Science.gov

Sample records for water oxidation cycle

  1. A hybrid water-splitting cycle using copper sulfate and mixed copper oxides

    NASA Technical Reports Server (NTRS)

    Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.

    1980-01-01

    The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.

  2. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  3. Interactions between nitrogen cycling and methane oxidation in the pelagic waters of the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Joye, S. B.; Weber, S.; Battles, J.; Montoya, J. P.

    2014-12-01

    Methane is an important greenhouse gas that plays a critical role in climate variation. Although a variety of marine methane sources and sinks have been identified, key aspects of the fate of methane in the ocean remain poorly constrained. At cold seeps in the Gulf of Mexico and elsewhere, methane is introduced into the overlying water column via fluid escape from the seabed. We quantified the fate of methane in the water column overlying seafloor cold seeps, in a brine basin, and at several control sites. Our goals were to determine the factors that regulated methane consumption and assimilation and to explore how these controlling factors varied among and between sites. In particular, we examined the impact of nitrogen availability on methane oxidation and studied the ability of methane oxidizing bacteria to fix molecular nitrogen. Methane oxidation rates were highest in the methane rich bottom waters of natural hydrocabron seeps. At these sites, inorganic nitrogen addition stimulated methane oxidation in laboratory experiments. In vitro shipboard experiments revealed that rates of methane oxidation and nitrogen fixation were correlated strongly, suggesting that nitrogen fixation may have been mediated by methanotrophic bacteria. The highest rates of methane oxidation and nitrogen fixation were observed in the deepwater above at natural hydrocarbon seeps. Rates of methane oxidation were substantial along the chemocline of a brine basin but in these ammonium-rich brines, addition of inorganic nitrogen had little impact on methane oxidation suggesting that methanotrophy in these waters were not nitrogen limited. Control sites exhibited the lowest methane concentrations and methane oxidation rates but even these waters exhibited substantial potential for methane oxidation when methane and inorganic nitrogen concentrations were increased. Together, these data suggest that the availability of inorganic nitrogen plays a critical role in regulating methane oxidation in

  4. Redox cycle stability of mixed oxides used for hydrogen generation in the cyclic water gas shift process

    SciTech Connect

    Datta, Pradyot

    2013-10-15

    Graphical abstract: - Highlights: • Fe{sub 2}O{sub 3} modified with CaO, SiO{sub 2} and Al{sub 2}O{sub 3} was studied in cyclic water gas shift reactor. • For the first time stability of such oxides were tested for 100 redox cycles. • Optimally added oxides significantly improved the activity and the stability of Fe{sub 2}O{sub 3}. • Increased stability was attributed to the impediment of neck formation. - Abstract: Repeated cycles of the reduction of Fe{sub 3}O{sub 4} with reductive gas, e.g. hydrogen and subsequent oxidation of the reduced iron material with water vapor can be harnessed as a process for the production of pure hydrogen. The redox behavior of iron oxide modified with various amounts of SiO{sub 2}, CaO and Al{sub 2}O{sub 3} was investigated in the present study. The total amount of the additional metal oxides was always below 15 wt%. The samples were prepared by co-precipitation using urea hydrolysis method. The influence of various metal oxides on the hydrogen production capacity and the material stability was studied in detail in terms of temperature-programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET analysis. Furthermore, the activity and the stability of the samples were tested in repeated reduction with diluted H{sub 2} and re-oxidation cycles with H{sub 2}O. The results indicate that combination of several oxides as promoter increases the stability of the iron oxide material by mitigating the sintering process. The positive influence of the oxides in stabilizing the iron oxide material is attributed to the impediment of neck formation responsible for sintering.

  5. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  6. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Christy, John R.; Goodman, Steven J.; Miller, Tim L.; Fitzjarrald, Dan; Lapenta, Bill; Wang, Shouping

    1991-01-01

    The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction.

  7. GEOSS Water Cycle Integrator

    NASA Astrophysics Data System (ADS)

    Koike, T.; Lawford, R. G.; Cripe, D.

    2012-12-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the Global Earth Observation System of Systems (GEOSS) is now developing a "GEOSS Water Cycle Integrator (WCI)", which integrates "Earth observations", "modeling", "data and information", "management systems" and "education systems". GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS/WCI is now leading to effective actions and public awareness in support of water security and

  8. GEOSS Water Cycle Integrator

    NASA Astrophysics Data System (ADS)

    Koike, Toshio; Lawford, Richard; Cripe, Douglas

    2013-04-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the intergovernmental Group on Earth Observations (GEO) is implementing the Global Earth Observation System of Systems (GEOSS). A component of GEOSS now under development is the "GEOSS Water Cycle Integrator (WCI)", which integrates Earth observations, modeling, data and information, management systems and education systems. GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS

  9. Studies of thermochemical water-splitting cycles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Foh, S. E.

    1980-01-01

    Higher temperatures and more isothermal heat profiles of solar heat sources are developed. The metal oxide metal sulfate class of cycles were suited for solar heat sources. Electrochemical oxidation of SO2 and thermochemical reactions are presented. Electrolytic oxidation of sulfur dioxide in dilute sulfuric acid solutions were appropriate for metal oxide metal sulfate cycles. The cell voltage at workable current densities required for the oxidation of SO2 was critical to the efficient operation of any metal oxide metal sulfate cycle. A sulfur dioxide depolarized electrolysis cell for the splitting of water via optimization of the anode reaction is discussed. Sulfuric acid concentrations of 30 to 35 weight percent are preferred. Platinized platinum or smooth platinum gave the best anode kinetics at a given potential of the five materials examined.

  10. Behavior of oxide scales on 2. 25Cr-1Mo steel during thermal cycling. II. Scales grown in water vapor

    SciTech Connect

    Christl, W.; Rahmel, A.; Schuetze, M.

    1989-02-01

    The acoustic emission (AE) technique has been applied to identify scale cracking during thermal cycling of tubes of 2.25Cr-1Mo steel. The scale morphology and failure mode were investigated by light and electron optical method. The scale formed at 600/degree/C in water vapor consists of an outer magnetite and an inner, chromium-containing spinel layer. Cooling leads to tensile stresses in the scale that cause macro- and microcrack formation in the scale. At constant-cycle parameters, a characteristic set of crack length and crack density is established. Changes in the cycle parameters also change the crack length and crack density. The experimental results can be described by a model developed by Hasselmann assuming a large number of noninteracting microcracks in a ceramic plate.

  11. The water cycle for kids

    USGS Publications Warehouse

    Neno, Stephanie; Morgan, Jim; Zonolli, Gabriele; Perlman, Howard; Gonthier, Gerard

    2013-01-01

    The U.S. Geological Survey (USGS) and the Food and Agriculture Organization of the United Nations (FAO) have created a water-cycle diagram for use in elementary and middle schools. The diagram is available in many languages. This diagram is part of the USGS's Water Science School, in which the water cycle is described in detail.

  12. Subcritical and supercritical water oxidation of organic, wet wastes for carbon cycling in regenerative life support systems

    NASA Astrophysics Data System (ADS)

    Ronsse, Frederik; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Luther, Amanda; Rabaey, Korneel; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter; Brilman, Wim

    2016-07-01

    For long-term human spaceflight missions, one of the major requirements is the regenerative life support system which has to be capable of recycling carbon, nutrients and water from both solid and liquid wastes generated by the crew and by the local production of food through living organisms (higher plants, fungi, algae, bacteria, …). The European Space Agency's Life Support System, envisioned by the MELiSSA project, consists of a 5 compartment artificial ecosystem, in which the waste receiving compartment (so-called compartment I or briefly 'CI') is based on thermophilic fermentation. However, as the waste generated by the crew compartment and food production compartment contain typical plant fibres (lignin, cellulose and hemicellulose), these recalcitrant fibres end up largely unaffected in the digestate (sludge) generated in the C-I compartment. Therefore, the C-I compartment has to be supplemented with a so-called fibre degradation unit (in short, FDU) for further oxidation or degradation of said plant fibres. A potential solution to degrading these plant fibres and other recalcitrant organics is their oxidation, by means of subcritical or supercritical water, into reusable CO2 while retaining the nutrients in an organic-free liquid effluent. By taking advantage of the altered physicochemical properties of water above or near its critical point (647 K, 22.1 MPa) - including increased solubility of non-polar compounds and oxygen, ion product and diffusivity - process conditions can be created for rapid oxidation of C into CO2. In this research, the oxidizer is provided as a hydrogen peroxide solution which, at elevated temperature, will dissociated into O2. The purpose of this study is to identify ideal process conditions which (a) ensure complete oxidation of carbon, (b) retaining the nutrients other than C in the liquid effluent and (c) require as little oxidizer as possible. Experiments were conducted on a continuous, tubular heated reactor and on batch

  13. Nitrogen cycling. Rapid nitrous oxide cycling in the suboxic ocean.

    PubMed

    Babbin, Andrew R; Bianchi, Daniele; Jayakumar, Amal; Ward, Bess B

    2015-06-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a major cause of stratospheric ozone depletion, yet its sources and sinks remain poorly quantified in the oceans. We used isotope tracers to directly measure N2O reduction rates in the eastern tropical North Pacific. Because of incomplete denitrification, N2O cycling rates are an order of magnitude higher than predicted by current models in suboxic regions, and the spatial distribution suggests strong dependence on both organic carbon and dissolved oxygen concentrations. Furthermore, N2O turnover is 20 times higher than the net atmospheric efflux. The rapid rate of this cycling coupled to an expected expansion of suboxic ocean waters implies future increases in N2O emissions. PMID:26045434

  14. The Mars water cycle

    NASA Technical Reports Server (NTRS)

    Davies, D. W.

    1981-01-01

    A model has been developed to test the hypothesis that the observed seasonal and latitudinal distribution of water on Mars is controlled by the sublimation and condensation of surface ice deposits in the Arctic and Antarctic, and the meridional transport of water vapor. Besides reproducing the observed water vapor distribution, the model correctly reproduces the presence of a large permanent ice cap in the Arctic and not in the Antarctic. No permanent ice reservoirs are predicted in the temperate or equatorial zones. Wintertime ice deposits in the Arctic are shown to be the source of the large water vapor abundances observed in the Arctic summertime, and the moderate water vapor abundances in the northern temperate region. Model calculations suggest that a year without dust storms results in very little change in the water vapor distribution. The current water distribution appears to be the equilibrium distribution for present atmospheric conditions.

  15. The NEWS Water Cycle Climatology

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  16. Biological water oxidation.

    PubMed

    Cox, Nicholas; Pantazis, Dimitrios A; Neese, Frank; Lubitz, Wolfgang

    2013-07-16

    Photosystem II (PSII), a multisubunit pigment-protein supercomplex found in cyanobacteria, algae, and plants, catalyzes a unique reaction in nature: the light-driven oxidation of water. Remarkable recent advances in the structural analysis of PSII now give a detailed picture of the static supercomplex on the molecular level. These data provide a solid foundation for future functional studies, in particular the mechanism of water oxidation and oxygen release. The catalytic core of the PSII is a tetramanganese-calcium cluster (Mn₄O₅Ca), commonly referred to as the oxygen-evolving complex (OEC). The function of the OEC rests on its ability to cycle through five metastable states (Si, i = 0-4), transiently storing four oxidizing equivalents, and in so doing, facilitates the four electron water splitting reaction. While the latest crystallographic model of PSII gives an atomic picture of the OEC, the exact connectivity within the inorganic core and the S-state(s) that the X-ray model represents remain uncertain. In this Account, we describe our joint experimental and theoretical efforts to eliminate these ambiguities by combining the X-ray data with spectroscopic constraints and introducing computational modeling. We are developing quantum chemical methods to predict electron paramagnetic resonance (EPR) parameters for transition metal clusters, especially focusing on spin-projection approaches combined with density functional theory (DFT) calculations. We aim to resolve the geometric and electronic structures of all S-states, correlating their structural features with spectroscopic observations to elucidate reactivity. The sequence of manganese oxidations and concomitant charge compensation events via proton transfer allow us to rationalize the multielectron S-state cycle. EPR spectroscopy combined with theoretical calculations provides a unique window into the tetramangenese complex, in particular its protonation states and metal ligand sphere evolution, far

  17. Water oxidation: Intermediate identification

    NASA Astrophysics Data System (ADS)

    Cowan, Alexander J.

    2016-08-01

    The slow kinetics of light-driven water oxidation on haematite is an important factor limiting the material's efficiency. Now, an intermediate of the water-splitting reaction has been identified offering hope that the full mechanism will soon be resolved.

  18. Nonaqueous Catalytic Water Oxidation

    SciTech Connect

    Chen, Zuofeng; Concepcion, Javier J.; Luo, Hanlin; Hull, Jonathan F.; Paul, Amit; Meyer, Thomas J.

    2010-11-23

    The complex [Ru(Mebimpy)(bpy)(OH2)]2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] and its 4,4'-(PO3H2CH2)2bpy derivative on oxide electrodes are water oxidation catalysts in propylene carbonate and 2,2,2-trifluoroethanol (TFE) to which water has been added as a limiting reagent. The rate of water oxidation is greatly enhanced relative to that with water as the solvent and occurs by a pathway that is first-order in H2O; an additional pathway that is first-order in acetate appears when TFE is used as the solvent.

  19. Water Cycling &the GPM Mission

    NASA Astrophysics Data System (ADS)

    Smith, E. A.

    2003-04-01

    The GPM mission is currently planned for start in the late'07 - early'08 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve 3-hour sampling at any spot on the globe - continuously. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the "core" satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrates to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, involving existing, pending, projected, and under-study partnerships which will link NASA and NOAA in the US, NASDA in Japan, ESA in Europe, ISRO in India, CNES in France, and possibly ASI in Italy, KARI in South Korea, CSA in Canada, and AEB in Brazil. Additionally, the program is actively pursuing agreements with other international collaborators and domestic scientific agencies

  20. Molecular water oxidation catalyst

    DOEpatents

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  1. Solid oxide fuel cell combined cycles

    SciTech Connect

    Bevc, F.P.; Lundberg, W.L.; Bachovchin, D.M.

    1996-12-31

    The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

  2. The Water Cycle in Volusia County

    USGS Publications Warehouse

    German, Edward R.

    2009-01-01

    Earth's water is always in motion. The water cycle, also known as the hydrologic cycle, describes the continuous movement of water on, above, and below the Earth's surface. This fact sheet provides information about how much water moves into and out of Volusia County, and where it is stored. It also illustrates the seasonal variation in water quantity and movement using data from some of the hydrologic data collection sites in or near Volusia County, Florida.

  3. Creative Writing and the Water Cycle.

    ERIC Educational Resources Information Center

    Young, Rich; Virmani, Jyotika; Kusek, Kristen M.

    2001-01-01

    Uses the story "The Life of a Drop of Water" to initiate a creative writing activity and teach about the water cycle. Attempts to stimulate students' understanding of a scientific concept by using their imaginations. (YDS)

  4. Water Cycle Missions for the Next Decade

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2013-12-01

    The global water cycle describes the circulation of water as a vital and dynamic substance in its liquid, solid, and vapor phases as it moves through the atmosphere, oceans and land. Life in its many forms exists because of water, and modern civilization depends on learning how to live within the constraints imposed by the availability of water. The scientific challenge posed by the need to observe the global water cycle is to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The vision to address that challenge is a series of Earth observation missions that will measure the states, stocks, flows, and residence times of water on regional to global scales followed by a series of coordinated missions that will address the processes, on a global scale, that underlie variability and changes in water in all its three phases. The accompanying societal challenge is to foster the improved use of water data and information as a basis for enlightened management of water resources, to protect life and property from effects of extremes in the water cycle. A major change in thinking about water science that goes beyond its physics to include its role in ecosystems and society is also required. Better water-cycle observations, especially on the continental and global scales, will be essential. Water-cycle predictions need to be readily available globally to reduce loss of life and property caused by water-related natural hazards. Building on the 2007 Earth Science Decadal Survey, NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space , and the 2012 Chapman Conference on Remote Sensing of the Terrestrial Water Cycle, a workshop was held in April 2013 to gather wisdom and determine how to prepare for the next generation of water cycle missions in support of the second Earth Science Decadal Survey. This talk will present the outcomes of the workshop including the intersection between

  5. THE C2 OXIDATIVE PHOTOSYNTHETIC CARBON CYCLE.

    PubMed

    Tolbert, N. E.

    1997-06-01

    The C2 oxidative photosynthetic carbon cycle plus the C3 reductive photosynthetic carbon cycle coexist. Both are initiated by Rubisco, use about equal amounts of energy, must regenerate RuBP, and result in exchanges of CO2 and O2 to establish rates of net photosynthesis, CO2 and O2 compensation points, and the ratio of CO2 and O2 in the atmosphere. These concepts evolved from research on O2 inhibition, glycolate metabolism, leaf peroxisomes, photorespiration, 18O2/16O2 exchange, CO2 concentrating processes, and a requirement for the oxygenase activity of Rubisco. Nearly 80 years of research on these topics are unified under the one process of photosynthetic carbon metabolism and its self-regulation. PMID:15012254

  6. Water oxidation: High five iron

    NASA Astrophysics Data System (ADS)

    Lloret-Fillol, Julio; Costas, Miquel

    2016-03-01

    The oxidation of water is essential to the sustainable production of fuels using sunlight or electricity, but designing active, stable and earth-abundant catalysts for the reaction is challenging. Now, a complex containing five iron atoms is shown to efficiently oxidize water by mimicking key features of the oxygen-evolving complex in green plants.

  7. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.

    PubMed

    Kurz, Philipp

    2016-01-01

    The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnOx. This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnOx. The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV)-oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials. In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnOx catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnOx materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future. PMID:25980320

  8. EMERGING CONTAMINANTS IN THE DRINKING WATER CYCLE

    EPA Science Inventory

    PRESENTATION OUTLINE: I. General overview of the water cycle;

    II. USEPA and USGS Research;

    a. Wastewater treatment plant (WWTP) effluents and downstream surface waters;

    b. Groundwater down gradient from WW lagoon;

    c. Source and finished water fro...

  9. Water Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Water Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) atmosphere (highlighting the processes of evaporation, condensation, convection, wind movement and air pollution); (2) water (examining the properties of liquids, water distribution, use, and quality, and the water…

  10. Observing the Global Water Cycle from Space

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.

    2004-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.

  11. Observing the Global Water Cycle from Space

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.; Houser, Paul; Schlosser, C. Adam

    2003-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. The goal of the paper is to explore the concept of using a sensor-web of satellites to observe the global water cycle. The details of the required measurements and observation systems are therefore only an initial approach and will undergo future refinement, as their details will be highly important. Key elements include observation and evaluation of all components of the water cycle in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers-and in terms of the global fluxes of water between these reservoirs. For each component of the water cycle that must be observed, the appropriate temporal and spatial scales of measurement are estimated, along with the some of the frequencies that have been used for active and passive microwave observations of the quantities. The suggested types of microwave observations are based on the heritage for such measurements, and some aspects of the recent heritage of these measurement algorithms are listed. The observational requirements are based on present observational systems, as modified by expectations for future needs. Approaches to the development of space systems for measuring the global water cycle can be based on these observational requirements.

  12. Global water cycle and solar activity variations

    NASA Astrophysics Data System (ADS)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  13. The NASA Energy and Water cycle Study

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Entin, J. K.; Schiffer, R. A.; Belvedere, D. R.

    2010-12-01

    In 2003 NASA established the NASA Energy and Water-cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. Over the past two years, the NEWS team has been working on how to refine its approach to science integration . To this end, NEWS has created four working groups that identify integration needs and make the needed connections to partner and coordinate with water & energy cycle research and application activities going on at other organizations within NASA, nationally, and internationally. The four groups are: (1) Drought & Flood Extremes- including water and energy aspects of abrupt climate change, (2) Evaporation & Latent Heating - including both land and ocean, (3) Water and Energy Cycle Climatology - to exploit and influence evolving observing systems, and (4) Modeling & Water Cycle Prediction - foster interaction with the global modeling community. The first phase of NEWS focuses on the first coordinated attempt to describe the complete global energy and water cycle using existing and forthcoming satellite and ground based observations, and laying the foundation for essential NEWS developments in model representations of atmospheric energy and water exchange processes. This comprehensive energy and water data analysis program must exploit crucial datasets, some still requiring complete re-processing, and new satellite measurements. These data products will then be evaluated for accuracy and consistency, in part by using them in the first diagnosis of the weather-scale (space and time) variations of the global energy and water cycle over the past one-two decades. The primary objective is to ensure that results of this analysis effort serve as a recognized data basis to compare with corresponding climate statistics produced by existing climate models, quantify systematic deficiencies, and identify needed

  14. The seasonal cycle of water on Mars

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.

    1985-01-01

    A review of the behavior of water in the Mars atmosphere and subsurface is appropriate now that data from the Mariner and Viking spacecraft have been analyzed and discussed for several years following completion of those missions. Observations and analyses pertinent to the seasonal cycle of water vapor in the atmosphere of Mars are reviewed, with attention toward transport of water and the seasonal exchange of water between the atmosphere and various non-atmospheric reservoirs. Possible seasonally-accessible sources and sinks for water include water ice on or within the seasonal and residual polar caps; surface or subsurface ice in the high-latitude regions of the planet; adsorbed or chemically-bound water within the near-surface regolith; or surface or subsurface liquid water. The stability of water within each of these reservoirs is discussed, as are the mechanisms for driving exchange of the water with the atmosphere and the timescales for exchange. Specific conclusions are reached about the distribution of water and the viability of each mechanism as a seasonal reservoir. Discussion is also included of the behavior of water on longer timescales, driven by the variations in solar forcing due to the quasi-periodic variations of the orbital obliquity. Finally, specific suggestions are made for future observations from spacecraft which would further define or constrain the seasonal cycle of water.

  15. Rapid nitrous oxide cycling in the suboxic ocean

    NASA Astrophysics Data System (ADS)

    Babbin, Andrew R.; Bianchi, Daniele; Jayakumar, Amal; Ward, Bess B.

    2015-06-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a major cause of stratospheric ozone depletion, yet its sources and sinks remain poorly quantified in the oceans. We used isotope tracers to directly measure N2O reduction rates in the eastern tropical North Pacific. Because of incomplete denitrification, N2O cycling rates are an order of magnitude higher than predicted by current models in suboxic regions, and the spatial distribution suggests strong dependence on both organic carbon and dissolved oxygen concentrations. Furthermore, N2O turnover is 20 times higher than the net atmospheric efflux. The rapid rate of this cycling coupled to an expected expansion of suboxic ocean waters implies future increases in N2O emissions.

  16. Modern Estimates of Global Water Cycle Fluxes

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T. S.; Olson, W. S.

    2014-12-01

    The goal of the first phase of the NASA Energy and Water Cycle Study (NEWS) Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. Here we describe results of the water cycle assessment, including mean annual and monthly fluxes over continents and ocean basins during the first decade of the millennium. To the extent possible, the water flux estimates are based on (1) satellite measurements and (2) data-integrating models. A careful accounting of uncertainty in each flux was applied within a routine that enforced multiple water and energy budget constraints simultaneously in a variational framework, in order to produce objectively-determined, optimized estimates. Simultaneous closure of the water and energy budgets caused the ocean evaporation and precipitation terms to increase by about 10% and 5% relative to the original estimates, mainly because the energy budget required turbulent heat fluxes to be substantially larger in order to balance net radiation. In the majority of cases, the observed annual, surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are a non-issue. Fluxes are poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian Islands, leading to reliance on atmospheric analysis estimates. Other details of the study and future directions will be discussed.

  17. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  18. Water Cycle Extremes: from Observations to Decisions

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.; Unninayar, S.; Berod, D.

    2015-12-01

    Extremes in the water cycle (droughts and floods) pose major challenges for water resource managers and emergency services. These challenges arise from observational and prediction systems, advisory services, impact reduction strategies, and cleanup and recovery operations. The Group on Earth Observations (GEO) through its Water Strategy ("GEOSS Water Strategy: from observations to decisions") is seeking to provide systems that will enable its members to more effectively meet their information needs prior to and during an extreme event. This presentation reviews the wide range of impacts that arise from extremes in the water cycle and the types of data and information needed to plan for and respond to these extreme events. It identifies the capabilities and limitations of current observational and analysis systems in defining the scale, timing, intensity and impacts of water cycle extremes and in directing society's response to them. This summary represents an early preliminary assessment of the global and regional information needs of water resource managers and begins to outline a strategy within GEO for using Earth Observations and ancillary information to address these needs.

  19. An updated view of global water cycling

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Schlosser, A.; Lehr, J.

    2009-04-01

    Unprecedented new observation capacities combined with revolutions in modeling, we are poised to make huge advances in water cycle assessment, understanding, and prediction. To realize this goal, we must develop a discipline of prediction and verification through the integration of water and energy cycle observations and models, and to verify model predictions against observed phenomena to ensure that research delivers reliable improvements in prediction skill. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability, through integration of all necessary observations and research tools. A brief history of the lineage of the conventional water balance and a summary accounting of all major parameters of the water balance using highly respected secondary sources will be presented. Principally, recently published peer reviewed papers reporting results of original work involving direct measurements and new data generated by high-tech devices (e.g. satellite / airborne instruments, supercomputers, geophysical tools) will be employed. This work lends credence to the conventional water balance ideas, but also reveals anachronistic scientific concepts/models, questionable underlying data, longstanding oversights and outright errors in the water balance.

  20. Recent Advances in GEO Water Cycle Activities

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2009-12-01

    Over the past few years GEO (Group on Earth Observations) efforts within the Water Societal Benefit Area (SBA) have been coordinated by the Science Committee of the former Integrated Global Observing Strategy Partnership (IGOS-P) IGWCO (Integrated Global Water Cycle Observations) theme. Within this framework a number of projects related to data system design, product development, and capacity building are being carried out. GEO has recently consolidated the Water SBA activities into three tasks, namely Droughts, Floods and Water Resource Management; Capacity Building for Water Resource Management (in Asia, Africa and the Americas); and Integrated Products for Water Resource Management and Research. In order to strengthen interactions with the GEO and its User Interface Committee, a Water Cycle Community of Practice (COP) was initiated. In addition, within the past year, the IGWCO Science Committee has decided to also function as a Community of Practice in collaboration with the existing Water Cycle COP. This overview will provide background and an update on the GEO Water SBA activities with an emphasis of the way in which these activities are being integrated within the three tasks. It will also describe activities that are planned for 2010 to facilitate this integration. Recent advances related to drought monitoring, capacity and network building, and observational and data systems will be highlighted. New water-related activities arising from collaborations between US GEO and Canada GEO, and through activities within the GEO Architecture and Data Committee, will also be described. This presentation will conclude with a longer-term outlook for water within the GEO framework and provide some guidance for interested experts on how they can become involved in helping to implement these plans.

  1. Global Changes of the Water Cycle Intensity

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Walker, Gregory K.

    2003-01-01

    In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on constituent tracers predicted at the model time step. This diagnostic is compared to a simplified traditional calculation of cycling rate, based on monthly averages of precipitation and total water content. The mean sensitivity of both diagnostics to variations in climate forcing is comparable. However, the new diagnostic produces systematically larger values and more variability than the traditional average approach. Climate simulations were performed using SSTs of the early (1902-1921) and late (1979- 1998) twentieth century along with the appropriate C02 forcing. In general, the increase of global precipitation with the increases in SST that occurred between the early and late twentieth century is small. However, an increase of atmospheric temperature leads to a systematic increase in total precipitable water. As a result, the residence time of water in the atmosphere increased, indicating a reduction of the global cycling rate. This result was explored further using a number of 50-year climate simulations from different models forced with observed SST. The anomalies and trends in the cycling rate and hydrologic variables of different GCMs are remarkably similar. The global annual anomalies of precipitation show a significant upward trend related to the upward trend of surface temperature, during the latter half of the twentieth century. While this implies an increase in the hydrologic cycle intensity, a concomitant increase of total precipitable water again leads to a decrease in the calculated global cycling rate. An analysis of the land/sea differences shows that the simulated precipitation over land has a decreasing trend while the oceanic precipitation has an upward trend consistent with previous studies and the

  2. GEO Water Cycle Activities and Plans

    NASA Astrophysics Data System (ADS)

    Lawford, R.; Koike, T.; Ishida, C.; Grabs, W.

    2008-12-01

    The Group on Earth Observations (GEO) consists of more than 70 countries and 40 international organizations which are working together to develop the Global Earth Observation System of Systems (GEOSS). Since its launch in 2004, GEO has stimulated a wide range of activities related to data systems and their architecture, the development of science and technology to support observational programs, user interactions and interfaces, and capacity building. GEO tasks directed at Water Resources Management, one of the nine GEO Societal Benefit areas, are an integral part of these developments. They draw heavily upon the activities of the Integrated Global Water Cycle Observations (IGWCO) theme and on the activities and infrastructure provided through GEO and its committees. Within the GEO framework the water related activities have been focused on four specific tasks namely integrated data set development; information for floods, droughts and water management; water quality, and capacity building. Currently these efforts are being facilitated by the IGWCO theme that was formed under the former Integrated Global Observing Strategy Partnership (IGOS-P). With the dissolution of this partnership, other mechanisms, including the GEO Water Cycle Community of Practice, are being considered as new opportunitites for coordinating the work of the theme and the water-related GEO tasks. This talk provides a description of the GEO water tasks and reviews the progress that has been made in addressing them. It also provides a perspective on new opportunities and briefly describes some of the mechanisms, such as the Water Cycle Community of Practice, that could be expanded to coordinate a more comprehensive set of water tasks and greater community involvement.

  3. Children's Views about the Water Cycle.

    ERIC Educational Resources Information Center

    Bar, Varda

    1989-01-01

    Israeli children's (kindergarten to grade nine) explanations about the water cycle are described. Reports the children's views about the source of clouds and the mechanism of rainfall. It was concluded that understanding evaporation is a necessary condition for explaining a mechanism of rain containing the ideas of condensation and heaviness. (YP)

  4. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  5. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    SciTech Connect

    Taylor, Robin; Davenport, Roger; Talbot, Jan; Herz, Richard; Genders, David; Symons, Peter; Brown, Lloyd

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  6. Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice

    PubMed Central

    Peek, Clara Bien; Affinati, Alison H.; Ramsey, Kathryn Moynihan; Kuo, Hsin-Yu; Yu, Wei; Sena, Laura A.; Ilkayeva, Olga; Marcheva, Biliana; Kobayashi, Yumiko; Omura, Chiaki; Levine, Daniel C.; Bacsik, David J.; Gius, David; Newgard, Christopher B.; Goetzman, Eric; Chandel, Navdeep S.; Denu, John M.; Mrksich, Milan; Bass, Joseph

    2014-01-01

    Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD+) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD+ supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD+ bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding. PMID:24051248

  7. Following the Water Cycle to Sustainability

    NASA Astrophysics Data System (ADS)

    Lutz, T. M.

    2012-12-01

    systems learning model based on feedback and limits to perception. I focus on a part of the course that builds on connections that start in the hydrosphere and that includes some basic experiential learning about the water cycle and students' reliance on it. We measure and visualize aspects of the water cycle in nearby areas of campus (designated as an outdoor classroom and demonstration garden). The evapotranspiration flow is used to introduce notions of what can happen when flows are not sensed (e.g., invisible to us). Students use an online water footprint calculator to discover how large their water reliance is, particularly through energy generation, food consumption and food waste; and how far their water reach extends (virtual water trade). They consider the ethical implications of their water use in a world in which it is becoming a more rare resource and in some cases a valued commodity. They learn about non-utilitarian values of water based on an activity on the values of nature. They look at local, community-based efforts to improve water quality and to re-localize water dependence. A reading from Aldo Leopold puts the water cycle in a historical and cultural perspective. The water cycle is strongly interwoven with natural and human energy systems, the climate system, the carbon cycle, nutrient cycles, the rock cycle, and serves as a starting point to reach many other topics.

  8. The DOE Water Cycle Pilot Study

    SciTech Connect

    Miller, N.L.; King, A.W.; Miller, M.A.; Springer, E.P.; Wesely, M.L.; Bashford, K.E.; Conrad, M.E.; Costigan, K.; Foster, P.N.; Gibbs, H.K.; Jin, J.; Klazura, J.; Lesht, B.M.; Machavaram, M.V.; Pan, F.; Song, J.; Troyan, D.; Washington-Allen, R.A.

    2003-09-20

    A Department of Energy (DOE) multi-laboratory Water Cycle Pilot Study (WCPS) investigated components of the local water budget at the Walnut River Watershed in Kansas to study the relative importance of various processes and to determine the feasibility of observational water budget closure. An extensive database of local meteorological time series and land surface characteristics was compiled. Numerical simulations of water budget components were generated and, to the extent possible, validated for three nested domains within the Southern Great Plains; the DOE Atmospheric Radiation Measurement/Cloud Atmospheric Radiation Testbed (ARM/CART), the Walnut River Watershed (WRW), and the Whitewater Watershed (WW), Kansas A 2-month Intensive Observation Period (IOP) was conducted to gather detailed observations relevant to specific details of the water budget, including fine-scale precipitation, streamflow, and soil moisture measurements not made routinely by other programs. Event and season al water isotope (delta 18O, delta D) sampling in rainwater, streams, soils, lakes, and wells provided a means of tracing sources and sinks within and external to the WW, WRW, and the ARM/CART domains. The WCPS measured changes in leaf area index for several vegetation types, deep groundwater variations at two wells, and meteorological variables at a number of sites in the WRW. Additional activities of the WCPS include code development toward a regional climate model with water isotope processes, soil moisture transect measurements, and water level measurements in ground water wells.

  9. Transpiration in the Global Water Cycle

    NASA Astrophysics Data System (ADS)

    Schlesinger, W. H.; Jasechko, S.

    2014-12-01

    A compilation of 81 studies that have partitioned evapotranspiration (ET) into its components—transpiration (T) and evaporation (E)—at the ecosystem scale indicates that T accounts for 61% (±15% s.d.) of ET and returns approximately 39±10% of incident precipitation (P) to the atmosphere, creating a dominant force in the global water cycle. T as a proportion of ET is highest in tropical rainforests (70±14 %) and lowest in steppes, shrublands and deserts (51±15%), but there is no relationship of T/ET versus P across all available data (R2 = 0.01). Changes to transpiration due to increasing CO2 concentrations, land use changes, shifting ecozones and climate warming are expected to have significant impacts upon runoff and groundwater recharge, reflecting human impacts on the global biogeochemical cycle of water.

  10. Carbon footprint estimation of municipal water cycle

    NASA Astrophysics Data System (ADS)

    Bakhshi, Ali A.

    2009-11-01

    This research investigates the embodied energy associated with water use. A geographic information system (GIS) was tested using data from Loudoun County, Virginia. The objective of this study is to estimate the embodied energy and carbon emission levels associated with water service at a geographical location and to improve for sustainability planning. Factors that affect the carbon footprint were investigated and the use of a GIS based model as a sustainability planning framework was evaluated. The carbon footprint metric is a useful tool for prediction and measurement of a system's sustainable performance over its expected life cycle. Two metrics were calculated: tons of carbon dioxide per year to represent the contribution to global warming and watt-hrs per gallon to show the embodied energy associated with water consumption. The water delivery to the building, removal of wastewater from the building and associated treatment of water and wastewater create a sizable carbon footprint; often the energy attributed to this water service is the greatest end use of electrical energy. The embodied energy in water depends on topographical characteristics of the area's local water supply, the efficiency of the treatment systems, and the efficiency of the pumping stations. The questions answered by this research are: What is the impact of demand side sustainable water practices on the embodied energy as represented by a comprehensive carbon footprint? What are the major energy consuming elements attributed to the system? What is a viable and visually identifiable tool to estimate the carbon footprint attributed to those Greenhouse Gas (GHG) producing elements? What is the embodied energy and emission associated with water use delivered to a building? Benefits to be derived from a standardized GIS applied carbon footprint estimation approach include: (1) Improved environmental and economic information for the developers, water and wastewater processing and municipal

  11. Uranium oxidation: characterization of oxides formed by reaction with water

    SciTech Connect

    Fuller, E.L. Jr.; Smyrl, N.R.; Condon, J.B.; Eager, M.H.

    1983-04-27

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. Results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. 27 figures.

  12. Efficient generation of H2 by splitting water with an isothermal redox cycle.

    PubMed

    Muhich, Christopher L; Evanko, Brian W; Weston, Kayla C; Lichty, Paul; Liang, Xinhua; Martinek, Janna; Musgrave, Charles B; Weimer, Alan W

    2013-08-01

    Solar thermal water-splitting (STWS) cycles have long been recognized as a desirable means of generating hydrogen gas (H2) from water and sunlight. Two-step, metal oxide-based STWS cycles generate H2 by sequential high-temperature reduction and water reoxidation of a metal oxide. The temperature swings between reduction and oxidation steps long thought necessary for STWS have stifled STWS's overall efficiency because of thermal and time losses that occur during the frequent heating and cooling of the metal oxide. We show that these temperature swings are unnecessary and that isothermal water splitting (ITWS) at 1350°C using the "hercynite cycle" exhibits H2 production capacity >3 and >12 times that of hercynite and ceria, respectively, per mass of active material when reduced at 1350°C and reoxidized at 1000°C. PMID:23908235

  13. EDITORIAL: The global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bengtsson, Lennart

    2010-06-01

    Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes. Water on planet Earth The total amount of available water on the Earth amounts to some 1.5 x 109 km3. The dominant part of this, 1.4 x 109 km3, resides in the oceans. About 29 x 106 km3 are locked up in land ice and glaciers and some 15 x 106 km3 are estimated to exist as groundwater. If all land ice and glaciers were to melt the sea level would rise some 80 m (Baumgartner and Reichel 1975). 13 x 103 km3 of water vapour are found in the

  14. A rapid-temperature-cycling apparatus for oxidation testing

    SciTech Connect

    Cabrera, A.L.; Kirner, J.F. )

    1991-06-01

    An oxidation test with rapid temperature cycling was developed to evaluate small coated parts. The samples in the form of wire or foils are resistively heated with a high-current AC power supply, allowing fast heating and cooling of the samples. Fast temperature cycling of the samples permits to complete more than 100 cycles in one day. A variety of steels coated with silicon diffusion coatings were tested and the results compared with oxidation via traditional thermal cycling. The test accurately predicts enhanced performance for siliconized 1010 steel, an increase by a factor of three for the life of siliconized 302 stainless steel, and an inadequate siliconized coating for 410 stainless steel. Details of the rapid temperature cycling apparatus as well as testing of the coated steels are described in the paper.

  15. Isotopes in the Arctic atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen Larsen, Hans Christian; Masson-Delmotte, Valérie

    2016-04-01

    The ISO-ARC project aims at documenting the Arctic atmospheric hydrological cycle, by assessing the imprint of the marine boundary conditions (e.g. temperature variations, circulation changes, or meltwater input) to the isotopic composition of the atmospheric water cycle (H218O and HDO) with a focus on North Atlantic and Arctic oceans. For this purpose, two continuous monitoring water vapour stable isotopes cavity ring-down spectrometers have been installed in July 2015: on-board the Polarstern research vessel and in the Siberian Lena delta Samoylov research station (N 72° 22', E 126° 29'). The Polarstern measurements cover the summer 2015 Arctic campaign from July to mid-October, including six weeks in the Fram Strait region in July- August, followed by a campaign reaching the North Pole and a transect from the Norwegian Sea to the North Sea. These vapour observations are completed by water isotopic measurements in samples from the surface ocean water for Polarstern and from precipitation in Samoylov and Tiksi (120 km south-east of the station). A custom-made designed automatic calibration system has been implemented in a comparable manner for both vapour instruments, based on the injection of different liquid water standards, which are completely vaporised in dry air at high temperature. Subsequent humidity level can be adjusted from 2000 to at least 30000 ppm. For a better resilience, an independent calibration system has been added on the Samoylov instrument, allowing measurements of one standard at humidity levels ranging from 2000 to 15000 ppm: dry air is introduced in a tank containing a large amount of liquid water standard, undergoing evaporation under a controlled environment. The measurement protocol includes an automatic calibration every 25 hours. First instrument characterisation experiments depict a significant isotope-humidity effect at low humidity, dependant on the isotopic composition of the standard. For ambient air, our first isotope

  16. Oxidative elemental cycling under the low O2 Eoarchean atmosphere.

    PubMed

    Frei, Robert; Crowe, Sean A; Bau, Michael; Polat, Ali; Fowle, David A; Døssing, Lasse N

    2016-01-01

    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3-2.9 Gyr ago. 3.8-3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth's earliest surface chemistry and the low oxygen primordial biosphere. Here we find fractionated Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed banded iron formations (BIFs) from Isua that indicate oxidative Cr cycling 3.8-3.7 Gyr ago. Elevated U/Th ratios in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species were present in the Eoarchean surface environment, under a very low oxygen atmosphere, inducing oxidative elemental cycling during the deposition of the Isua BIFs and possibly supporting early aerobic biology. PMID:26864443

  17. Oxidative elemental cycling under the low O2 Eoarchean atmosphere

    NASA Astrophysics Data System (ADS)

    Frei, Robert; Crowe, Sean A.; Bau, Michael; Polat, Ali; Fowle, David A.; Døssing, Lasse N.

    2016-02-01

    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3-2.9 Gyr ago. 3.8-3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth’s earliest surface chemistry and the low oxygen primordial biosphere. Here we find fractionated Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed banded iron formations (BIFs) from Isua that indicate oxidative Cr cycling 3.8-3.7 Gyr ago. Elevated U/Th ratios in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species were present in the Eoarchean surface environment, under a very low oxygen atmosphere, inducing oxidative elemental cycling during the deposition of the Isua BIFs and possibly supporting early aerobic biology.

  18. Fe-Oxides in Water Remediation Technologies

    NASA Astrophysics Data System (ADS)

    Vaclavikova, M.; Stefusova, K.; Gallios, G. P.

    Water is essential for life, a strategic resource for every country and population. Its availability and sanitary safety is highly connected with the health and economic status of a population. The burden of disease due to polluted water is a major public health problem throughout the world. Many pollutants in water streams have been identified as toxic and harmful to the environment and human health, and among them arsenic, mercury and cadmium are considered those with the highest priority. Iron is the fourth most abundant element in the Earth's crust, and reactions involving iron play a major role in the environmental cycling of a range of important contaminants. Our earlier research has shown that Fe oxides/oxyhydroxides are particularly effective adsorbents of a range of contaminants (toxic metals), due to their high (reactive) specific surface area. It has been proven that Fe is particularly effective in As removal as a chemical bond is created on Fe surface and As is stabilised and can be safely deposited. Removal of contaminants from waste streams through precipitation with (hydrous) ferric oxides is an established methodology in a number of industrial processes (high density sludge systems for arsenic control in effluents from the mining industry, and in the treatment of textile dye effluent).

  19. EDITORIAL: The global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bengtsson, Lennart

    2010-06-01

    Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes. Water on planet Earth The total amount of available water on the Earth amounts to some 1.5 x 109 km3. The dominant part of this, 1.4 x 109 km3, resides in the oceans. About 29 x 106 km3 are locked up in land ice and glaciers and some 15 x 106 km3 are estimated to exist as groundwater. If all land ice and glaciers were to melt the sea level would rise some 80 m (Baumgartner and Reichel 1975). 13 x 103 km3 of water vapour are found in the

  20. The Passive Microwave Water Cycle (PMWC) Product: Closing the Water Cycle Using a Constellation of Satellites

    NASA Astrophysics Data System (ADS)

    Hilburn, K.; Wentz, F.

    2007-12-01

    We have developed a water cycle product as part of the NASA Energy and Water Cycle Study (NEWS). The purpose of the product is to integrate passive microwave retrievals from a variety of different sensors on different satellites including SSMI (F08, F10, F11, F13, F14, and F15), SSMIS (F16 and F17), AMSR (Aqua and Midori-II), TMI on TRMM, WindSat, and eventually AMSU (NOAA-15 and NOAA-16). The water cycle over a particular location averaged over a time scale of one month is given by: E-P=WVTD; where E is evaporation, P is precipitation, and WVTD is water vapor transport divergence. The new and unique feature of our product is that we make use of the large quantity of accurately intercalibrated water vapor and wind observations in order to estimate WVTD. As part of developing this product we have evaluated our new intercalibrated microwave rain rates, developed a procedure for estimating evaporation, and developed a procedure for estimating water vapor transport and its divergence. The Version-01 Passive Microwave Water Cycle (PMWC) dataset will contain maps of evaporation, precipitation, water vapor transport, water vapor transport divergence, and water vapor. Uncertainty estimates for each parameter will also be supplied. Currently, the product is a 20-year (1987-2007), 0.25-degree, monthly average product over the global oceans. One of our principle motivations is to obtain estimates of the uncertainty in "direct" physically-based retrievals of precipitation. Direct physically-based rain retrievals are subject to large uncertainties that are hard to quantify, such as horizontal inhomogeneity (beamfilling), cloud and rain water partitioning, rain column height and the rain vertical profile, drop size distribution, and the effects of frozen hydrometeors. By using the balanced water cycle, we can estimate precipitation uncertainties in P by estimating uncertainties in E and WVTD. Estimating uncertainties in E can be done with a straight-forward classical uncertainty

  1. Terrestrial nitrous oxide cycles and atmospheric effects

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Lawless, J. G.; Banin, A.

    1984-01-01

    The basic processes that cause N2O emission from soils are briefly discussed, and the rate of the processes is shown to vary widely in space and time, depending on soil, climate, and agrotechnical conditions. Although significant amounts of N2O are indeed emitted from the land, the complexity of the soil processes involved and the wide variation of measured rates still prevents the quantitative evaluation, global budgeting, and reliable prediction of atmospheric N2O. Increased atmospheric N2O abundance increases the levels of odd-nitrogen in the stratosphere, which, in turn, decreases the stratospheric ozone density via a catalytic cycle. Using appropriate atmospheric models and current chemical kinetic data, it has been found that the dependence of ozone reduction on N2O increase is nearly linear; a simulated doubling of N2O leads to a predicted decrease of about 14 percent in total ozone column density. A 10 percent increase in N2O yields a predicted increase in nonmelanoma skin cancer of several percent, and a possible raising of surface temperature of 0.03 K.

  2. Highly efficient 6-stroke engine cycle with water injection

    SciTech Connect

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  3. Chromium cycling in soils and water: links, gaps, and methods.

    PubMed Central

    Bartlett, R J

    1991-01-01

    The major links in the cycling of chromium in soils and in natural waters are between chromium(III) and chromium (VI). Between the larger links are lesser links involving processes of mobilization and oxidation of CrIII and reduction of CrVI. The gaps are mainly in our understanding of the factors that control these processes. If soluble CrIII is added to an "average" soil, a portion of it will become immediately oxidized by manganese oxides to CrVI. The rest of the CrIII may remain reduced for long periods of time, even in the presence of electron-accepting manganese oxides. However, this less available CrIII can be mobilized by low molecular weight organic complexers and then oxidized where redox conditions are optimal. Usually part of any CrVI added to a soil or sediment will be reduced instantly, especially under acid conditions. On the other hand, high concentrations of polluting CrVI may quickly exhaust the readily available reducing power of the matrix material and excess CrVI, the thermodynamically stable form in air, may persist for years in soils or lagoons without reduction. Cleanup of chromium pollution must involve the surrounding of both CrIII and CrVI with excesses of slowly available reducing substances and sealing them permanently from inputs of atmospheric oxygen. Monitoring the effectiveness of the measures is mandatory, but fortunately the chemical testing for CrVI in soil and water is simple and problem free compared with most colorimetric determinations. PMID:1935847

  4. Fuel-cycle cost comparisons with oxide and silicide fuels

    SciTech Connect

    Matos, J.E.; Freese, K.E.

    1982-01-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed.

  5. The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast

    SciTech Connect

    Warnken, Kent W.; Santschi, Peter H.; Roberts, Kimberly A.; Gill, Gary A.

    2007-08-08

    The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates.

  6. Oxidative elemental cycling under the low O2 Eoarchean atmosphere

    PubMed Central

    Frei, Robert; Crowe, Sean A.; Bau, Michael; Polat, Ali; Fowle, David A.; Døssing, Lasse N.

    2016-01-01

    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3–2.9 Gyr ago. 3.8–3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth’s earliest surface chemistry and the low oxygen primordial biosphere. Here we find fractionated Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed banded iron formations (BIFs) from Isua that indicate oxidative Cr cycling 3.8–3.7 Gyr ago. Elevated U/Th ratios in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species were present in the Eoarchean surface environment, under a very low oxygen atmosphere, inducing oxidative elemental cycling during the deposition of the Isua BIFs and possibly supporting early aerobic biology. PMID:26864443

  7. Nitrous oxide in coastal waters

    SciTech Connect

    Bange, H.W.; Rapsomanikis, S.; Andreae, M.O.

