Science.gov

Sample records for water physiological characteristics

  1. The Effect of Water Stress on Some Morphological, Physiological, and Biochemical Characteristics and Bud Success on Apple and Quince Rootstocks

    PubMed Central

    Bolat, Ibrahim; Dikilitas, Murat; Ercisli, Sezai; Ikinci, Ali; Tonkaz, Tahsin

    2014-01-01

    The effects of different water stress (control, medium, and severe) on some morphological, physiological, and biochemical characteristics and bud success of M9 apple and MA quince rootstocks were determined. The results showed that water stress significantly affected most morphological, physiological, and biochemical characteristics as well as budding success on the both rootstocks. The increasing water stress decreased the relative shoot length, diameter, and plant total fresh and dry weights. Leaf relative water content and chlorophyll index decreased while electrolyte leakage increased with the increase of water stress in both rootstocks. An increase in water stress also resulted in reduction in budding success in Vista Bella/M9 (79.33% and 46.67%) and Santa Maria/MA (70.33% and 15.33%) combinations. However, the water stress in Santa Maria/MA was more prominent. The increase in water stress resulted in higher peroxidase activities as well as phenol contents in both rootstocks. Although catalase activity, anthocyanin, and proline contents increased with the impact of stress, this was not statistically significant. The results suggest that the impact of stress increased with the increase of water stress; therefore, growers should be careful when using M9 and MA rootstocks in both nursery and orchards where water scarcity is present. PMID:24741357

  2. Physiological water model development

    NASA Technical Reports Server (NTRS)

    Doty, Susan

    1993-01-01

    The water of the human body can be categorized as existing in two main compartments: intracellular water and extracellular water. The intracellular water consists of all the water within the cells and constitutes over half of the total body water. Since red blood cells are surrounded by plasma, and all other cells are surrounded by interstitial fluid, the intracellular compartment has been subdivided to represent these two cell types. The extracellular water, which includes all of the fluid outside of the cells, can be further subdivided into compartments which represent the interstitial fluid, circulating blood plasma, lymph, and transcellular water. The interstitial fluid surrounds cells outside of the vascular system whereas plasma is contained within the blood vessels. Avascular tissues such as dense connective tissue and cartilage contain interstitial water which slowly equilibrates with tracers used to determine extracellular fluid volume. For this reason, additional compartments are sometimes used to represent these avascular tissues. The average size of each compartment, in terms of percent body weight, has been determined for adult males and females. These compartments and the forces which cause flow between them are presented. The kidneys, a main compartment, receive about 25 percent of the cardiac output and filters out a fluid similar to plasma. The composition of this filtered fluid changes as it flows through the kidney tubules since compounds are continually being secreted and reabsorbed. Through this mechanism, the kidneys eliminate wastes while conserving body water, electrolytes, and metabolites. Since sodium accounts for over 90 percent of the cations in the extracellular fluid, and the number of cations is balanced by the number of anions, considering the renal handling sodium and water only should sufficiently describe the relationship between the plasma compartment and kidneys. A kidney function model is presented which has been adapted from a previous model of normal renal function in man. To test the validity of the proposed kidney model, results predicted by the model will be compared to actual data involving injected or ingested fluids and subsequent urine flow rates. Comparison of the model simulation to actual data following the ingestion of 1 liter of water is shown. The model simulation is also shown with actual data following the intravenous infusion of hypertonic saline.

  3. Impact of human emotions on physiological characteristics

    NASA Astrophysics Data System (ADS)

    Partila, P.; Voznak, M.; Peterek, T.; Penhaker, M.; Novak, V.; Tovarek, J.; Mehic, Miralem; Vojtech, L.

    2014-05-01

    Emotional states of humans and their impact on physiological and neurological characteristics are discussed in this paper. This problem is the goal of many teams who have dealt with this topic. Nowadays, it is necessary to increase the accuracy of methods for obtaining information about correlations between emotional state and physiological changes. To be able to record these changes, we focused on two majority emotional states. Studied subjects were psychologically stimulated to neutral - calm and then to the stress state. Electrocardiography, Electroencephalography and blood pressure represented neurological and physiological samples that were collected during patient's stimulated conditions. Speech activity was recording during the patient was reading selected text. Feature extraction was calculated by speech processing operations. Classifier based on Gaussian Mixture Model was trained and tested using Mel-Frequency Cepstral Coefficients extracted from the patient's speech. All measurements were performed in a chamber with electromagnetic compatibility. The article discusses a method for determining the influence of stress emotional state on the human and his physiological and neurological changes.

  4. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY:

    EPA Science Inventory

    Twenty-one participants from Europe, North America and China convened in Chongqing, China, October 12-14, 2005, for the Eighth International Symposium in Fish Physiology, Toxicology and Water Quality. The subject of the meeting was "Hypoxia in vertebrates: Comparisons of terrestr...

  5. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY

    EPA Science Inventory

    Scientists from ten countries presented papers at the Fifth International Symposium on Fish Physiology, Toxicology, and Water Quality, which was held on the campus of the city University of Hong Kong on November 10-13, 1998. These Proceedings include 23 papers presented in sessi...

  6. Kinanthropometric and physiological characteristics of outrigger canoe paddlers.

    PubMed

    Humphries, B; Abt, G A; Stanton, R; Sly, N

    2000-06-01

    We describe the physiological characteristics of amateur outrigger canoe paddlers. Twenty-one paddlers (13 males, 8 females) were evaluated for body stature, aerobic power, muscular strength and endurance, peak paddle force, flexibility and 250 m sprint paddle performance at the end of the outrigging season. The mean variables (+/- s) for the males were: age 27 +/- 9 years, height 175 +/- 5 cm, body mass 80 +/- 5 kg, arm span 178 +/- 7 cm, sitting height 100 +/- 2 cm, aerobic power 3.0 +/- 0.4 l x min(-1), maximum bench press strength 85 +/- 19 kg, right peak paddle force 382 +/- 66 N and left peak paddle force 369 +/- 69 N. For the females, these were: age 26 +/- 6 years, height 168 +/- 5 cm, body mass 70 +/- 8 kg, arm span 170 +/- 5 cm, sitting height 97 +/- 3 cm, aerobic power 2.3 +/- 0.51 l x min(-1), maximum bench press strength 47 +/- 10 kg, right peak paddle force 252 +/- 63 N and left peak paddle force 257 +/- 60 N. Analysis of variance revealed differences (P < 0.05) between the dominant and non-dominant sides of the body for peak paddle force, isokinetic internal and external rotation, and flexion and extension torque of the shoulder joint. The outrigger canoe paddlers were generally within the range of scores found to describe participants of other water craft sports. Outrigger canoeists should be concerned with the muscular strength imbalances associated with paddling technique. PMID:10902674

  7. The Clinical Physiology of Water Metabolism

    PubMed Central

    Weitzman, Richard E.; Kleeman, Charles R.

    1979-01-01

    Water balance is tightly regulated within a tolerance of less than 1 percent by a physiologic control system located in the hypothalamus. Body water homeostasis is achieved by balancing renal and nonrenal water losses with appropriate water intake. The major stimulus to thirst is increased osmolality of body fluids as perceived by osmoreceptors in the anteroventral hypothalamus. Hypovolemia also has an important effect on thirst which is mediated by arterial baroreceptors and by the renin-angiotensin system. Renal water loss is determined by the circulating level of the antidiuretic hormone, arginine vasopressin (AVP). AVP is synthesized in specialized neurosecretory cells located in the supraoptic and paraventricular nuclei in the hypothalamus and is transported in neurosecretory granules down elongated axons to the posterior pituitary. Depolarization of the neurosecretory neurons results in the exocytosis of the granules and the release of AVP and its carrier protein (neurophysin) into the circulation. AVP is secreted in response to a wide variety of stimuli. Change in body fluid osmolality is the most potent factor affecting AVP secretion, but hypovolemia, the renin-angiotensin system, hypoxia, hypercapnia, hyperthermia and pain also have important effects. Many drugs have been shown to stimulate the release of AVP as well. Small changes in plasma AVP concentration of from 0.5 to 4 ?U per ml have major effects on urine osmolality and renal water handling. ImagesFigure 5.Figure 12.Figure 15.Figure 16. PMID:394480

  8. Physiological characteristics of top level off-road motorcyclists

    PubMed Central

    Gobbi, A; Francisco, R; Tuy, B; Kvitne, R; Nakamura, N

    2005-01-01

    Objectives: The study aims to analyse the physiological characteristics of top level off-road motocross, enduro, and desert rally motorcyclists to facilitate the design of a specific training program. Results: The physical demands of the various races appear to influence the development of distinct musculoskeletal characteristics, as well as aerobic and anaerobic metabolism. Motocross riders have more muscle mass, higher isokinetic handgrip strength, and greater aerobic power than enduro and desert rally riders. However, there are no significant anthropometric and physiological differences between desert rally and enduro riders. Desert rally riders tend to be overweight with maximum aerobic power similar to that of healthy individuals. The mechanical characteristics of the motorcycle and the technical and tactical skills of the riders seem to be more important for race success than the metabolic capabilities of the rider. Conclusions: Desert rally and enduro riders present similar anthropometric and physiological characteristics. Both have a maximum aerobic power similar to that of healthy normal individuals, although desert rally riders tend to be overweight. Motocross riders on the other hand, have more muscle mass, more strength, and greater aerobic power. The differences observed suggest the need for a specific training program to address the requirements of different riders to reduce the possibility of injury. PMID:16306501

  9. Physical and chemical characteristics of pitaya fruits at physiological maturity.

    PubMed

    Ortiz, T A; Takahashi, L S A

    2015-01-01

    The aim of this study was to analyze the physical and chemical characteristics of the maturation process of pitaya fruit (Hylocereus undatus) to identify indicators that can be used to determine the point of physiological maturity and establish the optimal timing of physiological maturity for harvesting the fruit. A completely randomized experimental design was employed and four biological repeats were performed. Physiological maturity was assessed using various physical characteristics: longitudinal length (LL), equatorial diameter (ED), pericarp thickness (PeT), pulp thickness (PuT), fruit mass (FM), pulp mass (PuM), pericarp mass (PeM), pericarp percentage (%Pe), pulp percentage (%Pu), pulp/pericarp ratio (Pu/Pe), pericarp color index (CI), hue color angle (h°), lightness index (L*), chroma (C*), blue-yellow variation (b*), and green-red variation (a*). Additionally, chemical characteristics such as soluble solid content (SS), titratable acidity (TA), SS/TA ratio, and pH were screened. The data were statistically analyzed by fitting regression models and computing Pearson's correlation coefficients (P < 0.05). Physiological maturity in pitaya fruits occurred between the 30th and 32nd days after anthesis, and this proved to be the optimal period for harvest. At this time, the fruit was completely red with high SS, and had the recommended values of TA, pH, and SS/TA ratio. During this period, ED, PuT, FM, PuM, %Pu, and Pu/Pe increased while PeT, PeM, and %Pe fell; these changes are considered desirable by producers and/or consumers. PuM was the variable that displayed more strong's association with other variables in the analysis. PMID:26600501

  10. Physiological and physical characteristics of elite dragon boat paddlers.

    PubMed

    Ho, Sarah R; Smith, Richard M; Chapman, Philip G; Sinclair, Peter J; Funato, Kazuo

    2013-01-01

    The objectives of this study were to profile the physiological and physical characteristics of elite dragon boat paddlers, to identify characteristics that predict race performance and to quantify the metabolic energy contributions to simulated 200-m and 500-m dragon boat racing. Eleven, national level, male, Japanese dragon boat paddlers completed a battery of tests on a paddling ergometer including an incremental maximal aerobic capacity test, a 2-minute maximal accumulated oxygen deficit (MAOD) test, and simulated 200-m and 500-m races. A physiological and physical profile of subjects was compiled. Results showed that 200-m race performance correlated with flexed arm girth and excess postexercise oxygen consumption (EPOC) measured in the 30 minutes after the MAOD test, whereas 500-m race performance correlated with body fat percentage, relaxed and flexed arm girth, MAOD, EPOC, and peak power during the MAOD test. Stepwise multiple regression revealed that flexed arm girth was the most powerful predictor of 200-m and 500-m race performance, followed by EPOC with the combination of these 2 factors able to explain 74% and 68% of the variance in 200-m and 500-m race performance, respectively. Aerobic energy contributions for 200-m (50 seconds) and 500-m (1 minute 50 seconds) races were (mean (95% confidence intervals)) 52.1% (range, 47.4-56.8%) and 67.5% (range, 60.1-77.8%), respectively. In conclusion, coaches should develop training programs targeted at developing upper-body musculature and increasing anaerobic capacity because these factors are the strongest predictors of 200-m and 500-m race performance. Given the substantial aerobic energy contributions even for a 200-m race event, coaches should aim to increase the maximal aerobic capacity of the paddler in preparation for both 200-m and 500-m events. PMID:23254488

  11. Physiological applications for determining water use efficiency among cotton genotypes 

    E-print Network

    Bynum, Joshua Brian

    2009-05-15

    stress treatment in Experiment II was imposed at early bloom. Gas exchange and chlorophyll fluorescence measurements were collected during dry-down and recovery periods to determine water stress effects on plant physiology. Biomass was partitioned...

  12. Young long distance runners. Physiological and psychological characteristics.

    PubMed

    Nudel, D B; Hassett, I; Gurian, A; Diamant, S; Weinhouse, E; Gootman, N

    1989-11-01

    This study presents the physiological and psychological characteristics and the running histories of 16 subjects who began long distance running at age 4-12 years. Running duration was 3-15 years (mean 8.4 +/- 3.6 yrs). Seven children completed 41 marathons, seven 30-mile races, and eight 60-mile races. The other nine competed at shorter distances. All trained at 30-105 miles/week. Two stress fractures, one back sprain and one knee injury occurred. Athletes who reported injuries from recollection may have underreported some injuries. At age 15.4 +/- 4.2 years bone age was 15.3 +/- 2.6 years and height was at 51 +/- 26.0 percentile. Athletes had larger left ventricular diastolic diameter, higher max O2 uptake, and delayed onset of anaerobic metabolism compared to controls. Psychological profile: IQ = 121 +/- 11, scholastic grade point average (GPA) (n = 13) was less than or equal to 3.0 in four, 3.6-3.9 in four, and 4.0 in five. Cattell 16 personality factor (PF): Seven scored above the 85th percentile on boldness, warmth, conformity, sensitivity, dominance, and high drive with tension. Eight scored above the 93rd percentile for self discipline and emotional stability. Human Figure Drawing showed a distorted body image in seven. Two developed anorexia nervosa, and another girl committed suicide. Thus, high physical fitness and no growth retardation were observed. These runners, however, shared distinct positive and negative personality characteristics. The relatively high incidence of severe psychological disorders possibly suggests a need for psychological screening for young children entering a strenuous training program and for close monitoring for development of psychological problems during the program. PMID:2805554

  13. Water Chemistry Alters Gene Expression and Physiological End

    E-print Network

    McClelland, Grant B.

    with the Cu only treatment, while Ca + Cu treatment restored some of the genes to control levels. ConverselyWater Chemistry Alters Gene Expression and Physiological End Points of Chronic Waterborne Copper to ascertainbothtranscriptionalandfunctionalendpointsofchronic Cu toxicity in fish associated with experimentally manipulated water chemistries. Over 21 d

  14. The Clinical Physiology of Water Metabolism

    PubMed Central

    Weitzman, Richard E.; Kleeman, Charles R.

    1979-01-01

    The renal reabsorption of water independent of solute is the result of the coordinated function of the collecting duct and the ascending limb of the loop of Henle. The unique juxtaposition of the ascending and descending portions of the loop of Henle and of the vasa recta permits the function of a counter-current multiplier system in which water is removed from the tubular lumen and reabsorbed into the circulation. The driving force for reabsorption is the osmotic gradient in the renal medulla which is dependent, in part, on chloride (followed by sodium) pumping from the thick ascending loop of Henle. Urea trapping is also thought to play an important role in the generation of a hypertonic medullary interstitium. Arginine vasopressin (AVP) acts by binding to receptors on the cell membrane and activating adenylate cyclase. This, inturn, results in the intracellular accumulation of cyclic adenosine monophosphate (AMP) which in some fashion abruptly increases the water permeability of the luminal membrane of cells in the collecting duct. As a consequence, water flows along an osmotic gradient out of the tubular lumen into the medullary interstitium. Diabetes insipidus is the clinical condition associated with either a deficiency of or a resistance to AVP. Central diabetes insipidus is due to diminished release of AVP following damage to either the neurosecretory nuclei or the pituitary stalk. Possible causes include idiopathic, familial, trauma, tumor, infection or vascular lesions. Patients present with polyuria, usually beginning over a period of a few days. The diagnosis is made by showing that urinary concentration is impaired after water restriction but that there is a good response to exogenous vasopressin therapy. Nephrogenic diabetes insipidus can be identified by a patient's lack of response to AVP. Nephrogenic diabetes insipidus is caused by a familial defect, although milder forms can be acquired as a result of various forms of renal disease. Central diabetes insipidus is eminently responsive to replacement therapy, particularly with dDAVP, a long lasting analogue of AVP. Nephrogenic diabetes insipidus is best treated with a combination of thiazide diuretics as well as a diet low in sodium and protein. ImagesFigure 27.Figure 31. PMID:545867

  15. The Clinical Physiology of Water Metabolism

    PubMed Central

    Weitzman, Richard E.; Kleeman, Charles R.

    1980-01-01

    Hyperosmolality occurs when there are defects in the two major homeostatic mechanisms required for water balance—thirst and arginine vasopressin (AVP) release. In this situation hypotonic fluids are lost in substantial quantities causing depletion of both intracellular and extracellular fluid compartments. Patients with essential hypernatremia have defective osmotically stimulated AVP release and thirst but may have intact mechanisms for AVP release following hypovolemia. Hyperosmolality can also be seen in circumstances in which impermeable solutes are present in excessive quantities in extracellular fluid. Under these conditions there is cellular dehydration and the serum sodium may actually be reduced by water drawn out of cells along an osmotic gradient. Hyposmolality and hyponatremia may be seen in a variety of clinical conditions. Salt depletion, states in which edema occurs and the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) may all produce severe dilution of body fluids resulting in serious neurologic disturbances. The differential diagnosis of these states is greatly facilitated by careful clinical assessment of extracellular fluid volume and by determination of urine sodium concentration. Treatment of the hyposmolar syndromes is contingent on the pathophysiology of the underlying disorder; hyponatremia due to salt depletion is treated with infusions of isotonic saline whereas mild hyponatremia in cirrhosis and ascites is best treated with water restriction. Severe symptomatic hyponatremia due to SIADH is treated with hypertonic saline therapy, sometimes in association with intravenous administration of furosemide. Less severe, chronic cases may be treated with dichlormethyltetracycline which blocks the action of AVP on the collecting duct. ImagesFigure 43.Figure 44.Figure 47. PMID:6246683

  16. SYMPOSIUM IN ITALY: FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY

    EPA Science Inventory

    Scientists from Europe, North America and South America convened in Capri, Italy, April 24-28, 2006 for the Ninth International Symposium on Fish Physiology, Toxicology, and Water Quality. The subject of the meeting was Eutrophication: The toxic effects of ammonia, nitrite and th...

  17. Physiological Effects of Trace Elements and Chemicals in Water

    ERIC Educational Resources Information Center

    Varma, M. M.; And Others

    1976-01-01

    The physiological effects on humans and animals of trace amounts of organic and unorganic pollutants in natural and waste waters are examined. The sensitivity of particular organs and species is emphasized. Substances reviewed include mercury, arsenic, cadmium, lead, chromium, fluorides, nitrates and organics, including polychlounated biphenyls.…

  18. Morphological and physiological characteristics of Saprolegnia spp. strains pathogenic to Atlantic salmon, Salmo salar L.

    PubMed

    Stueland, S; Hatai, K; Skaar, I

    2005-08-01

    Seventeen strains of Saprolegnia spp. were examined for morphological and physiological characteristics, and seven were examined for their pathogenicity to Atlantic salmon, Salmo salar L. Two of the Saprolegnia strains tested caused 89 and 31% cumulative mortality in challenged salmonids and were significantly more pathogenic than the other strains tested. The positive control (Saprolegnia parasitica ATCC 90213) caused 18% mortality, but this was not significantly higher than non-pathogenic strains (0-3% cumulative mortality). All the pathogenic Saprolegnia strains and two non-pathogenic strains had secondary cysts with long, hooked hairs, a characteristic which is claimed to be typical of S. parasitica. This characteristic is apparently necessary, but does not in itself determine the ability to cause mortality in Atlantic salmon. However, all the pathogenic Saprolegnia strains in the present study showed a significantly higher initial growth rate of cysts in sterilized tap water than did non-pathogenic strains. The results of the present study suggest that initial growth rate of germinating cysts in pure water, together with the presence of long hooked hairs on the secondary cysts, may be indicators of pathogenicity of Saprolegnia strains to Atlantic salmon. PMID:16159362

  19. Physiological response to water immersion: a method for sport recovery?

    PubMed

    Wilcock, Ian M; Cronin, John B; Hing, Wayne A

    2006-01-01

    Recovery from exercise can be an important factor in performance during repeated bouts of exercise. In a tournament situation, where athletes may compete numerous times over a few days, enhancing recovery may provide a competitive advantage. One method that is gaining popularity as a means to enhance post-game or post-training recovery is immersion in water. Much of the literature on the ability of water immersion as a means to improve athletic recovery appears to be based on anecdotal information, with limited research on actual performance change. Water immersion may cause physiological changes within the body that could improve recovery from exercise. These physiological changes include intracellular-intravascular fluid shifts, reduction of muscle oedema and increased cardiac output (without increasing energy expenditure), which increases blood flow and possible nutrient and waste transportation through the body. Also, there may be a psychological benefit to athletes with a reduced cessation of fatigue during immersion. Water temperature alters the physiological response to immersion and cool to thermoneutral temperatures may provide the best range for recovery. Further performance-orientated research is required to determine whether water immersion is beneficial to athletes. PMID:16937951

  20. Water as an essential nutrient: the physiological basis of hydration.

    PubMed

    Jéquier, E; Constant, F

    2010-02-01

    How much water we really need depends on water functions and the mechanisms of daily water balance regulation. The aim of this review is to describe the physiology of water balance and consequently to highlight the new recommendations with regard to water requirements. Water has numerous roles in the human body. It acts as a building material; as a solvent, reaction medium and reactant; as a carrier for nutrients and waste products; in thermoregulation; and as a lubricant and shock absorber. The regulation of water balance is very precise, as a loss of 1% of body water is usually compensated within 24 h. Both water intake and water losses are controlled to reach water balance. Minute changes in plasma osmolarity are the main factors that trigger these homeostatic mechanisms. Healthy adults regulate water balance with precision, but young infants and elderly people are at greater risk of dehydration. Dehydration can affect consciousness and can induce speech incoherence, extremity weakness, hypotonia of ocular globes, orthostatic hypotension and tachycardia. Human water requirements are not based on a minimal intake because it might lead to a water deficit due to numerous factors that modify water needs (climate, physical activity, diet and so on). Water needs are based on experimentally derived intake levels that are expected to meet the nutritional adequacy of a healthy population. The regulation of water balance is essential for the maintenance of health and life. On an average, a sedentary adult should drink 1.5 l of water per day, as water is the only liquid nutrient that is really essential for body hydration. PMID:19724292

  1. [Effect of drought stress on growth and physiological-biochemical characteristics of Stellaria dichotoma].

    PubMed

    Lang, Duo-Yong; Cui, Jia-Jia; Da, Zhou; Li, Yue-Tong; Zhou, Li; Zhang, Xin-Hui

    2014-06-01

    A pot experiment was conducted to study effect of drought stress on leaf physiological characteristics and growth of one year old Stellaria dichotoma seedlings. The result showed that plant height and shoot dry weight significantly decreased with decrease in soil water content; however, root length and root dry weight increased at light drought stress and decreased at severe drought stress. The result also showed that with the decrease of soil water content, proline content in S. dichotoma leaves decreased then increase, while solube protein content decreased. Activities of SOD and POD in S. dichotoma leaves significantly decreased as soil water content decreased, while activity of CAT significantly decreased at severe drought stress. Membrane permeability in S. dichotoma leaves increased, while MDA content decreased then increased as soil water decreased. These results suggest that S. dichotoma had osmotic stress resistance ability and reactive oxygen scavenging capacity at light drought stress, which caused S. dichotoma growth was no inhibited at a certain extent drought stress. PMID:25272829

  2. Physiological characteristics of mercury uptake by two estuarine species

    USGS Publications Warehouse

    Luoma, S.N.

    1977-01-01

    Rapid uptake and slow loss of Hg will result from short exposures of some organisms to this metal, due to the transformation of Hg to a slowly exchanging form within the organisms. The extent of the difference between exposure time and depuration time will depend upon the rate of transformation during uptake. For the polychaete worm Neanthes succinea and the shrimp Palaemon debilis such transformations are extremely rapid. The exchange of Hg from the slowly exchanging compartment is similar among a wide variety of species. Thus, interspecies differences in susceptibility to Hg may be determined by differences in biochemical transformation rates and physiological permeability to the metal. ?? 1977 Springer-Verlag.

  3. Physiology

    ERIC Educational Resources Information Center

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  4. Physiological responses of Chinese longsnout catfish to water temperature

    NASA Astrophysics Data System (ADS)

    Han, Dong; Xie, Shouqi; Zhu, Xiaoming; Yang, Yunxia

    2011-05-01

    We evaluated the effect of water temperature on the growth and physiology of the Chinese longsnout catfish ( Leiocassis longirostris Günther). The fish were reared at four temperatures (20, 25, 30, and 35°C) and sampled on days 7, 20, and 30. We measured plasma levels of insulin, free thyroxine (FT4), free 3,5,3'-triiodothyronine (FT3), lysozyme and leukocyte phagocytic activity. The optimum water temperature for growth was 27.7°C. The plasma levels of insulin and FT4 declined significantly ( P<0.05) on day 30 at temperatures above 20°C. Lysozyme activity was significantly ( P<0.05) lower at 25°C than at other temperatures. We conclude that final weight, insulin, FT4, and lysozyme were significantly affected by water temperature.

  5. Physiological characteristics of elite dancers of different dance styles.

    PubMed

    Liiv, Helena; Jürimäe, Toivo; Mäestu, Jarek; Purge, Priit; Hannus, Aave; Jürimäe, Jaak

    2014-01-01

    The present investigation was aimed to study international level dancesport dancer's aerobic capacity during incremental test and competition simulation in relation to the gender, dance style and international ranking. A total of 30 couples (12 Standard, 7 Latin American and 11 Ten Dance; aged 22.8 ± 6.6 years male and 22.0 ± 6.4 years female) performed an incremental treadmill test and competition simulation. In this study for the first time we carried out longer than one round competition simulation and compared three different dancesport styles (Standard, Latin American and Ten Dance). The results showed that dancers of these three dance styles had similar aerobic capacity values. The average maximal oxygen consumption (VO2max) values were 59.6 ± 5.1 and 51.2 ± 6.2 ml · min(-1) · kg(-1) for male and female dancers, respectively. Competition simulation showed that Latin American Dance discipline is physiologically more intensive compared to Standard and Ten Dance styles especially for the female dancers. It appeared that male and female Standard dancers tended to perform at lower intensity than anaerobic threshold (AT) during competition simulation (male 97.3 ± 2.9%; female 97.9 ± 3.6%), while Latin (male 101.4 ± 2.9%; female 106.7 ± 5.9%) and Ten Dance (male 100.7 ± 6.4%; female 99.2 ± 5.6%) competition intensity was higher compared to AT level of athletes. The highest heart rate during competition simulation was always found during the last dances (Paso Double, Jive or Quickstep) and in the last round of each dance style. No significant relationship between VO2max values and international rankings was registered. PMID:24444238

  6. Physiological characteristics of single green rod photoreceptors from toad retina.

    PubMed

    Matthews, G

    1983-09-01

    The outer segment membrane current of single isolated green and red rods from toad retina was recorded with a suction electrode, and characteristics of the response to light were examined. The maximum response amplitude of green rods was smaller than that of red rods, but the density of dark current along the green rod outer segment was similar to previously reported values for red rods. Thus, the smaller maximum response is explained by the shorter outer segment of green rods (45 vs. 60 microns). The intensity-response relation was fitted by a Michaelis equation with half-saturating photon density corresponding to about 55 isomerizations per flash. The form of the green rod light response was similar to that of red rods: in both cases the kinetics were consistent with four first-order delay stages shaping the light response. The time-to-peak of the dim-flash response was usually about 1 sec for both green and red rods in the present experiments. The spectral sensitivity curve of green rods was fitted by the nomogram for a vitamin A1-based pigment with lambda max = 433 nm. The relation between steady light intensity and flash sensitivity of green rods obeyed the Weber-Fechner relation, and the average background intensity necessary to reduce sensitivity to half of its dark level corresponded to about 4 isomerizations sec-1. This is slightly lower than the value of about 8 isomerizations sec-1 reported for toad red rods by Baylor, Matthews & Yau (1980). Green rods were similar to red rods in all respects except spectral sensitivity. Thus, no evidence was found to support the assertion that green rods are 'cone-like'. PMID:6415267

  7. Seasonal variations and aeration effects on water quality improvements and physiological responses of Nymphaea tetragona Georgi.

    PubMed

    Lu, Xiao-Ming; Lu, Peng-Zhen; Huang, Min-Sheng; Dai, Ling-Peng

    2013-01-01

    Seasonal variations and aeration effects on water quality improvements and the physiological responses of Nymphaea tetragona Georgi were investigated with mesocosm experiments. Plants were hydroponically cultivated in six purifying tanks (aerated, non-aerated) and the characteristics of the plants were measured. Water quality improvements in purifying tanks were evaluated by comparing to the control tanks. The results showed that continuous aeration affected the plant morphology and physiology. The lengths of the roots, petioles and leaf limbs in aeration conditions were shorter than in non-aeration conditions. Chlorophyll and soluble protein contents of the leaf limbs in aerated tanks decreased, while peroxidase and catalase activities of roots tissues increased. In spring and summer, effects of aeration on the plants were less than in autumn. Total nitrogen (TN) and ammonia nitrogen (NH4(+)-N) in aerated tanks were lower than in non-aerated tanks, while total phosphorus (TP) and dissolved phosphorus (DP) increased in spring and summer. In autumn, effects of aeration on the plants became more significant. TN, NH4(+)-N, TP and DP became higher in aerated tanks than in non-aerated tanks in autumn. This work provided evidences for regulating aeration techniques based on seasonal variations of the plant physiology in restoring polluted stagnant water. PMID:23819294

  8. A review of research on genetic variation in physiological characteristics related to performance in dairy cattle.

    PubMed

    Kiddy, C A

    1979-05-01

    Genetic influence on physiological characteristics ranges from single gene effects on amino acid substitutions in alternative forms of proteins to quantitative genetic effects on the amounts of enzymes and hormones. The number of loci involved in the control of quantitative variation in physiologically important substances is not known. A number of marker genes that affect blood antigens, serum and milk proteins, and enzymes have been identified in dairy cattle. However, relatively little is known about genetic effects on quantitative physiological traits in dairy cattle. Much more is known about the genetic control of hormones in laboratory animals. About 25% of the variation in milk production of dairy cows results from genetic differences. We need more studies of genetic influences on the various physiological and biochemical processes involved in the secretion of milk to reveal the mechanisms by which genetics influences the quantity and quality of milk produced by individual cows. PMID:379062

  9. Effects of potassium nutrition on physiological processes and derivative spectrum characteristics of corn plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to evaluate the effects of potassium nutrition on growth, development and various other physiological processes and the spectrum characteristics of corn. Corn seeds were shown in sand culture using 3.8L pots in SPAR chambers with day/night temperatures of 30/220C and Carbon Di...

  10. Root physiological and morphological characteristics of 24 rice varieties selected for diverse grain mineral

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To accumulate a mineral in the grain, a plant must first absorb that mineral from the soil. Root physiological characteristics, such as exudation of organic acids or oxygen, impact the availability, solubility and mobility of minerals in the soil, ultimately impacting the amount of minerals absorbe...

  11. Renal water reabsorption: a physiologic retrospective in a molecular era.

    PubMed

    Schafer, James A

    2004-10-01

    The cloning and sequencing of the aquaporin water channels has been an enormous advance in the biomedical sciences, as recognized by the award of the Nobel Prize to Peter Agre last year. Among many other examples, expression of aquaporin proteins in Xenopus oocytes and other heterologous expression systems has confirmed two important models of renal function: the increase in the water permeability of the collecting duct by antidiuretic hormone (ADH), and the mechanism of near isosmotic volume reabsorption by the proximal tubule. These mechanisms were the subjects of intensive investigation by numerous investigators, including Thomas E. Andreoli, who is being honored by this symposium, and who developed many of the key concepts in these areas. His early work with artificial lipid bilayer membranes and the pore-forming antibiotic amphotericin provided the rigorous foundation in experimental and conceptual modeling techniques that he later applied to physiologic and pathophysiologic mechanisms in the kidney, which are summarized in this retrospective. Dr. Andreoli and his colleagues proposed a water channel mechanism for the action of ADH, which has been confirmed by the cloning and heterologous expression of aquaporin-2. They also proposed that volume reabsorption by the proximal tubule depended on a very high hydraulic conductivity and the development of luminal hypotonicity produced by active solute reabsorption. This model has also been confirmed in mice in which aquaporin-1 expression is knocked out, resulting in a low proximal tubule water permeability that exaggerates the development of luminal hypotonicity. PMID:15461698

  12. Anthropometric, physiological and maturational characteristics in selected elite and non-elite male adolescent basketball players.

    PubMed

    Torres-Unda, Jon; Zarrazquin, Idoia; Gil, Javier; Ruiz, Fátima; Irazusta, Amaia; Kortajarena, Maider; Seco, Jesus; Irazusta, Jon

    2013-01-01

    We investigated the anthropometric, physiological and maturation characteristics of young players (13-14 years old) associated with being successful in basketball. Body parameters were measured (stature, total body mass, skinfolds and lengths) and physiological capacities were assessed by endurance, sprint (20 m), jump and dribbling tests. Chronological age (CA) was recorded and maturity estimated using predicted age at peak height velocity (APHV). Anthropometric analysis indicated that elite players were taller, heavier and had a higher percentage of muscle. Further, physiological testing showed that these elite players perform better in jump, endurance, speed and agility tests (especially in the agility and ball tests). In addition, these skills are correlated with point average during the regular season. More basketball players born in the first semester of the year are selected and there is a predominance of early-maturing boys among those selected for the elite team. Those who are more mature have advantages in anthropometric characteristics and physiological test results. In conclusion, around puberty, physical and physiological parameters associated with maturity and CA are important in determining the success of basketball players. These findings should be taken into account by trainers and coaches, to avoid artificial bias in their selection choices. PMID:23046359

  13. Cooling cows efficiently with sprinklers: Physiological responses to water spray.

    PubMed

    Chen, Jennifer M; Schütz, Karin E; Tucker, Cassandra B

    2015-10-01

    Dairies in the United States commonly cool cattle with sprinklers mounted over the feed bunk that intermittently spray the cows' backs. These systems use potable water-an increasingly scarce resource-but there is little experimental evidence about how much is needed to cool cows or about droplet size, which is thought to affect hair coat penetration. Our objectives were to determine how sprinkler flow rate and droplet size affect physiological measures of heat load in a hot, dry climate, and to evaluate cooling effectiveness against water use. The treatments were an unsprayed control and 6 soaker nozzles that delivered four 3-min spray applications of 0.4, 1.3, or ?4.5 L/min (with 2 droplet sizes within each flow rate) and resulting in 30 to 47% of spray directly wetting each cow. Data were collected from high-producing lactating Holsteins (n=19) tested individually in ambient conditions (air temperature=31.2±3.8°C, mean ± standard deviation). Cows were restrained in headlocks for 1h and received 1 treatment/d for 3d each, with order of exposure balanced in a crossover design. When cows were not sprayed, physiological measures of heat load increased during the 1-h treatment. All measures responded rapidly to spray: skin temperature decreased during the first water application, and respiration rate and body temperature did so before the second. Droplet size had no effect on cooling, but flow rate affected several measures. At the end of 1h, 0.4 L/min resulted in lower respiration rate and skin temperature on directly sprayed body parts relative to the control but not baseline values, and body temperature increased to 0.2°C above baseline. When 1.3 or ?4.5 L/min was applied, respiration rate was lower than the control and decreased relative to baseline, and body temperature stayed below baseline for at least 30min after treatment ended. The treatment that best balanced cooling effectiveness against water usage was 1.3 L/min: although ?4.5 L/min reduced respiration rate relative to baseline by 4 more breaths/min than 1.3L/min did (-13 vs. -9 breaths/min, respectively), each additional liter of water decreased this measure by only ?0.1 breaths/min (?1% of the total reduction achieved using 1.3 L/min). We found similar water efficiency patterns for skin temperature and the amount of time that body temperature remained below baseline after treatment ended. Thus, when using this intermittent spray schedule in a hot, dry climate, applying at least 1.3 L/min improved cooling, but above this, additional physiological benefits were relatively minor. PMID:26233441

  14. [Survival in cold water. Physiological consequences of accidental immersion in cold water].

    PubMed

    Mantoni, Teit; Belhage, Bo; Pott, Frank Christian

    2006-09-18

    This survey addresses the immediate physiological reactions to immersion in cold water: cold shock response, diving reflex, cardiac arrhythmias and hypothermia. Cold shock response is the initial sympathetic reaction to immersion in cold water. The diving reflex is elicited by submersion of the face. Afferent and efferent nerves are the trigeminal and vagal nerves. Cardiac arrhythmias occur immediately after immersion. If the immersion persists, hypothermia becomes an issue. Hypothermia is delayed by habituation to immersion in cold water as well as insulating garments, subcutaneous fat and a large lean body mass. PMID:17026891

  15. Linkage of within vineyard soil properties, grapevine physiology, grape composition and sensory characteristics in a premium wine grape vineyard.

    NASA Astrophysics Data System (ADS)

    Smart, David; Hess, Sallie; Ebeler, Susan; Heymann, Hildegarde; Plant, Richard

    2014-05-01

    Analysis of numerous vineyards has revealed a very high degree of variation exists at the within vineyard scale and may outweigh in some cases broader mesoclimatic and geological factors. For this reason, selective harvest of high quality wine grapes is often conducted and based on subjective field sensory analysis (taste). This is an established practice in many wine growing regions. But the relationships between these subjective judgments to principle soil and grapevine physiological characteristics are not well understood. To move toward greater understanding of the physiological factors related to field sensory evaluation, physiological data was collected over the 2007 and 2008 growing seasons in a selectively harvested premium production Napa Valley estate vineyard, with a history of selective harvesting based on field sensory evaluation. Data vines were established and remained as individual study units throughout the data gathering and analysis phase, and geographic information systems science (GIS) was used to geographically scale physiological and other data at the vineyard level. Areas yielding grapes with perceived higher quality (subjective analysis) were characterized by vines with 1) statistically significantly lower (P < 0.05) leaf water potential (LWP) both pre-dawn (PD) and midday (MD), 2) smaller berry diameter and weight, 3) lower pruning weights, and 4) higher soluble solids (Brix). Strong positive correlations emerged between June ?PD and pre-harvest grape berry diameter (R2 = 0.616 in 2007 and 0.413 in 2008) and similar strong correlations existed for berry weight (R2 = 0.626 in 2007 and 0.554 in 2008). A trained sensory panel performed a sensory analysis and characterized fruit using and a multivariate, principal components, analysis (PCA). This approach indicated that grapes from vines with lowest midday leaf water potential at veraison (< -1.5 MPa) had sweeter and softer pulp, absence of vegetal characteristics, and browner and crunchier seeds, while grapes from vines of > -1.5 MPa were characterized by vegetal flavors and astringent and bitter seeds and skins. Data from vines were grouped into vines experiencing MD at veraison of < -1.5 MPa versus vines with MD > -1.5 MPa and subjected to single factor analysis of variance. This analysis revealed statistically significant differences (P less than 0.05) in many of the above properties - berry diameter, weight, pulp, and fruity versus vegetal characteristic. The groupings corresponded to the areas described as producing higher and lower quality fruit, respectively, based on field taste evaluation. Metabolomic analysis of grape skins from these two groups showed statistically significant differences in accumulation of amino acids and organic acids. Our results suggest there is not a continuous relationship between physiological water status (stress) and grape sensory characteristics, but rather the presence of an inflection point that may be related to early season PD in controlling grape development as well as composition. Soils analyses revealed the preferred fruit was on vines in areas where soils were shallower rather than any definitive characteristic related to particle size distribution or nutrient availability, suggesting that in this vineyard soil available water is the major controlling factor.

  16. Comparison of the physiological characteristics of transgenic insect-resistant cotton and conventional lines

    PubMed Central

    Li, Xiaogang; Ding, Changfeng; Wang, Xingxiang; Liu, Biao

    2015-01-01

    The introduction of transgenic insect-resistant cotton into agricultural ecosystems has raised concerns regarding its ecological effects. Many studies have been conducted to compare the differences in characteristics between transgenic cotton and conventional counterparts. However, few studies have focused on the different responses of transgenic cotton to stress conditions, especially to the challenges of pathogens. The aim of this work is to determine the extent of variation in physiological characteristics between transgenic insect-resistant cotton and the conventional counterpart infected by cotton soil-borne pathogens. The results showed that the difference in genetic backgrounds is the main factor responsible for the effects on biochemical characteristics of transgenic cotton when incubating with cotton Fusarium oxysporum. However, genetic modification had a significantly greater influence on the stomatal structure of transgenic cotton than the effects of cotton genotypes. Our results highlight that the differences in genetic background and/or genetic modifications may introduce variations in physiological characteristics and should be considered to explore the potential unexpected ecological effects of transgenic cotton. PMID:25737015

  17. Ubiquity, diversity and physiological characteristics of Geodermatophilaceae in Shapotou National Desert Ecological Reserve

    PubMed Central

    Sun, Hong-Min; Zhang, Tao; Yu, Li-Yan; Sen, Keya; Zhang, Yu-Qin

    2015-01-01

    The goal of this study was to gain insight into the diversity of culturable actinobacteria in desert soil crusts and to determine the physiological characteristics of the predominant actinobacterial group in these crusts. Culture-dependent method was employed to obtain actinobacterial strains from desert soil samples collected from Shapotou National Desert Ecological Reserve (NDER) located in Tengger Desert, China. A total of 376 actinobacterial strains were isolated and 16S rRNA gene sequences analysis indicated that these isolates belonged to 29 genera within 18 families, among which the members of the family Geodermatophilaceae were predominant. The combination of 16S rRNA gene information and the phenotypic data allowed these newly-isolated Geodermatophilaceae members to be classified into 33 “species clusters,” 11 of which represented hitherto unrecognized species. Fermentation broths from 19.7% of the isolated strains showed activity in at least one of the six screens for antibiotic activity. These isolates exhibited bio-diversity in enzymatic characteristics and carbon utilization profiles. The physiological characteristics of the isolates from different types of crusts or bare sand samples were specific to their respective micro-ecological environments. Our study revealed that members of the family Geodermatophilaceae were ubiquitous, abundant, and diverse in Shapotou NDER, and these strains may represent a new major group of potential functional actinobacteria in desert soil. PMID:26483778

  18. Landscape and plant physiological controls on water dynamics within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, J.; Looker, N. T.; Martin, J. T.; Hoylman, Z. H.; Jencso, K. G.

    2014-12-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower elevation depending on deeper, more reliable water when the upper soils dried down during midsummer. These observations suggest that landscape topography influences the availability of soil water, which influences tree transpiration and productivity rates, thereby leading to watershed patterns of productivity.

  19. Landscape and plant physiological controls on water dynamics and forest productivity within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, Jia; Jencso, Kelsey; Looker, Nathaniel; Martin, Justin; Hoylman, Zachary

    2015-04-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower elevation depending on deeper, more reliable water when the upper soils dried down during midsummer. These observations suggest that landscape topography influences the availability of soil water, which influences tree transpiration and productivity rates, thereby leading to watershed patterns of productivity.

  20. [Effects of selenite addition on selenium absorption, root morphology and physiological characteristics of rape seedlings].

