

    PubMed Central

    Zubek, Julian; Tatjewski, Marcin; Boniecki, Adam; Mnich, Maciej; Basu, Subhadip

    2015-01-01

    Accurate identification of proteinprotein interactions (PPI) is the key step in understanding proteins biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of proteinprotein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the proteinprotein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent). PMID:26157620

  1. Multi-level machine learning prediction of protein-protein interactions in Saccharomyces cerevisiae.

    PubMed

    Zubek, Julian; Tatjewski, Marcin; Boniecki, Adam; Mnich, Maciej; Basu, Subhadip; Plewczynski, Dariusz

    2015-01-01

    Accurate identification of protein-protein interactions (PPI) is the key step in understanding proteins' biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein-protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein-protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent). PMID:26157620

  2. Exploring the Effects of Anisotropic Aquifer Transmissivity on the Water Level Response to Earth Tides

    NASA Astrophysics Data System (ADS)

    Xue, L.; Brodsky, E. E.; Fulton, P. M.

    2014-12-01

    The response of water level to Earth tides provides a unique probe to determine the in-situ aquifer transmissivity. The water level in an open well tapping an aquifer responds to the Earth tidal forcing with a phase lag. The phase lag between the water level oscillation and imposed tidal forcing is due to the finite time is needed for pore pressure to readjust and drive water to flow into and out of the well. The phase lag is a direct observation, and it is a key parameter to determine the transmissivity of the aquifer. Usually, people convert the phase lag information to an effective transmissivity using Hsieh et at. analytical solution (1987) by assuming the aquifer is confined, isotropic, homogeneous, infinite in lateral extent and of uniform thickness. However, the estimated transmissivity heavily relies on the assumption of an isotropic aquifer which is not true in reality. Anisotropic transmissivity would bias the interpretation of the phase lag information. Our study explores the phase response of water level to the semidiurnal Earth tide for different ratio of transmissivity in x and y directions by using the finite element method software Comsol. We find the estimated effective transmissivity is the lower bound of the transmissivity in fast direction for the same phase lag. We also find that the numerically determined phase lag can be predicted as a function of an effect transmissivity, and the effect transmissivity T can be expressed as T=(Ty*Tx1.4)0.4, where Ty is the transmissivity is slow direction, and Tx is the transmissivity in fast direction. Effective transmissivity is a combination weight between transmissivity in low and fast directions, and the transmissivity in fast direction would be the dominate parameter controlling the phase response. This empirical function may provide a way to estimate the range of transmissivity and anisotropic effects for the observed phase lag.

  3. Predicting the Health of a Natural Water System

    ERIC Educational Resources Information Center

    Graves, Gregory H.

    2010-01-01

    This project was developed as an interdisciplinary application of the optimization of a single-variable function. It was used in a freshman-level single-variable calculus course. After the first month of the course, students had been exposed to the concepts of the derivative as a rate of change, average and instantaneous velocities, derivatives of

  4. Application of empirical predictive modeling using conventional and alternative fecal indicator bacteria in eastern North Carolina waters

    USGS Publications Warehouse

    Gonzalez, Raul; Conn, Kathleen E.; Crosswell, Joey; Noble, Rachel

    2012-01-01

    Coastal and estuarine waters are the site of intense anthropogenic influence with concomitant use for recreation and seafood harvesting. Therefore, coastal and estuarine water quality has a direct impact on human health. In eastern North Carolina (NC) there are over 240 recreational and 1025 shellfish harvesting water quality monitoring sites that are regularly assessed. Because of the large number of sites, sampling frequency is often only on a weekly basis. This frequency, along with an 18–24 h incubation time for fecal indicator bacteria (FIB) enumeration via culture-based methods, reduces the efficiency of the public notification process. In states like NC where beach monitoring resources are limited but historical data are plentiful, predictive models may offer an improvement for monitoring and notification by providing real-time FIB estimates. In this study, water samples were collected during 12 dry (n = 88) and 13 wet (n = 66) weather events at up to 10 sites. Statistical predictive models for Escherichiacoli (EC), enterococci (ENT), and members of the Bacteroidales group were created and subsequently validated. Our results showed that models for EC and ENT (adjusted R2 were 0.61 and 0.64, respectively) incorporated a range of antecedent rainfall, climate, and environmental variables. The most important variables for EC and ENT models were 5-day antecedent rainfall, dissolved oxygen, and salinity. These models successfully predicted FIB levels over a wide range of conditions with a 3% (EC model) and 9% (ENT model) overall error rate for recreational threshold values and a 0% (EC model) overall error rate for shellfish threshold values. Though modeling of members of the Bacteroidales group had less predictive ability (adjusted R2 were 0.56 and 0.53 for fecal Bacteroides spp. and human Bacteroides spp., respectively), the modeling approach and testing provided information on Bacteroidales ecology. This is the first example of a set of successful statistical predictive models appropriate for assessment of both recreational and shellfish harvesting water quality in estuarine waters.

  5. GPS water level measurements for Indonesia's Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Schne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.

    2011-03-01

    On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  6. Construal Levels and Psychological Distance: Effects on Representation, Prediction, Evaluation, and Behavior

    PubMed Central

    Trope, Yaacov; Liberman, Nira; Wakslak, Cheryl

    2011-01-01

    Construal level theory (CLT) is an account of how psychological distance influences individuals’ thoughts and behavior. CLT assumes that people mentally construe objects that are psychologically near in terms of low-level, detailed, and contextualized features, whereas at a distance they construe the same objects or events in terms of high-level, abstract, and stable characteristics. Research has shown that different dimensions of psychological distance (time, space, social distance, and hypotheticality) affect mental construal and that these construals, in turn, guide prediction, evaluation, and behavior. The present paper reviews this research and its implications for consumer psychology. PMID:21822366

  7. Tidal phase of Water level lags behind that of water temperature in Qi'xian observation well, China

    NASA Astrophysics Data System (ADS)

    Wang, B.; Ma, Y.; Huang, F.

    2014-12-01

    There are about 34 observation wells of water temperature which can record the effect of earth tide in national earthquake precursory network center. In most of the 34 wells, tidal phase of water temperature lag behind that of water level, but the opposite phenomenon exists in several observation wells. We take Qi'xian well which has long recording history and continuous data as an example to analyze this phenomenon. We check the instrument's time system by using water temperature and water level changes in response to some big earthquakes,and also check the tidal phase of water temperature and water level in Qi'xian well through harmonic analysis (Baytap-G software), as a result,we find the observation is objective. The fact that Tidal phase of Water level lags behind that of water temperature in Qi'xian observation well shows that water temperature changes may be independent from water level changes. Water temperature changes in this well might be interpreted by the stress-heat consumption hypothesis. This may be beneficial to the study of water temperature changes as an earthquake precursor. Figure 1. Water temperature and water level records of the Qi'xian well from February 26 to 27 in 2010.The coseismic changes due to the 2010 Sumatra earthquake is marked by an arrow.

  8. Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model

    SciTech Connect

    Lipscomb, William

    2012-06-19

    Coastal stakeholders need defensible predictions of 21st century sea-level rise (SLR). IPCC assessments suggest 21st century SLR of {approx}0.5 m under aggressive emission scenarios. Semi-empirical models project SLR of {approx}1 m or more by 2100. Although some sea-level contributions are fairly well constrained by models, others are highly uncertain. Recent studies suggest a potential large contribution ({approx}0.5 m/century) from the marine-based West Antarctic Ice Sheet, linked to changes in Southern Ocean wind stress. To assess the likelihood of fast retreat of marine ice sheets, we need coupled ice-sheet/ocean models that do not yet exist (but are well under way). CESM is uniquely positioned to provide integrated, physics based sea-level predictions.

  9. Prediction of the interior noise levels of high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Wilby, E. G.

    1980-01-01

    The theoretical basis for an analytical model developed to predict the interior noise levels of high-speed propeller-driven airplanes is presented. Particular emphasis is given to modeling the transmission of discrete tones through a fuselage element into a cavity, estimates for the mean and standard deviation of the acoustic power flow, the coupling between a non-homogeneous excitation and the fuselage vibration response, and the prediction of maximum interior noise levels. The model allows for convenient examination of the various roles of the excitation and fuselage structural characteristics on the fuselage vibration response and the interior noise levels, as is required for the design of model or prototype noise control validation tests.

  10. Predictive indicators of the safety of swimming pool waters.

    PubMed

    Nikaeen, M; Hatamzadeh, M; Vahid Dastjerdi, M; Hassanzadeh, A

    2009-01-01

    Many outbreaks related to swimming pools could have been prevented or reduced if the pool had been well managed and effectively monitored. The aim of this study was to evaluate physicochemical and microbial parameters that can be proposed as an indicator for the safety of swimming pools. A total of 234 water samples, over a 10-month period in 2006-2007, were collected from indoor swimming pools in Isfahan. All water samples were analyzed for physicochemical and microbial parameters including temperature, pH, turbidity, conductivity, free chlorine, heterotrophic plate count (HPC), total (TC) and fecal coliforms (FC), fecal streptococci (FS) Staphylococcus aureus (Sa) and Pseudomonas aeruginosa (Pa). The highest isolation of microbial indicators was for total coliforms (38%) and the lowest for fecal streptococci (3%). The correlation analyses indicated that free chlorine concentration had a significant negative relationship with the heterotrophic bacteria population and total coliforms. Total coliforms presented a significant correlation with the other microbiological indicators. The results clearly showed that the hygienic quality of the swimming pools was dependent on the efficacy of disinfection. Thus, the free chlorine and pH were good operational indices for the quality control of swimming pools and must be maintained in the recommended range to ensure optimal disinfection. The results also showed that TC and HPC were reliable and practical indicators for routine quality surveillance and assessment of the efficiency of the disinfection process and safety of swimming pools. PMID:19955633

  11. Soil water balance scenario studies using predicted soil hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Nemes, A.; Wsten, J. H. M.; Bouma, J.; Vrallyay, G.

    2006-03-01

    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in terms of examining the expected outcome of certain changes in soil and water management practices. This paper describes three scenario studies that show some aspects of how PTFs may help improve decision making about land management practices. We use an exploratory research approach using simulation modelling to explore the potential effect of alternative solutions in land management. We: (i) evaluate benefits and risks when irrigating a field, and the impact of soil heterogeneity; (ii) examine which changes can be expected (in terms of soil water balance and supply) if organic matter content is changed as a result of an alternative management system; (iii) evaluate the risk of leaching to deeper horizons in some soils of Hungary. Using this research approach, quantitative answers are provided to what if? type questions, allowing the distinction of trends and potential problems, which may contribute to the development of sustainable management systems.

  12. Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments

    PubMed Central

    Richard, Hugues; Schulz, Marcel H.; Sultan, Marc; Nürnberger, Asja; Schrinner, Sabine; Balzereit, Daniela; Dagand, Emilie; Rasche, Axel; Lehrach, Hans; Vingron, Martin; Haas, Stefan A.; Yaspo, Marie-Laure

    2010-01-01

    Alternative splicing, polyadenylation of pre-messenger RNA molecules and differential promoter usage can produce a variety of transcript isoforms whose respective expression levels are regulated in time and space, thus contributing specific biological functions. However, the repertoire of mammalian alternative transcripts and their regulation are still poorly understood. Second-generation sequencing is now opening unprecedented routes to address the analysis of entire transcriptomes. Here, we developed methods that allow the prediction and quantification of alternative isoforms derived solely from exon expression levels in RNA-Seq data. These are based on an explicit statistical model and enable the prediction of alternative isoforms within or between conditions using any known gene annotation, as well as the relative quantification of known transcript structures. Applying these methods to a human RNA-Seq dataset, we validated a significant fraction of the predictions by RT-PCR. Data further showed that these predictions correlated well with information originating from junction reads. A direct comparison with exon arrays indicated improved performances of RNA-Seq over microarrays in the prediction of skipped exons. Altogether, the set of methods presented here comprehensively addresses multiple aspects of alternative isoform analysis. The software is available as an open-source R-package called Solas at http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/. PMID:20150413

  13. Global Anthropogenic Phosphorus Loads to Fresh Water, Grey Water Footprint and Water Pollution Levels: A High-Resolution Global Study

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.

  14. [A simulation model for predicting the dry matter allocation in cut lily plants under effects of substrate water potential].

    PubMed

    Dong, Yong-Yi; Li, Gang; An, Dong-Sheng; Luo, Wei-Hong

    2012-04-01

    Dry matter allocation and translocation is the base of the formation of appearance quality of ornamental plants, and strongly affected by water supply. Taking cut lily cultivar 'Sorbonne' as test material, a culture experiment of different planting dates and water supply levels was conducted in a multi-span greenhouse in Nanjing from March 2009 to January 2010 to quantitatively analyze the seasonal changes of the dry matter allocation and translocation in 'Sorbonne' plants and the effects of substrate water potential on the dry matter allocation indices for different organs (flower, stem, leaf, bulb, and root), aimed to define the critical substrate water potential for the normal growth of the cultivar, and establish a simulation model for predicting the dry matter allocation in cut lily plants under effects of substrate water potential. The model established in this study gave a good prediction on the dry mass of plant organs, with the coefficient of determination and the relative root mean square error between the simulated and measured values of the cultivar' s flower dry mass, stem dry mass, leaf dry mass, bulb dry mass, and root dry mass being 0.96 and 19.2%, 0.95 and 12.4%, 0.86 and 19.4%, 0.95 and 12.2%, and 0.85 and 31.7%, respectively. The critical water potential for the water management of cut lily could be -15 kPa. PMID:22803474

  15. Elevated Urinary IL-18 Levels at the Time of ICU Admission Predict Adverse Clinical Outcomes

    PubMed Central

    Siew, Edward D.; Ikizler, T. Alp; Gebretsadik, Tebeb; Shintani, Ayumi; Wickersham, Nancy; Bossert, Frederick; Peterson, Josh F.; Parikh, Chirag R.; May, Addison K.

    2010-01-01

    Background and objectives: Urine IL-18 (uIL-18) has demonstrated moderate capacity to predict acute kidney injury (AKI) and adverse outcomes in defined settings. Its ability to predict AKI and provide prognostic information in broadly selected, critically ill adults remains unknown. Design, setting, participants, & measurements: The study prospectively evaluated the capacity of uIL-18 measured within 24 hours of intensive care unit (ICU) admission to predict AKI, death, and receipt of acute dialysis in a large mixed-adult ICU population. Results: Of 451 patients, 86 developed AKI within 48 hours of enrollment and had higher median uIL-18 levels [426 (interquartile range [IQR]: 152 to 1183) pg/mg creatinine] compared with those without AKI [248 (IQR: 120 to 559) pg/mg]. The area under the receiver operating characteristic curve for uIL-18 predicting subsequent AKI within 24 hours was 0.62 (95% CI: 0.54 to 0.69) and improved modestly to 0.67 (95% CI: 0.53 to 0.81) in patients whose enrollment eGFR was ?75 ml/min per 1.73 m2. The highest median uIL-18 levels were observed in patients with sepsis at enrollment [508 (IQR: 230 to 1281) pg/mg], those receiving acute dialysis [571 (IQR: 161 to 1614) pg/mg] or dying [532 (IQR: 210 to 1614) pg/mg] within 28 days of ascertainment. After adjustment for a priori selected clinical predictors, uIL-18 remained independently predictive of composite outcome of death or acute dialysis within 28 days of ascertainment (odds ratio, 1.86 [95% CI: 1.31 to 2.64]). Conclusions: uIL-18 did not reliably predict AKI development, but did predict poor clinical outcomes in a broadly selected, critically ill adult population. PMID:20558561

  16. A Noise Level Prediction Method Based on Electro-Mechanical Frequency Response Function for Capacitors

    PubMed Central

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective. PMID:24349105

  17. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    PubMed

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective. PMID:24349105

  18. Altered Levels of CC Chemokines During Pulmonary CMV Predict BOS and Mortality Post-Lung Transplantation

    PubMed Central

    Weigt, S. S.; Elashoff, R. M.; Keane, M. P.; Strieter, R. M.; Gomperts, B. N.; Xue, Y. Y.; Ardehali, A.; Gregson, A. L.; Kubak, B.; Fishbein, M. C.; Saggar, R.; Ross, D. J.; Lynch, J. P.; Zisman, D. A.; Belperio, J. A.