    1996-03-01

    Measurements of dissolved and atmospheric nitrous oxide (N{sub 2}O) are presented for three coastal environments: (1) the central North Sea, (2) the German Bight, and (3) the Gironde estuary. The contribution of coastal regions to the oceanic emissions of atmospheric N{sub 2}O were also determined. N{sub 2}O was measured with a gas chromatograph equipped with an electron capture detector and analyzed. The surface waters of the central North Sea and the German bight were found to be near equilibrium with the overlying atmosphere, while the mean saturation in the Gironde estuary was 132%. Mean saturations in coastal regions without estuaries or upwelling phenomena were only slightly higher than in the open ocean. When estuaries and regions with upwelling are included, however, approximately 60% of the oceanic N{sub 2}O flux is attributable to coastal regions. A review of published data indicated that previous studies have seriously underestimated N{sub 2}O sea-to-air flux from coastal regions. 69 refs., 8 figs., 4 tabs.

  8. Connecting the oxidation of soot to its redox cycling abilities

    PubMed Central

    Antiñolo, María; Willis, Megan D.; Zhou, Shouming; Abbatt, Jonathan P.D.

    2015-01-01

    Although it is known that soot particles are emitted in large quantities to the atmosphere, our understanding of their environmental effects is limited by our knowledge of how their composition is subsequently altered through atmospheric processing. Here we present an on-line mass spectrometric study of the changing chemical composition of hydrocarbon soot particles as they are oxidized by gas-phase ozone, and we show that the surface-mediated loss rates of adsorbed polycyclic aromatic hydrocarbons in soot are directly connected to a significant increase in the particle redox cycling abilities. With redox cycling implicated as an oxidative stress mechanism that arises after inhalation of atmospheric particles, this work draws a quantitative connection between the detailed heterogeneous chemistry occurring on atmospheric particles and a potential toxic mechanism attributable to that aerosol. PMID:25873384

  9. Modified Graphene Oxide for Long Cycle Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Shareef, Muhamed; Gunn, Harrison; Voigt, Victoria; Singh, Gurpreet

    Hummer's process was modified to produce gram levels of 2-dimensional nanosheets of graphene oxide (GO) with varying degree of exfoliation and chemical functionalization. This was achieved by varying the weight ratios and reaction times of oxidizing agents used in the process. Based on Raman and Fourier transform infra red spectroscopy we show that potassium permanganate (KMnO4) is the key oxidizing agent while sodium nitrate (NaNO3) and sulfuric acid (H2SO4) play minor role during the exfoliation of graphite. Tested as working electrode in sodium-ion half-cell, the GO nanosheets produced using this optimized approach showed high rate capability and exceptionally high energy density of ~500 mAh/g for up to at least 100 cycles, which is among the highest reported for sodium/graphite electrodes. The average Coulombic efficiency was approximately 99 %. NSF Grant No. 1454151.

  10. Green, Catalytic Oxidation of Alcohols in Water

    NASA Astrophysics Data System (ADS)

    ten Brink, Gerd-Jan; Arends, Isabel W. C. E.; Sheldon, Roger A.

    2000-03-01

    Alcohol oxidations are typically performed with stoichiometric reagents that generate heavy-metal waste and are usually run in chlorinated solvents. A water-soluble palladium(II) bathophenanthroline complex is a stable recyclable catalyst for the selective aerobic oxidation of a wide range of alcohols to aldehydes, ketones, and carboxylic acids in a biphasic water-alcohol system. The use of water as a solvent and air as the oxidant makes the reaction interesting from both an economic and environmental point of view.

  11. Successful treatment with supercritical water oxidation

    SciTech Connect

    Jensen, R.

    1994-06-01

    Supercritical Water Oxidation (SCWO) operates in a totally enclosed system. It uses water at high temperatures and high pressure to chemically change wastes. Oily substances become soluble and complex hydrocarbons are converted into water and carbon dioxide. Research and development on SCWO is described.

  12. A Satellite View of Global Water and Energy Cycling

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2012-12-01

    The global water cycle describes liquid, solid and vapor water dynamics as it moves through the atmosphere, oceans and land. Life exists because of water, and civilization depends on adapting to the constraints imposed by water availability. The carbon, water and energy cycles are strongly interdependent - energy is moved through evaporation and condensation, and photosynthesis is closely related to transpiration. There are significant knowledge gaps about water storage, fluxes and dynamics - we currently do not really know how much water is stored in snowpacks, groundwater or reservoirs. The view from space offers a vision for water science advancement. This vision includes observation, understanding, and prediction advancements that will improve water management and to inform water-related infrastructure that planning to provide for human needs and to protect the natural environment. The water cycle science challenge is to deploy a series of coordinated earth observation satellites, and to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The accompanying societal challenge is to integrate this information along with water cycle physics, and ecosystems and societal considerations as a basis for enlightened water resource management and to protect life and property from effects of water cycle extremes. Better regional to global scale water-cycle observations and predictions need to be readily available to reduce loss of life and property caused by water-related hazards. To this end, the NASA Energy and Water cycle Study (NEWS) has been documenting the satellite view of the water cycle with a goal of enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. NEWS has fostered broad interdisciplinary collaborations to study experimental and operational satellite observations and has developed analysis tools for characterizing air

  13. Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling

    PubMed Central

    Sasaki, Yasuyuki; Oguchi, Haruka; Kobayashi, Takuya; Kusama, Shinichiro; Sugiura, Ryo; Moriya, Kenta; Hirata, Takuya; Yukioka, Yuriya; Takaya, Naoki; Yajima, Shunsuke; Ito, Shinsaku; Okada, Kiyoshi; Ohsawa, Kanju; Ikeda, Haruo; Takano, Hideaki; Ueda, Kenji; Shoun, Hirofumi

    2016-01-01

    Nitric oxide (NO) signaling controls various metabolic pathways in bacteria and higher eukaryotes. Cellular enzymes synthesize and detoxify NO; however, a mechanism that controls its cellular homeostasis has not been identified. Here, we found a nitrogen oxide cycle involving nitrate reductase (Nar) and the NO dioxygenase flavohemoglobin (Fhb), that facilitate inter-conversion of nitrate, nitrite, and NO in the actinobacterium Streptomyces coelicolor. This cycle regulates cellular NO levels, bacterial antibiotic production, and morphological differentiation. NO down-regulates Nar and up-regulates Fhb gene expression via the NO-dependent transcriptional factors DevSR and NsrR, respectively, which are involved in the auto-regulation mechanism of intracellular NO levels. Nitrite generated by the NO cycles induces gene expression in neighboring cells, indicating an additional role of the cycle as a producer of a transmittable inter-cellular communication molecule. PMID:26912114

  14. Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling.

    PubMed

    Sasaki, Yasuyuki; Oguchi, Haruka; Kobayashi, Takuya; Kusama, Shinichiro; Sugiura, Ryo; Moriya, Kenta; Hirata, Takuya; Yukioka, Yuriya; Takaya, Naoki; Yajima, Shunsuke; Ito, Shinsaku; Okada, Kiyoshi; Ohsawa, Kanju; Ikeda, Haruo; Takano, Hideaki; Ueda, Kenji; Shoun, Hirofumi

    2016-01-01

    Nitric oxide (NO) signaling controls various metabolic pathways in bacteria and higher eukaryotes. Cellular enzymes synthesize and detoxify NO; however, a mechanism that controls its cellular homeostasis has not been identified. Here, we found a nitrogen oxide cycle involving nitrate reductase (Nar) and the NO dioxygenase flavohemoglobin (Fhb), that facilitate inter-conversion of nitrate, nitrite, and NO in the actinobacterium Streptomyces coelicolor. This cycle regulates cellular NO levels, bacterial antibiotic production, and morphological differentiation. NO down-regulates Nar and up-regulates Fhb gene expression via the NO-dependent transcriptional factors DevSR and NsrR, respectively, which are involved in the auto-regulation mechanism of intracellular NO levels. Nitrite generated by the NO cycles induces gene expression in neighboring cells, indicating an additional role of the cycle as a producer of a transmittable inter-cellular communication molecule. PMID:26912114

  15. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures.

    PubMed

    Najafpour, Mohammad Mahdi; Renger, Gernot; Hołyńska, Małgorzata; Moghaddam, Atefeh Nemati; Aro, Eva-Mari; Carpentier, Robert; Nishihara, Hiroshi; Eaton-Rye, Julian J; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2016-03-01

    All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts. PMID:26812090

  16. Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions.

    PubMed

    Suryanto, Bryan H R; Zhao, Chuan

    2016-05-11

    Carbon black (CB) is popularly used as a catalyst support for metal/metal oxide nanoparticles due to its large surface area, excellent conductivity and stability. Herein, we show that surface oxidized CB itself, after acidic treatment and electrochemical oxidation, exhibits significant catalytic activity for the electrochemical oxidation of water and alcohols. PMID:27097802

  17. Relationships between Cycling Hypoxia, HIF-1, Angiogenesis and Oxidative Stress

    PubMed Central

    Dewhirst, Mark W.

    2009-01-01

    This Failla Lecture focused on the inter-relationships between tumor angiogenesis, HIF-1 expression and radiotherapy responses. A common thread that bonds all of these factors together is microenvironmental stress caused by reactive oxygen and nitrogen species formed during tumor growth and angiogenesis or in response to cytotoxic treatment. In this review we focus on one aspect of the crossroad between oxidative stress and angiogenesis, namely cycling hypoxia. Understanding of the relative importance of this feature of the tumor microenvironment has recently expanded; it influences tumor biology in ways that are separate from chronic hypoxia. Cycling hypoxia can influence angiogenesis, treatment responses and metastatic behavior. It represents an important and relatively less well understood feature of tumor biology that requires additional research. PMID:19929412

  18. Analysis of oxidative stress during the menstrual cycle

    PubMed Central

    2013-01-01

    Background Few data concerning the oxidative stress (OS) in plasma during the entire menstrual cycle of eumenorrheic women are available. Methods OS was assessed in 20 healthy volunteers during the phase of the menstrual cycle by determining the plasmatic hydroperoxides levels (d-ROMs test). The assessment was performed every three days, starting from the first day (t1) up the end of the menstrual phase (t27). Concomitantly, the estrogen (E2) and progestin (P4) levels were determined at the same time intervals. Results From a base value (t1) of 284 +/− 38.0 CARR.U., which is essentially within the normal range (<300 Carratelli units or CARR.U.), the OS levels progressively increased to 378 +/− 115 CARR.U. at t15, and then slightly decreased over the subsequent time but with average values >300 CARR.U. Analysis of the E2 levels showed that the maximum OS values were noticed near the estrogen peak, while remaining above the base levels, and then decreased during the progestin phase until returning to normal at the end of the menstrual cycle. Conclusions It may concludes that the healthy women go into OS for 2/3 of the menstrual cycle. PMID:23915183

  19. Presence of Ammonia-oxidizing Archaea and Their Influence on Nitrogen Cycling in Ilica Bay, Turkey

    NASA Astrophysics Data System (ADS)

    Gulecal, Y.; Temel, M.

    2011-12-01

    Recenlty, the processes of anaerobic ammonium oxidation (anammox), and ammonia oxidation within the domain Archaea, have been recognized as two new links in the global nitrogen cycle. The distribution and ubiquity of marine Archaea an important role in global carbon and nitrogen cycling (Ingalls et al., 2006; Leininger et al., 2006; Wuchter et al.,2006a). However, our knowledge on archaeal distribution in aquatic ecosystem was largely confined to the extreme environments for a long time until DeLong (1992, 1998) revealed the ubiquity of archaea in common marine environments. Despite the great progress, more efforts need to be given to the study of archaeal diversity in the vast oceans and of the variations in the ecological environment from coastal to oceanic waters (Massana et al.,2000). Our studying area which Ilica Bay in Izmir (Turkey) has a lot of thermal springs. The aim of study was to investigate the presence of ammonia-oxidizing Archaea and their roles of nitrogen cycling in marine enviroments.We have not only used the geochemical analyses but also genetic tools. This study will supply knowledge for marine nitrogen cycling to understanding very well, in addition how Archea genes players in the process of anammox in shallow coastal marine environments.

  20. Aqueous-Phase Photochemical Production of Oxidants in Atmospheric Waters.

    NASA Astrophysics Data System (ADS)

    Allen, John Morrison

    1992-01-01

    The photochemical formation and subsequent reactions of oxidants plays an important role in the overall chemistry of the atmosphere. Much of the interest in atmospheric oxidation reactions has been fueled by the environmental consequences of the oxidation of sulfur dioxide (SO _2) forming sulfuric acid (H_2 SO_4). Oxidation reactions also play a crucial role in other atmospheric chemical transformations such as: (1) the destruction of tropospheric ozone, (2) redox cycling of transition metals, and (3) oxidation of organic compounds. Much of the research pertaining to atmospheric oxidant formation and the reactions that these oxidants undergo has centered upon gas-phase photochemical oxidant formation and: (1) subsequent reactions in the gas phase, or (2) partitioning of oxidants into cloud and fog drops and subsequent reactions in the aqueous phase. Only a very limited amount of data is available concerning aqueous -phase photochemical sources of oxidants in cloud and fog drops. The focus of one aspect of the work presented in this dissertation is upon the aqueous-phase sunlight photochemical formation of oxidants in authentic cloud and fog water samples from across the United States and Canada. It will be demonstrated that atmospheric waters typically absorb solar ultraviolet radiation at wavelengths ranging from 290 to 340 nm. This absorption is due to the presence of chemical constituents in the cloud and fog waters that contain chromophoric functional groups that give rise to the formation of: (1) singlet molecular oxygen O_2(^1Delta_ {rm g}), (2) peroxyl radicals (HO _2cdot and RO_2 cdot), (3) peroxides (HOOH, ROOH, and ROOR '), and (4) hydroxyl radical ( cdotOH). This work will demonstrate that aqueous-phase photochemical reactions are a significant and in some cases dominant source of these oxidants in cloud and fog drops. The transition metal catalyzed oxidation of SO _2 to H_2SO _4 by molecular oxygen has been extensively studied. This reaction is thought

  1. Integrated systems analysis of persistent polar pollutants in the water cycle.

    PubMed

    van der Voet, E; Nikolic, I; Huppes, G; Kleijn, R

    2004-01-01

    Persistent polar pollutants (P3) are difficult to degrade in standard waste water treatment plants. As a result, they end up in the effluent and are emitted to the surface water. In some areas, this problem is aggravated through "closed loop recycling", causing concentrations of P3 in surface water to build up over time. This could cause violation of (future) EU regulations. In the P-THREE project, various alternative waste water treatment techniques are investigated regarding their effectiveness in eliminating these substances, especially membrane bioreactor treatment and advanced oxidation processes, MBR and AOP. The integrated systems analysis which is the subject of this paper assesses these techniques in a broader systems context: (1) the life-cycle of the P3, (2) the life cycle of the WWTPs, and (3) the WWTP life cycle costs. PMID:15497854

  2. Homogeneous and heterogenized iridium water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Macchioni, Alceo

    2014-10-01

    The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.

  3. Supercritical Water Oxidation Data Acquisition Testing

    SciTech Connect

    K. M. Garcia

    1996-08-01

    Supercritical Water Oxidation (SCWO) is a high pressure oxidation process that blends air, water, and organic waste material in an oxidizer in which where the temperature and pressure in the oxidizer are maintained above the critical point of water. Supercritical water mixed with hydrocarbons, which would be insoluble at subcritical conditions, forms a homogeneous phase which possesses properties associated with both a gas and a liquid. Hydrocarbons in contact with oxygen and SCW are readily oxidized. These properties of SCW make it an attractive means for the destruction of waste streams containing organic materials. SCWO technology holds great promise for treating mixed wastes in an environmentally safe and efficient manner. In the spring of 1994 the U.S. Department of Energy (DOE) initiated a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the SCWO technology. The program concentrated on the acquisition of data through pilot plant testing. The Phase I DOE testing used a simulated waste stream that contained a complex machine cutting oil and metals, that acted as surrogates for radionuclides. The Phase II Navy testing included pilot testing using hazardous waste materials to demonstrate the effectiveness of the SCWO technology. The SCWODAT program demonstrated that the SCWO process oxidized the simulated waste stream containing complex machine cutting oil, selected by DOE as representative of one of the most difficult of the organic waste streams for which SCWO had been applied. The simulated waste stream with surrogate metals in solution was oxidized, with a high destruction efficiency, on the order of 99.97%, in both the neutralized and unneutralized modes of operation.

  4. Modeling Nitrogen Cycle at the Surface-Subsurface Water Interface

    NASA Astrophysics Data System (ADS)

    Marzadri, A.; Tonina, D.; Bellin, A.

    2011-12-01

    Anthropogenic activities, primarily food and energy production, have altered the global nitrogen cycle, increasing reactive dissolved inorganic nitrogen, Nr, chiefly ammonium NH4+ and nitrate NO3-, availability in many streams worldwide. Increased Nr promotes biological activity often with negative consequences such as water body eutrophication and emission of nitrous oxide gas, N2O, an important greenhouse gas as a by-product of denitrification. The hyporheic zone may play an important role in processing Nr and returning it to the atmosphere. Here, we present a process-based three-dimensional semi-analytical model, which couples hyporheic hydraulics with biogeochemical reactions and transport equations. Transport is solved by means of particle tracking with negligible local dispersion and biogeochemical reactions modeled by linearized Monod's kinetics with temperature dependant reaction rate coefficients. Comparison of measured and predicted N2O emissions from 7 natural stream shows a good match. We apply our model to gravel bed rivers with alternate bar morphology to investigate the role of hyporheic hydraulic, depth of alluvium, relative availability of stream concentration of NO3- and NH4+ and water temperature on nitrogen gradients within the sediment. Our model shows complex concentration dynamics, which depend on hyporheic residence time distribution and consequently on streambed morphology, within the hyporheic zone. Nitrogen gas emissions from the hyporheic zone increase with alluvium depth in large low-gradient streams but not in small steep streams. On the other hand, hyporheic water temperature influences nitrification/denitrification processes mainly in small-steep than large low-gradient streams, because of the long residence times, which offset the slow reaction rates induced by low temperatures in the latter stream. The overall conclusion of our analysis is that river morphology has a major impact on biogeochemical processes such as nitrification

  5. Earth observation Water Cycle Multi-Mission Observation Strategy (WACMOS)

    NASA Astrophysics Data System (ADS)

    Su, Z.; Dorigo, W.; Fernández-Prieto, D.; van Helvoirt, M.; Hungershoefer, K.; de Jeu, R.; Parinussa, R.; Timmermans, J.; Roebeling, R.; Schröder, M.; Schulz, J.; van der Tol, C.; Stammes, P.; Wagner, W.; Wang, L.; Wang, P.; Wolters, E.

    2010-10-01

    Observing and monitoring the different components of the global water cycle and their dynamics are essential steps to understand the climate of the Earth, forecast the weather, predict natural disasters like floods and droughts, and improve water resources management. Earth observation technology is a unique tool to provide a global understanding of many of the essential variables governing the water cycle and monitor their evolution over time from global to basin scales. In the coming years an increasing number of Earth observation missions will provide an unprecedented capacity to quantify several of these variables on a routine basis. In this context, the European Space Agency (ESA), in collaboration with the Global Energy and Water Cycle Experiment (GEWEX) of the World Climate Research Program (WCRP), launched the Water Cycle Multi-Mission Observation Strategy (WACMOS) project in 2009. The project aims at developing and validating a novel set of geo-information products relevant to the water cycle covering the following thematic areas: evapotranspiration, soil moisture, cloud characterization and water vapour. The generation of these products is based on a number of innovative techniques and methods aiming at exploiting the synergies of different types of Earth observation data available today to the science community. This paper provides an overview of the major findings of the project with the ultimate goal of demonstrating the potential of innovative multi-mission based strategies to improve current observations by maximizing the synergistic use of the different types of information provided by the currently available observation systems.

  6. Supercritical water oxidation - Microgravity solids separation

    NASA Technical Reports Server (NTRS)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  7. Ceramic coating system or water oxidation environments

    DOEpatents

    Hong, Glenn T.

    1996-01-01

    A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

  8. Ceramic coating system for water oxidation environments

    SciTech Connect

    Hong, G.T.

    1996-08-13

    A process is described for water oxidation of combustible materials in which at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700 C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses. 2 figs.

  9. Emerging Contaminants in the Drinking Water Cycle.

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  10. Emerging Contaminants in the Drinking Water Cycle

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-µg/L) in surface, ground and drinking water. The most common...

  11. Coastal water column ammonium and nitrite oxidation are decoupled in summer

    NASA Astrophysics Data System (ADS)

    Heiss, Elise M.; Fulweiler, Robinson W.

    2016-09-01

    Water column nitrification is a key process in the nitrogen cycle as it links reduced and oxidized forms of nitrogen and also provides the substrate (nitrate) needed for reactive nitrogen removal by denitrification. We measured potential water column ammonium and nitrite oxidation rates at four sites along an estuary to continental shelf gradient over two summers. In most cases, nitrite oxidation rates outpaced ammonium oxidation rates. Overall, ammonium and nitrite oxidation rates were higher outside of the estuary, and this trend was primarily driven by higher oxidation rates in deeper waters. Additionally, both ammonium and nitrite oxidation rates were impacted by different in situ variables. Ammonium oxidation rates throughout the water column as a whole were most positively correlated to depth and salinity and negatively correlated to dissolved oxygen and light. In contrast, nitrite oxidation rates throughout the water column were negatively correlated with light and pH. Multivariate regression analysis revealed that while both surface (<20 m) and deep (>20 m) ammonium oxidation rates were most strongly predicted by depth and light, surface rates were also regulated by salinity and deep rates by temperature. Surface (<20 m) nitrite oxidation rates were best explained by [H+] (i.e. pH) alone, while salinity, [H+], temperature, and depth all played a role in predicting deep (>20 m) nitrite oxidation rates. These results support the growing body of evidence that ammonium oxidation and nitrite oxidation are not always coupled, should be measured separately, and are influenced by different environmental conditions.

  12. Toward a hydro-political water cycle: virtual water,hydrology and international political economy

    NASA Astrophysics Data System (ADS)

    Greco, Francesca

    2014-05-01

    At the light of global food trade, no water cycle can be considered "closed" under a political point of view. While the hydrological cycle is a circular closed environment, if we open up our perspectives to social sciences, we will demonstrate how, thanks to virtual water, it is today possible to elaborate how much water 'enters or leave' any water body under the form crop-export, in terms of " water used for the production of agri-food products'. This new 'hydro-political cycle' will be discussed at the light of different theoretical perspectives: food trade theories, hydrology, international water law, socio-economic metabolism, material flow analysis.

  13. Massive swings in the marine N cycle during the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Zerkle, A.; Poulton, S.; Newton, R.; Claire, M.; Bekker, A.

    2012-12-01

    Nitrogen isotope values preserved in sedimentary organic matter show a general increase sometime between 2.5 and 2.1 Ga (e.g., Beaumont and Robert, 1999), coincident with the initial rise of O2 in the Earth's atmosphere (the Great Oxidation Event; Holland, 2002). This shift is commonly interpreted to represent a major change in the global N cycle related to oxygenation of Earth's surficial environments. Despite the invoked connection between δ15N values and the GOE, high resolution studies of N isotopes across this critical time interval are lacking. Here we present δ15N data for kerogens from the ~2.32 Ga Rooihoogte and Timeball Hill formations, South Africa. These sediments were deposited during the GOE, when the disappearance of S-isotope mass-independent fractionation first indicates O2 levels consistently greater than 10-5 times present atmospheric level (e.g., Bekker et al., 2004). We interpret these data in the context of paleoredox indicators for ocean chemistry (Fe speciation analysis), further allowing us to explore changes in the N cycle under evolving environmental conditions. Our data show unusually 15N-depleted values (down to -13‰) at the bottom of the stratigraphic succession, in sediments deposited under a water column with dynamic redox conditions that fluctuated between oxic, ferruginous, and sulfidic states (possibly related to a shifting chemocline). The δ15N values increase dramatically (up to +14‰) across the boundary between the Rooihoogte and Timeball Hill formations, before settling to near modern values (+6‰) in sediments that were deposited under persistently oxygenated waters. We suggest that this record reflects the permanent onset of the oxidative N cycle (nitrification), which would have produced sufficient oxidized N compounds to establish denitrification and anammox as the dominant controls on δ15N values of marine organic matter. We also estimate the N fluxes required to produce this record using a global marine nitrogen

  14. Solar cycle variation of thermospheric nitric oxide at solstice

    NASA Technical Reports Server (NTRS)

    Gerard, J.-C.; Fesen, C. G.; Rusch, D. W.

    1990-01-01

    A coupled, two-dimensional, chemical-diffusive model of the thermosphere is used to study the role of solar activity in the global distribution of nitric oxide. The model calculates self-consistently the zonally averaged temperature, circulation, and composition for solstice under solar maximum and solar minimum conditions. A decrease of the NO density by a factor of three to four in the E region is predicted from solar maximum to solar minimum. It is found that the main features of the overall morphology and the changes induced by the solar cycle are well reproduced in the model, although some details are not satisfactorily predicted. The sensitivity of the NO distribution to eddy transport and to the quenching of metastable N(2D) atoms by atomic oxygen is also described.

  15. Cycle Simulation of HotWater Fired Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Esaki, Shuji; Iramina, Kazuyasu; Kobayashi, Takahiro; Ohnou, Masayuki; Kaneko, Toshiyuki; Soga, Takashi

    The design limits were examined to determine the lowest temperature for hot water that can be used as a heat source to drive a hot water fired absorption chiller. Advantage was taken of the fact that the cycle calculation method using the minimum temperature difference is quite effective. This minimum temperature difference was the lower of the two temperature differences used to get the logarithmic mean temperature difference that need to design the evaporator, absorber, condenser and generator in an absorption refrigerator. This report proposes a new solution algorithm employing this minimum temperature difference to make a cycle simulation of the hot water fired absorption chiller. It shows the lowest usable temperature for hot water and makes clear the chilled water and cooling water temperature conditions that can provide the lowest temperature.

  16. Water oxidation chemistry of photosystem II

    PubMed Central

    Brudvig, Gary W

    2007-01-01

    Photosystem II (PSII) uses light energy to split water into protons, electrons and O2. In this reaction, nature has solved the difficult chemical problem of efficient four-electron oxidation of water to yield O2 without significant amounts of reactive intermediate species such as superoxide, hydrogen peroxide and hydroxyl radicals. In order to use nature's solution for the design of artificial catalysts that split water, it is important to understand the mechanism of the reaction. The recently published X-ray crystal structures of cyanobacterial PSII complexes provide information on the structure of the Mn and Ca ions, the redox-active tyrosine called YZ and the surrounding amino acids that comprise the O2-evolving complex (OEC). The emerging structure of the OEC provides constraints on the different hypothesized mechanisms for O2 evolution. The water oxidation mechanism of PSII is discussed in the light of biophysical and computational studies, inorganic chemistry and X-ray crystallographic information. PMID:17954436

  17. Water Decontamination With New Porous Oxide Photocatalysts

    NASA Astrophysics Data System (ADS)

    Zarei Chaleshtori, M.; Saupe, G. B.

    2008-12-01

    Water pollution is major environmental problem worldwide. Many common industrial organic compounds that make their way into water systems can be carcinogenic at trace levels and are difficult and costly to remove completely with conventional technologies. Heterogeneous photocatalysts like titanium dioxide have the potential to completely mineralize organic compounds in water under ultraviolet light. We are proposing to develop new porous oxide semiconductor materials made up of titanium and niobium mixed oxide nanocomposites. The porous catalysts retain high catalytic activity while being easy to handle and filter out of product streams. New synthetic methods are to be developed that optimize physical properties and the catalyst's ability to photo-degrade organic contaminants in water.

  18. What regulates the annual cycle of stratospheric water vapor?

    NASA Astrophysics Data System (ADS)

    Jucker, Martin; Gerber, Edwin

    2015-04-01

    Stratospheric water vapor is a potent greenhouse gas and active chemical tracer. Most of the stratosphere is well below saturation due to freeze drying at the tropical cold point -- the coldest region of the lower stratosphere where most air enters the middle atmosphere. The leading mode of variability of the tropical cold point is an annual cycle, despite the semi-annual cycle of radiative forcing in the tropics. This causes the stratospheric water vapor mixing ratio to follow a similar annual cycle, even remotely from the entry point, the so-called tape recorder. We develop an idealized GCM to investigate the origin of the annual cycle in the tropical cold point, with a particular focus on the interaction between dynamics and radiation. By varying the surface conditions of the model, we first show that planetary scale asymmetries in the midlatitude troposphere drive the annual cycle in the cold point. Both large scale topography and land sea contrast are important, influencing synoptic and planetary scale wave forcing. We then probe the impact of water vapor on the stratospheric circulation by comparing fully interactive integrations of the model to companion integrations where the coupling between the circulation and water vapor is disconnected. Our findings have implications in estimating the impacts of stratospheric water vapor feedbacks on decadal time scales and sensitivities to climate change.

  19. Modeling and remote sensing of human induced water cycle change

    NASA Astrophysics Data System (ADS)

    Pokhrel, Yadu N.

    2016-04-01

    The global water cycle has been profoundly affected by human land-water management especially during the last century. Since the changes in water cycle can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to account for human land-water management in land surface models (LSMs) which are used for water resources assessment and to simulate the land surface hydrologic processes within Earth system models (ESMs). During the last two decades, noteworthy progress has been made in modeling human impacts on the water cycle but sufficient advancements have not yet been made, especially in representing human factors in large-scale LSMs toward integrating them into ESMs. In this study, an integrated modeling framework of continental-scale water cycle, with explicit representation of climate and human induced forces (e.g., irrigation, groundwater pumping) is developed and used to reconstruct the observed water cycle changes in the past and to attribute the observed changes to climatic and human factors. The new model builds upon two different previously developed models: a global LSM called the Human Impacts and GroundWater in the MATSIRO (HiGW-MAT) and a high-resolution regional groundwater model called the LEAF-Hydro-Flood. The model is used to retro-simulate the hydrologic stores and fluxes in close dialogue with in-situ and GRACE satellite based observations at a wide range of river basin scales around the world, with a particular focus on the changes in groundwater dynamics in northwest India, Pakistan, and the High Plains and Central Valley aquifers in the US.

  20. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.

    PubMed

    Emerson, David; Scott, Jarrod J; Benes, Joshua; Bowden, William B

    2015-12-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long -149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  1. Microbial Iron Oxidation in the Arctic Tundra and Its Implications for Biogeochemical Cycling

    PubMed Central

    Scott, Jarrod J.; Benes, Joshua; Bowden, William B.

    2015-01-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  2. Seasonal cycles of mitochondrial ADP sensitivity and oxidative capacities in trout oxidative muscle.

    PubMed

    Guderley, H; St Pierre, J

    1999-10-01

    Mitochondria from red myotomal muscle of rainbow trout, Oncorhynchus mykiss, showed seasonal cycles of their maximal rates of substrate oxidation (nmol.min-1 mg-1 mitochondrial protein) and their apparent ADP affinity (Kmapp), as well as in the thermal sensitivity of these properties. Increases in the maximal capacity of pyruvate oxidation were sufficient to compensate for seasonal changes in temperature, except during the winter months when rates at habitat temperature were depressed relative to other periods. The ADP affinity of isolated mitochondria was highest during cold months. Thus, the Kmapp for ADP at habitat temperature showed less seasonal variation than the ADP Kmapp at a given temperature. A loss in ADP affinity with decreasing temperature occurred through much of the year, and only was definitively suppressed in December and July. Both the ADP affinity and the maximal oxidative capacities of muscle mitochondria seem to be regulated parameters. PMID:10595316

  3. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  4. Supercritical water oxidation of landfill leachate

    SciTech Connect

    Wang Shuzhong; Guo Yang; Chen Chongming; Zhang Jie; Gong Yanmeng; Wang Yuzhen

    2011-09-15

    Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

  5. Dynamic Kinetics of Nitrogen Cycle in Groundwater-Surface Water Interaction Zone at Hanford Site

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, C.; Liu, Y.; Xu, F.; Yan, A.; Shi, L.; Zachara, J. M.; Gao, Y.; Qian, W.; Nelson, W.; Fredrickson, J.; Zhong, L.; Thompson, C.

    2015-12-01

    Nitrogen cycle carried out by microbes is an important geobiological process that has global implications for carbon and nitrogen cycling and climate change. This presentation describes a study of nitrogen cycle in groundwater-surface water interaction zone (GSIZ) at the US Department of Energy's Hanford Site. Groundwater at Hanford sites has long been documented with nitrate contamination. Nearby Columbia River stage changes of up to 3 m every day because of daily discharge fluctuation from upstream Priest Rapids Dam; resulting an exchange of groundwater and surface water in a short time period. Yet, nitrogen cycle in the GSIZ at Hanford Site remains unclear. Column studies have been used to identify nitrogen metabolism pathways and investigate kinetics of nitrogen cycle in groundwater saturated zone, surface water saturated zone, and GSIZ. Functional gene and protein abundances were determined by qPCR and PRISM-SRM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing for sensitive selected reaction monitoring) to identify key enzymatic reactions and metabolic pathways of nitrogen cycle. The results showed that dissimilatory nitrate reduction to ammonium (DNRA) competed with denitrification under anaerobic conditions, reducing 30% of NO3- to NH4+, a cation strongly retained on the sediments. As dissolved oxygen intruded the anaerobic zone with river water, NH4+ was oxidized to NO3-, increasing the mobility of NO3-. Multiplicative Monod models were established to describe nitrogen cycle in columns fed with O2 depleted synthetic groundwater and O2 saturated synthetic river water, respectively. The two models were then coupled to predict the dynamic kinetics of nitrogen cycle in GSIZ.

  6. Dual-Templated Cobalt Oxide for Photochemical Water Oxidation.

    PubMed

    Deng, Xiaohui; Bongard, Hans-Josef; Chan, Candace K; Tüysüz, Harun

    2016-02-01

    Mesoporous Co3 O4 was prepared using a dual templating approach whereby mesopores inside SiO2 nanospheres, as well as the void spaces between the nanospheres, were used as templates. The effect of calcination temperature on the crystallinity, morphology, and textural parameters of the Co3 O4 replica was investigated. The catalytic activity of Co3 O4 for photochemical water oxidation in a [Ru(bpy)3 ](2+) [S2 O8 ](2-) system was evaluated. The Co3 O4 replica calcined at the lowest temperature (150 °C) exhibited the best performance as a result of the unique nanostructure and high surface area arising from the dual templating. The performance of Co3 O4 with highest surface area was further examined in electrochemical water oxidation. Superior activity over high temperature counterpart and decent stability was observed. Furthermore, CoO with identical morphology was prepared from Co3 O4 using an ethanol reduction method and a higher turnover-frequency number for photochemical water oxidation was obtained. PMID:26404798

  7. OXIDATION-REDUCTION POTENTIAL MEASUREMENTS OF IMPORTANT OXIDANTS IN DRINKING WATER

    EPA Science Inventory

    Oxidation-reduction (redox) reactions are important in drinking water treatment and distribution. Oxidation-reduction potential (ORP) measurements of water reflect the tendency of major constituents in the water to accept or lose electrons. Although ORP measurements are valuable...

  8. Method of removing oxidized contaminants from water

    DOEpatents

    Amonette, James E.; Fruchter, Jonathan S.; Gorby, Yuri A.; Cole, Charles R.; Cantrell, Kirk J.; Kaplan, Daniel I.

    1998-01-01

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).

  9. Method of removing oxidized contaminants from water

    DOEpatents

    Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.

    1998-07-21

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.

  10. Surface Proton Hopping and Coupling Pathway of Water Oxidation on Cobalt Oxide Catalyst

    NASA Astrophysics Data System (ADS)

    Pham, Hieu; Cheng, Mu-Jeng; Frei, Heinz; Wang, Lin-Wang

    We propose an oxidation pathway of water splitting on cobalt oxide surface with clear thermodynamic and kinetic details. The density-functional theory studies suggest that the coupled proton-electron transfer is not necessarily sequential and implicit in every elementary step of this mechanistic cycle. Instead, the initial O-O bond could be formed by the landing of water molecule on the surface oxos, which is then followed by the dispatch of protons through the hopping manner and subsequent release of di-oxygen. Our theoretical investigations of intermediates and transition states indicate that all chemical conversions in this pathway, including the proton transfers, are possible with low activation barriers, in addition to their favorable thermodynamics. Our hypothesis is supported by recent experimental observations of surface superoxide that is stabilized by hydrogen bonding to adjacent hydroxyl group, as an intermediate on fast-kinetics catalytic site.

  11. DIURNAL CYCLE OF PRECIPITABLE WATER VAPOR OVER SPAIN

    SciTech Connect

    Ortiz de Galisteo, J. P.; Cachorro, V. E.; Toledano, C.; Torres, B.; Laulainen, Nels S.; Bennouna, Yasmine; de Frutos, A. M.

    2011-05-20

    Despite the importance of the diurnal cycle of precipitable water vapor (PWV), its knowledge is very limited due to the lack of data with sufficient temporal resolution. Currently, from GPS receivers, PWV can be obtained with high temporal resolution in all weather conditions for all hours of the day. In this study we have calculated the diurnal cycle of PWV for ten GPS stations over Spain. The minimum value is reached approximately at the same time at all the stations, ~0400-0500 UTC, whereas the maximum is reached in the second half of the day, but with a larger dispersion of its occurrence between stations. The amplitude of the cycle ranges between 0.72 mm and 1.78 mm. The highest values are recorded at the stations on the Mediterranean coast, with a doubling of the values of the stations on the Atlantic coast or inland. The amplitude of the PWV cycle, relative to the annual mean value, ranges between 8.8 % on the Mediterranean coast and 3.6 % on the Atlantic coast. Two distinctly different seasonal diurnal cycles have been identified, one in winter and other in summer, with spring and autumn being only transition states. The winter cycle is quite similar at all locations, whereas in summer, local effects are felt strongly, making the diurnal cycle quite different between stations. The amplitude of the summer cycle is 1.69 mm, it is almost double the winter one (0.93 mm). Analogous to the annual cycles, the seasonal cycles of the different stations are more similar during the night and early morning hours than during the afternoon. The observed features of the PWV diurnal cycle are explained in a qualitative way on the basis of the air temperature, the transport of moisture by local winds, and the turbulent vertical mixing.

  12. Nature and Stability of the Martian Seasonal Water Cycle

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.; Wilson, R. J.

    2001-12-01

    Which components control the contemporary water cycle and what is the nature of the control mechanisms? These questions are at the heart of understanding how the Martian exchangeable water budget adjusts to perturbations and changes in the climate system. Analysis of a water cycle model embedded in the GFDL Mars GCM provides a paradigm for the water cycle as a feedback system, providing information on the important control points and response times. Much information on this system derives from monitoring the evolution towards steady state--one that resembles the observed water vapour and ice cloud distributions. The most important exchange balance in the system is that between the northern polar atmosphere and the rest of the planet. As the major net source for water, the northern residual water ice cap is active during summer, in the window of time between the sublimation and recondensation of the seasonal CO2 cap. At this time, water is exported from the northern polar atmosphere at a rate determined by the mixing capacity of the atmosphere and the amount of water held in the polar atmosphere. The latter is determined by the cap surface temperature. During the remainder of the year, water is returned to the pole. This return flux is determined by the atmospheric mixing capacity and the amount of water vapour held in the tropical and winter extratropical atmosphere. Steady-state is achieved when these fluxes balance. For a given climate state (and a roughly repeatable annual cycle of mixing), the outflux and influx of polar water are controlled by separate variables. Holding the cap temperature constant, the outflux will remain constant. Any perturbation to the global water budget will result in a change in the return flux that tends to oppose the sense of the perturbation--the perturbation will be damped. In the same way, a change in cap temperature (e.g. associated with a change in albedo) will result in changed water outflow. Again, this will tend to change the

  13. Incomplete Denitrification Causes Rapid Nitrous Oxide Cycling in the Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Babbin, A. R.; Ward, B. B.; Stocker, R.

    2015-12-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a major cause of stratospheric ozone depletion, yet its sources and sinks remain poorly quantified in the oceans. We used isotope tracers to directly measure N2O reduction rates in the eastern tropical North Pacific. Because of incomplete denitrification, N2O cycling rates are an order of magnitude higher than predicted by current models in suboxic regions, and the spatial distribution suggests strong dependence on both organic carbon and dissolved oxygen concentrations. Furthermore, N2O turnover is 20 times higher than the net atmospheric efflux. The rapid rate of this cycling coupled to an expected expansion of suboxic ocean waters implies future increases in N2O emissions.

  14. Concerted hydrogen-atom abstraction in photosynthetic water oxidation.

    PubMed

    Westphal, K L; Tommos, C; Cukier, R I; Babcock, G T

    2000-06-01

    Photosystem II evolves oxygen by using water in the unlikely role of a reductant. The absorption of sunlight by chlorophyll produces highly oxidizing equivalents that are filled with electrons stripped from water. This proton-coupled redox chemistry occurs at the oxygen-evolving complex, which contains a tetramanganese cluster, a redox-active tyrosine amino acid hydrogen-bonded to a histidine amino acid, a calcium ion and chloride. Hydrogen-atom abstraction by the tyrosyl radical from water bound to the manganese cluster is now widely held to occur in this process, at least for some of the steps in the catalytic cycle. We discuss kinetic and energetic constraints on the hydrogen-atom abstraction process. PMID:10837268

  15. Nano-sized layered Mn oxides as promising and biomimetic water oxidizing catalysts for water splitting in artificial photosynthetic systems.

    PubMed

    Najafpour, Mohammad Mahdi; Heidari, Sima; Amini, Emad; Khatamian, Masoumeh; Carpentier, Robert; Allakhverdiev, Suleyman I

    2014-04-01

    One challenge in artificial photosynthetic systems is the development of artificial model compounds to oxidize water. The water-oxidizing complex of Photosystem II which is responsible for biological water oxidation contains a cluster of four Mn ions bridged by five oxygen atoms. Layered Mn oxides as efficient, stable, low cost, environmentally friendly and easy to use, synthesize, and manufacture compounds could be considered as functional and structural models for the site. Because of the related structure of these Mn oxides and the catalytic centre of the active site of the water oxidizing complex of Photosystem II, the study of layered Mn oxides may also help to understand more about the mechanism of water oxidation by the natural site. This review provides an overview of the current status of layered Mn oxides in artificial photosynthesis and discuss the sophisticated design strategies for Mn oxides as water oxidizing catalysts. PMID:24727405

  16. BioCycle study: design of the longitudinal study of the oxidative stress and hormone variation during the menstrual cycle

    PubMed Central

    Wactawski-Wende, Jean; Schisterman, Enrique F.; Hovey, Kathleen M.; Howards, Penelope P.; Browne, Richard W.; Hediger, Mary; Liu, Aiyi; Trevisan, Maurizio

    2009-01-01

    Summary Studies in both human and animal species have suggested that oxidative stress may be associated with health outcomes, including the risk of infertility in both males and females. Sex hormones have been shown to have antioxidant properties. The difficulty in studying the role of oxidative stress in females is partly due to fluctuation in these endogenous sex hormones across the menstrual cycle. The aim of this study was to determine the association of oxidative stress levels with endogenous reproductive hormone levels and antioxidants, including vitamin levels, across the menstrual cycle in a prospective cohort of premenopausal women. The goal was to enrol 250 healthy, regularly menstruating premenopausal women for two menstrual cycles. Participants visited the clinic up to 8 times per cycle, at which time blood and urine were collected. The visits occurred at key hormonally defined phases of the menstrual cycle, with the help of an algorithm based on cycle length and data from a fertility monitor. In addition, participants were administered standardised questionnaires, had various physical measures taken, and had other pertinent data collected. A total of 259 women were enrolled in this study, with 250 completing two cycles, despite a demanding study protocol which participants were required to follow. This report describes the study design, baseline characteristics and visit completion rate for the BioCycle study. PMID:19159403

  17. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Hidalgo-Martinez, Silvia; Meysman, Filip J. R.

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly discovered microbial process, referred to as electrogenic sulfide oxidation (e-SOx), may alter elemental cycling in sediments, but the nature and rates of the resulting biogeochemical transformations and their influence on benthic-pelagic coupling remain largely unknown. Here we quantify changes in sediment geochemistry and solute fluxes at the sediment-water interface as e-SOx develops and declines over time in laboratory incubations of organic-rich sediments from a seasonally hypoxic coastal basin (Marine Lake Grevelingen, The Netherlands). Our results show that e-SOx enhanced sediment O2 consumption and acidified subsurface sediment, resulting in the dissolution of calcium carbonate and iron sulfide minerals in deeper sediment horizons and the associated accumulation of dissolved iron, manganese, and calcium in porewater. Remobilized Fe diffusing upward was reoxidized at the sediment-water interface, producing an amorphous Fe oxide crust, while dissolved Fe diffusing downward was reprecipitated in the form of FeS as it encountered the free sulfide horizon. The development of e-SOx enhanced the diffusive release of dissolved Mn at the sediment-water interface, capped the phosphate efflux, generated a buildup of organic matter in surface sediments, and strongly stimulated the release of alkalinity from the sediment. About 75% of this alkalinity production was associated with net CaCO3 dissolution, while the remaining 25% was attributed to a pumping mechanism that transfers alkalinity from anodic H2S oxidation (an alkalinity sink) in deeper sediments to cathodic O2 reduction (an alkalinity source) near the sediment-water interface. The resulting sediment alkalinity

  18. Land surface water cycles observed with satellite sensors

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Njoku, E. G.; Brakenridge, G. R.; Kim, Y.

    2005-01-01

    Acceleration of the global water cycle may lead to increased global precipitation, faster evaporation and a consequent exacerbation of hydrologic extreme. In the U.S. national assessment of the potential consequences of climate variability and change, two GCMs (CGCM1 and HadCM2) show a large increase in precipitation in the future over the southwestern U.S. particularly during winter (Felzer and Heard, 1999). Increased precipitation potentially has important impacts on agricultural and water use in the southeast U.S. (Hatch et al., 1999) and in the central Great Plains (Nielsen, 1997). A hurricane model predicts a 40% precipitation increase for severe hurricanes affecting southeastern Florida, which provokes substantially greater flooding that could negate most of the benefits of present water-management practices in this basin (Gutowski et al., 1994). Thus, it is important to observe the hydroclimate on a continuous longterm basis to address the question of increased precipitation in the enhanced water cycle.

  19. Super critical water oxidation on energetic materials

    SciTech Connect

    Sanchez, J.A.

    1993-01-01

    Supercritical water oxidation (SCWO) is an innovative process for the destruction of hazardous wastes that occurs above the critical temperature and pressure of water. In this paper we present results for the oxidation of simple organic wastes and the destruction of explosives. We have tested a 50 gal./day mobile tubular reactor using both acetone and hexane as surrogate aqueous wastes in reaction with excess oxygen. For acetone, our results indicate that the fuel and oxidant can be conveniently premixed before heating and the acetone effectively destroyed (>99.999%). By contrast, hexane, and likely other insoluble flammable organics must be separately preheated to above the critical temperature of water to avoid detonation. With regards to the treatment of explosives, we have demonstrated detection-sensitivity-limited destruction (typically >99.9%) of five explosives, HMX, RDX, TNT, NQ, and PETN, in a smaller scale SCWO reactor. Two alternative methods of increasing processing throughput for explosives, which have very low solubility in water at room temperature, were also investigated. They are the use of slurries and the SCWO postprocessing of the products of explosives hydrolyzed in low-temperature, basic solutions.

  20. Biotransformations Utilizing β-Oxidation Cycle Reactions in the Synthesis of Natural Compounds and Medicines

    PubMed Central

    Œwizdor, Alina; Panek, Anna; Milecka-Tronina, Natalia; Kołek, Teresa

    2012-01-01

    β-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the β-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via β-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described. PMID:23443116

  1. Biotransformations utilizing β-oxidation cycle reactions in the synthesis of natural compounds and medicines.

    PubMed

    Swizdor, Alina; Panek, Anna; Milecka-Tronina, Natalia; Kołek, Teresa

    2012-01-01

    β-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the β-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via β-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described. PMID:23443116

  2. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation

    NASA Astrophysics Data System (ADS)

    Daines, Stuart J.; Lenton, Timothy M.

    2016-01-01

    The balance of evidence suggests that oxygenic photosynthesis had evolved by 3.0-2.7 Ga, several hundred million years prior to the Great Oxidation ≈2.4 Ga. Previous work has shown that if oxygenic photosynthesis spread globally prior to the Great Oxidation, this could have supported widespread aerobic ecosystems in the surface ocean, without oxidising the atmosphere. Here we use a suite of models to explore the implications for carbon cycling and the Great Oxidation. We find that recycling of oxygen and carbon within early aerobic marine ecosystems would have restricted the balanced fluxes of methane and oxygen escaping from the ocean, lowering the atmospheric concentration of methane in the Great Oxidation transition and its aftermath. This in turn would have minimised any bi-stability of atmospheric oxygen, by weakening a stabilising feedback on oxygen from hydrogen escape to space. The result would have been a more reversible and probably episodic rise of oxygen at the Great Oxidation transition, consistent with existing geochemical evidence. The resulting drop in methane levels to ≈10 ppm is consistent with climate cooling at the time but adds to the puzzle of what kept the rest of the Proterozoic warm. A key test of the scenario of abundant methanotrophy in oxygen oases before the Great Oxidation is its predicted effects on the organic carbon isotope (δ13Corg) record. Our open ocean general circulation model predicts δC13org ≈ - 30 to -45‰ consistent with most data from 2.65 to 2.45 Ga. However, values of δC13org ≈ - 50 ‰ require an extreme scenario such as concentrated methanotroph production where shelf-slope upwelling of methane-rich water met oxic shelf water.