    PubMed

    Liu, Xin-wei; Wang, Qiao-lan; Duan, Bi-hui; Lin, Ya-meng; Zhao, Xiao-hu; Hu, Cheng-xiao; Zhao, Zhu-qing

    2015-07-01

    Abstract: The rape (Brassica napus L. cv. Xiangnongyou 571) was chosen as the experimental material to undergo solution cultivation at seedling stage to investigate the effects of selenite addition on the selenium (Se) absorption and distribution, root morphology and physiological characteristics of rape seedlings. The results showed that the bioaccumulation ability of Se decreased significantly with increasing the Se application rate, but the Se distribution coefficient remained around 0.9 with no significant influence. The application of 10 µmol . L-1 selenite stimulated the growth of rape seedlings through improving the root physiological characteristics and root morphology significantly, including significantly increasing the production of superoxide radical (O2?-) rate and the activities of superoxide dismutase (SOD), peroxidase (POD) and fungal catalase (CAT) in the root system, which resulted in a reduction of the lipids peroxidation (MDA) content as much as 26.0%, consequently increasing the root activity as much as 17.4%. The promoting degrees of selenite on root morphological parameters were from strong to weak in such a tendency: root volume > total surface area > number of root forks > total root length > number of root tips > average diameter. However, such positive effects had no significant difference with those in treatment with 1 µmol . L-1 selenite, indicating that small amounts (? 10 Lmol . L-1) of selenite were able to increase the activity of antioxidant enzymes and reduce the content of MDA in root system, which could increase root activity and improve root morphology, hence increased the biomass of rape seedlings. PMID:26710631

  1. Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces

    PubMed Central

    Park, Sun-Young; Cho, Seong-A; Kim, Sae-Hun; Lim, Sang-Dong

    2014-01-01

    Obesity is strongly associated with several metabolic and chronic diseases and has become a major public health problem of worldwide concern. This study aimed to investigate the physiological characteristics and anti-obesity effects of Lactobacillus plantarum Q180. Lactobacillus plantarum Q180 was isolated from the faces of healthy adults and found to have a lipase inhibitory activity of 83.61±2.32% and inhibited adipocyte differentiation of 3T3-L1 cells (14.63±1.37%) at a concentration of 100 ?g/mL. The strain was investigated for its physiological characteristics. The optimum growth temperature of L. plantarum Q180 was 37?. Lactobacillus plantarum Q180 showed higher sensitivity to novobiocin in a comparison of fifteen different antibiotics and showed the highest resistance to rifampicin, polymyxin B and vancomycin. The strain showed higher ?-galactosidase and N-acetyl-?-glucosaminidase activities. It also did not produce carcinogenic enzymes such as ?-glucuronidase. The survival rate of L. plantarum Q180 in MRS broth containing 0.3% bile was 97.8%. Moreover, the strain showed a 97.2% survival rate after incubation for 3 h in pH 2.0. Lactobacillus plantarum Q180 was displayed resistance to Escherichia coli, Salmonella Typhimurium and Staphylococcus aureus with rates of 55.6%, 38.0% and 47.6%, respectively. These results demonstrate that L. plantarum Q180 has potential as a probiotic with anti-obesity effects.

  2. FISH PHYSIOLOGY, TOXICOLOGY AND WATER QUALITY MANAGEMENT: PROCEEDINGS OF 3RD BIENNIAL INTERNATIONAL SYMPOSIUM, NANJING, PRC

    EPA Science Inventory

    Scientists from four countries presented papers at the Third Biennial International Symposium on Fish Physiology, Toxicology and Water Quality Management, which was held on the campus of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China. his proceedings in...

  3. Characteristic basin water storage behavior using GRACE

    NASA Astrophysics Data System (ADS)

    Reager, J. T.; Famiglietti, J. S.

    2011-12-01

    A long-standing challenge for hydrologists has been a lack of observational data on internal basin hydrological behavior, and historically, various models and assumptions have been postulated to facilitate an operational relationship between runoff response and precipitation forcing. With NASA's Gravity Recovery And Climate Experiment (GRACE) mission, hydrologists are finally able to observe terrestrial water storage anomaly time series for large basins (>150,000 km^2) with monthly resolution. These data are ideally suited for monitoring global water storage variability and classifying differences in large-scale water storage behavior. Here we provide results of a frequency-domain analysis of basin-averaged GRACE terrestrial water storage and Global Precipitation Climatology Project (GPCP) precipitation. We calculate frequency-domain transfer functions of storage response to precipitation forcing, and then parameterize these transfer functions based on large-scale basin characteristics, such as ecosystem type and basin temperature. This results in a basin-independent model of scaled storage response to precipitation forcing as a function of temporal frequency and large-scale basin characteristics, quantifying fundamental global hydrology relationships that were previously unobservable. Results show that temperature and land cover type are the major controls on relative storage variability. At annual timescales, temperature variability dominates storage variability for basins with a mean temperature under 15 deg C, while land cover type controls storage variability for warmer basins. At interannual timescales, land cover type alone is the single largest influence on storage behavior in all basins, with forested basins showing a greater ``buffer effect`` to interannual variability in precipitation forcing. These relationships are used to validate our method by predicting storage anomaly outside the observed data range. Finally, we show a coupling of variability in vegetation and storage as a function of basin wetness. While the model presented does not account for nonlinear transitions between ecosystem types, within the limits of a stable ecosystem it offers the first reliable means for predicting a large-scale state variable forced by precipitation, temperature and land cover classification.

  4. Physiological and genetic control of water stress tolerance in zoysiagrass 

    E-print Network

    Dewey, Daniel Wade

    2006-04-12

    Significant cultivar difference in many water stress responses of zoysiagrass (Zoysia japonica (Steud.) and Zoysia matrella (L.) Merr.) are shown in this study. Of the four cultivars, Palisades was the most water stress ...

  5. Effect of a one-semester conditioning class on physiological characteristics of college students.

    PubMed

    Danoff, Jerome V; Raupers, Erin G

    2014-11-01

    Long-term exercise is known to have positive effects on the health of adults. Some college "activity" courses are designed to give participants exposure to, and practice with, safe exercise techniques. Whether these 1-semester courses, usually 12-14 weeks, are sufficient to alter physiological characteristics, such as blood pressure or strength, has not been established. Therefore, the purpose of our investigation was to evaluate physiological and performance measures in college students to determine whether changes would result after 14 weeks of a general conditioning activity course. This study involved 79 students from several sections of exercise and conditioning classes at our university. Classes included a variety of fitness- and strength-oriented exercises. Physiological and performance measurements were collected in weeks 2 (pretest) and 14 (posttest), and compared pre with post using paired t-tests subject to Bonferroni correction (significant p < 0.0055). There were significant improvements in resting heart rate (HR) (73 vs. 70 b·min, p < 0.002), hand grip strength (250 vs. 272 N, p < 0.001), push-ups (29 vs 37, p < 0.001), sit-ups (32 vs. 35, p < 0.001), and step test HR recovery (122 vs. 110 b·min, p < 0.001). Systolic and diastolic blood pressures, body weight, and percent body fat did not change. These results suggest that 14 weeks of regular exercise in an organized college-based activity class can result in significant improvements in some measures of fitness and strength in college-aged participants. PMID:25264668

  6. Anthropometric and physiological characteristics in young afro-Caribbean swimmers. A preliminary study.

    PubMed

    Hue, Olivier; Antoine-Jonville, Sophie; Galy, Olivier; Blonc, Stephen

    2013-05-01

    The authors investigated the anthropometric and physiological characteristics of young Guadeloupian competitive swimmers in relation to swimming performance and compared the abilities of these children with those of the young white swimmers reported in the literature. All 2004 competitive swimmers between 10 and 14 y old (126 children, 61 boys and 65 girls, 12.0 ± 1.3 y) from Guadeloupe underwent anthropometric measurements and physiological and performance testing. Six boys on the French national swimming team are referred to hereafter as the 2011 elite subgroup. Anthropometric parameters, a jump-and-reach test, glide, and estimated aerobic power (eVO2max) were assessed in terms of swimming-performance analysis through a 400-m test. This study demonstrated that the Guadeloupian swimmers had more body fat than most age-matched white swimmers but had very poor hydrostatic lift; they had higher peak jump height and they swam as well as their white counterparts. The variability in 400-m performance between subjects was best described by glide, age, and eVO2max. Compared with the group of boys with the same age, the 2011 elite subgroup was significantly better for arm span, peak jump height, glide, and 400-m and 15-m performances. Further research is needed to investigate motor organization and energy cost of swimming in Afro-Caribbean swimmers. PMID:23006763

  7. Some Physiological Characteristics of the Ethylene-requiring Tomato Mutant Diageotropica 1

    PubMed Central

    Zobel, R. W.

    1973-01-01

    The diageotropica mutant of tomato (Lycopersicon esculentum Mill.) is shown to require exogenous ethylene for normal growth and development. This single gene mutant is characterized by unsupported horizontal growth of shoots and roots, dark green hyponastic leaf segments, thin rigid stems, and primary and adventitious roots which lack lateral roots. Experiments with growth regulators indicate that the mutant does not produce normal amounts of ethylene in response to auxin treatment. Tests with ethylene-producing compounds or ethylene precursors demonstrate that the mutant requires ethylene for normality. Ethylene concentrations as low as 0.005 microliters per liter are capable of completely normalizing mutant characteristics. This mutant with its isogenic parent variety, cv. VFN8, should be a suitable tool for investigating auxin-stimulated ethylene production and their interrelationship in the control of plant morphology and physiology. Images PMID:16658567

  8. Physiological and biochemical characteristics of laboratory induced mutants of Botrytis cinerea with resistance to fluazinam.

    PubMed

    Shao, Wenyong; Zhang, Yu; Ren, Weichao; Chen, Changjun

    2015-01-01

    Botrytis cinerea is a necrotrophic and filamentous fungus with a high risk of developing resistance to fungicides. The pyridinamine fungicide fluazinam has been reported to have excellent activity against B. cinerea and better effect on controlling gray mold. In this study, the physiological and biochemical characteristics of laboratory-induced mutants of B. cinerea with resistance to fluazinam has been investigated. Compared to the wild-type strains, the fluazinam-resistant mutants had a significant decrease in respiratory rate, glycerol, oxalate, and ATP contents, and an increase in ATPase activity and sensitivity to osmotic pressure, but did not differ in cell membrane permeability. Sequencing indicated that two parental strains and four resistant mutants were identical in the nucleotide sequence of F-ATPase gene. These results will enrich our understanding of the resistance mechanism of B. cinerea to fluazinam. PMID:25619907

  9. [Effects of calcium fertilizer application on peanut growth, physiological characteristics, yield and quality under drought stress].

    PubMed

    Gu, Xue-hua; Sun, Lian-qiang; Gao, Bo; Sun, Qi-ze; Liu, Chen; Zhang, Jia-lei; Li, Xiang-dong

    2015-05-01

    An experiment was carried out to study the effects of different rates of calcium application on peanut growth, physiological characteristics, yield and quality under drought stress at pegging stage and pod setting stage in pool cultivation with rainproof, using variety 606 as experimental material. The results showed that applying Ca fertilizer under drought stress could promote peanut growth, increase the chlorophyll content, leaf photosynthetic rate and the root vitality, increase the recovery ability of peanut during rewatering after drought stress, alleviate the impact of drought stress on peanut. Applying Ca fertilizer under drought stress increased pod and kernel yields because of the increase of kernel rate and pod number per plant. It also increased the fat and protein contents of peanut kernel, and improved peanut kernel quality under drought stress. It was suggested that 300 kg · hm(-2) Ca application is the best choice to alleviate the impact of drought stress on peanut. PMID:26571662

  10. The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics.

    PubMed

    Phomsoupha, Michael; Laffaye, Guillaume

    2015-04-01

    Badminton is a racket sport for two or four people, with a temporal structure characterized by actions of short duration and high intensity. This sport has five events: men's and women's singles, men's and women's doubles, and mixed doubles, each requiring specific preparation in terms of technique, control and physical fitness. Badminton is one of the most popular sports in the world, with 200 million adherents. The decision to include badminton in the 1992 Olympics Game increased participation in the game. This review focuses on the game characteristics, anthropometry, physiology, visual attributes and biomechanics of badminton. Players are generally tall and lean, with an ectomesomorphic body type suited to the high physiological demands of a match. Indeed, a typical match characteristic is a rally time of 7 s and a resting time of 15 s, with an effective playing time of 31%. This sport is highly demanding, with an average heart rate (HR) of over 90% of the player's maximal HR. The intermittent actions during a game are demanding on both the aerobic and anaerobic systems: 60-70% on the aerobic system and approximately 30% on the anaerobic system, with greater demand on the alactic metabolism with respect to the lactic anaerobic metabolism. The shuttlecock has an atypical trajectory, and the players perform specific movements such as lunging and jumping, and powerful strokes using a specific pattern of movement. Lastly, badminton players are visually fit, picking up accurate visual information in a short time. Knowledge of badminton can help to improve coaching and badminton skills. PMID:25549780

  11. Water Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Water Landing Characteristics of a Reentry Capsule. Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions. [Entire movie available on DVD from CASI as Doc ID 20070030955. Contact help@sti.nasa.gov

  12. Methane emissions from beef and dairy cattle: quantifying the effect of physiological stage and diet characteristics.

    PubMed

    Ricci, P; Rooke, J A; Nevison, I; Waterhouse, A

    2013-11-01

    The prediction of methane outputs from ruminant livestock data at farm, national, and global scales is a vital part of greenhouse gas calculations. The objectives of this work were to quantify the effect of physiological stage (lactating or nonlactating) on predicting methane (CH4) outputs and to illustrate the potential improvement for a beef farming system of using more specific mathematical models to predict CH4 from cattle at different physiological stages and fed different diet types. A meta-analysis was performed on 211 treatment means from 38 studies where CH4, intake, animal, and feed characteristics had been recorded. Additional information such as type of enterprise, diet type, physiological stage, CH4 measurement technique, intake restriction, and CH4 reduction treatment application from these studies were used as classificatory factors. A series of equations for different physiological stages and diet types based on DMI or GE intake explained 96% of the variation in observed CH4 outputs (P<0.001). Resulting models were validated with an independent dataset of 172 treatment means from 20 studies. To illustrate the scale of improvement on predicted CH4 outputs from the current whole-farm prediction approach (Intergovernmental Panel on Climate Change [IPCC]), equations developed in the present study (NewEqs) were compared with the IPCC equation {CH4 (g/d)=[(GEI×Ym)×1,000]/55.65}, in which GEI is GE intake and Ym is the CH4 emission factor, in calculating CH4 outputs from 4 diverse beef systems. Observed BW and BW change data from cows with calves at side grazing either hill or lowland grassland, cows and overwintering calves and finishing steers fed contrasting diets were used to predict energy requirements, intake, and CH4 outputs. Compared with using this IPCC equation, NewEqs predicted up to 26% lower CH4 on average from individual lactating grazing cows. At the herd level, differences between equation estimates from 10 to 17% were observed in total annual accumulated CH4 when applied to the 4 diverse beef production systems. Overall, despite the small number of animals used it was demonstrated that there is a biological impact of using more specific CH4 prediction equations. Based on this approach, farm and national carbon budgets will be more accurate, contributing to reduced uncertainty in assessing mitigation options at farm and national level. PMID:24174549

  13. Genetic and Physiological Controls of Growth under Water Deficit1

    PubMed Central

    Tardieu, François; Parent, Boris; Caldeira, Cecilio F.; Welcker, Claude

    2014-01-01

    The sensitivity of expansive growth to water deficit has a large genetic variability, which is higher than that of photosynthesis. It is observed in several species, with some genotypes stopping growth in a relatively wet soil, whereas others continue growing until the lower limit of soil-available water. The responses of growth to soil water deficit and evaporative demand share an appreciable part of their genetic control through the colocation of quantitative trait loci as do the responses of the growth of different organs to water deficit. This result may be caused by common mechanisms of action discussed in this paper (particularly, plant hydraulic properties). We propose that expansive growth, putatively linked to hydraulic processes, determines the sink strength under water deficit, whereas photosynthesis determines source strength. These findings have large consequences for plant modeling under water deficit and for the design of breeding programs. PMID:24569846

  14. Sugarcane growth and physiological responses to water deficit stress on organic and sand soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) genotype selection has been more successful for organic (muck) than sand soils in Florida, perhaps due to differences in water availability. A greenhouse study was conducted at Canal Point, Florida to compare sugarcane physiological responses to water deficit stress during...

  15. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance.

    PubMed

    Rosales, Miguel A; Ocampo, Edilia; Rodríguez-Valentín, Rocío; Olvera-Carrillo, Yadira; Acosta-Gallegos, Jorge; Covarrubias, Alejandra A

    2012-07-01

    Terminal drought is a major problem for common bean production because it occurs during the reproductive stage, importantly affecting seed yield. Diverse common bean cultivars with different drought susceptibility have been selected from different gene pools in several drought environments. To better understand the mechanisms associated with terminal drought resistance in a particular common bean race (Durango) and growth habit (type-III), we evaluated several metabolic and physiological parameters using two cultivars, Bayo Madero and Pinto Saltillo, with contrasting drought susceptibility. The common bean cultivars were submitted to moderate and severe terminal drought treatments under greenhouse conditions. We analyzed the following traits: relative growth rate, photosynthesis and transpiration rates, stomatal conductance, water-use efficiency, relative water content, proline accumulation, glycolate oxidase activity and their antioxidant response. Our results indicate that the competence of the drought-resistant cultivar (Pinto Saltillo) to maintain seed production upon terminal drought relies on an early response and fine-tuning of stomatal conductance, CO? diffusion and fixation, and by an increased water use and avoidance of ROS accumulation. PMID:22579941

  16. Metabolic and Physiological Characteristics of Novel Cultivars from Serpentinite Seep Fluids

    NASA Astrophysics Data System (ADS)

    Nelson, B.; Chowdhury, S.; Brazelton, W. J.; Schrenk, M. O.

    2011-12-01

    Subsurface waters associated with the alteration of ultramafic rocks become highly reducing and alkaline through a process known as serpentinization. As habitat, these fluids are in many ways metabolically constraining but can provide sufficient energy for chemolithotrophy. As part of an ongoing effort to characterize these communities, heterotrophic enrichment cultures and anaerobic microcosms were initiated with alkaline waters found at three geographically and geochemically distinct sites of active serpentinization. These include the Northern Apennine ophiolite in the Ligurian region of Italy, the Tablelands ophiolite at Gros Morne National Park, Canada and the Coast Range ophiolite at McLaughlin Natural Reserve, California. Enrichment cultures at pH 11 yielded numerous isolates related to Proteobacteria and Firmicutes, some of which are closely related to other cultivars from high pH and subsurface environments. Anaerobic water samples were amended with combinations of electron donors (hydrogen, complex organics, acetate) and acceptors (ferric iron, sulfate) in a block design. After several weeks of incubation, DNA was extracted from cell concentrations and community differences were compared by TRFLP. Of particular interest is the isolation of a putative iron reducing Firmicute from samples enriched with complex organic compounds and ferric citrate. Ongoing studies are aimed at characterizing the physiology of these isolates. These data provide important insights into the metabolic potential of serpentinite subsurface ecosystems, and are a complement to culture-independent genomic analyses.

  17. Water Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  18. Water uptake in barley grain: Physiology; genetics and industrial applications.

    PubMed

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-?-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-?-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-?-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. PMID:26566843

  19. Time-motion analysis, heart rate, and physiological characteristics of international canoe polo athletes.

    PubMed

    Forbes, Scott C; Kennedy, Michael D; Bell, Gordon J

    2013-10-01

    To evaluate the time international canoe polo players spend performing various game activities, measure heart rate (HR) responses during games, and describe the physiological profile of elite players. Eight national canoe polo players were videotaped and wore HR monitors during 3 games at a World Championship and underwent fitness testing. The mean age, height, and weight were 25 ± 1 years, 1.82 ± 0.04 m, and 81.9 ± 10.9 kg, respectively. Time-motion analysis of 3 games indicated that the players spent 29 ± 3% of the game slow and moderate forward paddling, 28 ± 5% contesting, 27 ± 5% resting and gliding, 7 ± 1% turning, 5 ± 1% backward paddling, 2 ± 1% sprinting, and 2 ± 1% dribbling. Sixty-nine (±20)% of the game time was played at an HR intensity above the HR that corresponded to the ventilatory threshold (VT) that was determined during the peak V[Combining Dot Above]O2 test. Peak oxygen uptake and VT were 3.3 ± 0.3 and 2.2 ± 0.3 L·min, respectively, on a modified Monark arm crank ergometer. Arm crank peak 5-second anaerobic power was 379 W. The majority of the time spent during international canoe polo games involved slow-to-moderate forward paddling, contesting for the ball, and resting and gliding. Canoe polo games are played at a high intensity indicated by the HR responses, and the physiological characteristics suggest that these athletes had high levels of upper body aerobic and anaerobic fitness levels. PMID:23287835

  20. Anthropometric and physiological characteristics of Melanesian futsal players: a first approach to talent identification in Oceania

    PubMed Central

    Zongo, P; Chamari, K; Chaouachi, A; Michalak, E; Dellal, A; Castagna, C; Hue, O

    2015-01-01

    This study assessed the anthropometric and physiological characteristics of elite Melanesian futsal players in order to determine the best performance predictors. Physiological parameters of performance were measured in 14 Melanesian (MEL-G, 24.4±4.4 yrs) and 8 Caucasian (NMEL-G, 22.9±4.9) elite futsal players, using tests of jump-and-reach (CMJ), agility (T-Test), repeated sprint ability (RSA), RSA with change-of-direction (RSA-COD), sprints with 5 m, 10 m, 15 m, and 30 m lap times, and aerobic fitness with the 30-15 intermittent fitness test (30-15 IFT). The anthropometric data revealed significantly lower height for MEL-G compared with NMEL-G: 1.73±0.05 and 1.80±0.08 m, respectively; P = 0.05. The CMJ was significantly higher for MEL-G than NMEL-G: 50.4±5.9 and 45.2±4.3 cm, respectively; P = 0.05. T-Test times were significantly lower for MEL-G than NMEL-G: 10.47±0.58 and 11.01±0.64 seconds, respectively; P = 0.05. MEL-G height was significantly related to CMJ (r = 0.706, P = 0.01), CMJpeakP (r = 0.709, P = 0.01) and T-Test (r = 0.589, P = 0.02). No significant between-group differences were observed for sprint tests or 30-15 IFT, including heart rate and estimated VO2max. Between groups, the percentage decrement (%Dec) in RSA-COD was significantly lower in MEL-G than NMEL-G (P = 0.05), although no significant difference was noted between RSA and RSA-COD. Within groups, no significant difference was observed between %Dec in RSA or RSA-COD; P = 0.697. This study presents specific anthropometric (significantly lower height) and physiological (significantly greater agility) reference values in Melanesians, which, taken together, might help coaches and physical fitness trainers to optimize elite futsal training and talent identification in Oceania. PMID:26060337

  1. Stomatal structure and physiology do not explain differences in water use among montane eucalypts.

    PubMed

    Gharun, Mana; Turnbull, Tarryn L; Pfautsch, Sebastian; Adams, Mark A

    2015-04-01

    Understanding the regulation of water use at the whole-tree scale is critical to advancing the utility of physiological ecology, for example in its role in predictive hydrology of forested catchments. For three eucalypt species that dominate high-elevation catchments in south-eastern Australia, we examined if whole-tree water use could be related to three widely discussed regulators of water use: stomatal anatomy, sensitivity of stomata [i.e. stomatal conductance (g(s))] to environmental influences, and sapwood area. While daily tree water use varied sixfold among species, sap velocity and sapwood area varied in parallel. Combined, stomatal structure and physiology could not explain differences in species-specific water use. Species which exhibited the fastest (Eucalyptus delegatensis) and slowest (Eucalyptus pauciflora) rates of water use both exhibited greater capacity for physiological control of g(s) [indicated by sensitivity to vapour pressure deficit (VPD)] and a reduced capacity to limit g(s) anatomically [indicated by greater potential g(s) (g(max))]. Conversely, g(s) was insensitive to VPD and g(max) was lowest for Eucalyptus radiata, the species showing intermediate rates of water use. Improved knowledge of stomatal anatomy will help us to understand the capacity of species to regulate leaf-level water loss, but seems likely to remain of limited use for explaining rates of whole-tree water use in montane eucalypts at the catchment scale. PMID:25669453

  2. Water protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions

    SciTech Connect

    Mamontov, Eugene; Chu, Xiang-Qiang

    2012-01-01

    Both the structure and dynamics of biomolecules are known to be essential for their biological function. In the dehydrated state, the function of biomolecules, such as proteins, is severely impeded, so hydration is required for bioactivity. The dynamics of the hydrated biomolecules and their hydration water are related - but how closely? The problem involves several layers of complexity. Even for water in the bulk state, the contribution from various dynamic components to the overall dynamics is not fully understood. In biological systems, the effects of confinement on the hydration water further complicate the picture. Even if the various components of the hydration water dynamics are properly understood, which of them are coupled to the protein dynamics, and how? The studies of protein dynamics over the wide temperature range, from physiological to low temperatures, provide some answers to these question. At low temperatures, both the protein and its hydration water behave as solids, with only vibrational degrees of freedom. As the temperature is increased, non-vibrational dynamic components start contributing to the measurable dynamics and eventually become dominant at physiological temperatures. Thus, the temperature dependence of the dynamics of protein and its hydration water may allow probing various dynamic components separately. In order to suppress the water freezing, the low-temperature studies of protein rely on either low-hydrated samples (essentially, hydrated protein powders), or cryo-protective solutions. Both approaches introduce the hydration environments not characteristic of the protein environments in living systems, which are typically aqueous protein solutions of various concentrations. In this paper, we discuss the coupling between the dynamic components of the protein and its hydration water by critical examining of the existing literature, and then propose that proteins can be studied in an aqueous solution that is remarkably similar in its dynamic properties to pure water, yet does not freeze down to about 200 K, even in the bulk form. The first experiment of this kind using quasielastic neutron scattering is discussed, and more experiments are proposed.

  3. Effects of Cu(2+) and Zn(2+) on growth and physiological characteristics of green algae, Cladophora.

    PubMed

    Cao, De-Ju; Xie, Pan-Pan; Deng, Juan-Wei; Zhang, Hui-Min; Ma, Ru-Xiao; Liu, Cheng; Liu, Ren-Jing; Liang, Yue-Gan; Li, Hao; Shi, Xiao-Dong

    2015-11-01

    Effects of various concentrations of Cu(2+) and Zn(2+) (0.0, 0.1, 0.25, 0.5, or 1.0 mg/L) on the growth, malondialdehyde (MDA), the intracellular calcium, and physiological characteristics of green algae, Cladophora, were investigated. Low Zn(2+) concentrations accelerated the growth of Cladophora, whereas Zn(2+) concentration increases to 0.25 mg/L inhibited its growth. Cu(2+) greatly influences Cladophora growth. The photosynthesis of Cladophora decreased under Zn(2+) and Cu(2+) stress. Cu(2+) and Zn(2+) treatment affected the content of total soluble sugar in Cladophora and has small increases in its protein content. Zn(2+) induced the intracellular calcium release, and copper induced the intracellular calcium increases in Cladophora. Exposure to Cu(2+) and Zn(2+) induces MDA in Cladophora. The stress concent of Cu(2+) was strictly correlated with the total soluble sugar content, Chla+Chlb, and MDA in Cladophora, and the stress concent of Zn(2+) was strictly correlated with the relative growth rate (RGR) and MDA of Cladophora. PMID:26077320

  4. Effects of Shade Treatments on Photosynthetic Characteristics, Chloroplast Ultrastructure, and Physiology of Anoectochilus roxburghii

    PubMed Central

    Shao, Qingsong; Wang, Hongzhen; Guo, Haipeng; Zhou, Aicun; Huang, Yuqiu; Sun, Yulu; Li, Mingyan

    2014-01-01

    Anoectochilus roxburghii was grown under different shade treatments–50%, 30%, 20%, and 5% of natural irradiance–to evaluate its photosynthetic characteristics, chloroplast ultrastructure, and physiology. The highest net photosynthetic rates and stomatal conductance were observed under 30% irradiance, followed in descending order by 20%, 5%, and 50% treatments. As irradiance decreased from 50% to 30%, electron transport rate and photochemical quenching increased, while non-photochemical quenching indexes declined. Reductions in irradiance significantly increased Chl a and Chl b contents and decreased Chl a/b ratios. Chloroplast ultrastructure generally displayed the best development in leaves subjected to 30% irradiance. Under 50% irradiance, leaf protein content remained relatively stable during the first 20 days of treatment, and then increased rapidly. The highest peroxidase and superoxide dismutase levels, and the lowest catalase activities, were observed in plants subjected to the 50% irradiance treatment. Soluble sugar and malondialdehyde contents were positively correlated with irradiance levels. Modulation of chloroplast development, accomplished by increasing the number of thylakoids and grana containing photosynthetic pigments, is an important shade tolerance mechanism in A. roxburghii. PMID:24516523

  5. Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory

    PubMed Central

    2010-01-01

    Global concerns about climate changes and their association with the use of fossil fuels have accelerated research on biological fuel production. Biological hydrogen production from hemicellulose-containing waste is considered one of the promising avenues. A major economical issue for such a process, however, is the low substrate conversion efficiency. Interestingly, the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus can produce hydrogen from carbohydrate-rich substrates at yields close to the theoretical maximum of the dark fermentation process (i.e., 4 mol H2/mol hexose). The organism is able to ferment an array of mono-, di- and polysaccharides, and is relatively tolerant to high partial hydrogen pressures, making it a promising candidate for exploitation in a biohydrogen process. The behaviour of this Gram-positive bacterium bears all hallmarks of being adapted to an environment sparse in free sugars, which is further reflected in its low volumetric hydrogen productivity and low osmotolerance. These two properties need to be improved by at least a factor of 10 and 5, respectively, for a cost-effective industrial process. In this review, the physiological characteristics of C. saccharolyticus are analyzed in view of the requirements for an efficient hydrogen cell factory. A special emphasis is put on the tight regulation of hydrogen production in C. saccharolyticus by both redox and energy metabolism. Suggestions for strategies to overcome the current challenges facing the potential use of the organism in hydrogen production are also discussed. PMID:21092203

  6. [Comparative physiological and biochemical characteristics of Aspergillus niger isolated from the mesosphere and of its mutant].

    PubMed

    Imshenetski?, A A; Lysenko, S V; Demina, N S

    1981-01-01

    The aim of this work was to study certain physiological-biochemical characteristics of Aspergillus niger, strain 26, isolated from the mesosphere as well as those of its mutant having light-brown conidia. The parent strain and its mutant were grown in a liquid Chapek medium to study accumulation of the biomass, changes in the pH of the medium, as well as assimilation of glucose, nitrogen (NO3-) and phosphorus (PO4-). The content of polysaccharides, protein, RNA and DNA was determined in the biomass. The parent culture and its mutant had the same growth dynamics and changes in the pH of the growth medium. They assimilated nitrogen, phosphorus and glucose at the same rate. No significant differences were found in the content of DNA, RNA, protein and polysaccharides. Lipids were an exception: their content was higher by ca. 26% in the mutant as compared with the parent strain. Apparently, the elevated sensitivity of the mutant to UV is due not only to a loss of certain pigments, but also to a damage of other protective mechanisms of the cell. PMID:7329352

  7. [Effects of light quality on rice seedlings growth and physiological characteristics].

    PubMed

    Guo, Yin-Sheng; Gu, Ai-Su; Cui, Jin

    2011-06-01

    By using light emitting diode (LED) to accurately modulate spectral energy distribution, and with fluorescent light as the control, this paper studied the effects of light quality on the seedlings growth and physiological characteristics of rice cultivars 'Wuyunjing 7' and 'Kangyou 63'. Light quality had significant effects on the seedlings growth, and there existed differences at different growth stages. Blue LED inhibited the height growth significantly, and increased the leaf soluble protein content of 'Wuyunjing 7' and the healthy index of the two rice cultivars at five-leaf stage. Red LED increased the stem diameter and healthy index at three-leaf stage and the leaf soluble sugar and starch contents at five-leaf stage significantly. Red-blue LED increased the root number, stem diameter, healthy index, root activity, and root soluble sugar content at three-leaf stage and the fresh mass, dry mass, healthy index, and leaf soluble sugar and sucrose contents at five-leaf stage significantly. Yellow LED increased the plant height and leaf pigment content at initial growth stage. Overall, red-blue LED was more beneficial to the culture of strong rice seedlings. PMID:21941749

  8. Physiology and molecular characteristics of a pine wilt nematode-trapping fungus, Monacrosporium megalosporum.

    PubMed

    Kano, Sanae; Aimi, Tadanori; Masumoto, Seita; Kitamoto, Yutaka; Morinaga, Tsutomu

    2004-09-01

    We isolated the nematode-trapping fungus Monacrosporium megalosporum from nature and examined its morphology, physiology and molecular characteristics. The nematode-trapping device of this fungus is a three-dimensional network. This fungus captures the pine wilt nematode (Bursaphelenchus xylophilus), but not a non-phytopathogenic nematode that is morphologically similar to B. xylophilus. The phylogenic relationship of the nucleotide sequence of the rDNA ITS region was close to those of M. thaumasium and Geniculifera eudermata, which also have nematode-trapping devices that are three-dimensional networks. Acidic pH inhibited both the liberation and regeneration of protoplasts. Moreover, cytoplasmic granulation of protoplasts was found below pH 6.0. Mycelial growth on agar media was also inhibited below pH 4, but not at pH 9. These results strongly suggest that the activity of this fungus is inhibited by acid rain in the field. Therefore, development of pine wilt disease might be a secondary effect of acid rain. PMID:15386097

  9. Physical and Physiological Characteristics of Elite Male Handball Players from Teams with a Different Ranking

    PubMed Central

    Nikolaidis, Pantelis T.; Ingebrigtsen, Jørgen

    2013-01-01

    The aim of this study was to examine possible discriminant physical and physiological characteristics between elite male handball players from elite teams with different league rankings. Players from three teams (A, B and C), which competed in the first league of the Greek championship during the season 2011–2012 participated in the study. Team A finished first, B came second and C came eighth out of eleven clubs. Teams A and B also participated in European Cups, and team A won the European Challenge Cup. The players (n=44) were examined for anthropometric characteristics and performed a series of physical fitness tests. Players from teams A and B were taller (6.2 cm (0.7;11.7), mean difference (95% CI) and 9.2 cm (4.0;14.5), respectively), and had a higher amount of fat free mass (6.4 kg (1.1;11.8) and 5.4 kg (0.2;10.5)) compared to those of team C. Players from team A performed better than players from team C in the squat jump (5.5 cm (1.0;10.0)), the countermovement jump without (5.5 cm (0.4;10.6)) and with arm-swing (6.0 cm (0.7;11.3)) and in the 30 s Bosco test (5.7 W·kg?1 (1.2;10.2)). Also, players from team A outperformed team B in mean power during the Wingate anaerobic test (WAnT, 0.5 W·kg?1(0;0.9)) and in the Bosco test (7.8 W·kg?1 (3.4;12.2)). Overall, players from the best ranked team performed better than the lowest ranked team on WAnT, vertical jumps and the Bosco test. Stepwise discriminant analysis showed that stature and mean power during the Bosco test were the most important characteristics in TH players, accounting for 54.6% of the variance in team ranking. These findings indicate the contribution of particular physical fitness components (stature, fat free mass and anaerobic power) to excellence in TH. In addition, the use of the Bosco test as an assessment tool in talent identification and physical fitness monitoring in this sport is further recommended. PMID:24235989

  10. [Effects of nitrogen deposition on leaf physiological and ecological characteristics of Lindera aggregata seedlings].

    PubMed

    Wang, Qiang; Jin, Ze-Xin; Peng, Li-Qiong

    2012-10-01

    From June 2010 to July 2011, a pot experiment was conducted to explore the effects of nitrogen deposition on the leaf physiological and ecological characteristics of Lindera aggregate seedlings. Three levels of NH4NO3, i. e., low-N (2 g x m(-2) x a(-1)), medium-N (8 g x m(-2) x a(-1)), and high-N (32 g x m(-2) x a(-1)) , were added to simulate nitrogen deposition, and the seedling leaf photosynthesis, relative chlorophyll content, chlorophyll fluorescence parameters, membrane lipid peroxidation, and antioxidant enzyme activities were determined. After one-year treatment, the daily mean values of the net photosynthetic rate (P)n)) and the maximum net photosynthetic rate (P(n max)) at low, medium and high levels of NH4 NO3 addition were 47.0%, 117.8% and 41.2%, and 82.6%, 191.3% and 152.2% higher than those of the control (no NH4 NO3 addition), respectively, with the highest values at medium level of NH4NO3 addition. The intercellular CO2 concentration, daily mean stomatal conductance, light saturation point, and apparent quantum yield in the three treatments of NH4NO3 addition were all higher than those of the control, and the dark respiration rate was the highest in treatment high-N. The relative chlorophyll content was the highest in treatment medium-N, followed by in treatment high-N, and had no significant difference between treatment low-N and the control. The chlorophyll fluorescence parameters varied with the levels of NH4NO3 addition. The PS II primary chemical efficiency (F(v)/F(m)) and PS II potential activity (F(v)/F(o)) were the lowest in treatment high-N, the superoxide dismutase activity was higher in nitrogen addition treatments than in the control, and the peroxidase activity, malonydialdehyde content, and membrane permeability were the highest in treatment high-N. All the results suggested that nitrogen deposition enhanced the photosynthetic ability of L. aggregata seedlings, with the most obvious effects in treatment medium-N, and altered the other physiological traits of the seedlings to different degrees. PMID:23359938

  11. Physiological, anatomical and leaf hydraulic effects on leaf water ?18O enrichment in different plant species

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Arndt, S. K.; Dawson, T. E.

    2007-12-01

    Stable oxygen isotope ratios (?18O) of plant and source waters are valuable tools in the analysis of water and carbon fluxes at leaf, plant, and ecosystem scales. Recent improvements in mechanistic models have significantly advanced the understanding of isotopic leaf water enrichment, which is an important source of ?18O variability in plants and ecosystems. However, the marked variability in leaf water ?18O values that have been reported for different plant species hampers efforts to interpret and then apply data on leaf water ?18O values for studies conducted at the ecosystem scale. To improve the understanding and application of ?18O values in leaf water, we tested the interplay of physiological, morphological, anatomical and leaf hydraulic properties as drivers of leaf water ?18O values across 17 Eucalyptus species growing in a common garden. We observed large differences in leaf water ?18O across the 17 species. These differences were only partly driven by physiological and leaf morphological differences across species. A sensitivity analysis using state-of-the-art leaf water enrichment models showed that the parameter - effective path length - (L) is of critical importance for the variability of leaf water ?18O across different species. The data show that L can be related to a suite of leaf properties that include physiology, anatomy and hydraulics. Consequently, consideration of leaf properties will significantly improve the interpretation of ?18O values in leaf water across different plant species and will therefore help in the application of ?18O values in carbon and water cycle assessments at both the plant and the ecosystem scale.

  12. Identification of Physiological Traits for Early Detecting Water Deficit Stress in Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) genotype selection has been more successful for organic (muck) than sand soils in Florida. Water deficit stress during its formative growth phase may limit sugarcane growth and yields on Florida sand soils. Therefore, identifying proper physiological traits will help scien...

  13. The effect of lichen-dominated biological soil crusts on growth and physiological characteristics of three plant species in a temperate desert of northwest China.

    PubMed

    Zhuang, W W; Serpe, M; Zhang, Y M

    2015-11-01

    Biocrusts (biological soil crusts) cover open spaces between vascular plants in most arid and semi-arid areas. Information on effects of biocrusts on seedling growth is controversial, and there is little information on their effects on plant growth and physiology. We examined impacts of biocrusts on growth and physiological characteristics of three habitat-typical plants, Erodium oxyrhynchum, Alyssum linifolium and Hyalea pulchella, growing in the Gurbantunggut Desert, northwest China. The influence of biocrusts on plant biomass, leaf area, leaf relative water content, photosynthesis, maximum quantum efficiency of PSII (Fv /Fm ), chlorophyll, osmotic solutes (soluble sugars, protein, proline) and antioxidant enzymes (superoxide dismutase, catalase, peroxidase) was investigated on sites with or without biocrust cover. Biomass, leaf area, leaf water content, photosynthesis, Fv /Fm and chlorophyll content in crusted soils were higher than in uncrusted soils during early growth and lower later in the growth period. Soluble sugars, proline and antioxidant enzyme activity were always higher in crusted than in uncrusted soils, while soluble protein content was always lower. These findings indicate that biocrusts have different effects on these three ephemeral species during growth in this desert, primarily via effects on soil moisture, and possibly on soil nutrients. The influence of biocrusts changes during plant development: in early plant growth, biocrusts had either positive or no effect on growth and physiological parameters. However, biocrusts tended to negatively influence plants during later growth. Our results provide insights to explain why previous studies have found different effects of biocrusts on vascular plant growth. PMID:26084731

  14. Genotypic differences in architectural and physiological responses to water restriction in rose bush

    PubMed Central

    Li-Marchetti, Camille; Le Bras, Camille; Relion, Daniel; Citerne, Sylvie; Huché-Thélier, Lydie; Sakr, Soulaiman; Morel, Philippe; Crespel, Laurent

    2015-01-01

    The shape and, therefore, the architecture of the plant are dependent on genetic and environmental factors such as water supply. The architecture determines the visual quality, a key criterion underlying the decision to purchase an ornamental potted plant. The aim of this study was to analyze genotypic responses of eight rose bush cultivars to alternation of water restriction and re-watering periods, with soil water potential of -20 and -10 kPa respectively. Responses were evaluated at the architectural level through 3D digitalization using six architectural variables and at the physiological level by measuring stomatal conductance, water content, hormones [abscisic acid (ABA), auxin, cytokinins, jasmonic acid, and salicylic acid (SA)], sugars (sucrose, fructose, and glucose), and proline. Highly significant genotype and watering effects were revealed for all the architectural variables measured, as well as genotype × watering interaction, with three distinct genotypic architectural responses to water restriction – weak, moderate and strong – represented by Hw336, ‘Baipome’ and ‘The Fairy,’ respectively. The physiological analysis explained, at least in part, the more moderate architectural response of ‘Baipome’ compared to ‘The Fairy,’ but not that of Hw336 which is an interspecific hybrid. Such physiological responses in ‘Baipome’ could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period. When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction. PMID:26074929

  15. Genotypic differences in architectural and physiological responses to water restriction in rose bush.

    PubMed

    Li-Marchetti, Camille; Le Bras, Camille; Relion, Daniel; Citerne, Sylvie; Huché-Thélier, Lydie; Sakr, Soulaiman; Morel, Philippe; Crespel, Laurent

    2015-01-01

    The shape and, therefore, the architecture of the plant are dependent on genetic and environmental factors such as water supply. The architecture determines the visual quality, a key criterion underlying the decision to purchase an ornamental potted plant. The aim of this study was to analyze genotypic responses of eight rose bush cultivars to alternation of water restriction and re-watering periods, with soil water potential of -20 and -10 kPa respectively. Responses were evaluated at the architectural level through 3D digitalization using six architectural variables and at the physiological level by measuring stomatal conductance, water content, hormones [abscisic acid (ABA), auxin, cytokinins, jasmonic acid, and salicylic acid (SA)], sugars (sucrose, fructose, and glucose), and proline. Highly significant genotype and watering effects were revealed for all the architectural variables measured, as well as genotype × watering interaction, with three distinct genotypic architectural responses to water restriction - weak, moderate and strong - represented by Hw336, 'Baipome' and 'The Fairy,' respectively. The physiological analysis explained, at least in part, the more moderate architectural response of 'Baipome' compared to 'The Fairy,' but not that of Hw336 which is an interspecific hybrid. Such physiological responses in 'Baipome' could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period. When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction. PMID:26074929

  16. Physiological plasticity to water flow habitat in the damselfish, Acanthochromis polyacanthus: linking phenotype to performance.

    PubMed

    Binning, Sandra A; Ros, Albert F H; Nusbaumer, David; Roche, Dominique G

    2015-01-01

    The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology. PMID:25807560

  17. Physiological Plasticity to Water Flow Habitat in the Damselfish, Acanthochromis polyacanthus: Linking Phenotype to Performance

    PubMed Central

    Binning, Sandra A.; Ros, Albert F. H.; Nusbaumer, David; Roche, Dominique G.