    2009-01-01

    Pulmonary CMV infection (CMVI) and disease (CMVD) is associated with reduced long-term survival post-lung transplantation, however, the specific biologic mechanisms remain unclear. We have demonstrated a role of CC chemokines during lung allograft dysfunction. Based on these findings, we hypothesized that pulmonary CMV upregulates the expression of multiple CC chemokines that leads to allograft dysfunction and decreased long-term survival. We performed a nested case control study in lung transplant recipients to investigate alterations in CC chemokine biology during pulmonary CMV. Levels of CC chemokines were measured in bronchoalveolar lavage fluid (BALF) from recipients with CMVI (n = 33), CMVD (n = 6), and in healthy lung transplant controls (n = 33). We found a trend toward increased levels of MIP-1?/CCL3 during pulmonary CMVI. Levels of MCP-1/CCL2 and RANTES/CCL5 were significantly elevated during pulmonary CMV. Interestingly, elevated levels of CCL3 in BALF were protective with regards to survival. Importantly, elevated levels of CCL2 in BALF predicted the development of BOS, while elevated levels of CCL5 in BALF predicted an increase in mortality post-lung transplant. Altered levels of specific CC chemokines during pulmonary CMV are associated with future clinical outcomes. These results suggest a possible utility of BALF CC chemokines as biomarkers for guiding risk assessment during pulmonary CMV post-lung transplantation. PMID:18513272

  19. Distinct coping strategies differentially predict urge levels and lapses in a smoking cessation attempt.

    PubMed

    Brodbeck, Jeannette; Bachmann, Monica S; Znoj, Hansjrg

    2013-06-01

    This study analysed mechanisms through which stress-coping and temptation-coping strategies were associated with lapses. Furthermore, we explored whether distinct coping strategies differentially predicted reduced lapse risk, lower urge levels, or a weaker association between urge levels and lapses during the first week of an unassisted smoking cessation attempt. Participants were recruited via the internet and mass media in Switzerland. Ecological momentary assessment (EMA) with mobile devices was used to assess urge levels and lapses. Online questionnaires were used to measure smoking behaviours and coping variables at baseline, as well as smoking behaviour at the three-month follow-up. The sample consisted of 243 individuals, aged 20 to 40, who reported 4199 observations. Findings of multilevel regression analyses show that coping was mainly associated with a reduced lapse risk and not with lower urge levels or a weaker association between urge levels and lapses. 'Calming down' and 'commitment to change' predicted a lower lapse risk and also a weaker relation between urge levels and lapses. 'Stimulus control' predicted a lower lapse risk and lower urge levels. Conversely, 'task-orientation' and 'risk assessment' were related to higher lapse risk and 'risk assessment' also to higher urge levels. Disengagement coping i.e. 'eating or shopping', 'distraction', and 'mobilising social support' did not affect lapse risk. Promising coping strategies during the initial stage of smoking cessation attempt are targeted directly at reducing the lapse risk and are characterised by engagement with the stressor or one's reactions towards the stressor and a focus on positive consequences instead of health risks. PMID:23501139

  20. [Analysis of pollution levels of 16 antibiotics in the river water of Daliao River water system].

    PubMed

    Yang, Changqing; Wang, Longxing; Hou, Xiaohong; Chen, Jiping

    2012-08-01

    The detection of the pollution level of antibiotics in Daliao River system is a meaningful work. Sixteen antibiotics (6 sulfonamides, 5 fluoroquinolones, 3 tetracyclines and 2 chloramphenicols) were simultaneously quantified with solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the SPE procedure, methanol and 2% (v/v) ammonia/methanol were used as the elution solvents in sequence to reduce the elution volume and improve the recovery. The results showed that this method have good sensitivity and enrichment effect for the target antibiotics in aqueous water, the recoveries ranged from 69.5% to 122.6%, the detection limits ranged from 0.05 ng/L to 0.32 ng/L. Thirteen antibiotics were found in the river water of Daliao River water system. Sulfa antibiotics were widely distributed, in which sulfamethoxazole was detected in all the sampling sites. The concentration of fluoroquinolones was relatively high in some sampling sites. The highest detection concentration of enoxacin was 41.3 ng/L. The frequencies and concentrations of tetracyclines and chloramphenicols were lower. In the upper reaches of the river, the concentrations of the 4 types of antibiotics appeared lower, but around the large cities such as Shenyang City, Benxi City, Liaoyang City, the concentrations showed higher levels. The study indicated that the Daliao River water system suffered from the pollution of antibiotics to a certain extent. PMID:23256376

  1. Effects of sea-level rise on ground water flow in a coastal aquifer system

    USGS Publications Warehouse

    Masterson, J.P.; Garabedian, S.P.

    2007-01-01

    The effects of sea-level rise on the depth to the fresh water/salt water interface were simulated by using a density-dependent, three-dimensional numerical ground water flow model for a simplified hypothetical fresh water lens that is similar to shallow, coastal aquifers found along the Atlantic coast of the United States. Simulations of sea-level rise of 2.65 mm/year from 1929 to 2050 resulted in an increase in water levels relative to a fixed datum, yet a net decrease in water levels relative to the increased sea-level position. The net decrease in water levels was much greater near a gaining stream than farther from the stream. The difference in the change in water levels is attributed to the dampening effect of the stream on water level changes in response to sea-level rise. In response to the decreased water level altitudes relative to local sea level, the depth to the fresh water/salt water interface decreased. This reduction in the thickness of the fresh water lens varied throughout the aquifer and was greatly affected by proximity to a ground water fed stream and whether the stream was tidally influenced. Away from the stream, the thickness of the fresh water lens decreased by about 2% from 1929 to 2050, whereas the fresh water lens thickness decreased by about 22% to 31% for the same period near the stream, depending on whether the stream was tidally influenced. The difference in the change in the fresh water/salt water interface position is controlled by the difference in the net decline in water levels relative to local sea level. ?? 2007 National Ground Water Association.

  2. Fundamental understanding, prediction and validation of rotor vibratory loads in steady-level flight

    NASA Astrophysics Data System (ADS)

    Datta, Anubhav

    This work isolates the physics of aerodynamics and structural dynamics from the helicopter rotor aeromechanics problem, investigates them separately, identifies the prediction deficiencies in each, improves upon them, and couples them back together. The objective is to develop a comprehensive analysis capability for accurate and consistent prediction of rotor vibratory loads in steady level flight. The rotor vibratory loads are the dominant source of helicopter vibration. There are two critical vibration regimes for helicopters in steady level flight: (1) low speed transition and (2) high speed forward flight. The mechanism of rotor vibration at low speed transition is well understood---inter-twinning of blade tip vortices below the rotor disk. The mechanism of rotor vibration at high speed is not clear. The focus in this research is on high speed flight. The goal is to understand the key mechanisms involved and accurately model them. Measured lift, chord force, pitching moment and damper force from the UH-60A Flight Test Program are used to predict, validate and refine the rotor structural dynamics. The prediction errors originate entirely from structural modeling. Once validated, the resultant blade deformations are used to predict and validate aerodynamics. Air loads are calculated using a table look up based unsteady lifting-line model and compared with predictions from a 3-dimensional unsteady CFD model. Both Navier-Stokes and Euler predictions are studied. (Abstract shortened by UMI.) The 3D Navier-Stokes CFD analysis is then consistently coupled with a rotor comprehensive analysis to improve prediction of rotor vibratory loads at high speed. The CFD-comprehensive code coupling is achieved using a loose coupling methodology. The CFD analysis significantly improves section pitching moment prediction near the blade tip, because it captures the steady and unsteady 3D transonic effects. Accurate pitching moments drive elastic twist deformations which together with a refined rotor wake model generate the right vibratory airload harmonics at all radial stations. The flap bending moments, torsion bending moments and pitch link load predictions are significantly improved by CFD coupling. (Abstract shortened by UMI.)

  3. Use of predictive models and rapid methods to nowcast bacteria levels at coastal beaches

    USGS Publications Warehouse

    Francy, D.S.

    2009-01-01

    The need for rapid assessments of recreational water quality to better protect public health is well accepted throughout the research and regulatory communities. Rapid analytical methods, such as quantitative polymerase chain reaction (qPCR) and immunomagnetic separation/adenosine triphosphate (ATP) analysis, are being tested but are not yet ready for widespread use. Another solution is the use of predictive models, wherein variable(s) that are easily and quickly measured are surrogates for concentrations of fecal-indicator bacteria. Rainfall-based alerts, the simplest type of model, have been used by several communities for a number of years. Deterministic models use mathematical representations of the processes that affect bacteria concentrations; this type of model is being used for beach-closure decisions at one location in the USA. Multivariable statistical models are being developed and tested in many areas of the USA; however, they are only used in three areas of the Great Lakes to aid in notifications of beach advisories or closings. These "operational" statistical models can result in more accurate assessments of recreational water quality than use of the previous day's Escherichia coli (E. coli) concentration as determined by traditional culture methods. The Ohio Nowcast, at Huntington Beach, Bay Village, Ohio, is described in this paper as an example of an operational statistical model. Because predictive modeling is a dynamic process, water-resource managers continue to collect additional data to improve the predictive ability of the nowcast and expand the nowcast to other Ohio beaches and a recreational river. Although predictive models have been shown to work well at some beaches and are becoming more widely accepted, implementation in many areas is limited by funding, lack of coordinated technical leadership, and lack of supporting epidemiological data. ?? 2009 AEHMS.

  4. Modeling hydrodynamics, water quality, and benthic processes to predict ecological effects in Narragansett Bay

    EPA Science Inventory

    The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...

  5. Implementation of Channel-Routing Routines in the Water Erosion Prediction Project (WEPP) Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Erosion Prediction Project (WEPP) model is a process-based, continuous-simulation, watershed hydrology and erosion model. It is an important tool for water erosion simulation owing to its unique functionality in representing diverse landuse and management conditions. Its applicability is l...

  6. PREDICTING SUSTAINABLE GROUND WATER TO CONSTRUCTED RIPARIAN WETLANDS: SHAKER TRACE, OHIO, USA

    EPA Science Inventory

    Water isotopy is introduced as a best management practice for the prediction of sustained ground water inflows to prospective constructed wetlands. A primer and application of the stable isotopes, 18O and 2H, are discussed for riparian wetland restoration ar...

  7. Predicting spike timing in highly synchronous auditory neurons at different sound levels.

    PubMed

    Fontaine, Bertrand; Benichoux, Victor; Joris, Philip X; Brette, Romain

    2013-10-01

    A challenge for sensory systems is to encode natural signals that vary in amplitude by orders of magnitude. The spike trains of neurons in the auditory system must represent the fine temporal structure of sounds despite a tremendous variation in sound level in natural environments. It has been shown in vitro that the transformation from dynamic signals into precise spike trains can be accurately captured by simple integrate-and-fire models. In this work, we show that the in vivo responses of cochlear nucleus bushy cells to sounds across a wide range of levels can be precisely predicted by deterministic integrate-and-fire models with adaptive spike threshold. Our model can predict both the spike timings and the firing rate in response to novel sounds, across a large input level range. A noisy version of the model accounts for the statistical structure of spike trains, including the reliability and temporal precision of responses. Spike threshold adaptation was critical to ensure that predictions remain accurate at different levels. These results confirm that simple integrate-and-fire models provide an accurate phenomenological account of spike train statistics and emphasize the functional relevance of spike threshold adaptation. PMID:23864375

  8. A Predictive Coding Perspective on Beta Oscillations during Sentence-Level Language Comprehension.

    PubMed

    Lewis, Ashley G; Schoffelen, Jan-Mathijs; Schriefers, Herbert; Bastiaansen, Marcel

    2016-01-01

    Oscillatory neural dynamics have been steadily receiving more attention as a robust and temporally precise signature of network activity related to language processing. We have recently proposed that oscillatory dynamics in the beta and gamma frequency ranges measured during sentence-level comprehension might be best explained from a predictive coding perspective. Under our proposal we related beta oscillations to both the maintenance/change of the neural network configuration responsible for the construction and representation of sentence-level meaning, and to top-down predictions about upcoming linguistic input based on that sentence-level meaning. Here we zoom in on these particular aspects of our proposal, and discuss both old and new supporting evidence. Finally, we present some preliminary magnetoencephalography data from an experiment comparing Dutch subject- and object-relative clauses that was specifically designed to test our predictive coding framework. Initial results support the first of the two suggested roles for beta oscillations in sentence-level language comprehension. PMID:26973500

  9. A Predictive Coding Perspective on Beta Oscillations during Sentence-Level Language Comprehension

    PubMed Central

    Lewis, Ashley G.; Schoffelen, Jan-Mathijs; Schriefers, Herbert; Bastiaansen, Marcel

    2016-01-01

    Oscillatory neural dynamics have been steadily receiving more attention as a robust and temporally precise signature of network activity related to language processing. We have recently proposed that oscillatory dynamics in the beta and gamma frequency ranges measured during sentence-level comprehension might be best explained from a predictive coding perspective. Under our proposal we related beta oscillations to both the maintenance/change of the neural network configuration responsible for the construction and representation of sentence-level meaning, and to top–down predictions about upcoming linguistic input based on that sentence-level meaning. Here we zoom in on these particular aspects of our proposal, and discuss both old and new supporting evidence. Finally, we present some preliminary magnetoencephalography data from an experiment comparing Dutch subject- and object-relative clauses that was specifically designed to test our predictive coding framework. Initial results support the first of the two suggested roles for beta oscillations in sentence-level language comprehension. PMID:26973500

  10. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study

    PubMed Central

    Sun, Hai-Lun; Pei, Dee; Lue, Ko-Huang; Chen, Yen-Lin

    2015-01-01

    The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively), a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; p<0.05). However, uric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; p<0.05). The same results were found in multivariate adjusted analysis. In conclusion, a high level of uric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders. PMID:26618358

  11. Predicting Abdominal Aortic Aneurysm Target Genes by Level-2 Protein-Protein Interaction

    PubMed Central

    Fu, Yi; Cui, Qinghua; Kong, Wei

    2015-01-01

    Abdominal aortic aneurysm (AAA) is frequently lethal and has no effective pharmaceutical treatment, posing a great threat to human health. Previous bioinformatics studies of the mechanisms underlying AAA relied largely on the detection of direct protein-protein interactions (level-1 PPI) between the products of reported AAA-related genes. Thus, some proteins not suspected to be directly linked to previously reported genes of pivotal importance to AAA might have been missed. In this study, we constructed an indirect protein-protein interaction (level-2 PPI) network based on common interacting proteins encoded by known AAA-related genes and successfully predicted previously unreported AAA-related genes using this network. We used four methods to test and verify the performance of this level-2 PPI network: cross validation, human AAA mRNA chip array comparison, literature mining, and verification in a mouse CaPO4 AAA model. We confirmed that the new level-2 PPI network is superior to the original level-1 PPI network and proved that the top 100 candidate genes predicted by the level-2 PPI network shared similar GO functions and KEGG pathways compared with positive genes. PMID:26496478

  12. Basal salivary oxytocin level predicts extra- but not intra-personal dimensions of emotional intelligence.

    PubMed

    Koven, Nancy S; Max, Laura K

    2014-06-01

    A wealth of literature suggests that oxytocin is an important mediator of social cognition, but much of the research to date has relied on pharmaceutical administration methods that can raise oxytocin to artificially high levels. The present study builds upon previous work by examining whether basal oxytocin level predicts intra- and extra-personal (i.e., self- and other-focused) elements of emotional intelligence (EI), independent of shared variance with current mood. The sample included 71 healthy young adults (46 women). Assessment measures included the Mayer-Salovey-Caruso Emotional Intelligence Test Version 2.0 (MSCEIT), the Trait Meta-Mood Scale, and the Profile of Mood States. Peripheral oxytocin levels were examined with enzyme-linked immunosorbent assay from saliva after solid phase extraction. Oxytocin level was unrelated to TMMS scores but was positively associated with performance in the Experiential EI domain of the MSCEIT. However, total mood disturbance was positively related to MSCEIT scores. Hierarchical regression analysis indicated that oxytocin level added unique variance to the prediction of MSCEIT performance beyond that of current mood. These results confirm an association between endogenous levels of oxytocin in healthy adults and a subset of EI abilities, including extra-personal emotion recognition and the channeling of emotions to enhance social proficiency. PMID:24767616

  13. Prediction of shock-induced cavitation in water

    NASA Astrophysics Data System (ADS)

    Brundage, A.

    2014-05-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading have wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over preexisting CTH models such as the SESAME EOS for capturing cavitation.

  14. Prediction of Shock-Induced Cavitation in Water

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron

    2013-06-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading has wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over pre-existing CTH models such as the SESAME EOS for capturing cavitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy/NNSA under contract DE-AC04-94AL85000.

  15. Predicting inhomogeneous water absorption in an ionic diblock polymer membrane

    NASA Astrophysics Data System (ADS)

    Herbst, Daniel; Witten, Thomas

    2013-03-01

    Fuel cells convert fuel directly into electrical power. Their performance depends on a permeable (yet strong) membrane to allow ion conduction (while preventing combustion). Anion-exchange membrane fuel-cells are especially economical to produce, but technological hurdles currently limit durability and OH- conductivity of the membrane. One solution to these problems is a diblock morphology. Layers of stiff hydrophobic polymer provide structure, while interspersed layers of polyelectrolyte provide avenues for conduction. Previously, little was known about the structure within the conducting layer. We adapted Scheutjens-Fleer polymer-brush theory to a lamellar geometry. The calculation tells where the polyelectrolytes congregate within a lamella, and hence how conduction occurs. This talk focuses on a new diblock material, PMB-PVBTMA. We show how the features of the material determine the intra-lamellar structure. We conclude that at low humidity, the bulkiness of PVBTMA causes it to adopt a near-uniform distribution within the conducting block. At high humidity, however, a phase separation may induce abrupt water channels. Understanding the architecture within the conducting layer will help guide research into better anion-exchange membranes materials. The authors would like to thank the Army Research Office for support of this research under the MURI #W911NF-10-1-0520.