  3. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions

  4. Waste disposal from the light water reactor fuel cycle

    NASA Astrophysics Data System (ADS)

    Costello, J. M.; Hardy, C. J.

    1981-05-01

    Alternaive nuclear fuel cycles for support of light water reactors are described and wastes containing naturally occurring or artificially produced radioactivity reviewed. General principles and objectives in radioactive waste management are outlined, and methods for their practical application to fuel cycle wastes discussed. Management of wastes from upgrading processes of uranium hexafluoride manufacture and uranium manufacture and enrichment, and, to a lesser extent, nuclear power reactor wastes are discussed. Some estimates of radiological dose commitments and health effects from nuclear power and fuel cycle wastes were made for US conditions. These indicate that the major part of the radiological dose arises from uranium mining and milling, operation of nuclear reactors, and spent fuel reprocessing. However, the total dose from the fuel cycle is estimated to be only a small fraction of that from natural background radiation.

  5. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  6. Multimodal Science Teachers' Discourse in Modeling the Water Cycle

    ERIC Educational Resources Information Center

    Marquez, Conxita; Izquierdo, Merce; Espinet, Mariona

    2006-01-01

    The paper presents an intensive study of a micro-event aiming at the characterization of teacher's discourse from a multimodal communication perspective in a secondary school science classroom dealing with the topic of "water cycle." The research addresses the following questions: (a) What communicative modes are used by the teacher?, (b) what…

  7. Greenlighting photoelectrochemical oxidation of water by iron oxide.

    PubMed

    Kim, Dong Wook; Riha, Shannon C; DeMarco, Erica J; Martinson, Alex B F; Farha, Omar K; Hupp, Joseph T

    2014-12-23

    Hematite (α-Fe2O3) is one of just a few candidate electrode materials that possess all of the following photocatalyst-essential properties for scalable application to water oxidation: excellent stability, earth-abundance, suitability positive valence-band-edge energy, and significant visible light absorptivity. Despite these merits, hematite's modest oxygen evolution reaction kinetics and its poor efficiency in delivering photogenerated holes, especially holes generated by green photons, to the electrode/solution interface, render it ineffective as a practical water-splitting catalyst. Here we show that hole delivery and catalytic utilization can be substantially improved through Ti alloying, provided that the alloyed material is present in ultrathin-thin-film form. Notably, the effects are most pronounced for charges photogenerated by photons with energy comparable to the band gap for excitation of Fe(3d)→Fe(3d) transitions (i.e., green photons). Additionally, at the optimum Ti substitution level the lifetimes of surface-localized holes, competent for water oxidation, are extended. Together these changes explain an overall improvement in photoelectrochemical performance, especially enhanced internal quantum efficiencies, observed upon Ti(IV) incorporation. PMID:25414974

  8. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  9. Water oxidation chemistry of photosystem II.

    PubMed Central

    Vrettos, John S; Brudvig, Gary W

    2002-01-01

    The O(2)-evolving complex of photosystem II catalyses the light-driven four-electron oxidation of water to dioxygen in photosynthesis. In this article, the steps leading to photosynthetic O(2) evolution are discussed. Emphasis is given to the proton-coupled electron-transfer steps involved in oxidation of the manganese cluster by oxidized tyrosine Z (Y(*)(Z)), the function of Ca(2+) and the mechanism by which water is activated for formation of an O-O bond. Based on a consideration of the biophysical studies of photosystem II and inorganic manganese model chemistry, a mechanism for photosynthetic O(2) evolution is presented in which the O-O bond-forming step occurs via nucleophilic attack on an electron-deficient Mn(V)=O species by a calcium-bound water molecule. The proposed mechanism includes specific roles for the tetranuclear manganese cluster, calcium, chloride, Y(Z) and His190 of the D1 polypeptide. Recent studies of the ion selectivity of the calcium site in the O(2)-evolving complex and of a functional inorganic manganese model system that test key aspects of this mechanism are also discussed. PMID:12437878

  10. Membranes and the water cycle: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Fane, A. G.

    2011-09-01

    Membrane technology for the water cycle has been around for about 50 years and is taking an increasingly important role in the provision of safe water supply and treatment and reuse of wastewater. It is timely to examine the challenges and the future of the technology. The challenges are both technical and socio-political and they provide the drivers for new developments. This paper summarizes the status of membranes in the water industry and discusses the major challenges and possible responses that will determine the possible futures.

  11. The water and energy cycles in an upcoming NASA reanalysis

    NASA Astrophysics Data System (ADS)

    Chen, J.; Bosilovich, M. G.

    2008-05-01

    Global water and energy cycles are tightly related and critical components of the Earth climate system. In current assimilation systems, model output is only locally constrained by available observations, which are always uncompleted and contaminated by random error and biases. Thus the global water and energy balances are good yet high standard indicators of the performance of an assimilation system. In this study, we use several independent observed datasets to evaluate the water and energy cycles in an upcoming NASA global reanalysis, the Modern Era Retrospective-analysis for Research and Applications (MERRA) based on NASA GEOS-5 data assimilation system. The observed datasets include CERES ERBE-like TOA radiation fluxes, GPCP precipitation, CMAP precipitation etc. Comparison with other reanalyses will also be given.

  12. Intense nitrogen cycling in permeable intertidal sediment revealed by a nitrous oxide hot spot

    NASA Astrophysics Data System (ADS)

    Schutte, Charles A.; Joye, Samantha B.; Wilson, Alicia M.; Evans, Tyler; Moore, Willard S.; Casciotti, Karen

    2015-10-01

    Approximately 40% of the total global rate of nitrogen fixation is the result of human activities, and most of this anthropogenic nitrogen is used to fertilize agricultural fields. Approximately 23% of the applied agricultural nitrogen is delivered to the coastal zone, often reducing water quality and driving eutrophication. Nitrogen cycling in coastal sediments can mitigate eutrophication by removing bioavailable nitrogen. However, some of these processes generate nitrous oxide, a potent greenhouse gas, as a by-product. Here we report the discovery of a nitrous oxide production hot spot in shallow barrier island sands. Nitrous oxide concentrations, production and consumption rates, vertical diffusion fluxes, and flux to the atmosphere were measured across triplicate depth profiles. Using a mass balance approach, rates of net nitrous oxide production were estimated to be 40 µmol m-2 d-1. This production was driven by a hot spot of nitrate consumption that removed bioavailable nitrogen from the coastal environment at a rate of 10 mmol m-2 d-1, a rate that is comparable with the highest rates of denitrification reported for coastal sediments.

  13. Solar Cycle comparison of Nitric Oxide in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Carstens, P. L.; Bailey, S. M.; Thurairajah, B.; Yonker, J. D.; Venkataramani, K.; Russell, J. M.; Hervig, M. E.

    2013-12-01

    Nitric oxide (NO) is a key minor constituent in the lower thermosphere. Of particular importance is its role in the energy balance in that altitude region. NO is produced through the reaction of excited atomic nitrogen with molecular oxygen. Thus, its production is very sensitive to those energy sources able to break the strong molecular nitrogen bond. These include solar soft X-rays and precipitating energetic particles. NO emits efficiently in the infrared and is an important cooling mechanism in the lower thermosphere. The abundance of NO is thus both a direct response to recent energy deposition as well as a key mechanism by which the upper atmosphere releases that energy. The concentration of NO should show a close relation to solar energy input. In this poster, we analyze the NO observations from the Solar Occultation for Ice Experiment (SOFIE) instrument. The SOFIE instrument was launched on-board the Aeronomy of Ice in the Mesosphere (AIM) satellite on April 25, 2007. It is currently in its sixth year of operation. SOFIE is a 16 channel differential absorption radiometer using the solar occultation technique to measure ice and environmental properties at a range of altitudes, and in particular the mesopause region. One of the constituents measured by SOFIE is NO in the mesosphere and lower thermosphere to about 130 km. The AIM orbit and the solar occultation technique confine observations to latitudes of 65 to 85 degrees in each hemisphere and varying with season. Here, we present the SOFIE observations and discuss its relationship with current levels of solar X-ray irradiance. We will further estimate the change in NO concentration (mixing ratios and densities) for the previous and current solar minimum. The statistics for this change will be presented for northern, equatorial and southern latitudes. We take the period of Jul 2008 - Jun 2009 to represent the current solar minimum between the solar cycles 23 and 24 and the period of Jan - Dec 1996 to

  14. Enhanced Oxidation Catalysts for Water Reclamation

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.

    1999-01-01

    This effort seeks to develop and test high-performance, long operating life, physically stable catalysts for use in spacecraft water reclamation systems. The primary goals are to a) reduce the quantity of expendable water filters used to purify water aboard spacecraft, b) to extend the life of the oxidation catalysts used for eliminating organic contaminants in the water reclamation systems, and c) reduce the weight/volume of the catalytic oxidation systems (e.g. VRA) used. This effort is targeted toward later space station utilization and will consist of developing flight-qualifiable catalysts and long-term ground tests of the catalyst prior to their utilization in flight. Fixed -bed catalytic reactors containing 5% platinum on granular activated carbon have been subjected to long-term dynamic column tests to measure catalyst stability vs throughput. The data generated so far indicate that an order of magnitude improvement can be obtained with the treated catalysts vs the control catalyst, at only a minor loss (approx 10%) in the initial catalytic activity.

  15. Use of Copper Oxide Nanoparticles for the Oxidative Degradation of Persistent Organic Water Pollutants

    NASA Astrophysics Data System (ADS)

    Dror, I.; Ben Moshe, T.; Berkowitz, B.

    2008-12-01

    The continuous release of persistent organic chemicals such as pesticides, halogenated organic solvents, PAHs, and PCBs to the subsurface environment is an unfortunate reality. These compounds are recognized as toxic, and often carcinogenic and/or mutagenic, and they thus require highly efficient treatment procedures in aqueous systems. The current study presents an oxidation process, to decontaminate polluted water, using nanosized copper oxide particles as the catalyst and hydrogen peroxide as the oxidation agent. The process shows complete and rapid degradation of a wide range of organic contaminants under ambient pressure and temperature. In contrast, control runs that measured the degradation through exposure to hydrogen peroxide only or copper oxide nanoparticles only showed less than 10% reduction in contaminant concentration, as compared to the complete degradation achieved when particles and oxidation agent were used. Lack of exposure to light and the method of mixing seem to have no influence on the reaction rate or products. The reaction was found to proceed effectively in the range pH 3-8.5, and much slower at pH 10. Testing various concentrations of oxidation agent, an optimum point was found, with an increase above this concentration resulting in a reduced reaction rate. Moreover, measurements of reaction kinetics demonstrated a conversion from exponential decay of a contaminant, typical of a first-order reaction, to a linear decrease in contaminant concentration which is typical of a pseudo-zero-order reaction. This behavior indicates that upon increase in oxidation agent concentration, a different reaction pathway which is independent of the contaminant concentration becomes the prevailing process. The copper oxide nanoparticles were characterized before and after the reaction, and also shown to retain reactivity for several cycles after refreshing the contaminant solution and adding more hydrogen peroxide.

  16. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    PubMed Central

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-01-01

    Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns. PMID:26487088

  17. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Ho; Wang, S.-Y. Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-10-01

    Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.

  18. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming.

    PubMed

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J

    2015-01-01

    Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns. PMID:26487088

  19. Water oxidation reaction in natural and artificial photosynthetic systems

    SciTech Connect

    Yano, Junko; Yachandra, Vittal

    2013-12-10

    Understanding the structure and mechanism of water oxidation catalysts is an essential component for developing artificial photosynthetic devices. In the natural water oxidation catalyst, the geometric and electronic structure of its inorganic core, the Mn{sub 4}CaO{sub 5} cluster, has been studied by spectroscopic and diffraction measurements. In inorganic systems, metal oxides seem to be good candidates for water oxidation catalysts. Understanding the reaction mechanism in both natural and oxide-based catalysts will helpin further developing efficient and robust water oxidation catalysts.

  20. Nitrous Oxide Cycling and its Isotopic Signatures in South West Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Mullungal, M.; Van Hale, R.; Frew, R. D.; Law, C. S.

    2013-12-01

    Nitrous oxide (N2O) is a significant greenhouse gas and is also involved in ozone depletion. The contribution of N2O to both these processes is expected to increase this century. The ocean contributes about 30% to the atmospheric N2O budget so there is strong interest in the oceanic N2O cycle. In the ocean N2O is produced via a number of different processes (e.g. bacterial nitrification, and denitrification). While coastal regions are well-studied there are limited data available for open ocean N2O especially in the Southern Ocean, with few studies of the relative contribution of different bacterial processes. Here we apply new stable isotope techniques and present a detailed overview of the distribution and fate of dissolved nitrous oxide from sampling sites in the southwest Pacific Ocean near New Zealand. Samples for nitrous oxide and nutrients were collected along the depth profiles from two biophysical mooring stations (subtropical and sub- Antarctic), four Geotraces stations (GP13, subtropical Pacific) and two bloom voyage stations in the subtropical front and subtropical pacific waters. The N2O saturation ranged from near equilibrium with air at the surface to a maximum value in the oxygen minimum zone. Thus the surface water masses are not a significant sink or atmospheric source for N2O .Multi-isotope characterization of N2O including d15Nbulk, d18O, d15Nα and its site preference (SP, the difference between d15Nα and d15Nβ)indicates that nitrification is the primary process responsible for nitrous oxide production in oxic waters whereas coupling between nitrification and denitrification may be an important mechanism for production in the oxygen minimum zone with a minor contribution by nitrification.

  1. Change in Water Cycle- Important Issue on Climate Earth System

    NASA Astrophysics Data System (ADS)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  2. Water pulses and biogeochemical cycles in arid and semiarid ecosystems.

    PubMed

    Austin, Amy T; Yahdjian, Laura; Stark, John M; Belnap, Jayne; Porporato, Amilcare; Norton, Urszula; Ravetta, Damián A; Schaeffer, Sean M

    2004-10-01

    The episodic nature of water availability in arid and semiarid ecosystems has significant consequences on belowground carbon and nutrient cycling. Pulsed water events directly control belowground processes through soil wet-dry cycles. Rapid soil microbial response to incident moisture availability often results in almost instantaneous C and N mineralization, followed by shifts in C/N of microbially available substrate, and an offset in the balance between nutrient immobilization and mineralization. Nitrogen inputs from biological soil crusts are also highly sensitive to pulsed rain events, and nitrogen losses, particularly gaseous losses due to denitrification and nitrate leaching, are tightly linked to pulses of water availability. The magnitude of the effect of water pulses on carbon and nutrient pools, however, depends on the distribution of resource availability and soil organisms, both of which are strongly affected by the spatial and temporal heterogeneity of vegetation cover, topographic position and soil texture. The 'inverse texture hypothesis' for net primary production in water-limited ecosystems suggests that coarse-textured soils have higher NPP than fine-textured soils in very arid zones due to reduced evaporative losses, while NPP is greater in fine-textured soils in higher rainfall ecosystems due to increased water-holding capacity. With respect to belowground processes, fine-textured soils tend to have higher water-holding capacity and labile C and N pools than coarse-textured soils, and often show a much greater flush of N mineralization. The result of the interaction of texture and pulsed rainfall events suggests a corollary hypothesis for nutrient turnover in arid and semiarid ecosystems with a linear increase of N mineralization in coarse-textured soils, but a saturating response for fine-textured soils due to the importance of soil C and N pools. Seasonal distribution of water pulses can lead to the accumulation of mineral N in the dry season

  3. The influence of redox dynamics on nitrogen cycling and nitrous oxide emissions from soils

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Bellin, A.; Silver, W.

    2008-12-01

    Understanding the role of the nitrogen cycle in soil systems is of importance in many environmental applications (for example, minimizing greenhouse emissions). Soils are a dominant source of nitrous oxide N2O releasing an estimated 9.5 Tg N2O -N year-1 (65% of global emissions according to IPCC, 2001a). Further research is still needed to comprehend key drivers of N2O emissions from soils and its influencing factors. Amongst these factors, water content can be considered a crucial one since it modifies the ratio of N2O - N2 emissions and influences the rate of oxygen supply thus determining whether aerobic processes such as nitrification or anaerobic processes (i.e., denitrification) becomes dominant within the soil. Also, water content is linked to dissolved oxygen and to redox potential, which regulate microbial metabolism and chemical transformations in the environment. Investigating the interplay between these physical and chemical factors is needed to comprehend the nitrogen cycle at the catchment scale. The importance of soil moisture in the nitrogen cycle has already been investigated, however only few works are focusing on water content dynamics. To our knowledge, there are no studies that investigate N-emission under realistic rain conditions as well as linking soil moisture dynamics to nitrate ammonification (also known as DNRA) along the soil profile. The purpose of this study is thus to analyze if there are existing conditions in which an equivalent soil moisture value can be used in predictive models operating at the daily scale. Solving this problem is interesting as a failsafe feature in capabilities of the more complex system, as well as an improvement in understanding better the soil processes themselves. In the current work, we design an experimental soil column which allows one to relate water dynamics to gas emissions in a closed-controlled environment.

  4. Changes in continental Europe water cycle in a changing climate

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, Elham; Schirmer, Mario; Abbaspour, Karim

    2015-04-01

    Changes in atmospheric water vapor content provide strong evidence that the water cycle is already responding to a warming climate. According to IPCC's last report on Climate Change (AR5), the water cycle is expected to intensify in a warmer climate as the atmosphere can hold more water vapor. This changes the frequency of precipitation extremes, increases evaporation and dry periods, and effects the water redistribution in land. This process is represented by most global climate models (GCMs) by increased summer dryness and winter wetness over large areas of continental mid to high latitudes in the Northern Hemisphere, associated with a reduction in water availability at continental scale. Observing changes in precipitation and evaporation directly and at continental scale is difficult, because most of the exchange of fresh water between the atmosphere and the surface happens the oceans. Long term precipitation records are available only from over the land and there are no measurement of evaporation or redistribution of precipitation over the land area. On the other hand, understanding the extent of climate change effects on various components of the water cycle is of strategic importance for public, private sectors, and policy makers when it comes to fresh water management. In order to better understand the extent of climate change impacts on water resources of continental Europe, we developed a distributed hydrological model of Europe at high spatial and temporal resolution using the Soil and Water Assessment Tool (SWAT). The hydrological model was calibrated for 1970 to 2006 using daily observation of streamflow and nitrate loads from 360 gauging stations across Europe. A vegetation growth routine was added to the model to better simulate evapotranspiration. The model results were calibrated with available agricultural crop yield data from other sources. As of future climate scenarios, we used the ISI-MIP project results which provides bias-corrected climate

  5. Water Cycling in the North Polar Region of Mars

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Smith, M. D.; Bass, D. S.

    2003-01-01

    To date, there has been no comprehensive study to understand the partitioning of water into vapor and ice clouds, and the associated effects of dust and surface temperature in the north polar region. Ascertaining the degree to which water is transported out of the cap region versus within the cap region will give much needed insight into the overall story of water cycling on a seasonal basis. In particular, understanding the mechanism for the polar cap surface albedo changes would go along way in comprehending the sources and sinks of water in the northern polar region. We approach this problem by examining Thermal Emission Spectrometer (TES) atmospheric and surface data acquired in the northern summer season and comparing it to Viking data when possible. Because the TES instrument spans the absorption bands of water vapor, water ice, dust, and measures surface temperature, all three aerosols and surface temperature can be retrieved simultaneously. This presentation will show our latest results on the water vapor, water-ice clouds seasonal and spatial distributions, as well as surface temperatures and dust distribution which may lend insight into where the water is going.

  6. Supercritical water oxidation of products of human metabolism

    NASA Technical Reports Server (NTRS)

    Tester, Jefferson W.; Orge A. achelling, Richard K. ADTHOMASSON; Orge A. achelling, Richard K. ADTHOMASSON

    1986-01-01

    Although the efficient destruction of organic material was demonstrated in the supercritical water oxidation process, the reaction kinetics and mechanisms are unknown. The kinetics and mechanisms of carbon monoxide and ammonia oxidation in and reaction with supercritical water were studied experimentally. Experimental oxidation of urine and feces in a microprocessor controlled system was performed. A minaturized supercritical water oxidation process for space applications was design, including preliminary mass and energy balances, power, space and weight requirements.

  7. Diurnal Cycles in Water Quality Across the Periodic Table

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2013-12-01

    Diurnal cycles in water quality can provide important clues to the processes that regulate aquatic chemistry, but they often are masked by longer-term, larger-amplitude variability, making their detection and quantification difficult. Here I outline several methods that can detect diurnal cycles even when they are massively obscured by statistically ill-behaved noise. I demonstrate these methods using high-frequency water quality data from the Plylimon catchment in mid-Wales (Neal et al., 2013; Kirchner and Neal, 2013). Several aspects combine to make the Plynlimon data set unique worldwide. Collected at 7-hour intervals, the Plynlimon data set is much more densely sampled than typical long-term weekly or monthly water quality data. This 7-hour sampling was also continued for two years, much longer than typical intensive sampling campaigns, and the resulting time series encompass a wide range of climatic and hydrological conditions. Furthermore, each sample was analyzed for a wide range of solutes with diverse sources in the natural environment. However, the 7-hour sampling frequency is both coarse and irregular in comparison to diurnal cycles, making their detection and quantification difficult. Nonetheless, the methods outlined here enable detection of statistically significant diurnal cycles in over 30 solutes at Plynlimon, including alkali metals (Li, Na, K, Rb, and Cs), alkaline earths (Be, Mg, Ca, Sr, and Ba), transition metals (Al, Ti, Mn, Fe, Co, Ni, Zn, Mo, Cd, and Pb), nonmetals (B, NO3, Si, As, and Se), lanthanides and actinides (La, Ce, Pr, and U), as well as total dissolved nitrogen (TDN), dissolved organic carbon (DOC), Gran alkalinity, pH, and electrical conductivity. These solutes span every row of the periodic table, and more than six orders of magnitude in concentration. Many of these diurnal cycles are subtle, representing only a few percent, at most, of the total variance in the concentration time series. Nonetheless they are diagnostically

  8. Enhancing water cycle measurements for future hydrologic research

    USGS Publications Warehouse

    Loescher, H.W.; Jacobs, J.M.; Wendroth, O.; Robinson, D.A.; Poulos, G.S.; McGuire, K.; Reed, P.; Mohanty, B.P.; Shanley, J.B.; Krajewski, W.

    2007-01-01

    The Consortium of Universities for the Advancement of Hydrologic Sciences, Inc., established the Hydrologic Measurement Facility to transform watershed-scale hydrologic research by facilitating access to advanced instrumentation and expertise that would not otherwise be available to individual investigators. We outline a committee-based process that determined which suites of instrumentation best fit the needs of the hydrological science community and a proposed mechanism for the governance and distribution of these sensors. Here, we also focus on how these proposed suites of instrumentation can be used to address key scientific challenges, including scaling water cycle science in time and space, broadening the scope of individual subdisciplines of water cycle science, and developing mechanistic linkages among these subdisciplines and spatio-temporal scales. ?? 2007 American Meteorological Society.

  9. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  10. Water cycles in closed ecological systems: effects of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  11. Water cycles in closed ecological systems: effects of atmospheric pressure.

    PubMed

    Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems. PMID:12481804

  12. Effects of the Fabrication Process and Thermal Cycling on the Oxidation of Zirconium-Niobium Pressure Tubes

    NASA Astrophysics Data System (ADS)

    Nam, Cheol

    2009-12-01

    Pressure tubes made of Zr-2.5%Nb alloy are used to contain fuels and coolant in CANDU nuclear power reactors The pressure tube oxidizes during reactor operation and hydrogen ingress through the oxide grown on the tube limits its lifetime. Little attention was paid to the intermediate tube manufacturing processes in enhancing the oxidation resistance. In addition, the oxide grown on the tube experiences various thermal cycles depending on the reactor shutdown and startup cycles. To address these two aspects and to better understand the oxidation process of the Zr-2.5Nb tube, research was conducted in two parts: (i) effects of tube fabrication on oxidation behavior, and (ii) thermal cycling behaviors of oxides grown on a pressure tube. In the first part, the optimum manufacturing process was pursued to improve the corrosion resistance of Zr-2.5Nb tubes. Experimental micro-tubes were fabricated with various manufacturing routes in the stages of billet preparation, hot extrusion and cold drawing. These were oxidized in air at 400°C and 500°C, and in an autoclave at 360°C lithiated water. Microstructure and texture of the tubes and oxides were characterized with X-ray diffraction, scanning electron microscope and optical microscope. Special emphasis was given to examinations of the metal/oxide interface structures. A correlation between the manufacturing process and oxidation resistance was investigated in terms of tube microstructure and the metal/oxide interface structure. As a result, it was consistently observed that uniform interface structures were formed on the tubes which had a fine distribution of secondary phases. These microstructures were found to be beneficial in enhancing the oxidation resistance as opposed to the tubes that had coarse and continuous beta-Zr phases. Based on these observations, a schematic model of the oxidation process was proposed with respect to the oxidation resistance under oxidizing temperatures of 360°C, 400°C and 500°C. In

  13. Water defluoridation by aluminium oxide-manganese oxide composite material.

    PubMed

    Alemu, Sheta; Mulugeta, Eyobel; Zewge, Feleke; Chandravanshi, Bhagwan Singh

    2014-08-01

    In this study, aluminium oxide-manganese oxide (AOMO) composite material was synthesized, characterized, and tested for fluoride removal in batch experiments. AOMO was prepared from manganese(II) chloride and aluminium hydroxide. The surface area of AOMO was found to be 30.7m2/g and its specific density was determined as 2.78 g/cm3. Detailed investigation of the adsorbent by inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, and ion chromatography (for sulphate only) showed that it is composed of Al, Mn, SO4, and Na as major components and Fe, Si, Ca, and Mg as minor components. Thermogravimetric analysis was used to study the thermal behaviour of AOMO. X-ray diffraction analysis showed that the adsorbent is poorly crystalline. The point of zero charge was determined as 9.54. Batch experiments (by varying the proportion of MnO, adsorbent dose, contact time, initial F concentration, and raw water pH) showed that fluoride removal efficiency ofAOMO varied significantly with percentage of MnO with an optimum value of about I11% of manganese oxide in the adsorbent. The optimum dose of the adsorbent was 4 g/L which corresponds to the equilibrium adsorption capacity of 4.8 mg F-/g. Both the removal efficiency and adsorption capacity showed an increasing trend with an increase in initial fluoride concentration of the water. The pH for optimum fluoride removal was found to be in the range between 5 and 7. The adsorption data were analysed using the Freundlich, Langmuir, and Dubinirn-Radushkevich models. The minimum adsorption capacity obtained from the non-linear Freundlich isotherm model was 4.94 mg F-/g and the maximum capacity from the Langmuir isotherm method was 19.2mg F-/g. The experimental data of fluoride adsorption on AOMO fitted well to the Freundlich isotherm model. Kinetic studies showed that the adsorption is well described by a non-linear pseudo-second-order reaction model with an average rate constant of 3

  14. Hydrogen production by water decomposition using a combined electrolytic-thermochemical cycle

    NASA Technical Reports Server (NTRS)

    Farbman, G. H.; Brecher, L. E.

    1976-01-01

    A proposed dual-purpose power plant generating nuclear power to provide energy for driving a water decomposition system is described. The entire system, dubbed Sulfur Cycle Water Decomposition System, works on sulfur compounds (sulfuric acid feedstock, sulfur oxides) in a hybrid electrolytic-thermochemical cycle; performance superior to either all-electrolysis systems or presently known all-thermochemical systems is claimed. The 3345 MW(th) graphite-moderated helium-cooled reactor (VHTR - Very High Temperature Reactor) generates both high-temperature heat and electric power for the process; the gas stream at core exit is heated to 1850 F. Reactor operation is described and reactor innards are illustrated. A cost assessment for on-stream performance in the 1990's is optimistic.

  15. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote sources of water for precipitation, based on the implementation of passive constituent tracers of water vapor (termed water vapor tracers, WVT) in a general circulation model. In this case, the major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In this approach, each WVT is associated with an evaporative source region, and tracks the water until it precipitates from the atmosphere. By assuming that the regional water is well mixed with water from other sources, the physical processes that act on the WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be computed within the model simulation, and can be validated against the model's prognostic water vapor. Furthermore, estimates of precipitation recycling can be compared with bulk diagnostic approaches. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional tracers, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic 2 regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In

  16. DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR

    DOEpatents

    Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.

    1962-08-14

    A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)

  17. The nocturnal water cycle in an open-canopy forest

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M.; Hu, J.; Bailey, A.; Noone, D. C.; Still, C. J.; Barnard, H.; Gochis, D.; Hsiao, G. S.; Rahn, T.; Turnipseed, A.

    2013-09-01

    The movement of moisture into, out-of, and within forest ecosystems is modulated by feedbacks that stem from processes which couple plants, soil, and the atmosphere. While an understanding of these processes has been gleaned from Eddy Covariance techniques, the reliability of the method suffers at night because of weak turbulence. During the summer of 2011, continuous profiles of the isotopic composition (i.e., δ18O and δD) of water vapor and periodic measurements of soil, leaf, and precipitation pools were measured in an open-canopy ponderosa pine forest in central Colorado to study within-canopy nocturnal water cycling. The isotopic composition of the nocturnal water vapor varies significantly based on the relative contributions of the three major hydrological processes acting on the forest: dewfall, exchange of moisture between leaf waters and canopy vapor, and periodic mixing between the canopy and background air. Dewfall proved to be surprisingly common (˜30% of the nights) and detectable on both the surface and within the canopy through the isotopic measurements. While surface dew could be observed using leaf wetness and soil moisture sensors, dew in the foliage was only measurable through isotopic analysis of the vapor and often occurred even when no dew accumulated on the surface. Nocturnal moisture cycling plays a critical role in water availability in forest ecosystems through foliar absorption and transpiration, and assessing these dynamics, as done here, is necessary for fully characterizing the hydrological controls on terrestrial productivity.

  18. Climate change and the water cycle in newly irrigated areas.

    PubMed

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas. PMID:25626569

  19. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    NASA Astrophysics Data System (ADS)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-11-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  20. Supercritical water oxidation technology for DWPF

    SciTech Connect

    Carter, J.T.; Gentilucci, J.A.

    1992-02-07

    At the request of Mr. H.L. Brandt and others in the Savannah River Field Office High Level Waste Division office, DWPF, and SRL personnel have reviewed two potential applications for supercritical water oxidation technology in DWPF. The first application would replace the current hydrolysis process by destroying the organic fractions of the precipitated cesium / potassium tetraphenylborate slurry. The second application pertains to liquid benzene destruction. After a thorough evaluation the first application is not recommended. The second is ready to be tested if needed.

  1. Containment system for supercritical water oxidation reactor

    SciTech Connect

    Chastagner, P.

    1991-12-31

    This invention is comprised of a system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  2. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, Philippe

    1994-01-01

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  3. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, P.

    1994-07-05

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  4. The water cycle at the Phoenix landing site, Mars

    NASA Astrophysics Data System (ADS)

    Cull, Selby

    2010-01-01

    The water cycle is critically important to understanding Mars system science, especially interactions between water and surface minerals or possible biological systems. In this thesis, the water cycle is examined at the Mars Phoenix landing site (68.22°N, 125.70°W), using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), High-Resolution Imaging Science Experiment (HiRISE), the Phoenix Lander Surface Stereo Imager (SSI), and employing non-linear spectral mixing models. The landing site is covered for part of the year by the seasonal ice cap, a layer of CO2 and H2O ice that is deposited in mid-fall and sublimates in mid-spring. During the mid-summer, H2O ice is deposited on the surface at the Phoenix landing site. CO2 ice forms at the site during fall. The onset date of seasonal ices varies annually, perhaps due to variable levels of atmospheric dust. During fall and winter, the CO2 ice layer thickens and sinters into a slab of ice, ˜30 cm thick. After the spring equinox, the CO2 slab breaks into smaller grains as it sublimates. Long before all of the CO2 ice is gone, H2O ice dominates the near-infrared spectra of the surface. Additional H2O ice is cold-trapped onto the surface of the CO2 ice deposit during this time. Sublimation during the spring is not uniform, and depends on the thermal inertia properties of the surface, including depth of ground ice. All of the seasonal ices have sublimated by mid-spring; however, a few permanent ice deposits remain throughout the summer. These are small water ice deposits on the north-facing slopes of Heimdal Crater and adjacent plateaus, and a small patch of mobile water ices that chases shadows in a small crater near the landing site. During the late spring and early summer, the site is free of surface ice. During this time, the water cycle is dominated by vapor exchange between the subsurface water ice deposits and the atmosphere. Two types of subsurface ice were found at the Phoenix landing site

  5. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    NASA Astrophysics Data System (ADS)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  6. Life-cycle testing of receiving waters with Ceriodaphnia dubia

    SciTech Connect

    Stewart, A.J.; Konetsky, B.K.

    1996-12-31

    Seven-day tests with Ceriodaphnia dubia are commonly used to estimate toxicity of effluents or receiving waters but can sometimes yield {open_quotes}no toxicity{close_quotes} outcomes even if pollutants are present. We conducted two sets of full life-cycle tests with C. dubia to (1) see if tests with longer exposure periods would reveal evidence for toxicity that might not be evident from 7-day tests, and (2) determine the relative importance of water quality versus food as factors influencing C. dubia reproduction. In the first set of tests, C. dubia was reared in diluted mineral water (negative control), water from a stream impacted by coal fly-ash, or water from a retention basin containing sediments contaminated with mercury, other metals and polychlorinated biphenyls. The second set of tests used water from the retention basin only, but this water was either filtered or not filtered, and food was either added or not added, prior to testing. C. dubia survival and reproduction did not differ much among the three water types in the first set of tests, but these two parameters were strongly affected by the filtering and food-addition treatments in the second set of tests. Thus, C. dubia appeared to be relatively insensitive to general water-quality factors, but quite sensitive to food-related factors. Regression analyses showed that the predictability of life-time reproduction by C. dubia from the results of 7-day tests was very low (R{sup 2}< 0.35) in five of the six experiments. The increase in predictability as a function of test duration also differed among water types in the first set of tests, and among treatments in the second set of tests. Thus, 7-day tests with C. dubia may be used to quantify water-quality problems, but it may not be possible to reliably extrapolate the results of these tests to longer time scales.

  7. Raman Spectroscopy Applied to Mars Water Cycle Studies

    NASA Astrophysics Data System (ADS)

    Nikolakakos, G.; Whiteway, J. A.

    2014-12-01

    One of the key findings during the Phoenix and Mars Science Laboratory landed Mars missions has been the detection of perchlorate, a highly deliquescent salt. Perchlorates are of great interest on Mars due to their high affinity for water vapour as well as their ability to greatly depress the freezing point of water when in solution. This has intriguing biological implications as resulting brines could potentially provide a habitable environment for living organisms. Additionally, it has been speculated that these salts may play a significant role in influencing the hydrological cycle on Mars. In order to experimentally study brine formation on Mars and assess the feasibility of a future landed detection tool, a stand-off Raman spectroscopy instrument and environmental simulation chamber have been developed at York University. A sample of magnesium perchlorate has been subjected to the water vapour pressure, background pressure and temperatures found at polar Martian latitudes. Results indicate that at a water vapour pressure of ~20 Pa, Raman spectroscopy is able to detect the onset of brine formation and provide an estimate of the quantity of water taken up by the sample. At the lower water vapour pressures typically found on Mars ( ~1 Pa), it appears that slower dynamics inhibit the onset of water uptake over relevant time scales. The experimental setup and current results will be presented.

  8. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric

    2013-02-01

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  9. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    NASA Technical Reports Server (NTRS)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  10. Photoassisted oxidation of oil films on water

    SciTech Connect

    Heller, A.; Brock, J.R.

    1990-10-01

    The objective of the project is to develop a method for the solar assisted oxidation of oil slicks. A semiconducting photocatalyst, titanium dioxide, is used. Upon absorbing a photon, an electron-hole pair is generated in the TiO{sub 2} microcrystal. The electron reacts with surface-adsorbed oxygen, reducing it to hydrogen peroxide; the hole directly oxidizes adsorbed organic compounds. Titanium dioxide is denser than either oil or seawater; the density of its anatase phase is 3.8 and that of its rutile phase is 4.3. In order to keep the titanium dioxide at the air/oil interface, it is attached to a low density, floating material. The particles of the latter are sufficiently small to make the system economical. Specifically, the photocatalyst particles are attached to inexpensive hollow glass microbeads of about 100{mu}m diameter. Those areas of the microbeads that are not covered by photocatalyst are made oleophilic, so that the microbeads will follow the oil slick and not migrate to either the air/water or the water/oil interface.

  11. Recent developments in biological water oxidation.

    PubMed

    Pérez-Navarro, Montserrat; Neese, Frank; Lubitz, Wolfgang; Pantazis, Dimitrios A; Cox, Nicholas

    2016-04-01

    Rapid progress has been made in the last five years towards resolution of the structure of nature's water splitting catalyst - a Mn4O5Ca cofactor embedded in Photosystem II - especially in the field of X-ray crystallography. In addition, recent magnetic resonance data have allowed the structure of the cofactor to be accessed in its last metastable intermediate state, prior to O-O bond formation. This activated form of the catalyst is geometrically similar to that seen by X-ray crystallography, which represents the resting state of the cofactor, but requires the coordination of an additional water molecule to the cofactor, rendering all Mn ions six coordinate. Importantly, it locates two water derived, Mn bound oxygen ligands in close proximity. It is these two oxygen ligands that likely form the product O2 molecule, as proposed earlier by quantum chemical modeling. Current views on the molecular level events that facilitate catalyst activation, that is, catalyst/substrate deprotonation, Mn oxidation and water molecule insertion are briefly described. PMID:26994742

  12. eWaterCycle: A global operational hydrological forecasting model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  13. Using NASA Products of the Water Cycle for Improved Water Resources Management

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  14. Nitrogen cycling following The Great Oxidation Event, evidence from the Paleoproterozoic of Fennoscandia.

    NASA Astrophysics Data System (ADS)

    Junium, C. K.; Kump, L.; Arthur, M. A.; Melezhik, V.; Lepland, A.; Members of the FAR-DEEP Drilling Team

    2011-12-01

    the global oxidation of organic matter buried during the buildup of atmospheric oxygen in response to Lomagundi-Jatuli carbon burial. The dynamic response of the nitrogen cycle in the ZF is consistent with increased availability of O2 in the water column and is similar to the response documented in Archean sequences. Kerogen δ15N values are below 2%, most likely reflecting a biological N2-fixation source for nutrient-nitrogen with little influence from denitrification. δ13C values increase from -26% to -19% signaling a transient increase in the burial of organic carbon and net production of O2. Transition from a largely anoxic OB water column to one that was oxidized in its surface waters would have allowed for redox cycling of nitrogen and accompanying 15N-enrichment. Thus, the observed δ15N increase of 5% reflects an expansion in denitrification and associated reactions and oxidation of the OB water column under elevated atmospheric O2. At the end of the precipitous decrease in δ13C values δ15N values return pre-excursion values of ~+2%. This drop in δ13C and δ15N suggests a return to less oxidizing conditions in the OB following drawdown of atmospheric O2 during organic matter oxidation.

  15. Cycling endurance of silicon{endash}oxide{endash}nitride{endash}oxide{endash}silicon nonvolatile memory stacks prepared with nitrided SiO{sub 2}/Si(100) interfaces

    SciTech Connect

    Habermehl, S.; Nasby, R.D.; Rightley, M.J.

    1999-08-01

    The effects of nitrided SiO{sub 2}/Si(100) interfaces upon cycling endurance in silicon{endash}oxide{endash}nitride{endash}oxide{endash}silicon (SONOS) nonvolatile memory transistors are investigated. Analysis of metal{endash}oxide{endash}silicon field-effect transistor subthreshold characteristics indicate cycling degradation to be a manifestation of interface trap generation at the tunnel oxide/silicon interface. After 10{sup 6} write/erase cycles, SONOS film stacks prepared with nitrided tunnel oxides exhibit enhanced cycling endurance over stacks prepared with non-nitrided tunnel oxides. If the capping oxide is formed by steam oxidation, rather than by deposition, SONOS stacks prepared with non-nitrided tunnel oxides exhibit endurance characteristics similar to stacks with nitrided tunnel oxides. For this case, a mechanism for latent nitridation of the tunnel oxide/silicon interface is proposed. {copyright} {ital 1999 American Institute of Physics.}

  16. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  17. Tracking evolution of urban biogeochemical cycles: salinization of fresh water

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; McDowell, W. H.; Wollheim, W. M.; Duan, S.; Gorman, J. K.; Haq, S.; Hohman, S.; Smith, R. M.; Mayer, P. M.

    2014-12-01

    The built environment often changes quickly in response to human activities, thus contributing to an evolution of stream chemistry over time. Depending upon development and management strategies, these changes can result in pulses and/or long-term trends. Here, we explore patterns of evolving salinization of fresh water over time, and we evaluate the potential water quality implications of fresh water salinization. We show that there has been global salinization of freshwater across urbanizing landscapes over a century. We also show that human-accelerated weathering in watersheds and river alkalinization can further influence regional rates of salinization (in addition to anthropogenic sources such as road salts, sewage leaks, etc.). Finally, we investigate how salinization of fresh water can impact stream sediment fluxes of carbon, nutrients, and sulfate in watersheds across a land use gradient at the Baltimore Long-Term Ecological Research (LTER) site. The impacts of salinization on mobilization and uptake of carbon, nutrients, and sulfate in streams warrant further consideration in water quality management strategies. Overall, we propose that salinization can be a "universal tracer" of watershed urbanization globally with major regional consequences for drinking water and evolution of biogeochemical cycles in freshwater ecosystems.

  18. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE PAGESBeta

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; Kravitz, Benjamin S.; Hipps, Lawrence; Rasch, Philip J.

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  19. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    SciTech Connect

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; Kravitz, Benjamin S.; Hipps, Lawrence; Rasch, Philip J.

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1) and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.

  20. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  1. Microbial As(III) Oxidation in Water Treatment Plant Filters

    EPA Science Inventory

    Arsenic exists in two oxidation states in water - arsenite [As(III)] and arsenate [As(V)]. As(III) is relatively mobile in water and difficult to remove by arsenic-removal treatment processes. Source waters that contain As(III) must add a strong oxidant such as free chlorine or p...

  2. Specific features of aluminum nanoparticle water and wet air oxidation

    SciTech Connect

    Lozhkomoev, Aleksandr S. Glazkova, Elena A. Svarovskaya, Natalia V. Bakina, Olga V. Kazantsev, Sergey O. Lerner, Marat I.

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  3. Specific features of aluminum nanoparticle water and wet air oxidation

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.; Glazkova, Elena A.; Svarovskaya, Natalia V.; Bakina, Olga V.; Kazantsev, Sergey O.; Lerner, Marat I.

    2015-10-01

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  4. Diurnal cycles in water quality across the periodic table

    NASA Astrophysics Data System (ADS)

    Kirchner, James

    2014-05-01

    Diurnal cycles in water quality can provide important clues to the processes that regulate aquatic chemistry, but they often are masked by longer-term, larger-amplitude variability, making their detection and quantification difficult. Here I outline methods that can detect diurnal cycles even when they are massively obscured by statistically ill-behaved noise. I demonstrate these methods using high-frequency water quality data from the Plylimon catchment in mid-Wales (Neal et al., 2013; Kirchner and Neal, 2013). Several aspects combine to make the Plynlimon data set unique worldwide. Collected at 7-hour intervals, the Plynlimon data set is much more densely sampled than typical long-term weekly or monthly water quality data. This 7-hour sampling was also continued for two years, much longer than typical intensive sampling campaigns, and the resulting time series encompass a wide range of climatic and hydrological conditions. Furthermore, each sample was analyzed for a wide range of solutes with diverse sources in the natural environment. However, the 7-hour sampling frequency is both coarse and irregular in comparison to diurnal cycles, making their detection and quantification difficult. Nonetheless, the methods outlined here enable detection of statistically significant diurnal cycles in over 30 solutes at Plynlimon, including alkali metals (Li, Na, K, Rb, and Cs), alkaline earths (Be, Mg, Ca, Sr, and Ba), transition metals (Al, Ti, Mn, Fe, Co, Ni, Zn, Mo, Cd, and Pb), nonmetals (B, NO3, Si, As, and Se), lanthanides and actinides (La, Ce, Pr, and U), as well as total dissolved nitrogen (TDN), dissolved organic carbon (DOC), Gran alkalinity, pH, and electrical conductivity. These solutes span every row of the periodic table, and more than six orders of magnitude in concentration. Many of these diurnal cycles are subtle, representing only a few percent, at most, of the total variance in the concentration time series. Nonetheless they are diagnostically useful

  5. Change in Water Cycle- Important Issue on Climate Earth System

    NASA Astrophysics Data System (ADS)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  6. Water Cycle at Gale Crater Through MSL REMS Observations

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Gomez-Elvira, Javier; McConnochie, Timothy; Savijarvi, Hannu; Polkko, Jouni; de la Torre-Juarez, Manuel; Newman, Claire; Martinez, German; Paton, Mark; Martin-Torres, Javier; Haberle, Robert; Vazquez, Luis; Renno, Nilton; Makinen, Terhi; Schmidt, Walter; Siili, Tero

    2016-04-01

    The Mars Science laboratory (MSL) has been successfully operating at the Gale crater since early August 2012 and provided a wealth of extremely valuable data. That includes atmospheric observations by the REMS (Rover Environmental Monitoring Station) comprising instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc. and it makes use of transducer electronics section placed in the vicinity of the three (3) humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. We focus on describing the first annual water cycle at the Martian surface using the improved REMS-H calibration for the period of almost two Martian years. The characteristics of the Martian water cycle with the relative humidity, mixing ratio and partial water pressure will be discussed. The results will be constrained through comparison with independent indirect observations and through modeling efforts.

  7. A learning process of water cycle as complex system

    NASA Astrophysics Data System (ADS)

    Schertzer, D.; Deroubaix, J. F.; Tchiguirinskaia, I.; Tassin, B.; Thevenot, D.

    2009-04-01

    Water cycle is a very good example of a complex geosystem which has many societal impacts and drivers. A permanent and ubiquitous question is how to increase public awareness and understanding of its extreme behaviours, as well as of the related uncertainties. For instance, CEREVE is highly solicited to help the general public, particularly the youth, and the local politicians to get better acquainted with the new water culture in general and with flood risks in particular, in the nearby county Val-de-Marne. Since 2001, May is the month of the "Festival de l'Oh"(which sounds like "Festival de l'Eau", i.e. the water festival co-organized by the county council and city of Paris. "Oh » at the same time partly displays the chemical composition of water and is an exclamation for atonishment). This festival starts with the Scientific Days of Environment that involve researchers and students of the county, as well as collaborators of all around the world. This conference is open to the public who can be informed from the latest research developments, in particular with the help of some general synthesis and panel discussions. On the other hand, (young) researchers can present their own works to a large public. This conference is followed by a Professional Forum where students, heads of water public services or private operators can meet. In the framework of the water festival preparation, there are several water forums for the secondary schools. All along the year, there are regular pedagogical activities for secondary schools, in particular in the framework of Water Houses scattered across the county. We will discuss the importance to better evaluate the effective impact of these pedagogical events on the public awareness and understanding, and to make the learning process more adaptive and interactive, as well as to better address the underlying fundamental problems, e.g. the present limitations of current modelling and data processing.

  8. GEWEX - The Global Energy and Water Cycle Experiment

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1992-01-01

    GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.

  9. A Hydrological Perspective to Advance Understanding of the Water Cycle

    NASA Astrophysics Data System (ADS)

    Berghuijs, W.

    2014-12-01

    In principle hydrologists are scientists that study relationships within the water cycle. Yet, current technology makes it tempting for hydrology students to lose their "hydrological perspective" and become instead full-time computer programmers or statisticians. I assert that students should ensure their hydrological perspective thrives, notwithstanding the importance and possibilities of current technology. This perspective is necessary to advance the science of hydrology. As other hydrologists have pondered similar views before, I make no claims of originality here. I just hope that in presenting my perspective on this issue I may spark the interest of other early career hydrologists.

  10. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  11. Boosting water oxidation layer-by-layer.

    PubMed

    Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H

    2016-04-01

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology. PMID:26977761

  12. The Martian Water Cycle Based on 3-D Modeling

    NASA Technical Reports Server (NTRS)

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  13. Electrochemical oxidation of perfluorinated compounds in water.