    2015-01-01

    The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology. PMID:25807560

  18. Divergent physiological characteristics and responses to endurance training among inbred mouse strains.

    PubMed

    Kilikevicius, A; Venckunas, T; Zelniene, R; Carroll, A M; Lionikaite, S; Ratkevicius, A; Lionikas, A

    2013-10-01

    Both baseline values and adaptive changes in mice can vary depending on the genetic background. We aimed to assess variation in a battery of variables and their adaptations to endurance training in six inbred mouse strains. Males, n = 184, from A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, DBA/2J, and PWD/PhJ strains were assigned to a control or an endurance group (5 weeks swimming exercise). Enzyme activity, histology of soleus (SOL) muscle, swimming endurance, cardiac ventricular and hind limb muscle weight, and femur length were examined. Endurance capacity, morphological and histological variables, and enzyme activity substantially differed among strains. For example, SOL weight was twofold higher and cross-sectional area (CSA) of fibers was ? 30% greater in C57BL/6J than in PWD/PhJ strain. The CSA of type 1 fibers were larger than type 2A in PWD/PhJ (P < 0.01); however, the reverse was true in DBA/2J and BALB/cByJ strains (P < 0.05). Swimming endurance in DBA/2J strain was ? 9 times better than in BALB/cByJ. Endurance training increased the activity of citrate synthase in gastrocnemius across strains (P < 0.01), however, changes in endurance were strain-specific; the C57BL/6J and DBA/2J strains improved substantially, whereas A/J and BALB/cByJ strains did not. In conclusion, genetic background is a potent determinant of the physiological characteristics and adaptations to training in mice. PMID:22414113

  19. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus

    PubMed Central

    Ings, Jennifer; Mur, Luis A. J.; Robson, Paul R. H.; Bosch, Maurice

    2013-01-01

    High yielding perennial biomass crops of the species Miscanthus are widely recognized as one of the most promising lignocellulosic feedstocks for the production of bioenergy and bioproducts. Miscanthus is a C4 grass and thus has relatively high water use efficiency. Cultivated Miscanthus comprises primarily of a single clone, Miscanthus x giganteus, a sterile hybrid between M. sacchariflorus and M. sinensis. M. x giganteus is high yielding and expresses desirable combinations of many traits present in the two parental species types; however, it responds poorly to low water availability. To identify the physiological basis of the response to water stress in M. x giganteus and to identify potential targets for breeding improvements we characterized the physiological responses to water-deficit stress in a pot experiment. The experiment has provided valuable insights into the temporal aspects of drought-induced responses of M. x giganteus. Withholding water resulted in marked changes in plant physiology with growth-associated traits among the first affected, the most rapid response being a decline in the rate of stem elongation. A reduction in photosynthetic performance was among the second set of changes observed; indicated by a decrease in stomatal conductance followed by decreases in chlorophyll fluorescence and chlorophyll content. Measures reflecting the plant water status were among the last affected by the drought treatment. Metabolite analysis indicated that proline was a drought stress marker in M. x giganteus, metabolites in the proline synthesis pathway were more abundant when stomatal conductance decreased and dry weight accumulation ceased. The outcomes of this study in terms of drought-induced physiological changes, accompanied by a proof-of-concept metabolomics investigation, provide a platform for identifying targets for improved drought-tolerance of the Miscanthus bioenergy crop. PMID:24324474

  20. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance

    PubMed Central

    Lima, John Milton; Nath, Manoj; Dokku, Prasad; Raman, K. V.; Kulkarni, K. P.; Vishwakarma, C.; Sahoo, S. P.; Mohapatra, U. B.; Mithra, S. V. Amitha; Chinnusamy, V.; Robin, S.; Sarla, N.; Seshashayee, M.; Singh, K.; Singh, A. K.; Singh, N. K.; Sharma, R. P.; Mohapatra, T.

    2015-01-01

    Water stress is one of the most severe constraints to crop productivity. Plants display a variety of physiological and biochemical responses both at the cellular and whole organism level upon sensing water stress. Leaf rolling, stomatal closure, deeper root penetration, higher relative water content (RWC) and better osmotic adjustment are some of the mechanisms that plants employ to overcome water stress. In the current study, we report a mutant, enhanced water stress tolerant1 (ewst1) with enhanced water stress tolerance, identified from the ethyl methanesulfonate-induced mutant population of rice variety Nagina22 by field screening followed by withdrawal of irrigation in pots and hydroponics (PEG 6000). Though ewst1 was morphologically similar to the wild type (WT) for 35 of the 38 morphological descriptors (except chalky endosperm/expression of white core, decorticated grain colour and grain weight), it showed enhanced germination in polyethylene glycol-infused medium. It exhibited increase in maximum root length without any significant changes in its root weight, root volume and total root number on crown when compared with the WT under stress in PVC tube experiment. It also showed better performance for various physiological parameters such as RWC, cell membrane stability and chlorophyll concentration upon water stress in a pot experiment. Root anatomy and stomatal microscopic studies revealed changes in the number of xylem and phloem cells, size of central meta-xylem and number of closed stomata in ewst1. Comparative genome-wide transcriptome analysis identified genes related to exocytosis, secondary metabolites, tryptophan biosynthesis, protein phosphorylation and other signalling pathways to be playing a role in enhanced response to water stress in ewst1. The possible involvement of a candidate gene with respect to the observed morpho-physiological and transcriptional changes and its role in stress tolerance are discussed. The mutant identified and characterized in this study will be useful for further dissection of water stress tolerance in rice. PMID:25818072

  1. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance.

    PubMed

    Lima, John Milton; Nath, Manoj; Dokku, Prasad; Raman, K V; Kulkarni, K P; Vishwakarma, C; Sahoo, S P; Mohapatra, U B; Mithra, S V Amitha; Chinnusamy, V; Robin, S; Sarla, N; Seshashayee, M; Singh, K; Singh, A K; Singh, N K; Sharma, R P; Mohapatra, T

    2015-01-01

    Water stress is one of the most severe constraints to crop productivity. Plants display a variety of physiological and biochemical responses both at the cellular and whole organism level upon sensing water stress. Leaf rolling, stomatal closure, deeper root penetration, higher relative water content (RWC) and better osmotic adjustment are some of the mechanisms that plants employ to overcome water stress. In the current study, we report a mutant, enhanced water stress tolerant1 (ewst1) with enhanced water stress tolerance, identified from the ethyl methanesulfonate-induced mutant population of rice variety Nagina22 by field screening followed by withdrawal of irrigation in pots and hydroponics (PEG 6000). Though ewst1 was morphologically similar to the wild type (WT) for 35 of the 38 morphological descriptors (except chalky endosperm/expression of white core, decorticated grain colour and grain weight), it showed enhanced germination in polyethylene glycol-infused medium. It exhibited increase in maximum root length without any significant changes in its root weight, root volume and total root number on crown when compared with the WT under stress in PVC tube experiment. It also showed better performance for various physiological parameters such as RWC, cell membrane stability and chlorophyll concentration upon water stress in a pot experiment. Root anatomy and stomatal microscopic studies revealed changes in the number of xylem and phloem cells, size of central meta-xylem and number of closed stomata in ewst1. Comparative genome-wide transcriptome analysis identified genes related to exocytosis, secondary metabolites, tryptophan biosynthesis, protein phosphorylation and other signalling pathways to be playing a role in enhanced response to water stress in ewst1. The possible involvement of a candidate gene with respect to the observed morpho-physiological and transcriptional changes and its role in stress tolerance are discussed. The mutant identified and characterized in this study will be useful for further dissection of water stress tolerance in rice. PMID:25818072

  2. Study on the relationship between the winter wheat thermal infrared image characteristics and physiological indicators

    NASA Astrophysics Data System (ADS)

    Chen, Zi-long; Ren, Xiang-rong; Cong, Hua; Wang, Cheng; Zhu, Da-zhou

    2014-11-01

    Arid directly affects crop growth and yield, such as reduces photosynthesis, weakens respiration rate, slows down the material transport, disorders stomatal switch, blocks the synthesis of chlorophyll, affects the cell wall and protein synthesis, etc., eventually leads to the reduction of output. How to solve this problem? This paper proposes a drought index based on thermal imaging technology. Canopy temperature distribution can reflect the growth of crops. And using thermal imaging technology can access to crop canopy temperature distribution quickly. Physiological indexes such as the changes of stomatal conductance and chlorophyll content is the important basis of crop drought resistance identification.So this paper studied the distribution of wheat canopy temperature with the change of stomatal conductance and chlorophyll content under drought conditions. The study was based on different drought resistant genotypes of winter wheat in Xinjiang with German JENOPTIK portable infrared thermal imager for canopy temperature information. The canopy leaf stomatal conductance and chlorophyll content was measured by SC-1 porosity meter and SPAD chlorophyll meter. Results prove that winter wheat canopy temperature decreases with the increase of stomatal conductance in dry conditions, which has a good linear relationship (r=-0.67). The correlation of canopy temperature and stomatal conductance of poor drought resistance(-0.93) is greater than that of good one(-0.46). There is significant difference between stomatal conductance and chlorophyll content of different drought resistance varieties(P<0.05). The variety of poor drought resistance is greater that of good one in morning-afternoon stomatal conductance change. And the chlorophyll content of the variety of good drought resistance is greater that of poor one. The conclusions above show that canopy temperature distribution has good correlation with the crop drought resistance indexes and can be used as an early indicator of drought resistance identification.This conclusion has important significance for drought resistance identification, the reasonable irrigation guidance and improving the water use efficiency.

  3. Why Do We Teach Physiology the Way We Do? An Analysis of National Characteristics.

    ERIC Educational Resources Information Center

    Rodriguez, Ricardo R.; Sefton, Ann Jervie; Silbernagl, Stefan; Monos, Emil; Nayar, Usha; Bouman, Lennart N.; Baumann, Fritz; Das, Mandira; Lammers, Wim J. E. P.; Lanphear, J. H.

    1998-01-01

    Presents invited reports that express the personal views of physiologists on the historical influences of physiology education in their countries. Includes reports from Argentina, Australia, Germany, Hungary, India, the Netherlands, Switzerland, and the United Arab Emirates. (DDR)

  4. Growth and Physiological Responses to Water Depths in Carex schmidtii Meinsh

    PubMed Central

    Yan, Hong; Liu, Ruiquan; Liu, Zinan; Wang, Xue; Luo, Wenbo; Sheng, Lianxi

    2015-01-01

    A greenhouse experiment was performed to investigate growth and physiological responses to water depth in completely submerged condition of a wetland plant Carex schmidtii Meinsh., one of the dominant species in the Longwan Crater Lake wetlands (China). Growth and physiological responses of C. schmidtii were investigated by growing under control (non-submerged) and three submerged conditions (5 cm, 15 cm and 25 cm water level). Total biomass was highest in control, intermediate in 5 cm treatment and lowest in the other two submerged treatments. Water depth prominently affected the first-order lateral root to main root mass ratio. Alcohol dehydrogenase (ADH) activity decreased but malondialdehyde (MDA) content increased as water depth increased. The starch contents showed no differences among the various treatments at the end of the experiment. However, soluble sugar contents were highest in control, intermediate in 5 cm and 15 cm treatments and lowest in 25 cm treatment. Our data suggest that submergence depth affected some aspects of growth and physiology of C. schmidtii, which can reduce anoxia damage not only through maintaining the non-elongation strategy in shoot part but also by adjusting biomass allocation to different root orders rather than adjusting root-shoot biomass allocation. PMID:26009895

  5. Anatomical, physiological and transcriptional responses of two contrasting poplar genotypes to drought and re-watering.

    PubMed

    Cao, Xu; Jia, Jingbo; Zhang, Chao; Li, Hong; Liu, Tongxian; Jiang, Xiangning; Polle, Andrea; Peng, Changhui; Luo, Zhi-Bin

    2014-08-01

    Populus × euramericana (Pe) displays higher stable carbon isotope composition (?(13)C) and intrinsic water use efficiency (WUEi) than Populus cathayana (Pc) under unlimited water conditions, rendering us to hypothesize that Pe is better acclimated to water deficiency than Pc. To examine this hypothesis, saplings of Pc and Pe were exposed to drought and subsequently re-watered. Pc and Pe exhibited distinct anatomical, physiological and transcriptional responses in acclimation to drought and re-watering, mainly due to stronger responsiveness of transcriptional regulation of genes encoding plasma membrane intrinsic proteins (PIPs), higher starch accumulation, ?(13)C, stable nitrogen isotope composition (?(15)N) and WUEi , and lower reactive oxygen species (ROS) accumulation and scavenging in Pe. In acclimation to drought, both poplar genotypes demonstrated altered anatomical properties, declined height growth, differential expression of PIPs, activation of ABA signaling pathway, decreased total soluble sugars and starch, increased ?(13)C, ?(15)N and WUEi , and shifted homeostasis of ROS production and scavenging, and these changes can be recovered upon re-watering. These data indicate that Pe is more tolerant to drought than Pc, and that anatomical, physiological and transcriptional acclimation to drought and re-watering is essential for poplars to survive and grow under projected dry climate scenarios in the future. PMID:24320774

  6. PERFORMANCE CHARACTERISTICS OF PACKAGE WATER TREATMENT PLANTS

    EPA Science Inventory

    This study was undertaken to collect reliable onsite information on the quality of treated water produced by package plants. Six plants in operation year around were selected to be representative of those serving small populations and were monitored to assess their performance. P...

  7. Physiologic responses to water immersion in man: A compendium of research

    NASA Technical Reports Server (NTRS)

    Kollias, J.; Vanderveer, D.; Dorchak, K. J.; Greenleaf, J. E.

    1976-01-01

    A total of 221 reports published through December 1973 in the area of physiologic responses to water immersion in man were summarized. The author's abstract or summary was used whenever possible. Otherwise, a detailed annotation was provided under the subheadings: (1) purpose, (2) procedures and methods, (3) results, and (4) conclusions. The annotations are in alphabetical order by first author; author and subject indexes are included. Additional references are provided in the selected bibliography.

  8. Response of the physiological parameters of mango fruit (transpiration, water relations and antioxidant system) to its light and temperature environment.

    PubMed

    Léchaudel, Mathieu; Lopez-Lauri, Félicie; Vidal, Véronique; Sallanon, Huguette; Joas, Jacques

    2013-04-15

    Depending on the position of the fruit in the tree, mango fruit may be exposed to high temperature and intense light conditions that may lead to metabolic and physiological disorders and affect yield and quality. The present study aimed to determine how mango fruit adapted its functioning in terms of fruit water relations, epicarp characteristics and the antioxidant defence system in peel, to environmental conditions. The effect of contrasted temperature and light conditions was evaluated under natural solar radiation and temperature by comparing well-exposed and shaded fruit at three stages of fruit development. The sun-exposed and shaded peels of the two sides of the well-exposed fruit were also compared. Depending on fruit position within the canopy and on the side of a well-exposed fruit, the temperature gradient over a day affected fruit characteristics such as transpiration, as revealed by the water potential gradient as a function of the treatments, and led to a significant decrease in water conductance for well-exposed fruits compared to fruits within the canopy. Changes in cuticle thickness according to fruit position were consistent with those of fruit water conductance. Osmotic potential was also affected by climatic environment and harvest stage. Environmental conditions that induced water stress and greater light exposure, like on the sunny side of well-exposed fruit, increased the hydrogen peroxide, malondialdehyde and total and reduced ascorbate contents, as well as SOD, APX and MDHAR activities, regardless of the maturity stage. The lowest values were measured in the peel of the shaded fruit, that of the shaded side of well-exposed fruit being intermediate. Mango fruits exposed to water-stress-induced conditions during growth adapt their functioning by reducing their transpiration. Moreover, oxidative stress was limited as a consequence of the increase in antioxidant content and enzyme activities. This adaptive response of mango fruit to its climatic environment during growth could affect postharvest behaviour and quality. PMID:23267462

  9. Comparative reproductive and physiological responses of northern bobwhite and scaled quail to water deprivation

    USGS Publications Warehouse

    Giuliano, W.M.; Patino, R.; Lutz, R.S.

    1998-01-01

    We compared reproductive and physiological responses of captive female northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) under control and water deprivation conditions. Scaled quail required less food and water to reproduce successfully under control conditions than northern bobwhite. Additionally, in scaled quail, serum osmolality levels and kidney mass were unaffected by water deprivation, whereas in northern bobwhite, serum osmolality levels increased and kidney mass declined. This finding indicates that scaled quail may have osmoregulatory abilities superior to those of northern bobwhite. Under control conditions, northern bobwhite gained more body mass and produced more but smaller eggs than scaled quail. Under water deprivation conditions, northern bobwhite lost more body mass but had more laying bens with a higher rate of egg production than scaled quail. Our data suggest that northern bobwhite allocated more resources to reproduction than to body maintenance, while scaled quail apparently forego reproduction in favor of body maintenance during water deprivation conditions.

  10. Spectral reflectance and radiance characteristics of water pollutants

    NASA Technical Reports Server (NTRS)

    Wezernak, C. T.; Turner, R. E.; Lyzenga, D. R.

    1976-01-01

    Spectral reflectance characteristics of water pollutants and water bodies were compiled using the existing literature. Radiance calculations were performed at satellite altitude for selected illumination angles and atmospheric conditions. The work described in this report was limited to the reflective portion of the spectrum between 0.40 micrometer to 1.0 micrometer.

  11. Assessing physiological responses of dune forest functional groups to changing water availability: from Tropics to Mediterranean.

    NASA Astrophysics Data System (ADS)

    Antunes, Cristina; Lo Cascio, Mauro; Correia, Otília; Vieira, Simone; Cruz Diaz Barradas, Maria; Zunzunegui, Maria; Ramos, Margarida; João Pereira, Maria; Máguas, Cristina

    2014-05-01

    Alterations in water availability are important to vegetation as can produce dramatic changes in plant communities, on physiological performance or survival of plant species. Particularly, groundwater lowering and surface water diversions will affect vulnerable coastal dune forests, ecosystems particularly sensitive to groundwater limitation. Reduction of water tables can prevent the plants from having access to one of their key water sources and inevitably affect groundwater-dependent species. The additional impact of drought due to climatic change on groundwater-dependent ecosystems has become of increasing concern since it aggravates groundwater reduction impacts with consequent uncertainties about how vegetation will respond over the short and long term. Sand dune plant communities encompass a diverse number of species that differ widely in root depth, tolerance to drought and capacity to shift between seasonal varying water sources. Plant functional groups may be affected by water distribution and availability differently. The high ecological diversity of sand dune forests, characterized by sandy soils, well or poorly drained, poor in nutrients and with different levels of salinity, can occur in different climatic regions of the globe. Such is the case of Tropical, Meso-mediterranean and Mediterranean areas, where future climate change is predicted to change water availability. Analyses of the relative natural abundances of stable isotopes of carbon (13C/12C) and oxygen (18O/16O) have been used across a wide range of scales, contributing to our understanding of plant ecology and interactions. This approach can show important temporal and spatial changes in utilization of different water sources by vegetation. Accordingly, the core idea of this work is to evaluate, along a climatic gradient, the responses and capacity of different coastal plant communities to adapt to changing water availability. This large-climatic-scale study, covering Brazil, Portugal and Spain, provide an excellent experimental network to study the water dynamics and community functioning in natural ecosystems of high ecological value. To fulfill the main objective, a stable isotope approach (leaf ?13C and xylem+water sources ?18O) was used as a tool to assess physiological performance and water strategies integrated in spatio-temporal water dynamics. Plant functional groups' water use was characterized in a water changing situation (at different seasons) in a climatic gradient. We evaluated stress sensitivity of the functional groups to seasonal changes in water availability in different communities and tried to understand their water use strategy.

  12. Water temperature, predation, and the neglected role of physiological rate effects in rocky intertidal communities.

    PubMed

    Sanford, Eric

    2002-08-01

    Ecologists and physiologists working on rocky shores have emphasized the effects of environmental stress on the distribution of intertidal organisms. Although consumer stress models suggest that physical extremes may often reduce predation and herbivory through negative impacts on the physiological performance of consumers, few field studies have rigorously tested how environmental variation affects feeding rates. I review and analyze field experiments that quantified per capita feeding rates of a keystone predator, the sea star Pisaster ochraceus, in relation to aerial heat stress, wave forces, and water temperature at three rocky intertidal sites on the Oregon coast. Predation rates during 14-day periods were unrelated to aerial temperature, but decreased significantly with decreasing water temperature. There was suggestive but inconclusive evidence that predation rates also declined with increasing wave forces. Data-logger records suggested that thermal stress was rare in the wave-exposed habitats that I studied; sea star body temperatures likely reached warm levels (>24°C) on only 9 dates in 3 yr. In contrast, wind-driven upwelling regularly generated 3 to 5°C fluctuations in water temperature, and field and laboratory results suggest that such changes significantly alter feeding rates of Pisaster. These physiological rate effects, near the center of an organism's thermal range, may not reduce growth or fitness, and thus are distinct from the effects of environmental stress. This study underscores the need to consider organismal responses both under "normal" conditions, as well as under extreme conditions. Examining both kinds of responses is necessary to understand how different components of environmental variation regulate physiological performance and the strength of species interactions in intertidal communities. PMID:21708787

  13. Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress

    PubMed Central

    Talukdar, Dibyendu

    2013-01-01

    Background: Both lentil (Lens culinaris Medik.) and grass pea (Lathyrus sativus L.) in the family Fabaceae are two important cool-season food legumes, often experiencing water stress conditions during growth and maturity. Objective: The present study was undertaken to ascertain the response of these two crops under different water stress regimes. Materials and Methods: Different morpho-physiological and biochemical parameters were studied in a pot experiment under controlled environmental conditions. Along with control (proper irrigation, 0 stress), three sets of plants were subjected to mild (6 d), moderate (13 d) and severe (20 d) water stress by withholding irrigation at the appropriate time. Results: Compared with control, plant growth traits and seed yield components reduced significantly in both crops with increasing period of water stress, resulting in lowering of dry mass with more severe effect on lentil compared with grass pea. Foliar Relative Water Content (RWC) (%), K+/Na+ ratio, chlorophyll (chl) a, chl a/b ratio, stomatal conductance and net photosynthetic rate declined considerably in both crops under water stress. Leaf-free proline level increased significantly in both crops, but it decreased markedly in nodules of lentil and remained unchanged in grass pea. Nodulation was also affected due to water stress. The impairment in growth traits and physio-biochemical parameters under water stress was manifested in reduction of drought tolerance efficiency of both crops. Conclusion: Impact of water stress was more severe on lentil compared with grass pea, and modulation of growth traits signified necessity of a detailed strategy in breeding of food legumes under water stress. PMID:24082740

  14. Physiological, chemical, morphological, and plant infectivity characteristics of Frankia isolates from Myrica pennsylvanica: correlation to DNA restriction patterns.

    PubMed

    Bloom, R A; Lechevalier, M P; Tate, R L

    1989-09-01

    The filter exclusion method was used to isolate Frankia strains from Myrica pennsylvanica (bayberry) root nodules collected at diverse sites in New Jersey. A total of 16 isolates from five locations were cultured. The isolates were characterized by morphological, chemical, physiological, and plant infectivity criteria and compared with genomic DNA restriction pattern data, which were used to assign the isolates into gel groups (see accompanying paper). The isolates from M. pennsylvanica evaluated in this study were characteristic of Frankia physiological group B strains and were indistinguishable on the basis of whole-cell wall chemistry and diaminopimelic acid isomer analysis. Distinct differences in the spectrum of utilized organic acids and carbohydrates were observed among the isolates and were the only phenotypic criteria by which the isolates could be separated and assigned into separate groups. In general, isolates within a restriction pattern gel group had identical utilization patterns, whereas intragroup isolates had different utilization patterns. Correlation of these phenotypic characteristics with the results of molecular analysis revealed an exclusive carbohydrate and organic acid utilization pattern for each gel group as established by restriction pattern analysis. PMID:2802600

  15. Anthropomorphic breast phantoms with physiological water, lipid, and hemoglobin content for near-infrared spectral tomography

    PubMed Central

    Michaelsen, Kelly E.; Krishnaswamy, Venkataramanan; Shenoy, Adele; Jordan, Emily; Pogue, Brian W.; Paulsen, Keith D.

    2014-01-01

    Abstract. Breast mimicking tissue optical phantoms with sufficient structural integrity to be deployed as stand-alone imaging targets are developed and successfully constructed with biologically relevant concentrations of water, lipid, and blood. The results show excellent material homogeneity and reproducibility with inter- and intraphantom variability of 3.5 and 3.8%, respectively, for water and lipid concentrations ranging from 15 to 85%. The phantoms were long-lasting and exhibited water and lipid fractions that were consistent to within 5% of their original content when measured 2 weeks after creation. A breast-shaped three-compartment model of adipose, fibroglandular, and malignant tissues was created with water content ranging from 30% for the adipose simulant to 80% for the tumor. Mean measured water content ranged from 30% in simulated adipose to 73% in simulated tumor with the higher water localized to the tumor-like material. This novel heterogeneous phantom design is composed of physiologically relevant concentrations of the major optical absorbers in the breast in the near-infrared wavelengths that should significantly improve imaging system characterization and optimization because the materials have stand-alone structural integrity and can be readily molded into the sizes and shapes of tissues commensurate with clinical breast imaging. PMID:24549438

  16. GROWTH AND PHYSIOLOGICAL CHARACTERISTICS OF RAINBOW TROUT REARED IN DIFFERENT CULTURE ENVIRONMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At the National Center for Cool and Cold Water Aquaculture, a rainbow trout (RBT) breeding program for growth was initiated with populations domesticated in single pass or serial reuse culture systems. However, new facilities may require water reuse and recirculation technologies to reduce the volum...

  17. Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents

    SciTech Connect

    Ruby, E.G.; Jannasch, H.W.

    1982-01-01

    Growth of the obligately chemolithotrophic Thiomicrospira sp. strain L-12, isolated from a hydrothermal vent at a depth of 2,550 m in the Galapagos Rift region, was optimal at pH 8 and required 200 mM Na/sup +/ and divalent ions (Ca/sup 2 +/ and Mg/sup 2 +/). The organism was microaerophilic and tolerated 300 ..mu..M sulfide without a decrease in the rate of CO/sub 2/ incorporation. Growth and CO/sub 2/ incorporation occurred within the temperature range of 10 to 35/sup 0/C, with both optimal at 25/sup 0/C. At the in situ pressure of 250 atm, the rate of CO/sub 2/ incorporation was reduced by 25% relative to that measured at 1 atm; it was entirely suppressed at 500 atm. The results of this physiological characterization suggest that Thiomicrospira sp. strain L-12 can be an active autotroph in the hydrothermal environment.

  18. Pros and Cons of Using Water Immersion to Simulate Physiological Responses to Microgravity

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Tomko, David L. (Technical Monitor)

    1995-01-01

    Head-out water immersion (HOI) has been employed as a remedial treatment for various ills and ailments for many millennia, and total body immersion even longer as protective encapsulation for the mammalian fetus. Two discrete differences between stimuli induced by true microgravity (10(exp -4) g) and HOI are readily apparent. External water pressure on the skin and accompanying negative pressure breathing cause blood to shift headward. Secondly, the gravitational force is ever present during immersion and microgravity, but its effect is essentially neutralized during Earth orbital flight. Thus, the physiological responses to immersion should not be expected to match those during microgravity. Immersion has been used mainly to study and understand kidney function and associated cardiovascular responses for control of body fluid volume and osmotic content, with some application to and simulation of microgravity responses. There is a plethora of data from human HOI studies, but relatively few controlled data from microgravity studies. In general, it appears that physiological responses occur more quickly with water immersion than in microgravity, but this may be due to less rigorous control (voluntary and involuntary) of the preflight state of crew members. The central venous pressure-vasopressin (Gauer-Henry) reflex control for fluid balance may not be of prime importance in microgravity. Gross functions such as reduced body weight and water, level of hypovolemia, decreased isokinetic strength, and lower nitrogen balance found during immersion are qualitatively similar in microgravity, but the mechanisms controlling these and other functions are, for the most part, unclear. Only acquisition of data from well-controlled microgravity experiments will resolve this discrepancy.

  19. Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum.

    PubMed

    Galmés, Jeroni; Conesa, Miquel Àngel; Ochogavía, Joan Manuel; Perdomo, Juan Alejandro; Francis, David M; Ribas-Carbó, Miquel; Savé, Robert; Flexas, Jaume; Medrano, Hipólito; Cifre, Josep

    2011-02-01

    The physiological traits underlying the apparent drought resistance of 'Tomàtiga de Ramellet' (TR) cultivars, a population of Mediterranean tomato cultivars with delayed fruit deterioration (DFD) phenotype and typically grown under non-irrigation conditions, are evaluated. Eight different tomato accessions were selected and included six TR accessions, one Mediterranean non-TR accession (NTR(M)) and a processing cultivar (NTR(O)). Among the TR accessions two leaf morphology types, normal divided leaves and potato-leaf, were selected. Plants were field grown under well-watered (WW) and water-stressed (WS) treatments, with 30 and 10% of soil water capacity, respectively. Accessions were clustered according to the leaf type and TR phenotype under WW and WS, respectively. Correlation among parameters under the different water treatments suggested that potential improvements in the intrinsic water-use efficiency (A(N)/g(s)) are possible without negative impacts on yield. Under WS TR accessions displayed higher A(N)/g(s), which was not due to differences in Rubisco-related parameters, but correlated with the ratio between the leaf mesophyll and stomatal conductances (g(m)/g(s)). The results confirm the existence of differential traits in the response to drought stress in Mediterranean accessions of tomato, and demonstrate that increases in the g(m)/g(s) ratio would allow improvements in A(N)/g(s) in horticultural crops. PMID:20955222

  20. Twenty-Four-Hour Urine Osmolality as a Physiological Index of Adequate Water Intake

    PubMed Central

    Perrier, Erica T.; Buendia-Jimenez, Inmaculada; Vecchio, Mariacristina; Armstrong, Lawrence E.; Tack, Ivan; Klein, Alexis

    2015-01-01

    While associations exist between water, hydration, and disease risk, research quantifying the dose-response effect of water on health is limited. Thus, the water intake necessary to maintain optimal hydration from a physiological and health standpoint remains unclear. The aim of this analysis was to derive a 24?h urine osmolality (UOsm) threshold that would provide an index of “optimal hydration,” sufficient to compensate water losses and also be biologically significant relative to the risk of disease. Ninety-five adults (31.5 ± 4.3 years, 23.2 ± 2.7?kg·m?2) collected 24?h urine, provided morning blood samples, and completed food and fluid intake diaries over 3 consecutive weekdays. A UOsm threshold was derived using 3 approaches, taking into account European dietary reference values for water; total fluid intake, and urine volumes associated with reduced risk for lithiasis and chronic kidney disease and plasma vasopressin concentration. The aggregate of these approaches suggest that a 24?h urine osmolality ?500?mOsm·kg?1 may be a simple indicator of optimal hydration, representing a total daily fluid intake adequate to compensate for daily losses, ensure urinary output sufficient to reduce the risk of urolithiasis and renal function decline, and avoid elevated plasma vasopressin concentrations mediating the increased antidiuretic effort. PMID:25866433

  1. Stable isotopes in plant physiology: using water isotopes to study water fluxes in a temperate forest

    NASA Astrophysics Data System (ADS)

    Gerlein, C.; Wolf, A.; Caylor, K. K.

    2013-12-01

    Drought has profound consequences on vegetation, including decreases in instantaneous carbon uptake; damage that limits future uptake for the life of the plant; mortality that can lead to large sources of carbon to the atmosphere; and shifts in biogeography that alter future potential for carbon uptake and capacitance. These processes are largely absent from global models, for lack of understanding in how co-occurring plants compete for water, weak understanding of how plant hydraulics is coordinated to minimize risk of drought, and few empirical data to constrain superior models of these processes. Here we present the results of a large-scale field experiment at Silas Little Experimental Forest (NJ), where rainwater was diverted from a 10m^2 area around selected trees from two different species (either oak or pine trees) and either re-injected (control plots), discarded (drought plots) or replaced by isotopically labeled water (isotope plots). We sampled heavily the drought plots and collected valuable information on tree hydraulics under drought conditions, such as water potentials of soil, leaf and stem, photosynthetic rate or sap flow. At the isotope plots, we followed the injected water within the injection trees and the surrounding ones. In particular, using an innovative setup for in-situ measurement paired with a laser spectrometer, we studied the isotopes effects within the tree xylem, which gave us a better understanding of water uptake by the roots and its transport to the leaves. By tracking the labeled water in the surrounding trees, we were also able to quantify the importance of plant competition for water availability below ground. We show here the importance of understanding all the phases of the water transport in the biosphere to help constraining climate models.

  2. Relation of Spectral and Physiological Properties to Leaf Structural Characteristics of Arsenic Treated Rice Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic (As) is a widely spread soil contaminant which can cause toxicity in plants. Although many studies have investigated the spectral characteristics of affected plants, the extent to which different toxicities may result in correspondingly different spectral signatures has received little atte...

  3. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization.

    PubMed

    Barrios-Masias, F H; Knipfer, T; McElrone, A J

    2015-09-01

    Water deficits are known to alter fine root structure and function, but little is known about how these responses contribute to differences in drought resistance across grapevine rootstocks. The ways in which water deficit affects root anatomical and physiological characteristics were studied in two grapevine rootstocks considered as low-medium (101-14Mgt) and highly (110R) drought resistant. Rootstocks were grown under prolonged and repeated drying cycles or frequent watering ('dry' and 'wet' treatments, respectively), and the following parameters were evaluated: root osmotic and hydrostatic hydraulic conductivity (Lp os and Lp hyd, respectively), suberization, steady-state root pressure (P rs), sap exudation rates, sap osmotic potential, and exosmotic relaxation curves. For both rootstocks, the 'dry' treatment reduced fine root Lp, elicited earlier root suberization and higher sap osmotic potential, and generated greater P rs after rewatering, but the rootstocks responded differently under these conditions. Lp os, Lp hyd, and sap exudation rates were significantly higher in 110R than in 101-14Mgt, regardless of moisture treatment. Under 'dry' conditions, 110R maintained a similar Lp os and decreased the Lp hyd by 36% compared with 'wet' conditions, while both parameters were decreased by at least 50% for 101-14Mgt under 'dry' conditions. Interestingly, build-up of P rs in 110R was 34% lower on average than in 101-14Mgt, suggesting differences in the development of suberized apoplastic barriers between the rootstocks as visualized by analysis of suberization from fluorescence microscopy. Consistent with this pattern, 110R exhibited the greatest exosmotic Lp os (i.e. Lp os of water flowing from roots to the soil) as determined from relaxation curves under wet conditions, where backflow may have limited its capacity to generate positive xylem pressure. The traits studied here can be used in combination to provide new insights needed for screening drought resistance across grapevine rootstocks. PMID:26160580

  4. Morphological and physiological characteristics of Gemmiger formicilis isolated from chicken ceca.

    PubMed Central

    Salanitro, J P; Muirhead, P A; Goodman, J R

    1976-01-01

    Morphological and physiological studies were made on chicken cecal isolates of the strictly anaerobic bacterial species Gemmiger formicilis. Structural features (phase-contrast and electron microscopy) of these microorganisms indicate they (i) are highly pleomorphic, (ii) possess a trilaminar cell wall like gram-negative bacteria, (iii) exhibit an unusual growth process characterized by polar swelling (resembling budding bacteria), and (iv) grow into elongated cells when exposed to a subinhibitory concentration of penicillin. The morphological data presented suggest that this species has a rod-shaped structure. These bacteria ferment a variety of sugars to produce formic, butyric, and lactic acids. There appear to be two groups of Gemmiger, one producing primarily lactate and the other producing formate as major fermentation metabolites. Growth of six strains in a basal medium, consisting of Trypticase, minerals, carbohydrate, Na2CO3 buffer, and cysteine as reducing agent, was stimulated by rumen fluid and yeast extract. Volatile fatty acids partially replaced the requirement for rumen fluid with some strains. Single deletions of vitamins (from a defined vitamin mixture) indicated that pantothenate, riboflavin, and thiamine were highly stimulatory to growth of the organism in a medium containing rumen fluid and Trypticase as source of vitamins. Other vitamin requirements were not studied. Images PMID:984834

  5. [Correlations of reproductive parameters of water vole females (Arvicola amphibius) with morphometric and hormonal characteristics].

    PubMed

    Yuzhik, E I; Proskurnyak, L P; Nazarova, G G

    2015-01-01

    Fluctuations in water vole population size depend on abiotic and intra-population factors affecting the physiological condition of females. The relationship between variability in reproductive success and morpho-physiological characteristics of female during pregnancy is studied quite poorly. In standard vivarium conditions, the morphometric and hormonal characteristics of female were assessed at different stages of pregnancy (first trimester--days 4-7, second trimester--days 8-14, third semester--days 15-20), and their relationship with potential and actual fecundity and the level of embryonic lethality was elucidated. The general regression model was used in the data analysis. Positive correlations were found between potential fecundity and the female body mass at mating, body mass index and blood testosterone level. The reproductive parameters under study were independent of the blood thyroxin level. A positive correlation was established between the level of embryonic loss and the indices of liver and lung functions. Liver and spleen are essential for the maintenance of the female body mass homeostasis during the reproductive period. PMID:26027386

  6. Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling.

    PubMed

    Waterson, Michael J; Chung, Brian Y; Harvanek, Zachary M; Ostojic, Ivan; Alcedo, Joy; Pletcher, Scott D

    2014-06-01

    Sensory perception modulates lifespan across taxa, presumably due to alterations in physiological homeostasis after central nervous system integration. The coordinating circuitry of this control, however, remains unknown. Here, we used the Drosophila melanogaster gustatory system to dissect one component of sensory regulation of aging. We found that loss of the critical water sensor, pickpocket 28 (ppk28), altered metabolic homeostasis to promote internal lipid and water stores and extended healthy lifespan. Additionally, loss of ppk28 increased neuronal glucagon-like adipokinetic hormone (AKH) signaling, and the AKH receptor was necessary for ppk28 mutant effects. Furthermore, activation of AKH-producing cells alone was sufficient to enhance longevity, suggesting that a perceived lack of water availability triggers a metabolic shift that promotes the production of metabolic water and increases lifespan via AKH signaling. This work provides an example of how discrete gustatory signals recruit nutrient-dependent endocrine systems to coordinate metabolic homeostasis, thereby influencing long-term health and aging. PMID:24821805

  7. Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling

    PubMed Central

    Waterson, Michael J.; Chung, Brian Y.; Harvanek, Zachary M.; Ostojic, Ivan; Alcedo, Joy; Pletcher, Scott D.

    2014-01-01

    Sensory perception modulates lifespan across taxa, presumably due to alterations in physiological homeostasis after central nervous system integration. The coordinating circuitry of this control, however, remains unknown. Here, we used the Drosophila melanogaster gustatory system to dissect one component of sensory regulation of aging. We found that loss of the critical water sensor, pickpocket 28 (ppk28), altered metabolic homeostasis to promote internal lipid and water stores and extended healthy lifespan. Additionally, loss of ppk28 increased neuronal glucagon-like adipokinetic hormone (AKH) signaling, and the AKH receptor was necessary for ppk28 mutant effects. Furthermore, activation of AKH-producing cells alone was sufficient to enhance longevity, suggesting that a perceived lack of water availability triggers a metabolic shift that promotes the production of metabolic water and increases lifespan via AKH signaling. This work provides an example of how discrete gustatory signals recruit nutrient-dependent endocrine systems to coordinate metabolic homeostasis, thereby influencing long-term health and aging. PMID:24821805

  8. Physiological responses of water-polo players under different tactical strategie.

    PubMed

    Botonis, Petros G; Toubekis, Argyris G; Platanou, Theodoros I

    2015-03-01

    The aim of this study was to investigate the effect of defense tactical strategy on physiological responses characterizing playing intensity in water-polo game. In the first part of the study, fourteen players were assigned to defending (n = 7) and offending (n = 7) groups and participated in nine 4-min plays applying three different defending systems: press, static-zone and zone-press, in front of the defense court of one goalpost. In the second part, 18 players participated in nine different real full court water-polo games consisting of 3X15min of live-time playing periods. Both in defense court plays and real games, the three defense systems were played in a counterbalanced order and heart rate (HR) was continuously recorded. Additionally, in defense court plays, blood lactate concentration (La) was measured at the end of each 4-min period. Mean HR within defense court plays was higher in press (153 ± 10 beats(.)min(-1)) than in static-zone (140 ± 11 beats(.)min(-1)) and zone-press (143 ± 16 beats(.)min(-1), p < 0.01). Furthermore, shorter amount of playing time was spent with HR ?85% of HR peak in press (46.3 ± 22.8%) than in static-zone (81.8 ± 20.5%) and zone-press (75.7 ± 32.0%, p < 0.01). Likewise, mean La was higher in press (6.5±2.9 mmol(.)l(-1)) than in static-zone (4.7 ± 2.5 mmol(.)l(-1)) and zone-press (4.6 ± 1.8 mmol(.)l(-1), p < 0.01). In real games, however, mean HR was similar between tactical strategies (p > 0.05). Defenders and offenders showed similar HR and La responses across the tactical modes. In conclusion, defense tactical strategies affect physiological responses within a part of the game but do not affect the overall playing intensity of a real water-polo game. Tactical strategies similarly affect offenders and defenders. Key pointsWithin defence court plays, exercise intensity in press is higher than zone-press and static zone tactical systems.In real game the physiological response is similar between defense systems.Tactical strategies similarly affect offenders and defenders. PMID:25729294

  9. Physiological Responses of Water-Polo Players Under Different Tactical Strategie

    PubMed Central

    Botonis, Petros G.; Toubekis, Argyris G.; Platanou, Theodoros I.

    2015-01-01

    The aim of this study was to investigate the effect of defense tactical strategy on physiological responses characterizing playing intensity in water-polo game. In the first part of the study, fourteen players were assigned to defending (n = 7) and offending (n = 7) groups and participated in nine 4-min plays applying three different defending systems: press, static-zone and zone-press, in front of the defense court of one goalpost. In the second part, 18 players participated in nine different real full court water-polo games consisting of 3X15min of live-time playing periods. Both in defense court plays and real games, the three defense systems were played in a counterbalanced order and heart rate (HR) was continuously recorded. Additionally, in defense court plays, blood lactate concentration (La) was measured at the end of each 4-min period. Mean HR within defense court plays was higher in press (153 ± 10 beats.min-1) than in static-zone (140 ± 11 beats.min-1) and zone-press (143 ± 16 beats.min-1, p < 0.01). Furthermore, shorter amount of playing time was spent with HR ?85% of HR peak in press (46.3 ± 22.8%) than in static-zone (81.8 ± 20.5%) and zone-press (75.7 ± 32.0%, p < 0.01). Likewise, mean La was higher in press (6.5±2.9 mmol.l-1) than in static-zone (4.7 ± 2.5 mmol.l-1) and zone-press (4.6 ± 1.8 mmol.l-1, p < 0.01). In real games, however, mean HR was similar between tactical strategies (p > 0.05). Defenders and offenders showed similar HR and La responses across the tactical modes. In conclusion, defense tactical strategies affect physiological responses within a part of the game but do not affect the overall playing intensity of a real water-polo game. Tactical strategies similarly affect offenders and defenders. Key points Within defence court plays, exercise intensity in press is higher than zone-press and static zone tactical systems. In real game the physiological response is similar between defense systems. Tactical strategies similarly affect offenders and defenders. PMID:25729294

  10. Emulsion characteristics associated with an alkaline water flooding process

    SciTech Connect

    Chang, M.M.; Wasan, D.T.

    1980-01-01

    This work presents the results of an investigation of emulsions containing an acidic crude oil from Wilmington field, California, and sodium hydroxide/sodium orthosilicate solutions. The effect of alkaline water formulation on emulsion characteristics was determined. The characteristics of emulsions were evaluated as a function of salinity, alkali type, and alkali concentrations in the aqueous phase. Emulsion stability, as defined by the coalescence rate of oil droplets in water-external emulsion, was determined as a function of salinity and alkali type. The results indicate that there is some optimum salinity in the aqueous phase which needs to be maintained to minimize the problems associated with viscous emulsions. Also, the emulsions formed with sodium hydroxide are different from those formed with sodium orthosilicate, especially in the presence of divalent ion salts, so that different salinities are required to minimize the shear viscosity of emulsions for the 2 systems. 18 references.

  11. Physiological response of wild dugongs (Dugong dugon) to out-of-water sampling for health assessment

    USGS Publications Warehouse

    Lanyon, Janet M.; Sneath, Helen L.; Long, Trevor; Bonde, Robert K.

    2010-01-01

    The dugong (Dugong dugon) is a vulnerable marine mammal with large populations living in urban Queensland waters. A mark-recapture program for wild dugongs has been ongoing in southern Queensland since 2001. This program has involved capture and in-water sampling of more than 700 dugongs where animals have been held at the water surface for 5 min to be gene-tagged, measured, and biopsied. In 2008, this program expanded to examine more comprehensively body condition, reproductive status, and the health of wild dugongs in Moreton Bay. Using Sea World's research vessel, captured dugongs were lifted onto a boat and sampled out-of-water to obtain accurate body weights and morphometrics, collect blood and urine samples for baseline health parameters and hormone profiles, and ultrasound females for pregnancy status. In all, 30 dugongs, including two pregnant females, were sampled over 10 d and restrained on deck for up to 55 min each while biological data were collected. Each of the dugongs had their basic temperature-heart rate-respiration (THR) monitored throughout their period of handling, following protocols developed for the West Indian manatee (Trichechus manatus). This paper reports on the physiological response of captured dugongs during this out-of-water operation as indicated by their vital signs and the suitability of the manatee monitoring protocols to this related sirenian species. A recommendation is made that the range of vital signs of these wild dugongs be used as benchmark criteria of normal parameters for other studies that intend to sample dugongs out-of-water.