  16. Comparison of predictive ability of water solubility QSPR models generated by MLR, PLS and ANN methods.

    PubMed

    Erös, Dániel; Kéri, György; Kövesdi, István; Szántai-Kis, Csaba; Mészáros, György; Orfi, László

    2004-02-01

    ADME/Tox computational screening is one of the most hot topics of modern drug research. About one half of the potential drug candidates fail because of poor ADME/Tox properties. Since the experimental determination of water solubility is time-consuming also, reliable computational predictions are needed for the pre-selection of acceptable "drug-like" compounds from diverse combinatorial libraries. Recently many successful attempts were made for predicting water solubility of compounds. A comprehensive review of previously developed water solubility calculation methods is presented here, followed by the description of the solubility prediction method designed and used in our laboratory. We have selected carefully 1381 compounds from scientific publications in a unified database and used this dataset in the calculations. The externally validated models were based on calculated descriptors only. The aim of model optimization was to improve repeated evaluations statistics of the predictions and effective descriptor scoring functions were used to facilitate quick generation of multiple linear regression analysis (MLR), partial least squares method (PLS) and artificial neural network (ANN) models with optimal predicting ability. Standard error of prediction of the best model generated with ANN (with 39-7-1 network structure) was 0.72 in logS units while the cross validated squared correlation coefficient (Q(2)) was better than 0.85. These values give a good chance for successful pre-selection of screening compounds from virtual libraries, based on the predicted water solubility. PMID:14965289

  17. Can sediment data be used to predict alkalinity and base cation chemistry of surface waters?

    PubMed

    Begum, S; McClean, C J; Cresser, M S; Breward, N

    2010-12-15

    We hypothesise that stream sediment elemental composition can predict mean and minimum concentrations of alkalinity, Ca and Mg in the river water throughout a river network. We tested this hypothesis for the River Derwent catchment in North Yorkshire, England, by using 6 years of water chemistry data from the Environment Agency and a digital elevation model to flow path-weight British Geological Survey (BGS) sediment element concentration data. The predictive models for mean concentrations were excellent for Ca and alkalinity, but less good for Mg, and did not require land use data inputs as stream water sediment composition seems to reflect all aspects of the riparian zone soil system. Predictive model forms were linear. Attempts to predict minimum values for Ca and alkalinity also were less satisfactory. This probably is due to variations in hydrological response times to individual precipitation events across the catchment. PMID:21051075

  18. The Water Level Fall of Lake Megali Prespa (N Greece): an Indicator of Regional Water Stress Driven by Climate Change and Amplified by Water Extraction?

    NASA Astrophysics Data System (ADS)

    van der Schriek, Tim; Giannakopoulos, Christos

    2014-05-01

    The Mediterranean stands out globally due to its sensitivity to (future) climate change, with future projections predicting an increase in excessive drought events and declining rainfall. Regional freshwater ecosystems are particularly threatened: precipitation decreases, while extreme droughts increase and human impacts intensify (e.g. water extraction, drainage, pollution and dam-building). Many Mediterranean lake-wetland systems have shrunk or disappeared over the past two decades. Protecting the remaining systems is extremely important for supporting global biodiversity and for ensuring sustainable water availability. This protection should be based on a clear understanding of lake-wetland hydrological responses to natural and human-induced changes, which is currently lacking in many parts of the Mediterranean. The interconnected Prespa-Ohrid Lake system is a global hotspot of biodiversity and endemism. The unprecedented fall in water level (~8m) of Lake Megali Prespa threatens this system, but causes remain debated. Modelling suggests that the S Balkan will experience rainfall and runoff decreases of ~30% by 2050. However, projections revealing the potential impact of these changes on future lake level are unavailable as lake regime is not understood. A further drop in lake level may have serious consequences. The Prespa Lakes contribute ~25% of the total inflow into Lake Ohrid through underground karst channels; falling lake levels decrease this discharge. Lake Ohrid, in turn, feeds the Drim River. This entire catchment may therefore be affected by falling lake levels; its water resources are of great importance for Greece, Albania, FYROM and Montenegro (e.g. tourism, agriculture, hydro-energy, urban & industrial use). This new work proves that annual water level fluctuations of Lake Megali Prespa are predominantly related to precipitation during the first 7 months (Oct-Apr) of the hydrological year (Oct-Sep). Lake level is very sensitive to regional and Mediterranean wet-dry events during this period. There are robust indications for a link between lake level and the North Atlantic Oscillation, which is known to strongly influence Mediterranean winter precipitation. Hydro-climatic records show a complicated picture, but tentatively support the conclusion that the unprecedented lake level fall is principally related to climate change. The available fluvial discharge record and most existing snowfall records show statistically significant decreases in annual averages. Annual rainfall only shows a statistically significant decrease of the 25th percentile; 7-month rainfall (Oct-Apr) additionally shows a statistically significant but non-robust decrease of the mean. The modest amount of water extraction (annually: ~14*103m3, ~0.004% of total lake volume) exerts a progressive and significant impact on lake level over the longer term, accounting for ~25% of the observed fall. Lake level lowering ends when lake-surface area shrinkage has led to a decrease in lake-surface evaporation that is equivalent to the amount of water extracted. The adjustment of lake level to stable extraction rates requires two to three decades. This work aims to steer adaptation and mitigation strategies by informing on lake response under different climate change and extraction scenarios. Lake protection is a cost effective solution for supporting global biodiversity and for providing sustainable water resources.

  19. Ground-water levels in water year 1987 and estimated ground-water pumpage in water years 1986-87, Carson Valley, Douglas County, Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1990-01-01

    Groundwater levels were measured at 58 wells during water year 1987 and a summary of estimated pumpage is given for water years 1986 and 1987 in Carson Valley, Douglas County, Nevada. The data were collected to provide a record of groundwater changes over the long-term and pumpage estimates that can be incorporated into an existing groundwater model. The estimated total pumpage in water year 1986 was 10,200 acre-ft and in water year 1987 was 13,400 acre-ft. Groundwater levels exhibited seasonal fluctuations but remained relatively stable over the reporting period throughout most of the valley. (USGS)

  20. Parameterizing a model of Douglas fir water flow using a tracheid-level model.

    PubMed

    Aumann, Craig A; Ford, E David

    2002-12-21

    The theory of tree water flow proposed in Aumann & Ford (submitted) is assessed by numerically solving the model developed from this theory under a variety of functional parameterizations. The unknown functions in this nonlinear partial differential equation model are determined using a tracheid-level model of water flow in a block of Douglas fir tracheids. The processes of flow, cavitation, pit aspiration/deaspiration, flow through the cell wall and ray exudation in a block of approximately 79 000 tracheids are modeled. Output from the tracheid model facilitates determination of the hydraulic conductivities in the sapwood as a function of saturation and interfacial area between liquid and gaseous phases of water, the function governing the rate of change in saturation, and the function governing the rate of change in interfacial area. The models show complementary things. The tracheid model shows that capacitance, or the change in saturation per change in pressure, is not constant. When all refilling is stopped, it takes over 180 days for the hydraulic conductivity in the vertical direction to reach 1/4 of its maximal value, showing the robustness of the transpiration stream for conducting water. The shape of the functions determined with the tracheid model change with different tracheid-level assumptions. When these functions are used in the differential equation model, it is shown that cell-wall conductivity plays an important part in the lag in flow observed in many conifers. The flow velocities and rates of change in saturation predicted by the differential equation model agree with those measured in Douglas fir. Both models support the theory of tree water flow presented in Aumann & Ford (submitted) and undermine the theory that water flow in trees is analogous to the flow of current in electric circuits. PMID:12425978

  1. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  2. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  3. Survey of fluoride levels in vended water stations.

    PubMed

    Jadav, Urvi G; Archarya, Bhavini S; Velasquez, Gisela M; Vance, Bradley J; Tate, Robert H; Quock, Ryan L

    2014-01-01

    This study sought to measure the fluoride concentration of water derived from vended water stations (VWS) and to identify its clinical implications, especially with regard to caries prevention and fluorosis. VWS and corresponding tap water samples were collected from 34 unique postal zip codes; samples were analyzed in duplicate for fluoride concentration. Average fluoride concentration in VWS water was significantly lower than that of tap water (P < 0.001). Fluoride concentration in the VWS water ranged from <0.01 ppm to 0.04 ppm, with a mean concentration of 0.02 ppm (0.02 ppm). Patients utilizing VWS as their primary source of drinking water may not be receiving optimal caries preventive benefits; thus dietary fluoride supplementation may be indicated. Conversely, to minimize the risk of fluorosis in infants consuming reconstituted infant formula, water from a VWS may be used. PMID:25184716

  4. Plasma oxytocin levels predict social cue recognition in individuals with schizophrenia.

    PubMed

    Strauss, Gregory P; Keller, William R; Koenig, James I; Gold, James M; Frost, Katherine H; Buchanan, Robert W

    2015-03-01

    Lower endogenous levels of the neuropeptide oxytocin may be an important biological predictor of social cognition impairments in schizophrenia (SZ). Prior studies have demonstrated that lower-level social cognitive processes (e.g., facial affect perception) are significantly associated with reduced plasma oxytocin levels in SZ; however, it is unclear whether higher-level social cognition, which requires inferential processes and knowledge not directly presented in the stimulus, is associated with endogenous oxytocin. The current study explored the association between endogenous oxytocin levels and lower- and higher-level social cognition in 40 individuals diagnosed with SZ and 22 demographically matched healthy controls (CN). All participants received the Social Cue Recognition Test (SCRT), which presents participants with videotaped interpersonal vignettes and subsequent true/false questions related to concrete or abstract aspects of social interactions in the vignettes. Results indicated that SZ had significantly higher plasma oxytocin concentrations than CN. SZ and CN did not differ on SCRT hits, but SZ had more false positives and lower sensitivity scores than CN. Higher plasma oxytocin levels were associated with better sensitivity scores for abstract items in CN and fewer false positives for concrete items in individuals with SZ. Findings indicate that endogenous oxytocin levels predict accurate encoding of lower-level socially relevant information in SZ. PMID:25673435

  5. Baseline carcinoembryonic antigen (CEA) serum levels predict bevacizumab-based treatment response in metastatic colorectal cancer

    PubMed Central

    Prager, Gerald W; Braemswig, Kira H; Martel, Alexandra; Unseld, Matthias; Heinze, Georg; Brodowicz, Thomas; Scheithauer, Werner; Kornek, Gabriela; Zielinski, Christoph C

    2014-01-01

    Carcinoembryonic antigen (CEA) affects tumorigenesis by enhancing tumor cell survival and by inducing tumor angiogenesis. This study aimed to evaluate baseline CEA serum levels to predict bevacizumab-based therapy effect and survival in patients with metastatic colorectal cancer (mCRC). Two hundred and ninety eight mCRC patients receiving chemotherapy plus either bevacizumab or cetuximab were analyzed in a retrospective study. Disease control (DC), progression-free survival (PFS), and overall survival were assessed and related to pretreatment CEA serum levels. Patients with baseline CEA serum levels below the statistical median of 26.8 ng/mL (group I) were compared with patients with higher CEA levels (group II). The cetuximab-based treatment cohort was analyzed for specificity assessment of CEA to predict the anti-vascular endothelial growth factor effect in mCRC. Baseline CEA serum levels inversely correlated with therapeutic response in patients receiving bevacizumab-based treatment (disease control rate, 84% vs 60%), inversely correlated with median PFS leading to a median PFS benefit of 2.1 months for patients in group I when compared with group II, as well as inversely correlated with median overall survival (37.5 months vs 21.4 months). In an independent cohort of 129 patients treated with cetuximab-based therapy, no association of therapeutic response or PFS with CEA serum levels was found. As expected, baseline CEA levels were prognostic for mCRC. These data give first evidence that baseline serum CEA levels might constitute an important predictor for the efficacy of first-line bevacizumab-based therapy in patients with mCRC. Previously, we found that CEA induces angiogenesis independent of VEGF. The data presented here now give first evidence that baseline serum CEA levels in patients might constitute an important predictor for the efficacy of first-line bevacizumab-based therapy for metastatic colorectal cancer. PMID:24850362

  6. Growth and food consumption by tiger muskellunge: Effects of temperature and ration level on bioenergetic model predictions

    USGS Publications Warehouse

    Chipps, S.R.; Einfalt, L.M.; Wahl, David H.

    2000-01-01

    We measured growth of age-0 tiger muskellunge as a function of ration size (25, 50, 75, and 100% C(max))and water temperature (7.5-25??C) and compared experimental results with those predicted from a bioenergetic model. Discrepancies between actual and predicted values varied appreciably with water temperature and growth rate. On average, model output overestimated winter consumption rates at 10 and 7.5??C by 113 to 328%, respectively, whereas model predictions in summer and autumn (20-25??C) were in better agreement with actual values (4 to 58%). We postulate that variation in model performance was related to seasonal changes in esocid metabolic rate, which were not accounted for in the bioenergetic model. Moreover, accuracy of model output varied with feeding and growth rate of tiger muskellunge. The model performed poorly for fish fed low rations compared with estimates based on fish fed ad libitum rations and was attributed, in part, to the influence of growth rate on the accuracy of bioenergetic predictions. Based on modeling simulations, we found that errors associated with bioenergetic parameters had more influence on model output when growth rate was low, which is consistent with our observations. In addition, reduced conversion efficiency at high ration levels may contribute to variable model performance, thereby implying that waste losses should be modeled as a function of ration size for esocids. Our findings support earlier field tests of the esocid bioenergetic model and indicate that food consumption is generally overestimated by the model, particularly in winter months and for fish exhibiting low feeding and growth rates.

  7. Improving Neural Network Prediction Accuracy for PM10 Individual Air Quality Index Pollution Levels.

    PubMed

    Feng, Qi; Wu, Shengjun; Du, Yun; Xue, Huaiping; Xiao, Fei; Ban, Xuan; Li, Xiaodong

    2013-12-01

    Fugitive dust deriving from construction sites is a serious local source of particulate matter (PM) that leads to air pollution in cities undergoing rapid urbanization in China. In spite of this fact, no study has yet been published relating to prediction of high levels of PM with diameters <10??m (PM10) as adjudicated by the Individual Air Quality Index (IAQI) on fugitive dust from nearby construction sites. To combat this problem, the Construction Influence Index (Ci) is introduced in this article to improve forecasting models based on three neural network models (multilayer perceptron, Elman, and support vector machine) in predicting daily PM10 IAQI one day in advance. To obtain acceptable forecasting accuracy, measured time series data were decomposed into wavelet representations and wavelet coefficients were predicted. Effectiveness of these forecasters were tested using a time series recorded between January 1, 2005, and December 31, 2011, at six monitoring stations situated within the urban area of the city of Wuhan, China. Experimental trials showed that the improved models provided low root mean square error values and mean absolute error values in comparison to the original models. In addition, these improved models resulted in higher values of coefficients of determination and AHPC (the accuracy rate of high PM10 IAQI caused by nearby construction activity) compared to the original models when predicting high PM10 IAQI levels attributable to fugitive dust from nearby construction sites. PMID:24381481

  8. Seasonal prediction of global sea level anomalies using an ocean-atmosphere dynamical model

    NASA Astrophysics Data System (ADS)

    Miles, Elaine R.; Spillman, Claire M.; Church, John A.; McIntosh, Peter C.

    2014-10-01

    Advanced warning of extreme sea level events is an invaluable tool for coastal communities, allowing the implementation of management policies and strategies to minimise loss of life and infrastructure damage. This study is an initial attempt to apply a dynamical coupled ocean-atmosphere model to the prediction of seasonal sea level anomalies (SLA) globally for up to 7 months in advance. We assess the ability of the Australian Bureau of Meteorology's operational seasonal dynamical forecast system, the Predictive Ocean Atmosphere Model for Australia (POAMA), to predict seasonal SLA, using gridded satellite altimeter observation-based analyses over the period 1993-2010 and model reanalysis over 1981-2010. Hindcasts from POAMA are based on a 33-member ensemble of seasonal forecasts that are initialised once per month for the period 1981-2010. Our results show POAMA demonstrates high skill in the equatorial Pacific basin and consistently exhibits more skill globally than a forecast based on persistence. Model predictability estimates indicate there is scope for improvement in the higher latitudes and in the Atlantic and Southern Oceans. Most characteristics of the asymmetric SLA fields generated by El-Nino/La Nina events are well represented by POAMA, although the forecast amplitude weakens with increasing lead-time.