    PubMed

    Niu, Junfeng; Li, Yang; Shang, Enxiang; Xu, Zesheng; Liu, Jinzi

    2016-03-01

    Perfluorinated compounds (PFCs) are persistent and refractory organic pollutants that have been detected in various environmental matrices and municipal wastewater. Electrochemical oxidation (EO) is a promising remediation technique for wastewater contaminated with PFCs. A number of recent studies have demonstrated that the "non-active" anodes, including boron-doped diamond, tin oxide, and lead dioxide, are effective in PFCs elimination in wastewater due to their high oxygen evolution potential. Many researchers have conducted experiments to investigate the optimal conditions (i.e., potential, current density, pH value, plate distance, initial PFCs concentration, electrolyte, and other factors) for PFCs elimination to obtain the maximal elimination efficiency and current efficiency. The EO mechanism and pathways of PFCs have been clearly elucidated, which undergo electron transfer, Kolbe decarboxylation or desulfonation, hydrolysis, and radical reaction. In addition, the safety evaluation and energy consumption evaluation of the EO technology have also been summarized to decrease toxic ion release from electrode and reduce the cost of this technique. Although the ultrasonication and hydrothermal techniques combined with the EO process can improve the removal efficiency and current efficiency significantly, these coupled techniques have not been commercialized and applied in industrial wastewater treatment. Finally, key challenges facing EO technology are listed and the directions for further research are pointed out (such as combination with other techniques, treatment for natural waters contaminated by low levels of PFCs, and reactor design). PMID:26745381

  14. Wet oxidation for enhanced oil recovery with produced water recycle

    SciTech Connect

    Chowdhury, A.K.; Pradt, L.A.

    1983-01-01

    Wet oxidation has been shown to be effective in enabling recycling of untreated produced water while generating 100% quality steam/CO/sub 2/ mixtures for enhanced oil recovery. Continuous pilot plant tests with several different fuels and produced water compositions showed no influence of the feed water composition on oxidation rates. Produced water of any quality, including high chlorides, can be used. Low grade fuels such as Syncrude coke are effectively oxidized with no atmospheric pollution emissions; no SOx or NOx is formed in the process. The wet oxidation process can be operated so as to generate only damp, dewatered solid wastes, thereby eliminating the need for disposal of liquid effluents.

  15. Water footprint of European cars: potential impacts of water consumption along automobile life cycles.

    PubMed

    Berger, Markus; Warsen, Jens; Krinke, Stephan; Bach, Vanessa; Finkbeiner, Matthias

    2012-04-01

    Due to global increase of freshwater scarcity, knowledge about water consumption in product life cycles is important. This study analyzes water consumption and the resulting impacts of Volkswagen's car models Polo, Golf, and Passat and represents the first application of impact-oriented water footprint methods on complex industrial products. Freshwater consumption throughout the cars' life cycles is allocated to material groups and assigned to countries according to import mix shares or location of production sites. Based on these regionalized water inventories, consequences for human health, ecosystems, and resources are determined by using recently developed impact assessment methods. Water consumption along the life cycles of the three cars ranges from 52 to 83 m(3)/car, of which more than 95% is consumed in the production phase, mainly resulting from producing iron, steel, precious metals, and polymers. Results show that water consumption takes place in 43 countries worldwide and that only 10% is consumed directly at Volkswagen's production sites. Although impacts on health tend to be dominated by water consumption in South Africa and Mozambique, resulting from the production of precious metals and aluminum, consequences for ecosystems and resources are mainly caused by water consumption of material production in Europe. PMID:22390631

  16. Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: from the water-oxidizing complex in photosystem II to nano-sized manganese oxides.

    PubMed

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Eaton-Rye, Julian J; Tomo, Tatsuya; Nishihara, Hiroshi; Satoh, Kimiyuki; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2014-09-01

    The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the presence of oxygen in the Earth's atmosphere. The WOC is a manganese-calcium (Mn₄CaO₅(H₂O)₄) cluster housed in a protein complex. In this review, we focus on water exchange chemistry of metal hydrates and discuss the mechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. PMID:24685431

  17. Water cycle of a seasonally dry tropical forest (Southern Vietnam)

    NASA Astrophysics Data System (ADS)

    Kuricheva, O. A.; Avilov, V. C.; Dinh, Duy Ba; Kurbatova, J. A.

    2015-12-01

    How does the activity of the ecosystem of monsoon tropical forest decrease during the dry season of more than 4 months? To answer this question, the dynamics of evapotranspiration is analyzed in the national park of Cát Tiên (Southern Vietnam) using continuous eddy covariance and meteorological dataset for 2012-2013. A comparison of evapotranspiration between Cát Tiên and 21 sites in different tropical forests over the world is performed. It is shown that the abundance of resources of energy and moisture in the annual cycle, as well as the storage of water from the rainy season allows monsoon ecosystem to implement the proactive vegetation during the dry season and make specificity of ecosystem energy and water fluxes in Cát Tiên forest similar to the rainforests.

  18. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation.

    PubMed

    Chen, Wei; Wang, Haotian; Li, Yuzhang; Liu, Yayuan; Sun, Jie; Lee, Sanghan; Lee, Jang-Soo; Cui, Yi

    2015-08-26

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt-nickel-iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm(-2), small Tafel slope of 37.6 mV dec(-1), and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  19. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

    PubMed Central

    2015-01-01

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  20. Does GRACE see the terrestrial water cycle "intensifying"?

    NASA Astrophysics Data System (ADS)

    Eicker, Annette; Forootan, Ehsan; Springer, Anne; Longuevergne, Laurent; Kusche, Jürgen

    2016-01-01

    Several researchers have postulated that, under a changing climate due to anthropogenic forcing, an intensification of the water cycle is already under way. This is usually related to increases in hydrological fluxes as precipitation (P), evapotranspiration (E), and river discharge (R). It is under debate, however, whether such observed or reconstructed flux changes are real and on what scales. Large-scale increase or decrease of the flux deficit (P-E-R), i.e., flux changes that do not compensate, would lead to acceleration or deceleration of water storage anomalies potentially visible in Gravity Recovery and Climate Experiment (GRACE) data. In agreement with earlier studies, we do find such accelerations in global maps of gridded GRACE water storage anomalies over 2003-2012. However, these have been generally associated with interannual and decadal climate variability. Yet we show that even after carefully isolating and removing the contribution of El Niño that partially masks long-term changes, using a new method, accelerations of up to 12 mm/yr2 remain in regions such as Australia, Turkey, and Northern India. We repeat our analysis with flux fields from two global atmospheric reanalyses that include land surface models (ERA-Interim and MERRA-Land). While agreeing well with GRACE on shorter time scales, they fall short in displaying long-term trends corresponding to GRACE accelerations. We hypothesize that this may be due to time-varying biases in the reanalysis fluxes as noticed in other studies. We conclude that even though its data record is short, GRACE provides new information that should be used to constrain future reanalyses toward a better representation of long-term water cycle evolution.

  1. Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate.

    PubMed

    Fukuzumi, Shunichi; Jung, Jieun; Yamada, Yusuke; Kojima, Takahiko; Nam, Wonwoo

    2016-04-20

    Photocatalytic water oxidation by persulfate (Na2 S2 O8 ) with [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a photocatalyst provides a standard protocol to study the catalytic reactivity of water oxidation catalysts. The yield of evolved oxygen per persulfate is regarded as a good index for the catalytic reactivity because the oxidation of bpy of [Ru(bpy)3 ](2+) and organic ligands of catalysts competes with the catalytic water oxidation. A variety of metal complexes act as catalysts in the photocatalytic water oxidation by persulfate with [Ru(bpy)3 ](2+) as a photocatalyst. Herein, the catalytic mechanisms are discussed for homogeneous water oxidation catalysis. Some metal complexes are converted to metal oxide or hydroxide nanoparticles during the photocatalytic water oxidation by persulfate, acting as precursors for the actual catalysts. The catalytic reactivity of various metal oxides is compared based on the yield of evolved oxygen and turnover frequency. A heteropolynuclear cyanide complex is the best catalyst reported so far for the photocatalytic water oxidation by persulfate and [Ru(bpy)3 ](2+) , affording 100 % yield of O2 per persulfate. PMID:26889913

  2. Efficiency, costs and benefits of AOPs for removal of pharmaceuticals from the water cycle.

    PubMed

    Tuerk, J; Sayder, B; Boergers, A; Vitz, H; Kiffmeyer, T K; Kabasci, S

    2010-01-01

    Different advanced oxidation processes (AOP) were developed for the treatment of highly loaded wastewater streams. Optimisation of removal and improvement of efficiency were carried out on a laboratory, semiworks and pilot plant scale. The persistent cytostatic drug cyclophosphamide was selected as a reference substance regarding elimination and evaluation of the various oxidation processes because of its low degradability rate. The investigated processes are cost-efficient and suitable regarding the treatment of wastewater streams since they lead to efficient elimination of antibiotics and antineoplastics. A total reduction of toxicity was proven by means of the umuC-test. However, in order to reduce pharmaceuticals from the water cycle, it must be considered that the input of more than 80 % of the pharmaceuticals entering wastewater treatment systems results from private households. Therefore, advanced technologies should also be installed at wastewater treatment plants. PMID:20182078

  3. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals.

    PubMed

    Lian, Jiazhang; Zhao, Huimin

    2015-03-20

    Functionally reversing the β-oxidation cycle represents an efficient and versatile strategy for synthesis of a wide variety of fuels and chemicals. However, due to the compartmentalization of cellular metabolisms, reversing the β-oxidation cycle in eukaryotic systems remains elusive. Here, we report the first successful reversal of the β-oxidation cycle in Saccharomyces cerevisiae, an important cell factory for large-scale production of fuels and chemicals. After extensive gene cloning and enzyme activity assays, a reversed β-oxidation pathway was functionally constructed in the yeast cytosol, which led to the synthesis of n-butanol, medium-chain fatty acids (MCFAs), and medium-chain fatty acid ethyl esters (MCFAEEs). The resultant recombinant strain provides a new broadly applicable platform for synthesis of fuels and chemicals in S. cerevisiae. PMID:24959659

  4. RELATIONSHIPS BETWEEN OXIDATION-REDUCTION, OXIDANT, AND PH IN DRINKING WATER

    EPA Science Inventory

    Oxidation and reduction (redox) reactions are very important in drinking water. Oxidation-reduction potential (ORP) measurements reflect the redox state of water. Redox measurements are not widely made by drinking water utilities in part because they are not well understood. The ...

  5. RELATIONSHIPS BETWEEN OXIDATION-REDUCTION POTENTIAL, OXIDANT, AND PH IN DRINKING WATER

    EPA Science Inventory

    Oxidation and reduction (redox) reactions are very important in drinking water. Oxidation-reduction potential (ORP) measurements reflect the redox state of water. Redox measurements are not widely made by drinking water utilities in part because they are not well understood. The ...

  6. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  7. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.

    2009-04-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  8. Anticipated SWOT Observations of Human Impacts on the Water Cycle

    NASA Astrophysics Data System (ADS)

    Clark, E.; Andreadis, K.; Moller, D.; Lettenmaier, D. P.

    2012-12-01

    The impoundment of water behind dams alters the timing and magnitude of the discharge of rivers to the ocean, and hence sea level, as well as evaporation from the global land areas, and, through irrigation, the storage of water on land in the soil column. The impact of these effects on the global hydrologic cycle globally is difficult to estimate given currently available (and shared) observations of temporally varying reservoir storage. The upcoming joint U.S.-France Surface Water and Ocean Topography (SWOT) mission* will measure terrestrial surface water storage dynamics with unprecedented global coverage for managed reservoirs, as well as natural lakes and rivers. Previous studies have investigated SWOT's potential ability to measure storage change for some lakes; however, because reservoirs are typically located in flooded river valleys, they tend to be more elongate than the high latitude lakes that have been studied, and have more complex shorelines (and hence a longer land-water boundary). Furthermore, for reservoirs in mountainous regions, SWOT observations will be prone to topographic layover effects. Finally, the temporal variability of water levels in reservoirs is determined by management goals (i.e., hydropower, flood control, irrigation, supply, recreation), rather than climate, as in the case of natural lakes. We report an investigation of the potential accuracy of SWOT observations of storage change over selected managed reservoirs in the United States. First, we developed a time series of water height maps over each reservoir by combining available bathymetry data with observations of reservoir storage. We then simulated realistic SWOT observations of water level over these water bodies, given the planned SWOT orbital parameters, anticipated noise, and topographic layover errors. We also simulated a realistic tropospheric delay, modeled from daily MERRA reanalysis data. From these synthetic observations, we estimate the number of overpasses needed

  9. Carbon cycle. Sunlight controls water column processing of carbon in arctic fresh waters.

    PubMed

    Cory, Rose M; Ward, Collin P; Crump, Byron C; Kling, George W

    2014-08-22

    Carbon in thawing permafrost soils may have global impacts on climate change; however, the factors that control its processing and fate are poorly understood. The dominant fate of dissolved organic carbon (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Although both processes are most often attributed to bacterial respiration, we found that photochemical oxidation exceeds rates of respiration and accounts for 70 to 95% of total DOC processed in the water column of arctic lakes and rivers. At the basin scale, photochemical processing of DOC is about one-third of the total CO2 released from surface waters and is thus an important component of the arctic carbon budget. PMID:25146289

  10. Potential Seasonal Predictability of Water Cycle in Observations and Reanalysis

    NASA Astrophysics Data System (ADS)

    Feng, X.; Houser, P.

    2012-12-01

    Identification of predictability of water cycle variability is crucial for climate prediction, water resources availability, ecosystem management and hazard mitigation. An analysis that can assess the potential skill in seasonal prediction was proposed by the authors, named as analysis of covariance (ANOCOVA). This method tests whether interannual variability of seasonal means exceeds that due to weather noise under the null hypothesis that seasonal means are identical every year. It has the advantage of taking into account autocorrelation structure in the daily time series but also accounting for the uncertainty of the estimated parameters in the significance test. During the past several years, multiple reanalysis datasets have become available for studying climate variability and understanding climate system. We are motivated to compare the potential predictability of water cycle variation from different reanalysis datasets against observations using the newly proposed ANOCOVA method. The selected eight reanalyses include the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) 40-year Reanalysis Project (NNRP), the National Centers for Environmental Prediction-Department of Energy (NCEP/DOE) Reanalysis Project (NDRP), the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis, The Japan Meteorological Agency 25-year Reanalysis Project (JRA25), the ECMWF) Interim Reanalysis (ERAINT), the NCEP Climate Forecast System Reanalysis (CFSR), the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the National Oceanic and Atmospheric Administration-Cooperative Institute for Research in Environmental Sciences (NOAA/CIRES) 20th Century Reanalysis Version 2 (20CR). For key water cycle components, precipitation and evaporation, all reanalyses consistently show high fraction of predictable variance in the tropics, low

  11. The Urban Water Cycle and how it Modulates the Microclimate and the Energy Cycle

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Wang, Z.; Ramamurthy, P.; Li, D.; Sun, T.; Smith, J. A.

    2012-12-01

    Urbanization is the land-use modification with the largest and most manifest impacts on hydrologic storage and fluxes. This perturbation of the water cycle also has considerable ramifications on the surface energy budget and the microclimatology in built terrain: reducing the potential for water storage and subsequent evaporation reduces the fraction of incoming radiative energy dissipated through surface evaporation, and consequently increases the sensible heating of the urban atmosphere and solid surfaces (buildings, roads, …). However, the complexity of the involved physical processes and their interactions have so far been oversimplified, leading to considerable biases in model output when compared to observations. Using novel sensing techniques that include wireless sensor networks, this study seeks to build a better understanding of the Urban Water Cycle. Our findings indicate that "impervious surfaces" in urban area are not really impervious and not always dry. The role of evaporation from gravel-covered roofs and from concrete, brick, stone and asphalt surfaces can be considerable, leading to lower sensible heating. In addition, the different thermal properties of the various urban materials lead to extreme spatial heterogeneity in surface conditions that is much higher than over natural terrain. Building on this understanding, an improved urban canopy model is developed that includes much better representation of surface heterogeneity and of hydrological and thermal storage and transport processes, including analytical solutions of the heat equation and numerical solutions of the Richards equation in the urban surface. The model development will be detailed and applications focusing on the role of evaporation in mitigating summer building cooling needs and urban heat island effects will be presented.

  12. Failure and Life Cycle Evaluation of Watering Valves

    PubMed Central

    Gonzalez, David M; Graciano, Sandy J; Karlstad, John; Leblanc, Mathias; Clark, Tom; Holmes, Scott; Reuter, Jon D

    2011-01-01

    Automated watering systems provide a reliable source of ad libitum water to animal cages. Our facility uses an automated water delivery system to support approximately 95% of the housed population (approximately 14,000 mouse cages). Drinking valve failure rates from 2002 through 2006 never exceeded the manufacturer standard of 0.1% total failure, based on monthly cage census and the number of floods. In 2007, we noted an increase in both flooding and cases of clinical dehydration in our mouse population. Using manufacturer's specifications for a water flow rate of 25 to 50 mL/min, we initiated a wide-scale screening of all valves used. During a 4-mo period, approximately 17,000 valves were assessed, of which 2200 failed according to scoring criteria (12.9% overall; 7.2% low flow; 1.6% no flow; 4.1% leaky). Factors leading to valve failures included residual metal shavings, silicone flash, introduced debris or bedding, and (most common) distortion of the autoclave-rated internal diaphragm and O-ring. Further evaluation revealed that despite normal autoclave conditions of heat, pressure, and steam, an extreme negative vacuum pull caused the valves’ internal silicone components (diaphragm and O-ring) to become distorted and water-permeable. Normal flow rate often returned after a ‘drying out’ period, but components then reabsorbed water while on the animal rack or during subsequent autoclave cycles to revert to a variable flow condition. On the basis of our findings, we recalibrated autoclaves and initiated a preventative maintenance program to mitigate the risk of future valve failure. PMID:22330720

  13. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.

    2009-04-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  14. Operation of the Oxide Washer for Water-Washing Solubles out of Impure Pu Oxide

    SciTech Connect

    Dodson, K E; Close, W L; Krikorian, O H; Summers III, H V

    2006-01-30

    An evaluation has been made for using the Oxide Washer to wash water-soluble materials out of impure Pu oxide. It is found that multiple washes are needed to reduce the water-soluble materials to very low levels in the impure Pu oxides. The removal of the wash water from the Oxide Washer is accompanied by particulates of the impure Pu oxide, which subsequently need to be filtered out. In spite of the additional filtration needed, the overall level of manpower required for processing is still only about one third of that for an all-manual operation.

  15. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    SciTech Connect

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  16. Semiconductor photocatalysts for water oxidation: current status and challenges.

    PubMed

    Yang, Lingling; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-04-21

    Artificial photosynthesis is a highly-promising strategy to convert solar energy into hydrogen energy for the relief of the global energy crisis. Water oxidation is the bottleneck for its kinetic and energetic complexity in the further enhancement of the overall efficiency of the artificial photosystem. Developing efficient and cost-effective photocatalysts for water oxidation is a growing desire, and semiconductor photocatalysts have recently attracted more attention due to their stability and simplicity. This article reviews the recent advancement of semiconductor photocatalysts with a focus on the relationship between material optimization and water oxidation efficiency. A brief introduction to artificial photosynthesis and water oxidation is given first, followed by an explanation of the basic rules and mechanisms of semiconductor particulate photocatalysts for water oxidation as theoretical references for discussions of componential, surface structure, and crystal structure modification. O2-evolving photocatalysts in Z-scheme systems are also introduced to demonstrate practical applications of water oxidation photocatalysts in artificial photosystems. The final part proposes some challenges based on the dynamics and energetics of photoholes which are fundamental to the enhancement of water oxidation efficiency, as well as on the simulation of natural water oxidation that will be a trend in future research. PMID:24599528

  17. Humans Transforming the Water Cycle and the 500-Year Challenge

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Green, M. B.; Hermans, C. M.

    2009-12-01

    Humans are today embedded into the basic character of the water cycle, through a myriad of processes including water abstraction and flow diversion, land cover change, pollution, destruction of aquatic biodiversity, and climate change. A major scientific challenge is to understand how these changes manifest themselves and if they bear synergistic impacts across different scales. While the concept of human manipulation of the hydrologic cycle in the contemporary timeframe has been gaining general acceptance in the community, the notion of how this control has evolved, and evolved to regionally-significant scales, has been less well-developed. These issues can be tackled through an interdisciplinary synthesis goal: To quantify the widespread alteration of hydrologic systems over local-to-regional domains focusing on the Northeast Corridor of the United States over a 500-yr period (1600 to 2100)—The 500-Year Challenge. This discussion presents the rationale plus key findings of this team-based effort to understand the evolution of human-water systems over both retrospective and future time horizons. Our effort, organized through the work of the Northeast Regional Consortium for Hydrologic Synthesis, focuses on a region that serves as an ideal example of the major changes undergoing the hydrologic over the national and indeed global scales. The effort has yielded several important conceptual steps forward in our understanding of human-water systems. First, chief products have been a developed as a series of metrics of system state and at the fully regional scale. These include the quantification of legal, social, and economic dimension information as they specifically relate to hydrology. Next, we forward the concept of hydrologic space-time collapse, as a means to understand how populations across the region have created and subsequently shed hydrologic constraints through the use of technology and the co-option of water external to their locale. Third, addressing

  18. Exploring the limits of the terrestrial fresh water cycle

    NASA Astrophysics Data System (ADS)

    van der Ent, Ruud; Wang-Erlandsson, Lan; Keys, Patrick; Savenije, Hubert

    2014-05-01

    Precipitation is the ultimate source of life on this planet: it makes our crops grow, provides drinking water, feeds rivers and replenishes groundwater aquifers. Climate modelling studies estimate changes in precipitation due to increased greenhouse gas emissions and climate impact studies use those estimates as input to their (hydrological) models to predict future water availability and societal impact. However, humans also significantly alter the land surface by, for example, deforestation and irrigation, which is not frequently taken into account in our climate studies. Here, we present an overview of several papers in the field of moisture recycling, published by our group, that show the extent to which terrestrial evaporation influences terrestrial precipitation. It is found that 38% of the terrestrial precipitation originates from terrestrial evaporation and that 58% of all terrestrial evaporation recycles, and return again as terrestrial precipitation. Knowing this, it is clear that evaporation is not necessary a loss to the hydrological cycle. We show that in some cases even transpiration during the dry season can act as a moisture source for a distant region. To assess the vulnerability of a region to local and remote land use changes we propose the concept of the precipitationshed, which maps out a region's precipitation sources. Our results are useful in mapping out possible land use change threats, but also opportunities to safeguard our water resources in the Anthropocene.

  19. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh.

    PubMed

    Hassan, Zahid; Sultana, Munawar; van Breukelen, Boris M; Khan, Sirajul I; Röling, Wilfred F M

    2015-04-01

    Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted. PMID:25778510

  20. Computational comparison of stepwise oxidation and O-O bond formation in mononuclear ruthenium water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Jarvis, Emily A. A.; Lee, Brian; Neddenriep, Bradley; Shoemaker, Wendy

    2013-05-01

    A computational comparison of key steps along proposed water oxidation pathways for eleven distinct mononuclear ruthenium catalysts is presented. Free energies are determined via density functional calculations and analyzed for catalyst structural stability, energetic comparisons to experimentally measured potentials in highly acidic conditions, and other features. A single feature for optimal catalyst design does not emerge; different steps along the oxidation cycle are impacted in subtle and sometimes divergent ways depending on the nature of the ligand modification on the catalyst. The results reinforce the notion observed in previous experimental studies - in such multi-step mechanisms with complex catalysts, a careful balance between energetic optimization and catalyst stability at multiple steps along the cycle may be critical for practical performance considerations. Whereas comparing catalysts at an individual step is likely to provide an incomplete picture, behavior of chemically modified catalysts can be distinguished computationally across multiple mechanistic steps.

  1. Climatically induced sedimentary cycles in Pliocene deep-water carbonates

    SciTech Connect

    Gardulski, A.F. )

    1991-03-01

    Two DSDP sites (86 and 94) on the Campeche ramp in the southern Gulf of Mexico penetrated more than 100 m of Pliocene pelagic ooze. The ooze is primarily carbonate, with a much smaller volcanic ash component than occurs in some Pleistocene sediments at these sites. Cores recovered from these holes display variations in carbonate mineralogy as well as total carbonate and sand abundances that are correlated with the oxygen isotope stratigraphy. Diagenetic loss of Mg-calcite is complete by the base of the Pleistocene, but aragonite, especially high-Sr aragonite forming algal needles that were transported off the shelf to the slope, persists through upper Pliocene cores. Variations in oxygen isotope ratios in planktonic foraminifera occur throughout the Pliocene, although the amplitude of those cycles is smaller than for the Pleistocene, with its more dramatic glacial-interglacial contrasts. As in overlying Pleistocene slope sediments, cooler intervals correspond with greater abundances of aragonite in the upper Pliocene section, reflecting a shift of the shallow, productive shelf seaward across the ramp surface during times of relatively low sea level. However, the aragonite abundances in the Pliocene are reduced on average compared to the Pleistocene. This difference is due in part to diagenetic loss, but also it likely reflects the overall higher sea level that apparently characterized Pliocene oceans, trapping more algal aragonite landward. Although sea level and climatic fluctuations were indeed less extreme in the Pliocene, they were still sufficient to generate sedimentary cycles in deep-water carbonates.

  2. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  3. The NASA Energy and Water cycle Extreme (NEWSE) Integration Project

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Lapenta, W.; Schiffer, R.

    2008-05-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are toprovide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.). *The NEWSE Team is: Romanou, Anastasiam, Columbia U.; Brian Soden, U. Miami; William Lapenta, NASA- MSFC; Megan Larko, CREW; Bing Lin, NASA-LaRC; Christa Peters-Lidard, NASA-GSFC; Xiquan Dong, U. North Dakota; Debbie Belvedere, CREW; Mathew Sapiano, U. Maryland; Duane Waliser, NASA-JPL; Eni Njoku, NASA/JPL; Eric Fetzer, NASA

  4. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union's Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory's Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  5. ARSENIC CYCLING WITHIN THE WATER COLUMN OF A SMALL LAKE RECEIVING CONTAMINATED GROUND WATER DISCHARGE

    EPA Science Inventory

    The fate of arsenic discharged from contaminated ground water to a small, shallow lake at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption occurring near the lake chemocline. Laboratory experiments were condu...

  6. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

    PubMed

    Bowtell, Joanna L; Marwood, Simon; Bruce, Mark; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2007-01-01

    The tricarboxylic acid (TCA) cycle is the major final common pathway for oxidation of carbohydrates, lipids and some amino acids, which produces reducing equivalents in the form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide that result in production of large amounts of adenosine triphosphate (ATP) via oxidative phosphorylation. Although regulated primarily by the products of ATP hydrolysis, in particular adenosine diphosphate, the rate of delivery of reducing equivalents to the electron transport chain is also a potential regulatory step of oxidative phosphorylation. The TCA cycle is responsible for the generation of approximately 67% of all reducing equivalents per molecule of glucose, hence factors that influence TCA cycle flux will be of critical importance for oxidative phosphorylation. TCA cycle flux is dependent upon the supply of acetyl units, activation of the three non-equilibrium reactions within the TCA cycle, and it has been suggested that an increase in the total concentration of the TCA cycle intermediates (TCAi) is also necessary to augment and maintain TCA cycle flux during exercise. This article reviews the evidence of the functional importance of the TCAi pool size for oxidative metabolism in exercising human skeletal muscle. In parallel with increased oxidative metabolism and TCA cycle flux during exercise, there is an exercise intensity-dependent 4- to 5-fold increase in the concentration of the TCAi. TCAi concentration reaches a peak after 10-15 minutes of exercise, and thereafter tends to decline. This seems to support the suggestion that the concentration of TCAi may be of functional importance for oxidative phosphorylation. However, researchers have been able to induce dissociations between TCAi pool size and oxidative energy provision using a variety of nutritional, pharmacological and exercise interventions. Brief periods of endurance training (5 days or 7 weeks) have been found to result in reduced TCAi pool

  7. Water cycle observations in forest watersheds of Cambodia

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Tamai, K.; Kabeya, N.; Shimizu, T.; Iida, S. I.

    2015-12-01

    The Lower Mekong River flows through Cambodia, where forests cover ~60% of the country and are believed to have a marked effect on the water cycle. These tropical seasonal forests in the Cambodian flat lands are very precious in the Indochinese Peninsula as few forests of this type remain. However, few hydrological observations have been conducted in these areas. In Cambodia, deciduous and evergreen forests make up 42% and 33% of the total forest area, respectively. We established experimental watersheds both in deciduous and evergreen forests containing meteorological observation towers in Cambodia and collected various observational data since 2003 (O'Krieng, deciduous forest watershed including a 30-m-high observation tower, 2,245 km2; Stung Chinit, evergreen forest watershed including a 60-m-high observation tower, 3,700 km2 including three small watersheds). The basic data from these sites included various kinds of information related to the composition of vegetation, soil characteristics, etc. Hydrologic data was collected and linked to the above data; the main hydrologic research results follow. The water budget for each watershed was determined using an observational rainfall and runoff dataset. The evapotranspiration rate in an evergreen forest was obtained using various observational methods including the Bowen energy-balance ratio and the bandpass eddy covariance method. The annual evapotranspiration of evergreen forests, estimated using the Bowen energy-balance ratio method and water balance, was about 1100-1200 mm, corresponding to 70-80% of annual rainfall. While considering the importance of the presence of evergreen forest, we conducted sap flow measurements to analyze the transpiration process that maintains water uptake through root systems that reach to depths exceeding 8 m. Characteristics of the evaporation from the forest floor that form an important element of the evaporation system were estimated in both evergreen and deciduous forests.

  8. Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films.

    PubMed

    Wen, Rui-Tao; Niklasson, Gunnar A; Granqvist, Claes G

    2015-05-13

    Anodically colored nickel oxide (NiO) thin films are of much interest as counter electrodes in tungsten oxide based electrochromic devices such as "smart windows" for energy-efficient buildings. However, NiO films are prone to suffering severe charge density degradation upon prolonged electrochemical cycling, which can lead to insufficient device lifetime. Therefore, a means to improve the durability of NiO-based films is an important challenge at present. Here we report that the incorporation of a modest amount of iridium into NiO films [Ir/(Ir + Ni) = 7.6 atom %] leads to remarkable durability, exceeding 10000 cycles in a lithium-conducting electrolyte, along with significantly improved optical modulation during extended cycling. Structure characterization showed that the face-centered-cubic-type NiO structure remained after iridium addition. Moreover, the crystallinity of these films was enhanced upon electrochemical cycling. PMID:25919917

  9. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode

    PubMed Central

    Faes, Antonin; Hessler-Wyser, Aïcha; Zryd, Amédée; Van Herle, Jan

    2012-01-01

    Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles) of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted. PMID:24958298

  10. [Stable Isotope Characteristics in Different Water Bodies in Changsha and Implications for the Water Cycle].

    PubMed

    Li, Guang; Zhang, Xin-ping; Zhang, Li-feng; Wang, Yue-feng; Deng, Xiao-jun; Yang, Liu; Lei, Chao-gui

    2015-06-01

    Analysis of the variation characteristics of different water bodies is the basis of applying isotopic tracer technique in regional water cycle research. Based on the samples of atmospheric precipitation, surface water (river water) and groundwater (spring water and well water) in Changsha from January 2012 to December 2013, the study analyzed the variation characteristics of δD and δ(18)O in different water bodies. The results showed that the values of D and 18O in precipitation of Changsha showed obvious seasonal variation because of the seasonal difference of the water vapor source, and it showed significant negative correlation between δ(18)O in precipitation and some meteorological factors such as the temperature and the amount, the local meteoric water line revealed the climatic characteristic of humid and rainy in Changsha; the fluctuation of 8D and 80 in surface water was more moderate than those in precipitation, and the seasonal variation of stable isotope value showed lagging characteristic compared with that in precipitation, the difference of river water line (RWL) indicated that the main supply sources of surface water were changing in different seasons; the fluctuation of δD and δ(18)O in groundwater was the least, the variation ranges and mean values of δD and δ(18)O in spring water and well water were very close, it showed that there were some hydraulic connections in the two water bodies, the values of δD and δ(18)O in groundwater were constantly lower during drought months, this phenomenon might have a certain relationship with the increasing absorbency of tree roots from groundwater. The results of the study have certain guiding significance for rational utilization of water resources in the region. PMID:26387312

  11. Advanced oxidation degradation kinetics as a function of ultraviolet LED duty cycle.

    PubMed

    Duckworth, Kelsey; Spencer, Michael; Bates, Christopher; Miller, Michael E; Almquist, Catherine; Grimaila, Michael; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Racz, LeeAnn

    2015-01-01

    Ultraviolet (UV) light emitting diodes (LEDs) may be a viable option as a UV light source for advanced oxidation processes (AOPs) utilizing photocatalysts or oxidizing agents such as hydrogen peroxide. The effect of UV-LED duty cycle, expressed as the percentage of time the LED is powered, was investigated in an AOP with hydrogen peroxide, using methylene blue (MB) to assess contaminant degradation. The UV-LED AOP degraded the MB at all duty cycles. However, adsorption of MB onto the LED emitting surface caused a linear decline in reactor performance over time. With regard to the effect of duty cycle, the observed rate constant of MB degradation, after being adjusted to account for the duty cycle, was greater for 5 and 10% duty cycles than higher duty cycles, providing a value approximately 160% higher at 5% duty cycle than continuous operation. This increase in adjusted rate constant at low duty cycles, as well as contaminant fouling of the LED surface, may impact design and operational considerations for pulsed UV-LED AOP systems. PMID:25945855

  12. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  13. Polyoxometalate water oxidation catalysts and methods of use thereof

    DOEpatents

    Hill, Craig L.; Gueletii, Yurii V.; Musaev, Djamaladdin G.; Yin, Qiushi; Botar, Bogdan

    2014-09-02

    Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.

  14. Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the “Activation” Plateau

    SciTech Connect

    Li, Yan; Bareno, Javier; Bettge, Martin; Abraham, Daniel P

    2015-01-01

    A common feature of lithium-excess layered oxides, nominally of composition xLi2MnO3•(1-x)LiMO2 (M = transition metal) is a high-voltage plateau (~4.5 V vs. Li/Li+) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li2MnO3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges well below the activation plateau. The average fade is ~0.08 mV-cycle-1 for Li1.2Ni0.15Mn0.55Co0.1O2 vs. Li cells after 20 cycles in the 2–4.1 V range at 55°C; a ~54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration.

  15. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  16. Ice haze, snow, and the Mars water cycle

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    1990-01-01

    Light curves and extinction profiles derived from Martian limb observations are used to constrain the atmospheric temperature structure in regions of the atmosphere with thin haze and to analyze the haze particle properties and atmospheric eddy mixing. Temperature between 170 and 190 K are obtained for three cases at levels in the atmosphere ranging from 20 to 50 km. Eddy diffusion coefficients around 100,000 sq cm/s, typical of a nonconvecting atmosphere, are derived in the haze regions at times when the atmosphere is relatively clear of dust. This parameter apparently changes by more than three orders of magnitude with season and local conditions. The derived particle size parameter varies systematically by more than an order of magnitude with condensation level, in such a way that the characteristic fall time is always about one Martian day. Ice hazes provide a mechanism for scavenging water vapor in the thin Mars atmosphere and may play a key role in the seasonal cycle of water on Mars.

  17. Global operational hydrological forecasts through eWaterCycle

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Central goal of the eWaterCycle project (www.ewatercycle.org) is the development of an operational hyper-resolution hydrological global model. This model is able to produce 14 day ensemble forecasts based on a hydrological model and operational weather data (presently NOAA's Global Ensemble Forecast System). Special attention is paid to prediction of situations in which water related issues are relevant, such as floods, droughts, navigation, hydropower generation, and irrigation stress. Near-real time satellite data will be assimilated in the hydrological simulations, which is a feature that will be presented for the first time at EGU 2015. First, we address challenges that are mainly computer science oriented but have direct practical hydrological implications. An important feature in this is the use of existing standards and open-source software to the maximum extent possible. For example, we use the Community Surface Dynamics Modeling System (CSDMS) approach to coupling models (Basic Model Interface (BMI)). The hydrological model underlying the project is PCR-GLOBWB, built by Utrecht University. This is the motor behind the predictions and state estimations. Parts of PCR-GLOBWB have been re-engineered to facilitate running it in a High Performance Computing (HPC) environment, run parallel on multiple nodes, as well as to use BMI. Hydrological models are not very CPU intensive compared to, say, atmospheric models. They are, however, memory hungry due to the localized processes and associated effective parameters. To accommodate this memory need, especially in an ensemble setting, a variation on the traditional Ensemble Kalman Filter was developed that needs much less on-chip memory. Due to the operational nature, the coupling of the hydrological model with hydraulic models is very important. The idea is not to run detailed hydraulic routing schemes over the complete globe but to have on-demand simulation prepared off-line with respect to topography and

  18. Heat-sterilized silver oxide-zinc cells: Cycle life studies

    NASA Technical Reports Server (NTRS)

    Arms, J. T.

    1973-01-01

    A JPL study was conducted to evaluate the cell design parameters that contribute to the cycle life of sealed, heat-sterilized silver oxide-zinc cells. Test cells having a rated capacity of 4.2 A-h were fabricated using zinc oxide electrodes prepared by the sintered Teflon process. Two separator variations were evaluated, one having acrylic acid and the other methacrylic acid grafted to irradiated polyethylene film. Significant results of this study include the following: (1) cycle life in excess of 300 cycles was attained; (2) a zinc oxide/silver stoichiometric ratio of 1.5 resulted in greater cycle life than a ratio of 1.1, and similar cycle life to cells having a ratio of 2; (3) cells having methacrylic acid grafted separators suffered somewhat less in capacity loss due to zinc electrode shape change than cells having acrylic acid type; (4) use of acrylic acid grafted separators was slightly superior to the methacrylic acid type in respect to silver penetration; and (5) the inclusion of a layer of potassium titanate paper adjacent to the zinc electrodes resulted in cells that achieved higher cycle life before any of the group failed than that reached by cells of any other construction.

  19. Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis.

    PubMed

    Miyake, C; Yokota, A

    2000-03-01

    A study was performed to determine how the electron fluxes for the photosynthetic carbon reduction (PCR) and the photorespiratory carbon oxidation (PCO) cycles affect the photoreduction of O2 at PSI, which is the limiting step in the water-water cycle. Simultaneous measurements were made of CO2-gas exchange, transpiration and quantum yield of PSII [phi(PSII)] using leaves of watermelon (Citrullus lanatus). The total electron flux in PSII[Je(PSII)], as estimated from phi(PSII), was always larger than the total electron flux required for the PCR and PCO cycles at various partial pressures of CO2 and O2 and 1,100 micromol photons m(-2)s(-1). This observation suggested the existence of an alternative electron flux (Ja). Ja was divided into O2-dependent [Ja(O2-depend)] and O2-independent [Ja(O2-independ)] components. The magnitude of half Ja(O2-depend), 7.5 to 9.5 micromol e- m(-2)s(-1), and its apparent Km for O2, about 8.0 kPa, could be accounted for by the photoreduction of O2 at PSI either mediated by ferredoxin or catalyzed by monodehydroascorbate reductase. The results indicated that Ja(O2-depend) was driven by the water-water cycle. A decrease in the intercellular partial pressure of CO2 from 23 to 5.0 Pa at 21 kPa O2 enhanced Ja(O2-depend) by a factor of 1.3. Saturation of the activities of both the PCR and PCO cycles by increasing the photon flux density induced Ja. These results indicate the electron flux in PSII that exceeds the flux required for the PCR and PCO cycles induces the photoreduction of O2 in the water-water cycle. PMID:10805597

  20. A pentanuclear iron catalyst designed for water oxidation.

    PubMed

    Okamura, Masaya; Kondo, Mio; Kuga, Reiko; Kurashige, Yuki; Yanai, Takeshi; Hayami, Shinya; Praneeth, Vijayendran K K; Yoshida, Masaki; Yoneda, Ko; Kawata, Satoshi; Masaoka, Shigeyuki

    2016-02-25

    Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth's crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between Fe(II)5 and Fe(III)5; the Fe(III)5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O-O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites. PMID:26863188

  1. A pentanuclear iron catalyst designed for water oxidation

    NASA Astrophysics Data System (ADS)

    Okamura, Masaya; Kondo, Mio; Kuga, Reiko; Kurashige, Yuki; Yanai, Takeshi; Hayami, Shinya; Praneeth, Vijayendran K. K.; Yoshida, Masaki; Yoneda, Ko; Kawata, Satoshi; Masaoka, Shigeyuki

    2016-02-01

    Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth’s crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between FeII5 and FeIII5; the FeIII5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O-O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites.

  2. Infiltrated Phlogopite Micas with Superior Thermal Cycle Stability as Compressive Seals for Solid Oxide Fuel Cells

    SciTech Connect

    Chou, Y S.; Stevenson, Jeffry W.

    2005-03-01

    Thermal cycle stability is one of the most stringent requirements for sealants in solid oxide fuel cell stacks. The sealants have to survive several hundreds to thousands of thermal cycles during lifetime operation in stationary and transportation applications. Recently, researchers at the Pacific Northwest National Laboratory have developed a novel method to infiltrate the mica flakes with a wetting or liquid forming material such that the leak path will be reduced from 3-D to 2-D and achieve good thermal cycle stability with low leak rates.

  3. Electrocatalytic Water Oxidation by a Water-Soluble Nickel Porphyrin Complex at Neutral pH with Low Overpotential.

    PubMed

    Han, Yongzhen; Wu, Yizhen; Lai, Wenzhen; Cao, Rui

    2015-06-01

    The water-soluble cationic nickel(II) complex of meso-tetrakis(4-N-methylpyridyl)porphyrin (1) can electrocatalyze water oxidation to O2 in neutral aqueous solution (pH 7.0) with the onset of the catalytic wave appearing at ∼1.0 V (vs NHE). The homogeneous catalysis with 1 was verified. Catalyst 1 exhibited water oxidation activity in a pH range 2.0-8.0 and had a strict linear dependence of catalytic current on its concentration. After 10 h of constant potential electrolysis at 1.32 V (vs NHE), a negligible difference of the solution was observed by UV-vis. In addition, inspection of the working electrode by electrochemistry, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX) showed no sign of deposition of NiOx films. These results strongly argued that 1 is a real molecular electrocatalyst for water oxidation. The turnover frequency (TOF) for this process was 0.67 s(-1) at 20 °C. On the basis of results from the kinetic isotope effect (KIE) and inhibition experiments, electrochemical studies in various buffer solutions with different anions and pHs, and DFT calculations, a catalytic cycle of 1 for water oxidation via a formally Ni(IV) species was proposed. PMID:25985258

  4. TRMM and Its Connection to the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.

  5. Photosynthetic water oxidation: insights from manganese model chemistry.

    PubMed

    Young, Karin J; Brennan, Bradley J; Tagore, Ranitendranath; Brudvig, Gary W

    2015-03-17

    -forming mechanism. Comparison between the OEC and the Mn-terpy dimer indicates that challenges remain in the development of synthetic Mn water-oxidation catalysts. These include redox leveling to couple multielectron reactions with one-electron steps, avoiding labile Mn(II) species during the catalytic cycle, and protecting the catalyst active site from undesired side reactions. As the first example of a functional manganese O2-evolution catalyst, the Mn-terpy dimer exemplifies the interrelatedness of biomimetic chemistry with biophysical studies. The design of functional model complexes enriches the study of the natural photosynthetic system, while biology continues to provide inspiration for artificial photosynthetic technologies to meet global energy demand. PMID:25730258

  6. Electron, proton and hydrogen-atom transfers in photosynthetic water oxidation.

    PubMed Central

    Tommos, Cecilia

    2002-01-01

    When photosynthetic organisms developed so that they could use water as an electron source to reduce carbon dioxide, the stage was set for efficient proliferation. Algae and plants spread globally and provided the foundation for our atmosphere and for O(2)-based chemistry in biological systems. Light-driven water oxidation is catalysed by photosystem II, the active site of which contains a redox-active tyrosine denoted Y(Z), a tetramanganese cluster, calcium and chloride. In 1995, Gerald Babcock and co-workers presented the hypothesis that photosynthetic water oxidation occurs as a metallo-radical catalysed process. In this model, the oxidized tyrosine radical is generated by coupled proton/electron transfer and re-reduced by abstracting hydrogen atoms from substrate water or hydroxide-ligated to the manganese cluster. The proposed function of Y(Z) requires proton transfer from the tyrosine site upon oxidation. The oxidation mechanism of Y(Z) in an inhibited and O(2)-evolving photosystem II is discussed. Domino-deprotonation from Y(Z) to the bulk solution is shown to be consistent with a variety of data obtained on metal-depleted samples. Experimental data that suggest that the oxidation of Y(Z) in O(2)-evolving samples is coupled to proton transfer in a hydrogen-bonding network are described. Finally, a dielectric-dependent model for the proton release that is associated with the catalytic cycle of photosystem II is discussed. PMID:12437877

  7. Evaluation of Physicochemical Deterioration and Lipid Oxidation of Beef Muscle Affected by Freeze-thaw Cycles.

    PubMed

    Rahman, M H; Hossain, M M; Rahman, S M E; Amin, M R; Oh, Deog-Hwan

    2015-01-01

    This study was performed to explore the deterioration of physicochemical quality of beef hind limb during frozen storage at -20℃, affected by repeated freeze-thaw cycles. The effects of three successive freeze-thaw cycles on beef hind limb were investigated comparing with unfrozen beef muscle for 80 d by keeping at -20±1℃. The freeze-thaw cycles were subjected to three thawing methods and carried out to select the best one on the basis of deterioration of physicochemical properties of beef. As the number of repeated freeze-thaw cycles increased, drip loss decreased and water holding capacity (WHC) increased (p<0.05) till two cycles and then decreased. Cooking loss increased in cycle one and three but decreased in cycle two. Moreover, drip loss, WHC and cooking loss affected (p<0.05) by thawing methods within the cycles. However, pH value decreased (p<0.05), but peroxide value (p<0.05), free fatty acids value (p<0.05) and TBARS value increased (p<0.05) significantly as the number of repeated freeze-thaw cycles increased. Moreover, significant (p<0.05) interactive effects were found among the thawing methods and repeated cycles. As a result, freeze-thaw cycles affected the physicochemical quality of beef muscle, causing the degradation of its quality. PMID:26877637

  8. Evaluation of Physicochemical Deterioration and Lipid Oxidation of Beef Muscle Affected by Freeze-thaw Cycles

    PubMed Central

    Rahman, M. H.; Hossain, M. M.; Rahman, S. M. E.; Amin, M. R.; Oh, Deog-Hwan

    2015-01-01

    This study was performed to explore the deterioration of physicochemical quality of beef hind limb during frozen storage at −20℃, affected by repeated freeze-thaw cycles. The effects of three successive freeze-thaw cycles on beef hind limb were investigated comparing with unfrozen beef muscle for 80 d by keeping at −20±1℃. The freeze-thaw cycles were subjected to three thawing methods and carried out to select the best one on the basis of deterioration of physicochemical properties of beef. As the number of repeated freeze-thaw cycles increased, drip loss decreased and water holding capacity (WHC) increased (p<0.05) till two cycles and then decreased. Cooking loss increased in cycle one and three but decreased in cycle two. Moreover, drip loss, WHC and cooking loss affected (p<0.05) by thawing methods within the cycles. However, pH value decreased (p<0.05), but peroxide value (p<0.05), free fatty acids value (p<0.05) and TBARS value increased (p<0.05) significantly as the number of repeated freeze-thaw cycles increased. Moreover, significant (p<0.05) interactive effects were found among the thawing methods and repeated cycles. As a result, freeze-thaw cycles affected the physicochemical quality of beef muscle, causing the degradation of its quality. PMID:26877637

  9. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    PubMed

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-01

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98 % isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. PMID:26868873

  10. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress.

    PubMed

    Marri, Lucia; Thieulin-Pardo, Gabriel; Lebrun, Régine; Puppo, Rémy; Zaffagnini, Mirko; Trost, Paolo; Gontero, Brigitte; Sparla, Francesca

    2014-02-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) are two energy-consuming enzymes of the Calvin-Benson cycle, whose regulation is crucial for the global balance of the photosynthetic process under different environmental conditions. In oxygen phototrophs, GAPDH and PRK regulation involves the redox-sensitive protein CP12. In the dark, oxidized chloroplast thioredoxins trigger the formation of a GAPDH/CP12/PRK complex in which both enzyme activities are down-regulated. In this report, we show that free GAPDH (A4-isoform) and PRK are also inhibited by oxidants like H2O2, GSSG and GSNO. Both in the land plant Arabidopsis thaliana and in the green microalga Chlamydomonas reinhardtii, both enzymes can be glutathionylated as shown by biotinylated-GSSG assay and MALDI-ToF mass spectrometry. CP12 is not glutathionylated but homodisulfides are formed upon oxidant treatments. In Arabidopsis but not in Chlamydomonas, the interaction between oxidized CP12 and GAPDH provides full protection from oxidative damage. In both organisms, preformed GAPDH/CP12/PRK complexes are protected from GSSG or GSNO oxidation, and in Arabidopsis also from H2O2 treatment. Overall, the results suggest that the role of CP12 in oxygen phototrophs needs to be extended beyond light/dark regulation, and include protection of enzymes belonging to Calvin-Benson cycle from oxidative stress. PMID:24211189

  11. A molecular catalyst for water oxidation that binds to metal oxide surfaces

    PubMed Central

    Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich; Crabtree, Robert H.; Brudvig, Gary W.; Schmuttenmaer, Charles A.