  12. Gene expression and physiological responses to salinity and water stress of contrasting durum wheat genotypes.

    PubMed

    Yousfi, Salima; Márquez, Antonio J; Betti, Marco; Araus, José Luis; Serret, Maria Dolores

    2016-01-01

    Elucidating the relationships between gene expression and the physiological mechanisms remains a bottleneck in breeding for resistance to salinity and drought. This study related the expression of key target genes with the physiological performance of durum wheat under different combinations of salinity and irrigation. The candidate genes assayed included two encoding for the DREB (dehydration responsive element binding) transcription factors TaDREB1A and TaDREB2B, another two for the cytosolic and plastidic glutamine synthetase (TaGS1 and TaGS2), and one for the specific Na(+) /H(+) vacuolar antiporter (TaNHX1). Expression of these genes was related to growth and different trait indicators of nitrogen metabolism (nitrogen content, stable nitrogen isotope composition, and glutamine synthetase and nitrate reductase activities), photosynthetic carbon metabolism (stable carbon isotope composition and different gas exchange traits) and ion accumulation. Significant interaction between genotype and growing conditions occurred for growth, nitrogen content, and the expression of most genes. In general terms, higher expression of TaGS1, TaGS2, TaDREB2B, and to a lesser extent of TaNHX1 were associated with a better genotypic performance in growth, nitrogen, and carbon photosynthetic metabolism under salinity and water stress. However, TaDREB1A was increased in expression under stress compared with control conditions, with tolerant genotypes exhibiting lower expression than susceptible ones. PMID:25869057

  13. Physiology of Fluid and Electrolyte Responses During Inactivity: Water Immersion and Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1984-01-01

    This manuscript emphasizes the physiology of fluid-electrolyte-hormonal responses during the prolonged inactivity of bed rest and water immersion. An understanding of the total mechanism of adaptation (deconditioning) should provide more insight into the conditioning process. Findings that need to be confirmed during bed rest and immersion are: (1) the volume and tissues of origin of fluid shifted to the thorax and head; (2) interstitial fluid pressure changes in muscle and subcutaneous tissue, particularly during immersion; and (3) the composition of the incoming presumably interstitial fluid that contributes to the early hypervolemia. Better resolution of the time course and source of the diuretic fluid is needed. Important data will be forthcoming when hypotheses are tested involving the probable action of the emerging diuretic and natriuretic hormones, between themselves and among vasopressin and aldosterone, on diuresis and blood pressure control.

  14. Physiological Responses of a Model Marine Diatom to Fast pH Changes: Special Implications of Coastal Water Acidification

    PubMed Central

    Wu, Yaping; Beardall, John; Gao, Kunshan

    2015-01-01

    Diatoms and other phytoplankton in coastal waters experience rapid pH changes in milieu due to high biological activities and/or upwelled CO2-rich waters. While CO2 concentrating mechanisms (CCMs) are employed by all diatoms tested to counter low CO2 availability in seawater, little is known how this mechanism responds to fast pH changes. In the present study, the model diatom Thalassiosira pseudonana was acclimated for 20 generations to low pH (7.81) at an elevated CO2 of 1000 ?atm (HC) or to high pH (8.18) at ambient CO2 levels of 390 ?atm (LC), then its physiological characteristics were investigated as cells were shifted from HC to LC or vice versa. The maximal electron transport rate (ETRmax) in the HC-acclimated cells was immediately reduced by decreased CO2 availability, showing much lower values compared to that of the LC-acclimated cells. However, the cells showed a high capacity to regain their photochemical performance regardless of the growth CO2 levels, with their ETRmax values recovering to initial levels in about 100 min. This result indicates that this diatom might modulate its CCMs quickly to maintain a steady state supply of CO2, which is required for sustaining photosynthesis. In addition, active uptake of CO2 could play a fundamental role during the induction of CCMs under CO2 limitation, since the cells maintained high ETR even when both intracellular and periplasmic carbonic anhydrases were inhibited. It is concluded that efficient regulation of the CCM is one of the key strategies for diatoms to survive in fast changing pH environment, e.g. for the tested species, which is a dominant species in coastal waters where highly fluctuating pH is observed. PMID:26496125

  15. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    PubMed

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  16. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    PubMed Central

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  17. Technological and physiological characteristics of a newly developed hand-lever drive system for wheelchairs.

    PubMed

    Engel, P; Seeliger, K

    1986-10-01

    It may be concluded that, by use of the newly developed Swing-Turn-gear system, mobility of the disabled person using wheelchairs outdoors can be improved. The qualities of the drive gear in push and pull action, the free wheel, the full selection of frequency, and the range of moving the hand levers represent important progress in wheelchair engineering research. The handrim drive is an alternative, especially for indoor use. But, for the first time, an indoor wheelchair can be offered as a combination vehicle for both indoor and outdoor use. The acceptance of the new wheelchair integrated Swing-Turn-gear is much better than the conspicuous hand-lever drive in standard outdoor wheelchairs. At present, the German wheelchair manufacturer, MEYRA Vlotho, is preparing the new hand-lever drive system for production. Initially, the drive system will be adapted to a standard indoor wheelchair made by this company. Development of a lever drive system is also in progress in the United States, which employs force transmission characteristics in one direction. PMID:3820120

  18. Physiological and Molecular Characteristics of Elicitin-Induced Systemic Acquired Resistance in Tobacco.

    PubMed Central

    Keller, H.; Blein, J. P.; Bonnet, P.; Ricci, P.

    1996-01-01

    Elicitins are low molecular weight proteins secreted by all Phytophthora species analyzed so far. Application of the purified proteins to tobacco Nicotiana tabacum leads to the induction of resistance to subsequent inoculations with the black shank-causing agent, Phytophthora parasitica var nicotianae. In this paper, we describe the systemic characteristics of elicitin-induced acquired resistance in tobacco. Elicitin application is followed by the rapid translocation of the protein in the plant. The basic elicitin, cryptogein, induces necrosis formation in the leaves, which results from accumulation of the protein in these organs. Necrosis does not seem to be essential for the establishment of systemic acquired resistance (SAR), since resistance induced by the acidic elicitin, capsicein, is not accompanied by the development of visible symptoms on the leaves. Both elicitins trigger the coordinate accumulation of transcripts from nine genes, previously described to be expressed during establishment of SAR. Additionally, elicitin treatment leads to the activation of the multiple response gene str 246. In leaves, transcript accumulation was found to be higher in all cases in response to cryptogein compared to capsicein treatment. These results, along with northern hybridization analysis following infiltration of leaves with cryptogein, indicate that SAR genes appear to be expressed locally, corresponding to necrosis formation as well as systemically during induction of resistance. To our knowledge, elicitins are the only well-characterized, pathogen-derived molecules that trigger SAR in a plant. PMID:12226188

  19. Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Bordignon, Enrica; Joseph, Benesh; Tschaggelar, René; Jeschke, Gunnar

    2012-09-01

    We demonstrate the application of continuous wave dynamic nuclear polarization (DNP) at 0.35 T for site-specific water accessibility studies on spin-labeled membrane proteins at concentrations in the 10-100 ?M range. The DNP effects at such low concentrations are weak and the experimentally achievable dynamic nuclear polarizations can be below the equilibrium polarization. This sensitivity problem is solved with an optimized home-built DNP probe head consisting of a dielectric microwave resonator and a saddle coil as close as possible to the sample. The performance of the probe head is demonstrated with both a modified pulsed EPR spectrometer and a dedicated CW EPR spectrometer equipped with a commercial NMR console. In comparison to a commercial pulsed ENDOR resonator, the home-built resonator has an FID detection sensitivity improvement of 2.15 and an electron spin excitation field improvement of 1.2. The reproducibility of the DNP results is tested on the water soluble maltose binding protein MalE of the ABC maltose importer, where we determine a net standard deviation of 9% in the primary DNP data in the concentration range between 10 and 100 ?M. DNP parameters are measured in a spin-labeled membrane protein, namely the vitamin B12 importer BtuCD in both detergent-solubilized and reconstituted states. The data obtained in different nucleotide states in the presence and absence of binding protein BtuF reveal the applicability of this technique to qualitatively extract water accessibility changes between different conformations by the ratio of primary DNP parameters ?. The ?-ratio unveils the physiologically relevant transmembrane communication in the transporter in terms of changes in water accessibility at the cytoplasmic gate of the protein induced by both BtuF binding at the periplasmic region of the transporter and ATP binding at the cytoplasmic nucleotide binding domains.

  20. Clinical characteristics of idiopathic pulmonary fibrosis patients with gender, age, and physiology staging at Okinawa Chubu Hospital

    PubMed Central

    Shimaoka, Yousuke; Fukuyama, Hajime; Nagano, Hiroaki; Nei, Yuichiro; Yamashiro, Shin; Tamaki, Hitoshi

    2015-01-01

    Background Gender, age, and physiology (GAP) staging was recently advocated for idiopathic pulmonary fibrosis (IPF). However, clinical findings of GAP staging for IPF are limited. We aimed to investigate the clinical characteristics of IPF patients according to GAP staging in our hospital. Methods We retrospectively reviewed patient medical records and chest high-resolution computed tomography (HRCT) images from June 1, 2002, to December 31, 2012. Results We identified 54 IPF patients with [36 men; mean age: 71 years (range, 53-85 years)]. Mean fibrosis and ground glass opacity (GGO) scores were 1.9 (0-4) and 1.6 (1-3.3), respectively. Mean percent predicted forced vital capacity (% FVC), percent predicted diffusing capacity of the lung for carbon monoxide (% DLco) were 70.6 (6.4-114.3), 49.2 (15-105.9), respectively. Cox proportional hazards model showed that gender, percent predicted diffusing capacity of the lung for carbon monoxide (% DLco), and composite physiologic index (CPI) were strong predictors of mortality. Stage III patients had more pulmonary hypertension (50% vs. 23%, 0%) and progressive modified Medical Research Council (mMRC) changes at 1 year (1.3 vs. 0.6, 1.1; P=0.07) compared with other stages. Conclusions In our cohort, GAP staging was useful for evaluating IPF severity. Stage III patients might had more pulmonary hypertension and progressive dyspnea. Multicenter analyses are warranted to confirm these findings. Keywords Idiopathic pulmonary fibrosis (IPF); modified Medical Research Council (mMRC); mortality; pulmonary hypertension; staging PMID:26101639

  1. Impacts of temperament on Nellore cattle: physiological responses, feedlot performance, and carcass characteristics.

    PubMed

    Francisco, C L; Resende, F D; Benatti, J M B; Castilhos, A M; Cooke, R F; Jorge, A M

    2015-11-01

    Forty-four feedlot-finished Nellore cattle were used to evaluate the impacts of temperament on performance, meat and carcass traits, and serum concentrations of hormones, proteins, enzymes, and immunoglobulins. Individual temperament was assessed at feedlot entry (d 0), 67 d, and 109 d, utilizing chute score (CS; 5-point scale) and exit velocity (EV). Temperament scores were calculated averaging CS and EV scores, and cattle were subsequently classified according to their temperament (an average of ?3 = adequate temperament [ADQ], or an average of >3 = excitable temperament [EXC]). At the end of the experiment (d 109), all 44 animals were slaughtered, and 16 were randomly selected for final empty body weight (EBW) estimation. Blood samples were collected at 0, 67, and 109 d and analyzed for serum variables (cortisol, insulin, haptoglobin, total protein, lactate, creatinine kinase [CK], lactate dehydrogenase [LDH], and IgA). The incidence of carcass bruises was verified immediately after the hide was removed. Carcass pH was obtained at 0 and 24 h postmortem. Samples of the LM were collected for meat quality analyses. Cattle classified as ADQ had greater final BW ( = 0.03), final EBW ( = 0.02), metabolic weight ( = 0.03), ADG ( = 0.02), feed efficiency ( = 0.03), HCW ( = 0.02), cold carcass weight ( = 0.02), and LM area ( < 0.01) compared to that of the EXC cohorts. Cattle classified as ADQ tended to have a lower percentage of cooler shrink ( = 0.06) compared to that of EXC cattle. No temperament effects were detected for initial BW ( = 0.70), DMI ( = 0.14), cold dressing percentage ( = 0.98), or backfat thickness ( = 0.29). Cattle classified as ADQ had greater marbling ( = 0.02) and meat fat content ( = 0.05) compared with that of EXC cattle. No temperament effects ( > 0.05) were detected for unsaturated fatty acid (UFA), SFA, MUFA, PUFA, and n-6:n-3 ratio. For blood parameters, EXC cattle had greater values of cortisol ( = 0.04) and haptoglobin ( = 0.05) and tended ( = 0.06) to have reduced serum insulin concentration compared with ADQ cattle. Both temperament groups had similar serum concentrations of IgA ( = 0.25) and total protein ( = 0.84). Cattle classified as EXC presented greater amounts ( = 0.05) of carcass bruises. In conclusion, an EXC temperament impaired feedlot performance, carcass characteristics, and meat quality traits in finishing Nellore cattle. PMID:26641061

  2. Cardiovascular and autonomic responses to physiological stressors before and after six hours of water immersion.

    PubMed

    Florian, John P; Simmons, Erin E; Chon, Ki H; Faes, Luca; Shykoff, Barbara E

    2013-11-01

    The physiological responses to water immersion (WI) are known; however, the responses to stress following WI are poorly characterized. Ten healthy men were exposed to three physiological stressors before and after a 6-h resting WI (32-33°C): 1) a 2-min cold pressor test, 2) a static handgrip test to fatigue at 40% of maximum strength followed by postexercise muscle ischemia in the exercising forearm, and 3) a 15-min 70° head-up-tilt (HUT) test. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), cardiac output (Q), limb blood flow (BF), stroke volume (SV), systemic and calf or forearm vascular resistance (SVR and CVR or FVR), baroreflex sensitivity (BRS), and HR variability (HRV) frequency-domain variables [low-frequency (LF), high-frequency (HF), and normalized (n)] were measured. Cold pressor test showed lower HR, SBP, SV, Q, calf BF, LFnHRV, and LF/HFHRV and higher CVR and HFnHRV after than before WI (P < 0.05). Handgrip test showed no effect of WI on maximum strength and endurance and lower HR, SBP, SV, Q, and calf BF and higher SVR and CVR after than before WI (P < 0.05). During postexercise muscle ischemia, HFnHRV increased from baseline after WI only, and LFnHRV was lower after than before WI (P < 0.05). HUT test showed lower SBP, DBP, SV, forearm BF, and BRS and higher HR, FVR, LF/HFHRV, and LFnHRV after than before WI (P < 0.05). The changes suggest differential activation/depression during cold pressor and handgrip (reduced sympathetic/elevated parasympathetic) and HUT (elevated sympathetic/reduced parasympathetic) following 6 h of WI. PMID:23950166

  3. Using water to cool cattle: behavioral and physiological changes associated with voluntary use of cow showers.

    PubMed

    Legrand, A; Schütz, K E; Tucker, C B

    2011-07-01

    Water is commonly used to cool cattle in summer either at milking or over the feed bunk, but little research has examined how dairy cows voluntarily use water separate from these locations. The objectives were to describe how and when dairy cattle voluntarily used an overhead water source separate from other resources, such as feed, and how use of this water affected behavioral and physiological indicators of heat stress. Half of the 24 nonlactating cattle tested had access to a "cow shower" composed of 2 shower heads activated by a pressure-sensitive floor. All animals were individually housed to prevent competition for access to the shower. Over 5 d in summer (air temperature=25.3±3.3°C, mean ± standard deviation), cattle spent 3.0±2.1 h/24h in the shower, but considerable variability existed between animals (individual daily values ranged from 0.0 to 8.2 h/24h). A portion of this variation can be explained by weather; shower use increased by 0.3h for every 1°C increase in ambient temperature. Cows preferentially used the shower during the daytime, with 89±12% of the time spent in the shower between 1000 and 1900 h. Respiration rate and skin temperature did not differ between treatments [53 vs. 61 breaths/min and 35.0 vs. 35.4°C in shower and control cows, respectively; standard error of the difference (SED)=5.6 breaths/min and 0.49°C]. In contrast, body temperature of cows provided with a shower was 0.2°C lower than control cows in the evening (i.e., 1800 to 2100h; SED=0.11°C). Cows with access to a shower spent half as much time near the water trough than control animals, and this pattern became more pronounced as the temperature-humidity index increased. In addition, cattle showed other behavioral changes to increasing heat load; they spent less time lying when heat load index increased, but the time spent lying, feeding, and standing without feeding did not differ between treatments. Cows had higher respiration rate, skin temperature, and body temperature as heat load index increased, regardless of treatment. These data suggest that cattle, when given the opportunity, will make considerable use of a shower to reduce heat load, but that individuals are highly variable in their use of this resource. The variability between cows indicates that the behavioral response to water is likely an important, but poorly understood, consideration in the design of sprinkler systems used for summer cooling. PMID:21700023

  4. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.

    PubMed

    Renninger, Heidi J; Carlo, Nicholas; Clark, Kenneth L; Schäfer, Karina V R

    2014-02-01

    Oak species are well suited to water-limited conditions by either avoiding water stress through deep rooting or tolerating water stress through tight stomatal control. In co-occurring species where resources are limited, species may either partition resources in space and/or time or exhibit differing efficiencies in the use of limited resources. Therefore, this study seeks to determine whether two co-occurring oak species (Quercus prinus L. and Quercus velutina Lam.) differ in physiological parameters including photosynthesis, stomatal conductance, water-use (WUE) and nitrogen-use efficiency (NUE), as well as to characterize transpiration and average canopy stomatal responses to climatic variables in a sandy, well-drained and nutrient-limited ecosystem. The study was conducted in the New Jersey Pinelands and we measured sap flux over a 3-year period, as well as leaf gas exchange, leaf nitrogen and carbon isotope concentrations. Both oak species showed relatively steep increases in leaf-specific transpiration at low vapor pressure deficit (VPD) values before maximum transpiration rates were achieved, which were sustained over a broad range in VPD. This suggests tight stomatal control over transpiration in both species, although Q. velutina showed significantly higher leaf-level and canopy-level stomatal conductance than Q. prinus. Average daytime stomatal conductance was positively correlated with soil moisture and both oak species maintained at least 75% of their maximum canopy stomatal conductance at soil moistures in the upper soil layer (0-0.3 m) as low as 0.03 m(3) m(3)(-3). Quercus velutina had significantly higher photosynthetic rates, maximum Rubisco-limited and electron-transport-limited carboxylation rates, dark respiration rates and nitrogen concentration per unit leaf area than Q. prinus. However, both species exhibited similar WUEs and NUEs. Therefore, Q. prinus has a more conservative resource-use strategy, while Q. velutina may need to exploit niches that are locally higher in nutrients and water. Likewise, both species appear to tap deep, stable water sources, highlighting the importance of rooting depth in modeling transpiration and stomatal conductance in many oak ecosystems. PMID:24488856

  5. Thrust Characteristics of Water Rocket and Their Improvement

    NASA Astrophysics Data System (ADS)

    Watanabe, Rikio; Tomita, Nobuyuki; Takemae, Toshiaki

    The propulsive characteristics of water rockets are analyzed theoretically and experimentally. The unsteady thrust force acting on a PET bottle and the air pressure inside the bottle are measured simultaneously by the thrust test stand we have developed. The semi-empirical thrust history is obtained utilizing the air pressure history and it is compared with the measured thrust history. The results show qualitative agreement. The observation of the flow inside bottle by a high-speed video camera shows that the air precedes water when it is about to be discharged entirely. We have developed a flow regulator attached to the nozzle cap to reduce the precursor air discharge that is considered as a result of the swirling flow inside the bottle. The experimental results show that the air discharge and the body vibration are suppressed effectively.

  6. Molecular, Physiological and Biochemical Responses of Theobroma cacao L. Genotypes to Soil Water Deficit

    PubMed Central

    dos Santos, Ivanildes C.; de Almeida, Alex-Alan Furtado; Anhert, Dário; da Conceição, Alessandro S.; Pirovani, Carlos P.; Pires, José L.; Valle, Raúl René; Baligar, Virupax C.

    2014-01-01

    Six months-old seminal plants of 36 cacao genotypes grown under greenhouse conditions were subjected to two soil water regimes (control and drought) to assess, the effects of water deficit on growth, chemical composition and oxidative stress. In the control, soil moisture was maintained near field capacity with leaf water potentials (?WL) ranging from ?0.1 to ?0.5 MPa. In the drought treatment, the soil moisture was reduced gradually by withholding additional water until ?WL reached values of between ?2.0 to ?2.5 MPa. The tolerant genotypes PS-1319, MO-20 and MA-15 recorded significant increases in guaiacol peroxidase activity reflecting a more efficient antioxidant metabolism. In relation to drought tolerance, the most important variables in the distinguishing contrasting groups were: total leaf area per plant; leaf, stem and total dry biomass; relative growth rate; plant shoot biomass and leaf content of N, Ca, and Mg. From the results of these analyses, six genotypes were selected with contrasting characteristics for tolerance to soil water deficit [CC-40, C. SUL-4 and SIC-2 (non-tolerant) and MA-15, MO-20, and PA-13 (tolerant)] for further assessment of the expression of genes NCED5, PP2C, psbA and psbO to water deficit. Increased expression of NCED5, PP2C, psbA and psbO genes were found for non-tolerant genotypes, while in the majority of tolerant genotypes there was repression of these genes, with the exception of PA-13 that showed an increased expression of psbA. Mutivariate analysis showed that growth variables, leaf and total dry biomass, relative growth rate as well as Mg content of the leaves were the most important factor in the classification of the genotypes as tolerant, moderately tolerant and sensitive to water deficit. Therefore these variables are reliable plant traits in the selection of plants tolerant to drought. PMID:25541723

  7. Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit.

    PubMed

    Santos, Ivanildes C Dos; Almeida, Alex-Alan Furtado de; Anhert, Dário; Conceição, Alessandro S da; Pirovani, Carlos P; Pires, José L; Valle, Raúl René; Baligar, Virupax C

    2014-01-01

    Six months-old seminal plants of 36 cacao genotypes grown under greenhouse conditions were subjected to two soil water regimes (control and drought) to assess, the effects of water deficit on growth, chemical composition and oxidative stress. In the control, soil moisture was maintained near field capacity with leaf water potentials (?WL) ranging from -0.1 to -0.5 MPa. In the drought treatment, the soil moisture was reduced gradually by withholding additional water until ?WL reached values of between -2.0 to -2.5 MPa. The tolerant genotypes PS-1319, MO-20 and MA-15 recorded significant increases in guaiacol peroxidase activity reflecting a more efficient antioxidant metabolism. In relation to drought tolerance, the most important variables in the distinguishing contrasting groups were: total leaf area per plant; leaf, stem and total dry biomass; relative growth rate; plant shoot biomass and leaf content of N, Ca, and Mg. From the results of these analyses, six genotypes were selected with contrasting characteristics for tolerance to soil water deficit [CC-40, C. SUL-4 and SIC-2 (non-tolerant) and MA-15, MO-20, and PA-13 (tolerant)] for further assessment of the expression of genes NCED5, PP2C, psbA and psbO to water deficit. Increased expression of NCED5, PP2C, psbA and psbO genes were found for non-tolerant genotypes, while in the majority of tolerant genotypes there was repression of these genes, with the exception of PA-13 that showed an increased expression of psbA. Mutivariate analysis showed that growth variables, leaf and total dry biomass, relative growth rate as well as Mg content of the leaves were the most important factor in the classification of the genotypes as tolerant, moderately tolerant and sensitive to water deficit. Therefore these variables are reliable plant traits in the selection of plants tolerant to drought. PMID:25541723

  8. Characteristic mega-basin water storage behavior using GRACE

    PubMed Central

    Reager, J T; Famiglietti, James S

    2013-01-01

    [1]?A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km2), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world’s largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54???Ef???0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation. PMID:24563556

  9. Combining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status assessment

    NASA Astrophysics Data System (ADS)

    Rapaport, Tal; Hochberg, Uri; Shoshany, Maxim; Karnieli, Arnon; Rachmilevitch, Shimon

    2015-11-01

    Physiological measurements are considered to be the most accurate way of assessing plant water status, but they might also be time-consuming, costly and intrusive. Since visible (VIS)-to-shortwave infrared (SWIR) imaging spectrometers are able to monitor various bio-chemical alterations in the leaf, such narrow-band instruments may offer a faster, less expensive and non-destructive alternative. This requires an intelligent downsizing of broad and noisy hyperspectra into the few most physiologically-sensitive wavelengths. In the current study, hyperspectral signatures of water-stressed grapevine leaves (Vitis vinifera L. cv. Cabernet Sauvignon) were correlated to values of midday leaf water potential (?l), stomatal conductance (gs) and non-photochemical quenching (NPQ) under controlled conditions, using the partial least squares-regression (PLS-R) technique. It was found that opposite reflectance trends at 530-550 nm and around 1500 nm - associated with independent changes in photoprotective pigment contents and water availability, respectively - were indicative of stress-induced alterations in ?l, gs and NPQ. Furthermore, combining the spectral responses at these VIS and SWIR regions yielded three normalized water balance indices (WABIs), which were superior to various widely-used reflectance models in predicting physiological values at both the leaf and canopy levels. The potential of the novel WABI formulations also under field conditions demonstrates their applicability for water status monitoring and irrigation scheduling.

  10. Acute physiological responses and time-motion characteristics of two small-sided training regimes in youth soccer players.

    PubMed

    Hill-Haas, Stephen V; Rowsell, Greg J; Dawson, Brian T; Coutts, Aaron J

    2009-01-01

    The purpose of this study was to examine the acute physiological responses and time-motion characteristics associated with continuous and intermittent small-sided games (SSGs). The continuous (SSGC) regime involved 24 minutes' playing duration (no planned rest intervals), whereas the intermittent regime (SSGI) involved 4 x 6-minute bouts with 1.5 minutes of passive planned rest (work:rest ratio 4:1). Both training regimes were implemented across 3 SSG formats, which included games with 2 vs. 2, 4 vs. 4, and 6 vs. 6 players. Sixteen men's soccer players (mean +/- SE: age = 16.2 +/- 0.2 years, height = 173.7 +/- 2.1 cm, body mass = 65.0+/- 2.5 kg, estimated VO2max = 54.8 +/- 0.7 ml x kg-1 x min-1) participated in the study. Heart rate (HR) was measured every 5 seconds during all SSGs. Global ratings of perceived exertion (RPEs) were recorded immediately after the SSGs using the Borg scale (RPEs, 6-20). Capillary blood samples were drawn at rest and within 5 minutes after the end of each SSG. Time-motion characteristics were measured using portable global positioning system units. There were no significant differences between SSGC and SSGI for total distance covered or for distance traveled while walking, jogging, or running at moderate speed. However, players covered a significantly greater distance at 13.0-17.9 km x h-1, a greater total distance at higher running speed, and a greater total number of sprints (>18 km x h-1) with SSGI compared with SSGC. In contrast, global RPE and %HRmax were significantly higher in SSGC than in SSGI. Both intermittent and continuous SSG training regimes could be used during the season for match-specific aerobic conditioning. However, both training regimes used in this study seem unlikely to provide a sufficient stimulus overload for fully developing VO2max. PMID:19130642

  11. Physiological Characteristics and Production of Folic Acid of Lactobacillus plantarum JA71 Isolated from Jeotgal, a Traditional Korean Fermented Seafood

    PubMed Central

    Lim, Sang-Dong

    2014-01-01

    Folic acid, one of the B group of vitamins, is an essential substance for maintaining the functions of the nervous system, and is also known to decrease the level of homocysteine in plasma. Homocysteine influences the lowering of the cognitive function in humans, and especially in elderly people. In order to determine the strains with a strong capacity to produce folic acid, 190 bacteria were isolated from various kinds of jeotgal and chungkuk-jang. In our test experiment, JA71 was found to contain 9.03?g/mL of folic acid after 24 h of incubation in an MRS broth. This showed that JA71 has the highest folic acid production ability compared to the other lactic acid bacteria that were isolated. JA71 was identified as Lactobacillus plantarum by the result of API carbohydrate fermentation pattern and 16s rDNA sequence. JA71 was investigated for its physiological characteristics. The optimum growth temperature of JA71 was 37?, and the cultures took 12 h to reach pH 4.4. JA71 proved more sensitive to bacitracin when compared with fifteen different antibiotics, and showed most resistance to neomycin and vancomycin. Moreover, it was comparatively tolerant of bile juice and acid, and displayed resistance to Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus with restraint rates of 60.4%, 96.7%, and 76.2%, respectively. These results demonstrate that JA71 could be an excellent strain for application to functional products.

  12. Exceptional thermal tolerance and water resistance in the mite Paratarsotomus macropalpis (Erythracaridae) challenge prevailing explanations of physiological limits.

    PubMed

    Wu, Grace C; Wright, Jonathan C

    2015-11-01

    Physiological performance and tolerance limits in metazoans have been widely studied and have informed our understanding of processes such as extreme heat and cold tolerance, and resistance to water loss. Because of scaling considerations, very small arthropods with extreme microclimatic niches provide promising extremophiles for testing predictive physiological models. Corollaries of small size include rapid heating and cooling (small thermal time constants) and high mass-specific metabolic and water exchange rates. This study examined thermal tolerance and water loss in the erythracarid mite Paratarsotomus macropalpis (Banks, 1916), a species that forages on the ground surface of the coastal sage scrub habitat of Southern California, USA. Unlike most surface-active diurnal arthropods, P. macropalpis remains active during the hottest parts of the day in midsummer. We measured water-loss gravimetrically and estimated the critical thermal maximum (CTmax) by exposing animals to a given temperature for 1h and then increasing temperature sequentially. The standardized water flux of 4.4ngh(-1)cm(-2)Pa(-1), averaged for temperatures between 22 and 40°C, is among the lowest values reported in the literature. The CTmax of 59.4°C is, to our knowledge, the highest metazoan value reported for chronic (1-h) exposure, and closely matches maximum field substrate temperatures during animal activity. The extraordinary physiological performance seen in P. macropalpis likely reflects extreme selection resulting from its small size and resultant high mass-specific water loss rate and low thermal time-constant. Nevertheless, the high water resistance attained with a very thin lipid barrier, and the mite's exceptional thermal tolerance, challenge existing theories seeking to explain physiological limits. PMID:26255840

  13. Water Jet Impingement Flow Characteristics in Direct Vessel Injection System

    SciTech Connect

    Yoon, Sang H.; Suh, Kune Y.

    2006-07-01

    Water jet impingement is a peculiar phenomenon in the APR1400 (Advanced Power Reactor 1400 MWe) in which the safety injection nozzle is located in the outer reactor vessel, not in the cold leg such as in OPR1000 (Optimized Power Reactor 1,000 MWe). Therefore, the injected emergency core coolant (ECC) water spreads with a form of parabolic liquid film in the inner barrel after impinging. It is presently considered that the downcomer flow behavior is strongly governed by the location and geometry of the water injection nozzles. The impingement in the reactor vessel downcomer is one of the unknown important phenomena during a loss-of-coolant accident (LOCA). There is thus a strong need to find how the injected flow strikes the inner downcomer wall and how wide the liquid film spreads by the impingement phenomenon. The liquid film gets in contact with the steam flow in the reactor downcomer such that the interfacial area of liquid film affects the direct bypass according to the nozzle location and geometry. The water jet impingement consists of three rather distinctive flow regions. Albeit the relevant hydrodynamic characteristics are simple and well known in simple geometries, the findings are not readily applicable in the annular reactor downcomer. Analytical and experimental approaches for impingement flow by water injection have yielded detailed flow mechanisms classified in the downcomer. The water injected through three boundaries showed varying behavior according to the injection velocity, injection nozzle diameter, wall curvature, and injection nozzle inclination. As the water injection velocity increases the liquid film spreading width increases, but the spreading width proportional to the injection velocity is tapered due to breakup. Given the injection velocity, a large diameter of injection nozzle increases the film spreading width. Impingement on the flat plate has a larger film spreading width than on the curved plate. Moreover, a larger curvature decreases the film spreading width. The inclined angle of the injection nozzle is a pivotal factor in reducing the film width by increasing the downward velocity. Given the same conditions, the film spreading width lessens as the inclined angle increases. (authors)

  14. Definition and characteristics of the water abundant season in Korea

    NASA Astrophysics Data System (ADS)

    Park, So-Ra; Oh, Su-Bin; Byun, Hi-Ryong

    2015-04-01

    In contrast to the normal seasons that are classified by the distribution of temperature and precipitation, this study defines a new concept of the water abundant season (WAS) when water is more abundant than in other seasons. We investigated its characteristics on 60 stations in Korea, and compared it with Changma (the rainy season). In this study, Available Water Resources Index (AWRI), which is a summed daily precipitation accumulated for more than 365 days with a time-dependent reduction function and reflects the current water condition, was used to quantify the water amount. In addition, the median value of 30 year's daily AWRI was used as the criterion value dividing WAS from other seasons. The results show that the terminologies on water resources have changed from qualitative concepts such as abundance, deficit, and continuous rainfall, to quantitative values using AWRI. In detail, it was known that the WAS in Korea starts on 2 July and ends on 25 December, lasting for 176 days. The onset date of WAS in Korea is getting earlier, with a trend of 2.9 days/decade. The end date does later with a delay of 7.5 days/decade, and the duration is increasing at 10.4 days/decade. We looked at the WAS by stations and saw, on average, that 14 June was the earliest onset date in Seogwipo and 29 July was the latest one in Sokcho, representing a difference of 45 days. The earliest end date was in Tongyeong at 5 December and the latest one is in Uljin at 16 January of the following year, a difference of 41 days. Tongyeong had the shortest (166 days) WAS duration and Uljin had the longest (207 days) on average. The big spatial differences of the criterion values per station were detected and quantified. The largest criterion value for WAS were recorded in Seongsan with 270.7 mm, which is almost double of the smallest value, which was recorded in Uiseong (135.9 mm). Comparing WAS with the Changma (the rainy season in Korea) showed that the onset date of WAS is close to that of Changma, but the end date shows a big difference. It is also known that WAS was more useful than Changma in detecting and demonstrating both of the season's progress and the seasonal state of water climates.

  15. Climate influences thermal balance and water use in African and Asian elephants: physiology can predict drivers of elephant distribution.

    PubMed

    Dunkin, Robin C; Wilson, Dinah; Way, Nicolas; Johnson, Kari; Williams, Terrie M

    2013-08-01

    Elephant movement patterns in relation to surface water demonstrate that they are a water-dependent species. Thus, there has been interest in using surface water management to mitigate problems associated with localized elephant overabundance. However, the physiological mechanisms underlying the elephant's water dependence remain unclear. Although thermoregulation is likely an important driver, the relationship between thermoregulation, water use and climate has not been quantified. We measured skin surface temperature of and cutaneous water loss from 13 elephants (seven African, 3768±642 kg; six Asian, 3834±498 kg) and determined the contribution of evaporative cooling to their thermal and water budgets across a range of air temperatures (8-33°C). We also measured respiratory evaporative water loss and resting metabolic heat production on a subset of elephants (N=7). The rate of cutaneous evaporative water loss ranged between 0.31 and 8.9 g min(-1) m(-2) for Asian elephants and 0.26 and 6.5 g min(-1) m(-2) for African elephants. Simulated thermal and water budgets using climate data from Port Elizabeth, South Africa, and Okaukuejo, Namibia, suggested that the 24-h evaporative cooling water debt incurred in warm climates can be more than 4.5 times that incurred in mesic climates. This study confirms elephants are obligate evaporative coolers but suggests that classification of elephants as water dependent is insufficient given the importance of climate in determining the magnitude of this dependence. These data highlight the potential for a physiological modeling approach to predicting the utility of surface water management for specific populations. PMID:23842629

  16. Growth and physiological state of the microalgae Phaeodactylum tricornutum Bohlin (Bacillariophyta) in the water taken from peter the Great Bay

    NASA Astrophysics Data System (ADS)

    Zhuravel, Elena; Markina, Zhanna; Aizdaicher, Nina

    2009-09-01

    Bioassay of water from different parts of the Peter the Great Bay using microalgae P. tricornutum revealed that water quality influences not only the growth but also the physiological state of the microalgae. There was no difference in the cell size between control and experimental cultures. Inhibition of microalgae growth was revealed in water with low phosphates concentration, for example, in the Marine Reserve. High phosphates concentration and moderate organic pollution caused the stimulation of miñroalgae growth in such sites as the Tumen, the Partizanskaya and the Vtoraya rechka rivers mouths.

  17. [Complex effects of simulated acid rain and Cu on the physiological characteristics of Paulownia fortunei and its detoxification mechanism].

    PubMed

    Wang, Jiang; Zhang, Chong-Bang; Ke, Shi-Sheng; Qian, Bao-Ying

    2010-03-01

    A pot experiment was conducted to study the effects of simulated acid rain (pH 4.0, 5.0) and Cu (0-200 mg x kg(-1)) on the physiological characteristics of Paulownia fortunei and its detoxification mechanism. With no Cu addition, the leaf chlorophyll, carotenoid, O2 division by, H2O2, and MDA contents of P. fortunei had no significant differences between the two acid rain treatments. However, with the addition of 100 and 200 mg Cu x kg(-1), the chlorophyll and carotenoid contents of treatment pH 4.0 were lower, while the O2 divided by, H2O2 and MDA contents were higher thanthose of treatment pH 5.0. The chlorophyll a/b ratio of treatments Cu was higher than that of the control. The leaf Cu content decreased obviously with the increasing acidity of stimulated acid rain, but the root Cu content was in reverse. With increasing Cu addition, both the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and the total contents of phytochelatins (PCs) and glutathione (GSH) in treatment pH 5.0 increased, while the activities of SOD, POD, CAT and APX in treatment pH 4.0 decreased after an initial increase, and the total contents of glutathione (GSH) decreased greatly in treatment 200 mg Cu x kg(-1). All of these demonstrated that the oxidative stress of high Cu concentration to P. fortunei was aggravated by stimulated acid rain. PMID:20560310

  18. Physiological Effects of Saline Water on Two Economically Important Horticultural Crops in South Texas 

    E-print Network

    Simpson, Catherine Ross

    2013-12-02

    and physiological parameters when subjected to several salinity levels. In the first experiment, potential sour orange replacement rootstocks C22 and C146 were evaluated for salinity as ungrafted trees and grafted to the Olinda Valencia scion. These trees were...

  19. Within-catchment variation in regulation of water use by eucalypts, and the roles of stomatal anatomy and physiology

    NASA Astrophysics Data System (ADS)

    Gharun, Mana; Turnbull, Tarryn; Adams, Mark

    2014-05-01

    Understanding how environmental cues impact water use of forested catchments is crucial for accurate calculation of water balance and effective catchment management in terrestrial ecosystems. We characterised structural and physiological properties of leaves and canopies of Eucalyptus delegatensis, E. pauciflora and E. radiata, the most common species in high-country catchments in temperate Australia. These properties were related to whole-tree water transport to assess differences in water use strategies among the three species. Stomatal conductance, instantaneous transpiration efficiency, stomatal occlusion (through cuticular ledges) and leaf area index differed significantly among species. Whole-tree water use of all species was strongly coupled to changes in vapour pressure deficit (VPD) and photosynthetically active radiation (Q), yet stomatal closure reduced water transport at VPD > 1 kPa in all species, even when soil water was not limiting. The observed differences in leaf traits and related water use strategies reflect species-specific adaptations to dominant environmental conditions within the landscape matrix of catchments. The generalist E. radiata seems to follow an opportunistic, while the two more spatially restricted species have adopted a pessimistic water use strategy. Catchment-scale models of carbon and water fluxes will need to reflect such variation in structure and function, if they are to fully capture species effects on water balance and yield.

  20. Sensitivity of Terrestrial Water and Energy Budgets to CO2-Physiological Forcing: An Investigation Using an Offline Land Model

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, Ranjith; Bala, Govindsamy; Jayaraman, Mathangi; Cao, Long; Nemani, Ramakrishna; Ravindranath, N. H.

    2011-01-01

    Increasing concentrations of atmospheric carbon dioxide (CO2) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO2 concentrations using the National Center for Atmospheric Research s (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO2 levels implies that incremental warming associated with the physiological effect of CO2 will not abate at higher CO2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO2 emissions. Keywords: CO2-physiological effect, CO2-fertilization, canopy transpiration, water cycle, runoff, climate change 1.

  1. Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification

    NASA Astrophysics Data System (ADS)

    Carreiro-Silva, M.; Cerqueira, T.; Godinho, A.; Caetano, M.; Santos, R. S.; Bettencourt, R.

    2014-06-01

    Cold-water corals (CWCs) are thought to be particularly vulnerable to ocean acidification (OA) due to increased atmospheric pCO2, because they inhabit deep and cold waters where the aragonite saturation state is naturally low. Several recent studies have evaluated the impact of OA on organism-level physiological processes such as calcification and respiration. However, no studies to date have looked at the impact at the molecular level of gene expression. Here, we report results of a long-term, 8-month experiment to compare the physiological responses of the CWC Desmophyllum dianthus to OA at both the organismal and gene expression levels under two pCO2/pH treatments: ambient pCO2 (460 ?atm, pHT = 8.01) and elevated pCO2 (997 ?atm, pHT = 7.70). At the organismal level, no significant differences were detected in the calcification and respiration rates of D. dianthus. Conversely, significant differences were recorded in gene expression profiles, which showed an up-regulation of genes involved in cellular stress (HSP70) and immune defence (mannose-binding c-type lectin). Expression of alpha-carbonic anhydrase, a key enzyme involved in the synthesis of coral skeleton, was also significantly up-regulated in corals under elevated pCO2, indicating that D. dianthus was under physiological reconditioning to calcify under these conditions. Thus, gene expression profiles revealed physiological impacts that were not evident at the organismal level. Consequently, understanding the molecular mechanisms behind the physiological processes involved in a coral's response to elevated pCO2 is critical to assess the ability of CWCs to acclimate or adapt to future OA conditions.

  2. WATER RESOURCES RESEARCH, VOL. ???, XXXX, DOI:10.1029/, The soil water characteristic as new class of1

    E-print Network

    Vrugt, Jasper A.

    curve.15 These soil water retention functions are relatively simple to use, contain be-16 tween twoWATER RESOURCES RESEARCH, VOL. ???, XXXX, DOI:10.1029/, The soil water characteristic as new class, University of California, Irvine, CA, USA. 3 Department of Hydrology and Water Resources, University

  3. Eco-physiological response of Populus euphratica Oliv. to water release of the lower reaches of the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Ruan, X.; Chen, Y. N.; Li, W. H.

    2007-10-01

    Eco-physiological and plant performance responses and acclimation of Populus euphratica Oliv. to water release of the lower reaches of Tarim River, China were investigated. Three representative areas and 15 transects were selected along the lower reaches of the Tarim River. The groundwater level and salt content as well as plant performance and the contents of proline, soluble sugar, and plant endogenous hormone (ABA, CTK) in leaves were monitored and analyzed before- and after-water release. The groundwater level was raised in different areas and transects by the water release program. The physiological stress to P. euphratica decreased after the water release. Our results suggested that the groundwater level in the studied region changed from -3.15 to -4.12 m, salt content of the groundwater from 67.15 to 72.65 mM, the proline content from 9.28 to 11.06 mM, the soluble sugar content from 224.71 to 252.16 mM, the ABA content from 3.59 to 5.01 ng/(g FW), and the CK content from 4.01 to 4.56 ng/(g FW)- for the optimum growth and recover of P. euphratica indicated by the plant performance parameters, and the efficiency of water release was the highest.

  4. Water-Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Hathaway, Melvin E.; Vaughan, Victor L., Jr.

    1959-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  5. Water-following characteristics of a mixed layer drifter

    NASA Astrophysics Data System (ADS)

    Niller, Pearn P.; Davis, Russ E.; White, Henry J.

    1987-11-01

    Accurate measurements of mean Lagrangian displacements of water parcels in the mixed layer are difficult to make because wave forces on objects that float on or near the ocean surface can be easily rectified to produce a unidirectional motion. Here we discuss a design for an ARGOS-tracked drifter that is configured so as to minimize surface wave effects, and present measurements of its water-following characteristics in the California Current system in July 1985 at 15 m nominal depth in a small range of wind and wave conditions. The unique features of the drifter are small, spherically symmetric, surface and subsurface floats (to reduce directional wave forces) and a large, semi-rigid, three-axis symmetric drogue in the shape of a corner-radar reflector (to reduce kiting in shear) that self-deploys from a folded configuration. Relative 1-2 h mean flows of 0.6-2.9 cm s -1 past the drogue were measured with two vector-measuring current meters (VMCM's) attached to the top and bottom of the drogue in the presence of significant wave heights of 0.3-2.2 m, wind speeds of 2-10 m s -1, and mean vertical shears of 0.34-3.12 × 10 -2s -1. A drag force model shows that the most significant forces in the least square sense are due to winds or surface gravity waves, jointly accounting for 74% of the variance. In July 1985, 20 drogues were released in the vicinity of 31°N, 120°W. Although the encapsuled ARGOS transmitter in the small surface sphere submerged a significant portion of time, an average of 5 out 6 possible ARGOS positions were obtained daily. Recovery and inspection of one drifter both 4 and 8 months after deployment in the California Current revealed the conditions of the mechanical components to be excellent.