  9. Improving Neural Network Prediction Accuracy for PM10 Individual Air Quality Index Pollution Levels

    PubMed Central

    Feng, Qi; Wu, Shengjun; Du, Yun; Xue, Huaiping; Xiao, Fei; Ban, Xuan; Li, Xiaodong

    2013-01-01

    Abstract Fugitive dust deriving from construction sites is a serious local source of particulate matter (PM) that leads to air pollution in cities undergoing rapid urbanization in China. In spite of this fact, no study has yet been published relating to prediction of high levels of PM with diameters <10 μm (PM10) as adjudicated by the Individual Air Quality Index (IAQI) on fugitive dust from nearby construction sites. To combat this problem, the Construction Influence Index (Ci) is introduced in this article to improve forecasting models based on three neural network models (multilayer perceptron, Elman, and support vector machine) in predicting daily PM10 IAQI one day in advance. To obtain acceptable forecasting accuracy, measured time series data were decomposed into wavelet representations and wavelet coefficients were predicted. Effectiveness of these forecasters were tested using a time series recorded between January 1, 2005, and December 31, 2011, at six monitoring stations situated within the urban area of the city of Wuhan, China. Experimental trials showed that the improved models provided low root mean square error values and mean absolute error values in comparison to the original models. In addition, these improved models resulted in higher values of coefficients of determination and AHPC (the accuracy rate of high PM10 IAQI caused by nearby construction activity) compared to the original models when predicting high PM10 IAQI levels attributable to fugitive dust from nearby construction sites. PMID:24381481

  10. Predicting population-level risk effects of predation from the responses of individuals.

    PubMed

    MacLeod, Colin D; MacLeod, Ross; Learmonth, Jennifer A; Cresswell, Will; Pierce, Graham J

    2014-07-01

    Fear of predation produces large effects on prey population dynamics through indirect risk effects that can cause even greater impacts than direct predation mortality. As yet, there is no general theoretical framework for predicting when and how these population risk effects will arise in specific prey populations, meaning that there is often little consideration given to the key role predator risk effects can play in understanding conservation and wildlife management challenges. Here, we propose that population predator risk effects can be predicted through an extension of individual risk trade-off theory and show for the first time that this is the case in a wild vertebrate system. Specifically, we demonstrate that the timing (in specific months of the year), occurrence (at low food availability), cause (reduction in individual energy reserves), and type (starvation mortality) of a population-level predator risk effect can be successfully predicted from individual responses using a widely applicable theoretical framework (individual-based risk trade-off theory). Our results suggest that individual-based risk trade-off frameworks could allow a wide range of population-level predator risk effects to be predicted from existing ecological theory, which would enable risk effects to be more routinely integrated into consideration of population processes and in applied situations such as conservation. PMID:25163131

  11. Wave transformation and shoreline water level on Funafuti Atoll, Tuvalu

    NASA Astrophysics Data System (ADS)

    Beetham, Edward; Kench, Paul S.; O'Callaghan, Joanne; Popinet, Stéphane

    2016-01-01

    The influence of sea swell (SS) waves, infragravity (IG) waves, and wave setup on maximum runup (Rmax) is investigated across different tidal stages on Fatato Island, Funafuti Atoll, Tuvalu. Field results illustrate that SS waves are tidally modulated at the shoreline, with comparatively greater wave attenuation and setup occurring at low tide versus high tide. A shoreward increase in IG wave height is observed across the 100 m wide reef flat at all tidal elevations, with no tidal modulation of IG wave height at the reef flat or island shoreline. A 1-D shock-capturing Green-Naghdi solver is used to replicate the field deployment and analyze Rmax. Model outputs for SS wave height, IG wave height and setup at the shoreline match field results with model skill >0.96. Model outputs for Rmax are used to identify the temporal window when geomorphic activity can occur on the beach face. During periods of moderate swell energy, waves can impact the beach face at spring low tide, due to a combination of wave setup and strong IG wave activity. Under mean wave conditions, the combined influence of setup, IG waves and SS waves results in interaction with island sediment at midtide. At high tide, SS and IG waves directly impact the beach face. Overall, wave activity is present on the beach face for 71% of the study period, a significantly longer duration than is calculated using mean water level and topographic data.

  12. REDUCING ARSENIC LEVELS IN DRINKING WATER: APPROACHES AND CONSIDERATIONS

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. It has been projected that the State of Ohio will have nearly 140 community and non-community non-transient water systems in violation of the Rule. This ...

  13. Assessing the variability in extreme high water levels and the implications for coastal flood risk

    NASA Astrophysics Data System (ADS)

    Quinn, Niall; Lewis, Matthew; Wadey, Matthew; Haigh, Ivan

    2014-05-01

    Assessing the variability in extreme high water levels and the implications for coastal flood risk In this research we assess the temporal variability in the time-series of extreme water levels at 44 A- Class tide gauges around the UK. Extreme (> 99th percentile) storm tide events, sampled from water level measurements taken every 15 minutes between 1993 and 2012, were analysed at each site, and the variability in elevation relative to a given event storm tide peak was quantified. The magnitude of the variability in the time-series was found to be both spatially variable across the UK, and temporally variable relative to the time of the high water. Boundary water levels associated with a range of event magnitudes at case study locations around the UK were used to force two-dimensional hydrodynamic models to examine the importance of storm tide time-series uncertainty to flood risk predictions. The comparison of inundation extent, depth, and number of buildings affected demonstrated the importance of accurately defining the duration and magnitude of defence exceedance. For example, given a current 1 in 200 year event magnitude at Portsmouth (UK), the predicted number of buildings inundated differed by more than 30% when contrasting simulations forced with the 5th percentile time-series relative to those forced with the 95th percentile time-series. The results clearly indicate that variability in the time-series of the storm tide can have considerable influence upon the duration and magnitude by which defences are exceeded, hence with implications for coastal flood risk assessments. Therefore, further evaluating and representing this uncertainty in future flood risk assessments is vital, while the 5th and 95th percentile time-series defined in this research provide a tool for coastal flood modellers. Only defence overflow-induced inundation was examined in this research. However, it is expected that variability in storm tide time-series will also have important implications on other processes of interest to flood risk, including defence failure, wave-induced overtopping, and sediment transport in the nearshore region.

  14. The effects of sea-level rise on water quality in coastal floodplain sediments

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa; Johnston, Scott; Burton, Edward; Bush, Richard; Sullivan, Leigh; Slavich, Peter

    2013-04-01

    Sea level has risen approximately 1.2 mm/year over the last 100 years (Hennessy et al. 2004) and is predicted to rise up to 80 cm by 2100 relative to 1990 sea levels (IPCC 2007). The number of extreme events related to sea level such as higher sea levels and increased inter-annual variability have also increased in frequency in the same time period (Hennessy et al. 2004). Globally, large areas of coastal and estuarine floodplains are underlain by sulfidic sediments and acid sulfate soils (ASS). These sediments frequently contain high concentrations of acidity and trace metals. A significant portion of the stored acidity occurs in the form of exchangeable and hydrolysable acidic metal cations such as Al and Fe. Watertables in these environments are often close to the surface and intercepted by relatively shallow drains. Due to their low elevation and locations, these floodplains are highly susceptible to pulses of saline water caused by saltwater intrusion, storm surge and rising sea levels. Construction of extensive drainage systems has further increased the susceptibility of the floodplain to seawater inundation by increasing connectivity to the estuarine channel. This risk is likely to increase in the future with predicted increases in sea level and extreme events due to climate change. This study uses both batch experiments to determine the effects of increasing ionic strength on exchange processes and trace metal desorption in oxidised floodplain sediments and sulfidic drain sediments, and intact soil cores to determine the surface water-porewater interactions over the short term following seawater inundation in coastal floodplain sediments. We found that that saline inundation of oxidised ASS floodplain sediments, even by relatively brackish water may cause rapid, shorter-term water quality changes and a pulse release of acidity due to desorption of acidic metal cations (Wong et al. 2010). We also found that trace metals can be mobilised from sulfidic estuarine drain sediments at near-neutral pH values without oxidation as a result of increased ionic strength and competitive desorption of metal cations (Wong et al. in press). Rapid seawater incursion in CASS drainage networks is likely to adversely impact drain water quality by increasing trace metal mobilization. Drainage networks on ASS floodplains are highly susceptible to rapid seawater inundation through storm surge, seasonal salt wedge migration, floodgate failure or floodgate opening. The experimental results show that the initial addition of marine derived salts will result in a decrease in pH and increase in trace metals, even at low salt concentrations such as that found in brackish waters in estuarine environments. References Hennessy K, Page C, McInnes K, Jones R, Bathols J, Collins D, Jones D (2004) Climate Change in New South Wales. In. CSIRO, Canberra. IPCC (2007) Climate Change 2007: Synthesis Report. In: An Assessment of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. Wong VNL, Johnston SG, Burton ED, Bush RT, Sullivan LA, Slavich PG (2010) Seawater causes rapid trace metal mobilisation in coastal lowland acid sulfate soils: Implications of sea level rise for water quality. Geoderma 160(2): 252-263 Wong VNL, Johnston SG, Burton ED, Bush RT, Sullivan LA, Slavich PG (in press) Seawater-induced mobilization of trace metals from mackinawite-rich estuarine sediments. Water Research

  15. Estimating Impaired Waters on a County Level for Public Health Analysis

    EPA Science Inventory

    Assessing the population-level impact of water quality on health can be difficult. Water quality data are measured at a watershed level and health data are organized at different levels of aggregation. To address this discrepancy and enable the consideration of water quality for ...

  16. Prediction of the alveolar bone level after the extraction of maxillary anterior teeth with severe periodontitis

    PubMed Central

    2015-01-01

    Purpose After extraction, the alveolar bone tends to undergo atrophy in three-dimensions. The amount of alveolar bone loss in the horizontal dimension has been reported to be greater than the amount of bone loss in the vertical dimension, and is most pronounced in the buccal aspect. The aim of this study was to monitor the predictive alveolar bone level following the extraction of anterior teeth seriously involved with advanced chronic periodontitis. Methods This study included 25 patients with advanced chronic periodontitis, whose maxillary anterior teeth had been extracted due to extensive attachment loss more than one year before the study. Periapical radiographs were analyzed to assess the vertical level of alveolar bone surrounding the edentulous area. An imaginary line connecting the mesial and the distal ends of the alveolar crest facing the adjacent tooth was arbitrarily created. Several representative coordinates were established in the horizontal direction, and the vertical distance from the imaginary line to the alveolar crest was measured at each coordinate for each patient using image analysis software. Regression functions predicting the vertical level of the alveolar bone in the maxillary anterior edentulous area were identified for each patient. Results The regression functions demonstrated a tendency to converge to parabolic shapes. The predicted maximum distance between the imaginary line and the alveolar bone calculated using the regression function was 1.43±0.65 mm. No significant differences were found between the expected and actual maximum distances. Likewise, the predicted and actual maximum horizontal distances did not show any significant differences. The distance from the alveolar bone crest to the imaginary lines was not influenced by the mesio-distal spans of the edentulous area. Conclusions After extraction, the vertical level of the alveolar ridge increased to become closer to the reference line connecting the mesial and distal alveolar crests. PMID:26734492

  17. Water levels and water-level changes in the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers, Twin Cities metropolitan area, Minnesota, 1971-80

    USGS Publications Warehouse

    Schoenberg, Michael

    1984-01-01

    The Mississippi, Minnesota, and St. Croix Rivers greatly influence flow patterns in the Prairie du Chien-Jordan aquifer. Water generally flows toward these streams from surrounding water-level highs. Heavy pumping has caused only localized cones of depression. In contrast, pumping in Minneapolis and St. Paul has greatly influenced ground-water flow in the Mount Simon-Hinckley aquifer, resulting in a large cone of depression. Between 1971 and 1980 average water levels in the Prairie du Chien-Jordan aquifer changed less than 5 feet in most of the study area, while average water levels in the Mount Simon-Hinckley aquifer rose as much as 60 feet in the center of the cone of depression. Water-level data suggest that (1) little variation of annual pumpage between 1971 and 1980 from the Prairie du Chien-Jordan aquifer produced generally stable water levels in that aquifer, (2) decreased annual pumpage from 1971 to 1980 from the Mount Simon-Hinckley aquifer caused rising water levels in that aquifer, and (3) a greater seasonal component of pumpage for the Mount Simon-Hinckley aquifer than for the Prairie du Chien-Jordan produced larger and more widespread seasonal water-level declines in the Mount Simon-Hinckley than in the Prairie du Chien-Jordan, particularly during dry years. (USGS)

  18. Prediction of daily ground-level ozone concentration maxima over New Delhi.

    PubMed

    Mahapatra, Amita

    2010-11-01

    The pollution levels in New Delhi from industrial, residential, and transportation sources are continuously growing. As one of the major pollutants, ground-level ozone is responsible for various adverse effects on both humans and foliage. The present study aims to predict daily ground-level ozone concentration maxima over a site situated in New Delhi through neural networks (NN) and multiple-regression (MR) analysis. Although these methodologies are case and site specific, they are being developed and used widely. Therefore, to test these methodologies for New Delhi where no such study is available for ground-level ozone, six models have been developed based on NNs and MR using the same input data set. The changes in the performance capability of the two methods are sensitive to the selection of input parameters. The results are encouraging, and remarkable improvements in the performance of the models have been observed. PMID:19859819

  19. Computer predictions of photochemical oxidant levels for initial precursor concentrations characteristic of southeastern Virginia

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.; Mclain, A. G.

    1979-01-01

    A computer study was performed with a photochemical box model, using a contemporary chemical mechanism and procedure, and a range of initial input pollutant concentrations thought to encompass those characteristic of the Southeastern Virginia region before a photochemical oxidant episode. The model predictions are consistent with the expectation of high summer afternoon ozone levels when initial nonmethane hydrocarbon (NMHC) levels are in the range 0.30-0.40 ppmC and NOx levels are in the range 0.02-0.05 ppm. Calculations made with a Lagrangian model, for one of the previously calculated cases, which had produced intermediate afternoon ozone levels, suggest that urban source additions of NMHC and NOx exacerbate the photochemical oxidant condition.

  20. Predicting Gene Expression Level from Relative Codon Usage Bias: An Application to Escherichia coli Genome

    PubMed Central

    Roymondal, Uttam; Das, Shibsankar; Sahoo, Satyabrata

    2009-01-01

    We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest. PMID:19131380

  1. Investigations on boron levels in drinking water sources in China.

    PubMed

    Xu, Ren-ji; Xing, Xiao-ru; Zhou, Qun-fang; Jiang, Gui-bin; Wei, Fu-sheng

    2010-06-01

    To evaluate boron contamination of public drinking water in China, both dissolved and total boron contents in 98 public drinking water sources from 49 cities, 42 brands of bottled water samples from supermarkets in several cities, and 58 water samples from boron industrial area were measured by inductively coupled plasma-mass spectrometry (ICP-MS). Our experimental results showed that boron existed in public drinking water sources mainly in dissolved status with total concentrations ranging from 0.003 to 0.337 mg/L (mean = 0.046 mg/L). The mean boron concentrations in mineral and pure bottled water were 0.052 and 0.028 mg/L, respectively. The results obtained in this work showed that there was no health risk on view of boron in public drinking water sources and bottled water. In boron industrial area, boron concentrations in surface water and ground water were 1.28 mg/L (range = 0.007-3.8 mg/L) and 18.3 mg/L (range = 0.015-140 mg/L), respectively, which indicated that boron industry caused boron pollution in local water system. PMID:19444639

  2. An Empirical Approach to Predicting Effects of Climate Change on Stream Water Chemistry

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Hawkins, C. P.

    2014-12-01

    Climate change may affect stream solute concentrations by three mechanisms: dilution associated with increased precipitation, evaporative concentration associated with increased temperature, and changes in solute inputs associated with changes in climate-driven weathering. We developed empirical models predicting base-flow water chemistry from watershed geology, soils, and climate for 1975 individual stream sites across the conterminous USA. We then predicted future solute concentrations (2065 and 2099) by applying down-scaled global climate model predictions to these models. The electrical conductivity model (EC, model R2 = 0.78) predicted mean increases in EC of 19 μS/cm by 2065 and 40 μS/cm by 2099. However predicted responses for individual streams ranged from a 43% decrease to a 4x increase. Streams with the greatest predicted decreases occurred in the southern Rocky Mountains and Mid-West, whereas southern California and Sierra Nevada streams showed the greatest increases. Generally, streams in dry areas underlain by non-calcareous rocks were predicted to be the most vulnerable to increases in EC associated with climate change. Predicted changes in other water chemistry parameters (e.g., Acid Neutralization Capacity (ANC), SO4, and Ca) were similar to EC, although the magnitude of ANC and SO4 change was greater. Predicted changes in ANC and SO4 are in general agreement with those changes already observed in seven locations with long term records.

  3. Modeling Tidal Wetland Resiliency in the Face of Predicted Accelerated Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Schile, L. M.; Callaway, J.; Morris, J. T.; Kelly, M.

    2014-12-01

    Tidal wetland ecosystems are dynamic coastal habitats that, in California, often occur at the complex nexus of aquatic environments, diked and leveed baylands, and modified upland habitat. Because of their prime location and rich peat soil, many wetlands have been reduced, degraded, and/or destroyed, and yet their important role in carbon sequestration, nutrient and sediment filtering, and as habitat requires us to further examine their sustainability in light of predicted climate change. Predictions of climate change effects for the San Francisco Bay Estuary present a future with reduced summer freshwater input and increased sea levels. We examined the applicability and accuracy of the Marsh Equilibrium Model (MEM), a zero-dimensional model that models organic and inorganic accretion rates under a given rate of sea-level rise. MEM was calibrated using data collected from salt and brackish marshes in the San Francisco Bay Estuary to examine wetland resiliency under a range of sea-level rise and suspended sediment concentration scenarios. At sea-level rise rates 100 cm/century and lower, wetlands remained vegetated. Once sea levels rise above 100 cm, marshes begin to lose ability to maintain elevation, and the presence of adjacent upland habitat becomes increasingly important for marsh migration. The negative effects of sea-level rise on elevations were compounded as suspended sediment concentrations decreased. Results from this study emphasize that the wetland landscape in the bay is threatened with rising sea levels, and there are a limited number of wetlands that will be able to migrate to higher ground as sea levels rise.

  4. Water level effects on breaking wave setup for Pacific Island fringing reefs

    NASA Astrophysics Data System (ADS)

    Becker, J. M.; Merrifield, M. A.; Ford, M.

    2014-02-01

    The effects of water level variations on breaking wave setup over fringing reefs are assessed using field measurements obtained at three study sites in the Republic of the Marshall Islands and the Mariana Islands in the western tropical Pacific Ocean. At each site, reef flat setup varies over the tidal range with weaker setup at high tide and stronger setup at low tide for a given incident wave height. The observed water level dependence is interpreted in the context of radiation stress gradients specified by an idealized point break model generalized for nonnormally incident waves. The tidally varying setup is due in part to depth-limited wave heights on the reef flat, as anticipated from previous reef studies, but also to tidally dependent breaking on the reef face. The tidal dependence of the breaking is interpreted in the context of the point break model in terms of a tidally varying wave height to water depth ratio at breaking. Implications for predictions of wave-driven setup at reef-fringed island shorelines are discussed.