    2015-01-01

    Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425

  12. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment.

    PubMed

    Kampschreur, Marlies J; van der Star, Wouter R L; Wielders, Hubert A; Mulder, Jan Willem; Jetten, Mike S M; van Loosdrecht, Mark C M

    2008-02-01

    Emission of NO and N2O from a full-scale two-reactor nitritation-anammox process was determined during a measurement campaign at the Dokhaven-Sluisjesdijk municipal WWTP (Rotterdam, NL). The NO and N2O levels in the off-gas responded to the aeration cycles and the aeration rate of the nitritation reactor, and to the nitrite and dissolved oxygen concentration. Due to the strong fluctuations in the NO and N2O levels in both the nitritation and the anammox reactor, only time-dependent measurements could yield a reliable estimate of the overall NO and N2O emissions. The NO emission from the nitritation reactor was 0.2% of the nitrogen load and the N2O emission was 1.7%. The NO emission from the anammox reactor was determined to be 0.003% of the nitrogen load and the N2O emission was 0.6%. Emission of NO2 could not be detected from the nitritation-anammox system. Denitrification by ammonia-oxidizing bacteria was considered to be the most probable cause of NO and N2O emission from the nitritation reactor. Since anammox bacteria have not been shown to produce N2O under physiological conditions, it is also suspected that ammonia-oxidizing bacteria contribute most to N2O production in the anammox reactor. The source of NO production in the anammox reactor can be either anammox bacteria or denitrification by heterotrophs or ammonia-oxidizing bacteria. Based on the results and previous work, it seems that a low dissolved oxygen or a high nitrite concentration are the most likely cause of elevated NO and N2O emission by ammonia-oxidizing bacteria. The emission was compared with measurements at other reject water technologies and with the main line of the Dokhaven-Sluisjesdijk WWTP. The N2O emission levels in the reject water treatment seem to be in the same range as for the main stream of activated sludge processes. Preliminary measurements of the N2O emission from a one-reactor nitritation-anammox system indicate that the emission is lower than in two-reactor systems. PMID

  13. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    USGS Publications Warehouse

    Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, Pirkko; Downing, J.A.; Middelburg, J.J.; Melack, J.

    2007-01-01

    Because freshwater covers such a small fraction of the Earth's surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y-1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y-1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described. ?? 2007 Springer Science+Business Media, LLC.

  14. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    NASA Astrophysics Data System (ADS)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  15. Fouling Study of Silicon Oxide Pores Exposed to Tap Water

    SciTech Connect

    Nilsson, J.; Bourcier, W.L.; Lee, J.R.I.; Letant, S.E.; /LLNL, Livermore

    2007-07-12

    We report on the fouling of Focused Ion Beam (FIB)-fabricated silicon oxide nanopores after exposure to tap water for two weeks. Pore clogging was monitored by Scanning Electron Microscopy (SEM) on both bare silicon oxide and chemically functionalized nanopores. While fouling occurred on hydrophilic silicon oxide pore walls, the hydrophobic nature of alkane chains prevented clogging on the chemically functionalized pore walls. These results have implications for nanopore sensing platform design.

  16. The diel cycle of water vapor in west Greenland

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2014-08-01

    We present a study of the dynamics of small-scale (~100 km) atmospheric circulation in west Greenland which is dominated by interactions of marine and continental air masses. Water vapor concentration and isotopic ratios measured continuously over a 25 day period in Kangerlussuaq, Greenland were used to monitor the convergence of easterly katabatic winds and westerly sea breezes that form a front between the dry, isotopically depleted, glacial air mass and the moist, isotopically enriched, marine air mass. During the latter 16 days of the measurement period, an interval with no large-scale synoptic interference, the inland penetration of the sea breeze controlled the largest day-to-day humidity and vapor isotopic variations. Kangerlussuaq experienced sea breezes in the afternoon on 9 days, consistent with the long-term average of such occurrences on 56% of days in July and August. The inland position of the sea breeze front is controlled by the katabatic wind strength, which is stronger during times of reduced cloud coverage and/or higher-pressure gradient between the coast and the Greenland ice sheet. The position and movement of the front will likely respond to changes in the general atmospheric circulation and regional radiation balance resulting from global warming, which will, in turn, impact the local hydrological cycle and ecosystem processes.

  17. The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle

    SciTech Connect

    Kleykamp, H.

    1988-03-01

    A survey of work at the Kernforschungszentrum Karlsruhe is presented on the chemical state of selected fission products that are relevant in the fuel cycle of light water reactor (LWR) and fast breeder reactor fuels. The influence of fuel type and irradiation progress on the composition of the Mo-Tc-Ru-Rh-Pd fission product alloys precipitated in the oxide matrix is examined using the respective multicomponent phase diagrams. The kinetics of dissolution of these phases in nitric acid at the reprocessing stage is discussed. Composition and structure of the residues, and the reprecipitation phenomena from highly active waste (HAW), are elucidated. A second metamorphosis of the fission products is recognized during the vitrification process. The formation of Ru(Rh) oxide and Pd(Rh, U, Te) alloys in simulated vitrified HAW concentrate and in HAW concentrate from the reprocessing of irradiated LWR fuels in interpreted on the basis of heterogeneous equilibria.

  18. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    PubMed

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for

  19. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    Controlled-Ecological-Life-Support-System (CELSS) model wastes were wet-oxidized at temperatures from 250 to 500°C, i.e., below and above the critical point of water (374°C and 218 kg/cm2 or 21.4 MPa). A solution of ammonium hydroxide and acetic acid and a slurry of human urine, feces, and wipes were used as model wastes. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500°C, i.e., above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. Although the extent of nitrogen oxidation to nitrous oxide (N2O) and/or nitrogen gas (N2) increased with reaction temperature, most of the nitrogen was retained in solution as ammonia near 400°C. This important finding suggests that most of the nitrogen in the waste feed can be retained in solution as ammonia during oxidation at low supercritical temperatures and be subsequently used as a nitrogen source for plants in a CELSS while at the same time organic matter is almost completely oxidized to carbon dioxide and water. It was also found in this study the Hastelloy C-276 alloy reactor corroded during waste oxidation. The rate of corrosion was lower above than below the critical temperature for water.

  20. Supercritical water oxidation data acquisition testing. Final report, Volume I

    SciTech Connect

    1996-11-01

    This report discusses the phase one testing of a data acquisition system for a supercritical water waste oxidation system. The system is designed to destroy a wide range of organic materials in mixed wastes. The design and testing of the MODAR Oxidizer is discussed. An analysis of the optimized runs is included.

  1. Stoichiometry of Reducing Equivalents and Splitting of Water in the Citric Acid Cycle.

    ERIC Educational Resources Information Center

    Madeira, Vitor M. C.

    1988-01-01

    Presents a solution to the problem of finding the source of extra reducing equivalents, and accomplishing the stoichiometry of glucose oxidation reactions. Discusses the citric acid cycle and glycolysis. (CW)

  2. Kinetics of plastoquinol oxidation by the Q-cycle in leaves.

    PubMed

    Laisk, Agu; Oja, Vello; Eichelmann, Hillar

    2016-06-01

    Electrochromic shift measurements confirmed that the Q-cycle operated in sunflower leaves. The slow temporarily increasing post-pulse phase was recorded, when ATP synthase was inactivated in the dark and plastoquinol (PQH(2)) oxidation was initiated by a short pulse of far-red light (FRL). During illumination by red light, the Q-cycle-supported proton arrival at the lumen and departure via ATP synthase were simultaneous, precluding extreme build-up of the membrane potential. To investigate the kinetics of the Q-cycle, less than one PQH(2) per cytochrome b(6)f (Cyt b(6)f) were reduced by illuminating the leaf with strong light pulses or single-turnover Xe flashes. The post-pulse rate of oxidation of these PQH2 molecules was recorded via the rate of reduction of plastocyanin (PC(+)) and P700(+), monitored at 810 and 950 nm. The PSII-reduced PQH(2) molecules were oxidized with multi-phase overall kinetics, τ(d)=1, τ(p)=5.6 and τ(s)=16 ms (22 °C). We conclude that τ(d) characterizes PSII processes and diffusion, τ(p) is the bifurcated oxidation of the primary quinol and τ(s) is the Q-cycle-involving reduction of the secondary quinol at the n-site, its transport to the p-site, and bifurcated oxidation there. The extraordinary slow kinetics of the Q-cycle may be related to the still unsolved mechanism of the "photosynthetic control." PMID:27056771

  3. Oxidative decoupling mechanisms of monomer recovery from waste tires via partial supercritical water oxidation

    SciTech Connect

    Lanterman, H.B.; Kocher, B.S.; Lee, S.

    1996-12-31

    Ground waste tires can be oxidatively decomposed into recoverable useful chemical species via a controlled, partial supercritical water oxidation. The process feasibility has been demonstrated using a 1-liter semi-batch supercritical water oxidation system that is fabricated of Hastelloy C-276. The typical operating conditions are 370-400{degrees}C and 220-260 atm. The products include C{sub 1}-C{sub 10} hydrocarbons, including isoprene, the monomer of natural rubber. Possible oxidative decoupling mechanisms for the recovery of monomer and preliminary process engineering results are presented in this paper.

  4. Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles

    SciTech Connect

    R. M. Ferrer; S. Bays; M. Pope

    2008-04-01

    The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

  5. Selective electrochemical generation of hydrogen peroxide from water oxidation

    SciTech Connect

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  6. Oxidative decomposition of vitamin C in drinking water.

    PubMed

    Jansson, Patric J; Jung, Hye R; Lindqvist, Christer; Nordström, Tommy

    2004-08-01

    We have previously shown that vitamin C (ascorbic acid) can initiate hydroxyl radical formation in copper contaminated household drinking water. In the present study, we have examined the stability of vitamin C in copper and bicarbonate containing household drinking water. In drinking water samples, contaminated with copper from the pipes and buffered with bicarbonate, 35% of the added vitamin C was oxidized to dehydroascorbic acid within 15 min. After 3h incubation at room temperature, 93% of the added (2 mM) ascorbic acid had been oxidized. The dehydroascorbic acid formed was further decomposed to oxalic acid and threonic acid by the hydrogen peroxide generated from the copper (I) autooxidation in the presence of oxygen. A very modest oxidation of vitamin C occurred in Milli-Q water and in household water samples not contaminated by copper ions. Moreover, addition of vitamin C to commercially sold domestic bottled water samples did not result in vitamin C oxidation. Our results demonstrate that ascorbic acid is rapidly oxidized to dehydroascorbic acid and further decomposed to oxalic- and threonic acid in copper contaminated household tap water that is buffered with bicarbonate. The impact of consuming ascorbic acid together with copper and bicarbonate containing drinking water on human health is discussed. PMID:15493459

  7. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGESBeta

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.« less

  8. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  9. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  10. Donor-Flexible Nitrogen Ligands for Efficient Iridium-Catalyzed Water Oxidation Catalysis.

    PubMed

    Navarro, Miquel; Li, Mo; Müller-Bunz, Helge; Bernhard, Stefan; Albrecht, Martin

    2016-05-10

    A pyridylideneamide ligand with variable donor properties owing to a pronounced zwitterionic and a neutral diene-type resonance structure was used as a dynamic ligand at a Cp* iridium center to facilitate water oxidation catalysis, a reaction that requires the stabilization of a variety of different iridium oxidation states and that is key for developing an efficient solar fuel device. The ligand imparts high activity (nearly three-fold increase of turnover frequency compared to benchmark systems), and exceptionally high turnover numbers, which indicate a robust catalytic cycle and little catalyst degradation. PMID:26919306

  11. Ni-based heterogeneous catalyst from a designed molecular precursor for the efficient electrochemical water oxidation.

    PubMed

    Kuznetsov, Denis A; Konev, Dmitry V; Komarova, Natal'ya S; Ionov, Andrey M; Mozhchil, Rais N; Fedyanin, Ivan V

    2016-07-28

    Bimetallic Ni-Mo alkoxide was synthesized and exploited as the single-source precursor for the solution-processed deposition of the mixed-oxide layers on different conducting surfaces. Upon potential cycling in 1 M NaOH, these composites convert, in situ, into highly porous NiOx/NiOOH catalysts characterized by the high electrocatalytic activity for water oxidation under both basic (pH 13.6) and near neutral (pH 9.2) conditions. PMID:27354324

  12. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  13. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  14. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China.

    PubMed

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 10(4) to 8.5 × 10(9) copies g(-1)), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  15. Catalytic water oxidation by mononuclear Ru complexes with an anionic ancillary ligand.

    PubMed

    Tong, Lianpeng; Inge, A Ken; Duan, Lele; Wang, Lei; Zou, Xiaodong; Sun, Licheng

    2013-03-01

    Mononuclear Ru-based water oxidation catalysts containing anionic ancillary ligands have shown promising catalytic efficiency and intriguing properties. However, their insolubility in water restricts a detailed mechanism investigation. In order to overcome this disadvantage, complexes [Ru(II)(bpc)(bpy)OH2](+) (1(+), bpc = 2,2'-bipyridine-6-carboxylate, bpy = 2,2'-bipyridine) and [Ru(II)(bpc)(pic)3](+) (2(+), pic = 4-picoline) were prepared and fully characterized, which features an anionic tridentate ligand and has enough solubility for spectroscopic study in water. Using Ce(IV) as an electron acceptor, both complexes are able to catalyze O2-evolving reaction with an impressive rate constant. On the basis of the electrochemical and kinetic studies, a water nucleophilic attack pathway was proposed as the dominant catalytic cycle of the catalytic water oxidation by 1(+), within which several intermediates were detected by MS. Meanwhile, an auxiliary pathway that is related to the concentration of Ce(IV) was also revealed. The effect of anionic ligand regarding catalytic water oxidation was discussed explicitly in comparison with previously reported mononuclear Ru catalysts carrying neutral tridentate ligands, for example, 2,2':6',2″-terpyridine (tpy). When 2(+) was oxidized to the trivalent state, one of its picoline ligands dissociated from the Ru center. The rate constant of picoline dissociation was evaluated from time-resolved UV-vis spectra. PMID:23409776

  16. Dissolved N2/Ar Ratios in Sedimentary Pore Waters: A New Twist in Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Berelson, W.; Prokopenko, M. G.; Sigman, D. M.; Hammond, D.

    2008-12-01

    The nitrogen cycle is comprised predominantly of biologically mediated pathways, leading to a series of negative feedbacks that stabilize the cycle. Sedimentary denitrification, the major sink in the nitrogen budget, is regulated by the rate of organic carbon rain to the sea floor, as well as oxygen concentrations in overlying bottom waters. The sensitivity of sedimentary denitrification as a negative feedback can be expressed as a ratio between total denitrification (including nitrification sub-cycle) rates integrated over depth (fluxes) and fluxes of remineralized organic carbon out of the sediments, Ndenitr/Coxid_total. We have investigated benthic nitrogen cycling in three, semi-enclosed basins of the California Borderlands: Santa Monica, San Pedro and Santa Barbara located in the regime of seasonal coastal upwelling. Deep water in these basins is separated from the open ocean by sills of various depths, contributing to the low [O2], <1 to10 uM. In this study, we developed a method to sample pore waters for dissolved gas analysis. Ratios between O2, Ar and N2 were determined on extracted pore waters with 1) offline cryogenic extraction and subsequent analysis on Finnigan Delta Plus IRMS with 8 collectors; 2) Membrane Inlet Mass Spectrometery (MIMS). Vertical profiles of pore water N2/Ar in the three basins indicate N2 production at depth horizons which exceed by a factor of 5 to 20 the depth of nitrate penetration supported solely by diffusive flux. At depths of maximum subsurface N2 production, we discovered large pools of intracellular nitrate. The relationship between δ15N and δ18O of nitrate are consistent with the activity of a membrane-bound nitrate reductase affecting the measured isotopic composition of the nitrate pool (Granger et al., 2008, in press). In addition, increases in δ15N of pore water NH4 at this depth suggests that at least some of the nitrate might be used for anaerobic ammonium oxidation. Our model estimates up to 25 % of the measured

  17. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    PubMed Central

    Gerbl, Friedrich W.; Weidler, Gerhard W.; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6–47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH4)2SO4as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH+4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ. PMID:24904540

  18. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle.

    PubMed

    Pal, Amrita; He, Yiliang; Jekel, Martin; Reinhard, Martin; Gin, Karina Yew-Hoong

    2014-10-01

    The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs. PMID:24972248

  19. TRMM and its Connection to the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The Tropical Rainfall Measuring Mission (TRMM) orbit is inclined 35 degrees leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 m. The minimum detectable signal from the precipitation radar has been measured at - 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument. This presentation will focus primarily on the advances in our understanding of tropical rain systems needed to interpret the TRMM data. Global averages, as well as case studies from TRMM radar (PR), the TRMM Microwave Imager

  20. TRMM and Its Connection to the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Kummerow, Chiristian

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35 degrees leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 m. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument. This presentation will focus primarily on the advances in our understanding of tropical rain systems needed to interpret the TRMM data. Global averages, as well as case studies from TRMM radar (PR), the TRMM Microwave Imager (TMI) and Visible and Infrared Sensor (VIRS

  1. Using MGS TES Data to Understand Water Cycling in Mars' North Polar Region

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Hale, A. S.; Bass, D. S.; Smith, M. D.

    2003-01-01

    The Martian water cycle is one of the three annual cycles on Mars, dust and CO2 being the other two. Despite the fact that detailed spacecraft data, including global and annual coverage in a variety of wavelengths, have been taken of Mars spanning more than 25 years, there are many outstanding questions regarding the water cycle. There is very little exposed water on Mars today, in either the atmosphere or on the surface although there is geological evidence of catastrophic flooding and continuously running water in past epochs in Mars' history as well as recent (within about 10,000 years ago) evidence for running water in the form of gullies. While there is little water in the atmosphere, water- ice clouds do form and produce seasonal clouds caused by general circulation and by storms. These clouds may in turn be controlling the cycling of the water within the general circulation.

  2. Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization

    SciTech Connect

    Frierdich, Andrew J.; Luo, Yun; Catalano, Jeffrey G.

    2011-11-17

    Microbially driven iron redox cycling in soil and sedimentary systems, including during diagenesis and fluid migration, may activate secondary abiotic reactions between aqueous Fe(II) and solid Fe(III) oxides. These reactions catalyze dynamic recrystallization of iron oxide minerals through localized and simultaneous oxidative adsorption of Fe(II) and reductive dissolution of Fe(III). Redox-active trace elements undergo speciation changes during this process, but the impact redox-driven recrystallization has on redox-inactive trace elements associated with iron oxides is uncertain. Here we demonstrate that Ni is cycled through the minerals goethite and hematite during redox-driven recrystallization. X-ray absorption spectroscopy demonstrates that during this process adsorbed Ni becomes progressively incorporated into the minerals. Kinetic studies using batch reactors containing aqueous Fe(II) and Ni preincorporated into iron oxides display substantial release of Ni to solution. We conclude that iron oxide recrystallization activated by aqueous Fe(II) induces cycling of Ni through the mineral structure, with adsorbed Ni overgrown in regions of Fe(II) oxidative adsorption and incorporated Ni released in regions of reductive dissolution of structural Fe(III). The redistribution of Ni among the mineral bulk, mineral surface, and aqueous solution appears to be thermodynamically controlled and catalyzed by Fe(II). Our work suggests that important proxies for ocean composition on the early Earth may be invalid, identifies new processes controlling micronutrient availability in soil, sedimentary, and aquatic ecosystems, and points toward a mechanism for trace element mobilization during diagenesis and enrichment in geologic fluids.

  3. The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability

    SciTech Connect

    Brandon F. Lachner, Jr.; Gregory F. Nellis; Douglas T. Reindl

    2004-08-30

    This project investigated the economic viability of using water as the refrigerant in a 1000-ton chiller application. The most attractive water cycle configuration was found to be a flash-intercooled, two-stage cycle using centrifugal compressors and direct contact heat exchangers. Component level models were developed that could be used to predict the size and performance of the compressors and heat exchangers in this cycle as well as in a baseline, R-134a refrigeration cycle consistent with chillers in use today. A survey of several chiller manufacturers provided information that was used to validate and refine these component models. The component models were integrated into cycle models that were subsequently used to investigate the life-cycle costs of both an R-134a and water refrigeration cycle. It was found that the first cost associated with the water as a refrigerant cycle greatly exceeded the savings in operating costs associated with its somewhat higher COP. Therefore, the water refrigeration cycle is not an economically attractive option to today's R-134a refrigeration system. There are a number of other issues, most notably the requirements associated with purging non-condensable gases that accumulate in a direct contact heat exchanger, which will further reduce the economic viability of the water cycle.

  4. Developing and Testing Water Cycle Intensification Indicator (WCI) over the United States

    NASA Astrophysics Data System (ADS)

    Feng, X.; Houser, P. R.

    2014-12-01

    Is the water cycle intensifying in response to global warming due to temperature-driven changes in atmospheric water holding capacity? To address this question, we are developing and testing Water Cycle Intensification Indicator (WCI) to quantify the current and future change in the strength of the water cycle across the conterminous U.S. in support of the National Climate Assessment (NCA). The WCI consists of a suite of primary water cycle trend and extreme composites that are spatially- and temporally-scalable for summarizing how the climate changes results in stronger or more extreme water cycling over the nation. We calculated trend and extreme in water cycle components using NASA-produced data and modeling products. Six water cycle variables are chosen, including precipitation, evaporation, runoff, moisture convergence flux, terrestrial storage and water vapor. Our preliminary results showed that the strength of water cycle depends on specific regions and variables, even different datasets. For instance, precipitation from MERRA-Land offline simulation is consistent with the CPC unified precipitation dataset in showing positive trend over the northeastern, northwestern and west north central, but negative trend over the western and central regions. However, negative trends are observed in MERRA-land over the southern Texas and some parts of the southern coast, contrary to the positive trend revealed by the unified dataset in the same area. Next, we are going to integrate and combine the trends and extremes of these water cycle components to develop a suite of climate indicators to monitor the changes of water cycle as result of climate change. These indicators will be implemented and tested over the nation for further optimization. Moreover, we will also be developing innovative WCI visualization, documentation and distribution methods to disseminate WCI products to the public and stakeholders.

  5. Copper as a robust and transparent electrocatalyst for water oxidation.

    PubMed

    Du, Jialei; Chen, Zuofeng; Ye, Shengrong; Wiley, Benjamin J; Meyer, Thomas J

    2015-02-01

    Copper metal is in theory a viable oxidative electrocatalyst based on surface oxidation to Cu(III) and/or Cu(IV) , but its use in water oxidation has been impeded by anodic corrosion. The in situ formation of an efficient interfacial oxygen-evolving Cu catalyst from Cu(II) in concentrated carbonate solutions is presented. The catalyst necessitates use of dissolved Cu(II) and accesses the higher oxidation states prior to decompostion to form an active surface film, which is limited by solution conditions. This observation and restriction led to the exploration of ways to use surface-protected Cu metal as a robust electrocatalyst for water oxidation. Formation of a compact film of CuO on Cu surface prevents anodic corrosion and results in sustained catalytic water oxidation. The Cu/CuO surface stabilization was also applied to Cu nanowire films, which are transparent and flexible electrocatalysts for water oxidation and are an attractive alternative to ITO-supported catalysts for photoelectrochemical applications. PMID:25581365

  6. Anomalous dielectric relaxation of water confined in graphite oxide

    SciTech Connect

    Yu, Ji; Tian, Yuchen; Gu, Min; Tang, Tong B.

    2015-09-28

    Nonmonotonic thermal dependence of dielectric relaxation of water has been observed in hydrated graphite oxide (GO). Graphite oxide prepared via Hummers method then imbued with specific water contents were characterized, with {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopies, X-ray photoelectron spectroscopy, ambient- and variable-temperature X-ray diffractometries, as well as thermogravimetric analysis. Pressed pellets provided with either conducting or blocking electrodes yielded dielectric loss, which was shown to originate from dielectric relaxation of the confined water. Three relaxation processes were observed in impedance spectroscopy. Our previous work has identified two different types of water in GO, namely, intercalated water and water in inter-grain voids. P{sub 1} expresses the reorientation of water confined inside inter-grain voids, and P{sub 2}, the rotation of intercalated water molecules confined in interlayers. The present work reveals a new process P{sub 3}, which also relates to intercalated water. It slows down with temperature, and this apparent anomaly is explained by the decrease in water content and consequent narrowing of interlayer spacing in graphite oxide, as confirmed by characterization techniques. The present study should contribute to our understanding of surface water dynamics.

  7. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  8. Room-Temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water.

    PubMed

    Wang, Jinlong; Zhang, Pengyi; Li, Jinge; Jiang, Chuanjia; Yunus, Rizwangul; Kim, Jeonghyun

    2015-10-20

    Layered manganese oxide, i.e., birnessite was prepared via the reaction of potassium permanganate with ammonium oxalate. The water content in the birnessite was adjusted by drying/calcining the samples at various temperatures (30 °C, 100 °C, 200 °C, 300 °C, and 500 °C). Thermogravimetry-mass spectroscopy showed three types of water released from birnessite, which can be ascribed to physically adsorbed H2O, interlayer H2O and hydroxyl, respectively. The activity of birnessite for formaldehyde oxidation was positively associated with its water content, i.e., the higher the water content, the better activity it has. In-situ DRIFTS and step scanning XRD analysis indicate that adsorbed formaldehyde, which is promoted by bonded water via hydrogen bonding, is transformed into formate and carbonate with the consumption of hydroxyl and bonded water. Both bonded water and water in air can compensate the consumed hydroxyl groups to sustain the mineralization of formaldehyde at room temperature. In addition, water in air stimulates the desorption of carbonate via water competitive adsorption, and accordingly the birnessite recovers its activity. This investigation elucidated the role of water in oxidizing formaldehyde by layered manganese oxides at room temperature, which may be helpful for the development of more efficient materials. PMID:26426569

  9. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  10. Perceptions of the Water Cycle among Primary School Children in Botswana.

    ERIC Educational Resources Information Center

    Taiwo, A. A.; Motswiri, M. J.; Masene, R.

    1999-01-01

    Describes qualitative and quantitative methods used to elucidate the nature of the perception of the water cycle held by Botswana primary-grade pupils in three different geographic areas. Concludes that the students' perception of the water cycle was positively influenced by schooling but negatively impacted upon, to some extent, by the untutored…

  11. Biomimetic metal oxides for the extraction of nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-03-01

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications.Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial

  12. Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes

    DOE PAGESBeta

    Hudak, N. S.; Davis, L. E.; Nagasubramanian, G.

    2014-12-09

    Entropy profiles of lithium cobalt oxide (LiCoO2) electrodes were measured at various stages in the cycle life to examine performance degradation and cycling-induced changes, or lack thereof, in thermodynamics. LiCoO2 electrodes were cycled at C/2 rate in half-cells (vs. lithium anodes) up to 20 cycles or C/5 rate in full cells (vs. MCMB anodes) up to 500 cycles. The electrodes were then subjected to entropy measurements (∂E/∂T, where E is open-circuit potential and T is temperature) in half-cells at regular intervals over the approximate range 0.5 ≤ x ≤ 1 in LixCoO2. Despite significant losses in capacity upon cycling, neithermore » cycling rate resulted in any change to the overall shape of the entropy profile relative to an uncycled electrode, indicating retention of the basic LiCoO2 structure, lithium insertion mechanism, and thermodynamics. This confirms that cycling-induced performance degradation in LiCoO2 electrodes is primarily caused by kinetic barriers that increase with cycling. In the case of electrodes cycled at C/5, there was a subtle, quantitative, and gradual change in the entropy profile in the narrow potential range of the hexagonal-to-monoclinic phase transition. The observed change is indicative of a decrease in the intralayer lithium ordering that occurs at these potentials, and it demonstrates that a cyclinginduced structural disorder accompanies the kinetic degradation mechanisms.« less

  13. Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes

    SciTech Connect

    Hudak, N. S.; Davis, L. E.; Nagasubramanian, G.

    2014-12-09

    Entropy profiles of lithium cobalt oxide (LiCoO2) electrodes were measured at various stages in the cycle life to examine performance degradation and cycling-induced changes, or lack thereof, in thermodynamics. LiCoO2 electrodes were cycled at C/2 rate in half-cells (vs. lithium anodes) up to 20 cycles or C/5 rate in full cells (vs. MCMB anodes) up to 500 cycles. The electrodes were then subjected to entropy measurements (∂E/∂T, where E is open-circuit potential and T is temperature) in half-cells at regular intervals over the approximate range 0.5 ≤ x ≤ 1 in LixCoO2. Despite significant losses in capacity upon cycling, neither cycling rate resulted in any change to the overall shape of the entropy profile relative to an uncycled electrode, indicating retention of the basic LiCoO2 structure, lithium insertion mechanism, and thermodynamics. This confirms that cycling-induced performance degradation in LiCoO2 electrodes is primarily caused by kinetic barriers that increase with cycling. In the case of electrodes cycled at C/5, there was a subtle, quantitative, and gradual change in the entropy profile in the narrow potential range of the hexagonal-to-monoclinic phase transition. The observed change is indicative of a decrease in the intralayer lithium ordering that occurs at these potentials, and it demonstrates that a cyclinginduced structural disorder accompanies the kinetic degradation mechanisms.

  14. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  15. A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II

    NASA Astrophysics Data System (ADS)

    Schulze, Marcus; Kunz, Valentin; Frischmann, Peter D.; Würthner, Frank

    2016-06-01

    Mimicking the ingenuity of nature and exploiting the billions of years over which natural selection has developed numerous effective biochemical conversions is one of the most successful strategies in a chemist's toolbox. However, an inability to replicate the elegance and efficiency of the oxygen-evolving complex of photosystem II (OEC-PSII) in its oxidation of water into O2 is a significant bottleneck in the development of a closed-loop sustainable energy cycle. Here, we present an artificial metallosupramolecular macrocycle that gathers three Ru(bda) centres (bda = 2,2‧-bipyridine-6,6‧-dicarboxylic acid) that catalyses water oxidation. The macrocyclic architecture accelerates the rate of water oxidation via a water nucleophilic attack mechanism, similar to the mechanism exhibited by OEC-PSII, and reaches remarkable catalytic turnover frequencies >100 s–1. Photo-driven water oxidation yields outstanding activity, even in the nM concentration regime, with a turnover number of >1,255 and turnover frequency of >13.1 s–1.

  16. A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II.

    PubMed

    Schulze, Marcus; Kunz, Valentin; Frischmann, Peter D; Würthner, Frank

    2016-06-01

    Mimicking the ingenuity of nature and exploiting the billions of years over which natural selection has developed numerous effective biochemical conversions is one of the most successful strategies in a chemist's toolbox. However, an inability to replicate the elegance and efficiency of the oxygen-evolving complex of photosystem II (OEC-PSII) in its oxidation of water into O2 is a significant bottleneck in the development of a closed-loop sustainable energy cycle. Here, we present an artificial metallosupramolecular macrocycle that gathers three Ru(bda) centres (bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) that catalyses water oxidation. The macrocyclic architecture accelerates the rate of water oxidation via a water nucleophilic attack mechanism, similar to the mechanism exhibited by OEC-PSII, and reaches remarkable catalytic turnover frequencies >100 s(-1). Photo-driven water oxidation yields outstanding activity, even in the nM concentration regime, with a turnover number of >1,255 and turnover frequency of >13.1 s(-1). PMID:27219702

  17. THE FORMATION OF PB(IV) OXIDES IN CHLORINATED WATER

    EPA Science Inventory

    Recent research has shown that Pb(IV) oxides can play an important geochemical role in drinking water distribution systems. The basis of most guidance for lead control in drinking water, however, presumes that Pb(II) solids control lead solubility. Therefore, it is important that...

  18. Investigating the First-Cycle Irreversibility of Lithium Metal Oxide Cathodes for Li Batteries

    SciTech Connect

    Kang,S.; Yoon , W.; Nam, K.; Yang, X.; Abraham, D.

    2008-01-01

    Layered lithium metal oxide cathodes typically exhibit irreversibility during the first cycle in lithium cells when cycled in conventional voltage ranges (e.g., 3-4.3 V vs. Li+/Li). In this work, we have studied the first-cycle irreversibility of lithium cells containing various layered cathode materials using galvanostatic cycling and in situ synchrotron X-ray diffraction. When cycled between 3.0 and 4.3 V vs. Li+/Li, the cells containing LiCoO2, LiNi0.8Co0.15Al0.05O2, and Li1.048(Ni1/3Co1/3Mn1/3)0.952O2 as cathodes showed initial coulombic efficiencies of 98.0, 87.0, and 88.6%, respectively, at relatively slow current (8 mA/g). However, the 'lost capacity' could be completely recovered by discharging the cells to low voltages (<2 V vs Li+/Li). During this deep discharge, the same cells exhibited voltage plateaus at 1.17, 1.81, and 1.47 V, respectively, which is believed to be associated with formation of a Li2MO2-like phase (M = Ni, Co, Mn) on the oxide particle surface due to very sluggish lithium diffusion in LieMO2 with {var_epsilon}{yields} 1 (i.e., near the end of discharge). The voltage relaxation curve and in situ X-ray diffraction patterns, obtained from a Li/Li1.048(Ni1/3Co1/3Mn1/3)0.952O2 cell, showed that the oxide cathode reversibly returned to its original state [i.e., Li1.048(Ni1/3Co1/3Mn1/3)0.952O2] during relaxation following the deep discharge to achieve 100% cycle efficiency.

  19. Light-driven water oxidation for solar fuels

    PubMed Central

    Young, Karin J.; Martini, Lauren A.; Milot, Rebecca L.; III, Robert C. Snoeberger; Batista, Victor S.; Schmuttenmaer, Charles A.; Crabtree, Robert H.; Brudvig, Gary W.

    2014-01-01

    Light-driven water oxidation is an essential step for conversion of sunlight into storable chemical fuels. Fujishima and Honda reported the first example of photoelectrochemical water oxidation in 1972. In their system, TiO2 was irradiated with ultraviolet light, producing oxygen at the anode and hydrogen at a platinum cathode. Inspired by this system, more recent work has focused on functionalizing nanoporous TiO2 or other semiconductor surfaces with molecular adsorbates, including chromophores and catalysts that absorb visible light and generate electricity (i.e., dye-sensitized solar cells) or trigger water oxidation at low overpotentials (i.e., photocatalytic cells). The physics involved in harnessing multiple photochemical events for multielectron reactions, as required in the four-electron water oxidation process, has been the subject of much experimental and computational study. In spite of significant advances with regard to individual components, the development of highly efficient photocatalytic cells for solar water splitting remains an outstanding challenge. This article reviews recent progress in the field with emphasis on water-oxidation photoanodes inspired by the design of functionalized thin film semiconductors of typical dye-sensitized solar cells. PMID:25364029

  20. Silicon and tungsten oxide nanostructures for water splitting

    NASA Astrophysics Data System (ADS)

    Reyes Gil, Karla R.; Spurgeon, Joshua M.; Lewis, Nathan S.

    2009-08-01

    Inorganic semiconductors are promising materials for driving photoelectrochemical water-splitting reactions. However, there is not a single semiconductor material that can sustain the unassisted splitting of water into H2 and O2. Instead, we are developing a three part cell design where individual catalysts for water reduction and oxidation will be attached to the ends of a membrane. The job of splitting water is therefore divided into separate reduction and oxidation reactions, and each catalyst can be optimized independently for a single reaction. Silicon might be suitable to drive the water reduction. Inexpensive highly ordered Si wire arrays were grown on a single crystal wafer and transferred into a transparent, flexible polymer matrix. In this array, light would be absorbed along the longer axial dimension while the resulting electrons or holes would be collected along the much shorter radial dimension in a massively parallel array resembling carpet fibers on a microscale, hence the term "solar carpet". Tungsten oxide is a good candidate to drive the water oxidation. Self-organized porous tungsten oxide was successfully synthesized on the tungsten foil by anodization. This sponge-like structure absorbs light efficiently due to its high surface area; hence we called it "solar sponge".

  1. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; de Respinis, Moreno; Frei, Heinz

    2014-04-01

    In any artificial photosynthetic system, the oxidation of water to molecular oxygen provides the electrons needed for the reduction of protons or carbon dioxide to a fuel. Understanding how this four-electron reaction works in detail is important for the development of improved robust catalysts made of Earth-abundant materials, like first-row transition-metal oxides. Here, using time-resolved Fourier-transform infrared spectroscopy and under reaction conditions, we identify intermediates of water oxidation catalysed by an abundant metal-oxide catalyst, cobalt oxide (Co3O4). One intermediate is a surface superoxide (three-electron oxidation intermediate absorbing at 1,013 cm-1), whereas a second observed intermediate is attributed to an oxo Co(IV) site (one-electron oxidation intermediate absorbing at 840 cm-1). The temporal behaviour of the intermediates reveals that they belong to different catalytic sites. Knowledge of the structure and kinetics of surface intermediates will enable the design of improved metal-oxide materials for more efficient water oxidation catalysis.

  2. Patterns, structures and regulations of domestic water cycle systems in China

    NASA Astrophysics Data System (ADS)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  3. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review

    PubMed Central

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.

    2012-01-01

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849

  4. A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation.

    PubMed

    Wei, Jie; Feng, Yingying; Zhou, Panpan; Liu, Yan; Xu, Jingyin; Xiang, Rui; Ding, Yong; Zhao, Chongchao; Fan, Linyuan; Hu, Changwen

    2015-08-24

    To overcome the bottleneck of water splitting, the exploration of efficient, selective, and stable water oxidation catalysts (WOCs) is crucial. We report an all-inorganic, oxidatively and hydrolytically stable WOC based on a polyoxometalate [(A-α-SiW9 O34)2Co8(OH)6(H2O)2(CO3)3](16-) (Co8 POM). As a cobalt(II)-based cubane water oxidation catalyst, Co8POM embeds double Co(II)4O3 cores. The self-assembled catalyst is similar to the oxygen evolving complex (OEC) of photosystem II (PS II). Using [Ru(bpy)3](2+) as a photosensitizer and persulfate as a sacrificial electron acceptor, Co8POM exhibits excellent water oxidation activity with a turnover number (TON) of 1436, currently the highest among bioinspired catalysts with a cubical core, and a high initial turnover frequency (TOF). Investigation by several spectroscopy, spectrometry, and other techniques confirm that Co8POM is a stable and efficient catalyst for visible light-driven water oxidation. The results offer a useful insight into the design of water oxidation catalysts. PMID:26130568

  5. Oxidation of aluminum particles in the presence of water.

    PubMed

    Schoenitz, Mirko; Chen, Chi-Mon; Dreizin, Edward L

    2009-04-16

    Oxidation of spherical aluminum powder was investigated in mixed argon-oxygen-steam atmospheres by thermogravimetric measurements at heating rates between 1 and 20 K/min and up to 1100 degrees C. The observed oxidation behavior in the presence of steam differs markedly from oxidation in dry oxygen. Oxidation in steam is complete near 1000 degrees C vs 1500 degrees C in dry oxygen. Furthermore, in steam, a stepwise weight change is observed at the melting point of aluminum, while no such step can be distinguished in dry oxygen. The complete oxidation observed at a lower temperature in steam as compared to dry oxygen is explained by the stabilization of the gamma polymorph of the surface oxide in the presence of water so that a denser and slower growing alpha-alumina does not form until higher temperatures. Experiments in mixed oxygen/steam oxidizers showed that the size of the oxidation step observed upon aluminum melting only correlates with the concentration of steam in the atmosphere. This may be interpreted as the effect of transient porosity, the degree of which is controlled by the steam concentration, or the surface oxide stressed by the expanding melting metal core may behave as a semipermeable membrane where hydrous species have significantly higher diffusion rates than oxygen. A clear distinction cannot be drawn, and further research is warranted. Preliminary results on isoconversion processing of the oxidation kinetics are presented. PMID:19309144

  6. Photoassisted oxidation of oil films on water

    SciTech Connect

    Heller, A.; Brock, J.R.

    1991-08-01

    The objective of the project is to develop TiO{sub 2}-based photocatalysts for the solar assisted oxidative dissolution of oil slicks. In a TiO{sub 2} crystal, absorption of a photon generates an electron-hole pair. The electron reacts with surface-adsorbed oxygen, reducing it to hydrogen peroxide; the hole directly oxidizes adsorbed organic compounds, usually via an intermediate OH radical. Since the density of TiO{sub 2} (3.8g/cc for anatase, 4.3 g/cc for rutile) is greater than that of either oil or seawater, TiO{sub 2} crystals are attached to inexpensive, engineered hollow glass microspheres to ensure flotation on the oil slick surface. Portions of the microsphere surface not covered by TiO{sub 2} are made oleophilic so that the microbeads will be preferentially attracted to the oil-air interface.

  7. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. PMID:25044528

  8. GEWEX: The Global Energy and Water Cycle Experiment

    NASA Technical Reports Server (NTRS)

    Chahine, M.; Vane, D.

    1994-01-01

    GEWEX is one of the world's largest global change research programs. Its purpose is to observe and understand the hydrological cycle and energy fluxes in the atmosphere, at land surfaces and in the upper oceans.

  9. eWaterCycle: A high resolution global hydrological model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  10. Microbial cycling, oxidative weathering, and the triple oxygen isotope consequences for marine sulfate

    NASA Astrophysics Data System (ADS)

    Johnston, D. T.; Cowie, B.; Turchyn, A. V.; Antler, G.; Gill, B. C.; Berelson, W.

    2015-12-01

    Microorganisms are responsible for most geochemical sulfur cycling in the ocean. On both modern and geological time scales, stable isotope ratios often serve as a mechanism to track conspicuous or coupled microbial processes, which in turn inform burial fluxes. The most common example of this approach is the use of sulfur isotopes in sulfate and sulfide (both aqueous and in mineral form) to track everything from rates of microbial processes through to the presence/absence of certain metabolic processes in a given environment. The use of oxygen isotope ratios in sulfate has developed in a similar fashion, providing complementary information to that of sulfur isotopes. Through our current work, we will extend the application of oxygen isotopes to include the trace stable oxygen isotope, 17O. These data are facilitated by a new laser F2 fluorination technique running at Harvard, and accompanied by the calibration of a suite of common sulfate standards. At first blush, 16O - 17O - 18O systematics should carry mass-dependent microbial fractionations with process-specific mass laws that are resolvable at the level of our analytical precision. We look to calibrate these biogeochemical effects through the integrated picture captured in marine pore water sulfate profiles, where the 18O/16O is known to evolve. In compliment, riverine sulfate (the sulfate input to the ocean) is an oxidative weathering product and is posited to carry a memory effect of tropospheric O2. Interestingly, the 17O/16O of that O2 carries a mass-independent signal reflecting the balance between stratospheric reactions and Earth surface biospheric fluxes. Through this presentation, we look to calibrate the controls on the balance between biospheric and atmospheric contributions to the marine sulfate reservoir. This is enabled by a series of isotope mass-balance models and with the ultimate goal of developing the geological triple oxygen isotope records of sulfate as a new environmental proxy for paleo

  11. Quantitative analysis of solid oxide fuel cell anode microstructure change during redox cycles

    NASA Astrophysics Data System (ADS)

    Shimura, Takaaki; Jiao, Zhenjun; Hara, Shotaro; Shikazono, Naoki

    2014-12-01

    In the present study, correlation between solid oxide fuel cell anode microstructure and electrochemical performance during redox cycles was investigated. Electrolyte-support cell with nickel/yttria stabilized zirconia composite anode was prepared and tested under discharge process with redox cycles. Redox treatment was basically conducted every 20 h during discharge process. Polarization resistance decreased just after redox treatment and increased during discharge process. Enhancement of cell performance after every redox cycles and faster degradation in the following discharge process were observed. Polarization resistance gradually increased as redox cycles were repeated. Focused ion beam-scanning electron microscopy (FIB-SEM) observation was conducted for reconstructing the three dimensional microstructures of the tested samples. From the three dimensional microstructure reconstruction, it is found that the shape of nickel particle got thinner and complicated after redox cycles. Triple phase boundary (TPB) length increased after redox treatment and decreased after discharge process. This TPB change was highly associated with Ni connectivity and Ni specific surface area. These microstructure changes are consistent with the change of cell performance enhancement after redox treatment and degradation after discharge process. However, TPB length density kept on increasing as redox cycles are repeated, which is inconsistent with the gradual degradation of anode performance.

  12. Visible-Light-Driven Water Oxidation by a Molecular Manganese Vanadium Oxide Cluster.

    PubMed

    Schwarz, Benjamin; Forster, Johannes; Goetz, McKenna K; Yücel, Duygu; Berger, Claudia; Jacob, Timo; Streb, Carsten

    2016-05-17

    Photosynthetic water oxidation in plants occurs at an inorganic calcium manganese oxo cluster, which is known as the oxygen evolving complex (OEC), in photosystem II. Herein, we report a synthetic OEC model based on a molecular manganese vanadium oxide cluster, [Mn4 V4 O17 (OAc)3 ](3-) . The compound is based on a [Mn4 O4 ](6+) cubane core, which catalyzes the homogeneous, visible-light-driven oxidation of water to molecular oxygen and is stabilized by a tripodal [V4 O13 ](6-) polyoxovanadate and three acetate ligands. When combined with the photosensitizer [Ru(bpy)3 ](2+) and the oxidant persulfate, visible-light-driven water oxidation with turnover numbers of approximately 1150 and turnover frequencies of about 1.75 s(-1) is observed. Electrochemical, mass-spectrometric, and spectroscopic studies provide insight into the cluster stability and reactivity. This compound could serve as a model for the molecular structure and reactivity of the OEC and for heterogeneous metal oxide water-oxidation catalysts. PMID:27062440

  13. Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes

    SciTech Connect

    Kent, CA; Concepcion, JJ; Dares, CJ; Torelli, DA; Rieth, AJ; Miller, AS; Hoertz, PG; Meyer, TJ

    2013-06-12

    Electrocatalytic water oxidation occurs at fluoride-doped tin oxide (FTO) electrodes that have been surface-modified by addition of Co(II). On the basis of X-ray photoelectron spectroscopy and transmission electron microscopy measurements, the active surface site appears to be a single site or small-molecule assembly bound as Co(II), with no evidence for cobalt oxide film or cluster formation. On the basis of cyclic voltammetry measurements, surface-bound Co(II) undergoes a pH-dependent 1e(-)/1H(+) oxidation to Co(III), which is followed by pH-dependent catalytic water oxidation. O-2 reduction at FTO occurs at -0.33 V vs NHE, allowing for in situ detection of oxygen as it is formed by water oxidation on the surface. Controlled-potential electrolysis at 1.61 V vs NHE at pH 7.2 resulted in sustained water oxidation catalysis at a current density of 0.16 mA/cm(2) with 29 000 turnovers per site over an electrolysis period of 2 h. The turnover frequency for oxygen production per Co site was 4 s(-1) at an overpotential of 800 mV at pH 7.2. Initial experiments with Co(II) on a mesoporous, high-surface-area nanoFTO electrode increased the current density by a factor of similar to 5

  14. Cobalt, nickel/iron, and titanium oxide electrodes for water oxidation

    NASA Astrophysics Data System (ADS)

    Selloni, Annabella

    2014-03-01

    Water splitting on metal oxide surfaces has attracted enormous interest for more than forty years. While a great deal of work has focused on titanium dioxide (TiO2) , recently cobalt and mixed Ni-Fe oxides have also emerged as promising electrocatalysts for water oxidation due to their low cost and high activity. In this talk I shall discuss various aspects of water oxidation on cobalt (hydro-)oxides, pure and mixed nickel and iron (hydro-)oxides, and TiO2\\ surfaces. Using DFT +U calculations, I shall examine the composition and structure of cobalt and Ni-Fe oxides under electrochemical conditions, and present studies of the oxygen evolution reaction (OER) on the relevant stable compounds. I shall also present hybrid functional calculations of the first proton-coupled-electron transfer at the water/TiO2 interface in the presence of a photoexcited hole. Our results provide evidence that the proton and electron transfers are not concerted but rather represent two sequential processes. They also suggest that the OER is faster at higher pH, as indeed observed experimentally. This work was supported by DoE-BES, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16286.