  6. Host-species-dependent physiological characteristics of hemiparasite Santalum album in association with N2-fixing and non-N2-fixing hosts native to southern China.

    PubMed

    Lu, J K; Xu, D P; Kang, L H; He, X H

    2014-09-01

    Understanding the interactions between the hemiparasite Santalum album L. and its hosts has theoretical and practical significance in sandalwood plantations. In a pot study, we tested the effects of two non-N2-fixing (Bischofia polycarpa (Levl.) Airy Shaw and Dracontomelon duperreranum Pierre) and two N2-fixing hosts (Acacia confusa Merr. and Dalbergia odorifera T. Chen) on the growth characteristics and nitrogen (N) nutrition of S. album. Biomass production of shoot, root and haustoria, N and total amino acid were significantly greater in S. album grown with the two N2-fixing hosts. Foliage and root ?(15)N values of S. album were significantly lower when grown with N2-fixing than with non-N2-fixing hosts. Significantly higher photosynthetic rates and ABA (abscisic acid) concentrations were seen in S. album grown with D. odorifera. Similarity in the proportional amounts of amino acid of root xylem sap between S. album and its host D. odorifera was also evident, suggesting major access to nitrogenous solutes from D. odorifera to S. album. Irrespective of host species, S. album clearly appeared to optimize xylem sap extraction from its hosts by higher transpiration and lower water-use efficiency than its host. The growth of two non-N2-fixing hosts parasitized by S. album was significantly greater than the equivalent values for unparasitized treatments, and lower growth and photosynthesis were observed for parasitized A. confusa, and significant decreases in root N, photosynthesis and transpiration for parasitized D. odorifera compared with unparasitized treatments. Furthermore, foliage ABA concentrations were significantly higher in all hosts parasitized by S. album than in their unparasitized counterparts. Our study is probably the first to report on host dependence and preference in the hemiparasite S. album, and the generated results may have important implications for understanding of the physiological interactions between host species and parasitic plants, and for successfully mixing plantations of S. album with D. odorifera. PMID:25216726

  7. Linking nitrifying biofilm characteristics and nitrification performance in moving-bed biofilm reactors for polluted raw water pretreatment.

    PubMed

    Zhang, Shuangfu; Wang, Yayi; He, Weitao; Xing, Meiyan; Wu, Min; Yang, Jian; Gao, Naiyun; Sheng, Guangyao; Yin, Daqiang; Liu, Shanhu

    2013-10-01

    Biofilm physiology was characterized by four biofilm constituents, i.e., polysaccharides, proteins (PN), humic-like substances and phospholipids (PL), for the first time to explore the relationships between biofilm characteristics and nitrification performance in moving-bed biofilm reactors (MBBRs) designed for pretreatment of polluted raw surface water for potable supply. The biofilm compositions depended highly on the balance of microbial decay and nitrification processes. The increased ammonia loading greatly regulated the community structure, promoting the dominance of nitrifiers and their proportions in the nitrifying biofilm. Nitrification rate and activity correlated linearly with the fractions of volatile solids (VS), PN and PL, which were related to nitrification processes in the biofilm. The specific biofilm activity demonstrated an exponential-asymptotic relationship with ratios of PN/VS and PL/VS. Thus, analyzing biofilm characteristics can be valid for estimating nitrification performance in MBBRs, and may offer engineers with basis to optimize MBBR design and operation. PMID:23954247

  8. A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of DD-carboxypeptidase and beta-lactamase.

    PubMed

    Bansal, Ankita; Kar, Debasish; Murugan, Rajagopal A; Mallick, Sathi; Dutta, Mouparna; Pandey, Satya Deo; Chowdhury, Chiranjit; Ghosh, Anindya S

    2015-05-01

    DD-carboxypeptidases (DD-CPases) are low-molecular-mass (LMM) penicillin-binding proteins (PBPs) that are mainly involved in peptidoglycan remodelling, but little is known about the dd-CPases of mycobacteria. In this study, a putative DD-CPase of Mycobacterium smegmatis, MSMEG_2433 is characterized. The gene for the membrane-bound form of MSMEG_2433 was cloned and expressed in Escherichia coli in its active form, as revealed by its ability to bind to the Bocillin-FL (fluorescent penicillin). Interestingly, in vivo expression of MSMEG_2433 could restore the cell shape oddities of the septuple PBP mutant of E. coli, which was a prominent physiological characteristic of DD-CPases. Moreover, expression of MSMEG_2433 in trans elevated beta-lactam resistance in PBP deletion mutants (?dacAdacC) of E. coli, strengthening its physiology as a dd-CPase. To confirm the biochemical reason behind such physiological behaviours, a soluble form of MSMEG_2433 (sMSMEG_2433) was created, expressed and purified. In agreement with the observed physiological phenomena, sMSMEG_2433 exhibited DD-CPase activity against artificial and peptidoglycan-mimetic DD-CPase substrates. To our surprise, enzymic analyses of MSMEG_2433 revealed efficient deacylation for beta-lactam substrates at physiological pH, which is a unique characteristic of beta-lactamases. In addition to the MSMEG_2433 active site that favours dd-CPase activity, in silico analyses also predicted the presence of an omega-loop-like region in MSMEG_2433, which is an important determinant of its beta-lactamase activity. Based on the in vitro, in vivo and in silico studies, we conclude that MSMEG_2433 is a dual enzyme, possessing both DD-CPase and beta-lactamase activities. PMID:25750082

  9. Physiological responses of a rodent to heliox reveal constancy of evaporative water loss under perturbing environmental conditions.

    PubMed

    Cooper, Christine Elizabeth; Withers, Philip Carew

    2014-10-15

    Total evaporative water loss of endotherms is assumed to be determined essentially by biophysics, at least at temperatures below thermoneutrality, with evaporative water loss determined by the water vapor deficit between the animal and the ambient air. We present here evidence, based on the first measurements of evaporative water loss for a small mammal in heliox, that mammals may have a previously unappreciated ability to maintain acute constancy of total evaporative water loss under perturbing environmental conditions. Thermoregulatory responses of ash-grey mice (Pseudomys albocinereus) to heliox were as expected, with changes in metabolic rate, conductance, and respiratory ventilation consistent with maintaining constancy of body temperature under conditions of enhanced heat loss. However, evaporative water loss did not increase in heliox. This is despite our confirmation of the physical effect that heliox augments evaporation from nonliving surfaces, which should increase cutaneous water loss, and increases minute volume of live ash-grey mice in heliox to accommodate their elevated metabolic rate, which should increase respiratory water loss. Therefore, mice had not only a thermoregulatory but also a hygroregulatory response to heliox. We interpret these results as evidence that ash-grey mice can acutely control their evaporative water loss under perturbing environmental conditions and suggest that hygroregulation at and below thermoneutrality is an important aspect of the physiology of at least some small mammals. PMID:25163919

  10. What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review.

    PubMed

    Bleakley, Chris M; Davison, Gareth W

    2010-02-01

    Cold-water immersion (CWI) is a popular recovery intervention after exercise. The scientific rationale is not clear, and there are no clear guidelines for its use. The aim of this review was to study the physiological and biochemical effect of short periods of CWI. A computer-based literature search, citation tracking and related articles searches were undertaken. Primary research studies using healthy human participants, immersed in cold water (<15 degrees C), for 5 min durations or less were included. Data were extracted on body temperature, cardiovascular, respiratory and biochemical response. 16 studies were included. Sample size was restricted, and there was a large degree of study heterogeneity. CWI was associated with an increase in heart rate, blood pressure, respiratory minute volume and metabolism. Decreases in end tidal carbon dioxide partial pressure and a decrease in cerebral blood flow were also reported. There was evidence of increases in peripheral catecholamine concentration, oxidative stress and a possible increase in free-radical-species formation. The magnitude of these responses may be attenuated with acclimatisation. CWI induces significant physiological and biochemical changes to the body. Much of this evidence is derived from full body immersions using resting healthy participants. The physiological and biochemical rationale for using short periods of CWI in sports recovery still remains unclear. PMID:19945970

  11. The Epiphytic Fern Elaphoglossum luridum (Fée) Christ. (Dryopteridaceae) from Central and South America: Morphological and Physiological Responses to Water Stress

    PubMed Central

    Minardi, Bruno Degaspari; Voytena, Ana Paula Lorenzen; Randi, Áurea Maria

    2014-01-01

    Elaphoglossum luridum (Fée) Christ. (Dryopteridaceae) is an epiphytic fern of the Atlantic Forest (Brazil). Anatomical and physiological studies were conducted to understand how this plant responds to water stress. The E. luridum frond is coriaceus and succulent, presenting trichomes, relatively thick cuticle, and sinuous cell walls in both abaxial and adaxial epidermis. Three treatments were analyzed: control, water deficit, and abscisic acid (ABA). Physiological studies were conducted through analysis of relative water content (RWC), photosynthetic pigments, chlorophyll a fluorescence, and malate content. No changes in RWC were observed among treatments; however, significant decreases in chlorophyll a content and photosynthetic parameters, including optimal irradiance (Iopt) and maximum electron transport rate (ETRmax), were determined by rapid light curves (RLC). No evidence of crassulacean acid metabolism (CAM) pathway was observed in E. luridum in response to either water deficit or exogenous application of ABA. On the other hand, malate content decreased in the E. luridum frond after ABA treatment, seeming to downregulate malate metabolism at night, possibly through tricarboxylic acid (TCA) cycle regulation. PMID:25386618

  12. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability.

    PubMed

    Brown, Caleb E; Mickelbart, Michael V; Jacobs, Douglass F

    2014-12-01

    Partial canopy cover promotes regeneration of many temperate forest trees, but the consequences of shading on seedling drought resistance are unclear. Reintroduction of blight-resistant American chestnut (Castanea dentata (Marsh.) Borkh.) into eastern North American forests will often occur on water-limited sites and under partial canopy cover. We measured leaf pre-dawn water potential (?pd), leaf gas exchange, and growth and biomass allocation of backcross hybrid American chestnut seedlings from three orchard sources grown under different light intensities (76, 26 and 8% full photosynthetically active radiation (PAR)) and subjected to well-watered or mid-season water-stressed conditions. Seedlings in the water-stress treatment were returned to well-watered conditions after wilting to examine recovery. Seedlings growing under medium- and high-light conditions wilted at lower leaf ?pd than low-light seedlings. Recovery of net photosynthesis (Anet) and stomatal conductance (gs) was greater in low and medium light than in high light. Seed source did not affect the response to water stress or light level in most cases. Between 26 and 8% full PAR, light became limiting to the extent that the effects of water stress had no impact on some growth and morphological traits. We conclude that positive and negative aspects of shading on seedling drought tolerance and recovery are not mutually exclusive. Partial shade may help American chestnut tolerate drought during early establishment through effects on physiological conditioning. PMID:25428828

  13. Effects of longterm elevated carbon dioxide concentration, nitrogen and water availability on the physiology of loblolly pine (Pinus taeda) branches

    SciTech Connect

    Murthy, R.; Dougherty, P.M. )

    1994-06-01

    The objective of this study was to determine to what extent elevated CO[sub 2] alters carbon fixation of loblolly pine when water and nutrition are limiting. Three branches per tree were enclosed in polytene chambers and exposed to ambient, 1.5*ambient and 2*ambient levels of CO[sub 2] respectively for a 12 month period. A 2*2 factorial of nutrition and water was employed. Monthly instantaneous measures of maximum photosynthesis (amax), stomatal conductance and other physiological parameters were taken on needles. Branches exposed to 2* ambient CO[sub 2] in the fertilized and irrigated plots showed significantly higher amax values compared to the other treatment level combinations and showed no signs of acclimation. Results suggest that response to elevated CO[sub 2] levels depends greatly on whether nutrition and water are limiting.

  14. [A comparative study on water use characteristics and eco-adaptability of Hippophae rhamnoides and Caragana korshinskii in semi-arid loess hilly-gully region].

    PubMed

    Xu, Bingcheng; Shan, Lun

    2004-11-01

    This study compared the seasonal dynamics of soil water content, biomass productivity, and leaf photosynthetic physiology and water potential between about ten years old Hippophae rhamnoides and Caragana korshinskii planted on the hilly slope land of semi-arid loess hilly-gully region. The results showed that there existed dry soil layer in the stands. The seasonal compensation depth of soil water in Hippophae rhamnoides stand was deeper and its water use capability was better than those of C. korshinskii. The yearly productivity of Hippophae rhamnoides was about 2.56 times of C. korshinskii. Hippophae rhamnoides leaf had an increased water use efficiency under improved soil water condition. C. korshinskii had higher photosynthetic and transpiration rates, but its leaf WUE was smaller than Hippophae rhamnoides. These two forests all had drought resistance and tolerance characteristics, but Hippophae rhamnoides was more active than C. korshinskii adapting to drought. PMID:15707306

  15. Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise.

    PubMed

    White, Gillian E; Wells, Greg D

    2013-01-01

    High-intensity exercise is associated with mechanical and/or metabolic stresses that lead to reduced performance capacity of skeletal muscle, soreness and inflammation. Cold-water immersion and other forms of cryotherapy are commonly used following a high-intensity bout of exercise to speed recovery. Cryotherapy in its various forms has been used in this capacity for a number of years; however, the mechanisms underlying its recovery effects post-exercise remain elusive. The fundamental change induced by cold therapy is a reduction in tissue temperature, which subsequently exerts local effects on blood flow, cell swelling and metabolism and neural conductance velocity. Systemically, cold therapy causes core temperature reduction and cardiovascular and endocrine changes. A major hindrance to defining guidelines for best practice for the use of the various forms of cryotherapy is an incongruity between mechanistic studies investigating these physiological changes induced by cold and applied studies investigating the functional effects of cold for recovery from high-intensity exercise. When possible, studies investigating the functional recovery effects of cold therapy for recovery from exercise should concomitantly measure intramuscular temperature and relevant temperature-dependent physiological changes induced by this type of recovery strategy. This review will discuss the acute physiological changes induced by various cryotherapy modalities that may affect recovery in the hours to days (<5 days) that follow high-intensity exercise. PMID:24004719

  16. Water flux and osmoregulatory physiology of the West Indian Manatee (Trichechus manatus) 

    E-print Network

    Ortiz, Rudy Martin

    1994-01-01

    rates were estimated using a deuterium oxide dilution technique for five captive animals in fresh water and one in salt water. Plasma sodium, potassium, chloride, osmolarity, vasopressin, aldosterone, and renin activity were analyzed in captive animals...

  17. Influence of different irrigation levels on the root water uptake and the physiology of root-chicory

    NASA Astrophysics Data System (ADS)

    Vandoorne, B.; Dekoninck, N.; Lutts, S.; Capelle, B.; Javaux, M.

    2009-04-01

    In the context of global warming and given recent heat waves observed in Western Europe, the relationship between the soil water status and the plant health has recently received more attention, especially for cash crops like chicory. In this study we particularly investigated the impact of soil water status on the chicory root water uptake and density and made a link with physiological and yield parameters. During five months, we imposed different irrigation levels to 10 plants of chicory (Cichorium intybus var. sativum) growing in greenhouses. Each seed, coming from an autogamous selection in this allogamous species, was sown in a column of 1.42m height and 0.4m diameter filled with yellow sand and irrigated from the bottom with Hoagland solution. On those 10 columns, we measured the distribution of soil moisture with TDR (8 columns) and ERT (2 columns) probes. Lateral windows also allowed us to follow the root growth. The column weights were also monitored in order to quantify the plant transpiration. During the experiment, several physiological indices were also followed like the gas exchange (CO2 and transpiration), the chlorophyll fluorescence, the stomatal conductance, the plastochron, and the Leaf Area Index (LAI). At the end of the experiment, the complete root length density and the water content profiles were measured. We had also a look to the osmotic potential, the pigments content and the isotopic discrimination of carbon in the leaves, which gives information about the level of stress. At a biochemical point of view, we measured the content in enzymes involves in inulin metabolism and sugars synthesis. We observed that the plants suffering from a slight water stress developed better. A simple1-D model was built which describes the root growth in function of the irrigation level and of the soil and atmospheric boundary conditions.

  18. Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions.

    PubMed

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Abdul Hamid, Azizah

    2015-01-01

    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession. PMID:25802833

  19. Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (Portulaca oleracea L.) Accessions

    PubMed Central

    Juraimi, Abdul Shukor; Rafii, M. Y.; Abdul Hamid, Azizah

    2015-01-01

    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32?dS?m?1. Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16?dS?m?1 salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8?dS?m?1 salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession. PMID:25802833

  20. PHYSIOLOGICAL ECOLOGY -ORIGINAL RESEARCH Influence of summer marine fog and low cloud stratus on water

    E-print Network

    Parker, V. Thomas

    (interior), and stable isotope (d13 C) values exhibited greater water use efficiencyin the interior Stable isotopes Á Water potential Á Marine layer Introduction Mediterranean-type climate (MTC) regions experience low soil volumetric water content (VWC) with high vapor pressure deficits (VPD) and high negative

  1. Effect of Ar Ion Beam Implantation on Morphological and Physiological Characteristics of Liquorice (Glycyrrhiza uralensis Fisch) Under Short-Term Artificial Drought Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangsheng; Wu, Lijun; Yu, Lixiang; Wei, Shenglin; Liu, Jingnan; Yu, Zengliang

    2007-04-01

    Ar+ ion beam with low energy of 30 keV was implanted into liquorice (Glycyrrhiza uralensis Fisch) seeds at the doses of 0, 600, 900 and 1200 × (2.6 × 1013) ions/cm2, respectively. The seeds were sowed in pots and after one month the plants were subjected to different drought conditions for two months. Then the plants' morphological and physiological characteristics, anti-oxidation enzymes and levels of endogenous hormones were investigated. The results showed that ion implantation at a proper dose can greatly enhance the liquorice seedlings' resistance against drought stress.

  2. Physiological integration modifies ?15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring

    PubMed Central

    Roiloa, S. R.; Antelo, B.; Retuerto, R.

    2014-01-01

    Background and Aims One of the most striking attributes of clonal plants is their capacity for physiological integration, which enables movement of essential resources between connected ramets. This study investigated the capacity of physiological integration to buffer differences in resource availability experienced by ramets of the clonal wild strawberry plant, Fragaria vesca. Specifically, a study was made of the responses of connected and severed offspring ramets growing in environments with different water availability conditions (well watered or water stressed) and nitrogen forms (nitrate or ammonium). Methods The experimental design consisted of three factors, ‘integration’ (connected, severed) ‘water status’ (well watered, water stressed) and ‘nitrogen form’ (nitrate, ammonium), applied in a pot experiment. The effects of physiological integration were studied by analysing photochemical efficiency, leaf spectral reflectance, photosynthesis and carbon and nitrogen isotope discrimination, the last of which has been neglected in previous studies. Key Results Physiological integration buffered the stress caused by water deprivation. As a consequence, survival was improved in water-stressed offspring ramets that remained connected to their parent plants. The nitrogen isotope composition (?15N) values in the connected water-stressed ramets were similar to those in ramets in the ammonium treatment; however, ?15N values in connected well-watered ramets were similar to those in the nitrate treatment. The results also demonstrated the benefit of integration for offspring ramets in terms of photochemical activity and photosynthesis. Conclusions This is the first study in which carbon and nitrogen isotopic discrimination has been used to detect physiological integration in clonal plants. The results for nitrogen isotope composition represent the first evidence of preferential transport of a specific form of nitrogen to compensate for stressful conditions experienced by a member clone. Water consumption was lower in plants supplied with ammonium than in plants supplied with nitrate, and therefore preferential transport of ammonium from parents to water-stressed offspring could potentially optimize the water use of the whole clone. PMID:24769538

  3. Brackish Eutrophic Water Treatment by Iris pseudacorus L.-Planted Microcosms: Physiological Responses of Iris pseudacorus L. to Salinity.

    PubMed

    Zhao, Huilin; Wang, Fen; Ji, Min

    2015-01-01

    Iris pseudacorus L. has been widely used in aquatic ecosystem to remove nutrient and has achieved positive effects. However, little is known regarding the nutrient-removal performance and physiological responses of I. pseudacorus for brackish eutrophic water treatment due to high nutrients combined with certain salinity levels. In this study, I. pseudacorus-planted microcosms were established to evaluate the capacity of I. pseudacorus to remove excessive nutrients from fresh (salinity 0.05%) and brackish (salinity 0.5%) eutrophic waters. The degradation of total nitrogen and ammonia nitrogen were not affected by 0.5% salinity; 0.5% salinity promoted the degradation of nitrate nitrogen while severely inhibited the degradation of total phosphorus. Additionally, 0.5% salinity was found to induce stress responses quantified by measuring six physiological indexes. Compared to 0.05% salinity, 0.5% salinity resulted in significant decreases in the chlorophyll a, b and total chlorophyll contents of I. pseudacorus which closely related to photosynthesis (p < 0.05). Furthermore, the higher proline, malondialdehyde contents and antioxidant enzyme activities were detected in I. pseudacorus exposed to 0.5% salinity, which provided protection against reactive oxygen species. The results highlight that the cellular stress assays are efficient for monitoring the health of I. pseudacorus in salinity shock-associated constructed wetlands. PMID:25529785

  4. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase ?1

    PubMed Central

    Mladinov, Domagoj; Liu, Yong; Mattson, David L.; Liang, Mingyu

    2013-01-01

    MicroRNAs (miRNAs) play important roles in biological development and disease. Much less is known about their role in normal adult physiology. The proximal convoluted tubule (PCT) and the medullary thick ascending limb (mTAL) in the kidney consist of epithelial cells with different transport activities. We identified 55 possible miRNA-target pairs of which the miRNAs and their predicted target proteins, many of which are involved in epithelial transport, were inversely enriched in PCT and mTAL. Some miRNAs appeared to have synergistic effects on shared targets. miR-192 and its predicted target the ?-1 subunit of Na+/K+-ATPase (Atp1b1), an enzyme providing the driving force for tubular transport, were inversely enriched in kidney regions. In mice, knockdown of miR-192 led to up-regulation of Atp1b1 protein. When mice were fed with a high-salt diet, knockdown of miR-192 blunted the adaptational increase of urine output. Interestingly, miR-192 appeared to target Atp1b1 through the 5?-, rather than 3?-untranslated region. The study suggests a novel physiological mechanism in which miR-192 suppresses Na+/K+-ATPase and contributes to renal handling of fluid balance. It supports an important role of miRNAs in determining cellular characteristics that may appear subtle yet are physiologically critical. PMID:23221637

  5. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase ?1.

    PubMed

    Mladinov, Domagoj; Liu, Yong; Mattson, David L; Liang, Mingyu

    2013-01-01

    MicroRNAs (miRNAs) play important roles in biological development and disease. Much less is known about their role in normal adult physiology. The proximal convoluted tubule (PCT) and the medullary thick ascending limb (mTAL) in the kidney consist of epithelial cells with different transport activities. We identified 55 possible miRNA-target pairs of which the miRNAs and their predicted target proteins, many of which are involved in epithelial transport, were inversely enriched in PCT and mTAL. Some miRNAs appeared to have synergistic effects on shared targets. miR-192 and its predicted target the ?-1 subunit of Na(+)/K(+)-ATPase (Atp1b1), an enzyme providing the driving force for tubular transport, were inversely enriched in kidney regions. In mice, knockdown of miR-192 led to up-regulation of Atp1b1 protein. When mice were fed with a high-salt diet, knockdown of miR-192 blunted the adaptational increase of urine output. Interestingly, miR-192 appeared to target Atp1b1 through the 5'-, rather than 3'-untranslated region. The study suggests a novel physiological mechanism in which miR-192 suppresses Na(+)/K(+)-ATPase and contributes to renal handling of fluid balance. It supports an important role of miRNAs in determining cellular characteristics that may appear subtle yet are physiologically critical. PMID:23221637

  6. Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?

    PubMed Central

    Durban, J. W.; Pitman, R. L.

    2012-01-01

    Killer whales (Orcinus orca) are important predators in high latitudes, where their ecological impact is mediated through their movements. We used satellite telemetry to provide the first evidence of migration for killer whales, characterized by fast (more than 12 km h?1, 6.5 knots) and direct movements away from Antarctic waters by six of 12 type B killer whales tagged when foraging near the Antarctic Peninsula, including all tags transmitting for more than three weeks. Tags on five of these whales revealed consistent movements to subtropical waters (30–37° S) off Uruguay and Brazil, in surface water temperatures ranging from ?1.9°C to 24.2°C; one 109 day track documented a non-stop round trip of almost 9400 km (5075 nmi) in just 42 days. Although whales travelled slower in the warmest waters, there was no obvious interruption in swim speed or direction to indicate calving or prolonged feeding. Furthermore, these movements were aseasonal, initiating over 80 days between February and April; one whale returned to within 40 km of the tagging site at the onset of the austral winter in June. We suggest that these movements may represent periodic maintenance migrations, with warmer waters allowing skin regeneration without the high cost of heat loss: a physiological constraint that may also affect other whales. PMID:22031725

  7. Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency

    PubMed Central

    Shao, Ruixin; Xin, Longfei; Mao, Jun; Li, Leilei; Kang, Guozhang; Yang, Qinghua

    2015-01-01

    After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG)-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA) content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE) method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency. PMID:26370980

  8. Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?

    PubMed

    Durban, J W; Pitman, R L

    2012-04-23

    Killer whales (Orcinus orca) are important predators in high latitudes, where their ecological impact is mediated through their movements. We used satellite telemetry to provide the first evidence of migration for killer whales, characterized by fast (more than 12 km h(-1), 6.5 knots) and direct movements away from Antarctic waters by six of 12 type B killer whales tagged when foraging near the Antarctic Peninsula, including all tags transmitting for more than three weeks. Tags on five of these whales revealed consistent movements to subtropical waters (30-37° S) off Uruguay and Brazil, in surface water temperatures ranging from -1.9°C to 24.2°C; one 109 day track documented a non-stop round trip of almost 9400 km (5075 nmi) in just 42 days. Although whales travelled slower in the warmest waters, there was no obvious interruption in swim speed or direction to indicate calving or prolonged feeding. Furthermore, these movements were aseasonal, initiating over 80 days between February and April; one whale returned to within 40 km of the tagging site at the onset of the austral winter in June. We suggest that these movements may represent periodic maintenance migrations, with warmer waters allowing skin regeneration without the high cost of heat loss: a physiological constraint that may also affect other whales. PMID:22031725

  9. Abstract Physiological traits related to water transport were studied in Rhizophora mangle (red mangrove)

    E-print Network

    Holbrook, N. Michele

    mangrove) growing in coastal and estuarine sites in Hawaii. The magnitude of xylem pressure potential (Px mangle · Mangrove · Water relations · Cryo-scanning electron microscopy · Embolism refilling Introduction

  10. Soil water content dependent wetting front characteristics in sands T.W.J. Bautersa

    E-print Network

    that the finger- like pattern in water repellent soil had many similarities with unstable wetting fronts in airSoil water content dependent wetting front characteristics in sands T.W.J. Bautersa , D.A. Di 94305, USA Received 2 April 1999; accepted 13 August 1999 Abstract The initial soil water content

  11. Evaluation of a computer program used to estimate water characteristic curve

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil water characteristic curve, h(theta), can be used to estimate a variety of parameters in unsaturated soils. One practical application of h(theta) is its use by DRAINMOD, a drainage model that has been widely used in shallow water table regions, to determine the water table depth–drainage v...

  12. Impact of Soil Type and Compaction Conditions on Soil Water Characteristic

    E-print Network

    Yu, Sheng-Tao

    Impact of Soil Type and Compaction Conditions on Soil Water Characteristic C. J. Miller, M.ASCE1 the variation of water content and pore water suction for compacted clayey soils. The soils had varying amounts of clay fraction with plasticities ranging from low to high plasticity. The unsaturated soil behavior

  13. Spatiotemporal characteristics and water budget of water cycle elements in different seasons in northeast China

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Zhao, Jun-Hu; He, Wen-Ping; Zhi-Qiang, Gong

    2015-04-01

    In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and water-vapor flux divergence in different seasons over northeast China and the water balance of that area. The data used in this paper is provided by the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the spatial distributions of precipitable water, precipitation, and evaporation feature that the values of elements above in the southeastern area are larger than those in the northwestern area; in summer, much precipitation and evaporation occur in the Changbai Mountain region as a strong moisture convergence region; in spring and autumn, moisture divergence dominates the northeast of China; in winter, the moisture divergence and convergence are weak in this area. From 1979 to 2010, the total precipitation of summer and autumn in northeast China decreased significantly; especially from 1999 to 2010, the summer precipitation always demonstrated negative anomaly. Additionally, other elements in different seasons changed in a truly imperceptible way. In spring, the evaporation exceeded the precipitation in northeast China; in summer, the precipitation was more prominent; in autumn and winter, precipitation played a more dominating role than the evaporation in the northern part of northeast China, while the evaporation exceeded the precipitation in the southern part. The Interim ECMWF Re-Analysis (ERA-Interim) data have properly described the water balance of different seasons in northeast China. Based on ERA-Interim data, the moisture sinks computed through moisture convergence and moisture local variation are quite consistent with those computed through precipitation and evaporation, which proves that ERA-Interim data can be used in the research of water balance in northeast China. On a seasonal scale, the moisture convergence has a greater influence than the local moisture variation on a moisture sink, and the latter is variable slightly, generally as a constant. Likewise, in different seasons, the total precipitation has a much greater influence than the evaporation on the moisture sink. Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2013CB430204 and 2012CB955902) and the National Natural Science Foundation of China (Grant Nos. 41175067, 41175084, and 41205040).

  14. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions.

    PubMed

    Ruíz-Sánchez, Michel; Armada, Elisabet; Muñoz, Yaumara; García de Salamone, Inés E; Aroca, Ricardo; Ruíz-Lozano, Juan Manuel; Azcón, Rosario

    2011-07-01

    The response of rice plants to inoculation with an arbuscular mycorrhizal (AM) fungus, Azospirillum brasilense, or combination of both microorganisms, was assayed under well-watered or drought stress conditions. Water deficit treatment was imposed by reducing the amount of water added, but AM plants, with a significantly higher biomass, received the same amount of water as non-AM plants, with a poor biomass. Thus, the water stress treatment was more severe for AM plants than for non-AM plants. The results showed that AM colonization significantly enhanced rice growth under both water conditions, although the greatest rice development was reached in plants dually inoculated under well-watered conditions. Water level did not affect the efficiency of photosystem II, but both AM and A. brasilense inoculations increased this value. AM colonization increased stomatal conductance, particularly when associated with A. brasilense, which enhanced this parameter by 80% under drought conditions and by 35% under well-watered conditions as compared to single AM plants. Exposure of AM rice to drought stress decreased the high levels of glutathione that AM plants exhibited under well-watered conditions, while drought had no effect on the ascorbate content. The decrease of glutathione content in AM plants under drought stress conditions led to enhance lipid peroxidation. On the other hand, inoculation with the AM fungus itself increased ascorbate and proline as protective compounds to cope with the harmful effects of water limitation. Inoculation with A. brasilense also enhanced ascorbate accumulation, reaching a similar level as in AM plants. These results showed that, in spite of the fact that drought stress imposed by AM treatments was considerably more severe than non-AM treatments, rice plants benefited not only from the AM symbiosis but also from A. brasilense root colonization, regardless of the watering level. However, the beneficial effects of A. brasilense on most of the physiological and biochemical traits of rice plants were only clearly visible when the plants were mycorrhized. This microbial consortium was effective for rice plants as an acceptable and ecofriendly technology to improve plant performance and development. PMID:21377754

  15. The Influence Of Water Tracks And Hillslope Position On The Physiology Of The Dominant Plant Species In The Imnavait Creek Watershed, Alaska

    NASA Astrophysics Data System (ADS)

    Griffin, K. L.; Epstein, D. J.; Shapiro, J. B.; Boelman, N. T.; Stieglitz, M.

    2003-12-01

    Within a small arctic tundra watershed located on the north slope of Alaska, we asked if plant abundance and physiological performance are linked to hillslope position by the hydrologic processes controlling nutrient availability. Our prediction was that down slope sites and within water track sites should have the greatest nutrient availability resulting in the highest photosynthetic capacity and productivity. To examine these relationships, two transects were established in the Imnavait Creek watershed, running from the northern ridge crest to a beaded stream. In total, 16 sites, one water track (WT) and one non water track (NWT), from 8 locations, each 100 m apart were examined. At each site, soil moisture, thaw depth, canopy water status (from spectral reflectance) and species diversity were recorded. Chlorophyll fluorescence was used assess the maximum capacity of each species to transport electrons within the photosynthetic membranes of individual leaves (ETRMAX), a variable we expect to reflect both leaf N and general photosynthetic capacity. Significant differences were found within and among the major functional groups of plants growing in the watershed. In the two deciduous shrubs, Betula nana and Salix pulchra, ETRMAX generally decreased down slope but no significant difference were found between the WT and NWT sites. By contrast, ETRMAX in Rubus chamaemors, also a deciduous species, showed an initial decrease at the first two locations, but then remained constant further down slope and between WT and NWT sites. In the evergreen plants, Ledum palustre differed in that the maximum ETRMAX was found at the mid-slope locations while Vaccinium vitis-idaea had a characteristic decrease in ETRMAX down slope, with a large difference between WT and NWT at the first location. The forb Petasites frigidus displayed a unique pattern, with large difference in ETRMAX between WT and NWT at sites 4 and 5, the last two locations at which this species could be found. Finally, the only graminoid species studied, Eriophorum vaginatu, ETRMAX decrease down slope in a linear fashion and had the highest absolute ETRMAX. Additionally leaf gas-exchange was measured in Salix pulchra and leaf N and canopy reflectance was measured at each site. Together, our results demonstrate that while hillsope position has a significant effect on the physiology, growth and diversity of species, the relationships were not as hypothesized. Clearly other ecological, morphological or environmental factors are contributing to the productivity of the watershed and ultimately impacting the biogeochemistry of this important ecosystem.

  16. WATER TEMPERATURE CHARACTERISTICS OF LAKES SUBJECTED TO CLIMATE CHANGE

    EPA Science Inventory

    A deterministic, one dimensional, unsteady lake water temperature model was modified and validated to simulate the seasonal (spring to fall) temperature stratification structure over a wide range of lake morphometries, trophic and meteorological conditions. odel coefficients rela...

  17. VIRULENCE CHARACTERISTICS OF HETEROTROPHIC BACTERIA COMMONLY ISOLATED FROM POTABLE WATER

    EPA Science Inventory

    Heterotrophic bacteria isolated from drinking water distribution systems were examined to determine if they possessed putative virulence factors such as hemolysins, proteases, or cytotoxins. Representative samples of colonies from several different distribution systems indicated ...

  18. OCCURRENCE OF HETEROTROPHIC BACTERIA WITH VIRULENCE CHARACTERISTICS IN POTABLE WATER

    EPA Science Inventory

    Treated potable water contains a variety of heterotrophic bacteria that survive current treatment processes. There is evidence that these bacteria are not hazardous to the healthy population, however, the possibility exists that some of them may be opportunistic pathogens capabl...

  19. Zamzam water: concentration of trace elements and other characteristics.

    PubMed

    Shomar, Basem

    2012-02-01

    Many Muslims drink Zamzam water for use either medicinally or religiously. Millions of pilgrims drink it and take bottles of it to their home countries. Heated scientific and political debates appeared after BBC reported in May 2011 that Zamzam water is poisonous, because of the high levels of arsenic. The World Health Organizations classifies arsenic as a human carcinogen, but some types of arsenic are also used as medicines. Adequate scientific studies on the Zamzam water are absent. This paper will provide, for the first time, basic and comprehensive information regarding the geochemical properties of Zamzam water for more than 30 indicators and using the state-of-the-art laboratory facilities. The data will help us to understand the sources of pollution under discussion, reactions at both local and international levels; and will highlight the potential healing capacity of Zamzam water. Thirty Zamzam water samples were collected by three distinct methods; from 10 pilgrims living in different locations in Germany in 2007, 10 samples from shops in Frankfurt and Berlin in 2011, and 10 samples directly from Makkah in 2011. The samples were analyzed 2 weeks after collection for more than 30 indicators: pH, EC, Eh, Cl, F, Br, NO(3), PO(4), SO(4), HCO(3), Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn beside others. Four major instruments were used; the IC, the ICPOES, the ICPMS and the HGAAS. The quality of the water did not change for 2 years and there was an excellent agreement among the results of the 30 water samples as well as between the results of the 2 years for the same samples analyzed in 2007 and 2008. The water is alkaline (average pH is 8) with an average Li concentration of 15 ?g L(-1). The average concentrations of As and NO(3) showed values three times higher than the WHO standards (27 ?g L(-1) and 150 mg L(-1), respectively). The averages of Ca and K were 95 and 50 mg L(-1), respectively. Very urgent steps are required to scientifically screen for the elevated parameters As, NO(3), Ca, and K in all Zamzam water sources and locations with full transparency. The resultant information should be made available to the public, and the relationship between pollution and human health should be addressed. The alkalinity of Zamzam water and the presence of trace amounts of As and Li may cause the healing power. However, a scientific strategy should be developed and adopted to enable further research and studies on toxicology and treatment technologies could be applied if needed. PMID:22138338

  20. Optical characteristics of natural waters protect amphibians from UV-B in the U.S. Pacific Northwest

    USGS Publications Warehouse

    Palen, Wendy J.; Schindler, David E.; Adams, Michael J.; Pearl, Christopher A.; Bury, R. Bruce; Diamond, S.A.

    2002-01-01

    Increased exposure to ultraviolet-B (UV-B) radiation has been proposed as a major environmental stressor leading to global amphibian declines. Prior experimental evidence from the U.S. Pacific Northwest (PNW) indicating the acute embryonic sensitivity of at least four amphibian species to UV-B has been central to the literature about amphibian decline. However, these results have not been expanded to address population-scale effects and natural landscape variation in UV-B transparency of water at amphibian breeding sites: both necessary links to assess the importance of UV-B for amphibian declines. We quantified the UV-B transparency of 136 potential amphibian breeding sites to establish the pattern of UV-B exposure across two montane regions in the PNW. Our data suggest that 85% of sites are naturally protected by dissolved organic matter in pond water, and that only a fraction of breeding sites are expected to experience UV-B intensities exceeding levels associated with elevated egg mortality. Thus, the spectral characteristics of natural waters likely mediate the physiological effects of UV-B on amphibian eggs in all but the clearest waters. These data imply that UV-B is unlikely to cause broad amphibian declines across the landscape of the American Northwest.

  1. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    PubMed

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane. PMID:26387296

  2. Facing the River Gauntlet: Understanding the Effects of Fisheries Capture and Water Temperature on the Physiology of Coho Salmon

    PubMed Central

    Raby, Graham D.; Clark, Timothy D.; Farrell, Anthony P.; Patterson, David A.; Bett, Nolan N.; Wilson, Samantha M.; Willmore, William G.; Suski, Cory D.; Hinch, Scott G.; Cooke, Steven J.

    2015-01-01

    An improved understanding of bycatch mortality can be achieved by complementing field studies with laboratory experiments that use physiological assessments. This study examined the effects of water temperature and the duration of net entanglement on physiological disturbance and recovery in coho salmon (Oncorhynchus kisutch) after release from a simulated beach seine capture. Heart rate was monitored using implanted electrocardiogram biologgers that allowed fish to swim freely before and after release. A subset of fish was recovered in respirometers to monitor metabolic recovery, and separate groups of fish were sacrificed at different times to assess blood and white muscle biochemistry. One hour after release, fish had elevated lactate in muscle and blood plasma, depleted tissue energy stores, and altered osmoregulatory status, particularly in warmer (15 vs. 10°C) and longer (15 vs. 2 min) capture treatments. A significant effect of entanglement duration on blood and muscle metabolites remained after 4 h. Oxygen consumption rate recovered to baseline within 7–10 h. However, recovery of heart rate to routine levels was longer and more variable, with most fish taking over 10 h, and 33% of fish failing to recover within 24 h. There were no significant treatment effects on either oxygen consumption or heart rate recovery. Our results indicate that fishers should minimize handling time for bycatch and maximize oxygen supply during crowding, especially when temperatures are elevated. Physiological data, such as those presented here, can be used to understand mechanisms that underlie bycatch impairment and mortality, and thus inform best practices that ensure the welfare and conservation of affected species. PMID:25901952

  3. Growth and physiological responses of tree seedlings to experimental manipulation of light and water

    SciTech Connect

    Huston, M.A.; Holmgren, M.

    1995-06-01

    Seedlings of two tree species with similar tolerance to soil water and nutrient levels, but contrasting tolerance to shade (Acer saccharum and Liriodendron tulipifera) were grown in shade houses under 5 light levels (27%, 17%, 12%, 5%, and 1%) and three soil water regimes (5-9%, 11-15%, and >20%). Soil, light, and water conditions were representative of those in the Walker Branch Throughfall Displacement Experiment, where the same species are being monitored under field conditions. Treatments were maintained from mid-June through October, when all plants were harvested for determination of biomass allocation patterns. The only mortality occurred among the tulip poplars, but there was a significant interaction effect of the treatments on leaf area, total biomass, and allocation patterns. Highest growth rates in both species occurred at 17% light in the highest water treatment, with the 27% treatment showing reduced growth, perhaps due to photoinhibition. Gas exchange measurements indicated that the light compensation point increased under dry conditions.

  4. Water use efficiency and physiological response of rice cultivars under alternate wetting and drying conditions.

    PubMed

    Zhang, Yunbo; Tang, Qiyuan; Peng, Shaobing; Xing, Danying; Qin, Jianquan; Laza, Rebecca C; Punzalan, Bermenito R

    2012-01-01

    One of the technology options that can help farmers cope with water scarcity at the field level is alternate wetting and drying (AWD). Limited information is available on the varietal responses to nitrogen, AWD, and their interactions. Field experiments were conducted at the International Rice Research Institute (IRRI) farm in 2009 dry season (DS), 2009 wet season (WS), and 2010 DS to determine genotypic responses and water use efficiency of rice under two N rates and two water management treatments. Grain yield was not significantly different between AWD and continuous flooding (CF) across the three seasons. Interactive effects among variety, water management, and N rate were not significant. The high yield was attributed to the significantly higher grain weight, which in turn was due to slower grain filling and high leaf N at the later stage of grain filling of CF. AWD treatments accelerated the grain filling rate, shortened grain filling period, and enhanced whole plant senescence. Under normal dry-season conditions, such as 2010 DS, AWD reduced water input by 24.5% than CF; however, it decreased grain yield by 6.9% due to accelerated leaf senescence. The study indicates that proper water management greatly contributes to grain yield in the late stage of grain filling, and it is critical for safe AWD technology. PMID:23319883

  5. Characteristics of hydrogen bond revealed from water clusters

    NASA Astrophysics Data System (ADS)

    Song, Yan; Chen, Hongshan; Zhang, Cairong; Zhang, Yan; Yin, Yuehong

    2014-09-01

    The hydrogen bond network is responsible for the exceptional physical and chemical properties of water, however, the description of hydrogen bond remains a challenge for the studies of condensed water. The investigation of structural and binding properties of water clusters provides a key for understanding the H-bonds in bulk water. In this paper, a new set of geometric parameters are defined to describe the extent of the overlap between the bonding orbital of the donor OH and the nonbonding orbital of the lone-pair of the acceptor molecule. This orbital overlap plays a dominant role for the strength of H-bonds. The dependences of the binding energy of the water dimer on these parameters are studied. The results show that these parameters properly describe the H-bond strength. The ring, book, cage and prism isomers of water hexamer form 6, 7, 8 and 9 H-bonds, and the strength of the bonding in these isomers changes markedly. The internally-solvated and the all-surface structures of (H2O) n for n = 17, 19 and 21 are nearly isoenergetic. The internally-solvated isomers form fewer but stronger H-bonds. The hydrogen bonding in the above clusters are investigated in detail. The geometric parameters can well describe the characters of the H-bonds, and they correlate well with the H-bond strength. For the structures forming stronger H-bonds, the H-bond lengths are shorter, the angle parameters are closer to the optimum values, and their rms deviations are smaller. The H-bonds emanating from DDAA and DDA molecules as H-donor are relatively weak. The vibrational spectra of (H2O) n ( n = 17, 19 and 21) are studied as well. The stretching vibration of the intramolecular OH bond is sensitive to its bonding environment. The H-bond strength judged from the geometric parameters is in good agreement with the bonding strength judged from the stretching frequencies.