  5. Involving regional expertise in nationwide modeling for adequate prediction of climate change effects on different demands for fresh water

    NASA Astrophysics Data System (ADS)

    de Lange, W. J.

    2014-05-01

    Wim J. de Lange, Geert F. Prinsen, Jacco H. Hoogewoud, Ab A Veldhuizen, Joachim Hunink, Erik F.W. Ruijgh, Timo Kroon Nationwide modeling aims to produce a balanced distribution of climate change effects (e.g. harm on crops) and possible compensation (e.g. volume fresh water) based on consistent calculation. The present work is based on the Netherlands Hydrological Instrument (NHI, www.nhi.nu), which is a national, integrated, hydrological model that simulates distribution, flow and storage of all water in the surface water and groundwater systems. The instrument is developed to assess the impact on water use on land-surface (sprinkling crops, drinking water) and in surface water (navigation, cooling). The regional expertise involved in the development of NHI come from all parties involved in the use, production and management of water, such as waterboards, drinking water supply companies, provinces, ngo's, and so on. Adequate prediction implies that the model computes changes in the order of magnitude that is relevant to the effects. In scenarios related to drought, adequate prediction applies to the water demand and the hydrological effects during average, dry, very dry and extremely dry periods. The NHI acts as a part of the so-called Deltamodel (www.deltamodel.nl), which aims to predict effects and compensating measures of climate change both on safety against flooding and on water shortage during drought. To assess the effects, a limited number of well-defined scenarios is used within the Deltamodel. The effects on demand of fresh water consist of an increase of the demand e.g. for surface water level control to prevent dike burst, for flushing salt in ditches, for sprinkling of crops, for preserving wet nature and so on. Many of the effects are dealt with by regional and local parties. Therefore, these parties have large interest in the outcome of the scenario analyses. They are participating in the assessment of the NHI previous to the start of the analyses. Regional expertise is welcomed in the calibration phase of NHI. It aims to reduce uncertainties by improving the rules for manmade re-direction of surface water, schematizations & parameters included in the model. This is carried out in workshops and in one-to-one expert meetings on regional models & the NHI. All results of NHI are presented on the internet and any expert may suggest improvements to the model. The final goal of the involvement of regional parties is the acceptation by decision impact receiving authorities. The presentation will give an overview of the experiences and results of the participation process both technically and in the national policy making context.

  6. Involving regional expertise in nationwide modeling for adequate prediction of climate change effects on different demands for fresh water

    NASA Astrophysics Data System (ADS)

    de Lange, Wim; Prinsen, Geert.; Hoogewoud, Jacco; Veldhuizen, Ab; Ruijgh, Erik; Kroon, Timo

    2013-04-01

    Nationwide modeling aims to produce a balanced distribution of climate change effects (e.g. harm on crops) and possible compensation (e.g. volume fresh water) based on consistent calculation. The present work is based on the Netherlands Hydrological Instrument (NHI, www.nhi.nu), which is a national, integrated, hydrological model that simulates distribution, flow and storage of all water in the surface water and groundwater systems. The instrument is developed to assess the impact on water use on land-surface (sprinkling crops, drinking water) and in surface water (navigation, cooling). The regional expertise involved in the development of NHI come from all parties involved in the use, production and management of water, such as waterboards, drinking water supply companies, provinces, ngo's, and so on. Adequate prediction implies that the model computes changes in the order of magnitude that is relevant to the effects. In scenarios related to drought, adequate prediction applies to the water demand and the hydrological effects during average, dry, very dry and extremely dry periods. The NHI acts as a part of the so-called Deltamodel (www.deltamodel.nl), which aims to predict effects and compensating measures of climate change both on safety against flooding and on water shortage during drought. To assess the effects, a limited number of well-defined scenarios is used within the Deltamodel. The effects on demand of fresh water consist of an increase of the demand e.g. for surface water level control to prevent dike burst, for flushing salt in ditches, for sprinkling of crops, for preserving wet nature and so on. Many of the effects are dealt with? by regional and local parties. Therefore, these parties have large interest in the outcome of the scenario analyses. They are participating in the assessment of the NHI previous to the start of the analyses. Regional expertise is welcomed in the calibration phase of NHI. It aims to reduce uncertainties by improving the rules for manmade re-direction of surface water, schematizations & parameters included in the model. This is carried out in workshops and in one-to-one expert meetings on regional models & the NHI. All results of NHI are presented on the internet and any expert may suggest improvements to the model. The final goal of the involvement of regional parties is the acceptation by decision impact receiving authorities

  7. Correlation between predicted and observed levels of airborne tritium at Lawrence Livermore Laboratory site boundary

    SciTech Connect

    Lindeken, C.L.; Silver, W.J.; Toy, A.J.; White, J.H.

    1980-02-19

    At the Lawrence Livermore Laboratory, a computer code based on the Gaussian plume model is used to estimate radiation doses from routine or accidental release of airborne radioactive material. Routine releases of tritium have been used as a test of the overall uncertainty associated with these estimates. The ration of concentration to release rate at distances from the two principal release points to each of six site boundary sampling locations has been calcuated using local meteorological data. The concentration of airborne tritiated water vapor is continuously measured at the six sampling stations as part of the Laboratory's environmental monitoring program. Comparison of predicted with observed annual tritiated water concentrations in 1978 showed an average ratio of 2.6 with a range of from 0.97 to 5.8.

  8. Predicting sub-grid variability of soil water content from basic soil information

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Bogena, Heye; Huisman, Johan Alexander; Vanderborght, Jan; Schuh, Max; Priesack, Eckart; Vereecken, Harry

    2015-04-01

    Knowledge of unresolved soil water content variability within model grid cells (i.e. sub-grid variability) is important for accurate predictions of land-surface energy and hydrologic fluxes. Here, we derived a closed-form expression to describe how soil water content variability depends on mean soil water content using stochastic analysis of 1D unsaturated gravitational flow based on the van Genuchten-Mualem (VGM) model. A sensitivity analysis of this closed-form expression showed that the n parameter strongly influenced both the shape and magnitude of the maximum of this relationship. In a next step, the closed-form expression was used to predict soil water content variability for eight datasets with varying soil texture using VGM parameters obtained from pedotransfer functions that rely on readily available soil information. Generally, there was good agreement between observed and predicted soil water content variability despite the obvious simplifications that were used to derive the closed-form expression (e.g. gravity flow in dry soils). A simplified closed-form expression that neglected the effect of pressure head fluctuations showed that the good performance in the dry soil range is related to the dominant role of the variability in MVG parameters determining water retention as compared to the effect of water flow. Furthermore, the novel closed-form expression was successfully used to inversely estimate the variability of hydraulic properties from observed data on soil water content variability from several test sites in Germany, China and Australia.

  9. Prediction of background levels for the Wind WAVES instrument and implications for the galactic background radiation

    NASA Astrophysics Data System (ADS)

    Hillan, D. S.; Cairns, Iver H.; Robinson, P. A.; Mohamed, A.

    2010-06-01

    We investigate and predict the observed background levels for the TNR, RAD1, and RAD2 receivers when connected to the X, Y, and Z antennas of the WAVES instrument on the spacecraft Wind. The receivers are connected to either a single antenna, in SEP mode, or a combination of antennas, in SUM mode. With the TNR receiver in SEP (X) mode, the predicted backgrounds agree to within 20% when modeled using a two component model for the quasi-thermal plasma noise (QTN). Calibrating the RAD1 in SEP (X) mode observations against TNR allows us to calculate the relative receiver gain GR1 = 1.43 0.18. Using the RAD1 data in SUM (X+Z) mode, the ratio of antenna gains is found to be R = 6.5, in agreement with preflight measurements. Observed differences between the SEP (X) and SUM (X+Z) modes are explained for the first time, and the predicted levels of QTN and galactic background are found to agree to within 20%. RAD2 is also calibrated against RAD1 and TNR, yielding a total gain GR2Gy = 2.5 0.3. Differences between the predicted and observed galactic background spectra are used to estimate the effective antenna lengths for the X and Y antennas, which are found to be between the physical monopole antenna length L and the Hansen (1981) prediction of $\\sqrt{(2/3)L. The analyses are consistent with the Novaco and Brown (1978) galactic background model, which decreases much faster than that of Cane (1979). Our model background spectrum is useful for theory-data comparisons of type II and III bursts.

  10. Projecting groundwater arsenic levels to define water use options in South Asia (Invited)

    NASA Astrophysics Data System (ADS)

    Fendorf, S.; Kocar, B. D.; Polizzotto, M.; Stuckey, J.; Benner, S. G.

    2010-12-01

    More than a hundred million people are at risk of exposure to dangerous levels of geogenic arsenic in drinking water across South Asia. Arsenic within rocks of the Himalayas is liberated to the sediment load of the major river systems draining these mountain systems through erosion and ultimately deposited within the massive deltas of South Asia. Upon burial, arsenic may be released to the aqueous phase through microbially driven reduction of arsenic and iron, leading to contamination of groundwater now commonly used for human consumption. Fueling this process is organic carbon that stimulates microbial activity and, with limited oxygen supply, anaerobic metabolisms. Resulting concentrations of arsenic, however, are distributed unevenly in the subsurface as a result of heterogeneity in groundwater flow and biogeochemical processes. While such heterogeneity make predicting groundwater arsenic concentrations difficult both spatially and temporally, it provides an opportunity to potentially extract water safe (or safer) for human consumption. Here we describe the fate controlling processes of arsenic with a coupled biogeochemical-hydrologic model for the Mekong Delta and illustrate changes in groundwater quality with land use alterationsa key driver in determining long-term temporal variation in arsenic distribution. For areas where low-arsenic groundwater is not available, we further examine possible solutions, including alternate water resources, for providing safe drinking water to the local populous.

  11. Parathyroid Hormone Levels May Predict Nonalcoholic Steatohepatitis in Morbidly Obese Patients

    PubMed Central

    Ghoghaei, Morteza; Taghdiri, Foad; Khajeh, Elias; Azmoudeh Ardalan, Farid; Sedaghat, Mojtaba; Hosseini Shirvani, Sepideh; Zarei, Shadi; Toolabi, Karamollah

    2015-01-01

    Background: Obesity as a worldwide health problem is associated with nonalcoholic steatohepatitis (NASH). Since severe liver injury may be present in asymptomatic obese patients and a definite diagnosis of nonalcoholic steatohepatitis can only be made after an invasive procedure of liver biopsy, there is a need for noninvasive methods to predict the probability of NASH. Objectives: To investigate the role of vitamin D endocrine system in predicting the probability of presence of NASH in asymptomatic morbidly obese candidates of bariatric surgery. Patients and Methods: From December 09 to March 11, every patient undergoing bariatric surgery had a liver biopsy. Nonalcoholic steatohepatitis was diagnosed using the Lees criteria, the baseline labs obtained and the association between laboratory data and presence of NASH assessed. Results: Forty-six patients (34 women, aged 36.5 10.6 years) were analyzed. The mean levels of liver enzymes were significantly higher in the group with NASH (P value < 0.01). In an unadjusted logistic model, PTH was the only variable in vitamin D endocrine system which was significantly associated with NASH (odds ratio (OR): 1.04, 95%CI: 1.01 - 1.07). After adjustment for possible confounding factors, age (OR: 1.22, 95%CI: 1.00 - 1.50) and PTH (OR: 1.08, 95%CI: 1.01 - 1.16) were predictive factors for NASH (P value < 0.05). Conclusions: Elevated serum PTH level was the predictive factor for NASH in morbidly obese patients. Also, we reported elevated serum liver enzymes, high serum PTH levels and older age as predictors of NASH in patients seeking obesity surgical treatments. PMID:26300934

  12. Tritium activity levels in environmental water samples from different origins.

    PubMed

    Palomo, M; Pealver, A; Aguilar, C; Borrull, F

    2007-09-01

    Tritium activity was determined in environmental waters from different areas of Catalonia, using a distillation procedure before liquid scintillation counting. The developed method was validated by analysing two samples from proficiency tests. In most of water samples (from rivers, rain, mineral bottled waters and tap waters) analysed, the activity values were lower or close to the minimum detectable activity (MDA) for our method which has a value of 0.6 Bq/l. However, the Ebro river samples had a mean activity around 3.6 +/- 0.6 Bq/l. The nuclear power station of Asc, which is located on the banks of this river, can be a source of tritium production and introduction into the environment, so a more exhaustive study of these waters was carried out. Tritium activities in this river were a long way above the normative limit in Spain for waters intended for human consumption, which is 100 Bq/l. PMID:17485217

  13. Predicting hourly-based flow discharge hydrographs from level data using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Tayfur, Gokmen; Moramarco, Tommaso

    2008-04-01

    SummaryThis study developed a genetic algorithm model to predict flow rates at sites receiving significant lateral inflow. It predicts flow rate at a downstream station from flow stage measured at upstream and downstream stations. For this purpose, it constructed two different models: First is analogous to the rating curve model (RCM) of Moramarco et al. [Moramarco, M., Barbetta, S., Melone, F., Singh, V.P., 2005. Relating local stage and remote discharge with significant lateral inflow. J. Hydrologic Eng., ASCE, 10(1)] and the second is based on summation of contributions from upstream station and lateral inflows using kinematic wave approximation. The model was applied to predict flow rates at three different gauging stations located on Tiber River, Upper Tiber River Basin, Italy. The model used average wave travel time for each river reach and obtained average set of parameter values for all the events observed in the same river reach. The GA model was calibrated, for each river reach and for each formulation, by three events and tested against three other events. The results showed that the GA model produced satisfactory results and it was superior over the most recently developed rating curve method. This study further analyzed the case where only water surface elevation data were used in the input vector to predict flow rates. The results showed that using elevation data produces satisfactory results. This has an implication for predicting flow rates at ungauged river sites since the surface elevation data can be obtained without needing the detailed geometry of river section which could change significantly during a flood.

  14. Water-level map of the Mississippi delta alluvium in northwestern Mississippi, April 1981

    USGS Publications Warehouse

    Darden, Daphne

    1981-01-01

    Water levels were measured in 454 wells in the alluvial sediments in northwestern Mississippi during the period April 13-24, 1981. Ground-water levels are higher after winter and spring rains and lower after heavy agricultural and industrial pumping. Locally, water levels fluctuate as rivers and streams fluctuate. Because of the drought conditions in April 1981, most water wells had risen several feet. In some areas, however, water levels had not recovered from the relatively low levels measured in September 1980. (USGS)

  15. Preoperative Serum CA125 Levels Predict the Prognosis in Hyperbilirubinemia Patients With Resectable Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Chen, Tao; Zhang, Min-Gui; Xu, Hua-Xiang; Wang, Wen-Quan; Liu, Liang; Yu, Xian-Jun

    2015-01-01

    Abstract Serum carbohydrate antigen 19-9 (CA19-9) is widely used to predict the prognosis for pancreatic ductal adenocarcinoma (PDAC). However, hyperbilirubinemia and the CA19-9 nonsecretor phenotype restrict the usage of serum CA19-9 alone. The goal of this study was to confirm the prognostic role of preoperative serum CA125 in PDAC, especially in patients with jaundice. A total of 211 patients with resected PDAC were eligible for this retrospective study, and were classified into 2 groups based on serum bilirubin levels. The prognostic significance of all clinicopathologic factors was evaluated by univariate and multivariate analyses, and the performance of each factor in predicting overall survival (OS) and recurrence-free survival (RFS) was compared. High preoperative CA125, high TNM stage, and lymph node metastasis were independent risk predictors for OS and RFS in all patients and the 2 subgroups, but high CA19-9 was only significant when considering all patients and those with nonelevated bilirubin. Using time-dependent receiver-operating characteristic analysis, better predictive performance for OS and RFS was observed for serum CA19-9 as compared to serum CA125 in these patients. High serum CA125 can independently predict poor prognosis. Importantly, in PDAC patients with hyperbilirubinemia, preoperative serum CA125 can predict the prognosis, whereas CA19-9 cannot. Preoperative CA19-9 had better predictive performance for survival than CA125, and the performance of CA19-9 did not decline between all patients and those with nonelevated bilirubin, but was significantly affected by hyperbilirubinemia. PMID:25984661

  16. Prediction of water quality index in constructed wetlands using support vector machine.

    PubMed

    Mohammadpour, Reza; Shaharuddin, Syafiq; Chang, Chun Kiat; Zakaria, Nor Azazi; Ab Ghani, Aminuddin; Chan, Ngai Weng

    2015-04-01

    Poor water quality is a serious problem in the world which threatens human health, ecosystems, and plant/animal life. Prediction of surface water quality is a main concern in water resource and environmental systems. In this research, the support vector machine and two methods of artificial neural networks (ANNs), namely feed forward back propagation (FFBP) and radial basis function (RBF), were used to predict the water quality index (WQI) in a free constructed wetland. Seventeen points of the wetland were monitored twice a month over a period of 14 months, and an extensive dataset was collected for 11 water quality variables. A detailed comparison of the overall performance showed that prediction of the support vector machine (SVM) model with coefficient of correlation (R(2))?=?0.9984 and mean absolute error (MAE)?=?0.0052 was either better or comparable with neural networks. This research highlights that the SVM and FFBP can be successfully employed for the prediction of water quality in a free surface constructed wetland environment. These methods simplify the calculation of the WQI and reduce substantial efforts and time by optimizing the computations. PMID:25408070

  17. A Bayesian network to predict vulnerability to sea-level rise: data report

    USGS Publications Warehouse

    Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert

    2011-01-01

    During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.