  15. Enhanced hydrogen production by doping Pr into Ce0.9Hf0.1O2 for thermochemical two-step water-splitting cycle

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Long; Tamaura, Yutaka

    2014-03-01

    We synthesized (Ce0.9Hf0.1)1-xPrxO2-δ (x=0, 0.05 and 0.1) using the polymerized complex method. The synthesized samples, as well as the samples after thermochemical two-step water-splitting cycles have a fluorite structure and Pr exists in the solid solutions with both trivalent and tetravalent states, as suggested by powder X-ray Diffraction (XRD) Patterns. The reduction fraction of Ce4+ in redox cycles (oxidation step in air) and two-step water-splitting cycles (oxidation step in steam) indicates that the addition of Pr into Ce-Hf oxide solid solution cannot improve the reduction fraction of Ce4+ during the redox cycles but both the reduction fraction of Ce4+ and H2 yield are significantly enhanced during two-step water-splitting cycles. The chemical composition of 10 mol% Pr doped Ce0.9Hf0.1O2 exhibits the highest reactivity for hydrogen production in H2-generation step by yielding an average amount of 5.72 ml g-1 hydrogen gas, which is much higher than that evolved by Ce0.9Hf0.1O2 (4.50 ml g-1). The enhancement effect of doping Pr on the performance during two-step water-splitting cycles is because of the multivalent properties of Pr, which can: (1) reduce the amount of Ce3+ oxidized by contamination air (contamination air eliminated by partial oxidation of Pr3+ to Pr4+) in H2-generation step; (2) enhance the reaction rate in H2-generation step by improving the ionic conductivity (extrinsic oxygen vacancies created by the substitution of Ce4+ by Pr3+).

  16. Sunlight-induced photochemical decay of oxidants in natural waters: implications in ballast water treatment.

    PubMed

    Cooper, William J; Jones, Adam C; Whitehead, Robert F; Zika, Rod G

    2007-05-15

    The transport and discharge of ship ballast water has been recognized as a major vector for the introduction of invasive species. Chemical oxidants, long used in drinking water and wastewater treatment, are alternative treatment methods for the control of invasive species currently being tested for use on ships. One concern when a ballasted vessel arrives in port is the adverse effects of residual oxidant in the treated water. The most common oxidants include chlorine (HOCl/OCl-), bromine (HOBr/OBr-), ozone (03), hydrogen peroxide (H2O2), chlorine dioxide (ClO2), and monochloramine (NH2Cl). The present study was undertaken to evaluate the sunlight-mediated photochemical decomposition of these oxidants. Sunlight photodecomposition was measured at various pH using either distilled water or oligotrophic Gulf Stream water for specific oxidants. For selected oxidants, quantum yields at specific wavelengths were obtained. An environmental photochemical model, GCSOLAR, also provided predictions of the fate (sunlight photolysis half-lives) of HOCI/OCl-, HOBr/OBr-, ClO2, and NH2Cl for two different seasons at latitude 40 degrees and in water with two different concentrations of chromophoric dissolved organic matter. These data are useful in assessing the environmental fate of ballast water treatment oxidants if they were to be discharged in port. PMID:17547204

  17. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction.

    PubMed

    Hallows, William C; Yu, Wei; Smith, Brian C; Devries, Mark K; Devires, Mark K; Ellinger, James J; Someya, Shinichi; Shortreed, Michael R; Prolla, Tomas; Markley, John L; Smith, Lloyd M; Zhao, Shimin; Guan, Kun-Liang; Denu, John M

    2011-01-21

    Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3(-/-)) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3(-/-) mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino acid catabolism and β-oxidation. PMID:21255725

  18. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction

    PubMed Central

    Hallows, William C.; Yu, Wei; Smith, Brian C.; Devries, Mark K.; Ellinger, James J.; Someya, Shinichi; Shortreed, Michael R.; Prolla, Tomas; Markley, John L.; Smith, Lloyd M.; Zhao, Shimin; Guan, Kun-Liang; Denu, John M.

    2011-01-01

    Summary Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3−/−) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3−/− mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino-acid catabolism and β-oxidation. PMID:21255725

  19. Proton and hydrogen currents in photosynthetic water oxidation.

    PubMed

    Tommos, C; Babcock, G T

    2000-05-12

    The photosynthetic processes that lead to water oxidation involve an evolution in time from photon dynamics to photochemically-driven electron transfer to coupled electron/proton chemistry. The redox-active tyrosine, Y(Z), is the component at which the proton currents necessary for water oxidation are switched on. The thermodynamic and kinetic implications of this function for Y(Z) are discussed. These considerations also provide insight into the related roles of Y(Z) in preserving the high photochemical quantum efficiency in Photosystem II (PSII) and of conserving the highly oxidizing conditions generated by the photochemistry in the PSII reaction center. The oxidation of Y(Z) by P(680)(+) can be described well by a treatment that invokes proton coupling within the context of non-adiabatic electron transfer. The reduction of Y(.)(Z), however, appears to proceed by an adiabatic process that may have hydrogen-atom transfer character. PMID:10812034

  20. Water electrolyte promoted oxidation of functional thiol groups.

    PubMed

    Lauwers, K; Breynaert, E; Rombouts, I; Delcour, J A; Kirschhock, C E A

    2016-04-15

    The formation of disulfide bonds is of the utmost importance for a wide range of food products with gluten or globular proteins as functional agents. Here, the impact of mineral electrolyte composition of aqueous solutions on thiol oxidation kinetics was studied, using glutathione (GSH) and cysteine (CYS) as model systems. Interestingly, the oxidation rate of both compounds into their corresponding disulfides was significantly higher in common tap water than in ultrapure water. The systematic study of different electrolyte components showed that especially CaCl2 improved the oxidation rate of GSH. However, this effect was not observed for CYS, which indicated a strong impact of the local chemical environment on thiol oxidation kinetics. PMID:26675862

  1. A biomimetic copper water oxidation catalyst with low overpotential.

    PubMed

    Zhang, Teng; Wang, Cheng; Liu, Shubin; Wang, Jin-Liang; Lin, Wenbin

    2014-01-01

    Simply mixing a Cu(II) salt and 6,6'-dihydroxy-2,2'-bipyridine (H2L) in a basic aqueous solution afforded a highly active water oxidation catalyst (WOC). Cyclic voltammetry of the solution at pH = 12-14 shows irreversible catalytic current with an onset potential of ~0.8 V versus NHE. Catalytic oxygen evolution takes place in controlled potential electrolysis at a relatively low overpotential of 640 mV. Experimental and computational studies suggest that the L ligand participates in electron transfer processes to facilitate the oxidation of the Cu center to lead to an active WOC with low overpotential, akin to the use of the tyrosine radical by Photosystem II to oxidize the CaMn4 center for water oxidation. PMID:24325734

  2. Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications

    NASA Astrophysics Data System (ADS)

    Mehmeti, Andi; McPhail, Stephen J.; Pumiglia, Davide; Carlini, Maurizio

    2016-09-01

    This study reviews the status of life cycle assessment (LCA) of Solid Oxide Fuel Cells (SOFCs) and methodological aspects, communicates SOFC environmental performance, and compares the environmental performance with competing power production technologies using a life cycle perspective. Results indicate that power generation using SOFCs can make a significant contribution to the aspired-to greener energy future. Despite superior environmental performance, empirical studies indicate that economic performance is predominantly the highest-ranked criterion in the decision making process. Future LCA studies should attempt to employ comprehensive dynamic multi-criteria environmental impact analysis coupled with economic aspects, to allow a robust comparison of results. A methodology framework is proposed to achieve simultaneously ambitious socio-economic and environmental objectives considering all life cycle stages and their impacts.

  3. Interdisciplinary research in global biogeochemical cycling Nitrous oxide in terrestrial ecosystems

    NASA Technical Reports Server (NTRS)

    Norman, S. D.; Peterson, D. L.

    1984-01-01

    NASA has begun an interdisciplinary research program to investigate various aspects of Global Biology and Global Habitability. An important element selected for the study of global phenomena is related to biogeochemical cycling. The studies involve a collaboration with recognized scientists in the areas of plant physiology, microbiology, nutrient cycling theory, and related areas. Selected subjects of study include nitrogen cycling dynamics in terrestrial ecosystems with special attention to biosphere/atmosphere interactions, and an identification of sensitive response variables which can be used in ecosystem models based on parameters derived from remotely sensed variables. A description is provided of the progress and findings over the past two years. Attention is given to the characteristics of nitrous oxide emissions, the approach followed in the investigations, the selection of study sites, radiometric measurements, and research in Sequoia.

  4. Oxidation behavior of a ferritic stainless steel Crofer22 APU with thermal cycling

    NASA Astrophysics Data System (ADS)

    Song, MyoungYoup; Duong, Anh T.; Mumm, Daniel R.

    2013-01-01

    Crofer22 APU specimens were prepared by grinding with grit 80 and 120 SiC grinding papers and were thermally cycled. The variation in oxidation behavior with thermal cycling was then investigated. Observation of microstructure, measurement of area specific resistance (ASR), analysis of the atomic percentages of the elements by EDX, and XRD analysis were performed. XRD patterns showed that the (Cr, Mn)3O4 spinel phase grew on the surface of the Crofer22 APU samples ground with grit 120. For the samples ground with grit 80, the ASR increased as the number of thermal cycles increased. Plots of ln (ASR/T) vs. 1/T for the samples ground with grit 80 after n = 4, 20 and 40 exhibited good linearity, and the apparent activation energies were between 63.7 kJ/mole and 76.3 kJ/mole.

  5. Characterizing and modeling the evolution of silicon oxide precipitates during thermal cycles

    NASA Astrophysics Data System (ADS)

    Nicolai, J.; Burle, N.; Serafino, C.; Pichaud, B.

    2013-06-01

    The effects of oxidizing annealing cycles on Si high-quality wafers (as used to monitor IC production tools or SOI applications) were studied using different techniques (nano-scale observations and chemical analysis in Transmission Electron Microscope (TEM), but also large scale measurements, such as Laser Scattering Tomography (LST) and chemical etching (CE), thus coupling local analyses with global measurements of defects density and size) to determine their characteristics. Interstitial oxygen loss during cycles was also measured using Fourier Transform Infra-Red spectroscopy (FTIR). It appeared that each cycle is composed of a defect nucleation stage and a growth stage, and that the distribution of these defects (mainly oxide precipitates) along wafer radius essentially depends on the initial point defect density. The evolution of these precipitates was described by a diffusion-and-growth model derived from Ham's model and taking into account various phenomena: oxygen loss, point-defect distribution and cycle effects (up/down ramp and high-temperature plateau). Extensions and limits of the model are also discussed.

  6. Process for treating effluent from a supercritical water oxidation reactor

    SciTech Connect

    Barnes, C.M.; Shapiro, C.

    1995-12-31

    The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

  7. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    PubMed Central

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  8. Study of nickel electrode oxidation as a function of 80% depth of discharge cycling

    SciTech Connect

    Pickett, D.F. Jr.; Scoles, D.L.; Johnson, Z.W.; Hayden, J.W.; Pennington, R.D.

    1997-12-31

    Oxidation of nickel sinter used in nickel oxide electrodes in aerospace nickel cadmium cells leads to hydrogen gassing and the potential for cell rupture. The oxidation is directly related to loss of overcharge protection built into the cell during manufacturing. In nickel hydrogen cells, excessive oxidation of the nickel sinter can eventually lead to a burst before leak situation and is a potential source of failure. It is well known that nickel cadmium cells having nylon separators contribute to loss of overcharge via a hydrolysis reaction of the nylon in the potassium hydroxide electrolyte environment in the cell. The hydrolysis reaction produces lower chain organics which are oxidized by the positive electrode and oxygen. Oxidation of the organics diminishes the overcharge protection. With introduction of the Super NiCd{trademark} and the Magnum{trademark} nickel cadmium cells the nylon hydrolysis reaction is eliminated, but any reducing agent in the cell such as nickel or an organic additive can contribute to loss of overcharge protection. The present effort describes chemical analyses made to evaluate the extent of overcharge protection loss in nickel cadmium cells which do not have nylon hydrolysis, and quantifies the amount of hydrogen buildup in nickel hydrogen cells which are subjected to 80% depth of discharge cycling with and without the presence of cadmium in the positive electrode.

  9. NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.

    2008-01-01

    The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.

  10. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes.

    PubMed

    Zhang, Yuchao; Ji, Hongwei; Ma, Wanhong; Chen, Chuncheng; Song, Wenjing; Zhao, Jincai

    2016-01-01

    As one of the most promising materials for solar water oxidation, hematite has attracted intense research interest for four decades. Despite their desirable optical band gap, stability and other attractive features, there are great challenges for the implementation of hematite-based photoelectrochemical cells. In particular, the extremely low electron mobility leads to severe energy loss by electron hole recombination. Elemental doping, i.e., replacing lattice iron with foreign atoms, has been shown to be a practical solution. Here we review the significant progresses in metal and non-metal element doping-promoted hematite solar water oxidation, focusing on the role of dopants in adjusting carrier density, charge collection efficiency and surface water oxidation kinetics. The advantages and salient features of the different doping categories are compared and discussed. PMID:27376262

  11. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  12. [Effect of tricarboxylic acid cycle intermediates on nitric oxide system during acute hypoxia].

    PubMed

    Kurhaliuk, N M

    2002-01-01

    Effects Crebs Cycle of exogenous intermediates sodium succinate (50 mg/kg) and sodium alpha-ketoglutarate (200 mg/kg) on processes of mitochondrial ADP-stimulated respiration (using as substrates of oxidation 0.35 mM succinate, 1 mM alpha-ketoglutarate), production of nitric oxide under NO2-, NO3-, as well as carbamide, putrescyne content and processes of lipid peroxidation in the rats liver under acute hypoxia (7% O2 in N2, 30 min) have been studied. It was shown, that the exogenous sodium alpha-ketoglutarate increases nitric oxide content, aminotransferase activation, inhibition of succinatedehydrogenase simultaneously more than exogenous sodium succinate. It correlates with decreasing of processes lipid peroxidation in liver. PMID:14964867

  13. Oxidation and Volatilization of Silica-Formers in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    At high temperatures SiC and Si3N4 react with water vapor to form a silica scale. Silica scales also react with water vapor to form a volatile Si(OH)4 species. These simultaneous reactions, one forming silica and the other removing silica, are described by paralinear kinetics. A steady state, in which these reactions occur at the same rate, is eventually achieved, After steady state is achieved, the oxide found on the surface is a constant thickness and recession of the underlying material occurs at a linear rate. The steady state oxide thickness, the time to achieve steady state, and the steady state recession rate can all be described in terms of the rate constants for the oxidation and volatilization reactions. In addition, the oxide thickness, the time to achieve steady state, and the recession rate can also be determined from parameters that describe a water vapor-containing environment. Accordingly, maps have been developed to show these steady state conditions as a function of reaction rate constants, pressure, and gas velocity. These maps can be used to predict the behavior of silica formers in water-vapor containing environments such as combustion environments. Finally, these maps are used to explore the limits of the paralinear oxidation model for SiC and Si3N4

  14. Climate Change and Expected Impacts on the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Rind, David; Hansen, James E. (Technical Monitor)

    2002-01-01

    How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.

  15. Water oxidation chemistry of a synthetic dinuclear ruthenium complex containing redox-active quinone ligands.

    PubMed

    Isobe, Hiroshi; Tanaka, Koji; Shen, Jian-Ren; Yamaguchi, Kizashi

    2014-04-21

    We investigated theoretically the catalytic mechanism of electrochemical water oxidation in aqueous solution by a dinuclear ruthenium complex containing redox-active quinone ligands, [Ru2(X)(Y)(3,6-tBu2Q)2(btpyan)](m+) [X, Y = H2O, OH, O, O2; 3,6-tBu2Q = 3,6-di-tert-butyl-1,2-benzoquinone; btpyan =1,8-bis(2,2':6',2″-terpyrid-4'-yl)anthracene] (m = 2, 3, 4) (1). The reaction involves a series of electron and proton transfers to achieve redox leveling, with intervening chemical transformations in a mesh scheme, and the entire molecular structure and motion of the catalyst 1 work together to drive the catalytic cycle for water oxidation. Two substrate water molecules can bind to 1 with simultaneous loss of one or two proton(s), which allows pH-dependent variability in the proportion of substrate-bound structures and following pathways for oxidative activation of the aqua/hydroxo ligands at low thermodynamic and kinetic costs. The resulting bis-oxo intermediates then undergo endothermic O-O radical coupling between two Ru(III)-O(•) units in an anti-coplanar conformation leading to bridged μ-peroxo or μ-superoxo intermediates. The μ-superoxo species can liberate oxygen with the necessity for the preceding binding of a water molecule, which is possible only after four-electron oxidation is completed. The magnitude of catalytic current would be limited by the inherent sluggishness of the hinge-like bending motion of the bridged μ-superoxo complex that opens up the compact, hydrophobic active site of the catalyst and thereby allows water entry under dynamic conditions. On the basis of a newly proposed mechanism, we rationalize the experimentally observed behavior of electrode kinetics with respect to potential and discuss what causes a high overpotential for water oxidation by 1. PMID:24694023

  16. Supercritical water oxidation - Concept analysis for evolutionary Space Station application

    NASA Technical Reports Server (NTRS)

    Hall, John B., Jr.; Brewer, Dana A.

    1986-01-01

    The ability of a supercritical water oxidation (SCWO) concept to reduce the number of processes needed in an evolutionary Space Station design's Environmental Control and Life Support System (ECLSS), while reducing resupply requirements and enhancing the integration of separate ECLSS functions into a single Supercritical Water Oxidation process, is evaluated. While not feasible for an initial operational capability Space Station, the SCWO's application to the evolutionary Space Station configuration would aid the integration of eight ECLSS functions into a single one, thereby significantly reducing program costs.

  17. Photocatalytic water oxidation by molecular assemblies based on cobalt catalysts.

    PubMed

    Zhou, Xu; Li, Fei; Li, Hua; Zhang, Biaobiao; Yu, Fengshou; Sun, Licheng

    2014-09-01

    Chromophore-catalyst molecular assemblies towards visible light-driven water oxidation were synthesized by covalent integration of a light-harvesting complex [Ru(bpy)3](2+) (bpy=2,2'-bipyridine) and a Co4O4 cubane water oxidation catalyst. The two components were assembled either in linear or macrocyclic configurations. In the presence of the sacrificial reagent, the Ru-Co metallocycle exhibits remarkable photocatalytic activity for oxygen evolution, which is one order of magnitude higher than that of a multicomponent system and exceeds that of a linear assembly by a factor of five, offering access to highly active photocatalyst through molecular design. PMID:25111070

  18. Bacterial Oxidation of Iron in Olivine: Implications for the Subsurface Biosphere, Global Chemical Cycles, and Life on Mars

    NASA Astrophysics Data System (ADS)

    Fisk, M. R.; Popa, R.; Smith, A. R.; Popa, R.; Boone, J.

    2011-12-01

    We isolated 21 species of bacteria from subseafloor and terrestrial basalt environments and which thrive on olivine at neutral pH. Cell numbers increase four to five orders of magnitude over three weeks in media where the only metabolic energy comes from the oxidation of Fe(II) in olivine. The subseafloor bacteria were isolated from a borehole on the flank of Juan de Fuca Ridge in the northeast Pacific basin where the temperature ranged from 4 up to 64 °C over four years. Terrestrial isolates originated from the basalt-ice boundary in a lava tube on the flank of Newberry Caldera in the Cascades of Oregon. The borehole water was either seawater or seawater plus subseafloor formation water and the lava tube ice was frozen meteoric or ground water. Although microorganisms capable of oxidizing iron for growth are known, microbes that oxidize iron from silicate minerals at neutral pH have not previously been cultured. The 21 species in this study are the first neutrophilic, iron-oxidizing bacteria (nFeOB) to be isolated and cultured that grow on olivine. These nFeOB are primary producers and we believe that they are a widespread component of the subsurface biosphere. In addition to their ability use iron from olivine, these microbes assimilate carbon from bicarbonate in solution and can grow when oxygen pressures are low. They also use nitrate as an alternative electron acceptor to oxygen in anaerobiosis. Since basalt is the most common rock in the Earth's crust and iron is the fourth most abundant element in the crust, we believe nFeOB are likely to be a significant portion of the subsurface biosphere. They are likely to affect, and perhaps in some environments control, the weathering rate of olivine and possibly of pyroxene and basalt glass. Olivine is a component of Mars's surface and it is present on other rocky bodies in the solar system. The ability of these bacteria to use Fe(II) from olivine, to assimilate carbon, to grow at low temperature, and to use low

  19. Aircraft water vapor measurements utilizing an aluminum oxide hygrometer

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1973-01-01

    A hygrometer for water vapor measurements from an aircraft has been developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on NASA and USAF aircraft. Water vapor measurements were conducted up to 40,000 feet with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 feet.

  20. Aircraft water vapor measurements utilizing an aluminum oxide hygrometer

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1974-01-01

    A hygrometer for water vapor measurements from an aircraft was developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on the NASA Convair 990 and on a USAF B-57 aircraft. Water vapor measurements from the Convair 990 were conducted up to 40,000 ft with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 ft.

  1. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst

    PubMed Central

    Kim, Hyunah; Park, Jimin; Park, Inchul; Jin, Kyoungsuk; Jerng, Sung Eun; Kim, Sun Hee; Nam, Ki Tae; Kang, Kisuk

    2015-01-01

    The development of efficient and stable water oxidation catalysts is necessary for the realization of practically viable water-splitting systems. Although extensive studies have focused on the metal-oxide catalysts, the effect of metal coordination on the catalytic ability remains still elusive. Here we select four cobalt-based phosphate catalysts with various cobalt- and phosphate-group coordination as a platform to better understand the catalytic activity of cobalt-based materials. Although they exhibit various catalytic activities and stabilities during water oxidation, Na2CoP2O7 with distorted cobalt tetrahedral geometry shows high activity comparable to that of amorphous cobalt phosphate under neutral conditions, along with high structural stability. First-principles calculations suggest that the surface reorganization by the pyrophosphate ligand induces a highly distorted tetrahedral geometry, where water molecules can favourably bind, resulting in a low overpotential (∼0.42 eV). Our findings emphasize the importance of local cobalt coordination in the catalysis and suggest the possible effect of polyanions on the water oxidation chemistry. PMID:26365091

  2. Promoting Photochemical Water Oxidation with Metallic Band Structures.

    PubMed

    Liu, Hongfei; Moré, René; Grundmann, Henrik; Cui, Chunhua; Erni, Rolf; Patzke, Greta R

    2016-02-10

    The development of economic water oxidation catalysts is a key step toward large-scale water splitting. However, their current exploration remains empirical to a large extent. Elucidating the correlations between electronic properties and catalytic activity is crucial for deriving general and straightforward catalyst design principles. Herein, strongly correlated electronic systems with abundant and easily tunable electronic properties, namely La(1-x)Sr(x)BO3 perovskites and La(2-x)Sr(x)BO4 layered perovskites (B = Fe, Co, Ni, or Mn), were employed as model systems to identify favorable electronic structures for water oxidation. We established a direct correlation between the enhancement of catalytic activity and the insulator to metal transition through tuning the electronic properties of the target perovskite families via the La(3+)/Sr(2+) ratio. Their improved photochemical water oxidation performance was clearly linked to the increasingly metallic character. These electronic structure-activity relations provide a promising guideline for constructing efficient water oxidation catalysts. PMID:26771537

  3. The water cycles of water-soluble organic salts of atmospheric importance

    NASA Astrophysics Data System (ADS)

    Peng, Changgeng; Chan, Chak K.

    In this study, the water cycles of nine water-soluble organic salts of atmospheric interest were studied using an electrodynamic balance (EDB) at 25°C. Sodium formate, sodium acetate, sodium succinate, sodium pyruvate and sodium methanesulfonate (Na-MSA) particles crystallize as the relative humidity (RH) decreases and they deliquesce as the RH increases. Sodium oxalate and ammonium oxalate form supersaturated particles at low RH before crystallization but they do not deliquesce even at RH=90%. Sodium malonate and sodium maleate particles neither crystallize nor deliquesce. These two salts absorb and evaporate water reversibly without hysteresis. In most cases, the solid states of single particles resulting from the crystallization of supersaturated droplets do not form the most thermodynamically stable state found in bulk studies. Sodium formate, sodium oxalate, ammonium oxalate, sodium succinate, sodium pyruvate and Na-MSA form anhydrous particles after crystallization. Sodium acetate forms particles with a water/salt molar ratio of 0.5 after crystallization. In salts with several hydrated states including sodium formate and sodium acetate, the particles deliquesce at the lowest deliquescence relative humidity (DRH) of the hydrates. Except sodium oxalate and ammonium oxalate, all the salts studied here are as hygroscopic as typical inorganic hygroscopic aerosols. The hygroscopic organic salts have a growth factor of 1.76-2.18 from RH=10-90%, comparable to that of typical hygroscopic inorganic salts such as NaCl and (NH 4) 2SO 4. Further study of other atmospheric water-soluble organic compounds and their mixtures with inorganic salts is needed to explain the field observations of the hygroscopic growth of ambient aerosols.

  4. Exfoliation Propensity of Oxide Scale in Heat Exchangers Used for Supercritical CO2 Power Cycles

    SciTech Connect

    Sabau, Adrian S; Shingledecker, John P.; Kung, Steve; Wright, Ian G.; Nash, Jim

    2016-01-01

    Supercritical CO2 (sCO2) Brayton cycle systems offer the possibility of improved efficiency in future fossil energy power generation plants operating at temperatures of 650 C and above. As there are few data on the oxidation/corrosion behavior of structural alloys in sCO2 at these temperatures, modeling to predict the propensity for oxide exfoliation is not well developed, thus hindering materials selection for these novel cycles. The ultimate goal of this effort is to provide needed data on scale exfoliation behavior in sCO2 for confident alloy selection. To date, a model developed by ORNL and EPRI for the exfoliation of oxide scales formed on boiler tubes in high-temperature, high-pressure steam has proven useful for managing exfoliation in conventional steam plants. A major input provided by the model is the ability to predict the likelihood of scale failure and loss based on understanding of the evolution of the oxide morphologies and the conditions that result in susceptibility to exfoliation. This paper describes initial steps taken to extend the existing model for exfoliation of steam-side oxide scales to sCO2 conditions. The main differences between high-temperature, high-pressure steam and sCO2 that impact the model involve (i) significant geometrical differences in the heat exchangers, ranging from standard pressurized tubes seen typically in steam-producing boilers to designs for sCO2 that employ variously-curved thin walls to create shaped flow paths for extended heat transfer area and small channel cross-sections to promote thermal convection and support pressure loads; (ii) changed operating characteristics with sCO2 due to the differences in physical and thermal properties compared to steam; and (iii) possible modification of the scale morphologies, hence properties that influence exfoliation behavior, due to reaction with carbon species from sCO2. The numerical simulations conducted were based on an assumed sCO2 operating schedule and several

  5. Cs(I) Cation Enhanced Cu(II) Catalysis of Water Oxidation.

    PubMed

    Zhu, Lei; Du, Jialei; Zuo, Shangshang; Chen, Zuofeng

    2016-07-18

    We report here a new catalytic water oxidation system based on Cu(II) ions and a remarkable countercation effect on the catalysis. In a concentrated fluoride solution at neutral to weakly basic pHs, simple Cu(II) salts are highly active and robust in catalyzing water oxidation homogeneously. F(-) in solution acts as a proton acceptor and an oxidatively robust ligand. F(-) coordination prevents precipitation of Cu(II) as CuF2/Cu(OH)2 and lowers potentials for accessing high-oxidation-state Cu by delocalizing the oxidative charge over F(-) ligands. Significantly, the catalytic current is greatly enhanced in a solution of CsF compared to those of KF and NaF. Although countercations are not directly involved in the catalytic redox cycle, UV-vis and (19)F nuclear magnetic resonance measurements reveal that coordination of F(-) to Cu(II) is dependent on countercations by Coulombic interaction. A less intense interaction between F(-) and well-solvated Cs(+) as compared with Na(+) and K(+) leads to a more intense coordination of F(-) to Cu(II), which accounts for the improved catalytic performance. PMID:27352033

  6. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies.

    PubMed

    Kim, Wooyul; McClure, Beth Anne; Edri, Eran; Frei, Heinz

    2016-06-01

    The reduction of carbon dioxide by water with sunlight in an artificial system offers an opportunity for utilizing non-arable land for generating renewable transportation fuels to replace fossil resources. Because of the very large scale required for the impact on fuel consumption, the scalability of artificial photosystems is of key importance. Closing the photosynthetic cycle of carbon dioxide reduction and water oxidation on the nanoscale addresses major barriers for scalability as well as high efficiency, such as resistance losses inherent to ion transport over macroscale distances, loss of charge and other efficiency degrading processes, or excessive need for the balance of system components, to mention a few. For the conversion of carbon dioxide to six-electron or even more highly reduced liquid fuel products, introduction of a proton conducting, gas impermeable separation membrane is critical. This article reviews recent progress in the development of light absorber-catalyst assemblies for the reduction and oxidation half reactions with focus on well defined polynuclear structures, and on novel approaches for optimizing electron transfer among the molecular or nanoparticulate components. Studies by time-resolved optical and infrared spectroscopy for the understanding of charge transfer processes between the chromophore and the catalyst, and of the mechanism of water oxidation at metal oxide nanocatalysts through direct observation of surface reaction intermediates are discussed. All-inorganic polynuclear units for reducing carbon dioxide by water at the nanoscale are introduced, and progress towards core-shell nanotube assemblies for completing the photosynthetic cycle under membrane separation is described. PMID:27121982

  7. Effects of tempol and redox-cycling nitroxides in models of oxidative stress

    PubMed Central

    Wilcox, Christopher S.

    2010-01-01

    Tempol is a redox cycling nitroxide that promotes the metabolism of many reactive oxygen species (ROS) and improves nitric oxide bioavailability. It has been studied extensively in animal models of oxidative stress. Tempol has been shown to preserve mitochondria against oxidative damage and improve tissue oxygenation. Tempol improved insulin responsiveness in models of diabetes mellitus and improved the dyslipidemia, reduced the weight gain and prevented diastolic dysfunction and heart failure in fat-fed models of the metabolic syndrome. Tempol protected many organs, including the heart and brain, from ischemia/reperfusion damage. Tempol prevented podocyte damage, glomerulosclerosis, proteinuria and progressive loss of renal function in models of salt and mineralocorticosteroid excess. It reduced brain or spinal cord damage after ischemia or trauma and exerted a spinal analgesic action. Tempol improved survival in several models of shock. It protected normal cells from radiation while maintaining radiation sensitivity of tumor cells. Its paradoxical pro-oxidant action in tumor cells accounted for a reduction in spontaneous tumor formation. Tempol was effective in some models of neurodegeneration. Thus, tempol has been effective in preventing several of the adverse consequences of oxidative stress and inflammation that underlie radiation damage and many of the diseases associated with aging. Indeed, tempol given from birth prolonged the life span of normal mice. However, presently tempol has been used only in human subjects as a topical agent to prevent radiation-induced alopecia. PMID:20153367

  8. The Global Enery and Water Cycle Experiment Science Strategy

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1997-01-01

    The distribution of water in the atmosphere and at the surface of the Earth is the most influential factor regulating our environment, not only because water is essential for life but also because through phase transitions it is the main energy source that control clouds and radiation and drives the global circulation of the atmosphere.

  9. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces.

    PubMed

    Yang, Jinhui; Walczak, Karl; Anzenberg, Eitan; Toma, Francesca M; Yuan, Guangbi; Beeman, Jeffrey; Schwartzberg, Adam; Lin, Yongjing; Hettick, Mark; Javey, Ali; Ager, Joel W; Yano, Junko; Frei, Heinz; Sharp, Ian D

    2014-04-30

    Plasma-enhanced atomic layer deposition of cobalt oxide onto nanotextured p(+)n-Si devices enables efficient photoelectrochemical water oxidation and effective protection of Si from corrosion at high pH (pH 13.6). A photocurrent density of 17 mA/cm(2) at 1.23 V vs RHE, saturation current density of 30 mA/cm(2), and photovoltage greater than 600 mV were achieved under simulated solar illumination. Sustained photoelectrochemical water oxidation was observed with no detectable degradation after 24 h. Enhanced performance of the nanotextured structure, compared to planar Si, is attributed to a reduced silicon oxide thickness that provides more intimate interfacial contact between the light absorber and catalyst. This work highlights a general approach to improve the performance and stability of Si photoelectrodes by engineering the catalyst/semiconductor interface. PMID:24720554

  10. Biomimetic metal oxides for the extraction of nanoparticles from water.

    PubMed

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-04-21

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications. PMID:23471156

  11. Oxidation of Carbon Fibers in Water Vapor Studied

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    2003-01-01

    T-300 carbon fibers (BP Amoco Chemicals, Greenville, SC) are a common reinforcement for silicon carbide composite materials, and carbon-fiber-reinforced silicon carbide composites (C/SiC) are proposed for use in space propulsion applications. It has been shown that the time to failure for C/SiC in stressed oxidation tests is directly correlated with the fiber oxidation rate (ref. 1). To date, most of the testing of these fibers and composites has been conducted in oxygen or air environments; however, many components for space propulsion, such as turbopumps, combustors, and thrusters, are expected to operate in hydrogen and water vapor (H2/H2O) environments with very low oxygen contents. The oxidation rate of carbon fibers in conditions representative of space propulsion environments is, therefore, critical for predicting component lifetimes for real applications. This report describes experimental results that demonstrate that, under some conditions, lower oxidation rates of carbon fibers are observed in water vapor and H2/H2O environments than are found in oxygen or air. At the NASA Glenn Research Center, the weight loss of the fibers was studied as a function of water pressure, temperature, and gas velocity. The rate of carbon fiber oxidation was determined, and the reaction mechanism was identified.

  12. Acetic acid oxidation and hydrolysis in supercritical water

    SciTech Connect

    Meyer, J.C.; Marrone, P.A.; Tester, J.W.

    1995-09-01

    Acetic acid (CH{sub 3}COOH) hydrolysis and oxidation in supercritical water were examined from 425--600 C and 246 bar at reactor residence times of 4.4 to 9.8 s. Over the range of conditions studied, acetic acid oxidation was globally 0.72 {+-} 0.15 order in acetic acid and 0.27 {+-} 0.15 order in oxygen to a 95% confidence level, with an activation energy of 168 {+-} 21 kJ/mol, a preexponential factor of 10{sup 9.9{+-}1.7}, and an induction time of about 1.5 s at 525 C. Isothermal kinetic measurements at 550 C over the range 160 to 263 bar indicated that pressure or density did not affect the rate of acetic acid oxidation as much as was previously observed in the oxidation of hydrogen or carbon monoxide in supercritical water. Major products of acetic acid oxidation in supercritical water are carbon dioxide, carbon monoxide, methane, and hydrogen. Trace amounts of propenoic acid were occasionally detected. Hydrolysis or hydrothermolysis in the absence of oxygen resulted in approximately 35% conversion of acetic acid at 600 C, 246 bar, and 8-s reactor residence time. Regression of the limited hydrolysis runs assuming a reaction rate first-order in organic gave a global rate expression with a preexponential factor of 10{sup 4.4{+-}1.1} and an activation energy of 94 {+-} 17 kJ/mol.

  13. The urban harvest approach as framework and planning tool for improved water and resource cycles.

    PubMed

    Leusbrock, I; Nanninga, T A; Lieberg, K; Agudelo-Vera, C M; Keesman, K J; Zeeman, G; Rijnaarts, H H M

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource management concepts are indispensable. In recent years we have developed and applied the urban harvest approach (UHA). The UHA aims to model and quantify the urban water cycle on different temporal and spatial scales. This approach allowed us to quantify the impact of the implementation of water saving measures and new water treatment concepts in cities. In this paper we will introduce the UHA and its application for urban water cycles. Furthermore, we will show first results for an extension to energy cycles and highlight future research items (e.g. nutrients, water-energy-nexus). PMID:26360761

  14. Experimental demonstration of radicaloid character in a RuV=O intermediate in catalytic water oxidation

    PubMed Central

    Moonshiram, Dooshaye; Alperovich, Igor; Concepcion, Javier J.; Meyer, Thomas J.; Pushkar, Yulia

    2013-01-01

    Water oxidation is the key half reaction in artificial photosynthesis. An absence of detailed mechanistic insight impedes design of new catalysts that are more reactive and more robust. A proposed paradigm leading to enhanced reactivity is the existence of oxyl radical intermediates capable of rapid water activation, but there is a dearth of experimental validation. Here, we show the radicaloid nature of an intermediate reactive toward formation of the O-O bond by assessing the spin density on the oxyl group by Electron Paramagnetic Resonance (EPR). In the study, an 17O-labeled form of a highly oxidized, short-lived intermediate in the catalytic cycle of the water oxidation catalyst cis,cis-[(2,2-bipyridine)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+ was investigated. It contains Ru centers in oxidation states [4,5], has at least one RuV = O unit, and shows |Axx| = 60G 17O hyperfine splittings (hfs) consistent with the high spin density of a radicaloid. Destabilization of π-bonding in the d3 RuV = O fragment is responsible for the high spin density on the oxygen and its high reactivity. PMID:23417296

  15. Alternatives to the 'water oxidation pathway' of biological ozone formation.

    PubMed

    Onyango, Arnold N

    2016-01-01

    Recent studies have shown that ozone (O3) is endogenously generated in living tissues, where it makes both positive and negative physiological contributions. A pathway for the formation of both O3 and hydrogen peroxide (H2O2) was previously proposed, beginning with the antibody or amino acid-catalyzed oxidation of water by singlet oxygen ((1)O2) to form hydrogen trioxide (H2O3) as a key intermediate. A key pillar of this hypothesis is that some of the H2O2 molecules incorporate water-derived oxygen atoms. However, H2O3 decomposes extremely readily in water to form (1)O2 and water, rather than O3 and H2O2. This article highlights key literature indicating that the oxidation of organic molecules such as the amino acids methionine, tryptophan, histidine, and cysteine by (1)O2 is involved in ozone formation. Based on this, an alternative hypothesis for ozone formation is developed involving a further reaction of singlet oxygen with various oxidized organic intermediates. H2O2 having water-derived oxygen atoms is subsequently formed during ozone decomposition in water by known reactions. PMID:26855676

  16. An Overview of the NASA Energy and Water cycle Study (NEWS) and the North American Water Program (NAWP)

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2014-12-01

    NEWS: 10 years ago, NASA established the NASA Energy and Water-cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. The NEWS program builds upon existing NASA-supported basic research in atmospheric physics and dynamics, radiation, climate modeling, and terrestrial hydrology. While these NASA programs fund research activities that address individual aspects of the global energy and water cycles, they are not specifically designed to generate a coordinated result. NEWS developed the first coordinated attempt to describe the complete global energy and water cycle using existing and forthcoming satellite and ground based observations, and laying the foundation for essential NEWS developments in model representations of atmospheric energy and water exchange processes. This comprehensive energy and water data analysis program exploited crucial datasets, some requiring complete re-processing, and new satellite measurements. NAWP: Dramatically changing climates has had an indelible impact on North America's water crisis. To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental- to decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observational and prediction resources available, NAWP will significantly advance skill in predicting, assessing and managing variability and changes in North American water resources. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and

  17. Examining Language To Capture Scientific Understandings: The Case of the Water Cycle.

    ERIC Educational Resources Information Center

    Varelas, Maria; Pappas, Christine; Barry, Anne; O'Neill, Amy

    2001-01-01

    Presents units that address states of matter and changes of states of matter linked with the water cycle and integrates literacy and science. Discusses the language in science books. Lists characteristics of good science inquiry units. (Contains 11 references.) (ASK)

  18. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis.

    PubMed

    Robinson, David M; Go, Yong Bok; Mui, Michelle; Gardner, Graeme; Zhang, Zhijuan; Mastrogiovanni, Daniel; Garfunkel, Eric; Li, Jing; Greenblatt, Martha; Dismukes, G Charles

    2013-03-01

    Manganese oxides occur naturally as minerals in at least 30 different crystal structures, providing a rigorous test system to explore the significance of atomic positions on the catalytic efficiency of water oxidation. In this study, we chose to systematically compare eight synthetic oxide structures containing Mn(III) and Mn(IV) only, with particular emphasis on the five known structural polymorphs of MnO2. We have adapted literature synthesis methods to obtain pure polymorphs and validated their homogeneity and crystallinity by powder X-ray diffraction and both transmission and scanning electron microscopies. Measurement of water oxidation rate by oxygen evolution in aqueous solution was conducted with dispersed nanoparticulate manganese oxides and a standard ruthenium dye photo-oxidant system. No Ru was absorbed on the catalyst surface as observed by XPS and EDX. The post reaction atomic structure was completely preserved with no amorphization, as observed by HRTEM. Catalytic activities, normalized to surface area (BET), decrease in the series Mn2O3 > Mn3O4 ≫ λ-MnO2, where the latter is derived from spinel LiMn2O4 following partial Li(+) removal. No catalytic activity is observed from LiMn2O4 and four of the MnO2 polymorphs, in contrast to some literature reports with polydispersed manganese oxides and electro-deposited films. Catalytic activity within the eight examined Mn oxides was found exclusively for (distorted) cubic phases, Mn2O3 (bixbyite), Mn3O4 (hausmannite), and λ-MnO2 (spinel), all containing Mn(III) possessing longer Mn-O bonds between edge-sharing MnO6 octahedra. Electronically degenerate Mn(III) has antibonding electronic configuration e(g)(1) which imparts lattice distortions due to the Jahn-Teller effect that are hypothesized to contribute to structural flexibility important for catalytic turnover in water oxidation at the surface. PMID:23391134

  19. Methane concentrations and oxidation in nearshore waters of the Lena River Delta

    NASA Astrophysics Data System (ADS)

    Joye, S. B.; Samarkin, V.; Shakhova, N. E.; Semiletov, I. P.

    2014-12-01

    The Arctic is warming dramatically, with potentially catastrophic impacts on climate change through rapid mobilization of labile carbon reservoirs sequestered presently in permafrost. Increasingly, Arctic feedbacks are recognized as key contributors to climate change, including cycles associated with the powerful greenhouse gas methane, whose atmospheric concentration has more than doubled since the pre-industrial epoch. Sustained methane release to the atmosphere from thawing Arctic permafrost and delivery to the coastal ocean through groundwater or riverine discharge or expulsion from the seabed is a positive and likely highly significant feedback to climate warming. Microbially-mediated methane oxidation provides a key sink and effective biofilter that can limit methane fluxes from coastal environments to the atmosphere. We examined methane dynamics on the East Siberian Arctic Shelf by determining concentrations and oxidation rates at a series of stations near the Lena River Delta and moving offshore. Methane concentrations and oxidation rates were highly elevated in and near the river mouth compared to offshore waters, except when the offshore waters were impacted by seabed methane seepage. The regulation of methane oxidation in Arctic waters appears two-fold: first, rates are strongly related to methane availability and second, in the presence of methane, nutrient availability strongly regulates methane consumption. Along the Lena river delta, elevated concentrations of both nutrients and methane create ideal conditions to support high rates of pelagic methanotrophy. Offshore, where nutrient concentrations are lower and more limiting, methane oxidation rates are considerably lower. These data suggest that, at present, nearshore waters are fairly efficient methane sinks while in offshore waters, pelagic methanotrophy is inefficient, allowing methane to escape to the atmosphere.

  20. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources. PMID:22828292

  1. Oxidative stress biomarkers in endometrial secretions: A comparison between successful and unsuccessful in vitro fertilization cycles.

    PubMed

    Rahiminejad, Mohammad Ehsan; Moaddab, Amirhossein; Ganji, Maziar; Eskandari, Nika; Yepez, Mayel; Rabiee, Soghra; Wise, Meredith; Ruano, Rodrigo; Ranjbar, Akram

    2016-08-01

    A potential role of oxidative stress has been implicated in the outcome of various steps of assisted reproductive technology (ART). In a prospective cohort study, a total of 100 patients undergoing IVF/ICSI procedure due to male factor infertility were recruited based on the inclusion criteria. In all patients, 1-2ml of endometrial secretions was aspirated prior to embryo transfer. The oxidative stress markers in endometrial secretions, including superoxide dismutase (SOD), catalase (CAT) activities, lipid peroxidation (LPO), total thiol groups (TTG), and total antioxidant power (TAP) were investigated and compared among study groups including term pregnancy, failed IVF cycle, and miscarriage. P<0.05 was considered statistically different. Of the 100 patients, 28 cases (28%) resulted in ongoing pregnancy (biochemical pregnancy followed by clinical pregnancy), 11 cases (11%) resulted in miscarriage, and 61 cases (61%), resulted in failed IVF cycle. SOD, LPO, CAT, and TAP levels in the endometrial secretions of the three groups were statistically different (P-value <0.01, <0.001, <0.001, and <0.001, respectively). TTG levels in endometrial secretion of three groups were not statistically different (P-value=0.837). Our results indicated that higher levels of antioxidants such as SOD, CAT, or TAP, and lower levels of oxidative stress markers such as LPO in the endometrial secretions were associated with successful IVF outcome. PMID:27232354

  2. Phenol oxidation kinetics in water solution using iron(3)-oxide-based nano-catalysts.

    PubMed

    Zelmanov, Grigory; Semiat, Raphael

    2008-08-01

    The influence of inorganic ions (HCO(3), PO(4)/HPO(4)/H(2)PO(4), Cl, SO(4), Ca, Na and Mg) on the advanced chemical oxidation process of organic compounds dissolved in water is reported here. The catalytic behavior of iron(3)-oxide-based nano-particles was investigated together with inorganic ions and hydrogen peroxide concentrations, and pH level. Phenol was chosen as a typical organic contaminant for this study as a simulating pollutant. The limiting concentrations of radical scavengers making the oxidation process inefficient were identified. The strong effect of concentration of radical scavengers HCO(3), PO(4)/HPO(4)/H(2)PO(4), the nano-catalyst and hydrogen peroxide concentrations, and pH on the phenol oxidation rate and lag time period before reaction starts was determined. It was shown that Cl, SO(4), Ca, Na and Mg ions had no significant effect on the kinetics of phenol oxidation. PMID:18657285

  3. Electrophotolysis oxidation system for measurement of organic concentration in water

    NASA Technical Reports Server (NTRS)

    Winkler, H. E. (Inventor)

    1981-01-01

    Methods and apparatus for determining organic carbon in aqueous solution are described. The method comprises subjecting the aqueous solution to electrolysis, for generating oxygen from water, and simultaneously to ultraviolet radiation, for oxidation of substantially all organic carbon to carbon dioxide. The carbon dioxide is measured and the value is related to the concentration of organic carbon in the aqueous solution.

  4. THE FORMATION OF PB (IV) OXIDES IN CHLORINATED WATER

    EPA Science Inventory

    The foundation for lead control in drinking water distribution systems is based on Pb(II) chemistry. In recent years, however, Pb(IV) oxides have been identified in distribution systems, suggesting that they may be important relative to predicting and controlling lead concentrat...

  5. Reduced Water Density in a Poly(ethylene oxide) Brush

    SciTech Connect

    Lee, Hoyoung; Kim, Dae Hwan; Park, Hae-Woong; Mahynski, Nathan A.; Kim, Kyungil; Meron, Mati; Lin, Binhua; Won, You-Yeon

    2012-09-05

    A model poly(ethylene oxide) (PEO) brush system, prepared by spreading a poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) amphiphilic diblock copolymer onto an air-water interface, was investigated under various grafting density conditions by using the X-ray reflectivity (XR) technique. The overall electron density profiles of the PEO-PnBA monolayer in the direction normal to the air-water interface were determined from the XR data. From this analysis, it was found that inside of the PEO brush, the water density is significantly lower than that of bulk water, in particular, in the region close to the PnBA-water interface. Separate XR measurements with a PnBA homopolymer monolayer confirm that the reduced water density within the PEO-PnBA monolayer is not due to unfavorable contacts between the PnBA surface and water. The above result, therefore, lends support to the notion that PEO chains provide a hydrophobic environment for the surrounding water molecules when they exist as polymer brush chains.

  6. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. PMID:25150521

  7. An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water

    NASA Technical Reports Server (NTRS)

    Chao, R. E.; Cox, K. E.

    1975-01-01

    A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.

  8. Treated Nanolayered Mn Oxide by Oxidizable Compounds: A Strategy To Improve the Catalytic Activity toward Water Oxidation.

    PubMed

    Mahdi Najafpour, Mohammad; Jafarian Sedigh, Davood; Maedeh Hosseini, Seyedeh; Zaharieva, Ivelina

    2016-09-01

    Herein, we investigate the effect of post-treatment of nanolayered manganese oxide by different inorganic and organic compounds. We use the fact that nanolayered manganese oxides are among the strongest naturally occurring oxidants, capable of oxidizing a wide range of organic molecules. Post-treatment of the synthetic Mn oxides with oxidizable compounds increases the cerium(IV)-driven water oxidation catalyzed by treated layered manganese oxides more than 25 times. On the basis of X-ray absorption investigations, we attribute this effect to the increased amount of manganese(III) ions. This finding can explain some puzzles in water oxidation by manganese oxides and may help to advance toward an efficient design strategy of water-oxidizing catalyst in artificial photosynthetic systems. PMID:27537432

  9. Life cycle water use for electricity generation: a review and harmonization of literature estimates

    NASA Astrophysics Data System (ADS)

    Meldrum, J.; Nettles-Anderson, S.; Heath, G.; Macknick, J.