  6. Oxygen flux as an indicator of physiological stress in aquatic organisms: a real-time biomonitoring system of water quality

    NASA Astrophysics Data System (ADS)

    Sanchez, Brian C.; Yale, Gowri; Chatni, Rameez; Ochoa-Acuña, Hugo G.; Porterfield, D. Marshall; Mclamore, Eric S.; Sepúlveda, María S.

    2009-05-01

    The detection of harmful chemicals and biological agents in real time is a critical need for protecting water quality. We studied the real-time effects of five environmental contaminants with differing modes of action (atrazine, pentachlorophenol, cadmium chloride, malathion, and potassium cyanide) on respiratory oxygen consumption in 2-day post-fertilization fathead minnow (Pimephales promelas) eggs. Our objective was to assess the sensitivity of fathead minnow eggs using the self-referencing micro-optrode technique to detect instantaneous changes in oxygen consumption after brief exposures to low concentrations of contaminants. Oxygen consumption data indicated that the technique is indeed sensitive enough to reliably detect physiological alterations induced by all contaminants. After 2 h of exposure, we identified significant increases in oxygen consumption upon exposure to pentachlorophenol (100 and 1000 ?g/L), cadmium chloride (0.0002 and 0.002 ?g/L), and atrazine (150 ?g/L). In contrast, we observed a significant decrease in oxygen flux after exposures to potassium cyanide (5.2, 22, and 44 ?g/L) and atrazine (1500 ?g/L). No effects were detected after exposures to malathion (200 and 340 ?g/L). We have also tested the sensitivity of Daphnia magna embryos as another animal model for real-time environmental biomonitoring. Our results are so far encouraging and support further development of this technology as a physiologically coupled biomonitoring tool for the detection of environmental toxicants.

  7. Effect of Sweet Wormwood Artemisia annua Crude Leaf Extracts on Some Biological and Physiological Characteristics of the Lesser Mulberry Pyralid, Glyphodes pyloalis

    PubMed Central

    Khosravi, Roya; Sendi, Jalal Jalali; Ghadamyari, Mohammad; Yezdani, Elham

    2011-01-01

    The lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a monophagous and dangerous pest of mulberry that has been recently observed in Guilan province, northern Iran. In this study, the crude methanol extract of sweet wormwood Artemisia annua L. (Asterales: Asteracaea) was investigated on toxicity, biological and physiological characteristics of this pest under controlled conditions (24 ± 1 °C, 75 ± 5% RH, and 16:8 L:D photoperiod). The effect of acute toxicity and sublethal doses on physiological characteristics was performed by topical application. The LC50 and LC20 values on fourth instar larvae were calculated as 0.33 and 0.22 gram leaf equivalent/ mL, respectively. The larval duration of fifth instar larvae in LC50 treatment was prolonged (5.8 ± 0.52 days) compared with the control group (4.26 ± 0.29 days). However larval duration was reduced in the LC20 treatment. The female adult longevity in the LC50 dose was the least (4.53 ± 0.3 days), while longevity among controls was the highest (9.2 ± 0.29 days). The mean fecundity of adults after larval treatment with LC50 was recorded as 105.6 ± 16.84 eggs/female, while the control was 392.74 ± 22.52 eggs/female. The percent hatchability was reduced in all treatments compared with the control. The effect of extract in 0.107, 0.053, 0.026 and 0.013 gle/mL on biochemical characteristics of this pest was also studied. The activity of ?-amylase and protease 48 hours post—treatment was significantly reduced compared with the control. Similarly lipase, esterase, and glutathione S-transferase activity were significantly affected by A. annua extract. PMID:22239100

  8. TheJournalofPhysiologyWaterTransportControversiesSpecialIssue The question of how water is transported across epithelial

    E-print Network

    Wright, Ernest

    , there is little evidence for any significant hypertonicity (see Spring, 1998). One possible explanation is that the hypertonicity is small ( yearsagothatwaterwastransportedacrosstheisolatedsmallintestineintheabsenceofosmotic and hydrostatic pressure gradients. While it is accepted that water transport is linked to solute

  9. Performance-related characteristics of water reactor fuel

    NASA Astrophysics Data System (ADS)

    Bairiot, H.; Vanderborck, Y.; Dumbruch, G.

    1982-04-01

    The most widely utilized manufacturing routes are based on different conversion processes: precipitation from aqueous solutions ("wet processes") and dry processes. The characteristics of the resulting powders (grain size, flowability, etc…) influence the pellet fabrication steps and even the sintered pellet characteristics. Depending on the powder characteristics, the pelletizing can be done directly or requires a previous conditioning. This preconditioning may include blending additives for further processing, for modifying the final pellet structure or for incorporating fissile or poison material. Controls at this stage are usually limited to homogeneity of the dispersion of additives. The sintering process parameters are monitored to insure that the pellet structure presents adequate densification stability. As a final product, the pellet is also subjected to all the controls required to demonstrate that the specifications are met. The paper reviews the controls applied for what regards the major components, the structural features and the geometry. Rather than the presentation of control techniques, the paper discusses the subject in the light of methods and procedures, typically applied in todays industrial fabrication.

  10. MUTAGENIC CHARACTERISTICS OF RIVER WATERS FLOWING THROUGH LARGE METROPOLITAN AREAS IN NORTH AMERICA

    EPA Science Inventory

    Mutagenic characteristics of river waters flowing through large metropolitan areas in North America

    The hanging technique using blue rayon, which specifically adsorbs mutagens with multicyclic planar structures, has the advantages over most conventional methods of not havi...

  11. Physiological and molecular mechanisms of salt and water homeostasis in the nematode Caenorhabditis elegans.

    PubMed

    Choe, Keith P

    2013-08-01

    Intracellular salt and water homeostasis is essential for all cellular life. Extracellular salt and water homeostasis is also important for multicellular organisms. Many fundamental mechanisms of compensation for osmotic perturbations are well defined and conserved. Alternatively, molecular mechanisms of detecting salt and water imbalances and regulating compensatory responses are generally poorly defined for animals. Throughout the last century, researchers studying vertebrates and vertebrate cells made critical contributions to our understanding of osmoregulation, especially mechanisms of salt and water transport and organic osmolyte accumulation. Researchers have more recently started using invertebrate model organisms with defined genomes and well-established methods of genetic manipulation to begin defining the genes and integrated regulatory networks that respond to osmotic stress. The nematode Caenorhabditis elegans is well suited to these studies. Here, I introduce osmoregulatory mechanisms in this model, discuss experimental advantages and limitations, and review important findings. Key discoveries include defining genetic mechanisms of osmolarity sensing in neurons, identifying protein damage as a sensor and principle determinant of hypertonic stress resistance, and identification of a putative sensor for hypertonic stress associated with the extracellular matrix. Many of these processes and pathways are conserved and, therefore, provide new insights into salt and water homeostasis in other animals, including mammals. PMID:23739341

  12. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes.

    PubMed

    Kottapalli, Kameswara Rao; Rakwal, Randeep; Shibato, Junko; Burow, Gloria; Tissue, David; Burke, John; Puppala, Naveen; Burow, Mark; Payton, Paxton

    2009-04-01

    Peanut genotypes from the US mini-core collection were analysed for changes in leaf proteins during reproductive stage growth under water-deficit stress. One- and two-dimensional gel electrophoresis (1- and 2-DGE) was performed on soluble protein extracts of selected tolerant and susceptible genotypes. A total of 102 protein bands/spots were analysed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) analysis. Forty-nine non-redundant proteins were identified, implicating a variety of stress response mechanisms in peanut. Lipoxygenase and 1l-myo-inositol-1-phosphate synthase, which aid in inter- and intracellular stress signalling, were more abundant in tolerant genotypes under water-deficit stress. Acetyl-CoA carboxylase, a key enzyme of lipid biosynthesis, increased in relative abundance along with a corresponding increase in epicuticular wax content in the tolerant genotype, suggesting an additional mechanism for water conservation and stress tolerance. Additionally, there was a marked decrease in the abundance of several photosynthetic proteins in the tolerant genotype, along with a concomitant decrease in net photosynthesis in response to water-deficit stress. Differential regulation of leaf proteins involved in a variety of cellular functions (e.g. cell wall strengthening, signal transduction, energy metabolism, cellular detoxification and gene regulation) indicates that these molecules could affect the molecular mechanism of water-deficit stress tolerance in peanut. PMID:19143990

  13. Infiltration characteristics of bare soil under sequential water application events

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The marked reduction in infiltration rate caused by formation of a soil surface seal is a well known phenomenon but often ignored in infiltration models. The effect sequential water application events have on infiltration rate and soil surface seal formation has rarely been investigated. The objecti...

  14. Impact of water and feed deprivation on physiological parameters in steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report in rats demonstrated that dehydration as the result of 8 d of water deprivation increased leakage of endotoxin from the intestine (Zurovsky and Barbiro, 2000 Experimental and toxicologic pathology 52:37-42). Given the large number of gram negative bacteria in the rumen of cattle, a much sho...

  15. WATER STRESS ON PUNA CHICORY AND LANCELOT PLANTAIN - MORPHOLOGICAL AND PHYSIOLOGICAL EFFECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Summer growth of cool-season species in the NE USA is reduced due to a combination of high temperature and drought. A two year experiment near State College, PA was designed to compare the effect of soil water availability conditions on chicory (Cichorium intybus L.) and plantain (Plantago lanceolat...

  16. INSTABILITY OF THE WATER DISINFECTION BY-PRODUCT DIBROMOACETONITRILE UNDER PHYSIOLOGICAL CONDITIONS: KINETICS AND PRODUCT CHARACTERIZATION

    EPA Science Inventory

    Dibromoacetonitrile (DBAN) is a prevalent haloacetonitrile formed as a byproduct of water chlorination. DBAN is toxic in vivo and genotoxic in vitro and is a mouse skin tumor initiator. However, little is known about its mechanisms of toxicity or genotoxicity or its stability. Du...

  17. Water Supplementation Affects the Behavioral and Physiological Ecology of Gila Monsters (Heloderma suspectum)

    E-print Network

    Denardo, Dale

    Published 10/2/2009 ABSTRACT In desert species, seasonal peaks in animal activity often cor- respond-supplemented liz- ards had lower plasma osmolality (i.e., were more hydrated) and maintained urinary bladder water in animals, including activity pat- terns (McClanahan 1967; Bigler 1974; Peterson 1996b; Duda et al. 1999

  18. Physiological and Anatomical Responses to Water Deficits in the CAM Epiphyte Tillandsia Ionantha (Bromeliaceae)

    E-print Network

    Nowak, Edward J.; Martin, Craig E.

    1997-01-01

    to plant water deficits. Annu Rev Plant Physiol 33:163-203. Harris JA 1918 On the osmotic concentration of the tissue fluids of phanerogamic epiphytes. Am J Bot 5:490-506. Kaiser WM 1982 Correlation between changes in photosynthetic activity and changes...

  19. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) accessions from the US mini core collection were analyzed for differentially expressed leaf proteins during reproductive stage under water-deficit stress. Accessions showing tolerant and susceptible responses to stress were selected based on a bioassay involving chloroph...

  20. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae.

    PubMed

    Azizi, Parisa; Rafii, Mohd Y; Mahmood, Maziah; Abdullah, Siti N A; Hanafi, Mohamed M; Nejat, Naghmeh; Latif, Muhammad A; Sahebi, Mahbod

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world's most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties. PMID:26001124

  1. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae

    PubMed Central

    Mahmood, Maziah; Abdullah, Siti N. A.; Hanafi, Mohamed M.; Nejat, Naghmeh; Latif, Muhammad A.

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties. PMID:26001124

  2. Toxic Effects of Ethyl Cinnamate on the Photosynthesis and Physiological Characteristics of Chlorella vulgaris Based on Chlorophyll Fluorescence and Flow Cytometry Analysis

    PubMed Central

    Jiao, Yang; Ouyang, Hui-Ling; Jiang, Yu-Jiao; Kong, Xiang-Zhen; He, Wei; Liu, Wen-Xiu; Yang, Bin; Xu, Fu-Liu

    2015-01-01

    The toxic effects of ethyl cinnamate on the photosynthetic and physiological characteristics of Chlorella vulgaris were studied based on chlorophyll fluorescence and flow cytometry analysis. Parameters, including biomass, Fv/Fm (maximal photochemical efficiency of PSII), ?PSII (actual photochemical efficiency of PSII in the light), FDA, and PI staining fluorescence, were measured. The results showed the following: (1) The inhibition on biomass increased as the exposure concentration increased. 1?mg/L ethyl cinnamate was sufficient to reduce the total biomass of C. vulgaris. The 48-h and 72-h EC50 values were 2.07?mg/L (1.94–2.20) and 1.89?mg/L (1.82–1.97). (2) After 24?h of exposure to 2–4?mg/L ethyl cinnamate, the photosynthesis of C. vulgaris almost ceased, manifesting in ?PSII being close to zero. After 72?h of exposure to 4?mg/L ethyl cinnamate, the Fv/Fm of C. vulgaris dropped to zero. (3) Ethyl cinnamate also affected the cellular physiology of C. vulgaris, but these effects resulted in the inhibition of cell yield rather than cell death. Exposure to ethyl cinnamate resulted in decreased esterase activities in C. vulgaris, increased average cell size, and altered intensities of chlorophyll a fluorescence. Overall, esterase activity was the most sensitive variable. PMID:26101784

  3. Uptake and physiological response of crop plants irrigated with water containing RDX and TNT

    SciTech Connect

    Simini, M.; Checkai, R.T.

    1995-12-31

    Regulatory agencies have expressed concern about possible bioconcentration of TNT (2,4,6-trinitrotoluene) and RDX (cyclotrimethylenetrinitramine) in food and forage crops irrigated with contaminated groundwater. Field and home-garden crops grown in site-collected soil were irrigated with water containing RDX and TNT to simulate field conditions at Cornhusker Army Ammunition Plant (CAAP), Nebraska. Pots were watered in an environment-controlled greenhouse to field capacity throughout the life-cycle of each crop with 2, 20, and 100 ppb RDX; 2, 100, and 800 ppb TNT; 100 ppb RDX + 800 ppb TNT; or uncontaminated water in response to evapo-transpirative demand. Uptake of RDX in lettuce leaves, corn stover, and alfalfa shoots was positively correlated with treatment level, however, concentrations of RDX in these crops were generally equal to or below soil loading concentrations. RDX was not significantly (p = 0.05) taken up into tomato fruit, bush bean seeds and pods, radish roots, and soybean seeds. TNT was not significantly take up into tissues of any of the crops analyzed in this study. Yield and biomass of tomato fruit, bush bean fruit, corn stover, and soybean seeds were significantly (p = 0.05) less when irrigated with the RDX + TNT treatment compared to controls. Lettuce leaf, radish root, and alfalfa shoot yield and biomass were unaffected by treatment level. For site-specific criteria used in this study, RDX and TNT did not bioconcentrate in edible plant tissues. This is the first controlled study to investigate uptake of RDX and TNT in crops irrigated with water containing explosives concentrations commonly found in contaminated groundwater.

  4. [Application of food supplement, of a duilder-rose for prevention of stressful disturbance of physiological and biochemical characteristics of erythrocytes].

    PubMed

    Kushnerova, N F; Fomenko, S E; Lesnikova, L N; Kushnerova, T V; Rakhmanin, Iu A

    2011-01-01

    In the article results of researches of influence of food supplement allocated of a guelder-rose (Viburnum sargentii Koehne) on structural and physiological characteristics of erythrocytes are presented to blood of the doctors-surgeons who are exposed during of the working day to complex stressful influence (psychologic-emotional, chemical, intensity of labour process, etc). It is shown that preventive application a polyphenolic complex from a guelder-rose promoted restoration of average volume and diameter of erythrocytes, normalization of a parity of quantitative structure of neutral lipids and phospholipids, to preservation of permeability of membranes. The food supplement allocated of a guelder-rose can be used in a treatment and prophylactic feed. PMID:21574471

  5. Comparison of leaf saturation isothermal remanent magnetisation (SIRM) with anatomical, morphological and physiological tree leaf characteristics for assessing urban habitat quality.

    PubMed

    Kardel, Fatemeh; Wuyts, Karen; Khavaninzhadeh, Ali Reza; Wuytack, Tatiana; Babanezhad, Manoochehr; Samson, Roeland

    2013-12-01

    Leaf saturation isothermal remanent magnetisation (SIRM) is known as a good proxy of atmospheric, traffic related particulate matter (PM) concentration. In this study, we compared leaf SIRM with Leaf area (LA), leaf dry weight (LDW), specific leaf area (SLA), stomatal density (SD), relative chlorophyll content (RCC), chlorophyll fluorescence parameters (Fv/Fm and PI) for three urban tree types in the city of Ghent, Belgium. A negative significant relationship of LA, LDW and Fv/Fm, and a positive significant relationship of SLA with leaf SIRM was observed. Among all considered parameters, leaf SIRM had the highest potential for discrimination between contrasting land use classes. It was concluded that urban habitat quality can be monitored with leaf SIRM, independent of the other above mentioned plant parameters. The anatomical, morphological and physiological tree leaf characteristics considered are not good indicators for atmospheric PM, but might be interesting bio-indicators of other air pollutants than PM. PMID:23266296

  6. Mineralogical and geochemical characteristics of drinking water salt deposits

    NASA Astrophysics Data System (ADS)

    Soktoev, B. R.; Rikhvanov, L. P.; Matveenko, I. A.

    2015-11-01

    The article presents the research results on the features of element and mineral composition of salt deposits (limescale) formed in household conditions in heat exchanging equipment. The major part of limescale is represented by two species of calcium carbonate - calcite and aragonite. We have shown that high concentrations of chemical elements in the limescale promote the formation of their own mineral forms (sulphates, silicates, native forms) in salt deposits. Detecting such mineral formations suggests the salt deposits of drinking water to be a long-term storage media which can be used in the course of eco-geochemical and metallogenic studies.

  7. Evaluating the risks of unregulated and emerging chemicals found in real world mixtures of drinking water under changing source water characteristics and alternative disinfection processes

    EPA Science Inventory

    This research will provide information to OW and the water community regarding the health effects of non-regulated DBPs mixtures present in drinking water. Research comparing disinfection process or source water characteristics compared to chlorination will determine if proposed ...

  8. Geospatial variation of grapevine water status, soil water availability, grape composition and sensory characteristics in a spatially heterogeneous premium wine grape vineyard

    NASA Astrophysics Data System (ADS)

    Smart, D. R.; Cosby Hess, S.; Plant, R.; Feihn, O.; Heymann, H.; Ebeler, S.

    2014-11-01

    The geoscience component of terroir in wine grape production continues to be criticized for its quasi-mystical nature, and lack of testable hypotheses. Nonetheless, recent relational investigations are emerging and most involve water availability as captured by available water capacity (AWC, texture) or plant available water (PAW) in the root zone of soil as being a key factor. The second finding emerging may be that the degree of microscale variability in PAW and other soil factors at the vineyard scale renders larger regional characterizations questionable. Cimatic variables like temperature are well mixed, and its influence on wine characteristic is fairly well established. The influence of mesogeology on mesoclimate factors has also been characterized to some extent. To test the hypothesis that vine water status mirrors soil water availability, and controls fruit sensory and chemical properties at the vineyard scale we examined such variables in a iconic, selectively harvested premium winegrape vineyard in the Napa Valley of California during 2007 and 2008 growing seasons. Geo-referenced data vines remained as individual study units throughout data gathering and analysis. Cartographic exercises using geographic information systems (GIS) were used to vizualize geospatial variation in soil and vine properties. Highly significant correlations (P < 0.01) emerged for pre-dawn leaf water potential (ΨPD), mid-day leaf water potential (ΨL) and PAW, with berry size, berry weight, pruning weights (canopy size) and soluble solids content (°Brix). Areas yielding grapes with perceived higher quality had vines with (1) lower leaf water potential (LWP) both pre-dawn and mid-day, (2) smaller berry diameter and weight, (3) lower pruning weights, and (4) higher °Brix. A trained sensory panel found grapes from the more water-stressed vines had significantly sweeter and softer pulp, absence of vegetal character, and browner and crunchier seeds. Metabolomic analysis of the grape skins showed significant differences in accumulation of amino acids and organic acids. Data vines were categorized as non-stressed (ΨPD ? -7.9 bars and ΨL ? -14.9 bars) and stressed (ΨPD ? -8.0 bars and ΨL ? -15.0 bars) and subjected to analysis of variance. Significant separation emerged for vines categorized as non-stressed versus stressed at véraison, which correlated to the areas described as producing higher and lower quality fruit. This report does not advocate the use of stress levels herein reported. The vineyard was planted to a vigorous, deep rooted rootstock (V. rupestris cv. St. George), and from years of management is known to be able to withstand stress levels of the magnitude we observed. Nonetheless, the results may suggest there is not a linear relationship between physiological water stress and grape sensory characteristics, but rather the presence of an inflection point controlling grape composition as well as physiological development.

  9. Agrichemicals in ground water of the midwestern USA: Relations to soil characteristics

    USGS Publications Warehouse

    Burkart, M.R.; Kolpin, D.W.; Jaquis, R.J.; Cole, K.J.

    1999-01-01

    A comprehensive set of soil characteristics were examined to determine the effect of soil on the transport of agrichemicals to ground water. This paper examines the relation of local soil characteristics to concentrations and occurrence of nitrate, atrazine (2-chloro-4 ethylamino-6-isopropylamino- s-trazine), and atrazine residue [atrazine + deethylatrazine (2-amino-4- chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro- 6-ethylamino-s-triazine)] from 99 wells completed in unconsolidated aquifers across the midwestern USA. The occurrence and concentrations of nitrate and atrazine in ground water were directly related to soil characteristics that determine the rate of water movement. The substantial differences in the relations found among soil characteristics and nitrate and atrazine in ground water suggest that different processes affect the transformation, adsorption, and transport of these contaminants. A multivariate analysis determined that the soil characteristics examined explained the amount of variability in concentrations for nitrate (19.0%), atrazine (33.4%), and atrazine residue (28.6%). These results document that, although soils do affect the transport of agrichemicals to ground water, other factors such as hydrology, land use, and climate must also be considered to understand the occurrence of agrichemicals in ground water.

  10. Physiological and behavioral basis for the successful adaptation of goats to severe water restriction under hot environmental conditions.

    PubMed

    Kaliber, M; Koluman, N; Silanikove, N

    2016-01-01

    Among domestic ruminants, goats are renowned for their ability to tolerate water deprivation, water restriction and energy restriction. However, some basic questions regarding their ability to endure water restriction under heat stress are still open. Three levels of water restriction (56%, 73% and 87% of the ad libitum) were imposed on 20 cross-bred 3-year-old female goats (75% German Fawn and 25% Hair Goat) distributed into four groups, with five animals per treatment. The experiment was conducted from the beginning of July to the end of August in a farm located in the Eastern Mediterranean region of Turkey (40 m in altitude; 36 59' N, 35 18'E), in which subtropical weather conditions prevail. The average daily temperature during the experiment was 34.2°C, whereas the highest and lowest temperatures were 42°C and 23.1°C, respectively. The average relative humidity was 68.2% and wind speed was 1.2 km/h. Weekly average thermal heat indexes during the experiment were 78.3 (week 1), 79.1 (week 2), 80.1 (weak 3), 79.8 (weak 4), 81.3 (weak 5) and on average 79.7. Feed intake, heart rate, thermoregulatory responses (rectal temperature, respiration rate), blood plasma concentrations of ions (Na, K), antidiuretic hormone (ADH), metabolites (glucose, cholesterol, creatinine and urea) and behavioral aspects (standing, walking, lying) were studied over 30 days. The responses to water restriction were proportional to the level of restriction. The reductions in feed intake (up to 13%), BW (up to 4.6%) and the increases in rectal temperature (0.5°C) and breath rate (10 respirations/min) were moderate and also were far from responses encountered under severe heat and water stresses. The increase in plasma Na (from 119 to 140 mM) and ADH concentrations (from 12.6 to 17.4 pg/ml) indicates that the physiological response to water restriction was in response to mild dehydration, which also explains the increase in blood plasma concentrations of glucose, cholesterol, creatinine and urea. Behavioral responses (reduction in walking from 226 to 209 min/day and increase in lying from 417 to 457 min/day) were associated with conservation of energy or thermoregulation (reducing the exposure to direct radiation). PMID:26256149

  11. Behavioral and biochemical characteristics of rats preferring ethanol or water

    SciTech Connect

    Kulikova, O.G.; Borodkin, Y.S.; Razumovskaya, N.I.; Shabanov, P.D.; Sokolovskaya, N.E.

    1985-05-01

    Considering that learning and memory processes are largely determined by the intensity of RNA synthesis in specific brain structure, the authors study the relationship between learning ability of rats preferring ethanol or water and the level of RNA-synthesizing activity of brain cell nuclei. RNA-synthesizing activity of cell nuclei from cortical gray matter of the animals was determined one month after selection by measuring incorporation of deuterium-uridine triphosphate. The numerical results were subjected to statistical analysis by Student's test at P 0.05. It is shown that the altered behavior of animals preferring ethanol is evidently based on disturbed interaction between mediator and genetic structures of brain cells.

  12. Development Characteristics of PMMA in alternative alcohol:water mixtures

    NASA Astrophysics Data System (ADS)

    Ocola, Leonidas E.

    2015-03-01

    The most widely used resist in electron beam lithography is polymethylmethacrylate (PMMA). The standard developers used are solution mixtures of isopropanol (IPA) and methyl isobutyl ketone (MIBK) in a ratio of 3:1 and mixtures of IPA and water (H2O) in a ratio of 7:3. The Globally Harmonized System (GHS) classification entry for IPA includes: Specific target organ toxicity - single exposure (Category 3). MIBK is much more hazardous than IPA. The only GHS classification entry for Ethanol is: Flammable liquids (Category 2), i.e. more environmentally safe. Using Ethanol/H2O as a developer will therefore enable lower hazardous waste disposal costs to cleanrooms. We find Ethanol/H2O at 85% volume (2:1 molar) exhibits excellent lithography results as good as with IPA/H2O, and better contrast and sensitivity than IPA/H2O and MIBK/IPA developers. Lithographic data shows trends similar to published cosolvency data, but differ too much to be explained by it. In addition, unusual development at 50% volume concentrations for both IPA and Ethanol in H2O show dramatic pothole formation instead of uniform thickness loss found in standard contrast curve exposures. We believe local pockets of concentrated alcohol water molar mixtures are responsible for such behavior. This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  13. Characteristics of surface signatures of Mediterranean water eddies

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I.; Carton, X.; Belonenko, T. V.

    2014-10-01

    In this work, we obtain new results on the manifestation of meddies (or of other deep eddies) at the sea-surface, further developing the results by Bashmachnikov and Carton (2012). The quasi-geostrophic equations are used to describe a near-axisymmetric vortex in the upper ocean, forced at its lower boundary by the isopycnal elevation of a moving meddy. The solution thus obtained provides a better approximation of the characteristics of meddy surface signals. The results show that in subtropics large meddies with dynamic radius Rm ? 30 km are always seen at the sea-surface with AVISO altimetry, that medium-size meddies with Rm = 20 km may be seen at the sea-surface only if they are sufficiently shallow and strong, while small meddies with Rm = 10 km generally cannot be detected with the present accuracy of altimetry data. The intensity of meddy surface signals decreases to the south with the decrease of the f/N ratio. The seasonal variation in intensity of the surface signal for northern meddies (45°N) is on the order of 2-3 cm, but for subtropical meddies (35°N) it can be on the order of 5-10 cm. The radii of meddy surface signals range from 1 to 2 times the radii of the corresponding meddies. For most of the observed subtropical meddies, the upper limit should be used. Numerical experiments show that surface signals of meddies translated with ?-drift are efficiently dispersed by the radiation of Rossby waves. At the same time, for meddies translated by a background current, the surface signal does not show strong dissipation.

  14. [Nitrogen and phosphate pollution characteristics and eutrophication evaluation for typical urban landscape waters in Hefei City].

    PubMed

    Li, Ru-Zhong; Liu, Ke-Feng; Qian, Jing; Yang, Ji-Wei; Zhang, Pian-Pian

    2014-05-01

    To understand the water environment regimes of the city-circling water system in Hefei City, six typical landscape waters were chosen to investigate pollution characteristics of nitrogen and phosphate and evaluate water eutrophication level according to the monitoring data of water physicochemical characteristics and chlorophyll content from September 2012 to July 2013. Study results showed that (1) the six waters mentioned above have been seriously polluted by nitrogen and phosphorus loadings, with the monthly mean values of total nitrogen (TN) and total phosphorus (TP) concentrations far exceeding the universally accepted threshold values of water eutrophication; (2) the nitrogen contents in the waters of Nanfeihe River, Heichiba and Yuhuatang scenic spots exhibited a markedly monthly variation, and both TP and PO(3-)(4)-P in Nanfeihe River showed a fluctuated characteristic with high concentrations while presenting a significant upward trend in Yuhuatang scenic spot; (3) the average values of TN/TP ratios for Yuhuatang and Heichiba scenic spots were 104.7 and 158.3, respectively, and the ratios for Baohe Park, Yinhe Park, Xiaoyaojin Park, and city segment of Nanfeihe River were 16.8, 18.7, 6.4 and 16.8, respectively, indicating that the scenic waters of Yuhuatang and Heichiba were phosphate-limited whereas Xiaoyaojin Park was nitrogen-limited; (4) all the six scenic waters were, in general, subsumed under just two broad categories, namely Hechiba scenic spot and Nanfeihe River, which were seriously polluted, and clustered together, and the others fall into the second class; and (5) water eutrophication appraisal result indicated that the six waters were all in the state of eutrophication, and could be arranged in the order of eutrophication level, Yinhe Park > Heichiba scenic spot > city segment of Nanfeihe River > Xiaoyaojin Park > Yuhuatang scenic spot > Baohe Park. PMID:25055658

  15. [Hydrochemical characteristic analysis of melting water flow in Keqikaer Glacier, Tianshan (west) Mountains].

    PubMed

    Wang, Jian; Ding, Yong-jian; Xu, Jun-li; Han, Hai-dong

    2006-07-01

    In order to study the melting water chemical characteristics in the Keqikaer Glacier, Tianshan(west)Mountains, the samples were collected from June to September in 2003. The result is found that: (1) The pH value is between 7.35-8.52, the order of which is:river water > glacier melting water > lake water on glacier > precipitation. (2) The various ionic concentrations of melting water are lower than other three kinds of samples, and average is 24% of river water. (3) Comparing and analyzing hydrochemical difference among various precipitation forms, the author found that inhomogeneous ionic concentration of rainwater is higher than the others. (4) Next, the water samples at different altitude have been analyzed, which shows that inhomogeneous ionic concentration of altitude effect is very remarkable. It is expected that if altitude is lower, the eluviation is led by glacier melting can influence the enviro-information record of ice layer. PMID:16881299

  16. Molecular Characteristics of Dissociated Water with Memory Effect from Methane Hydrates

    NASA Astrophysics Data System (ADS)

    Li, Qibin; Liu, Chao; Chen, Xi

    2014-02-01

    The properties of sI methane hydrate dissociation at different temperatures are investigated using molecular dynamics (MD) simulations, focusing on the characteristics of structure of melting water that has memory effect. Upon melting, the clathrate structures of hydrate are damaged. The density of dissolved methane decreases as the melting temperature rises. There is a positive correlation between the density of dissociated water molecules and melting temperature. Most oxygen atoms of dissociated water molecules remain tetrahedrally coordinated whereas the hydrate-like torsion angles (H-O-O-H) are like that of normal water. Therefore, the tetrahedrally coordinated oxygen atoms are one of the factors contributing to the memory effect.

  17. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.

    PubMed

    Andrews, Shilo F; Flanagan, Lawrence B; Sharp, Eric J; Cai, Tiebo

    2012-02-01

    Tree species response to climate change-induced shifts in the hydrological cycle depends on many physiological traits, particularly variation in water relations characteristics. We evaluated differences in shoot water potential, vulnerability of branches to reductions in hydraulic conductivity, and water source use between Pinus contorta Dougl. ex Loud. var. latifolia Engelm. (lodgepole pine) and Pseudotsuga menziesii (Mirb.) Franco (interior Douglas-fir), and determined the consequences for seasonal changes in photosynthetic capacity. The Douglas-fir site had soil with greater depth, finer texture and higher organic matter content than soil at the lodgepole pine site, all factors that increased the storage of soil moisture. While the measured xylem vulnerability curves were quite similar for the two species, Douglas-fir had lower average midday shoot water potentials than did lodgepole pine. This implied that lodgepole pine exhibited stronger stomatal control of transpiration than Douglas-fir, which helped to reduce the magnitude of the water potential gradient required to access water from drying soil. Stable hydrogen isotope measurements indicated that Douglas-fir increased the use of groundwater during mid-summer when precipitation inputs were low, while lodgepole pine did not. There was a greater reduction of photosynthetic carbon gain in lodgepole pine compared with Douglas-fir when the two tree species were exposed to seasonal declines in soil water content. The contrasting patterns of seasonal variation in photosynthetic capacity observed for the two species were a combined result of differences in soil characteristics at the separate sites and the inherent physiological differences between the species. PMID:22318220

  18. Influence of the Temperature of Gases on the Deformation Characteristics of Moving Water Droplets

    NASA Astrophysics Data System (ADS)

    Antonov, D. V.; Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2015-07-01

    An experimental analysis of the influence of the temperature of gases on the deformation characteristics of water droplets moving through them is carried out. High-speed (up to 105 frames per second) photography with video cameras and cross-correlation complexes, as well as panoramic optical methods of recording the motion parameters of gaseous and liquid flows, were used. The laws governing the movement of water droplets through gases with a temperature of about 1100 K and in air at relatively low (to 280 K) and moderate (about 300 K) temperatures have been studied. The principal characteristics of the deformation of water droplets (duration, extension, and amplitudes of "deformation cycles") have been established. The differences in the characteristic shapes of droplets during their motion in gaseous media (at different temperatures of the latter) have been determined. The times during which droplets retain a certain shape in the deformation process have been calculated.

  19. Tropine Forming Tropinone Reductase Gene from Withania somnifera (Ashwagandha): Biochemical Characteristics of the Recombinant Enzyme and Novel Physiological Overtones of Tissue-Wide Gene Expression Patterns

    PubMed Central

    Kushwaha, Amit Kumar; Sangwan, Neelam Singh; Trivedi, Prabodh Kumar; Negi, Arvind Singh; Misra, Laxminarain; Sangwan, Rajender Singh

    2013-01-01

    Withania somnifera is one of the most reputed medicinal plants of Indian systems of medicine synthesizing diverse types of secondary metabolites such as withanolides, alkaloids, withanamides etc. Present study comprises cloning and E. coli over-expression of a tropinone reductase gene (WsTR-I) from W. somnifera, and elucidation of biochemical characteristics and physiological role of tropinone reductase enzyme in tropane alkaloid biosynthesis in aerial tissues of the plant. The recombinant enzyme was demonstrated to catalyze NADPH-dependent tropinone to tropine conversion step in tropane metabolism, through TLC, GC and GC-MS-MS analyses of the reaction product. The functionally active homodimeric ?60 kDa enzyme catalyzed the reaction in reversible manner at optimum pH 6.7. Catalytic kinetics of the enzyme favoured its forward reaction (tropine formation). Comparative 3-D models of landscape of the enzyme active site contours and tropinone binding site were also developed. Tissue-wide and ontogenic stage-wise assessment of WsTR-I transcript levels revealed constitutive expression of the gene with relatively lower abundance in berries and young leaves. The tissue profiles of WsTR-I expression matched those of tropine levels. The data suggest that, in W. somnifera, aerial tissues as well possess tropane alkaloid biosynthetic competence. In vivo feeding of U-[14C]-sucrose to orphan shoot (twigs) and [14C]-chasing revealed substantial radiolabel incorporation in tropinone and tropine, confirming the de novo synthesizing ability of the aerial tissues. This inherent independent ability heralds a conceptual novelty in the backdrop of classical view that these tissues acquire the alkaloids through transportation from roots rather than synthesis. The TR-I gene expression was found to be up-regulated on exposure to signal molecules (methyl jasmonate and salicylic acid) and on mechanical injury. The enzyme's catalytic and structural properties as well as gene expression profiles are discussed with respect to their physiological overtones. PMID:24086372

  20. Physical characteristics of GE (General Electric) BWR (boiling-water reactor) fuel assemblies

    SciTech Connect

    Moore, R.S.; Notz, K.J.

    1989-06-01

    The physical characteristics of fuel assemblies manufactured by the General Electric Company for boiling-water reactors are classified and described. The classification into assembly types is based on the GE reactor product line, the Characteristics Data Base (CDB) assembly class, and the GE fuel design. Thirty production assembly types are identified. Detailed physical data are presented for each assembly type in an appendix. Descriptions of special (nonstandard) fuels are also reported. 52 refs., 1 fig., 6 tabs.

  1. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus.

    PubMed

    Greenwood, Michael P; Mecawi, Andre S; Hoe, See Ziau; Mustafa, Mohd Rais; Johnson, Kory R; Al-Mahmoud, Ghada A; Elias, Lucila L K; Paton, Julian F R; Antunes-Rodrigues, Jose; Gainer, Harold; Murphy, David; Hindmarch, Charles C T

    2015-04-01

    Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, arginine vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. On osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function-related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared with euhydrated (EU) controls in terms of drinking and eating behavior, body weight, and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL and remined data from the SON that describes the transcriptome response to WD. From a list of 2,783 commonly regulated transcripts, we selected 20 genes for validation by qPCR. All of the 9 genes that have already been described as expressed or regulated in the SON by osmotic stimuli were confirmed in our models. Of the 11 novel genes, 5 were successfully validated while 6 were false discoveries. PMID:25632023

  2. Water clarity, maternal behavior, and physiology combine to eliminate UV radiation risk to amphibians in a montane landscape

    PubMed Central

    Palen, Wendy J.; Schindler, Daniel E.

    2010-01-01

    Increasing UV-B radiation (UV-B; 290–320 nm) due to stratospheric ozone depletion has been a leading explanation for the decline in amphibians for nearly 2 decades. Yet, the likelihood that UV-B can influence amphibians at the large spatial scales relevant to population declines has not yet been evaluated. A key limitation has been in relating results from individual sites to the effect of UV-B for populations distributed across heterogeneous landscapes. We measured critical embryonic exposures to UV-B for two species of montane amphibians with contrasting physiological sensitivities, long-toed salamander (Ambystoma macrodactylum) and Cascades frog (Rana cascadae), at field sites spanning a gradient of UV-B attenuation in water. We then used these experimental results to estimate the proportion of embryos exposed to harmful UV-B across a large number of breeding sites. By combining surveys of the incubation timing, incident UV-B, optical transparency of water, and oviposition depth and light exposure of embryos at each site, we present a comprehensive assessment of the risk posed by UV-B for montane amphibians of the Pacific Northwest. We found that only 1.1% of A. macrodactylum and no R. cascadae embryos across a landscape of breeding sites are exposed to UV-B exceeding lethal levels. These results emphasize that accurately estimating the risk posed by environmental stressors requires placing experimental results in a broader ecological context that accounts for the heterogeneity experienced by populations distributed across natural landscapes. PMID:20479221

  3. [Characteristics of Hydrogen and Oxygen Isotopes of Soil Water in the Water Source Area of Yuanyang Terrace].

    PubMed

    Zhang, Xiao-juan; Song, Wei-feng; Wu, Jin-kui; Wang, Zhuo-juan

    2015-06-01

    Stable isotope techniques provide a new approach to study soil water movement. The precipitation and the soil water from 0 to 100 cm soil layer in 4 kinds of typical vegetation types (forest, shrub forest, grassland and non-forest land) over the water source area of Yuanyang terrace were sampled, and their isotope compositions were analyzed, aimed to understand the characteristics of stable isotopes in different depth of the soil water. The results showed that the meteoric water line in the water source area of Yuanyang terrace was ?D = 6.838 4?(18)O-5.6921 (R2 = 0.8787, n = 20), the slope and intercept were less than the global atmospheric precipitation. The hydrogen and oxygen stable isotopes in the soil water of the 4 kinds of typical types was lower than the local meteoric water line side and the fluctuation of isotope value on surface soil profile was greater. With the increasing soil depth, the fluctuation of delta 18O value was smaller and smaller, especially in the 80-100 cm soil layer which was the most obvious. The delta 18O values of the deep soil water in forest and grassland were higher than that in the surface soil. while it was on the contrary in shrub forest and non-forest land. PMID:26387313

  4. A Characteristic Transmission Spectrum for WFC3 IR Water Hosting Exoplanet

    NASA Astrophysics Data System (ADS)

    Swain, Mark R.

    2015-12-01

    Using the 19 published Hubble/WFC3 IR exoplanet transmission spectra, we perform a meta-analysis of the spectral modulation due to water. Because of the heterogeneous nature of these data, in which spectral resolution, calibration approach, and observational method vary, we introduce a formalism to de-bias the estimates of spectral modulation. This analysis finds a characteristic transmission spectrum and examines trends for these water-hosting exoplanets.

  5. GIS and ordination techniques for studying influence of watershed characteristics on river water quality.

    PubMed

    Ou, Yang; Wang, Xiaoyan

    2011-01-01

    Landscape characteristics of twenty-eight sub-catchments within the Miyun reservoir watershed in Miyun County, northeast Beijing of China were examined to identify relationships with stream water chemistry. The influences of the entire catchment and 300 m buffer zone on water quality were compared using multiple regression analysis and redundancy analysis during three seasons. Results showed that strong seasonal differences in nitrate, nitrite and ammonium are observed whereas no difference in total phosphorus and conductivity. Landscape factors were significantly correlated to stream water quality. Residential area and stream density contributed markedly to river condition variability. Water quality was better explained by interactions with the landscape during and after rainy season. There was also a seasonal shift in the landscape factors that were the dominant explanatory variables. The relationships between landscape attributes and water quality on watershed scale were slightly different from those on riparian scale; however, landscape attributes may have stronger influences on water chemistry. PMID:22097072

  6. Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics

    NASA Astrophysics Data System (ADS)

    Ai, L.; Shi, Z. H.; Yin, W.; Huang, X.

    2015-04-01

    Landscape characteristics are widely accepted as strongly influencing stream water quality in heterogeneous watersheds. Understanding the relationships between landscape and specific water contaminant can greatly improve the predictability of potential contamination and the assessment of contaminant export. In this work, we examined the combined effects of watershed complexity, in terms of land use and physiography, on specific water contaminant across watersheds close to the Danjiangkou Reservoir. The land use composition, land use pattern, morphometric variables and soil properties were calculated at the watershed scale and considered potential factors of influence. Due to high co-dependence of these watershed characteristics, partial least squares regression was used to elucidate the linkages between some specific water contaminants and the 16 selected watershed characteristic variables. Water contaminant maps revealed spatial and seasonal heterogeneity. The dissolved oxygen values in the dry season were higher than those in the wet season, whereas the other contaminant concentrations displayed the opposite trend. The studied watersheds which are influenced strongly by urbanization, showed higher levels of ammonia nitrogen, total phosphorus, potassium permanganate index and petroleum, and lower levels of dissolved oxygen. The urban land use, largest patch index and the hypsometric integral were the dominant factors affecting specific water contaminant.

  7. Sprectroradiometric characteristics of inland water bodies infestated by Oscillatoria rubescens algae

    NASA Astrophysics Data System (ADS)

    Ciraolo, Giuseppe; La Loggia, Goffredo; Maltese, Antonino

    2010-10-01

    In December 2006 blooms of Oscillatoria rubescens were found in the reservoir Prizzi in Sicily. Oscillatoria is a genus of filamentous alga comprising approximately 6 species, between these the O. rubescens is sadly famous since this organism produces microcystins which are powerful hepatotoxins. Firstly found in Europe in 1825 on Geneva lake, recently (2006) those algae has been find out in Pozzillo, Nicoletti e Ancipa reservoirs (Enna Province), as well as in Prizzi (Palermo Province) and Garcia reservoirs (Trapani Province). Toxins produced by those bacteria (usually called microcystine LR-1 and LR-2) are highly toxic since they can activate oncogenes cells causing cancer pathologies on liver and gastrointestinal tract. Even if water treatment plants should ensure the provision of safe drinking water from surface waters contaminated with those toxic algae blooms, the contamination of reservoirs used for civil and agricultural supply highlights human health risks. International literature suggests a threshold value of 0.01 ?gl-1 to avoid liver cancer using water coming from contaminated water bodies for a long period. Since O. rubescens activities is strongly related to phosphate and nitrogen compounds as well as to temperature and light transmission within water, the paper presents the comparison between optical properties of the water of an infested reservoir and those of a reservoir characterized by clear water. Field campaigns were carried out in February-March 2008 in order to quantify the spectral transparencies of two water bodies through the calculation of the diffuse attenuation coefficient, measuring underwater downwelling irradiance at different depths as well as water spectral reflectance. Results show that diffuse attenuation coefficient is reduced by approximately 15% reducing light penetration in the water column; coherently reflectance spectral signature generally decreases, exhibiting a characteristic peak around 703 nm not present in uncontaminated waters. Latter findings highlight the possibility to detect O. rubescens infestations using their spectral characteristics by means of multitemporal remote sensing techniques.