  18. Can serum interleukin-6 levels predict the outcome of patients with right iliac fossa pain?

    PubMed Central

    Goodwin, A. T.; Swift, R. I.; Bartlett, M. J.; Fernando, B. S.; Chadwick, S. J.

    1997-01-01

    In patients with right iliac fossa (RIF) pain it can be difficult to distinguish between appendicitis and nonspecific abdominal pain (NSAP). In this study we sought to determine whether serum interleukin-6 (IL-6) levels, an early marker of acute inflammation, taken at the time of admission could predict the outcome of patients admitted with RIF pain. Data were collected in a prospective manner on 53 consecutive patients (23 male, 30 female), mean age 22.1 years (range 10-79 years). Nineteen (36%) patients underwent surgery, of whom 16 had appendicitis (histologically proven). The mean (SEM) IL-6 levels (pg/ml) in patients undergoing operation vs those receiving non-operative management were 270.8 (106.3) vs 265.0 (80.4) (P = NS). The mean white blood cell (WBC) counts (x10(9)/l) in these patients were 14.28 (0.81) vs 9.66 (0.67), respectively (P = 0.0002). When patients with a confirmed diagnosis of appendicitis were compared with patients with a diagnosis of NSAP, the IL-6 levels were 149.4 (69.1) vs 363.6 (113.2), respectively (P = NS). In the same groups of patients, the WBC counts were 14.21 (0.81) vs 9.51 (0.68) (P = 0.004). We conclude that IL-6 levels taken at the time of admission are not useful in predicting the outcome of RIF pain. PMID:9135242

  19. Borehole sounding device with sealed depth and water level sensors

    DOEpatents

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  20. Intrinsic Functional Connectivity Patterns Predict Consciousness Level and Recovery Outcome in Acquired Brain Injury

    PubMed Central

    Wu, Xuehai; Zou, Qihong; Hu, Jin; Tang, Weijun; Mao, Ying; Gao, Liang; Zhu, Jianhong; Jin, Yi; Wu, Xin; Lu, Lu; Zhang, Yaojun; Zhang, Yao; Dai, Zhengjia; Gao, Jia-Hong; Weng, Xuchu; Northoff, Georg; Giacino, Joseph T.; He, Yong

    2015-01-01

    For accurate diagnosis and prognostic prediction of acquired brain injury (ABI), it is crucial to understand the neurobiological mechanisms underlying loss of consciousness. However, there is no consensus on which regions and networks act as biomarkers for consciousness level and recovery outcome in ABI. Using resting-state fMRI, we assessed intrinsic functional connectivity strength (FCS) of whole-brain networks in a large sample of 99 ABI patients with varying degrees of consciousness loss (including fully preserved consciousness state, minimally conscious state, unresponsive wakefulness syndrome/vegetative state, and coma) and 34 healthy control subjects. Consciousness level was evaluated using the Glasgow Coma Scale and Coma Recovery Scale-Revised on the day of fMRI scanning; recovery outcome was assessed using the Glasgow Outcome Scale 3 months after the fMRI scanning. One-way ANOVA of FCS, Spearman correlation analyses between FCS and the consciousness level and recovery outcome, and FCS-based multivariate pattern analysis were performed. We found decreased FCS with loss of consciousness primarily distributed in the posterior cingulate cortex/precuneus (PCC/PCU), medial prefrontal cortex, and lateral parietal cortex. The FCS values of these regions were significantly correlated with consciousness level and recovery outcome. Multivariate support vector machine discrimination analysis revealed that the FCS patterns predicted whether patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%, and the most discriminative region was the PCC/PCU. These findings suggest that intrinsic functional connectivity patterns of the human posteromedial cortex could serve as a potential indicator for consciousness level and recovery outcome in individuals with ABI. SIGNIFICANCE STATEMENT Varying degrees of consciousness loss and recovery are commonly observed in acquired brain injury patients, yet the underlying neurobiological mechanisms remain elusive. Using a large sample of patients with varying degrees of consciousness loss, we demonstrate that intrinsic functional connectivity strength in many brain regions, especially in the posterior cingulate cortex and precuneus, significantly correlated with consciousness level and recovery outcome. We further demonstrate that the functional connectivity pattern of these regions can predict patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%. Our study thus provides potentially important biomarkers of acquired brain injury in clinical diagnosis, prediction of recovery outcome, and decision making for treatment strategies for patients with severe loss of consciousness. PMID:26377477

  1. Model analysis of effects on water levels at Indiana Dunes National Lakeshore caused by construction dewatering

    USGS Publications Warehouse

    Marie, James R.

    1976-01-01

    The computer models were developed to investigate possible hydrologic effects within the Indiana Dunes National Lakeshore caused by planned dewatering at the adjacent Bailly Nuclear Generator construction site. The model analysis indicated that the planned dewatering would cause a drawdown of about 4 ft under the westernmost pond of the Lakeshore and that this drawdown would cause the pond to go almost dry--less than 0.5 ft of water remaining in about 1 percent of the pond--under average conditions during the 18-month dewatering period. When water levels are below average, as during late July and early August 1974, the pond would go dry in about 5.5 months. However, the pond may not have to go completely dry to damage the ecosystem. If the National Park Service 's independent study determines the minimum pond level at which ecosystem damage would be minimized, the models developed in this study could be used to predict the hydrologic conditions necessary to maintain that level. (Woodard-USGS)

  2. Prediction of contaminant fate and transport in potable water systems using H2OFate

    NASA Astrophysics Data System (ADS)

    Devarakonda, Venkat; Manickavasagam, Sivakumar; VanBlaricum, Vicki; Ginsberg, Mark

    2009-05-01

    BlazeTech has recently developed a software called H2OFate to predict the fate and transport of chemical and biological contaminants in water distribution systems. This software includes models for the reactions of these contaminants with residual disinfectant in bulk water and at the pipe wall, and their adhesion/reactions with the pipe walls. This software can be interfaced with sensors through SCADA systems to monitor water distribution networks for contamination events and activate countermeasures, as needed. This paper presents results from parametric calculations carried out using H2OFate for a simulated contaminant release into a sample water distribution network.

  3. Root water uptake and transport: using physiological processes in global predictions.

    PubMed

    Jackson, R B; Sperry, J S; Dawson, T E

    2000-11-01

    Plant water loss, regulated by stomata and driven by atmospheric demand, cannot exceed the maximum steady-state supply through roots. Just as an electric circuit breaks when carrying excess current, the soil-plant continuum breaks if forced to transport water beyond its capacity. Exciting new molecular, biophysical and ecological research suggests that roots are the weakest link along this hydraulic flow path. We attempt here to predict rooting depth and water uptake using the hydraulic properties of plants and the soil, and also to suggest how new physiological tools might contribute to larger-scale studies of hydraulic lift, the water balance and biosphere-atmosphere interactions. PMID:11077257

  4. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    NASA Astrophysics Data System (ADS)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage volume changes. Ground-based data can, in some cases, test the remote sensing accuracy and precision. Data accuracy requirements vary for different applications: reservoir management for flood control, agriculture, or power generation may need more accurate and timely information than (for example) regional assessments of water and food security issues. Thus, the long-term goal for the hydrological sciences community should be to efficiently mesh both types of information and with as extensive geographic coverage as possible.

  5. The Cold-Inducible RNA-Binding Protein (CIRP) Level in Peripheral Blood Predicts Sepsis Outcome

    PubMed Central

    Zhou, Yanyan; Dong, Haiyun; Zhong, Yanjun; Huang, Jia; Lv, Jianlei; Li, Jinxiu

    2015-01-01

    Objectives Sepsis is a lethal and complex clinical syndrome caused by infection or suspected infection. Cold-inducible RNA-binding protein (CIRP) is a widely distributed cold-shock protein that plays a proinflammatory role in sepsis and that may induce organ damage. However, clinical studies regarding the use of CIRP for the prognostic evaluation of sepsis are lacking. The purpose of this research was to investigate the prognostic significance of peripheral blood concentrations of CIRP in sepsis. Sepsis was assessed using several common measures, including the Acute Physiology and Chronic Health Evaluation II (APACHE II) score; the Sepsis-related Organ Failure Assessment (SOFA) score; the lactate, serum creatinine, and procalcitonin (PCT) levels; the white blood cell (WBC) count; and the neutrophil ratio (N%). Design Sixty-nine adult patients with sepsis were enrolled in this study. According to the mortality data from the hospital, 38 patients were survivors, and 31 were nonsurvivors. The plasma levels of the biomarkers were measured and the APACHE II and SOFA scores were calculated within 24 hours of patient enrollment into our study. The CIRP level was measured via ELISA. Results The plasma level of CIRP was significantly higher in the nonsurvivors than in the survivors (median (IQR) 4.99 (2.3730.17) ng/mL and 1.68 (1.4113.90) ng/mL, respectively; p = 0.013). The correlations of the CIRP level with the APACHE II score (r = 0.248, p = 0.040, n = 69), the SOFA score (r = 0.323, p = 0.007, n = 69), the serum creatinine level (r = 0.316, p = 0.008, n = 69), and the PCT level (r = 0.282, p = 0.019, n = 69) were significant. Receiver operator characteristic (ROC) curve analysis showed that the area under the ROC curve (AUC) for the CIRP level was 0.674 (p = 0.013). According to Cox proportional hazards models, the CIRP level independently predicts sepsis mortality. When the CIRP level in the peripheral blood increased by 10 ng/mL, the mortality risk increased by 1.05-fold (p = 0.012). Thus, the CIRP level reflects the degree of renal injury but does not predict the severity of sepsis or organ damage. Conclusion An elevated plasma concentration of CIRP was significantly associated with poor prognosis among patients with sepsis. Therefore, CIRP is a potential predictor of sepsis prognosis. PMID:26361390

  6. Decreased Plasma Histidine Level Predicts Risk of Relapse in Patients with Ulcerative Colitis in Remission

    PubMed Central

    Hisamatsu, Tadakazu; Ono, Nobukazu; Imaizumi, Akira; Mori, Maiko; Suzuki, Hiroaki; Uo, Michihide; Hashimoto, Masaki; Naganuma, Makoto; Matsuoka, Katsuyoshi; Mizuno, Shinta; Kitazume, Mina T.; Yajima, Tomoharu; Ogata, Haruhiko; Iwao, Yasushi; Hibi, Toshifumi; Kanai, Takanori

    2015-01-01

    Ulcerative colitis (UC) is characterized by chronic intestinal inflammation. Patients with UC have repeated remission and relapse. Clinical biomarkers that can predict relapse in UC patients in remission have not been identified. To facilitate the prediction of relapse of UC, we investigated the potential of novel multivariate indexes using statistical modeling of plasma free amino acid (PFAA) concentrations. We measured fasting PFAA concentrations in 369 UC patients in clinical remission, and 355 were observed prospectively for up to 1 year. Relapse rate within 1 year was 23% (82 of 355 patients). The age- and gender-adjusted hazard ratio for the lowest quartile compared with the highest quartile of plasma histidine concentration was 2.55 (95% confidence interval: 1.414.62; p = 0.0020 (log-rank), p for trend = 0.0005). We demonstrated that plasma amino acid profiles in UC patients in clinical remission can predict the risk of relapse within 1 year. Decreased histidine level in PFAAs was associated with increased risk of relapse. Metabolomics could be promising for the establishment of a non-invasive predictive marker in inflammatory bowel disease. PMID:26474176

  7. First-Trimester Serum Acylcarnitine Levels to Predict Preeclampsia: A Metabolomics Approach

    PubMed Central

    Koster, Maria P. H.; Vreeken, Rob J.; Harms, Amy C.; Dane, Adrie D.; Kuc, Sylwia; Schielen, Peter C. J. I.; Hankemeier, Thomas; Berger, Ruud; Visser, Gerard H. A.; Pennings, Jeroen L. A.

    2015-01-01

    Objective. To expand the search for preeclampsia (PE) metabolomics biomarkers through the analysis of acylcarnitines in first-trimester maternal serum. Methods. This was a nested case-control study using serum from pregnant women, drawn between 8 and 14 weeks of gestational age. Metabolites were measured using an UPLC-MS/MS based method. Concentrations were compared between controls (n = 500) and early-onset- (EO-) PE (n = 68) or late-onset- (LO-) PE (n = 99) women. Metabolites with a false discovery rate <10% for both EO-PE and LO-PE were selected and added to prediction models based on maternal characteristics (MC), mean arterial pressure (MAP), and previously established biomarkers (PAPPA, PLGF, and taurine). Results. Twelve metabolites were significantly different between EO-PE women and controls, with effect levels between ?18% and 29%. For LO-PE, 11 metabolites were significantly different with effect sizes between ?8% and 24%. Nine metabolites were significantly different for both comparisons. The best prediction model for EO-PE consisted of MC, MAP, PAPPA, PLGF, taurine, and stearoylcarnitine (AUC = 0.784). The best prediction model for LO-PE consisted of MC, MAP, PAPPA, PLGF, and stearoylcarnitine (AUC = 0.700). Conclusion. This study identified stearoylcarnitine as a novel metabolomics biomarker for EO-PE and LO-PE. Nevertheless, metabolomics-based assays for predicting PE are not yet suitable for clinical implementation. PMID:26146448

  8. U.S. Geological Survey Water science strategy--observing, understanding, predicting, and delivering water science to the nation

    USGS Publications Warehouse

    Evenson, Eric J.; Orndorff, Randall C.; Blome, Charles D.; Bhlke, John Karl; Hershberger, Paul K.; Langenheim, V.E.; McCabe, Gregory J.; Morlock, Scott E.; Reeves, Howard W.; Verdin, James P.; Weyers, Holly S.; Wood, Tamara M.

    2013-01-01

    This report expands the Water Science Strategy that began with the USGS Science Strategy, Facing Tomorrows ChallengesU.S. Geological Survey Science in the Decade 20072017 (U.S. Geological Survey, 2007). This report looks at the relevant issues facing society and develops a strategy built around observing, understanding, predicting, and delivering water science for the next 5 to 10 years by building new capabilities, tools, and delivery systems to meet the Nations water-resource needs. This report begins by presenting the vision of water science for the USGS and the societal issues that are influenced by, and in turn influence, the water resources of our Nation. The essence of the Water Science Strategy is built on the concept of water availability, defined as spatial and temporal distribution of water quantity and quality, as related to human and ecosystem needs, as affected by human and natural influences. The report also describes the core capabilities of the USGS in water sciencethe strengths, partnerships, and science integrity that the USGS has built over its 134-year history. Nine priority actions are presented in the report, which combine and elevate the numerous specific strategic actions listed throughout the report. Priority actions were developed as a means of providing the audience of this report with a list for focused attention, even if resources and time limit the ability of managers to address all of the strategic actions in the report.

  9. Water levels in continuously monitored wells in the Yucca Mountain area, Nevada, 1985--88

    SciTech Connect

    Luckey, R.R.; Lobmeyer, D.H.; Burkhardt, D.J.

    1993-07-01

    Water levels have been monitored hourly in 15 wells completed in 23 depth intervals in the Yucca Mountain area, Nevada. Water levels were monitored using pressure transducers and were recorded by data loggers. The pressure transducers were periodically calibrated by raising and lowering them in the wells. The water levels were normally measured at approximately the same time that the transducers were calibrated. Where the transducer output appeared reasonable, it was converted to water levels using the calibrations and manual water- level measurements. The amount of transducer output that was converted to water levels ranged from zero for several intervals to about 98 percent for one interval. Fourteen of the wells were completed in Tertiary volcanic rocks and one well was completed in Paleozoic carbonate rocks. Each well monitored from one to four depth intervals. Water-level fluctuation caused by barometric pressure changes and earth tides were observed.

  10. Predicting visual fixations on video based on low-level visual features.

    PubMed

    Le Meur, Olivier; Le Callet, Patrick; Barba, Dominique

    2007-09-01

    To what extent can a computational model of the bottom-up visual attention predict what an observer is looking at? What is the contribution of the low-level visual features in the attention deployment? To answer these questions, a new spatio-temporal computational model is proposed. This model incorporates several visual features; therefore, a fusion algorithm is required to combine the different saliency maps (achromatic, chromatic and temporal). To quantitatively assess the model performances, eye movements were recorded while naive observers viewed natural dynamic scenes. Four completing metrics have been used. In addition, predictions from the proposed model are compared to the predictions from a state of the art model [Itti's model (Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254-1259)] and from three non-biologically plausible models (uniform, flicker and centered models). Regardless of the metric used, the proposed model shows significant improvement over the selected benchmarking models (except the centered model). Conclusions are drawn regarding both the influence of low-level visual features over time and the central bias in an eye tracking experiment. PMID:17688904

  11. Procalcitonin Levels Predict Acute Kidney Injury and Prognosis in Acute Pancreatitis: A Prospective Study

    PubMed Central

    Huang, Hua-Lan; Nie, Xin; Cai, Bei; Tang, Jiang-Tao; He, Yong; Miao, Qiang; Song, Hao-Lan; Luo, Tong-Xing; Gao, Bao-Xiu; Wang, Lan-Lan; Li, Gui-Xing

    2013-01-01

    Background Acute kidney injury (AKI) has been proposed as a leading cause of mortality for acute pancreatitis (AP) patients admitted to the intensive care unit (ICU). This study investigated the predictive value of procalcitonin (PCT) for AKI development and relevant prognosis in patients with AP, and compared PCTs predictive power with that of other inflammation-related variables. Methods Between January 2011 and March 2013, we enrolled 305 cases with acute pancreatitis admitted to ICU. Serum levels of PCT, serum amyloid A (SAA), interleukin-6 (IL-6), and C reactive protein (CRP) were determined on admission. Serum PCT was tested in patients who developed AKI on the day of AKI occurrence and on either day 28 after occurrence (for survivors) or on the day of death (for those who died within 28 days). Results Serum PCT levels were 100-fold higher in the AKI group than in the non-AKI group on the day of ICU admission (p<0.05). The area under the receiver-operating characteristic (ROC) curve of PCT for predicting AKI was 0.986, which was superior to SAA, CRP, and IL-6 (p<0.05). ROC analysis revealed all variables tested had lower predictive performance for AKI prognosis. The average serum PCT level on day 28 (2.67 (0.89, 7.99) ng/ml) was significantly (p<0.0001) lower than on the day of AKI occurrence (43.71 (19.24,65.69) ng/ml) in survivors, but the serum PCT level on death (63.73 (34.22,94.30) ng/ml) was higher than on the day of AKI occurrence (37.55 (18.70,74.12) ng/ml) in non-survivors, although there was no significant difference between the two days in the latter group (p?=?0.1365). Conclusion Serum PCT is superior to CRP, IL-6, and SAA for predicting the development of AKI in patients with AP, and also can be used for dynamic evaluation of AKI prognosis. PMID:24349237

  12. Operational Internet-based System For Prediction of The Pollution In Coastal Waters

    NASA Astrophysics Data System (ADS)

    Korotenko, K. A.