    2013-03-01

    This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.

  10. Surfactant-mediated electrodeposition of a water-oxidizing manganese oxide.

    PubMed

    Osowiecki, Wojciech T; Sheehan, Stafford W; Young, Karin J; Durrell, Alec C; Mercado, Brandon Q; Brudvig, Gary W

    2015-10-14

    Splitting water into hydrogen and oxygen is one of the most promising ways of storing energy from intermittent, renewable sources in the future. Toward this goal, development of inexpensive, stable, and non-toxic catalysts for water oxidation is crucial. We report that the electrodeposition of manganese oxide in the presence of sodium dodecyl sulfate (SDS) produces a material that is highly active for electrocatalytic water oxidation at pH near 7 and remains stable for over 24 hours of sustained electrolysis. Clark electrode measurements demonstrate more than 95% Faradaic efficiency for oxygen evolution after an initial charging period. We found that catalytic performance was optimized in films prepared by electrodeposition using a precursor solution containing moderate concentration of substrates, namely 25 mM Mn(2+) and 25 mM SDS. Microstructure and elemental analyses revealed that the deposited material, a mixed-phase manganese oxide, is structurally similar to materials used for electrochemical capacitors and batteries, drawing a parallel between highly studied cathode materials for rechargeable batteries and heterogeneous catalysts for water oxidation. PMID:26350519

  11. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis.

    PubMed

    Huang, Daria L; Beltrán-Suito, Rodrigo; Thomsen, Julianne M; Hashmi, Sara M; Materna, Kelly L; Sheehan, Stafford W; Mercado, Brandon Q; Brudvig, Gary W; Crabtree, Robert H

    2016-03-01

    This paper introduces Ir(I)(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*Ir(III)(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue Ir(IV) species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting Ir(IV) species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By (1)H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3. PMID:26901517

  12. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  13. Linking Water Table Dynamics to Carbon Cycling in Artificial Soil Column Incubations

    NASA Astrophysics Data System (ADS)

    Geertje, Pronk; Adrian, Mellage; Tatjana, Milojevic; Fereidoun, Rezanezhad; Cappellen Philippe, Van

    2016-04-01

    The biogeochemistry of wetlands soils is closely tied to their hydrology. Water table fluctuations that cause flooding and drying of these systems may lead to enhanced degradation of organic matter and release of greenhouse gasses (e.g. CO2, CH4) to the atmosphere. However, predicting the influence of water table fluctuations on the biogeochemical functioning of soils requires an understanding of the interactions of soil hydrology with biogeochemical and microbial processes. To determine the effects of water table dynamics on carbon cycling, we are carrying out state-of-the-art automated soil column experiments with fully integrated monitoring of hydro-bio-geophysical process variables under both constant and oscillating water table conditions. An artificial, homogeneous mixture consisting of minerals and organic matter is used to provide a well-defined starting material. The artificial soils are composed of quartz sand, montmorillonite, goethite and humus from a forested riparian zone, from which we also extracted the microbial inoculum added to the soil mixture. The artificial soils are packed into 60 cm high, 7.5 cm wide columns. In the currently ongoing experiment, three replicate columns are incubated while keeping the water table constant water at mid-depth, while another three columns alternate between drained and saturated conditions. Micro-sensors installed at different depths below the soil surface record time-series redox potentials (Eh) varying between oxidizing (~+700 mV) and reducing (~-200 mV) conditions. Continuous O2 levels throughout the soil columns are monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Pore waters are collected periodically with MicroRhizon samplers from different depths, and analyzed for pH, EC, dissolved inorganic and organic carbon and ion/cation compositions. These measurements allow us to track the changes in pore water geochemistry and relate them to differences in carbon cycling

  14. A Testbed for Integrated Water Cycle Observations: A Grand Challenge for the Community

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Pan, M.; Sheffield, J.

    2009-04-01

    As more space-borne sensors for components of the water cycle are launched by NASA, ESA and JAXA, there is a critical need by the community to integrate the measurements into coherent data sets useful for global water cycle analyses. The hydrology community must recognize the potential of these measurements to address basic research and application questions related to the global water cycle. These include understanding the distribution of fresh water over and through the land surface, and how will this change over the next century; how water management can best adapt to changes in global hydrology from climate change; understanding the effects of a changing landscape and changes in water management on hydrologic processes; and whether remote sensing can be used to test hydrologic theory on spatial hydrologic processes. This leads to a Grand challenge for hydrology: can the storage, movement and quality of water at every point on the landscape be observed and modeled? This challenge requires integrated global remote sensing of the water cycle with these observations assimilated with in-situ observations and global land surface models. The presentation will discuss this challenge and its importance to hydrology, and offer a path-way for its realization through the development of a hydrologic testbed for integrated water cycle observations. Specifically the presentation will identify the elements of a water cycle testbed platform, and what initial activities are being developed, the potential for current space-borne observations to test the system, and how basic hydrologic science questions and global water sustainability questions can be addressed with the system.

  15. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  16. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural

  17. Role of mechanical loads in inducing in-cycle tensile stress in thermally grown oxide

    SciTech Connect

    Diaz, R.; Jansz, M.; Mossaddad, M.; Raghavan, S.; Okasinski, J.S.; Almer, J.D.; Perez, H.P.; Imbrie, P.

    2012-01-01

    Experimental in situ synchrotron x-ray diffraction results tracking the strain behavior of the various layers during a cycle, under thermo-mechanical conditions are presented in this work. The quantitative strain measurements here show that the thermally grown oxide briefly experiences in-plane tensile stress ({sigma}{sub 22} = +36.4 MPa) with increased mechanical loading during ramp-up in the thermal cycle. These findings are the first in situ experimental observations of these strains under thermo-mechanical conditions, envisaged to serve as a catalyst for crack initiation. The depth resolved measurements of strain taken during applied thermal and mechanical load in this work are a significant step towards achieving realistic testing conditions.

  18. Concept for a small, colocated fuel cycle facility for oxide breeder fuels

    SciTech Connect

    Burch, W.D.; Lerch, R.E.; Stradley, J.G.

    1987-01-01

    As part of a United States Department of Energy (USDOE) program to examine innovative liquid-metal reactor (LMR) system designs over the past three years, the Oak Ridge National Laboratory (ORNL) and the Westinghouse Hanford Company (WHC) collaborated on studies of mixed oxide fuel cycle options. A principal effort was an advanced concept for a small integrated fuel cycle colocated with a 1300-MW(e) reactor station. The study provided a scoping design, capital and operating cost estimates, and a basis on which to proceed with implementation of such a facility if future plans so dictate. The facility integrated reprocessing, waste management, and refabrication functions in a single facility of nominal 35-t/year capacity utilizing the latest technology developed in fabrication programs at WHC and in reprocessing at ORNL. The concept was based on many years of work at both sites and extensive design studies of prior years.

  19. Concept for a small, colocated fuel cycle facility for oxide breeder fuels

    SciTech Connect

    Burch, W.D.; Stradley, J.G.; Lerch, R.E.

    1987-01-01

    As part of a United States Department of Energy (USDOE) program to examine innovative liquid-metal reactor (LMR) system designs over the past three years, the Oak Ridge National Laboratory (ORNL) and the Westinghouse Hanford Company (WHC) collaborated on studies of mixed oxide fuel cycle options. A principal effort was an advanced concept for a small integrated fuel cycle colocated with a 1300-MW(e) reactor station. The study provided a scoping design and a basis on which to proceed with implementation of such a facility if future plans so dictate. The facility integrated reprocessing, waste management, and refabrication functions in a single facility of nominal 35-t/year capacity utilizing the latest technology developed in fabrication programs at WHC and in reprocessing at ORNL. The concept was based on many years of work at both sites and extensive design studies of prior years.

  20. A metallic fuel cycle concept from spent oxide fuel to metallic fuel

    SciTech Connect

    Fujita, Reiko; Kawashima, Masatoshi; Yamaoka, Mitsuaki; Arie, Kazuo; Koyama, Tadafumi

    2007-07-01

    A Metallic fuel cycle concept for Self-Consistent Nuclear Energy System (SCNES) has been proposed in a companion papers. The ultimate goal of the SCNES is to realize sustainable energy supply without endangering the environment and humans. For future transition period from LWR era to SCNES era, a new metallic fuel recycle concept from LWR spent fuel has been proposed in this paper. Combining the technology for electro-reduction of oxide fuels and zirconium recovery by electrorefining in molten salts in the nuclear recycling schemes, the amount of radioactive waste reduced in a proposed metallic fuel cycle concept. If the recovery ratio of zirconium metal from the spent zirconium waste is 95%, the cost estimation in zirconium recycle to the metallic fuel materials has been estimated to be less than 1/25. (authors)

  1. Biochemical predetermination of the NO synthase and nitrite reductase components of the nitric oxide cycle.

    PubMed

    Reutov, V P

    1999-05-01

    This review presents some aspects of a concept of cellular evolution bearing a relationship to nitrate--nitrite respiration, the endosymbiosis theory, and the origin of NO synthase and nitrite reductase activity in heme-containing proteins. Analysis of structural and functional unity of the NO synthase and nitrite reductase systems suggests that these systems did not arise without any relation to evolutionarily ancient energetic systems of cells. The use of symmetry principles reveals commonalities among many electron transport chains which in the language of physics is called "invariance". This work also comparatively analyzes the nitric oxide cycle and the known nitrogen cycle. The ideas about evolution of the NO synthase and nitrite reductase systems developed here are clearly compatible with the endosymbiotic theory and the hypothesis that nitrate--nitrite respiration was a precursor of oxygen-dependent respiration. PMID:10381613

  2. Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle

    NASA Astrophysics Data System (ADS)

    Aliofkhazraei, M.; Rouhaghdam, A. Sabour

    2012-01-01

    Plasma electrolytic oxidation (PEO) was applied on the surface of commercially pure titanium substrates in a mixed aluminate-phosphate electrolyte in the presence of silicon nitride nanoparticles as suspension in the electrolyte in order to fabricate nanocomposite coatings. Pulsed current was applied based on variable duty cycle in order to synthesize functionally gradient coatings (FGC). Different rates of variable duty cycle (3, 1.5 and 1%/min), applied current densities (0.06-0.14 A/cm2) and concentrations of nanoparticles in the electrolyte (2, 4, 6, 8 and 10 g l-1) were investigated. The nanopowder and coated samples were analyzed by atomic force microscope, scanning electron microscope and transmission electron microscope. The influence of different rates of variable duty cycle (or treatment times) on the growth rate of nanocomposite coatings and their microhardness values was investigated. The experimental results revealed that the content of Si3N4 nanoparticulates in the layer increases with the increase of its concentration in the plasma electrolysis bath. Nanocomposite coatings fabricated with lower rate of variable duty cycle have higher microhardness with smoother microhardness profile.

  3. Water-Mediated Proton Hopping on an Iron Oxide Surface

    SciTech Connect

    Merte, L. R.; Peng, Guowen; Bechstein, Ralf; Rieboldt, Felix; Farberow, Carrie A.; Grabow, Lars C.; Kudernatsch, Wilhelmine; Wendt, Stefen; Laegsgaard, E.; Mavrikakis, Manos; Besenbacher, Fleming

    2012-05-18

    The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociation is a key step in proton diffusion.

  4. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    NASA Technical Reports Server (NTRS)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  5. Teaching the Krebs Cycle.

    ERIC Educational Resources Information Center

    Akeroyd, F. Michael

    1983-01-01

    Outlines a simple but rigorous treatment of the Krebs Cycle suitable for A-level Biology students. The importance of the addition of water molecules in various stages of the cycle is stressed as well as the removal of hydrogen atoms by the oxidizing enzymes. (JN)

  6. Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells.

    PubMed Central

    Schraufstätter, I U; Hinshaw, D B; Hyslop, P A; Spragg, R G; Cochrane, C G

    1985-01-01

    Exposure of target cells to a bolus of H2O2 induced cell lysis after a latent period of several hours, which was prevented only when the H2O2 was removed within the first 30 min of injury by addition of catalase. This indicated that early metabolic events take place that are important in the fate of the cell exposed to oxidants. In this study, we described two early and independent events of H2O2-induced injury in P388D1 macrophagelike tumor cells: activation of the glutathione cycle and depletion of cellular NAD. Glutathione cycle and hexose monophosphate shunt (HMPS) were activated within seconds after the addition of H2O2. High HMPS activity maintained glutathione that was largely reduced. However, when HMPS activity was inhibited--by glucose depletion or by incubation at 4 degrees C--glutathione remained in the oxidized state. Total pyridine nucleotide levels were diminished when cells were exposed to H2O2, and the breakdown product, nicotinamide, was recovered in the extracellular medium. Intracellular NAD levels fell by 80% within 20 min of exposure of cells to H2O2. The loss of NADP(H) and stimulation of the HMPS could be prevented when the glutathione cycle was inhibited by either blocking glutathione synthesis with buthionine sulfoximine (BSO) or by inhibiting glutathione reductase with (1,3-bis) 2 chlorethyl-1-nitrosourea. The loss of NAD developed independently of glutathione cycle and HMPS activity, as it also occurred in BSO-treated cells. PMID:3840176

  7. Oxidation of dithiocarbamates to yield N-nitrosamines by water disinfection oxidants.

    PubMed

    Padhye, Lokesh P; Kim, Jae-Hong; Huang, Ching-Hua

    2013-02-01

    Two most commonly used dithiocarbamate (DTC) pesticides, dimethyldithiocarbamate (DMDTC) and diethyldithiocarbamate (DEDTC), were examined in this study to evaluate their potential to form nitrosamines when in contact with various water disinfection oxidants. Results show that DTCs can serve as nitrosamine precursors, by release of secondary amines through hydrolysis or through reactions with oxidants. The reactions of DTCs with monochloramine and ozone were found to be particularly problematic in the risk of generating nitrosamines, though all four tested oxidants, including free chlorine and chlorine dioxide, formed nitrosamines. NDEA yield from DEDTC was lower, by different degrees, than NDMA yield from DMDTC for all four oxidants, which was attributed to the steric hindrance associated with bulkier reaction intermediate that are more difficult to be further oxidized to form nitrosamine. The yield of nitrosamines increased with the oxidant dosage for both monochloramination and ozonation of DTCs. Results for nitrosamine formation from DTCs at varying pH were found to be consistent with the pH trend of nitrosamine formation from ozonation and monochloramination of secondary amines. Kinetic study results and identification and quantification of reaction products suggest that the DTCs were not significant direct precursors of nitrosamines during monochloramination or ozonation, but rather nitrosamines formed were primarily from reaction of oxidants with the amine which may be generated either through hydrolysis or through oxidation of DTCs. PMID:23176828

  8. Thin-film heterostructures based on oxides of copper and zinc obtained by RF magnetron sputtering in one vacuum cycle

    NASA Astrophysics Data System (ADS)

    Afanasjev, V.; Bazhan, M.; Klimenkov, B.; Mukhin, N.; Chigirev, D.

    2016-07-01

    Investigations of formation conditions of oxide heterostructures ZnO/CuO in the same vacuum cycle using RF magnetron sputtering of powder targets of zinc and copper oxides were carried out. The optical and electrical properties of the thin film structures were studied.

  9. High temperature oxidation of molybdenum in water vapor environments

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; Sooby, E. S.; Kim, Y.-J.; Cheng, B.; Maloy, S. A.

    2014-05-01

    Molybdenum has recently gained attention as a candidate cladding material for use in light water reactors. Its excellent high temperature mechanical properties and stability under irradiation suggest that it could offer benefits to performance under a wide range of reactor conditions, but little is known about its oxidation behavior in water vapor containing atmospheres. The current study was undertaken to elucidate the oxidation behavior of molybdenum in water vapor environments to 1200 °C in order to provide an initial assessment of its feasibility as a light water reactor cladding. Initial observations indicate that at temperatures below 1000 °C, the kinetics of mass loss in water vapor would not be detrimental to cladding integrity during an off-normal event. Above 1000 °C, degradation is more rapid but remains slower than observed for optimized zirconium cladding alloys. The effect of hydrogen-water vapor and oxygen-water vapor mixtures on material loss was also explored at elevated temperatures. Parts-per-million levels of either hydrogen or oxygen will minimally impact performance, but hydrogen contents in excess of 1000 ppm were observed to limit volatilization at 1000 °C.

  10. Anthropogenic impacts on the global water cycle - a multi model approach.

    NASA Astrophysics Data System (ADS)

    Ludwig, F.; haddeland, I.; Biemans, H.; Clark, D.; Fransen, W.; Voss, F.; Floerke, M.; Heinke, J.; Hagemann, S.; Hanasakki, N.; Gerten, D.; Kabat, P.

    2012-04-01

    Humans activities have a large impact on the global water cycle. Through the building of dams and irrigation schemes large amounts of water are diverted from river systems. Through the emission of greenhouse gases causing global warming, also the rainfall and evaporation patterns are changed across the globe. It is, however, still difficult to quantify current and future impacts on the global water cycle due to limited data availability, model imperfections and large uncertainties in climate change projections. To partly overcome these limitations we used a multi-model approach to study anthropogenic impacts on the global water cycle. Four different global hydrological models (H08, VIC, WaterGAP and LPJml) were forced with an historical climate dataset (Watch Forcing Data) and bias corrected output of three different global climate models (Echam, IPSL and CNRM) using two emission scenarios (A2 and B1). In addition the LPJml model was also run with two different land use change scenarios. Combining the water availability simulations with the water demand scenarios developed within the Watch project we also analyzed current and future water scarcity. The analyses show that current human impacts and on the water cycle are especially high in Central Asia, parts of Europe, the Southwestern US and the Murray-Darling Basin in Australia. The model comparison of agricultural water use and demand showed that the differences in total global agricultural demand and water use were relatively smaller than the differences in simulated water availability. All models showed agricultural water extractions are high in South and East Asia in particular in Northern India and Pakistan and in Northeast China. The most important spatial differences between the different models was observed for Northern China where H08 showed much higher water demands than VIC. Future analyses showed that climate change impacts on the global water cycle are potentially high especially in the semi

  11. Paleoecology of cool-water, subtidal cycles in mid-cenozoic limestones, Eucla Platform, Southern Australia

    SciTech Connect

    James, N.P.; Bone, Y.

    1994-10-01

    The open-shelf, subtidal, bryozoan-rich Abrakurrie Limestone beneath the Nullarbor Plain (Eucla Platform) is cyclic at the meter-scale. Best developed cycles are asymmetric and comprise three distinct parts with a capping hardground. The basal part (A) is a thin, coarse, grainstone or rudstone that is rich in robust bryosoan and epifaunal echinoid fragments and pecten bivalves, reflecting growth and accumulation in generally high energy, hard bottom environments. The middle part (B), intepreted as a low-energy, sub-swellbase accumulation, is a burrowed to planar cross-laminated fine grainstone or packstone with a low diversity, delicate-branching bryozoan assemblage and little else except scattered infaunal echinoids and pectens. The upper part (C) is a burrowed, abundantly fossilferous (bryozoan, bivalve, echinoid) rudstone or floatstone. Upward increases in the numbers and diversity of Mg-calcite and aragonitic cheilostome bryozoans (especially erect rigid, flat robust branching and nodular/arborescent types), gastropods, infaunal bivalves, and infaunal echinoids points to a high-energy environment. Sediments at the top of C are variably cemented by inclusion-rich marine cement (now calcite) that formed a hardground which was subsequently physically and biologically eroded and stained by iron oxides during a period of non-deposition. Sediments from the next overlying cycle succeed cements in uppermost intergranular pores and fill open crustacean burrows. Variably developed cyclicity is interpreted, on the basis of comparable Holocene cool-water shelf sediments, to reflect deposition in generally sub-photic environments that ranged from just below swell base (B) upwards towards the zone of wave abrasion (A and C). Hardgrounds (H) formed when the seafloor was within the zone of wave abrasion. Shallowing and deepening of these critical interfaces was controlled by fluctuating sea level and/or climatic change. 55 refs., 12 figs.

  12. Kinetics of the catalytic oxidation of phenol over manganese oxide in supercritical water

    SciTech Connect

    Oshima, Yoshito; Tomita, Kengo; Koda, Seiichiro

    1999-11-01

    A kinetic analysis was made for the phenol disappearance rate in catalytic oxidation of phenol over MnO{sub 2} in supercritical water at a fixed temperature of 425 C and pressures between 22.7 and 27.2 MPa. The nonsupported MnO{sub 2} catalyst possessed a strong activity for promoting phenol oxidation, though the overall reaction rate was appreciably influenced by internal mass-transfer resistance. From the kinetic analysis on the reaction rate of the phenol disappearance, the global rate expression of the surface reaction was obtained, where the reaction orders with respect to phenol, oxygen, and water were almost unity, 0.7, and {minus}2.0, respectively. A Langmuir-type mechanism, in which phenol and oxygen adsorbed on the catalytic sites and water adsorbed on the same site to inhibit the phenol and oxygen adsorption, was proposed to explain the reaction orders for phenol, oxygen, and water.

  13. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  14. Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex

    DOE PAGESBeta

    Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, J.; Coronado, Eugenio; Batista, Victor S.; Sala, Xavier; Llobet, Antoni

    2015-07-30

    We introduce a new family of complexes with the general formula [Run(tda)(py)2]m+ (n = 2, m = 0, 1; n = 3, m = 1, 2+; n = 4, m = 2, 32+), with tda2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [RuIV(OH)(tda-κ-N3O)(py)2]+, 4H+, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 32+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), including solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Rumore » center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H+ can be generated potentiometrically, or voltammetrically, from 32+, and both coexist in solution. While complex 32+ is not catalytically active, the catalytic performance of complex 4H+ is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s–1 at pH 7.0 and 50,000 s–1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H+, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.« less

  15. Intramolecular Proton Transfer Boosts Water Oxidation Catalyzed by a Ru Complex.

    PubMed

    Matheu, Roc; Ertem, Mehmed Z; Benet-Buchholz, Jordi; Coronado, Eugenio; Batista, Victor S; Sala, Xavier; Llobet, Antoni

    2015-08-26

    We introduce a new family of complexes with the general formula [Ru(n)(tda)(py)2](m+) (n = 2, m = 0, 1; n = 3, m = 1, 2(+); n = 4, m = 2, 3(2+)), with tda(2-) being [2,2':6',2″-terpyridine]-6,6″-dicarboxylate, including complex [Ru(IV)(OH)(tda-κ-N(3)O)(py)2](+), 4H(+), which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3(2+) under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV-vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), including solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H(+) can be generated potentiometrically, or voltammetrically, from 3(2+), and both coexist in solution. While complex 3(2+) is not catalytically active, the catalytic performance of complex 4H(+) is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s(-1) at pH 7.0 and 50 000 s(-1) at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H(+), manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O-O bond formation. PMID:26226390

  16. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    SciTech Connect

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  17. Ferrates: greener oxidants with multimodal action in water treatment technologies.

    PubMed

    Sharma, Virender K; Zboril, Radek; Varma, Rajender S

    2015-02-17

    CONSPECTUS: One of the biggest challenges for humanity in the 21st century is easy access to purified and potable water. The presence of pathogens and toxins in water causes more than two million deaths annually, mostly among children under the age of five. Identifying and deploying effective and sustainable water treatment technologies is critical to meet the urgent need for clean water globally. Among the various agents used in the purification and treatment of water, iron-based materials have garnered particular attention in view of their special attributes such as their earth-abundant and environmentally friendly nature. In recent years, higher-valent tetraoxy iron(VI) (Fe(VI)O4(2-), Fe(VI)), commonly termed, ferrate, is being explored for a broad portfolio of applications, including a greener oxidant in synthetic organic transformations, a water oxidation catalyst, and an efficient agent for abatement of pollutants in water. The use of Fe(VI) as an oxidant/disinfectant and further utilization of the ensuing iron(III) oxides/hydroxide as coagulants are other additional attributes of ferrate for water treatment. This multimodal action and environmentally benign character of Fe(VI) are key advantages over other commonly used oxidants (e.g., chlorine, chlorine dioxide, permanganate, hydrogen peroxide, and ozone). This Account discusses current state-of-the-art applications of Fe(VI) and the associated unique chemistry of these high-valence states of iron. The main focus centers around the description and salient properties of ferrate species involving various electron transfer and oxygen-atom transfer pathways in terms of presently accepted mechanisms. The mechanisms derive the number of electron equivalents per Fe(VI) (i.e., oxidation capacity) in treating various contaminants. The role of pH in the kinetics of the reactions and in determining the removal efficiency of pollutants is highlighted; the rates of competing reactions of Fe(VI) with itself, water, and

  18. An evaluation of China's water cycle in the MetUM-GC2 coupled model

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose; Marzin, Charline

    2015-04-01

    There is a general consensus in climate projections that the global hydrological cycle is likely to experience significant changes in the future, in response to increased concentrations of greenhouse gases. At the regional scale, model simulations show large variations in the predictions of changes in the components of the water cycle. Increasing confidence in regional prediction of the water cycle is at the top of the NWP and climate research agenda, requiring a comprehensive evaluation of the physical processes which may play an important role. Here we present preliminary results of an evaluation of the capacity of the MetUM-GC2 coupled model to reproduce the characteristics of the water cycle in the region of China. Using water budget techniques in the atmospheric and terrestrial branches we test the water cycle components and the model's ability to replicate the climatological annual cycle and its interannual variability. Recent drought and flood events are evaluated and various metrics are employed to compare the role played by the atmospheric general circulation including the boreal summer and winter monsoon regimes and soil moisture feedback in model and observations.

  19. An electrochemical approach to graphene oxide coated sulfur for long cycle life

    NASA Astrophysics Data System (ADS)

    Moon, Joonhee; Park, Jungjin; Jeon, Cheolho; Lee, Jouhahn; Jo, Insu; Yu, Seung-Ho; Cho, Sung-Pyo; Sung, Yung-Eun; Hong, Byung Hee

    2015-07-01

    Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents. Furthermore, the low electrical conductivity of sulfur hampers the full utilization of active materials. Here we report that graphene oxide coated sulfur composites (GO-S/CB) exhibit improved electrochemical stability as well as enhanced rate performance, evidenced by various electrochemical analyses. The cyclic voltammetry and the galvanostatic cycling analysis revealed that the GO plays key roles in homogenizing the nanocomposite structures of the electrodes, in improving the electrochemical contact, and in minimizing the loss of soluble polysulfide intermediates. An electrochemical impedance spectroscopy analysis also confirms the enhanced structural stability of the GO-S/CB composites after battery operation. As a result, the GO-S/CB exhibited excellent cycle stability and specific capacity as high as ~723.7 mA h g-1 even after 100 cycles at 0.5 C.Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents. Furthermore, the low electrical conductivity of sulfur hampers the full utilization of active materials. Here we report that graphene oxide coated sulfur composites (GO-S/CB) exhibit improved electrochemical stability as well as enhanced rate performance, evidenced by various electrochemical analyses. The cyclic voltammetry and the galvanostatic cycling analysis revealed that the GO plays key roles in homogenizing the

  20. Earth Science (A Process Approach), Section 1: The Water Cycle.

    ERIC Educational Resources Information Center

    Campbell, K. C.; And Others

    Included is a collection of earth science laboratory activities, which may provide the junior or senior high school science teacher with ideas for activities in his program. The included 48 experiments are grouped into these areas: properties of matter; evaporation; atmospheric moisture and condensation; precipitation; moving water, subsurface…

  1. Emerging Contaminants in the Drinking Water Cycle - MCEARD

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  2. EMERGING CONTAMINANTS IN THE WATER CYCLE: FATE AND TRANSPORT

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations in surface, ground and drinking water. The most common pathway for...

  3. Paralinear Oxidation of CVD SiC in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Hann, Raiford E., Jr.

    1997-01-01

    The oxidation kinetics of CVD SiC were monitored by thermogravimetric analysis (TGA) in a 50% H2O/50% O2 gas mixture flowing at 4.4 cm/s for temperatures between 1200 and 1400 C. Paralinear weight change kinetics were observed as the water vapor oxidized the SiC and simultaneously volatilized the silica scale. The long-term degradation rate of SiC is determined by the volatility of the silica scale. Rapid SiC surface recession rates were estimated from these data for actual aircraft engine combustor conditions.

  4. The role of water in resistive switching in graphene oxide

    SciTech Connect

    Rogala, M.; Kowalczyk, P. J.; Dabrowski, P.; Wlasny, I.; Kozlowski, W.; Busiakiewicz, A.; Pawlowski, S.; Dobinski, G.; Smolny, M.; Klusek, Z.; Lipinska, L.; Kozinski, R.; Librant, K.; Jagiello, J.; Grodecki, K.; Baranowski, J. M.; Szot, K.

    2015-06-29

    The resistive switching processes are investigated at the nano-scale in graphene oxide. The modification of the material resistivity is driven by the electrical stimulation with the tip of atomic force microscope. The presence of water in the atmosphere surrounding graphene oxide is found to be a necessary condition for the occurrence of the switching effect. In consequence, the switching is related to an electrochemical reduction. Presented results suggest that by changing the humidity level the in-plane resolution of data storage process can be controlled. These findings are essential when discussing the concept of graphene based resistive random access memories.

  5. Stability of Supported Platinum Sulfuric Acid Decomposition Catalysts for use in Thermochemical Water Splitting Cycles

    SciTech Connect

    Daniel M. Ginosar; Lucia M. Petkovic; Anne W. Glenn; Kyle C. Burch

    2007-03-01

    The activity and stability of several metal oxide supported platinum catalysts were explored for the sulfuric acid decomposition reaction. The acid decomposition reaction is common to several sulfur based thermochemical water splitting cycles. Reactions were carried out using a feed of concentrated liquid sulfuric acid (96 wt%) at atmospheric pressure at temperatures between 800 and 850 °C and a weight hour space velocity of 52 g acid/g catalyst/hr. Reactions were run at these high space velocities such that variations in kinetics were not masked by surplus catalyst. The influence of exposure to reaction conditions was explored for three catalysts; 0.1-0.2 wt% Pt supported on alumina, zirconia and titania. The higher surface area Pt/Al2O3 and Pt/ZrO2 catalysts were found to have the highest activity but deactivated rapidly. A low surface area Pt/TiO2 catalyst was found to have good stability in short term tests, but slowly lost activity for over 200 hours of continuous operation.

  6. Microbial Dissimilatory Sulfur Cycle in Acid Mine Water

    PubMed Central

    Tuttle, Jon H.; Dugan, Patrick R.; Macmillan, Carol B.; Randles, Chester I.

    1969-01-01

    Ferric, sulfate, and hydrogen ions are produced from pyritic minerals associated with coal as a result of autotrophic bacterial metabolism. Water carrying these ions accumulated behind a porous dam composed of wood dust originating at a log-cutting mill. As water seeped through the porous dam, it was enriched in organic nutrients which then supported growth and metabolism of heterotrophic bacteria in the water downstream from the dam. The heterotrophic microflora within and below the sawdust dam included dissimilatory sulfate-reducing anaerobic bacteria which reduce sulfate to sulfide. The sulfide produced caused the chemical reduction of ferric to ferrous ion, and black FeS precipitate was deposited on the pond bottom. A net increase in the pH of the lower pond water was observed when compared to the upper pond water. Microbial activity in the wood dust was demonstrated, and a sequence of cellulose degradation processes was inferred on the basis of sugar accumulation in mixed cultures in the laboratory, ultimately yielding fermentation products which serve as nutrients for sulfate-reducing bacteria. Some of the microorganisms were isolated and characterized. The biochemical and growth characteristics of pure culture isolates were generally consistent with observed reactions in the acidic environment, with the exception of sulfate-reducing bacteria. Mixed cultures which contained sulfate-reducing bacteria reduced sulfate at pH 3.0 in the laboratory with sawdust as the only nutrient. Pure cultures of sulfate-reducing bacteria isolated from the mixed cultures did not reduce sulfate below pH 5.5. PMID:5773013

  7. Improving the performance of ammonia-water absorption cycles using salt additives and membranes

    SciTech Connect

    Ibrahim, O.M.; Barnett, S.M.; Balamuru, V.G.

    1997-12-31

    This paper proposes a new design of an ammonia-water absorption refrigeration cycle for low-temperature heat sources such as solar energy and waste heat. The proposed cycle uses a salt additive to shift the chemical equilibrium toward more effective separation of ammonia molecules from aqueous solution (i.e., salting out). Since salt additives can affect all aspects of the absorption cycle, membranes have been chosen to control the flow of ions in the cycle and limit their effects to the generation side. This paper describes an absorption cycle that uses membrane separation processes, such as reverse osmosis, dialysis, and electrodialysis. To optimize the performance of the cycle, however, the membranes and salts must be carefully chosen.

  8. Transtion metal oxides for solar water splitting devices

    NASA Astrophysics Data System (ADS)

    Smith, Adam M.

    Although the terrestrial flux of solar energy is enough to support human endeavors, storage of solar energy remains a significant challenge to large-scale implementation of solar energy production. One route to energy storage involves the capture and conversion of sunlight to chemical species such as molecular hydrogen and oxygen via water splitting devices. The oxygen evolution half-reaction particularly suffers from large kinetic overpotentials. Additionally, a photoactive material that exhibits stability in oxidizing conditions present during oxygen evolution represents a unique challenge for devices. These concerns can be potentially addressed with a metal oxide photoanode coupled with efficient water oxidation electrocatalysts. Despite decades of research, structure-composition to property relationships are still needed for the design of metal oxide oxygen evolution materials. This dissertation investigates transition metal oxide materials for the oxygen evolution portion of water splitting devices. Chapter I introduces key challenges for solar driven water splitting. Chapter II elucidates the growth mechanism of tungsten oxide (WOX) nanowires (NWs), a proposed photoanode material for water splitting. Key findings include (1) a planar defect-driven pseudo-one-dimensional growth mechanism and (2) morphological control through the supersaturation of vapor precursors. Result 1 is significant as it illustrates that common vapor-phase syntheses of WOX NWs depend on the formation of planar defects through NWs, which necessitates reconsideration of WOX as a photoanode. Chapter III presents work towards (1) single crystal WOX synthesis and characterization and (2) WOX NW device fabrication. Chapter IV makes use of the key result that WOX NWs are defect rich and therefore conductive in order to utilize them as a catalyst scaffold for oxygen evolution in acidic media. Work towards utilizing NW scaffolds include key results such as stability under anodic potentials and

  9. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  10. Deuterium excess in the water cycle of Cona Lake, central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Cui, J.; Tian, L.; Biggs, T. W.; Wen, R.

    2015-12-01

    Large numbers of lakes on the Tibetan Plateau (TP) play an important role in the regional hydrological cycle, and the river systems they occur in serve as important water resources for more than a billion people, but systematic observations of the lake water balance is scarce on the TP. Stable isotopes of water (δ18O and δD) can be used to understand the lake water cycle and its impact on water resources. Here we present a detailed study on the water cycle of Cona Lake, at the headwater of Nujiang-Salween River, based on three years of observations of δ18O and δD, including samples from precipitation, upper lake water (<1 m), outlet surface water, and atmospheric water vapor. Theδ18O-δD relationship in lake water (δD = 6.67δ18O - 20.37) differed from that of precipitation (δD = 8.29δ18O + 12.50). The deuterium excess (d-excess = δD - 8δ18O) was lower in the Cona Lake water (-7.5‰) than in local precipitation (10.7‰), indicating evaporation of lake water. The ratio of evaporation to inflow (E/I) of the lake water was estimated using the Craig-Gordon model. The E/I ratios of Cona lake ranged from 0.24 to 0.27 in the three years, indicating that 73-76% of lake water flowed downstream. Compared to the Craig-Gordon model, the Rayleigh distillation model had limited success in estimating lake evaporation, especially when lake water experienced intensive evaporation. In-situ observation of atmospheric water vapor isotope improved the estimate of E/I by 0.04 for δ18O and 0.08 for δD on average compared to water vapor isotope derived from the precipitation-vapor equilibrium method. Continuous sampling of lake water was necessary to estimate the E/I ratio accurately for lakes impacted by seasonal precipitation or meltwater, with sampling in the late summer or fall recommended for regional surveys. The results from this work imply the feasibility of d-excess in the study of lake water cycle for other lakes on the TP. The result is also helpful for the

  11. Advances in Global Water Cycle Science Made Possible by Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Within this decade the internationally sponsored Global Precipitation Mission (GPM) will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams from very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and on to blends of the former datastreams with other less-high caliber PMW-based and IR-based rain retrievals. Within the context of NASA's role in global water cycle science and its own Global Water & Energy Cycle (GWEC) program, GPM is the centerpiece mission for improving our understanding of the global water cycle from a space-based measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in global temperature. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination, This paper presents an overview of the Global Precipitation Mission and how its datasets can be used in a set of quantitative tests within the framework of the oceanic and continental water budget equations to determine comprehensively whether substantive rate changes do accompany perturbations in global temperatures and how such rate changes manifest themselves in both water storage and water flux transport processes.

  12. [Nitrogen and water cycling of typical cropland in the North China Plain].

    PubMed

    Pei, Hong-wei; Shen, Yan-jun; Liu, Chang-ming

    2015-01-01

    Intensive fertilization and irrigation associated increasing grain production has led to serious groundwater depletion and soil/water pollution in the North China Plain (NCP). Intensive agriculture changes the initial mass and energy balance, and also results in huge risks to the water/soil resources and food security regionally. Based on the research reports on the nitrogen cycle and water cycle in typical cropland (winter wheat and summer corn) in the NCP during the past 20 years, and the meteorological data, field experiments and surveys, we calculated the nitrogen cycle and water-cycle for this typical cropland. Annual total nitrogen input were 632 kg N . hm-2, including 523 kg N . hm-2 from commercial fertilizer, 74 kg N . hm-2 from manure, 23 kg N . hm-2 from atmosphere, and 12 kg N . hm-2 from irrigation. All of annual outputs summed to 532 kg N . hm-2 including 289 kg N . hm-2 for crop, 77 kg N . hm-2 staying in soil profile, leaching 104 kg N . hm-2, 52 kg N . hm-2 for ammonia volatilization, 10 kg N . hm-2 loss in nitrification and denitrification. Uncertainties of the individual cases and the summary process lead to the unbalance of nitrogen. For the dominant parts of the field water cycle, annual precipitation was 557 mm, irrigation was 340 mm, while 762 mm was for evapotranspiration and 135 mm was for deep percolation. Considering uncertainties in the nitrogen and water cycles, coupled experiments based on multi-disciplines would be useful for understanding mechanisms for nitrogen and water transfer processes in the soil-plant-atmosphere-continuum (SPAC) , and the interaction between nitrogen and water, as well as determining the critical threshold values for sustainability of soil and water resources in the NCP. PMID:25985681

  13. SHORTER MENSTRUAL CYCLES ASSOCIATED WITH CHLORINATION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Shorter Menstrual Cycles Associated with Chlorination by-Products in Drinking Water.
    Gayle Windham, Kirsten Waller, Meredith Anderson, Laura Fenster, Pauline Mendola, Shanna Swan. California Department of Health Services.

    In previous studies of tap water consumption we...

  14. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  15. Economic Input-Output Life Cycle Assessment of Water Reuse Strategies in Residential Buildings

    EPA Science Inventory

    This paper evaluates the environmental sustainability and economic feasibility of four water reuse designs through economic input-output life cycle assessments (EIO-LCA) and benefit/cost analyses. The water reuse designs include: 1. Simple Greywater Reuse System for Landscape Ir...

  16. Exploring water cycle dynamics through sampling multitude stable water isotope pools in a small developed landscape of Germany

    NASA Astrophysics Data System (ADS)

    Orlowski, N.; Kraft, P.; Breuer, L.

    2015-02-01

    Conducting a dual stable water isotope (δ2H and δ18O) study in the developed landscape of the Schwingbach catchment (Germany) helped to unravel connectivity and disconnectivity between the different water cycle components. The two-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are decoupled from the annual precipitation cycle but showed bidirectional interactions between each other. Seasonal variations based on temperature effects were observed in the precipitation signal but neither reflected in stream nor in groundwater isotopic signatures. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ-values. A spatially distributed snapshot sampling of soil water isotopes in two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that top soil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils explaining the isotopic similarities between top and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence smoothed out with depth and soil water approached groundwater δ-values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depth > 0.9 m and constant values were observed through space and time. Little variation in individual isotope time series of stream and groundwater restricted the use of classical isotope hydrology techniques e.g. mean transit time estimation or hydrograph separation. Still, tracing stable water

  17. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-01

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers. PMID:23539180

  18. Nitrogen cycling in different types of sediments from Danish waters

    SciTech Connect

    Blackburn, T.H.; Henridsen, K.

    1983-05-01

    Variations in sediment N:C ratios were correlated with water depth and season. /sup 14/NH/sub 4//sup +/ was used to measure the rates of NH/sub 4//sup +/ production (d) and incorporation into bacterial cells (i) in sediments from different stations, at different seasons. The validity of the rates d and i was indicated by the predicted correlation of d:i ratios with N:C ratios of the sediment, and the predicted N:C ratio at which net NH/sub 4//sup +/; pore water NH/sub 4//sup +/, flux of NH/sub 4//sup +/ from sediment, and flux of NH/sub 4//sup +/ into exchangeable pool. The NO/sub 3//sup -/ flux from sediment was correlated with nitrification rate and with season. Benthic infauna increased the flux of NH/sub 4//sup +/ from the sediment by 50%. The rates of transfer of nitrogen (NO/sub 3//sup -/, NH/sub 4//sup +/, N/sub 2/) from sediment to water were 44-66% of the net rates of organic nitrogen mineralization (d-i). Flux of NO/sub 3//sup -/ + NH/sub 4//sup +/ from the sediment could supply 30-82% of the nitrogen requirement of the planktonic primary producers.

  19. Development and Validation of Water Vapor Tracers as Diagnostics for the Atmospheric Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.

  20. Water displacements in the Pacific and the genesis of El Nino cycles

    SciTech Connect

    Wyrtki, K.

    1985-07-20

    Sea level observations are used to estimate the amounts of warm water exchanged during the 1982 to 1983 El Nino event, indicating an eastward flux of about 40 x 10/sup 6/ m/sup 3/ s/sup -1/. At the end of El Nino the equatorial Pacific is depleted of warm water which is lost toward higher latitudes. The duration of a complete El Nino cycle is determined by the time required for the slow accumulation of warm water in the western Pacific. The cycle constitutes an energy relaxation of the ocean-atmosphere system.

  1. Present-day Mars' water cycle: new views and blind perspectives

    NASA Astrophysics Data System (ADS)

    Montmessin, F.; Smith, M. D.; Fedorova, A.; Langevin, Y.; Mellon, M.

    2012-09-01

    Addressing recent cimate changes on Mars necessarily requires a succesful representation of present-day Mars water cycle. Decades of observations and modeling efforts have been conducted that now allow to elaborate a new, yet incomplete, picture, of the seasonal activity of water on Mars. This presentation explores the various observational and theoretical studies that have been conducted to date, and attempts to present a clear and detailed explanation of the major physical mechanisms that command the seasonal and geographical variability of present-day Mars water cycle, as inferred from the combined analysis of measurements and climate model simulations. Remaining issues and enigmae will be presented as well.

  2. Water-induced thermogenesis and fat oxidation: a reassessment

    PubMed Central

    Charrière, N; Miles-Chan, J L; Montani, J-P; Dulloo, A G

    2015-01-01

    Background/Objectives: Drinking large amounts of water is often recommended for weight control. Whether water intake stimulates energy and fat metabolism is, however, controversial with some studies reporting that drinking half a litre or more of water increases resting energy expenditure (REE) by 10–30% and decreases respiratory quotient (RQ), whereas others report no significant changes in REE or RQ. The aim here was to reassess the concept of water-induced thermogenesis and fat oxidation in humans, with particular focus on interindividual variability in REE and RQ responses, comparison with a time-control Sham drink, and on the potential impact of gender, body composition and abdominal adiposity. Subjects/Methods: REE and RQ were measured in healthy young adults (n=27; body mass index range: 18.5–33.9 kg m−2), by ventilated hood indirect calorimetry for at least 30 min before and 130 min after ingesting 500 ml of purified (distilled) water at 21–22 °C or after Sham drinking, in a randomized cross-over design. Body composition and abdominal fat were assessed by bioimpedance techniques. Results: Drinking 500 ml of distilled water led to marginal increases in REE (<3% above baseline), independently of gender, but which were not significantly different from Sham drinking. RQ was found to fall after the water drink, independently of gender, but it also diminished to a similar extent in response to sham drinking. Interindividual variability in REE and RQ responses was not associated with body fatness, central adiposity or fat-free mass. Conclusions: This study conducted in young men and women varying widely in adiposity, comparing the ingestion of distilled water to Sham drinking, suggests that ingestion of purified water per se does not result in the stimulation of thermogenesis or fat oxidation. PMID:26690288

  3. Nitrite oxidation in the upper water column and oxygen minimum zone of the eastern tropical North Pacific Ocean

    PubMed Central

    Beman, J Michael; Leilei Shih, Joy; Popp, Brian N

    2013-01-01

    Nitrogen (N) is an essential nutrient in the sea and its distribution is controlled by microorganisms. Within the N cycle, nitrite (NO2−) has a central role because its intermediate redox state allows both oxidation and reduction, and so it may be used by several coupled and/or competing microbial processes. In the upper water column and oxygen minimum zone (OMZ) of the eastern tropical North Pacific Ocean (ETNP), we investigated aerobic NO2− oxidation, and its relationship to ammonia (NH3) oxidation, using rate measurements, quantification of NO2−-oxidizing bacteria via quantitative PCR (QPCR), and pyrosequencing. 15NO2− oxidation rates typically exhibited two subsurface maxima at six stations sampled: one located below the euphotic zone and beneath NH3 oxidation rate maxima, and another within the OMZ. 15NO2− oxidation rates were highest where dissolved oxygen concentrations were <5 μM, where NO2− accumulated, and when nitrate (NO3−) reductase genes were expressed; they are likely sustained by NO3− reduction at these depths. QPCR and pyrosequencing data were strongly correlated (r2=0.79), and indicated that Nitrospina bacteria numbered up to 9.25% of bacterial communities. Different Nitrospina groups were distributed across different depth ranges, suggesting significant ecological diversity within Nitrospina as a whole. Across the data set, 15NO2− oxidation rates were decoupled from 15NH4+ oxidation rates, but correlated with Nitrospina (r2=0.246, P<0.05) and NO2− concentrations (r2=0.276, P<0.05). Our findings suggest that Nitrospina have a quantitatively important role in NO2− oxidation and N cycling in the ETNP, and provide new insight into their ecology and interactions with other N-cycling processes in this biogeochemically important region of the ocean. PMID:23804152

  4. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    PubMed

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). PMID:25282088

  5. Anaerobic oxidation of methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling

    NASA Astrophysics Data System (ADS)

    Blazewicz, Steven J.; Petersen, Dorthe G.; Waldrop, Mark P.; Firestone, Mary K.

    2012-06-01

    Anaerobic oxidation of methane (AOM) is a considerable sink for the greenhouse gas methane (CH4) in marine systems, but the importance of this process in terrestrial systems is less clear. Lowland boreal soils and wet tropical soils are two hot spots for CH4 cycling, yet AOM has been essentially uncharacterized in these systems. We investigated AOM in soils from sites in Alaska and Puerto Rico. Isotope tracers were utilized in vitro to enable the simultaneous quantification of CH4 production and consumption without use of biological inhibitors. Boreal peat soil and tropical mineral soil oxidized small but significant quantities of CH4 to CO2 under anoxic conditions (p < 0.001). Potential AOM rates were 21 ± 2 nmol gdw-1 d-1 and 2.9 ± 0.5 nmol gdw-1 d-1 for the boreal and tropical soils, respectively. The addition of terminal electron acceptors (NO3-, Fe(III), and SO42-) inhibited AOM and methanogenesis in both soils. In all incubations, CH4 production occurred simultaneously with AOM, and CH4 production rates were always greater than AOM rates. There was a strong correlation between the quantity of CH4 produced and the amount of CH4 oxidized under anoxic conditions (Alaska: r = 0.875, p < 0.0001; Puerto Rico: r = 0.817, p < 0.0001). CH4 oxidation under anoxic conditions was biological and likely mediated by methanogenic archaea. While only a small percentage of the total CH4 produced in these soils was oxidized under anoxic conditions (0.3% and 0.8% for Alaskan and Puerto Rican Soils), this process is important to understand since it could play a measurable role in controlling net CH4 flux.