  8. WATER PROPERTIES IN FERN SPORES: SORPTION CHARACTERISTICS RELATING TO WATER AFFINITY, GLASSY STATES AND STORAGE STABILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ex situ conservation of ferns may be accomplished by maintaining the viability of stored spores for many years. Storage conditions that maximize spore longevity can be inferred from an understanding of the behaviour of water within fern spores. Water sorption properties were measured in spores of ...

  9. Hydrologic characteristics of the main aquifer in the Los Alamos area: development of ground water supplies

    SciTech Connect

    Purtymun, W.D.

    1984-01-01

    Deep wells completed into the main aquifer have furnished 40.5 x 10/sup 9/ gal of water for the Los Alamos National Laboratory and for the communities of Los Alamos and White Rock from 1947 through 1982. The main aquifer is within the siltstones and sandstones of the Tesuque Formation along the Rio Grande, and it rises westward into the lower part of the Puye Conglomerate beneath the central and western part of the Pajarito Plateau. The Laboratory and communities of Los Alamos and White Rock are located on the Pajarito Plateau. Supply, test, and stock wells have been used to collect hydrologic data from the aquifer beneath the Pajarito Plateau and to the east along the Rio Grande. Hydrologic characteristics of springs along the Rio Grande, which are in the discharge area from the main aquifer, are included to supplement the data from the wells. Hydrologic characteristics of the aquifer determined from tests and observations are the saturated thickness, pumping or production rates of the wells, drawdown, specific capacity, field coefficient of permeability, transmissivity, rate of water movement in the aquifer, production from wells and fields, water-level trends of the aquifer, rates of water-level decline, and production per foot of water-level decline. Chemical quality of water in the aquifer varies according to the formations yielding water to the wells. Based on hydrologic characteristics of existing wells, suggested locations for four additional wells were made in areas to develop high-yield low-drawdown (1000-gpm/100-ft) supply wells. These locations are recommended in long-range planning for future water supply as the demand for water increases at the Laboratory and in the communities. A well to replace well G-4 in the Guaje Field is recommended to offset declining production in the field. 39 references, 13 figures, 6 tables.

  10. Association of drinking-water source and use characteristics with urinary antimony concentrations.

    PubMed

    Makris, Konstantinos C; Andra, Syam S; Herrick, Lisa; Christophi, Costas A; Snyder, Shane A; Hauser, Russ

    2013-03-01

    Environmental factors, such as storage time, frequency of bottle reuse and temperature, have been shown to facilitate antimony (Sb) leaching from water- and food-packaging materials. The globally escalating consumption of water packaged in Sb-containing bottles, such as that of polyethylene terephthalate (PET), could increase human daily Sb doses. This study set out to investigate the relationship between drinking-water source, use characteristics, and urinary Sb concentrations (U-Sb) accompanied with survey responses of a healthy (n=35) Cypriot participant pool. One spot urine sample was collected during administration of questionnaire, while a second spot urine sample was collected from the same individual about 7 days later. Urinary and water Sb concentrations were measured with an inductively coupled plasma mass spectrometer. Survey responses showed that bottled water summed over various volumes and plastic types, such as polycarbonate and PET contributed to an average 61% of daily water consumption. Water sources such as tap, mobile stations (explained in a following section), and well water contributed to 24%, 14%, and 2% of an individual's daily water consumption pattern, respectively. Average daily potable water use of both bottled and tap water by individuals consisted of 65% drinking-water, while the remaining 35% was water used for preparing cold and hot beverages, such as, tea, coffee, and juices. A significant (P=0.02) association between per capita water consumption from PET bottles and urinary creatinine-unadjusted concentrations was observed, but this relationship did not remain after inclusion of covariates in a multivariate regression model. In the creatinine-adjusted regression model, only gender (female) was a significant (P<0.01) predictor of U-Sb, after adjusting for several covariates. It is proposed that consumption data collection on various water uses and sources among individuals could perhaps decrease the uncertainty associated with derivations of acceptable daily Sb intakes. PMID:23188481

  11. [Physiological characteristics of nitrogen nutrition and stress-resistance of film-mulched rice in various ecological regions of Zhejiang Province].

    PubMed

    Lu, Xinghua; Wu, Lianghuan; Zheng, Zhaisheng; Kong, Xiangjun; Zhang, Fusuo

    2005-02-01

    The study showed that different ecological environment and cultivation system in various ecological regions of Zhejiang Province resulted in some different physiological characteristics of nitrogen nutrition and stress-resistance, especially in the aspect of NO3(-)-N and NH4+-N concentrations, between film-mulched and conventional flooded rice. Owing to the heat stress in Hangjiahu plain, the NO3(-)-N concentration of film-mulched rice decreased to some extent, but NH4+-N concentration increased markedly at tillering, jointing and booting stages, compared to conventional flooded rice. In Jinqu basin, the NO3(-)-N concentration of film-mulched rice at booting stage was higher, while the NH4+-N concentration in its roots was notably lower than those of conventional flooded rice, with NH4+-N concentration in its basal stems and leaves somewhat increased. Generally, the glutamine synthetase (GS) and nitrate reductase (NR) activities in film-mulched rice leaves were enhanced at booting stage, while malondiadehyde (MDA), soluble sugar (SS) and proline (Pro) concentrations had little changes. In conclusion, film-mulched cultivation was beneficial to the rice growth and its high yielding. PMID:15852922

  12. Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell

    SciTech Connect

    Ashok S. Damle; J. Vernon Cole

    2008-11-01

    A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

  13. Analysis of internal flow characteristics of a smooth-disk water-brake dynamometer

    NASA Technical Reports Server (NTRS)

    Evans, D. G.

    1973-01-01

    The principal of absorbing power with an enclosed partially submerged rotating disk through the turbulent viscous shearing of water is discussed. Reference information is used to develop a flow model of the water brake. A method is then presented that uses vector diagrams to relate the effects of rotational flow, through flow, and secondary flow to power absorption. The method is used to describe the operating characteristics of an example 111-cm (43.7-in.) diameter water brake. Correlating performance parameters are developed in a dimensional analysis.

  14. Comparison of selected cultural, physical, and water-quality characteristics of lakes in Washington

    USGS Publications Warehouse

    Bortleson, Gilbert Carl; Dion, N.P.

    1979-01-01

    The report presents comparisons and a graphical overview of the relative magnitude and regional and statewide distribution of 19 selected cultural, physical, and water-quality characteristics measured in a reconnaissance study of several hundred lakes in Washington. Statewide, mean depth of almost one-fourth of the lakes is shallow (2.0 meters or less), and only 7 percent of the lakes have mean depths greater than 20 meters. About one-third of the lakes had Secchi-disc readings of 2.0 meters or less, a value often considered characteristic of eutrophic lakes. The poorest water clarity was observed in the Columbia Plateau, where 68 percent of the lakes had Secchi-disc readings of less than 2.0 meters. More than one-third of the lakes in the State had total phosphorus concentrations that exceeded 30 micrograms per liter, a concentration that is often considered characteristic of eutrophic lakes. (Woodard-USGS)

  15. The importance of lake-specific characteristics for water quality across the continental United States.

    PubMed

    Read, Emily K; Patil, Vijay P; Oliver, Samantha K; Hetherington, Amy L; Brentrup, Jennifer A; Zwart, Jacob A; Winters, Kirsten M; Corman, Jessica R; Nodine, Emily R; Woolway, R Iestyn; Dugan, Hilary A; Jaimes, Aline; Santoso, Arianto B; Hong, Grace S; Winslow, Luke A; Hanson, Paul C; Weathers, Kathleen C

    2015-06-01

    Lake water quality is affected by local and regional drivers, including lake physical characteristics, hydrology, landscape position, land cover, land use, geology, and climate. Here, we demonstrate the utility of hypothesis testing within the landscape limnology framework using a random forest algorithm on a national-scale, spatially explicit data set, the United States Environmental Protection Agency's 2007 National Lakes Assessment. For 1026 lakes, we tested the relative importance of water quality drivers across spatial scales, the importance of hydrologic connectivity in mediating water quality drivers, and how the importance of both spatial scale and connectivity differ across response variables for five important in-lake water quality metrics (total phosphorus, total nitrogen, dissolved organic carbon, turbidity, and conductivity). By modeling the effect of water quality predictors at different spatial scales, we found that lake-specific characteristics (e.g., depth, sediment area-to-volume ratio) were important for explaining water quality (54-60% variance explained), and that regionalization schemes were much less effective than lake specific metrics (28-39% variance explained). Basin-scale land use and land cover explained between 45-62% of variance, and forest cover and agricultural land uses were among the most important basin-scale predictors. Water quality drivers did not operate independently; in some cases, hydrologic connectivity (the presence of upstream surface water features) mediated the effect of regional-scale drivers. For example, for water quality in lakes with upstream lakes, regional classification schemes were much less effective predictors than lake-specific variables, in contrast to lakes with no upstream lakes or with no surface inflows. At the scale of the continental United States, conductivity was explained by drivers operating at larger spatial scales than for other water quality responses. The current regulatory practice of using regionalization schemes to guide water quality criteria could be improved by consideration of lake-specific characteristics, which were the most important predictors of water quality at the scale of the continental United States. The spatial extent and high quality of contextual data available for this analysis makes this work an unprecedented application of landscape limnology theory to water quality data. Further, the demonstrated importance of lake morphology over other controls on water quality is relevant to both aquatic scientists and managers. PMID:26465035

  16. A study of ignition and combustion characteristics of isolated coal water slurry droplet using digital image processing technique 

    E-print Network

    Bhadra, Tanmoy

    1998-01-01

    A digital image processing technique is used to investigate the ignition and combustion characteristics of an isolated coal water slurry droplet in low Re flow. Coal water slurry droplet study is useful for dilute coal suspensions based...

  17. The vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of kerosene

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Hu; Wang, Su; Zhang, Sheng-Tao; Yue, Lian-Jie; Fan, Bing-Cheng; Zhang, Xin-Yu; Cui, Ji-Ping

    2014-08-01

    In ground tests of hypersonic scramjet, the high-enthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characteristics of fuels between ground tests and real flights. In order to properly assess the influence of the contaminants on ignition characteristics of hydrocarbon fuels, the effect of water vapor and carbon dioxide on the ignition delay times of China RP-3 kerosene was studied behind reflected shock waves in a preheated shock tube. Experiments were conducted over a wider temperature range of 800-1 500K, at a pressure of 0.3 MPa, equivalence ratios of 0.5 and 1, and oxygen concentration of 20%. Ignition delay times were determined from the onset of the excited radical OH emission together with the pressure profile. Ignition delay times were measured for four cases: (1) clean gas, (2) gas vitiated with 10% and 20% water vapor in mole, (3) gas vitiated with 10% carbon dioxide in mole, and (4) gas vitiated with 10% water vapor and 10% carbon dioxide, 20% water vapor and 10% carbon dioxide in mole. The results show that carbon dioxide produces an inhibiting effect at temperatures below 1 300 K when ? = 0.5, whereas water vapor appears to accelerate the ignition process below a critical temperature of about 1 000 K when ? = 0.5. When both water vapor and carbon dioxide exist together, a minor inhibiting effect is observed at ? = 0.5, while no effect is found at ? = 1.0. The results are also discussed preliminary by considering both the combustion reaction mechanism and the thermophysics properties of the fuel mixtures. The current measurements demonstrate vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of China RP-3 kerosene at air-like O2 concentration. It is important to account for such effects when data are extrapolated from ground testing to real flight conditions.

  18. Pervaporative dehydration characteristics of an ethanol/water azeotrope through various chitosan membranes.

    PubMed

    Uragami, Tadashi; Saito, Tomoyuki; Miyata, Takashi

    2015-04-20

    The permeation and separation characteristics of an ethanol/water azeotrope through chitosan membranes of different molecular weights and degrees of deacetylation during pervaporation were investigated. The normalized permeation rate decreased with increasing molecular weight up to 90 kDa, but at over 90 kDa, the rate increased. On the other hand, the water/ethanol selectivity increased with increasing molecular weight up to 90 kDa but decreased at over 90 kDa. With increasing degree of deacetylation, the water/ethanol permselectivity increased significantly, but the normalized permeation rate decreased. The characteristics of chitosan membranes are discussed based on their chemical and physical structures such as the contact angle, density, degree of swelling, and glass transition temperature. PMID:25662680

  19. In vivo visualization of Tradescantia leaf tissue and monitoring the physiological and morphological states under different water supply conditions using optical coherence tomography.

    PubMed

    Sapozhnikova, Veronika V; Kamensky, Vladislav A; Kuranov, Roman V; Kutis, Irina; Snopova, Ludmila B; Myakov, Aleksey V

    2004-08-01

    The optical coherence tomography (OCT) capabilities of plants were evaluated using leaves of Tradescantia pallida (Rose) D. Hunt. The internal structure of the leaf tissues was visualized in vivo and the physiological and morphological states of the tissues under different water supply conditions were monitored using OCT. The OCT technique provides non-invasive two-dimensional images directly on intact plants. The acquisition time of a two-dimensional image with a size of 200x200 pixels and a spatial resolution of 15 microm is 1-3 s. It was shown that OCT is a useful tool for monitoring the physiological and morphological states of plant tissues supplied with varying amounts of water and under the influence of different chemical factors. PMID:15133665

  20. Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality.

    PubMed

    Atanackovi?, Nebojša; Dragiši?, Veselin; Stojkovi?, Jana; Papi?, Petar; Zivanovi?, Vladimir

    2013-11-01

    Upon completion of exploration and extraction of mineral resources, many mining sites have been abandoned without previously putting environmental protection measures in place. As a consequence, mine waters originating from such sites are discharged freely into surface water. Regional scale analyses were conducted to determine the hydrochemical characteristics of mine waters from abandoned sites featuring metal (Cu, Pb-Zn, Au, Fe, Sb, Mo, Bi, Hg) deposits, non-metallic minerals (coal, Mg, F, B) and uranium. The study included 80 mine water samples from 59 abandoned mining sites. Their cation composition was dominated by Ca2+, while the most common anions were found to be SO4(2-) and HCO3-. Strong correlations were established between the pH level and metal (Fe, Mn, Zn, Cu) concentrations in the mine waters. Hierarchical cluster analysis was applied to parameters generally indicative of pollution, such as pH, TDS, SO4(2-), Fe total, and As total. Following this approach, mine water samples were grouped into three main clusters and six subclusters, depending on their potential environmental impact. Principal component analysis was used to group together variables that share the same variance. The extracted principal components indicated that sulfide oxidation and weathering of silicate and carbonate rocks were the primary processes, while pH buffering, adsorption and ion exchange were secondary drivers of the chemical composition of the analyzed mine waters. Surface waters, which received the mine waters, were examined. Analysis showed increases of sulfate and metal concentrations and general degradation of surface water quality. PMID:23872888

  1. Use of an automated chromium reduction system for hydrogen isotope ratio analysis of physiological fluids applied to doubly labeled water analysis.

    PubMed

    Schoeller, D A; Colligan, A S; Shriver, T; Avak, H; Bartok-Olson, C

    2000-09-01

    The doubly labeled water method is commonly used to measure total energy expenditure in free-living subjects. The method, however, requires accurate and precise deuterium abundance determinations, which can be laborious. The aim of this study was to evaluate a fully automated, high-throughput, chromium reduction technique for the measurement of deuterium abundances in physiological fluids. The chromium technique was compared with an off-line zinc bomb reduction technique and also subjected to test-retest analysis. Analysis of international water standards demonstrated that the chromium technique was accurate and had a within-day precision of <1 per thousand. Addition of organic matter to water samples demonstrated that the technique was sensitive to interference at levels between 2 and 5 g l(-1). Physiological samples could be analyzed without this interference, plasma by 10000 Da exclusion filtration, saliva by sedimentation and urine by decolorizing with carbon black. Chromium reduction of urine specimens from doubly labeled water studies indicated no bias relative to zinc reduction with a mean difference in calculated energy expenditure of -0.2 +/- 3.9%. Blinded reanalysis of urine specimens from a second doubly labeled water study demonstrated a test-retest coefficient of variation of 4%. The chromium reduction method was found to be a rapid, accurate and precise method for the analysis of urine specimens from doubly labeled water. PMID:11006607

  2. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    NASA Astrophysics Data System (ADS)

    Diallo, S. O.

    2015-07-01

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (˜12 and 18 Å, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. This suppression is accompanied by a systematic dependence of the average translational diffusion coefficient Dr and relaxation time of the restricted water on pore size and temperature. The observed Dr values are tested against a proposed scaling law, in which the translational diffusion coefficient Dr of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient Dc associated with the water bound to the pore walls and the ratio ? of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.

  3. Pore-size dependence and characteristics of water diffusion in slit-like micropores

    E-print Network

    S. O. Diallo

    2015-04-10

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasi- elastic neutron scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (\\sim 12 and 18 {\\AA}, denoted respectively ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. This suppression is accompanied by a systematic dependence of the average translational diffusion coefficient Dr and relaxation time of the restricted water on pore size and temperature. The observed Dr values are tested against a proposed scaling law, in which the translational diffusion coefficient Dr of water within a nanoporous matrix was found to depend solely on two single parameters, a temperature independent translational diffusion coefficient Dc associated with the water bound to the pore walls and the ratio {\\theta} of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.

  4. Benchmarking the WaterGAP3 global hydrology model in reproducing streamflow characteristics

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Flörke, Martina

    2015-04-01

    Global hydrological models are key tools to understand and assess the current state of global freshwater resources. They facilitate quantifying the degree of human interference on the natural hydrological regime and help to assess impacts of global and climate change on water resources. Large to global scale hydrologic simulation is, however, prone to large uncertainties which originate from spatially distributed input data (atmospheric forcing and land surface parameters) and, in particular, the (often) simplified physical process representation. Most large-scale modelling approaches are constrained by the implicit assumption that one single model structure is globally valid and the fact that the modeler lacks location-specific knowledge. In order to evaluate the quality of water availability estimates and to quantify the uncertainty associated with these estimates, it is thus essential to examine systematically where and why large scale hydrological models perform well or poor in reproducing observed streamflow characteristics. This study presents an extensive benchmarking study of the WaterGAP3 (Water - Global Assessment and Prognosis) model to reproduce observed monthly stream characteristics on the basis of more than 2400 observed streamflow records globally. WaterGAP3 is a grid-based conceptual water balance model operating on a 5 arc minute global grid. The model is explicitly designed to account for human interference on the natural hydrologic regime through flow regulation and water abstractions. Monthly simulated discharges for the period 1958-2010 are evaluated against observations based on three complementary performance metrics. Subsequently, model performance is assessed against a set of generic catchment descriptors supported by available global datasets which characterize climatic and physiographic conditions in the individual catchments as well as the degree of human alteration of the hydrologic regime. These relationships between catchment characteristics and model efficiencies help to detect inadequacies in model structure as well as in the underlying input data, thus set the stage for further model development.

  5. Subsurface water flow simulated for hill slopes with spatially dependent soil hydraulic characteristics

    SciTech Connect

    Sharma, M.L.; Luxmoore, R.J.; DeAngelis, R.; Ward, R.C.; Yeh, G.T.

    1987-08-01

    Water flow through hill slopes consisting of five soil layers, with varying spatial dependence in hydraulic characteristics in the lateral plane was simulated by solving Richards' equation in three dimensions under varying rainfall intensities and for two complexities of terrain. By concepts of similar media the variability in soil hydraulic characteristics was expressed by a single dimensionless parameter, the scaling factor ..cap alpha... The moments of log normally distributed ..cap alpha.. were set as: Mean = 1.0 and standard deviation = 1.0. Four cases of spatial dependence of ..cap alpha.. in the lateral plane were selected for simulation, using exponential variogram functions ranging in spatial structure from random (no spatial dependence) to large dependence (large correlation lengths). The simulations showed that the rates of subsurface flow from the 30/sup 0/ hillslope, during and following rainfall, were significantly enhanced with an increase in spatial dependence. Subsurface drainage was also increased with increases in rainfall intensity and slop complexity. For hill slopes the relative effects of spatial dependence in soil hydraulic characteristics was smaller with 30/sup 0/ horizontal pitching than without pitching. Hill slopes with a random distribution of hydraulic characteristics provided greater opportunity for soil units with differing water capacities to interact than in cases with spatially correlated distributions. This greater interaction is associated with a greater lag in subsurface flow generation. These studies illustrate some of the expected effects of spatial dependence of soil hydraulic characteristics of the integrated hydrologic response of land areas.

  6. Work Capability and physiological effects predictive studies. 4: In He-O2 excursions to pressures of 400- 800- 1200- and 1600 feet of sea water

    NASA Technical Reports Server (NTRS)

    Lambertsen, C. J. (editor); Gelfand, R. (editor); Clark, J. M. (editor); Fletcher, M. E. (editor)

    1978-01-01

    Experiments which exposed men in chambers, breathing helium with oxygen, to progressive increases of pressure equivalent to 400-800-1200-1600 feet of sea water (fsw) were conducted. Rates of compression and exposure to stable high pressure. Goals included: 1) determination of the specific character and time course of onset of physiological and performance decrements during the intentionally rapid compressions, and determination of rates of adaptation on reaching stable elevated pressure; 2) investigation of accelerated methods for decompression in deep saturation excursion diving; and 3) determination of competence in practical work performed in water at pressures equivalent to the extreme diving depths of 1200 and 1600 fsw.

  7. Novel gene expression profiles define the metabolic and physiological processes characteristic of wood and its extractive formation in a hardwood tree species, Robinia pseudoacacia.

    PubMed

    Yang, Jaemo; Park, Sunchung; Kamdem, D Pascal; Keathley, Daniel E; Retzel, Ernest; Paule, Charlie; Kapur, Vivek; Han, Kyung-Hwan

    2003-07-01

    Wood is of critical importance to humans as a primary feedstock for biofuel, fiber, solid wood products, and various natural compounds including pharmaceuticals. The trunk wood of most tree species has two distinctly different regions: sapwood and heartwood. In addition to the major constituents, wood contains extraneous chemicals that can be removed by extraction with various solvents. The composition and the content of the extractives vary depending on such factors as, species, growth conditions, and time of year when the tree is cut. Despite the great commercial and keen scientific interest, little is known about the tree-specific biology of the formation of heartwood and its extractives. In order to gain insight on the molecular regulations of heartwood and its extractive formation, we carried out global examination of gene expression profiles across the trunk wood of black locust (Robinia pseudoacacia L.) trees. Of the 2,915 expressed sequenced tags (ESTs) that were generated and analyzed in the current study, 55.3% showed no match to known sequences. Cluster analysis of the ESTs identified a total of 2278 unigene sets, which were used to construct cDNA microarrays. Microarray hybridization analyses were then performed to survey the changes in gene expression profiles of trunk wood. The gene expression profiles of wood formation differ according to the region of trunk wood sampled, with highly expressed genes defining the metabolic and physiological processes characteristic of each region. For example, the gene encoding sugar transport had the highest expression in the sapwood, while the structural genes for flavonoid biosynthesis were up-regulated in the sapwood-heartwood transition zone. This analysis also established the expression patterns of 341 previously unknown genes. PMID:14558656

  8. Physiological and isotopic characteristics of nitrogen fixation by hyperthermophilic methanogens: Key insights into nitrogen anabolism of the microbial communities in Archean hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Nishizawa, Manabu; Miyazaki, Junichi; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2014-08-01

    Hyperthermophilic hydrogenotrophic methanogens are considered to be one of the most predominant primary producers in hydrogen (H2)-abundant hydrothermal environments in the present-day ocean and throughout the history of the Earth. However, the nitrogen sources supporting the development of microbial communities in hydrothermal environments remain poorly understood. We have investigated, for the first time, methanogenic archaea commonly found in deep-sea hydrothermal environments to understand their physiological properties (growth kinetics, energetics, and metal requirements) and isotopic characteristics during the fixation of dinitrogen (N2), which is an abundant but less-bioavailable compound in hydrothermal fluids. Culture experiments showed that Methanocaldococcus strain (Mc 1-85N) (Topt = 85 °C) and Methanothermococcus strain (Mt 5-55N) (Topt = 55 °C) assimilated N2 and ammonium, but not nitrate. Previous phylogenetic studies have predicted that the Methanocaldococcus and Methanothermococcus lineages have nitrogenases, key enzymes for N2 fixation, with biochemically uncharacterised active site metal cofactors. We showed that Mt 5-55N required molybdenum for the nitrogenase to function, implying a molybdenum-bearing cofactor in the strain. Molybdenum also stimulated diazotrophic (i.e., N2-fixing) growth of Mc 1-85N, though further experiments are required to test whether the strain contains a molybdenum-dependent nitrogenase. Importantly, Mc 1-85N exhibited an apparently lower requirement of and higher tolerance to molybdenum and iron than Mt 5-55N. Furthermore, both strains produced more 15N-depleted biomass (-4‰ relative to N2) than that previously reported for diazotrophic photosynthetic prokaryotes. These results demonstrate that diazotrophic hyperthermophilic methanogens can be broadly distributed in seafloor and subseafloor hydrothermal environments, where the availability of transition metals is variable and where organic carbon, organic nitrogen, and ammonium are generally scarce. The emergence and function of diazotrophy, coupled with methanogenesis, in the early Earth is also consistent with the nitrogen isotopic records of 3.5 billion-year-old hydrothermal deposits.

  9. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices

    NASA Astrophysics Data System (ADS)

    Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M. L.; Zarco-Tejada, P. J.

    2012-07-01

    This paper deals with the monitoring of water status and the assessment of the effect of stress on citrus fruit quality using structural and physiological remote sensing indices. Four flights were conducted over a citrus orchard in 2009 using an unmanned aerial vehicle (UAV) carrying a multispectral camera with six narrow spectral bands in the visible and near infrared. Physiological indices such as the Photochemical Reflectance Index (PRI570), a new structurally robust PRI formulation that uses the 515 nm as the reference band (PRI515), and a chlorophyll ratio (R700/R670) were compared against the Normalized Difference Vegetation Index (NDVI), Renormalized Difference Vegetation Index (RDVI) and Modified Triangular Vegetation Index (MTVI) canopy structural indices for their performance in tracking water status and the effects of sustained water stress on fruit quality at harvest. The irrigation setup in the commercial orchard was compared against a treatment scheduled to satisfy full requirements (based on estimated crop evapotranspiration) using two regulated deficit irrigation (RDI) strategies. The water status of the trees throughout the experiment was monitored with frequent field measurements of stem water potential (?x), while titratable acidity (TA) and total soluble solids (TSS) were measured at harvest on selected trees from each irrigation treatment. The high spatial resolution of the multispectral imagery (30 cm pixel size) enabled identification of pure tree crown components, extracting the tree reflectance from shaded, sunlit and aggregated pixels. The physiological and structural indices were then calculated from each tree at the following levels: (i) pure sunlit tree crown, (ii) entire crown, aggregating the within-crown shadows, and (iii) simulating a lower resolution pixel, including tree crown, sunlit and shaded soil pixels. The resulting analysis demonstrated that both PRI formulations were able to track water status, except when water stress altered canopy structure. In such cases, PRI570 was more affected than PRI515 by the structural changes caused by sustained water stress throughout the season. Both PRI formulations were proven to serve as pre-visual water stress indicators linked to fruit quality TSS and TA parameters (r2 = 0.69 for PRI515 vs TSS; r2 = 0.58 vs TA). In contrast, the chlorophyll (R700/R670) and structural indices (NDVI, RDVI, MTVI) showed poor relationships with fruit quality and water status levels (r2 = 0.04 for NDVI vs TSS; r2 = 0.19 vs TA). The two PRI formulations showed strong relationships with the field-measured fruit quality parameters in September, the beginning of stage III, which appeared to be the period most sensitive to water stress and the most critical for assessing fruit quality in citrus. Both PRI515 and PRI570 showed similar performance for the two scales assessed (sunlit crown and entire crown), demonstrating that within-crown component separation is not needed in citrus tree crowns where the shaded vegetation component is small. However, the simulation conducted through spatial resampling on tree + soil aggregated pixels revealed that the physiological indices were highly affected by soil reflectance and between-tree shadows, showing that for TSS vs PRI515 the relationship dropped from r2 = 0.69 to r2 = 0.38 when aggregating soil + crown components. This work confirms a previous study that demonstrated the link between PRI570, water stress, and fruit quality, while also making progress in assessing the new PRI formulation (PRI515), the within-crown shadow effects on the physiological indices, and the need for high resolution imagery to target individual tree crowns for the purpose of evaluating the effects of water stress on fruit quality in citrus.

  10. Structural and Thermodynamic Characteristics That Seed Aggregation of Amyloid-? Protein in Water.

    PubMed

    Chong, Song-Ho; Park, Mirae; Ham, Sihyun

    2012-02-14

    Amyloid-? (A?) proteins undergo conformational transitions leading to aggregation-prone structures, which can initiate self-assembly to form soluble oligomers and eventually insoluble amyloid fibrils when transferred from the transmembrane phase to the physiological aqueous phase. Yet, how A? proteins acquire an aggregation-prone nature during the conformational transitions in water remains elusive. Here, we investigate key structural and thermodynamic features of a 42-residue A? (A?42) protein that seed aggregation based on the fully atomistic, explicit-water molecular dynamics simulations as well as on the integral-equation theory of liquids for solvation thermodynamic analysis. We performed a structure-based analysis on the solvation free energy, a major determinant of the protein hydrophobicity/solubility that influences the aggregation propensity of A?42 protein in water. In addition, the Gibbs free energy and its constituents including protein internal energy, protein configurational entropy, solvation enthalpy, and solvation entropy were computed to elucidate thermodynamic driving forces for the conformational transitions of A?42 protein in water. On the basis of the atomic-decomposition analysis of these thermodynamic functions, we demonstrate how N-terminal (residues 1-11) and C-terminal (39-42) regions as well as the central region (16-18) contribute significantly to decreasing the solubility of A?42 protein upon its conformational transitions in water. These results are consistent with the recent experimental and computational implications and further provide the molecular origin for why the C terminus may serve as an "internal seed" for aggregation and the N-terminal segment may act as a "catalyst" in inducing the A?42 self-assembly. This work takes a step forward toward the identification of structural and thermodynamic features of the A?42 monomer that seed the aggregation process in water. PMID:26596619

  11. Understanding how the leaf physiology of mangrove plants differs from fresh water plants: a fundamental step to use cellulose as a proxy for sea level rise

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.; Sternberg, L. O.

    2010-12-01

    We studied the leaf water isotopic enrichment pattern of mangrove (halophytes) and hammock (glycophytes) plants as an attempt to explain why the ?18O of stem cellulose from mangrove and hammock species have no relationship with the ?18O of source water. A better understanding of leaf physiology of mangroves and its effect on the ?18O of stem cellulose is the first step in the process of developing an isotopic proxy for sea-level rise. Seawater is enriched in 18O relative to freshwater and this difference should be recorded in stem cellulose during its synthesis. Therefore, an enrichment in the oxygen isotope ratios of cellulose would reflect an increase in sea water levels. However, only ~40% of the 18O signal of stem cellulose comes from source water, the other ~60% comes from leaf water. Mangrove and hammock plants respond to environment conditions differently, which calls for a better understanding of leaf physiology and the ability to tease leaf physiolocal effects apart from the source water signal. We hypothesized that it’s likely that mangrove plants, having a greater proportion of water traveling simplastically, would have a longer water pathway from the xylem to the stomatal pore than hammock plants. According to the Peclet effect, this would cause lower isotopic enrichment of leaf water in mangroves compared to those of hammock species. This would explain previous measurements where ?18O of stem cellulose of mangrove was not as enriched as the expected. To test our hypothesis, a transect was selected across the 2 vegetation types (mangroves and hammocks). The parameters measured where: transpiration, temperature of the leaf, ambient temperature, relative humidity, ?18O of vapor, ?18O of stem water and ?18O of leaf water. With those parameters we calculated the effective length of the water pathway from the xylem to the stomatal pore. The results confirmed our hypothesis that mangrove leaves have a longer water pathway from the xylem to the stomatal pore compared to hammock leaves. The next step is to study how we could incorporate this knowledge of different length of water pathway between halophytes and glycophytes to better correlate the oxygen isotopic signature of stem cellulose and its source water. The ultimate goal is to make possible the use of the ?18O of stem cellulose as a tool to proxy sea level rise.

  12. Chemical and physical characteristics of water in estuaries of Texas, October 1976-September 1978

    USGS Publications Warehouse

    Fisher, J.C.

    1982-01-01

    This report presents basic data on the chemical and physical characteristics of water in the estuaries of Texas for the period October 1976-September 1978. The properties or constituents that are measured in the field are dissolved oxygen (DO), specific conductance, temperature, pH, and transparency by Secchi disk. Analyses conducted in the laboratory include the principal inorganic ions, biochemical oxygen demand (BOD), total organic carbon (TOC), ammonium, nitrite, nitrate, and total phosphate. (USGS)

  13. The water withdraws and spectral characteristic analysis of back groundsurface features in Zengcheng City

    NASA Astrophysics Data System (ADS)

    Gao, Ai; Xia, Lihua

    2008-10-01

    Many achievements in studies of extracting water have been made in the past ten years.According to the foundation of remote sensing and spectrum theory, the general extracting principal of remote sensing information is introduced. Zengcheng was rich in water resources, and it is an idel back garden of Guangzhou city. Therefore, it is important to use the water resources rationally in Zengcheng.TM image dated 10 November 2006 was elected in this paper.Both interpreted maps were analyzed and managed by ENVI and ArcGIS software. Single-band threshold method, the relationship between spectrum, vegetation index and water index method were used in this paper. At last, Water index method was considered to be the most suitable one after a comparative analysis.In this paper landscape types within the study area were classified into (1) farmland, (2)forest land, (3)urban Inhabitant land and other land,(4)orchard land, (5)unused land, (6)water, with the help of Land cover map 2006 of Zengcheng. A reconnaissance survey of the study area was made to correlate the image characteristics and ground features by the standard technique of human-computer 'dialogue' interpretation.According to the foundation of remote sensing and spectrum theory, a model of water body extraction is set up in this paper.

  14. Characteristics of streamer discharge development between the dielectric-coated sphere-plane electrodes in water

    SciTech Connect

    Zhu Taiyun; Yang Lanjun; Jia Zhijie; Zhang Qiaogen

    2008-12-01

    This paper presents the characteristics of the streamer discharge development between the dielectric-coated sphere-plane electrodes in water. In order to study the streamer propagation mechanism, the factors such as polarities, water conductivity, and ambient pressure were taken into consideration. Experimental results demonstrate that the water conductivity and amplitude of applied voltage both have a great influence on mean velocity and brightness of the streamer. When the ambient pressure decreases from 0.1 to 0.0065 MPa, the pressure has little influence on the mean velocities of the streamer in both distilled and tap water for fast streamer. The existence of dielectric coating causes a lower initiation voltage of the streamer for negative polarity than that for positive one. Also, the 10% breakdown voltage (U{sub 10%}) is decreased by 20% under the pressure of 0.0065 MPa than that under the pressure of 0.1 MPa in distilled water, while the U{sub 10%} is almost the same under different pressures in tap water. Based on the analysis of the discharge images and current waveforms as well as the above experimental results, it can be concluded that the streamer propagation is composed of the generation of the microbubbles and the discharge in the bubbles. For subsonic streamer, the generation of the bubbles is more likely a thermal process, whereas for supersonic streamer, the ionization and dissociation of water molecules in high electric field are involved in the bubble generation process.

  15. Physiological Waterfalls

    ERIC Educational Resources Information Center

    Leith, David E.

    1976-01-01

    Provides background information, defining areas within organ systems where physiological waterfalls exist. Describes pressure-flow relationships of elastic tubes (blood vessels, airways, renal tubules, various ducts). (CS)

  16. Performance evaluation of four-parameter models of the soil-water characteristic curve.

    PubMed

    Matlan, Siti Jahara; Mukhlisin, Muhammad; Taha, Mohd Raihan

    2014-01-01

    Soil-water characteristic curves (SWCCs) are important in terms of groundwater recharge, agriculture, and soil chemistry. These relationships are also of considerable value in geotechnical and geoenvironmental engineering. Their measurement, however, is difficult, expensive, and time-consuming. Many empirical models have been developed to describe the SWCC. Statistical assessment of soil-water characteristic curve models found that exponential-based model equations were the most difficult to fit and generally provided the poorest fit to the soil-water characteristic data. In this paper, an exponential-based model is devised to describe the SWCC. The modified equation is similar to those previously reported by Gardner (1956) but includes exponential variable. Verification was performed with 24 independent data sets for a wide range of soil textures. Prediction results were compared with the most widely used models to assess the model's performance. It was proven that the exponential-based equation of the modified model provided greater flexibility and a better fit to data on various types of soil. PMID:24971384

  17. Performance Evaluation of Four-Parameter Models of the Soil-Water Characteristic Curve

    PubMed Central

    Taha, Mohd Raihan

    2014-01-01

    Soil-water characteristic curves (SWCCs) are important in terms of groundwater recharge, agriculture, and soil chemistry. These relationships are also of considerable value in geotechnical and geoenvironmental engineering. Their measurement, however, is difficult, expensive, and time-consuming. Many empirical models have been developed to describe the SWCC. Statistical assessment of soil-water characteristic curve models found that exponential-based model equations were the most difficult to fit and generally provided the poorest fit to the soil-water characteristic data. In this paper, an exponential-based model is devised to describe the SWCC. The modified equation is similar to those previously reported by Gardner (1956) but includes exponential variable. Verification was performed with 24 independent data sets for a wide range of soil textures. Prediction results were compared with the most widely used models to assess the model's performance. It was proven that the exponential-based equation of the modified model provided greater flexibility and a better fit to data on various types of soil. PMID:24971384

  18. [Analysis on characteristics of red tide in Fujian coastal waters during the last 10 years].

    PubMed

    Li, Xue-Ding

    2012-07-01

    There were 161 red tide events collected during the last 10 years from 2001 to 2010 in Fujian coastal waters. Comprehensive analysis was performed using statistical methods and the results indicated the following characteristics of the temporal and spatial distribution of red tide in Fujian coastal waters: (1) Outbreaks of red tide often occurred between April and September, and the peak period was in May and June. Most red tide events lasted for 2 to 4 days, and the affected area was below 50 square kilometers. The first outbreak of red tide tended to occur earlier in recent years, and the lasting time became longer. (2) There were 20 species of organisms causing the red tides in Fujian coastal waters, among which 10 species were Bacillariophyta, 9 species were Dinophyta and 1 species was Protozoa. Prorocentrum donghaiense was the most frequent cause of red tides, followed by Noctiluca scintillans, Skeletonema costatum and Chaetoceros sp.. The species caused red tides obeyed the succession law and there were always new species involved. (2) In terms of spatial distribution, outbreaks of red tides mainly occurred in the coastal waters of Ningde, Fuzhou and Xiamen. The species causing red tides were Prorocentrum donghaiense and Noctiluca in the coastal waters in the north of Pingtan, Fujian Province, Skeletonema costatum and Chaetoceros in the coastal waters in the south of Pingtan, Fujian Province. The comprehensive analysis of the characteristics of red tides during the last 10 years is expected to provide scientific and reasonable basis for the prevention, reduction and forecast of red tides in Fujian coastal waters. PMID:23002593

  19. Chemical characteristics of waters in Karst Formations at the Oak Ridge Y-12 Plant

    SciTech Connect

    Shevenell, L.A.

    1994-11-01

    Several waste disposal sites are located adjacent to or on a karst aquifer composed of the Cambrian Maynardville Limestone (Cmn) and the Cambrian Copper Ridge Dolomite (Ccr) at the U.S. Department of Energy Oak Ridge Y-12 Plant in Oak Ridge, TN. Highly variable chemical characteristics (i.e., hardness) can indicate that the portion of the aquifer tapped by a particular well is subject to a significant quick-flow component where recharge to the system is rapid and water levels and water quality change rapidly in response to precipitation events. Water zones in wells at the Y-12 Plant that exhibit quick-flow behavior (i.e., high hydraulic conductivity) are identified based on their geochemical characteristics and variability in geochemical parameters, and observations made during drilling of the wells. The chemical data used in this study consist of between one and 20 chemical analyses for each of 102 wells and multipart monitoring zones. Of these 102 water zones, 10 were consistently undersaturated with respect to calcite suggesting active dissolution. Repeat sampling of water zones shows that both supersaturation and undersaturation with respect to dolomite occurs in 46 water zones. Twelve of the zones had partial pressure of CO{sub 2} near atmospheric values suggesting limited interaction between recharge waters and the gases and solids in the vadose zone and aquifer, and hence, relatively short residence times. The preliminary data suggest that the Cmn is composed of a complicated network of interconnected, perhaps anastomosing, cavities. The degree of interconnection between the identified cavities is yet to be determined, although it is expected that there is a significant vertical and lateral interconnection between the cavities located at shallow depths in the Cnm throughout Bear Creek Valley and the Y-12 Plant area.

  20. Physiological performance of an Alaskan shrub (Alnus fruticosa) in response to disease (Valsa melanodiscus) and water stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At northern latitudes, plants are being exposed to multiple climate-related stresses as warming temperatures push plants beyond the physiological limits of their current range. Our study focused on two stresses related to the warming and drying of the Alaskan boreal forest: drought and disease. We e...

  1. Characteristic of Local Boiling Heat Transfer of Ammonia / Water Binary Mixture on the Plate Type Evaporator

    NASA Astrophysics Data System (ADS)

    Okamoto, Akio; Arima, Hirofumi; Kim, Jeong-Hun; Akiyama, Hirokuni; Ikegami, Yasuyuki; Monde, Masanori

    Ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) are expected to be the next generation energy production systems. Both systems use a plate type evaporator, and ammonia or ammonia/water mixture as a working fluid. It is important to clarify heat transfer characteristic for designing efficient power generation systems. Measurements of local boiling heat transfer coefficients and visualization were performed for ammonia /water mixture (z = 0.9) on a vertical flat plate heat exchanger in a range of mass flux (7.5 - 15 kg/m2s), heat flux (15 - 23 kW/m2), and pressure (0.7 - 0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of vapor quality and mass flux, and decrease with an increase of heat flux, and the influence of the flow pattern on the local heat transfer coefficient is observed.

  2. Molecular characteristics of H2O in hydrate/ice/liquid water mixture

    NASA Astrophysics Data System (ADS)

    Li, Qibin; Tang, Qizhong; Peng, Tiefeng; Zhang, Xiaomin; Liu, Chao; Shi, Xiaoyang

    2015-09-01

    The interfacial properties of hydrate and its ambient play an important role in hydrate technique. In this paper, the molecular characteristics of H2O in hydrate/ice/liquid water mixture system are investigated based on molecular dynamics (MD) simulations. The structure I (sI) methane hydrate is partially heated to obtain the studied system. The properties including hydrogen bond, radial distribution function (RDF) and F3 order parameter (tetrahedral coordinated parameter of H2O) indicate that there is little difference of water structure in the hydrate region and ice/liquid water mixture region. The F4 order parameter (parameter based on H-O-O-H torsion angles of H2O) could be used to distinguish the different region. The value of F4 experiences the continuous change at interface between mixture region and hydrate region.

  3. Benthic invertebrate population characteristics as affected by water quality in coal-bearing regions of Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.