    An operational integrated system linking observing PORTS (Physical Oceanographic Real-Time System, NOAA) and Coastal Ocean Forecasting System (COFS, NOAA) based on a coupled atmospheric-ocean model is developed for real-time diagnostic and forecasting transport of pollution in coastal waters. Both, sensor and modeled at- mosphere and ocean data are accessible via Internet and utilized by a numerical trans- port model based on the random walk particle technique. PORTS data: water level, current (ADCP), conductivity, temperature, and atmospheric data files contain most recent observation. These files are overwritten every 6 min. COFS data: 3-D ocean circulation model produces 24-hour simulations of temperature, salinity, surface el- evation, and currents for region off the U.S. East Coast from ~30 to 47 N and out to 50W. The model is driven at ocean surface boundary by heat, moisture, and mo- mentum fluxes provided by NCEPSs Eta-32 mesoscale atmospheric forecast model. Transport Model: the model was developed for transport of oil spills and divided into three major modules: input, trajectory and fate prediction algorithms, and output; the latter, in turn, is subdivided into the oil data output and environmental data output. The oil spill prediction procedure is split into two parts: (1) assimilation and utilization of the environmental data; and (2) oil spill modeling to predict the three-dimensional motion and fate of individual particles (oil droplets), the sum of which constitutes an oil spill. Among the processes affecting the fate of oil, advection, turbulent diffusion, evaporation, and decay are included; the decay is modeled as the combined effect of all the biochemical and physical mechanisms that decompose oil. Initially, oil con- sists of eight hydrocarbon fractions. The distribution of the number of particles within each fraction is also initially assigned and distributed randomly. Within each fraction, each droplet has randomly assigned its own half-life; the latter is chosen according to known empirical exponential laws. Numerical simulations are compared with histori- cal records of accidents has happened in the considered region.

  13. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE

    PubMed Central

    Ayton, Scott; Faux, Noel G.; Bush, Ashley I.; Weiner, Michael W.; Aisen, Paul; Petersen, Ronald; Jack Jr., Clifford R.; Jagust, William; Trojanowki, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Shaw, Leslie M.; Khachaturian, Zaven; Sorensen, Greg; Kuller, Lew; Raichle, Marc; Paul, Steven; Davies, Peter; Fillit, Howard; Hefti, Franz; Holtzman, Davie; Marcel Mesulam, M.; Potter, William; Snyder, Peter; Schwartz, Adam; Montine, Tom; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Jiminez, Gus; Harvey, Danielle; Bernstein, Matthew; Fox, Nick; Thompson, Paul; Schuff, Norbert; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Landau, Susan; Cairns, Nigel J.; Householder, Erin; Taylor-Reinwald, Lisa; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Crawford, Karen; Neu, Scott; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Faber, Kelley; Kim, Sungeun; Nho, Kwangsik; Thal, Leon; Buckholtz, Neil; Albert, Marylyn; Frank, Richard; Hsiao, John; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Carter, Raina; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Fleisher, Adam; Heidebrink, Judith L.; Lord, Joanne L.; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Grossman, Hillel; Mitsis, Effie; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; D'Agostino II, Daniel; Kielb, Stephanie; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Murali Doraiswamy, P.; Petrella, Jeffrey R.; Wong, Terence Z.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Saleem Ismail, M.; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H.S.; Lu, Po H.; Bartzokis, George; Graff-Radford, Neill R; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; Hunt, Cynthia; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristine; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Scott Turner, Raymond; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan N.; Belden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Hudson, Leon; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T-Y; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Santulli, Robert B.; Kitzmiller, Tamar J.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Spicer, Kenneth; Bachman, David; Finger, Elizabether; Pasternak, Stephen; Rachinsky, Irina; Drost, Dick; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Elizabeth Smith, Karen; Relkin, Norman; Chaing, Gloria; Raudin, Lisa; Smith, Amanda; Fargher, Kristin; Ashok Raj, Balebail; Neylan, Thomas; Grafman, Jordan; Davis, Melissa; Morrison, Rosemary; Hayes, Jacqueline; Finley, Shannon; Friedl, Karl; Fleischman, Debra; Arfanakis, Konstantinos; James, Olga; Massoglia, Dino; Jay Fruehling, J.; Harding, Sandra; Peskind, Elaine R.; Petrie, Eric C.; Li, Gail; Yesavage, Jerome A.; Taylor, Joy L.; Furst, Ansgar J.

    2015-01-01

    Brain iron elevation is implicated in Alzheimer's disease (AD) pathogenesis, but the impact of iron on disease outcomes has not been previously explored in a longitudinal study. Ferritin is the major iron storage protein of the body; by using cerebrospinal fluid (CSF) levels of ferritin as an index, we explored whether brain iron status impacts longitudinal outcomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We show that baseline CSF ferritin levels were negatively associated with cognitive performance over 7 years in 91 cognitively normal, 144 mild cognitive impairment (MCI) and 67 AD subjects, and predicted MCI conversion to AD. Ferritin was strongly associated with CSF apolipoprotein E levels and was elevated by the Alzheimer's risk allele, APOE-ɛ4. These findings reveal that elevated brain iron adversely impacts on AD progression, and introduce brain iron elevation as a possible mechanism for APOE-ɛ4 being the major genetic risk factor for AD. PMID:25988319

  14. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE.

    PubMed

    Ayton, Scott; Faux, Noel G; Bush, Ashley I

    2015-01-01

    Brain iron elevation is implicated in Alzheimer's disease (AD) pathogenesis, but the impact of iron on disease outcomes has not been previously explored in a longitudinal study. Ferritin is the major iron storage protein of the body; by using cerebrospinal fluid (CSF) levels of ferritin as an index, we explored whether brain iron status impacts longitudinal outcomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We show that baseline CSF ferritin levels were negatively associated with cognitive performance over 7 years in 91 cognitively normal, 144 mild cognitive impairment (MCI) and 67 AD subjects, and predicted MCI conversion to AD. Ferritin was strongly associated with CSF apolipoprotein E levels and was elevated by the Alzheimer's risk allele, APOE-ɛ4. These findings reveal that elevated brain iron adversely impacts on AD progression, and introduce brain iron elevation as a possible mechanism for APOE-ɛ4 being the major genetic risk factor for AD. PMID:25988319

  15. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    PubMed

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. PMID:26140748

  16. Effect of censoring trace-level water-quality data on trend-detection capability

    USGS Publications Warehouse

    Gilliom, R.J.; Hirsch, R.M.; Gilroy, E.J.

    1984-01-01

    Monte Carlo experiments were used to evaluate whether trace-level water-quality data that are routinely censored (not reported) contain valuable information for trend detection. Measurements are commonly censored if they fall below a level associated with some minimum acceptable level of reliability (detection limit). Trace-level organic data were simulated with best- and worst-case estimates of measurement uncertainty, various concentrations and degrees of linear trend, and different censoring rules. The resulting classes of data were subjected to a nonparametric statistical test for trend. For all classes of data evaluated, trends were most effectively detected in uncensored data as compared to censored data even when the data censored were highly unreliable. Thus, censoring data at any concentration level may eliminate valuable information. Whether or not valuable information for trend analysis is, in fact, eliminated by censoring of actual rather than simulated data depends on whether the analytical process is in statistical control and bias is predictable for a particular type of chemical analyses.

  17. Prediction of vegetation anomalies to improve food security and water management in India

    NASA Astrophysics Data System (ADS)

    Asoka, Akarsh; Mishra, Vimal

    2015-07-01

    Prediction of vegetation anomalies at regional scales is essential for management of food and water resources. Forecast of vegetation anomalies at 1-3 months lead time can help in decision making. Here we show that normalized difference vegetation index (NDVI) along with other hydroclimatic variables (soil moisture and sea surface temperature) can be effectively used to predict vegetation anomalies in India. The spatiotemporal analysis of NDVI showed significant greening over the region during the period of 1982-2013. The root-zone soil moisture showed a positive correlation with NDVI, whereas the El Niño-Southern Oscillation index (Nino 3.4) is negatively correlated in most of the regions. We extended this relationship to develop a model to predict NDVI in 1 to 3 months lead time. The predicted vegetation anomalies compare well with observations, which can be effectively utilized in early warning and better planning in water resources and agricultural sectors in India.

  18. Predicting spatial kelp abundance in shallow coastal waters using the acoustic ground discrimination system RoxAnn

    NASA Astrophysics Data System (ADS)

    Mielck, F.; Bartsch, I.; Hass, H. C.; Wölfl, A.-C.; Bürk, D.; Betzler, C.

    2014-04-01

    Kelp forests represent a major habitat type in coastal waters worldwide and their structure and distribution is predicted to change due to global warming. Despite their ecological and economical importance, there is still a lack of reliable spatial information on their abundance and distribution. In recent years, various hydroacoustic mapping techniques for sublittoral environments evolved. However, in turbid coastal waters, such as off the island of Helgoland (Germany, North Sea), the kelp vegetation is present in shallow water depths normally excluded from hydroacoustic surveys. In this study, single beam survey data consisting of the two seafloor parameters roughness and hardness were obtained with RoxAnn from water depth between 2 and 18 m. Our primary aim was to reliably detect the kelp forest habitat with different densities and distinguish it from other vegetated zones. Five habitat classes were identified using underwater-video and were applied for classification of acoustic signatures. Subsequently, spatial prediction maps were produced via two classification approaches: Linear discriminant analysis (LDA) and manual classification routine (MC). LDA was able to distinguish dense kelp forest from other habitats (i.e. mixed seaweed vegetation, sand, and barren bedrock), but no variances in kelp density. In contrast, MC also provided information on medium dense kelp distribution which is characterized by intermediate roughness and hardness values evoked by reduced kelp abundances. The prediction maps reach accordance levels of 62% (LDA) and 68% (MC). The presence of vegetation (kelp and mixed seaweed vegetation) was determined with higher prediction abilities of 75% (LDA) and 76% (MC). Since the different habitat classes reveal acoustic signatures that strongly overlap, the manual classification method was more appropriate for separating different kelp forest densities and low-lying vegetation. It became evident that the occurrence of kelp in this area is not simply linked to water depth. Moreover, this study shows that the two seafloor parameters collected with RoxAnn are suitable indicators for the discrimination of different densely vegetated seafloor habitats in shallow environments.

  19. Model Predictive Control application for real time operation of controlled structures for the Water Authority Noorderzijlvest, The Netherlands

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Gooijer, Jan; Knot, Floris; Talsma, Jan

    2015-04-01

    In the Netherlands, flood protection has always been a key issue to protect settlements against storm surges and riverine floods. Whereas flood protection traditionally focused on structural measures, nowadays the availability of meteorological and hydrological forecasts enable the application of more advanced real-time control techniques for operating the existing hydraulic infrastructure in an anticipatory and more efficient way. Model Predictive Control (MPC) is a powerful technique to derive optimal control variables with the help of model based predictions evaluated against a control objective. In a project for the regional water authority Noorderzijlvest in the north of the Netherlands, it has been shown that MPC can increase the safety level of the system during flood events by an anticipatory pre-release of water. Furthermore, energy costs of pumps can be reduced by making tactical use of the water storage and shifting pump activities during normal operating conditions to off-peak hours. In this way cheap energy is used in combination of gravity flow through gates during low tide periods. MPC has now been implemented for daily operational use of the whole water system of the water authority Noorderzijlvest. The system developed to a real time decision support system which not only supports the daily operation but is able to directly implement the optimal control settings at the structures. We explain how we set-up and calibrated a prediction model (RTC-Tools) that is accurate and fast enough for optimization purposes, and how we integrated it in the operational flood early warning system (Delft-FEWS). Beside the prediction model, the weights and the factors of the objective function are an important element of MPC, since they shape the control objective. We developed special features in Delft-FEWS to allow the operators to adjust the objective function in order to meet changing requirements and to evaluate different control strategies.

  20. A comparison of simulation models for predicting soil water dynamics in bare and vegetated lysimeters

    SciTech Connect

    Link, S.O.; Kickert, R.N.; Fayer, M.J.; Gee, G.W.

    1993-06-01

    This report describes the results of simulation models used to predict soil water storage dynamics at the Field Lysimeter Test Facility (FLTF) weighing lysimeters. The objectives of this research is to develop the capability to predict soil water storage dynamics with plants in support of water infiltration control studies for the Hanford Permanent Isolation Barrier Development Program. It is important to gain confidence in one`s ability to simulate soil water dynamics over long time periods to assess the barrier`s ability to prevent drainage. Two models were compared for their ability to simulate soil water storage dynamics with and without plants in weighing lysimeters, the soil water infiltration and movement (SWIM) and the simulation of production and utilization of rangelands (SPUR-91) models. These models adequately simulated soil water storage dynamics for the weighing lysimeters. The range of root mean square error values for the two models was 7.0 to 19.8. This compares well with the range reported by Fayer et al. (1992) for the bare soil data sets of 8.1 to 22.1. Future research will test the predictive capability of these models for longer term lysimeter data sets and for historical data sets collected in various plant community types.

  1. Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level

    NASA Astrophysics Data System (ADS)

    Strakov, Petra; Anttila, Jani; Spetz, Peter; Kitunen, Veikko; Tapanila, Tarja; Laiho, Raija

    2010-05-01

    There is increasing evidence that changes in the species composition and structure of plant communities induced by global change will have much more impact on plant-mediated carbon cycling than any phenotypic responses. These impacts are largely mediated by shifts in litter quality. There are few documentations of these changes so far, due to the relatively long time scale required for their direct observation. Here, we examine the changes in litter inputs induced by persistent water-level drawdown in boreal peatland sites. Peatlands contain a major proportion of the terrestrial carbon pool, and it is thus important to be able to predict their behaviour and role in the global C cycle under different global change factors. We studied the effects of short-term (ca. 4 years) and long-term (ca. 40 years) persistent water level (WL) drawdown on the quantity and chemical quality of above-ground plant litter inputs at three sites: bog, oligotrophic fen and mesotrophic fen. The parameters used to characterize litter quality included various extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), lignin, CuO oxidation phenolic products, and concentrations of C, nitrogen (N), phosphorus (P), potassium, magnesium, manganese and calcium. Four different groups of litter were clearly distinct based on their chemical quality: foliar litters, graminoids, mosses and woody litters. The pristine conditions were characterized by Sphagnum moss and graminoid litter. Following short-term WL drawdown, changes in the quality and quantity of litter inputs were small. Following long-term WL drawdown, total litter inputs dramatically increased, due to increased tree litter inputs, and the litter type composition greatly changed. These changes resulted in annual inputs of 1901-2010 kgha-1 C, 22-24 kgha-1 N, 1.5-2.2 kgha-1 P, 967-1235 kgha-1 lignin and lignin-like compounds and 254-300 kgha-1 water solubles after long-term WL drawdown, compared to respective values of 394-658, 5.6-9.3, 0.22-24.4, 161-293 and 44-81 for the pristine conditions. The direct effects of WL drawdown on litter quality were overruled by the indirect effects via changes in vegetation composition. The short-term (reflecting transient conditions) and long-term (reflecting longer-lasting situation of already adapted ecosystem) effects were very different. Our results imply that the long-term effects will strongly affect the soil properties and C cycle of peatlands.

  2. Study on short term prediction using observed water quality from 8-day intervals in Nakdong river

    NASA Astrophysics Data System (ADS)

    Kim, M.; Shon, T.; Joo, J.; Kim, J.; Shin, H.

    2012-12-01

    There are lots of accidents on water quality, like green algal blooms, occurring in Nakdong river which is one of the largest river in Korea. This is because of climate change around the world. It is essential to develop scientific and quantitative assessment methods. In this study, artificial neural network based on back propagation algorithm, which is simple and flexible method, was used for forecasting the water quality on the purpose of water resources management. Especially, as used observed water quality data from 8-day intervals in Nakdong river, it makes to increase the accuracy of water quality forecast over short term. This was established for predicting the water quality factors 1, 3, and 7 days ahead. The best model, as evaluated by its performance functions with RMSE and R2, was selected and applied to established models of BOD, DO, COD, and Chl-a using artificial neural network. The results showed that the models were suitable for 1 and 3 days forecasts in particular. This method is strong and convenient to predict water quality factors over the short term easily based on observed data. It is possible to overcome and manage problems related to the water resources. In the future, this will be a powerful method because it is basically based on observed water quality data.