  6. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    PubMed

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry. PMID:27319056

  7. Response of the water-water cycle to the change in photorespiration in tobacco.

    PubMed

    Huang, Wei; Yang, Ying-Jie; Hu, Hong; Zhang, Shi-Bao

    2016-04-01

    Photosynthetic electron transport produces ATP and NADPH, which are used by the primary metabolism. The production and consumption of ATP and NADPH must be balanced to maintain steady-state rates of CO2 assimilation and photorespiration. It has been indicated that the water-water cycle (WWC) is indispensable for driving photosynthesis via increasing ATP/NADPH production. However, the relationship between the WWC and photorespiration is little known. We tested the hypothesis that the WWC responds to change in photorespiration by balancing ATP/NADPH ratio. Measurements of gas exchange and chlorophyll fluorescence were conducted in tobacco plants supplied with high (HN-plants) or low nitrogen concentration (LN-plants). The WWC was activated under high light but not low light in both HN-plants and LN-plants. HN-plants had significantly higher capacities of the WWC and photorespiration than LN-plants. Under high light, the relative high WWC activation in HN-plants was accompanied with relative low levels of NPQ compared LN-plants, suggesting that the main role of the WWC under high light was to favor ATP synthesis but not to activate NPQ. Interestingly, the activation of WWC was positively correlated to the electron flow devoted to RuBP oxygenation, indicating that the WWC plays an important role in energy balancing when photorespiration is high. We conclude that the WWC is an important flexible mechanism to optimize the stoichiometry of the ATP/NADPH ratio responding to change in photorespiration. Furthermore, HN-plants enhance the WWC activity to maintain higher rates of CO2 assimilation and photorespiration. PMID:26896885

  8. Conventional and Advanced Silicagel-water Adsorption Cycles Driven by Near - environmental Temperature Heat

    NASA Astrophysics Data System (ADS)

    Boelman, Elisa; B. Saha, Bidyut; Tanaka, Aiharu; Kashiwagi, Takao

    This work aims at clarifying the possible operating temperature ranges for silica gel-water adsorption refrigeration cycles driven by near-environmental temperature heat sources (between 50°C and 85°C), with relatively small regenerating temperature lifts (10 K to 65 K). A newly developed three stage advanced silica gel-water cycle, which is operational with 50°C driving heat source and 30°C cooling source is introduced and compared with a conventional single stage cycle. The cycles are evaluated in terms of cooling capacity, COP and the viability of operation with near-environmental temperature driving heat sources. The analysis is based on experimental and cycle simulation work. The results showed the advanced three stage cycle to be particularly suited for operation with low grade waste heat driving sources, since it worked with small regenerating temperature lifts (ΔTregen)of 10K to 30K. Another significant advantage of operation with small ΔTregen is the possibility to reduce irreversible heat losses from batched cycle operation. Experiments carried out on full-size machine suggested that, even with smallΔTregen, adsorber /desorber heat exchanger improvements such as higher thermal conductance and smaller heat capacitance can contribute to reduce heat losses while improving cycle performance in terms of cooling capacity and COP.

  9. Oxidation kinetics of antibiotics during water treatment with potassium permanganate.

    PubMed

    Hu, Lanhua; Martin, Heather M; Strathmann, Timothy J

    2010-08-15

    The ubiquitous occurrence of antibiotics in aquatic environments raises concerns about potential adverse effects on aquatic ecology and human health, including the promotion of increased antibiotic resistance. This study examined the oxidation of three widely detected antibiotics (ciprofloxacin, lincomycin, and trimethoprim) by potassium permanganate [KMnO(4); Mn(VII)]. Reaction kinetics were described by second-order rate laws, with apparent second-order rate constants (k(2)) at pH 7 and 25 degrees C in the order of 0.61 +/- 0.02 M(-1) s(-1) (ciprofloxacin) < 1.6 +/- 0.1 M(-1) s(-1) (trimethoprim) < 3.6 +/- 0.1 M(-1) s(-1) (lincomycin). Arrhenius temperature dependence was observed with apparent activation energies (E(a)) ranging from 49 kJ mol(-1) (trimethoprim) to 68 kJ mol(-1) (lincomycin). Rates of lincomycin and trimethoprim oxidation exhibited marked pH dependences, whereas pH had only a small effect on rates of ciprofloxacin oxidation. The effects of pH were quantitatively described by considering parallel reactions between KMnO(4) and individual acid-base species of the target antibiotics. Predictions from a kinetic model that included temperature, KMnO(4) dosage, pH, and source water oxidant demand as input parameters agreed reasonably well with measurements of trimethoprim and lincomycin oxidation in six drinking water utility sources. Although Mn(VII) reactivity with the antibiotics was lower than that reported for ozone and free chlorine, its high selectivity and stability suggests a promising oxidant for treating sensitive micropollutants in organic-rich matrices (e.g., wastewater). PMID:20704243

  10. Water Sorption and Gamma Radiolysis Studies for Uranium Oxides

    SciTech Connect

    Icenhour, A.S.

    2002-02-27

    During the development of a standard for the safe, long-term storage of {sup 233}U-containing materials, several areas were identified that needed additional experimental studies. These studies were related to the perceived potential for the radiolytic generation of large pressures or explosive concentrations of gases in storage containers. This report documents the results of studies on the sorption of water by various uranium oxides and on the gamma radiolysis of uranium oxides containing various amounts of sorbed moisture. In all of the experiments, {sup 238}U was used as a surrogate for the {sup 233}U. For the water sorption experiments, uranium oxide samples were prepared and exposed to known levels of humidity to establish the water uptake rate. Subsequently, the amount of water removed was studied by heating samples in a oven at fixed temperatures and by thermogravimetric analysis (TGA)/differential thermal analysis (DTA). It was demonstrated that heating at 650 C adequately removes all moisture from the samples. Uranium-238 oxides were irradiated in a {sup 60}Co source and in the high-gamma-radiation fields provided by spent nuclear fuel elements of the High Flux Isotope Reactor. For hydrated samples of UO{sub 3}, H{sub 2} was the primary gas produced; but the total gas pressure increase reached steady value of about 10 psi. This production appears to be a function of the dose and the amount of water present. Oxygen in the hydrated UO{sub 3} sample atmosphere was typically depleted, and no significant pressure rise was observed. Heat treatment of the UO{sub 3} {center_dot} xH{sub 2}O at 650 C would result in conversion to U{sub 3}O{sub 8} and eliminate the H{sub 2} production. For all of the U{sub 3}O{sub 8} samples loaded in air and irradiated with gamma radiation, a pressure decrease was seen and little, if any, H{sub 2} was produced--even for samples with up to 9 wt % moisture content. Hence, these results demonstrated that the efforts to remove trace

  11. [Glucose-fatty acids cycle in cobalt chloride-induced oxidative stress in rats].

    PubMed

    Kaliman, P A; Okhrimenko, S M

    2005-01-01

    It was found that the glucose-fatty acids cycle functioned under the oxidative stress, caused by injection of cobalt chloride solution in albino rats. This cycle promoted the adaptation of metabolism and rehabilitated the homeostasis under extreme conditions. Its functioning was regulated by prolonged (during 2-24 hours) rise in activity of amino acids catabolism enzymes (e.g. tyrosine aminotransferase, arginase) and activation of glyconeogenesis after the mobilisation of liver glycogen. This contributed to increase in glucose and free fatty acids contents in blood. The latter is additionally provided by lipid mobilisation under stress. Tyrosine aminotransferase activation occurred both on the transcription level and by enabling of other mechanisms, which probably concerned the stabilisation of this enzyme. Preliminary injection of alpha-tocopherol in vivo significantly decreased the rise in tyrosine aminotransferase and arginase activities and the rate of erythrocyte hemolysis but did not disable them in full. This made evident that in regulation of the glucose-fatty acids cycle not only active metabolites of oxygen but also Co ions were directly enabled. PMID:16335249

  12. Ground Water Sampling at ISCO Sites - Residual Oxidant Impact on Sample Quality and Sample Preservation Guideline

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the delivery of a chemical oxidant into the subsurface where oxidative reactions transform ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...

  13. Supercritical water oxidation data acquisition testing. Final report, Volume II

    SciTech Connect

    1996-11-01

    Supercritical Water Oxidation (SCWO) technology holds great promise for treating mixed wastes, in an environmentally safe and efficient manner. In the spring of 1994 the US Department of Energy (DOE), Idaho Operations Office awarded Stone & Webster Engineering Corporation, of Boston Massachusetts and its sub-contractor MODAR, Inc. of Natick Massachusetts a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program was contracted through a Cooperative Agreement that was co-funded by the US Department of Energy and the Strategic Environmental Research and Development Program. The SCWODAT testing scope outlined by the DOE in the original Cooperative Agreement and amendments thereto was initiated in June 1994 and successfully completed in December 1995. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the MODAR SCWO technology.

  14. Supercritical water oxidation for destruction of polycyclic aromatic hydrocarbons

    SciTech Connect

    Kocher, B.S.; Fullerton, K.L.; Lee, S.

    1994-12-31

    Polycyclic aromatic hydrocarbons (PAHs) represent a large class of hydrocarbons that are considered hazardous to the environment. Large amount of PAHs have been dumped onto open ground in cases such as Town gas sites. These sites represent a major environmental liability due to the difficulty in removing them by conventional methods and the large amount of sites, more than 2,000. Supercritical water oxidation offers a unique method of both removing the contaminates and destroying them in a single stage processing step. The process utilizes the single phase mixture of water and oxygen at supercritical water conditions. This allows for the PAHs to be extracted and destroyed simultaneously. The reaction produces an effluent stream rich in carbon dioxide and water. Town gas soil containing 3.37 wt% contamination was ultra-cleaned in a 1-liter pilot plant to an environmentally acceptable level of less than 200 ppm.

  15. Solar driven water oxidation by a bioinspired manganese molecular catalyst.

    PubMed

    Brimblecombe, Robin; Koo, Annette; Dismukes, G Charles; Swiegers, Gerhard F; Spiccia, Leone

    2010-03-10

    A photoelectrochemical cell was designed that catalyzes the photooxidation of water using visible light as the sole energy source and a molecular catalyst, [Mn(4)O(4)L(6)](+) (1(+), L = bis(methoxyphenyl)phosphinate), synthesized from earth-abundant elements. The essential features include a photochemical charge separation system, [Ru(II)(bipy)(2)(bipy(COO)(2))], adhered to titania-coated FTO conductive glass, and 1(+) embedded within a proton-conducting membrane (Nafion). The complete photoanode represents a functional analogue of the water-oxidizing center of natural photosynthesis. PMID:20155923

  16. Breakdown of fast water transport in graphene oxides.

    PubMed

    Wei, Ning; Peng, Xinsheng; Xu, Zhiping

    2014-01-01

    Fast slip flow was identified for water inside the interlayer gallery between graphene layers or carbon nanotubes. We report here that this significant flow rate enhancement (over two orders) breaks down with the presence of chemical functionalization and relaxation of nanoconfinement in graphene oxides. Molecular dynamics simulation results show that hydrodynamics applies in this circumstance, even at length scales down to nanometers. However, corrections to the slip boundary condition and apparent viscosity of nanoconfined flow must be included to make quantitative predictions. These results were discussed with the structural characteristics of liquid water and hydrogen-bond networks. PMID:24580178

  17. Breakdown of fast water transport in graphene oxides

    NASA Astrophysics Data System (ADS)

    Wei, Ning; Peng, Xinsheng; Xu, Zhiping

    2014-01-01

    Fast slip flow was identified for water inside the interlayer gallery between graphene layers or carbon nanotubes. We report here that this significant flow rate enhancement (over two orders) breaks down with the presence of chemical functionalization and relaxation of nanoconfinement in graphene oxides. Molecular dynamics simulation results show that hydrodynamics applies in this circumstance, even at length scales down to nanometers. However, corrections to the slip boundary condition and apparent viscosity of nanoconfined flow must be included to make quantitative predictions. These results were discussed with the structural characteristics of liquid water and hydrogen-bond networks.

  18. Conversion of hazardous materials using supercritical water oxidation

    DOEpatents

    Rofer, Cheryl K.; Buelow, Steven J.; Dyer, Richard B.; Wander, Joseph D.

    1992-01-01

    A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

  19. Destruction of representative submarine food waste using supercritical water oxidation.

    PubMed

    Chen, Shiying; Qu, Xuan; Zhang, Rong; Bi, Jicheng

    2015-03-01

    In this study, 13 types of organic materials were oxidized using H2O2 in a continuous flow reactor under the condition of supercritical water. The effect of the operational parameters on the conversion of total organic carbon (TOC) and total nitrogen (TN) was investigated, and the resulting quality of treated water was analyzed. It was found that these materials were easily oxidized with a TOC conversion achieving 99% at temperature of 460 °C and TN conversion reaching 94% at temperature of 500 °C. Rice decomposition was rapid, with TOC and TN decomposition rates of 99% obtained within residence of 100 s at temperature of 460 °C. At temperature of 460 °C, pressure of 24 MPa, residence time of 100 s, and excess oxygen of 100%, the quality of treated water attained levels commensurate with China's Standards for Drinking Water Quality. Reaction rate equation parameters were obtained by fitting the experimental data to the differential equation obtained using the Runge-Kutta algorithm. The decrease of the TOC in water samples exhibited reaction orders of 0.95 for the TOC concentration and 0.628 for the oxygen concentration. The activation energy was 83.018 kJ/mol. PMID:25315932

  20. Measurements of nitric oxide on the heme iron and -93 thiol of human hemoglobin during cycles of oxygenation and deoxygenation

    NASA Astrophysics Data System (ADS)

    Xu, Xiuli; Cho, Man; Spencer, Netanya Y.; Patel, Neil; Huang, Zhi; Shields, Howard; King, S. Bruce; Gladwin, Mark T.; Hogg, Neil; Kim-Shapiro, Daniel B.

    2003-09-01

    Nitric oxide has been proposed to be transported by hemoglobin as a third respiratory gas and to elicit vasodilation by an oxygen-linked (allosteric) mechanism. For hemoglobin to transport nitric oxide bioactivity it must capture nitric oxide as iron nitrosyl hemoglobin rather than destroy it by dioxygenation. Once bound to the heme iron, nitric oxide has been reported to migrate reversibly from the heme group of hemoglobin to the -93 cysteinyl residue, in response to an oxygen saturation-dependent conformational change, to form an S-nitrosothiol. However, such a transfer requires redox chemistry with oxidation of the nitric oxide or -93 cysteinyl residue. In this article, we examine the ability of nitric oxide to undergo this intramolecular transfer by cycling human hemoglobin between oxygenated and deoxygenated states. Under various conditions, we found no evidence for intramolecular transfer of nitric oxide from either cysteine to heme or heme to cysteine. In addition, we observed that contaminating nitrite can lead to formation of iron nitrosyl hemoglobin in deoxygenated hemoglobin preparations and a radical in oxygenated hemoglobin preparations. Using 15N-labeled nitrite, we clearly demonstrate that nitrite chemistry could explain previously reported results that suggested apparent nitric oxide cycling from heme to thiol. Consistent with our results from these experiments conducted in vitro, we found no arterial/venous gradient of iron nitrosyl hemoglobin detectable by electron paramagnetic resonance spectroscopy. Our results do not support a role for allosterically controlled intramolecular transfer of nitric oxide in hemoglobin as a function of oxygen saturation.

  1. ESA's STSE WACMOS Project: Towards a Water Cycle Multimission Observation Strategy

    NASA Astrophysics Data System (ADS)

    Fernández Prieto, Diego; Su, Bob

    2010-05-01

    Understanding the role of the global water cycle in the Earth system it is essential to be able to measure from space hydro-climatic variables, such as radiation, precipitation, evapotranspiration, soil moisture, clouds, water vapour, surface water and runoff, vegetation state, albedo and surface temperature, etc. Such measurements are required to further increase not only our understanding of the different components of the water cycle and its variability, both spatially and temporally, but also to characterise the processes and interactions between the terrestrial and atmospheric branches of the water cycle, and how this coupling may influence climate variability and predictability. Moreover, enhancing the observational capacity and the model capabilities to predict in a reliable manner the variations in the global water cycle will be a key contribution to the improvement of water governance, the mitigation of water-related damages and the sustainable human development. In the last few years, EO has demonstrated the capacity to provide reliable measurements over oceans, land and atmosphere representing an unique tool for scientist to observe and monitor the earth system. Now, the earth observation panorama is getting into a new era where the increasing number of missions and sensors available for scientific and operational applications, besides the advances in computer science, modelling and data assimilation, open unprecedented opportunities to enhance human capacities to observe, understand and predict the water cycle and its variability in time. However, in order to fully exploit this increasing potential and bring this newly available capacity to practical operational levels, significant scientific efforts are required in order to: • Develop novel and enhanced geo-physical products exploiting available synergies among different observational system; • Consolidate the development of consistent long-term data sets integrating different EO systems in a

  2. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating

    NASA Astrophysics Data System (ADS)

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-11-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440 C stainless steel (SS) ball and a 440 C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants.

  3. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating

    PubMed Central

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-01-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440 C stainless steel (SS) ball and a 440 C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants. PMID:26593645

  4. Tunable water desalination across graphene oxide framework membranes.

    PubMed

    Nicolaï, Adrien; Sumpter, Bobby G; Meunier, Vincent

    2014-05-14

    The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection of GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure ΔP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from ∼5 (n = 32 and h = 6.5 nm) to 400 L cm(-2) day(-1) MPa(-1) (n = 64 and h = 2.5 nm) and follows a Cnh(-αn) law. For a given pore size (n = 16 or 32), water permeability of GOF membranes increases when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n ≤ 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (ΔP ∼ 10 MPa and h ∼ 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL cm(-2) day(-1) MPa(-1) to a few L cm(-2) day(-1) MPa(-1). PMID:24675972

  5. Tunable water desalination across Graphene Oxide Framework membranes

    SciTech Connect

    Nicolai, Adrien; Sumpter, Bobby G; Meunier, V.

    2014-01-01

    The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure DP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from 5 (n = 32 and h = 6.5 nm) to 400 L/cm2/day/MPa (n = 64 and h = 2.5 nm) and follows the law Cnh an . For a given pore size (n = 16 or 32), water permeability of GOF membranes increases when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (DP 10 MPa and h 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL/cm2/day/MPa to a few L/cm2/day/MPa.

  6. Lipid oxidation in minced beef meat with added Krebs cycle substrates to stabilise colour.

    PubMed

    Yi, G; Grabež, V; Bjelanovic, M; Slinde, E; Olsen, K; Langsrud, O; Phung, V T; Haug, A; Oostindjer, M; Egelandsdal, B

    2015-11-15

    Krebs cycle substrates (KCS) can stabilise the colour of packaged meat by oxygen reduction. This study tested whether this reduction releases reactive oxygen species that may lead to lipid oxidation in minced meat under two different storage conditions. KCS combinations of succinate and glutamate increased peroxide forming potential (PFP, 1.18-1.32 mmol peroxides/kg mince) and thiobarbituric acid reactive substances (TBARS, 0.30-0.38 mg malondialdehyde (MDA) equivalents/kg mince) under low oxygen storage conditions. Both succinate and glutamate were metabolised. Moreover, under high oxygen (75%) storage conditions, KCS combinations of glutamate, citrate and malate increased PFP (from 1.22 to 1.29 mmol peroxides/kg) and TBARS (from 0.37 to 0.40 mg MDA equivalents/kg mince). Only glutamate was metabolised. The KCS combinations that were added to stabilise colour were metabolised during storage, and acted as pro-oxidants that promoted lipid oxidation in both high and low oxygen conditions. PMID:25977064

  7. Biostimulation of Iron Reduction and Subsequent Oxidation of Sediment Containing Fe-silicates and Fe-oxides: Effect of Redox Cycling on Fe(III) Bioreduction

    SciTech Connect

    Komlos, John; Kukkadapu, Ravi K.; Zachara, John M.; Jaffe, Peter R.

    2007-07-01

    Microbial reduction of iron has been shown to be important in the transformation and remediation of contaminated sediments. Re-oxidation of microbially reduced iron may occur in sediments that experience oxidation-reduction cycling and can thus impact the extent of contaminant remediation. The purpose of this research was to quantify iron oxidation in a flow-through column filled with biologically-reduced sediment and to compare the iron phases in the re-oxidized sediment to both the pristine and biologically-reduced sediment. The sediment contained both Fe(III)-oxides (primarily goethite) and silicate Fe (illite/vermiculite) and was biologically reduced in phosphate buffered (PB) medium during a 497 day column experiment with acetate supplied as the electron donor. Long-term iron reduction resulted in partial reduction of silicate Fe(III) without any goethite reduction, based on Mössbauer spectroscopy measurements. This reduced sediment was treated with an oxygenated PB solution in a flow-through column resulting in the oxidation of 38% of the biogenic Fe(II). Additional batch experiments showed that the Fe(III) in the oxidized sediment was more quickly reduced compared to the pristine sediment, indicating that oxidation of the sediment not only regenerated Fe(III) but also enhanced iron reduction compared to the pristine sediment. Oxidation-reduction cycling may be a viable method to extend iron-reducing conditions during in-situ bioremediation.

  8. Amavadin and Homologues as Mediators of Water Oxidation.

    PubMed

    Domarus, Magdalena; Kuznetsov, Maxim L; Marçalo, Joaquim; Pombeiro, Armando J L; da Silva, José Armando L

    2016-01-22

    The vanadium(IV) N-hydroxyiminodicarboxylate complexes [V(HIDPA)2](2-) and [V(HIDA)2](2-), close models of the amavadin (a natural product from Amanita fungi lacking the V=O group but exhibiting a rare NO-bound oxyiminate moiety), are shown to be the first recognized complexes of the early transition metals (up to periodic Group 7) that mediate the oxidation of water. The reactions were analyzed by visible spectrophotometry, mass spectrometry, and measurement of evolved dioxygen using Ce(4+) as sacrificial oxidant. A mechanism proposed on the basis of DFT calculations involves the reversible oxidation to the mononuclear V(V)-{OṄ<} center, where the redox active oxyimino group plays a key role and metal oxidation state variation is only one unit. The more similar model of the metallobiomolecule, [V(HIDPA)2](2-), displays a lower oxidation rate than [V(HIDA)2](2-) but does not undergo appreciable degradation, in contrast to the latter. PMID:26663718

  9. The life cycle of iron Fe(III) oxide: impact of fungi and bacteria

    NASA Astrophysics Data System (ADS)

    Bonneville, Steeve

    2014-05-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral

  10. A soluble copper-bipyridine water-oxidation electrocatalyst

    NASA Astrophysics Data System (ADS)

    Barnett, Shoshanna M.; Goldberg, Karen I.; Mayer, James M.

    2012-06-01

    The oxidation of water to O2 is a key challenge in the production of chemical fuels from electricity. Although several catalysts have been developed for this reaction, substantial challenges remain towards the ultimate goal of an efficient, inexpensive and robust electrocatalyst. Reported here is the first copper-based catalyst for electrolytic water oxidation. Copper-bipyridine-hydroxo complexes rapidly form in situ from simple commercially available copper salts and bipyridine at high pH. Cyclic voltammetry of these solutions at pH 11.8-13.3 shows large, irreversible currents, indicative of catalysis. The production of O2 is demonstrated both electrochemically and with a fluorescence probe. Catalysis occurs at about 750 mV overpotential. Electrochemical, electron paramagnetic resonance and other studies indicate that the catalyst is a soluble molecular species, that the dominant species in the catalytically active solutions is (2,2‧-bipyridine)Cu(OH)2 and that this is among the most rapid homogeneous water-oxidation catalysts, with a turnover frequency of ~100 s-1.

  11. Photoassembly of the Water-Oxidizing Complex in Photosystem II

    PubMed Central

    Dasgupta, Jyotishman; Ananyev, Gennady M; Dismukes, G. Charles

    2008-01-01

    The light-driven steps in the biogenesis and repair of the inorganic core comprising the O2-evolving center of oxygenic photosynthesis (photosystem II water-oxidation complex, PSII-WOC) are reviewed. These steps, known collectively as photoactivation, involve the photoassembly of the free inorganic cofactors to the cofactor-depleted PSII-(apo-WOC) driven by light and produce the active O2-evolving core comprised of Mn4CaOxCly. We focus on the functional role of the inorganic components as seen through the competition with non-native cofactors (“inorganic mutants”) on water oxidation activity, the rate of the photoassembly reaction, and on structural insights gained from EPR spectroscopy of trapped intermediates formed in the initial steps of the assembly reaction. A chemical mechanism for the initial steps in photoactivation is given that is based on these data. Photoactivation experiments offer the powerful insights gained from replacement of the native cofactors, which together with the recent X-ray structural data for the resting holoenzyme provide a deeper understanding of the chemistry of water oxidation. We also review some new directions in research that photoactivation studies have inspired that look at the evolutionary history of this remarkable catalyst. PMID:19190725

  12. Performance calculations and research direction for a water enhanced regenerative gas turbine cycle

    SciTech Connect

    Rogers, L.H.; Archer, D.H.

    1993-09-01

    A cycle has been conceived that combines compressor cooling, humidification, and regenerative air heating with the added enhancement of direct injection of water into the air flow. In this cycle it is proposed that a fine mist of water be injected into the compressor air stream and a spray or film of water into the regenerator air stream. Water injection into the compressor air flow realizes several benefits: it cools the air flow, reducing the power required for compression and increasing the potential for exhaust heat recovery; it adds mass to the air stream, increasing the power produced by expansion; and it reduces the amount of cooling bleed air required by increasing the specific heat and decreasing the temperature of the cooling air stream. The greatest benefit would be derived from spraying a fine mist of water directly into the existing air flow into or before the compressor so that cooling and compression would occur simultaneously. This may be accomplished by entraining the water droplets in the inlet air flow or by introducing the water in stages during compression. An alternative and less technically challenging approach is to extract the air stream to a saturation chamber and then reintroduce the air stream into the compressor. This approach is not as desirable because it would increase the equipment cost and add a significant pressure drop penalty. The second use of water in this cycle is in water-assisted regeneration.

  13. OZFLUX: Water, Energy, and Carbon Cycles in Australian Terrestrial Systems

    NASA Astrophysics Data System (ADS)

    Leuning, R.; Cleugh, H. A.; Finnigan, J. J.; Wang, Y.; Barrett, D. J.; Zegelin, S.

    2001-12-01

    The paper introduces the OZFLUX network which is being established to study several Australian ecosystems, discusses the analysis of eddy covariance data from tower-based flux stations, and then examines use of the flux data and a SVAT model within an atmospheric transport model to estimate regional fluxes. Lack of energy closure by eddy covariance measurements is commonly observed for Euroflux and Ameriflux installations. Reasons for the underestimates of H+ λ E may result from the way water vapor concentrations are determined using closed-path infrared gas analyzers. A comparison of open- and closed-path analyzers show that energy closure to better than 95% can be achieved with both systems when water vapor concentrations are expressed as mixing ratios in dry air, along with careful choice of the coordinate framework and the averaging periods used to calculate fluxes. Water, energy and carbon dioxide fluxes for two ecosystems are compared: 1) a 40 m tall, cool temperate Eucalyptus forest in SE Australia, and 2) a seasonally dry, tropical savanna woodland with sparsely arrayed, 10 m tall, Eucalyptus trees growing in a C4 grassland, in northern Queensland. Peak carbon dioxide uptake by the tall forest in the southern winter (T < 5\\deg C) is -10 μ mol~ m-2 s-1 compared to -2 μ mol~ m-2 s-1 for the savannah (T > 20 \\deg C), while evapotranspiration fluxes are similar (200~ W m-2). The differences arise because grasses in the savannah are dormant at this time. Seasonal carbon uptake is greatest in the summer for the temperate forest, and during the summer rainfall period from November to March for the savannah when grasses are actively growing. Fluxes measured at the two sites were used to test and parameterize the CSIRO Biosphere Model (CBM), which forms the lower boundary of a large-scale atmospheric transport model (DARLAM). We discuss the estimation of key parameters for CBM using ecological data on net primary production, and explain how, using a multiple

  14. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths - are DOC exports mediated by iron reduction/oxidation cycles?

    NASA Astrophysics Data System (ADS)

    Knorr, K.-H.

    2012-09-01

    Dissolved organic carbon (DOC) exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water, and DOC fluorescence, the wetlands were identified as main source of DOC. Antecedent biogeochemical conditions, i.e. water table levels in the wetlands, influenced the discharge patterns of nitrate, iron, and DOC during an event. The correlation of DOC with pH was positive in pore waters but negative in surface waters; it was negative for DOC with sulfate in pore waters but only weak in surface waters. The positive correlation of DOC with iron was universal for pore and surface water, though. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidizing iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is thus a need to more thoroughly consider processes of DOC mobilization in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least in part be caused by increasing activities in iron reduction, possibly due to increases in temperature or wetness of riparian wetlands.

  15. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER

    SciTech Connect

    Phillip E. Savage

    1999-10-18

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO{sub 2}, bulk TiO{sub 2}, and CuO supported on Al{sub 2} O{sub 3}. We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO{sub 2} yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO{sub 2} and TiO{sub 2} catalysts enhance both the phenol disappearance and CO{sub 2} formation rates during SCWO. MnO{sub 2} does not affect the selectivity to CO{sub 2}, or to the phenol dimers at a given phenol conversion. However, the selectivities to CO{sub 2} are increased and the selectivities to phenol dimers are decreased in the presence of TiO{sub 2} , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  16. Coal conversion wastewater treatment by catalytic oxidation in supercritical water

    SciTech Connect

    Phillip E. Savage

    1999-10-20

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, the authors examined the oxidation of phenol over a commercial catalyst and over bulk MnO{sub 2}, bulk TiO{sub 2}, and CuO supported on Al{sub 2}O{sub 3}. They used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which they can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO{sub 2} yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that the authors could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, they performed experiments with bulk transition metal oxides. The bulk MnO{sub 2} and TiO{sub 2} catalysts enhance both the phenol disappearance and CO{sub 2} formation rates during SCWO. MnO{sub 2} does not affect the selectivity to CO{sub 2}, or to the phenol dimers at a given phenol conversion. However, the selectivities to CO{sub 2} are increased and the selectivities to phenol dimers are decreased in the presence of TiO{sub 2}, which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the

  17. A thermochemical data bank for cycle analysis. [water decomposition for hydrogen production

    NASA Technical Reports Server (NTRS)

    Carty, R.; Funk, J.; Conger, W.; Soliman, M.; Cox, K.

    1976-01-01

    The use of the computer program PAC-2 to produce a thermodynamic data bank for various materials used in water-splitting cycles is described. The sources of raw data and a listing of 439 materials for which data are presently available are presented. This paper also discusses the use of the data bank in conjunction with two other programs, CEC-72 and HYDRGN. The integration of these three programs implement an evaluation procedure for thermochemical water splitting cycles. CEC-72 is a program used to predict the equilibrium composition of the various chemical reactions in the cycle. HYDRGN is a program which is used to calculate changes in thermodynamic properties, work of separation, amount of recycle, internal heat regeneration, total thermal energy and process thermal efficiency for a thermochemical cycle.

  18. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.

    PubMed

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-02-01

    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems. PMID:26585223

  19. Manganese oxide supported on gold/iron as a water-oxidizing catalyst in artificial photosynthetic systems.

    PubMed

    Najafpour, Mohammad Mahdi; Hosseini, Seyedeh Maedeh; Zand, Zahra

    2016-05-31

    Herein, we reported that KMnO4 with iron nanoparticles coated with gold layers was a promising catalyst for water oxidation. The compound was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic absorption spectroscopy and electrochemistry. The new compound was a conductive, recyclable, highly dispersible, magnetically separable, environmentally friendly, and nano-sized catalyst for water oxidation via cerium(iv) ammonium nitrate or Ru(bpy)3(3+) and electrochemical water oxidation. The turnover frequency of Mn oxide/gold/iron for water oxidation via cerium(iv) ammonium nitrate is 0.4 mmol O2 per mol Mn per second, which shows that this catalyst is among the best Mn-based catalysts for water oxidation. We also showed a strategy for placing this catalyst on the surface of an electrode without adding any other compounds. PMID:27172430

  20. Transformation of a Cp*-iridium(III) precatalyst for water oxidation when exposed to oxidative stress.

    PubMed

    Zuccaccia, Cristiano; Bellachioma, Gianfranco; Bortolini, Olga; Bucci, Alberto; Savini, Arianna; Macchioni, Alceo

    2014-03-17

    The reaction of [Cp*Ir(bzpy)NO3 ] (1; bzpy=2-benzoylpyridine, Cp*=pentamethylcyclopentadienyl anion), a competent water-oxidation catalyst, with several oxidants (H2 O2 , NaIO4 , cerium ammonium nitrate (CAN)) was studied to intercept and characterize possible intermediates of the oxidative transformation. NMR spectroscopy and ESI-MS techniques provided evidence for the formation of many species that all had the intact Ir-bzpy moiety and a gradually more oxidized Cp* ligand. Initially, an oxygen atom is trapped in between two carbon atoms of Cp* and iridium, which gives an oxygen-Ir coordinated epoxide, whereas the remaining three carbon atoms of Cp* are involved in a η(3) interaction with iridium (2 a). Formal addition of H2 O to 2 a or H2 O2 to 1 leads to 2 b, in which a double MeCOH functionalization of Cp* is present with one MeCOH engaged in an interaction with iridium. The structure of 2 b was unambiguously determined in the solid state and in solution by X-ray single-crystal diffractometry and advanced NMR spectroscopic techniques, respectively. Further oxidation led to the opening of Cp* and transformation of the diol into a diketone with one carbonyl coordinated at the metal (2 c). A η(3) interaction between the three non-oxygenated carbons of "ex-Cp*" and iridium is also present in both 2 b and 2 c. Isolated 2 b and mixtures of 2 a-c species were tested in water-oxidation catalysis by using CAN as sacrificial oxidant. They showed substantially the same activity than 1 (turnover frequency values ranged from 9 to 14 min(-1) ). PMID:24523138

  1. Water cycle meets media cycle: Hydrology engagement and social media in New Zealand

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Woods, R. A.

    2012-12-01

    The dispersal of scientific knowledge is an on-going challenge for the research community, particularly for the more applied disciplines such as hydrology. To a large degree this arises because key stakeholders do not readily follow the peer-reviewed scientific literature. Even publicly accessible technical reports may be out of sight from many in both the research and stakeholder communities. The challenge to science communication is further compounded by an increasing pressure to raise the hydrological literacy of the public, as water resource management decisions become increasingly collaborative. In these situations, the diversification of communication channels and more rapid interactions between stakeholders and scientists can be of great value. The use of social media in the communication and advancement of hydrological science in New Zealand is a case in point. Two such initiatives are described here: a hydrology blog and a crowd-sourcing data collection campaign using Facebook. The hydrology blog, Waiology (a variant of "hydrology" with the Greek prefix for water replaced by its Maori equivalent), was set up with two main goals in mind: to foster greater understanding and appreciation of hydrology among the New Zealand public, and to more rapidly share new hydrological knowledge within the New Zealand hydrological community. In part, it has also been an experiment to test whether this mode of engagement is worthwhile. Measuring the success of the initiative has proven difficult, but has led to a suite of metrics that collectively gauge popular and professional interest and use of the material. To name a few, this includes visit statistics (taking note of the institution of the visitor), subscriptions, and non-internet citations. Results indicate that, since the blog's inception in mid-2011, it has become a valued resource for the NZ hydrological community and an interesting website for the general public. The second example centered on the use of Facebook

  2. Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis

    PubMed Central

    Jin, Kyoungsuk; Chu, Arim; Park, Jimin; Jeong, Donghyuk; Jerng, Sung Eun; Sim, Uk; Jeong, Hui-Yun; Lee, Chan Woo; Park, Yong-Sun; Yang, Ki Dong; Kumar Pradhan, Gajendra; Kim, Donghun; Sung, Nark-Eon; Hee Kim, Sun; Nam, Ki Tae

    2015-01-01

    The oxygen evolution reaction (OER) is considered a major bottleneck in the overall water electrolysis process. In this work, highly active manganese oxide nano-catalysts were synthesized via hot injection. Facile surface treatment generated Mn(III) species on monodisperse 10 nm MnO nanocrystals (NCs). Size dependency of MnO NCs on OER activity was also investigated. Surprisingly, the partially oxidized MnO NCs only required 530 mV @ 5 mA cm−2 under near neutral conditions. PMID:25998696

  3. Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Kyoungsuk; Chu, Arim; Park, Jimin; Jeong, Donghyuk; Jerng, Sung Eun; Sim, Uk; Jeong, Hui-Yun; Lee, Chan Woo; Park, Yong-Sun; Yang, Ki Dong; Kumar Pradhan, Gajendra; Kim, Donghun; Sung, Nark-Eon; Hee Kim, Sun; Nam, Ki Tae

    2015-05-01

    The oxygen evolution reaction (OER) is considered a major bottleneck in the overall water electrolysis process. In this work, highly active manganese oxide nano-catalysts were synthesized via hot injection. Facile surface treatment generated Mn(III) species on monodisperse 10 nm MnO nanocrystals (NCs). Size dependency of MnO NCs on OER activity was also investigated. Surprisingly, the partially oxidized MnO NCs only required 530 mV @ 5 mA cm-2 under near neutral conditions.

  4. New water oxidation chemistry of a seven-coordinate ruthenium complex with a tetradentate polypyridyl ligand.

    PubMed

    Muckerman, James T; Kowalczyk, Marta; Badiei, Yosra M; Polyansky, Dmitry E; Concepcion, Javier J; Zong, Ruifa; Thummel, Randolph P; Fujita, Etsuko

    2014-07-01

    The mononuclear ruthenium(II) complex [Ru](2+) (Ru = Ru(dpp)(pic)2, where dpp is the tetradentate 2,9-dipyrid-2'-yl-1,10-phenanthroline ligand and pic is 4-picoline) reported by Thummel's group (Inorg. Chem. 2008, 47, 1835-1848) that contains no water molecule in its primary coordination shell is evaluated as a catalyst for water oxidation in artificial photosynthesis. A detailed theoretical characterization of the energetics, thermochemistry, and spectroscopic properties of intermediates allowed us to interpret new electrochemical and spectroscopic experimental data, and propose a mechanism for the water oxidation process that involves an unprecedented sequence of seven-coordinate ruthenium complexes as intermediates. This analysis provides insights into a mechanism that generates four electrons and four protons in the solution and a gas-phase oxygen molecule at different pH values. On the basis of the calculations and corroborated substantially by experiments, the catalytic cycle goes through [(2)Ru(III)](3+) and [(2)Ru(V)(O)](3+) to [(1)Ru(IV)(OOH)](3+) then [(2)Ru(III)(···(3)O2)](3+) at pH 0, and through [(3)Ru(IV)(O)](2+), [(2)Ru(V)(O)](3+), and [(1)Ru(IV)(OO)](2+) at pH 9 before reaching the same [(2)Ru(III)(···(3)O2)](3+) species, from which the liberation of the weakly bound O2 might require an additional oxidation to form [(3)Ru(IV)(O)](2+) to initiate further cycles involving all seven-coordinate species. PMID:24911180

  5. Life cycle energy use and greenhouse gas emission analysis for a water resource recovery facility in India.

    PubMed

    Miller-Robbie, Leslie; Ramaswami, Anu; Kumar, Prasanna

    2013-07-01

    This paper quantifies life cycle energy use and greenhouse gas (GHG) emissions associated with water resource recovery facilities (WRRFs) in India versus water quality improvements achieved from infrastructure investments. A first such analysis is conducted using operating data for a WRRF, which employs upflow anaerobic sludge blanket (UASB) reactors and oxidation. On-site operations energy use, process GHG emissions, and embodied energy in infrastructure were quantified. The analysis showed energy use and GHG emissions of 0.2 watt-hours (Wh) and 0.3 gram carbon dioxide (CO2) equivalents per liter (gCO2e/L) wastewater treated, and 1.3 Wh and 2.1 gCO2e/gBOD removed, achieving 81% biochemical oxygen demand (BOD) and 999% fecal coliform removal annually. Process emissions of WRRFs contributed 44% of life cycle GHG emissions, similar in magnitude to those from electricity (46%), whereas infrastructure contributed 10%. Average WRRF-associated GHG emissions (0.9gCO2e/L) were lower than those expected if untreated wastewater was released to the river. Investments made by WRRFs in developing world cities improve water quality and may mitigate overall GHG emissions. PMID:23944144

  6. Copper-Intercalated Birnessite as a Water Oxidation Catalyst.

    PubMed

    Thenuwara, Akila C; Shumlas, Samantha L; Attanayake, Nuwan H; Cerkez, Elizabeth B; McKendry, Ian G; Frazer, Laszlo; Borguet, Eric; Kang, Qing; Zdilla, Michael J; Sun, Jianwei; Strongin, Daniel R

    2015-11-24

    We report a synthetic method to increase the catalytic activity of birnessite toward water oxidation by intercalating copper in the interlayer region of the layered manganese oxide. Intercalation of copper, verified by XRD, XPS, ICP, and Raman spectroscopy, was accomplished by exposing a suspension of birnessite to a Cu(+)-bearing precursor molecule that underwent disproportionation in solution to yield Cu(0) and Cu(2+). Electrocatalytic studies showed that the Cu-modified birnessite exhibited an overpotential for water oxidation of ∼490 mV (at 10 mA/cm(2)) and a Tafel slope of 126 mV/decade compared to ∼700 mV (at 10 mA/cm(2)) and 240 mV/decade, respectively, for birnessite without copper. Impedance spectroscopy results suggested that the charge transfer resistivity of the Cu-modified sample was significantly lower than Cu-free birnessite, suggesting that Cu in the interlayer increased the conductivity of birnessite leading to an enhancement of water oxidation kinetics. Density functional theory calculations show that the intercalation of Cu(0) into a layered MnO2 model structure led to a change of the electronic properties of the material from a semiconductor to a metallic-like structure. This conclusion from computation is in general agreement with the aforementioned impedance spectroscopy results. X-ray photoelectron spectroscopy (XPS) showed that Cu(0) coexisted with Cu(2+) in the prepared Cu-modified birnessite. Control experiments using birnessite that was decorated with only Cu(2+) showed a reduction in water oxidation kinetics, further emphasizing the importance of Cu(0) for the increased activity of birnessite. The introduction of Cu(0) into the birnessite structure also increased the stability of the electrocatalyst. At a working current of 2 mA, the Cu-modified birnessite took ∼3 times longer for the overpotential for water oxdiation to increase by 100 mV compared to when Cu was not present in the birnessite. PMID:26477450

  7. Evolution of the global water cycle on Mars: The geological evidence

    NASA Technical Reports Server (NTRS)

    Baker, V. R.; Gulick, V. C.

    1993-01-01

    The geological evidence for active water cycling early in the history of Mars (Noachian geological system or heavy bombardment) consists almost exclusively of fluvial valley networks in the heavily cratered uplands of the planet. It is commonly assumed that these landforms required explanation by atmospheric processes operating above the freezing point of water and at high pressure to allow rainfall and liquid surface runoff. However, it has also been documented that nearly all valley networks probably formed by subsurface outflow and sapping erosion involving groundwater outflow prior to surface-water flow. The prolonged ground-water flow also requires extensive water cycling to maintain hydraulic gradients, but is this done via rainfall recharge, as in terrestrial environments?

  8. Effects of the polarizability and packing density of transparent oxide films on water vapor permeation.

    PubMed

    Koo, Won Hoe; Jeong, Soon Moon; Choi, Sang Hun; Kim, Woo Jin; Baik, Hong Koo; Lee, Sung Man; Lee, Se Jong

    2005-06-01

    The tin oxide and silicon oxide films have been deposited on polycarbonate substrates as gas barrier films, using a thermal evaporation and ion beam assisted deposition process. The oxide films deposited by ion beam assisted deposition show a much lower water vapor transmission rate than those by thermal evaporation. The tin oxide films show a similar water vapor transmission rate to the silicon oxide films in thermal evaporation but a lower water vapor transmission rate in IBAD. These results are related to the fact that the permeation of water vapor with a large dipole moment is affected by the chemistry of oxides and the packing density of the oxide films. The permeation mechanism of water vapor through the oxide films is discussed in terms of the chemical interaction with water vapor and the microstructure of the oxide films. The chemical interaction of water vapor with oxide films has been investigated by the refractive index from ellipsometry and the OH group peak from X-ray photoelectron spectroscopy, and the microstructure of the composite oxide films was characterized using atomic force microscopy and a transmission electron microscope. The activation energy for water vapor permeation through the oxide films has also been measured in relation to the permeation mechanism of water vapor. The diffusivity of water vapor for the tin oxide films has been calculated from the time lag plot, and its implications are discussed. PMID:16852387

  9. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    SciTech Connect

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  10. Definition of water droplets "strain cycles" in air times dependences on their sizes and movement velocities

    NASA Astrophysics Data System (ADS)

    Volkov, Roman; Zhdanova, Alena; Zabelin, Maxim; Kuznetsov, Geniy; Strizhak, Pavel

    2014-08-01

    Experimental investigation of water droplets deformation regularities during their motion in the air by the action of gravitational forces was executed. Characteristic sizes of droplets were varied in the range from 3 mm to 6 mm. Velocities of droplets movement attained to 5 m/s. The cross-correlation system of video registration was used. More than ten characteristic "strain cycles" of droplets during the 1 m distance motion by them thought the air were established. Characteristic of droplets forms, periods, dimensions and ranges were determined for all "strain cycles". "Strain cycle" times dependences on velocity and sizes of droplets were established.

  11. Water and carbon cycling along the Sierra Nevada climate gradient

    NASA Astrophysics Data System (ADS)

    Kelly, A. E.; Goulden, M.; Meadows, M. W.; Bales, R. C.; Winston, G.

    2011-12-01

    Conifer forests dominate the western slope of the southern Sierra Nevada above 1000 m elevation. The climate of this region is Mediterranean, with hot dry summers and cool wet winters. The lower elevations of the conifer belt receive most precipitation as rain, while the upper elevations receive nearly all precipitation as snow. We have found that the differences in temperature and precipitation regime along the gradient affect interactions between water and carbon balance at seasonal and annual scales. Timing, degree of drought stress, and cold limitation along the western slope of the Sierra drive critical differences in biomass, productivity, carbon allocation, carbon turnover rates, seasonality of production, and seasonality and rates of evapotranspiration. We measured eddy covariance, weather, sap flux, biomass, productivity, and soil moisture at four sites along an elevation transect from 400 to 2700 m within the Southern Sierra Critical Zone Observatory (SSCZO). At lower elevations, summer drought and mild winters produce low biomass, high turnover, winter-productive forests. At high elevations, cold snowy winters and short mild summers produce low biomass, low turnover, summer-productive forests. At mid elevations, cool winters and warm summers produce high biomass forests, including giant sequoia groves, with a year-round growing season.

  12. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  13. The role of water ice clouds in the Martian hydrologic cycle

    NASA Technical Reports Server (NTRS)

    James, Philip B.

    1990-01-01

    A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.

  14. Changing Hydrological Cycle in Asian Monsoon Region in Relation to Water Resources

    NASA Astrophysics Data System (ADS)

    Kabat, P.

    2006-12-01

    Water is a key resource for sustainable development in the Monsoon Asian Region. Frequent occurrence of flood disasters related to increasing Asian monsoon climate variability, progressing land degradation associated with anomalous monsoon dry climate and land overexploitation, increasing water use due to rapid social/economic development, and water pollution under the development of industrialization, urbanization and intensive agriculture, all pose fundamental questions about mid- and long term future carrying capacity of water systems in this key-region of the globe. We review some of the most recent data and methodological insights about how the hydrological cycle and hydroclimate in monsoon Asia is changing or has already changed in association with the global warming (GHG increase). Next,we analyze how regional-scale anthropogenic impacts such land cover/use changes, forest fire, dust increase, affect the hydrological cycle and water resources in the monsoon Asia and Northern China. The issues addressed in the presentation include: (i)the current regional hydrological cycle, especially causal chains leading to observable changes in droughts and floods;(ii)how the water cycle and the extremes may respond to future drivers of global change;(iii) feedbacks in the coupled system as they affect the hydrological cycle; (iv)the uncertainties in the predictions of coupled climate-hydrological- land use models and (v)the future vulnerability of water as a resource. We argue for a substantial increase of international collaborative research efforts into integrated impact assessment of climate change and human activity on water systems in this region.

  15. Multiyear Simulations of the Martian Water Cycle with the Ames General Circulation Model

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Schaeffer, J. R.; Nelli, S. M.; Murphy, J. R.

    2003-01-01

    Mars atmosphere is carbon dioxide dominated with non-negligible amounts of water vapor and suspended dust particles. The atmospheric dust plays an important role in the heating and cooling of the planet through absorption and emission of radiation. Small dust particles can potentially be carried to great altitudes and affect the temperatures there. Water vapor condensing onto the dust grains can affect the radiative properties of both, as well as their vertical extent. The condensation of water onto a dust grain will change the grain s fall speed and diminish the possibility of dust obtaining high altitudes. In this capacity, water becomes a controlling agent with regard to the vertical distribution of dust. Similarly, the atmosphere s water vapor holding capacity is affected by the amount of dust in the atmosphere. Dust is an excellent green house catalyst; it raises the temperature of the atmosphere, and thus, its water vapor holding capacity. There is, therefore, a potentially significant interplay between the Martian dust and water cycles. Previous research done using global, 3-D computer modeling to better understand the Martian atmosphere treat the dust and the water cycles as two separate and independent processes. The existing Ames numerical model will be employ