  3. Temporal and Spatial prediction of groundwater levels using Artificial Neural Networks, Fuzzy logic and Kriging interpolation.

    NASA Astrophysics Data System (ADS)

    Tapoglou, Evdokia; Karatzas, George P.; Trichakis, Ioannis C.; Varouchakis, Emmanouil A.

    2014-05-01

    The purpose of this study is to examine the use of Artificial Neural Networks (ANN) combined with kriging interpolation method, in order to simulate the hydraulic head both spatially and temporally. Initially, ANNs are used for the temporal simulation of the hydraulic head change. The results of the most appropriate ANNs, determined through a fuzzy logic system, are used as an input for the kriging algorithm where the spatial simulation is conducted. The proposed algorithm is tested in an area located across Isar River in Bayern, Germany and covers an area of approximately 7800 km2. The available data extend to a time period from 1/11/2008 to 31/10/2012 (1460 days) and include the hydraulic head at 64 wells, temperature and rainfall at 7 weather stations and surface water elevation at 5 monitoring stations. One feedforward ANN was trained for each of the 64 wells, where hydraulic head data are available, using a backpropagation algorithm. The most appropriate input parameters for each wells' ANN are determined considering their proximity to the measuring station, as well as their statistical characteristics. For the rainfall, the data for two consecutive time lags for best correlated weather station, as well as a third and fourth input from the second best correlated weather station, are used as an input. The surface water monitoring stations with the three best correlations for each well are also used in every case. Finally, the temperature for the best correlated weather station is used. Two different architectures are considered and the one with the best results is used henceforward. The output of the ANNs corresponds to the hydraulic head change per time step. These predictions are used in the kriging interpolation algorithm. However, not all 64 simulated values should be used. The appropriate neighborhood for each prediction point is constructed based not only on the distance between known and prediction points, but also on the training and testing error of the ANN. Therefore, the neighborhood of each prediction point is the best available. Then, the appropriate variogram is determined, by fitting the experimental variogram to a theoretical variogram model. Three models are examined, the linear, the exponential and the power-law. Finally, the hydraulic head change is predicted for every grid cell and for every time step used. All the algorithms used were developed in Visual Basic .NET, while the visualization of the results was performed in MATLAB using the .NET COM Interoperability. The results are evaluated using leave one out cross-validation and various performance indicators. The best results were achieved by using ANNs with two hidden layers, consisting of 20 and 15 nodes respectively and by using power-law variogram with the fuzzy logic system.

  4. Improving Drought Predictability for Application to Water Resources Management in Texas

    NASA Astrophysics Data System (ADS)

    Fernando, D. N.; Fu, R.; Scanlon, B. R.; Solis, R. S.; Mace, R.; Yin, L.; Bowerman, A. R.; Mioduszewski, J.

    2012-12-01

    The 2011 exceptional drought over Texas was unusual because of its rapid intensification over the late-spring/early-summer 2011. Combined reservoir storage across the state dropped by 40%, and more regionally, in less than one year. Such a rapid reduction in reservoir storage, in a system designed to cope with multi-year droughts, caught water managers by surprise. Improved predictability of drought intensification in the spring could help decision makers, tasked with water resources management, adopt suitable measures to both reduce evaporative loss from reservoirs and prepare contingency plans to cope with an impending reduction in water supply over the summer. We investigate factors that led to the spring intensification of the drought with the aim of improving drought predictability for Texas. La Niña conditions played an important role in the initiation of the drought in fall 2010. However, drought intensification and persistence through the spring and summer are not directly attributable to La Niña. Intensification of the drought in late-spring/early-summer is attributed to anomalously strong westerly winds at 850 hPa in April 2011, which caused a dramatic increase in convective inhibition that curtailed rainfall right at the start of the rainy season in Texas. Rainfall in spring 2011 was at 65% of normal. The high terrain to the west of Texas had abnormally high surface temperatures in March and April, with anomalies reaching 5K. Thermal advection due to increased westerly flow over a warmer-than normal terrain in the spring established a 500 hPa height anomaly (i.e. the mid-tropospheric high pressure system) in late-April 2011. The high pressure system at 500 hPa is a characteristic feature of heat waves and drought over Texas. It fuels the positive feedback between soil moisture and rainfall and contributes to the persistence of drought through the summer months. Back trajectory analysis confirms the prevalence of westerly flow in April and May in 2011 and in other extreme drought years (PDSI < -3), such as 1955/56, 1963 and 2006. Back trajectories also indicate that the persistence of the 500 hPa height anomaly through the summer is partially explained by subsidence-induced warming. The anomalous strengthening of the zonal winds at 850 hPa is a characteristic feature in the 12 severe-to-extreme droughts experienced over Texas since 1895 that had persistent negative rainfall anomalies from winter through summer. Results suggest that February SST anomalies in the central Pacific, specified by the NINO4 index, is an important driver of the low level westerly wind anomalies in April over Texas.

  5. Simplified combustion noise theory yielding a prediction of fluctuating pressure level

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The first order equations for the conservation of mass and momentum in differential form are combined for an ideal gas to yield a single second order partial differential equation in one dimension and time. Small perturbation analysis is applied. A Fourier transformation is performed that results in a second order, constant coefficient, nonhomogeneous equation. The driving function is taken to be the source of combustion noise. A simplified model describing the energy addition via the combustion process gives the required source information for substitution in the driving function. This enables the particular integral solution of the nonhomogeneous equation to be found. This solution multiplied by the acoustic pressure efficiency predicts the acoustic pressure spectrum measured in turbine engine combustors. The prediction was compared with the overall sound pressure levels measured in a CF6-50 turbofan engine combustor and found to be in excellent agreement.

  6. A method for predicting the noise levels of coannular jets with inverted velocity profiles

    NASA Technical Reports Server (NTRS)

    Russell, J. W.

    1979-01-01

    A coannular jet was equated with a single stream equivalent jet with the same mass flow, energy, and thrust. The acoustic characteristics of the coannular jet were then related to the acoustic characteristics of the single jet. Forward flight effects were included by incorporating a forward exponent, a Doppler amplification factor, and a Strouhal frequency shift. Model test data, including 48 static cases and 22 wind tunnel cases, were used to evaluate the prediction method. For the static cases and the low forward velocity wind tunnel cases, the spectral mean square pressure correlation coefficients were generally greater than 90 percent, and the spectral sound pressure level standard deviation were generally less than 3 decibels. The correlation coefficient and the standard deviation were not affected by changes in equivalent jet velocity. Limitations of the prediction method are also presented.

  7. Computational methodology to predict satellite system-level effects from impacts of untrackable space debris

    NASA Astrophysics Data System (ADS)

    Welty, N.; Rudolph, M.; Schfer, F.; Apeldoorn, J.; Janovsky, R.

    2013-07-01

    This paper presents a computational methodology to predict the satellite system-level effects resulting from impacts of untrackable space debris particles. This approach seeks to improve on traditional risk assessment practices by looking beyond the structural penetration of the satellite and predicting the physical damage to internal components and the associated functional impairment caused by untrackable debris impacts. The proposed method combines a debris flux model with the Schfer-Ryan-Lambert ballistic limit equation (BLE), which accounts for the inherent shielding of components positioned behind the spacecraft structure wall. Individual debris particle impact trajectories and component shadowing effects are considered and the failure probabilities of individual satellite components as a function of mission time are calculated. These results are correlated to expected functional impairment using a Boolean logic model of the system functional architecture considering the functional dependencies and redundancies within the system.

  8. Investigating Storm-Induced Total Water Levels on Complex Barred Beaches

    NASA Astrophysics Data System (ADS)

    Cohn, N.; Ruggiero, P.; Walstra, D.

    2013-12-01

    Water levels in coastal environments are not static, but rather vary from a range of factors including mean sea level, tides, storm surge, and wave runup. Cumulatively these superimposed factors determine the total water level (TWL), the extent of which has major implications for coastal erosion and inundation during periods of high energy. Storm-induced, super-elevated water levels pose a threat to low lying coastal regions, as clearly demonstrated by recent events such as Hurricanes Sandy and Katrina. For this reason, the ability to accurately predict the TWL is crucial for both emergency managers and coastal planners. While some components of TWL are well understood (e.g., tides) there is still significant uncertainty in predicting runup, a process that can be a major contributor to instantaneous TWLs. Traditionally, empirical relationships derived from observational field data have been used to estimate runup, including wave setup and both incident and infragravity swash (Stockdon et al., 2006). While these formulations have shown skill in predicting the runup extent on natural beaches, these equations consider only the most basic contributing factors - namely the mean foreshore beach slope, the offshore wave height, and offshore wave period. Not included in these empirical estimates is the role of nearshore morphology on TWLs. However, it has long been recognized that nearshore sandbars act as natural barriers to coastal erosion during storm events by dissipating wave energy far from the beach face. Nonetheless, the influence of nearshore morphology on inner surf zone processes, including wave runup, is poorly understood. Recent pioneering studies (eg., Soldini et al., 2013 and Stephens et al., 2011) have explored the role of simple nearshore features (single Gaussian bars) on swash processes. Many locations in the world, however, are characterized by more complex morphologies such as multiple barred systems. Further, in many such places, including Columbia River Littoral Cell (USA), Duck, NC (USA), Hasaki (Japan), and the Netherlands, a net offshore bar migration (NOM) cycle has been observed whereby bars migrate seaward across the surf zone and decay offshore on interannual cycles. Depending on the stage of the cycle, the number and configuration of the bars may differ widely. For example in the Columbia River Littoral Cell there are typically 2 to 4 nearshore bars. In 1999, the outermost bar crest was located in a water depth of 6.5 m (relative to MLLW) while in 2009 it was located only in 3 m of water. Such large differences in nearshore morphology clearly influence wave breaking patterns and have the potential for influencing the corresponding wave runup as well. Here we apply a numerical, short-wave averaged yet long-wave resolving, non-linear hydrodynamic model (XBeach) to investigate the role that real world (non-synthetic), complex morphologies exert on TWLs. Model simulations under moderate to extreme wave forcing conditions are being used to develop relationships between offshore wave conditions, bar configuration, and runup extent. Additionally, we are exploring how, under the same wave conditions, a particular location may be more vulnerable to flooding simply based on the stage of the NOM cycle. Comparisons with the Stockdon et al. (2006) runup equation will be made to assess traditional empirical approaches relative to model predictions.

  9. Analysis on the characteristics of parameters in groundwater table fluctuation model for predicting groundwater levels in Hancheon watershed, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Nam Won; Kim, Youn Jung; Chung, Il-Moon; Lee, Jeongwoo

    2014-05-01

    A novel application of groundwater table fluctuation method is suggested to predict groundwater level by means of groundwater table variation due to recharge and discharge under unsteady condition. This model analyzes transient groundwater characteristics by using reaction factor related with groundwater flow and specific yield related with recharge. The groundwater level varies according to the characteristics and composite materials of aquifer. In this study, specific yield and reaction factor which are the major two hydrogeological parameters in the WTF(Water Table Fluctuation) method were estimated and analyzed their spatial characteristics. 8 groundwater level stations which have enough measuring period and high correlation with rainfall in the Hancheon watershed were used. The results showed that specific yield was randomly distributed and reaction factor showed inverse trend with altitude. If the enough data were collected, reaction factor according to altitude in ungauged points could be estimated by using these parameter characteristics. keywords: Key words : Groundwater level, parameters, reaction factor, specific yield Acknowledgements This research was supported by the Regional Innovative Technology Project 2B from KICTTEP.

  10. Short-term water level forecasts for the Laurentian Great Lakes using coupled atmosphere, land-surface and lake models

    NASA Astrophysics Data System (ADS)

    Fortin, Vincent; Mackay, Murray; Casas-Prat, Merc; Seglenieks, Frank; Dyck, Sarah; Dupont, Frdric; Roy, Franois; Smith, Gregory C.

    2015-04-01

    Over the Gulf of St. Lawrence, Environment Canada operates a very successful short-term (48-h) environmental prediction system which includes the GEM atmospheric model, the ISBA land-surface model and the NEMO-CICE ice-ocean model. The positive impact of two-way coupling between the atmosphere and ocean is most clearly seen in winter, due to the presence of a dynamic ice cover and large heat fluxes over the ocean. This system is now being tested over the Laurentian Great Lakes, with the same objective of improving forecasts both for the atmosphere and the water bodies. In order to account for the significant impact of streamflow on the water level and water temperature of the Great Lakes, routing models for river flow and for connecting channels between lakes were added to the system. Offline tests demonstrated the capacity of the system to accurately simulate seasonal and multi-annual fluctuations in water levels and ice cover, as well as the need for consistent heat flux calculations in the atmospheric and ocean models. In this presentation, we focus on the skill of short-term water level forecasts. Over a few days, water levels of the Great Lakes mainly respond to the wind stress, but also change with surface pressure, precipitation, evaporation and river flow. The approach taken to account for each of these factors is described, and the skill of the resulting water level forecast is assessed over the fall of 2014 and the winter of 2015. It is shown that the system can accurately predict storm surges and seiches at the hourly time scale, with a skill that decreases slowly over 48-h, suggesting that skillful forecasts with longer lead times are feasible. A plan for increasing the lead time up to one month is presented.

  11. Changes in water level, land use, and hydrological budget in a semi-permanent playa lake, southwest Spain.

    PubMed

    Rodrguez-Rodrguez, M; Green, A J; Lpez, R; Martos-Rosillo, S

    2012-01-01

    Medina playa lake, a Ramsar site in western Andalusia, is a brackish lowland lake of 120 ha with an average depth of 1 m. Water flows into Medina from its 1,748-ha watershed, but the hydrology of the lake has not previously been studied. This paper describes the application of a water budget model on a monthly scale over a 6-year period, based on a conceptual hydrological model, and considers different future scenarios after calibration to improve the understanding of the lake's hydrological functioning. Climatic variables from a nearby weather station and observational data (water-level evolution) were used to develop the model. Comparison of measured and predicted values demonstrated that each model component provided a reasonable output with a realistic interaction among the components. The model was then used to explore the potential consequences of land-use changes. Irrigation of olive groves would significantly reduce both the hydroperiod (becoming dry 15% of the time) and the average depth of the lake (water level <0.5 m 40% of the time). On the other hand, removal of an artificial overflow would double the average flooded surface area during high-water periods. The simulated water balance demonstrates that the catchment outputs are dominated by lake evaporation and surface outflow from the lake system to a creek. Discrepancies between predicted and observed water levels identify key areas of uncertainty for future empirical research. The study provides an improved basis for future hydrological management of the catchment and demonstrates the wider utility of this methodology in simulating this kind of system. This methodology provides a realistic appraisal of potential land-use management practices on a catchment-wide scale and allows predictions of the consequences of climate change. PMID:21461983

  12. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.

    PubMed

    Kayala, Matthew A; Baldi, Pierre

    2012-10-22

    Proposing reasonable mechanisms and predicting the course of chemical reactions is important to the practice of organic chemistry. Approaches to reaction prediction have historically used obfuscating representations and manually encoded patterns or rules. Here we present ReactionPredictor, a machine learning approach to reaction prediction that models elementary, mechanistic reactions as interactions between approximate molecular orbitals (MOs). A training data set of productive reactions known to occur at reasonable rates and yields and verified by inclusion in the literature or textbooks is derived from an existing rule-based system and expanded upon with manual curation from graduate level textbooks. Using this training data set of complex polar, hypervalent, radical, and pericyclic reactions, a two-stage machine learning prediction framework is trained and validated. In the first stage, filtering models trained at the level of individual MOs are used to reduce the space of possible reactions to consider. In the second stage, ranking models over the filtered space of possible reactions are used to order the reactions such that the productive reactions are the top ranked. The resulting model, ReactionPredictor, perfectly ranks polar reactions 78.1% of the time and recovers all productive reactions 95.7% of the time when allowing for small numbers of errors. Pericyclic and radical reactions are perfectly ranked 85.8% and 77.0% of the time, respectively, rising to >93% recovery for both reaction types with a small number of allowed errors. Decisions about which of the polar, pericyclic, or radical reaction type ranking models to use can be made with >99% accuracy. Finally, for multistep reaction pathways, we implement the first mechanistic pathway predictor using constrained tree-search to discover a set of reasonable mechanistic steps from given reactants to given products. Webserver implementations of both the single step and pathway versions of ReactionPredictor are available via the chemoinformatics portal http://cdb.ics.uci.edu/. PMID:22978639

  13. Options for water-level control in developed wetlands

    USGS Publications Warehouse

    Kelley, J. R., Jr.; Laubhan, M. K.; Reid, F. A.; Wortham, J. S.; Fredrickson, L. H.

    1993-01-01

    Wetland habitats in the United States currently are lost at a rate of 260,000 acres/year (105,218 ha/year). Consequently, water birds concentrate in fewer and smaller areas. Such concentrations may deplete food supplies and influence behavior, physiology, and survival. Continued losses increase the importance of sound management of the remaining wetlands because water birds depend on them. Human activities modified the natural hydrology of most remaining wetlands in the conterminous United States, and such hydrologic alterations frequently reduce wetland productivity. The restoration of original wetland functions and productivity often requires the development of water distribution and discharge systems to emulate natural hydrologic regimes. Construction of levees and correct placement of control structures and water-delivery and water-discharge systems are necessary to (1) create soil and water conditions for the germination of desirable plants, (2) control nuisance vegetation, (3) promote the production of invertebrates, and (4)