    1986-01-01

    Benthic invertebrate and water quality data collected during previous U.S. Geological Survey studies to provide background hydrologic information on streams draining Tennessee coal reserves, were evaluated to identify possible relations between stream biota and water quality. Linear regressions produced low correlation coefficients relating the number of taxa/sample, total number of organisms/sample, sample diversity, and percentage composition of selected orders of invertebrates, with average water quality parameter values available at sampling stations (r is < 0.62 at p=0.05). Analyses of these data by linear regressions explained little of the variability in benthic invertebrate samples primarily because the distributions of benthic organisms along environmental gradients are nonlinear. Variability in substrate characteristics in the study area and seasonal insect emergence patterns also complicated interpretation of these data. However, analysis of variance tests did indicate significant trends towards reduced number of taxa, number of organisms, and sample diversity at stations with relatively poor water quality conditions. Decreasing percentage composition of Ephemeroptera was generally accompanied by an increase in percent Diptera at stations with higher water quality constituent concentrations and acidic pH ( > than 0.6 units). These trends indicate significant differences in benthic communities at sites with evidence of more severe land use impacts. Additional data on benthic invertebrates, water quality , and physical habitat conditions, along with analyses of data using multivariate statistical methods are needed to define ecological relations between specific groups of invertebrates and environmental conditions. (Author 's abstract)

  4. Macrophytes in shallow lakes: relationships with water, sediment and watershed characteristics

    PubMed Central

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2013-01-01

    We examined macrophyte-environment relationships in shallow lakes located within the Prairie Parkland and Laurentian Mixed Forest provinces of Minnesota. Environmental variables included land cover within lake watersheds, and within-lake, water and sediment characteristics. CCA indicated that sediment fraction smaller than 63 ?m (f<63), open water area, turbidity, and percent woodland and agricultural cover in watersheds were significant environmental variables explaining 36.6% of variation in macrophyte cover. When Province was added to the analysis as a spatial covariate, these environmental variables explained 30.8% of the variation in macrophyte cover. CCA also indicated that pH, f<63, percent woodland cover in watersheds, open water area, emergent vegetation area, and organic matter content were significant environmental variables explaining 43.5% of the variation in macrophyte biomass. When Province was added to the analysis as a spatial covariate, these environmental variables explained 39.1% of the variation in macrophyte biomass. The f<63 was the most important environmental variable explaining variation for both measures of macrophyte abundance (cover and biomass) when Province was added as a spatial covariate to the models. Percent woodland in watersheds, turbidity, open water area, and Ca+Mg explained 34.5% of the variation in macrophyte community composition. Most species showed a negative relationship with turbidity and open water area except for Potamogeton richardsonii, Stuckenia pectinata, and filamentous algae. Our study further demonstrates the extent to which macrophyte abundance and community composition are related to site- and watershed-scale variables including lake morphology, water and sediment characteristics, and percent land cover of adjacent uplands. PMID:23997402

  5. Water-quality characteristics of Michigan's inland lakes, 2001-10

    USGS Publications Warehouse

    Fuller, L.M.; Taricska, C.K.

    2012-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality (MDEQ) jointly monitored for selected water-quality constituents and properties of inland lakes during 2001–10 as part of Michigan's Lake Water-Quality Assessment program. During 2001–10, 866 lake basins from 729 inland lakes greater than 25 acres were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of the monitored lakes throughout the State; the data include vertical-profile measurements, nutrient measurements at three discrete depths, Secchi-disk transparency (SDT) measurements, and chlorophyll a measurements for the spring and summer, with major ions and other chemical indicators measured during the spring at mid-depth and color during the summer from near-surface samples. In about 75 percent of inland lake deep basins (index stations), trophic characteristics were associated with oligotrophic or mesotrophic conditions; 5 percent or less were categorized as hypereutrophic, and 80 percent of hypereutrophic lakes had a maximum depth of 30 feet or less. Comparison of spring and summer measurements shows that water clarity based on SDT measurements were clearer in the spring than in the summer for 63 percent of lakes. For near-surface measurements made in spring, 97 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited; for summer measurements, 96 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited. Spatial patterns of major ions, alkalinity, and hardness measured in the spring at mid-depth all showed lower values in the Upper Peninsula of Michigan and a southward increase toward the southern areas of the Lower Peninsula, though the location of increase varied by constituent. A spatial analysis of the data based on U.S. Environmental Protection Agency Level III Ecoregions separated potassium, sulfate, and chloride concentrations fairly well, with a pattern of lower values in northern ecoregions trending toward higher values in southern ecoregions; lower and higher concentrations of magnesium, hardness, calcium, and alkalinity were well separated, but middle-range concentrations in central Michigan ecoregions were mixed. The highest concentrations of chloride and sodium were in the southeastern area of the Lower Peninsula. Lakes with multiple basins showed few statistically significant differences in constituent concentrations at the 95-percent confidence level among combinations of depths between basins. The most statistically significant differences were found for water temperature, with significant differences in somewhat less than half the combinations in the spring and just a few combinations in the summer. The lack of significant differences between major basins of multibasin lakes indicates that monitoring of trophic characteristics in all major basins might not be necessary for the majority of constituents in future sampling programs. Trophic characteristics based on the 2001–10 dataset were compared to trophic characteristics resulting from other Michigan sampling programs, including the volunteer Cooperative Lakes Monitoring Program coordinated by the MDEQ (measurements on 250 lakes in 2011), trophic-state predictions produced by relating existing measurements to remotely sensed data (measurements for about 3,000 lakes), and the National Lakes Assessment (NLA) statistically valid, probability-designed lakes program (measurements for 50 lakes in Michigan and about 1,100 lakes nationally). A higher percentage of oligotrophic lakes resulted when using SDT from the volunteer data and the 2001–10 dataset than when using the predicted measurements from remotely sensed data or the NLA. Comparing trophic characteristics from differently designed programs provides multiple interpretations of lake water-quality status in Michigan lakes. No directional statistically significant difference was found at the 95-percent confidence lev

  6. Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: A review

    NASA Astrophysics Data System (ADS)

    Liu, Xunliang; Peng, Fangyuan; Lou, Guofeng; Wen, Zhi

    2015-12-01

    Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett-Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.

  7. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean.

    PubMed

    Sardessai, S; Shetye, Suhas; Maya, M V; Mangala, K R; Prasanna Kumar, S

    2010-01-01

    Nutrient characteristics of four water masses in the light of their thermohaline properties are examined in the eastern Equatorial Indian Ocean during winter, spring and summer monsoon. The presence of low salinity water mass with "Surface enrichments" of inorganic nutrients was observed relative to 20 m in the mixed layer. Lowest oxygen levels of 19 microM at 3 degrees N in the euphotic zone indicate mixing of low oxygen high salinity Arabian Sea waters with the equatorial Indian Ocean. The seasonal variability of nutrients was regulated by seasonally varying physical processes like thermocline elevation, meridional and zonal transport, the equatorial undercurrent and biological processes of uptake and remineralization. Circulation of Arabian Sea high salinity waters with nitrate deficit could also be seen from low N/P ratio with a minimum of 8.9 in spring and a maximum of 13.6 in winter. This large deviation from Redfield N/P ratio indicates the presence of denitrified high salinity waters with a seasonal nitrate deficit ranging from -4.85 to 1.52 in the Eastern Equatorial Indian Ocean. PMID:20547419

  8. Sociodemographic Characteristics and Beverage Intake of Children Who Drink Tap Water

    PubMed Central

    Patel, Anisha I.; Shapiro, Daniel J.; Wang, Y. Claire; Cabana, Michael D.

    2015-01-01

    Background Tap water provides a calorie-free, no-cost, environmentally friendly beverage option, yet only some youth drink it. Purpose To examine sociodemographic characteristics, weight status, and beverage intake of those aged 1–19 years who drink tap water. Methods National Health and Nutrition Examination Survey data (2005–2010) were used to examine factors associated with tap water consumption. A comparison was made of beverage intake among tap water consumers and nonconsumers, by age, race/ethnicity, and income. Results Tap water consumption was more prevalent among school-aged children (OR=1.85, 95% CI=1.47, 2.33, for those aged 6–11 years; OR=1.85, 95% CI=1.32, 2.59, for those aged 12–19 years) as compared to those aged 1–2 years. Tap water intake was less prevalent among girls/women (OR=0.76, 95% CI=0.64, 0.89); Mexican Americans (OR=0.32, 95% CI=0.23, 0.45); non-Hispanic blacks (OR=0.48, 95% CI=0.34, 0.67); and others (OR=0.50, 95% CI=0.36, 0.68) as compared to whites; Spanish speakers (OR=0.72, 95% CI=0.55, 0.95); and among referents with a lower than Grade-9 education (OR=0.52, 95% CI=0.31, 0.88); Grade 9–11 education (OR=0.50, 95% CI=0.32, 0.77); and high school/General Educational Development test completion (OR=0.50, 95% CI=0.33, 0.76), as compared to college graduates. Tap water consumers drank more fluid (52.5 vs 48.0 ounces, p<0.01); more plain water (20.1 vs 15.2 ounces, p<0.01); and less juice (3.6 vs 5.2 ounces, p<0.01) than nonconsumers. Conclusions One in six children/adolescents does not drink tap water, and this finding is more pronounced among minorities. Sociodemographic disparities in tap water consumption may contribute to disparities in health outcomes. Improvements in drinking water infrastructure and culturally relevant promotion may help to address these issues. PMID:23790991

  9. [Environmental characteristics of the atrazine in the waters in East Liaohe River Basin].

    PubMed

    Yan, Deng-hua; He, Yan; Wang, Hao

    2005-05-01

    Based on the field investigation and the Laboratory experiment, and taking the Geographic Information System (GIS) techniques as the key data disposal platform, the spatial and temporal differences and the enrichment characteristics of atrazine in the surface water in East Liaohe River Basin were systematically analyzed, the effect factors on that also were interpreted. The results show that, the average atrazine content in waters in regions with glebe or without glebe were namely 9.71 microg x L(-1) and 8.854 microg x L(-1), and the lower reach of the trunk was formed as the focus filed of the atrazine in waters. July is the month that the water contained the largest atrazine with the maximum content of 18.93 microg x L(-1). The spatial pattern of the atrazine in the waters clearly shows that, the atrazine used in the glebe are endangering the surface waters quality in the whole basin and will worsen the waters environment of East Liaohe River basin. The normalized enrichment index of the atrazine in the surface water related to plant atrazine is 0.605-1.750 with the spatial difference, the right part of the trunk is the continuous region with high index, the left part of the trunk is on the contrary, and the lower reaches is the focus region with high index. The normalized enrichment index of the atrazine in the surface waters related to soil atrazine has the spatial difference same to the index related to soil, however, the region with large index or little index has the scattering features. With respect to the effect of soil on the atrazine in the water, the integrated token index of the low moor peat soil is the largest and the peat moor soil and the paddy soil are the least. With respect to effect of the landscape pattern on the atrazine in the surface waters, the integrated token index will increase with the interaction between patches. With a certain range, the integrated token index will increase with the precipitation and runoff; however, the integrated token index will decrease with precipitation if the precipitation excesses the range. PMID:16124499

  10. Nasal Physiology

    MedlinePLUS

    ... Introduction The physiologic function of the nose includes respiration, conditioning inspired air, vocal resonance, olfaction, nasal resistance, ... airway, and ventilation and drainage of the sinuses. RESPIRATION The nose is a natural pathway for breathing. ...

  11. Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes.

    PubMed

    Fini, Alessio; Frangi, Piero; Amoroso, Gabriele; Piatti, Riccardo; Faoro, Marco; Bellasio, Chandra; Ferrini, Francesco

    2011-11-01

    The aim of this work was to evaluate the effects of selected mycorrhiza obtained in the urban environment on growth, leaf gas exchange, and drought tolerance of containerized plants growing in the nursery. Two-year-old uniform Acer campestre L., Tilia cordata Mill., and Quercus robur L. were inoculated with a mixture of infected roots and mycelium of selected arbuscular (maple, linden) and/or ectomycorrhiza (linden, oak) fungi and grown in well-watered or water shortage conditions. Plant biomass and leaf area were measured 1 and 2 years after inoculation. Leaf gas exchange, chlorophyll fluorescence, and water relations were measured during the first and second growing seasons after inoculation. Our data suggest that the mycelium-based inoculum used in this experiment was able to colonize the roots of the tree species growing in the nursery. Plant biomass was affected by water shortage, but not by inoculation. Leaf area was affected by water regime and, in oak and linden, by inoculation. Leaf gas exchange was affected by inoculation and water stress. V(cmax) and J(max) were increased by inoculation and decreased by water shortage in all species. F(v)/F(m) was also generally higher in inoculated plants than in control. Changes in PSII photochemistry and photosynthesis may be related to the capacity of inoculated plants to maintain less negative leaf water potential under drought conditions. The overall data suggest that inoculated plants were better able to maintain physiological activity during water stress in comparison to non-inoculated plants. PMID:21472449

  12. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    NASA Astrophysics Data System (ADS)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and condenser and outlet chilled water temperatures of the evaporator.

  13. Determining the uniformity coefficient and water distribution characteristics of some sprinklers.

    PubMed

    Kara, Tekin; Ekmekci, Emine; Apan, Mehmet

    2008-01-15

    The basic aim of the sprinkler irrigation method, as in other irrigation methods, is to apply irrigation water as uniformly as possible to the root zone. The uniform distribution of the applied water in sprinkler irrigation depends on factors such as sprinkler type, number and size of nozzles, arrangement of sprinklers, working pressure and the speed and direction of the wind. Sprinkler and lateral spacing should be determined by also taking the speed and direction of the wind into consideration. The aim of this study was to determine the application limits and the curves of water distribution under different working pressures, spatial arrangement and nozzle diameters under field conditions of some irrigation sprinklers which are widely used in Turkey. The objective was to determine the most appropriate system arrangement by using a computer program called CATCH3D. Five sprinklers were tested in the experimental area of Ondokuz Mayis University Campus and their water distribution characteristics identified. The most suitable operating parameters for Bereket 3: 12 x 18 m, Bereket 2: 12 x 18 m, Egeyildiz 6 x 18m, Goktepe 6 x 12 m and for Atesler sprinkler 12 x 18 m arrangement type were determined. PMID:18817192

  14. Numerical Simulation on Subcooled Boiling Heat Transfer Characteristics of Water-Cooled W/Cu Divertors

    NASA Astrophysics Data System (ADS)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-04-01

    In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition, the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial. In this paper, subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic (CFD). The boiling heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The calculated wall temperature was in good agreement with experimental results, with the maximum error of 5% only. On this basis, the void fraction distribution, flow field and heat transfer coefficient (HTC) distribution were obtained. The effects of heat flux, inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005), Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  15. Linking Species Traits to the Abiotic Template of Flowing Waters: Contrasting Eco physiologies Underlie Displacement of Zebra Mussels by Quagga Mussels in a Large River-Estuary

    NASA Astrophysics Data System (ADS)

    Casper, A. F.

    2005-05-01

    The St. Lawrence River-Estuary was the gateway of entry for dreissenids to North America and holds some of the oldest populations. The St. Lawrence also has four distinct physical-chemical water masses (a regional scale abiotic template) that both species inhabit. Despite their ecological similarities, quagga mussels are supplanting zebra mussels in much of their shared range. In order to try to better understand the changing distributions of these two species we compared glycogen, shell mass and tissue biomass in each of the water masses. This comparative physiological combined with experimental approaches (estuarine salinity experiments and reciprocal transplants) showed that while quagga mussels should dominate in most habitats, that abiotic/bioenergetic constraints in two regions (the Ottawa River plume and the freshwater-marine transition zone) might prevent them from dominating these locations. These findings are an example of how the interaction of landscape scale abiotic heterogeneity and a species-specific physiology can have strong impacts of distribution of biota large rivers.

  16. Response of soybean rhizosphere communities to human hygiene water addition as determined by community level physiological profiling (CLPP) and terminal restriction fragment length polymorphism (TRFLP) analysis

    NASA Technical Reports Server (NTRS)

    Kerkhof, L.; Santoro, M.; Garland, J.

    2000-01-01

    In this report, we describe an experiment conducted at Kennedy Space Center in the biomass production chamber (BPC) using soybean plants for purification and processing of human hygiene water. Specifically, we tested whether it was possible to detect changes in the root-associated bacterial assemblage of the plants and ultimately to identify the specific microorganism(s) which differed when plants were exposed to hygiene water and other hydroponic media. Plants were grown in hydroponics media corresponding to four different treatments: control (Hoagland's solution), artificial gray water (Hoagland's+surfactant), filtered gray water collected from human subjects on site, and unfiltered gray water. Differences in rhizosphere microbial populations in all experimental treatments were observed when compared to the control treatment using both community level physiological profiles (BIOLOG) and molecular fingerprinting of 16S rRNA genes by terminal restriction fragment length polymorphism analysis (TRFLP). Furthermore, screening of a clonal library of 16S rRNA genes by TRFLP yielded nearly full length SSU genes associated with the various treatments. Most 16S rRNA genes were affiliated with the Klebsiella, Pseudomonas, Variovorax, Burkholderia, Bordetella and Isosphaera groups. This molecular approach demonstrated the ability to rapidly detect and identify microorganisms unique to experimental treatments and provides a means to fingerprint microbial communities in the biosystems being developed at NASA for optimizing advanced life support operations.

  17. [Characteristics of water soluble inorganic ions in fine particles emitted from coal-fired power plants].

    PubMed

    Duan, Lei; Ma, Zi-Zhen; Li, Zhen; Jiang, Jing-Kun; Ye, Zhi-Xiang

    2015-03-01

    Currently, China suffers from serious pollution of fine particulate matter (PM2.5). Coal-fired power plant is one of the most important sources of PM2.5 in the atmosphere. To achieve the national goals of total emission reductions of sulfur dioxide (SO2) and nitrogen oxides (NO(x)) during the 11th and 12th Five-Year Plan, most of coal-fired power plants in China have installed or will install flue gas desulfurization (FGD) and flue gas denitrification (DNO(x)) systems. As a result, the secondary PM2.5, generated from gaseous pollutants in the atmosphere, would be decreased. However, the physical and chemical characteristics of PM2.5 in flue gas would be affected, and the emission of primary PM2.5 might be increased. This paper summarized the size distributions of PM2.5 and its water soluble ions emitted from coal-fired power plants, and highlighted the effects of FGD and DNO(x) on PM2.5 emission, especially on water soluble ions (such as SO4(2-), Ca2+ and NH4+) in PM2.5. Under the current condition of serious PM2.5 pollution and wide application of FGD and DNO(x), quantitative study on the effects of FGD and DNO(x) installation on emission characteristics of PM2.5 from coal-fired power plants is of great necessity. PMID:25929084

  18. Modeling gravity effects on water retention and gas transport characteristics in plant growth substrates

    NASA Astrophysics Data System (ADS)

    Chamindu Deepagoda, T. K. K.; Jones, Scott B.; Tuller, Markus; de Jonge, Lis Wollesen; Kawamoto, Ken; Komatsu, Toshiko; Moldrup, Per

    2014-08-01

    Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA’s advanced life support system research. With the objective of in situ resource utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions. Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air permeability characteristics of six plant growth substrates for potential applications in space, including two terrestrial analogs for lunar and Martian soils and four particulate substrates widely used in reduced gravity experiments. To simulate reduced gravity water characteristics, the predictions for ground-based measurements (1 - g) were scaled to two reduced gravity conditions, Martian gravity (0.38 - g) and lunar gravity (0.16 - g), following the observations in previous reduced gravity studies. We described the observed gas diffusivity with a recently developed model combined with a new approach that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using a substrate-structure parameter related to the gaseous phase, we adequately described the air permeability under reduced gravity conditions.

  19. Have we been ignoring physiological plasticity and genetic variation in stomatal function as a significant source of error in models of water and carbon fluxes?

    NASA Astrophysics Data System (ADS)

    Wertin, T. M.; Wolz, K.; Richter, K.; Adorbo, M.; Betzelberger, A. M.; Leakey, A.

    2013-12-01

    Accurately predicting plant and ecosystem function across climatic and ecological gradients requires properly parameterized models of both net photosynthetic assimilation of CO2 and stomatal conductance. Photosynthesis models have been parameterized to account for physiological plasticity and genetic variation for decades. However, models describing physiological plasticity or genetic variation in the sensitivity of stomatal conductance to net photosynthetic CO2 assimilation (A), relative humidity (RH), and atmospheric [CO2] have rarely, if ever, been applied. There is no mechanistic basis for the prevailing assumption that models of stomatal conductance can share a universal parameterization for all C3 species. Twelve species of temperate trees were grown in a common garden to test species-specific sensitivity of stomatal conductance to A, RH and [CO2]. Additionally, a Salix and a Populus genotype, grown at three locations throughout the Eastern US in biofuels trails, were measured at three times during the growing season to test for temporal and spatial effects. Soybean was also grown at eight ozone concentrations to test for physiological plasticity in stomatal function. Laboratory-based gas exchange measurements were used to parameterize the widely used Ball et al. (1987) model of stomatal conductance and the Farquhar et al. (1980) model of photosynthesis. These models were coupled to each other and a leaf energy balance model in order to predict in situ leaf CO2 and water fluxes which were compared against field measurements. There was significant physiological plasticity and genetic variation in the sensitivity of stomatal conductance to A, RH and [CO2]. This was reflected in significant variation in parameters of the Ball et al. (1987) model, with the key slope parameter (m) ranging from more than 4-fold. Context-specific parameterization of this widely used stomatal conductance model reduced error in predictions of in situ leaf A and gs by up to 59%, compared to the commonly used generic parameterization (m = 10, g0 = 0). This suggests that parameterization of stomatal conductance models to reflect physiological plasticity and genetic variation in function would be an effective method to improve the accuracy of plant and ecosystem models that are key tools in the study of global environmental change and sustainable agriculture.

  20. Laminar heat transfer and friction factor characteristics of carbon nano tube/water nanofluids.

    PubMed

    Rathnakumar, P; Mayilsamy, K; Suresh, S; Murugesan, P

    2014-03-01

    This paper presents an experimental investigation on the convective heat transfer and friction factor characteristics of CNT/water nanofluid through a circular tube fitted with helical screw tape inserts with constant heat flux under laminar flow condition. Nanofluids of 0.1% and 0.2% volume fractions are prepared by two step method. Thermo-physical properties like thermal conductivity and viscosity are measured by using KD2 thermal property analyzer and Brooke field cone and plate viscometer respectively. From the measurements, it is found that the viscosity increase is substantially higher than the increase in the thermal conductivity. The helical screw tape insets with twist ratios Y = 3, 2.44 and 1.78 are used to study the convective heat transfer and friction factor characteristics under laminar flow in the Reynolds number range of 520-2500. It is observed that, in a plain tube, maximum enhancement in Nusselt number for 0.1% and 0.2% volume fractions of nanofluids compared to pure water is 15% and 32% respectively. With the use of inserts, maximum enhancement in Nusselt number corresponding to twist ratios of 1.78, 2.44 and 3 are obtained as 8%, 16% and 4.6% for 0.1% volume fraction of nanofluid and 5%, 4% and 12% for 0.2% volume fraction of nanofluid when compared with water in plain tube. Thermal performance factor evaluation revealed that the values at all Reynolds number for all twist ratios and both concentration of CNT nanofluid are greater than unity which indicates that helical screw tape inserts with twist ratios considered are feasible in terms of energy saving in laminar flow. PMID:24745238

  1. Physico-chemical and microbiological characteristics of water for fish production using small ponds

    NASA Astrophysics Data System (ADS)

    Ntengwe, Felix W.; Edema, Mojisola O.

    The physical-chemical and biological characteristics of water in fish ponds were investigated with a view to optimise the conditions for fish productivity using small ponds. Five fish ponds were used in the study. The water samples were collected in each pond at a depth of 10-15 cm from the surface over a period of six months and analysed for pH, temperature, DO, alkalinity. The fish activity and growth rates were also assessed. The results showed that the ponds were slightly acidic to neutral (pH 6.69-7.66). The mean lowest and highest values of DO were 9.05 and 9.93 mg/L while the values for alkalinity were 67.86 and 90.57 mg/L respectively. The bacterial counts were in the order of 10 6 and the populations comprised Pseudomonas, Enterobacter, Salmonella, Staphylococcus, Bacillus, Azotobacter, Arthrobacter species and Escherichia coli. It was also observed that the fish activity increased as the temperature of the water varied from April to September as given by the activity ranges of 55-95, 40-80, 55-80, 70-95 and 55-95/m 2 for ponds P1, P2, P3, P4 and P5, respectively. The lowest values were in the months of April, May and June and highest values were in the months of July, August and September. The optimum conditions for increased fish productivity were found to be the warm temperatures (20 < t < 30 °C), adequate DO level (>4 mg/L) and appropriate pH (6 < pH < 9) and alkalinity (Alk) (80 < Alk < 200 mg/L). The correlations between characteristics were significant at 0.01 and 0.05 levels (2 tailed). Therefore, the fish productivity can be enhanced if the conditions in the ponds were maintained at optimum levels.

  2. Prediction of micro-bubble dissolution characteristics in water and seawater

    SciTech Connect

    Kawahara, Akimaro; Sadatomi, Michio; Matsuura, Hidetoshi; Tominaga, Mayo; Noguchi, Masanori; Matsuyama, Fuminori

    2009-07-15

    This paper is concerned with the prediction of micro-bubble dissolution characteristics in water and seawater when microbubbles are generated by a Sadatomi-type micro-bubble generator (2003) with a spherical body in a flowing liquid tube. In the experiments, in order to know the effects of the salinity on the characteristics, tap water and an artificial seawater with different salt concentrations of 1 and 3 wt% were used as the test liquids. Parameters measured were the Sauter mean diameter of bubbles, d{sub BS}, the void fraction, {alpha}, the rising velocity of bubbles, u{sub G}, the interfacial area concentration, a, the volumetric mass transfer coefficient, K{sub L}a, and the liquid-side mass transfer coefficient, K{sub L}. In the analysis, for predicting {alpha}, K{sub L}a and K{sub L}, some correlations in the literatures were tested against the present data. Furthermore, in order to improve the predictability, new correlations were developed based on the present data. The prediction of K{sub L}a with the new correlation agreed well with Nishino et al.'s [T. Nishino, K. Terasaka, M. Ishida, Application for several micro-bubble generators for gas absorber, in: Proceedings of the Annual Meeting of the Japanese Society for Multiphase Flow, 2006, pp. 276-277 (in Japanese)] and Li and Tsuge's [P. Li, H. Tsuge, Water treatment by induced air flotation using microbubbles, Journal of Chemical Engineering of Japan 39 (2006) 896-903; P. Li, H. Tsuge, Ozone transfer in a new gas-induced contactor with microbubbles, Journal of Chemical Engineering of Japan 39 (2006) 1213-1220] data for different aeration systems using several different micro-bubble generators. (author)

  3. Red spruce physiology and growth in response to elevated CO[sub 2], water stress and nutrient limitations

    SciTech Connect

    Samuelson, L.J.

    1992-01-01

    Spruce-fir ecosystems of the eastern United States interest scientists because of reported changes in population growth. This research examined the growth and physical responses of red spruce seedlings (Picea rubens Sarg.) to change in atmospheric CO[sub 2], water and nutrient availability to determine the response of this species to potential climatic changes. Red spruce seedlings were grown from seed for 1 year in ambient (374 ppm) or elevated (713 ppm) CO[sub 2] in combination with low or high soil fertility treatment, and well-watered or water-stressed conditions. Red spruce seedlings grown with limited nutrient and water availability increased growth in elevated CO[sub 2] as did seedlings grown with high soil fertility treatment and ample water. At 12 months of age, elevated CO[sub 2]-grown seedlings had greater dry weight, height, diameter and specific leaf weight than ambient CO[sub 2[minus

  4. Regulatory Physiology

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  5. Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization

    USGS Publications Warehouse

    Westerhoff, P.; Anning, D.

    2000-01-01

    Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p < 0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p < 0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition. (C) 2000 Elsevier Science B.V.Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p<0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p<0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition.The influence of urbanization, becoming increasingly common in arid regions, on dissolved organic carbon (DOC) concentrations in surface water resources was studied. DOC concentration and composition, seasonal watershed runoff events, streamflow variations, water management practices, and urban infrastructure in several Arizona watersheds were monitored. Ephemeral sites had the highest DOC levels, and unregulated perennial sites and lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater treatment plants. Reservoir outflows and wastewater treatment plant effluent had higher and less variable DOC concentrations than inflows to reservoirs. UV absorbance values, fluorescence measurements, and other indicators suggest that urban water systems (reservoirs and wastewater treatment plants) affect temporal variability in DOC concentration and composition.

  6. Quercus species differ in water and nutrient characteristics in a resource-limited fall-line sandhill habitat.

    PubMed

    Donovan, L A; West, J B; McLeod, K W

    2000-08-01

    We compared co-occurring mature Quercus laevis Walt. (turkey oak), Q. margaretta Ashe (sand post oak) and Q. incana Bartr. (bluejack oak) trees growing in resource-limited sandhill habitats of the southeastern United States for water and nutrient characteristics. The Quercus spp. differed in their distribution along soil water and nutrient gradients, and in their access to and use of water, even though the study year was wetter than average with no mid-season drought. Quercus laevis had the greatest access to soil water (least negative pre-dawn water potential, psi(pd)) and the most conservative water-use strategy based on its relatively low stomatal conductance (g(s)), high instantaneous water-use efficiency (WUE), least negative midday water potential (psy(md)) and high leaf specific hydraulic conductance (K(L)). Quercus margaretta had the least conservative water-use characteristics, exhibiting relatively high g(s), low instantaneous WUE, most negative psi(md), and low K(L). Quercus margaretta also had a low photosynthetic nitrogen-use efficiency (PNUE), but a high leaf phosphorus concentration. Quercus incana had the poorest access to soil water, but intermediate water-use characteristics and leaf nutrient characteristics more similar to those of Q. laevis. There were no species differences for photosynthesis (A), leaf nitrogen on an area basis, or seasonally integrated WUE (delta13C). Both A and g(s) were positively correlated for each species, but A and g(s) were generally not correlated with psi(pd), psi(md) or delta psi(pd-md). Although we found differences in resource use and resource status among these sandhill Quercus spp., the results are consistent with the interpretation that they are generally drought avoiders. Quercus laevis may have an advantage on xeric ridges because of its greater ability to access soil water and use it more conservatively compared with the other Quercus spp. PMID:11303567

  7. Growth, physiology and yield of durum wheat (Triticum durum) treated with sewage sludge under water stress conditions

    PubMed Central

    Boudjabi, Sonia; Kribaa, Mohammed; Chenchouni, Haroun

    2015-01-01

    In arid and semi-arid areas, low soil fertility and water deficit considerably limit crop production. The use of sewage sludge as an organic amendment could contribute to the improvement of soil fertility and hence the agronomic production. The study aims to highlight the behaviour of durum wheat to the application of sewage sludge associated with water stress. The assessment focused on morphophysiological parameters of the wheat plant and yield. Under greenhouse conditions, the variety Mohamed Ben Bachir was treated by four water stress levels (100 %, 80 %, 50 % and 30 %). Each stress level comprised five fertilizer treatments: 20, 50 and 100 t/ha of dry sludge, 35 kg/ha of urea, and a control with no fertilization. Results revealed a significant loss in water content and chlorophyll a in leaves. Water stress negatively affected the development of wheat plants by reducing significantly seed yield, leaf area and biomass produced. Plant’s responses to water stress manifested by an accumulation of proline and a decrease in total phosphorus. However, the increasing doses of sewage sludge limited the effect of water stress. Our findings showed an increase in the amount of chlorophyll pigments, leaf area, total phosphorus, biomass and yield. In addition, excessive accumulation of proline (1.11 ± 1.03 µg/g DM) was recorded as a result of the high concentration of sludge (100 t/ha DM). The application of sewage sludge is beneficial for the wheat crop, but the high accumulation of proline in plants treated with high dose of sludge suggests to properly consider this fact. The application of sludge should be used with caution in soils where water is limited. Because the combined effect of these two factors could result in a fatal osmotic stress to crop development. PMID:26417365

  8. Physiological, biochemical and morphological indicators of osmoregulatory stress in 'California' Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum) exposed to hypersaline water.

    PubMed

    Sardella, Brian A; Matey, Victoria; Cooper, Jill; Gonzalez, Richard J; Brauner, Colin J

    2004-03-01

    The salinity tolerance of the 'California' Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum), a current inhabitant of the hypersaline Salton Sea in California, USA, was investigated to identify osmoregulatory stress indicators for possible use in developing a model of salinity tolerance. Seawater-acclimated (35 g l(-1)) tilapia hybrids were exposed to salinities from 35-95 g l(-1), using gradual and direct transfer protocols, and physiological (plasma osmolality, [Na+], [Cl-], oxygen consumption, drinking rate, hematocrit, mean cell hemoglobin concentration, and muscle water content), biochemical (Na+, K(+)-ATPase) and morphological (number of mature, accessory, immature and apoptotic chloride cells) indicators of osmoregulatory stress were measured. Tilapia tolerated salinities ranging from 35 g l(-1) to 65 g l(-1) with little or no change in osmoregulatory status; however, in fish exposed to 75-95 g l(-1) salinity, plasma osmolality, [Na+], [Cl-], Na+, K(+)-ATPase, and the number of apoptotic chloride cells, all showed increases. The increase in apoptotic chloride cells at salinities greater than 55 g l(-1), prior to changes in physiological and biochemical parameters, indicates that it may be the most sensitive indicator of osmoregulatory stress. Oxygen consumption decreased with salinity, indicating a reduction in activity level at high salinity. Finally, 'California' Mozambique tilapia have a salinity tolerance similar to that of pure Mozambique tilapia; however, cellular necrosis at 95 g l(-1) indicates they may be unable to withstand extreme salinities for extended periods of time. PMID:15010491

  9. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology.

    PubMed

    Clusella-Trullas, Susana; Chown, Steven L

    2008-10-01

    Several controversies currently dominate the fields of arthropod metabolic rate, gas exchange and water balance, including the extent to which modulation of gas exchange reduces water loss, the origins of discontinuous gas exchange, the relationship between metabolic rate and life-history strategies, and the causes of Palaeozoic gigantism. In all of these areas, repeated calls have been made for the investigation of groups that might most inform the debates, especially of taxa in key phylogenetic positions. Here we respond to this call by investigating metabolic rate, respiratory water loss and critical oxygen partial pressure (Pc) in the onychophoran Peripatopsis capensis, a member of a group basal to the arthropods, and by synthesizing the available data on the Onychophora. The rate of carbon dioxide release (VCO2) at 20 degrees C in P. capensis is 0.043 ml CO2 h(-1), in keeping with other onychophoran species; suggesting that low metabolic rates in some arthropod groups are derived. Continuous gas exchange suggests that more complex gas exchange patterns are also derived. Total water loss in P. capensis is 57 mg H2O h(-1) at 20 degrees C, similar to modern estimates for another onychophoran species. High relative respiratory water loss rates ( approximately 34%; estimated using a regression technique) suggest that the basal condition in arthropods may be a high respiratory water loss rate. Relatively high Pc values (5-10% O2) suggest that substantial safety margins in insects are also a derived condition. Curling behaviour in P. capensis appears to be a strategy to lower energetic costs when resting, and the concomitant depression of water loss is a proximate consequence of this behaviour. PMID:18805813

  10. Land and water use characteristics in the vicinity of the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-03-01

    Routine operations at the Savannah River Site (SRS) result in the release of small amounts of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the offsite maximum individual and the offsite population within 50 miles of the SRS are estimated on a yearly basis. These estimates are generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose model parameters for facilities not having enough data to develop site-specific values. A survey of land and water use characteristics for the Savannah River area has been conducted to determine as many site-specific values as possible for inclusion in the dose models used at the SRS. These site parameters include local characteristics of meat, milk, and vegetable production; river recreational activities; and meat, milk, and vegetable consumption rates. The report that follows describes the origin of the NRC default values, the methodology for deriving regional data, the results of the study, and the derivations of region-specific usage and consumption rates. 33 refs., 3 figs., 8 tabs.

  11. Heat transfer characteristics for some coolant additives used for water cooled engines

    SciTech Connect

    Abou-Ziyan, H.Z.; Helali, A.H.B.

    1996-12-31

    Engine coolants contain certain additives to prevent engine overheating or coolant freezing in cold environments. Coolants, also, contain corrosion and rust inhibitors, among other additives. As most engines are using engine cooling solutions, it is of interest to evaluate the effect of engine coolants on the boiling heat transfer coefficient. This has its direct impact on radiator size and environment. This paper describes the apparatus and the measurement techniques. Also, it presents the obtained boiling heat transfer results at different parameters. Three types of engine coolants and their mixtures in distilled water are evaluated, under sub-cooled and saturated boiling conditions. A profound effect of the presence of additives in the coolant, on heat transfer, was clear since changes of heat transfer for different coolants were likely to occur. The results showed that up to 180% improvement of boiling heat transfer coefficient is experienced with some types of coolants. However, at certain concentrations other coolants provide deterioration or not enhancement in the boiling heat transfer characteristics. This investigation proved that there are limitations, which are to be taken into consideration, for the composition of engine coolants in different environments. In warm climates, ethylene glycol should be kept at the minimum concentration required for dissolving other components, whereas borax is beneficial to the enhancement of the heat transfer characteristics.

  12. Analysis of rabbit intervertebral disc physiology based on water metabolism. II. Changes in normal intervertebral discs under axial vibratory load

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Itoh, T.; Sano, A.

    1988-11-01

    Metabolic changes induced by axial vibratory load to the spine were investigated based on water metabolism in normal intervertebral discs of rabbits with or without pentobarbital anesthesia. Tritiated water concentration in the intervertebral discs of unanesthetized rabbits was reduced remarkably by axial vibration for 30 minutes using the vibration machine developed for this study. Repeated vibratory load for 18 and 42 hours duration showed the recovery of /sup 3/H/sub 2/O concentration of the intervertebral disc without anesthesia. Computer simulation suggested a reduction of blood flow surrounding the intervertebral disc following the vibration stress. However, no reduction of the /sup 3/H/sub 2/O concentration in the intervertebral disc was noted under anesthesia. Emotional stress cannot be excluded as a factor in water metabolism in the intervertebral disc.

  13. Sensitivity of limber pine (Pinus flexilis) seedling physiology to elevation, warming, and water availability across a timberline ecotone

    NASA Astrophysics Data System (ADS)

    Moyes, A. B.; Castanha, C.; Ferrenberg, S.; Germino, M. J.; Kueppers, L. M.

    2010-12-01

    Treelines occur where environmental gradients such as temperature become limiting to tree establishment, and are thus likely to respond to changes in climate. We collected gas exchange, water potential, and fluorescence measurements from limber pine (Pinus flexilis) seedlings planted into experimental plots at three elevations at Niwot Ridge, Colorado, ranging from within forest to alpine. At each site seeds from local high- and low-elevation populations were sewn into replicated and controlled watering and infrared heating treatment plots. Heating led to earlier snowmelt, germination, and soil moisture availability in spring; higher soil surface temperatures throughout the growing season; and drier soils in late summer. Assimilation rates in all plots were most strongly associated with soil moisture availability following germination, and decreased as soils dried over the growing season. Intrinsic water use efficiency was consistent for the two source populations, but there was evidence that individuals germinating from high-elevation seeds respired more per unit carbon assimilated under our experimental conditions. Chlorophyll fluorescence showed no evidence of photoinhibition in any elevation or treatment category. Earlier soil moisture depletion in heated plots was associated with lower midday stem water potentials and reduced stomatal conductance in August. Our watering treatments did not substantially reduce apparent midsummer water stress. Seedlings in ambient temperature plots had higher assimilation rates in August than those in heated plots, but also greater carbon loss via photorespiration. Moisture limitation in heated plots in summer interacted with variability in afternoon sun exposure within plots, and qualitative observations suggested that many seedlings were killed by desiccation and heat girdling at all elevations. While early snowmelt and moisture availability in heated plots provided a longer growing season, earlier reduction of soil moisture availability in summer offset this advantage for limber pine seedling carbon gain.

  14. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  15. A simple fiber optic humidity sensor based on water-absorption characteristic of CAB

    NASA Astrophysics Data System (ADS)

    Li, Guang; Xu, Wei; Huang, Xuguang

    2015-02-01

    A simple fiber-optic relative humidity sensor based on cellulose acetate butyrate (CAB) and Fresnel reflection is proposed and investigated theoretically and experimentally. The sensing system is only composed of one light source, three optical couplers, two photo-detectors and two fiber sensing ends. The operation principle is based on relative Fresnel reflection and water-absorption characteristic of the CAB which simultaneously contains hydrophilic and hydrophobic groups. The water absorption process will lead to variation of the CAB's refractive index or permittivity. It has to be noted that the double-channel system can effectively eliminate the intensity fluctuation of the light source and the influence of the environment. In this paper, the relative humidity environments approximately ranging from 10 % to 100% are generated and measured both in the humidification and dehumidification processes, which shows a good repeatability and reveals a very good fitting feature with a high value of R2 above 0.99. It is of reflection type and can be simply extend to be a multi-point-monitoring system. The sensing system is of cost- effective, simple operation and high precision.

  16. Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways.

    PubMed

    Reisser, Julia; Shaw, Jeremy; Wilcox, Chris; Hardesty, Britta Denise; Proietti, Maira; Thums, Michele; Pattiaratchi, Charitha

    2013-01-01

    Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments ("microplastics", median length?=?2.8 mm, mean length?=?4.9 mm) resulting from the breakdown of larger objects made of polyethylene and polypropylene (e.g. packaging and fishing items). Mean sea surface plastic concentration was 4256.4 pieces km(-2), and after incorporating the effect of vertical wind mixing, this value increased to 8966.3 pieces km(-2). These plastics appear to be associated with a wide range of ocean currents that connect the sampled sites to their international and domestic sources, including populated areas of Australia's east coast. This study shows that plastic contamination levels in surface waters of Australia are similar to those in the Caribbean Sea and Gulf of Maine, but considerably lower than those found in the subtropical gyres and Mediterranean Sea. Microplastics such as the ones described here have the potential to affect organisms ranging from megafauna to small fish and zooplankton. PMID:24312224

  17. Marine Plastic Pollution in Waters around Australia: Characteristics, Concentrations, and Pathways

    PubMed Central

    Reisser, Julia; Shaw, Jeremy; Wilcox, Chris; Hardesty, Britta Denise; Proietti, Maira; Thums, Michele; Pattiaratchi, Charitha

    2013-01-01

    Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments (“microplastics”, median length?=?2.8 mm, mean length?=?4.9 mm) resulting from the breakdown of larger objects made of polyethylene and polypropylene (e.g. packaging and fishing items). Mean sea surface plastic concentration was 4256.4 pieces km?2, and after incorporating the effect of vertical wind mixing, this value increased to 8966.3 pieces km?2. These plastics appear to be associated with a wide range of ocean currents that connect the sampled sites to their international and domestic sources, including populated areas of Australia's east coast. This study shows that plastic contamination levels in surface waters of Australia are similar to those in the Caribbean Sea and Gulf of Maine, but considerably lower than those found in the subtropical gyres and Mediterranean Sea. Microplastics such as the ones described here have the potential to affect organisms ranging from megafauna to small fish and zooplankton. PMID:24312224

  18. Water Purification Characteristic of the Actual Constructed Wetland with Carex dispalata in a Cold Area

    NASA Astrophysics Data System (ADS)

    Tsuji, Morio; Yamada, Kazuhiro; Hiratsuka, Akira; Tsukada, Hiroko

    Carex dispalata, a native plant species applied in cold districts for water purification in constructed wetlands, has useful characteristics for landscape creation and maintenance. In this study, seasonal differences in purification ability were verified, along with comparison of frozen and non-frozen periods' performance. A wetland area was constructed using a “hydroponics method” and a “coir fiber based method”. Results show that the removal rates of BOD, SS, and Chl-a were high. On this constructed wetland reduces organic pollution, mainly phytoplankton, but the removal of nitrogen and phosphorus was insufficient. The respective mean values of influent and treated water during three years were 26.6 mg/L and 12.2 mg/L for BOD, and 27.9 mg/L and 7.5 mg/L for SS. The mean value of the BOD removal rate for the non-frozen period was 2.99 g/m2/d that for the frozen period was 1.86 g/m2/d. The removal rate followed the rise of the BOD load rate. The removal rate limits were about 4 g/m2/d during the frozen period and 15 g/m2/d during the non-frozen period. For operations, energy was unnecessary. The required working hours were about 20 h annually for all maintenance and management during operations.

  19. NRES 725 PLANT PHYSIOLOGICAL ECOLOGY Spring 2006

    E-print Network

    Nowak, Robert S.

    -163 & 169- 172 *Maurel (97) Ann Rev Plant Phys & Mol Biol 48:399-430 *Sperry et al (02) Plant Cell Environ1 NRES 725 ­ PLANT PHYSIOLOGICAL ECOLOGY Spring 2006 Reading List ­ Water Balance of Plants I) Water Balance of Plants A) Water potential B) Soil, plant, air continuum C) Physiological control 1

  20. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Among popular commercial varieties, TAM 111 and TAM 112 showed a superior adaptation to water-deficit c...

  1. Water fluoridation: a critical review of the physiological effects of ingested fluoride as a public health intervention.

    PubMed

    Peckham, Stephen; Awofeso, Niyi

    2014-01-01

    Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed. PMID:24719570

  2. The Importance of the Ionic Product for Water to Understand the Physiology of the Acid-Base Balance in Humans

    PubMed Central

    Adeva-Andany, María M.; Carneiro-Freire, Natalia; Donapetry-García, Cristóbal; Rañal-Muíño, Eva; López-Pereiro, Yosua

    2014-01-01

    Human plasma is an aqueous solution that has to abide by chemical rules such as the principle of electrical neutrality and the constancy of the ionic product for water. These rules define the acid-base balance in the human body. According to the electroneutrality principle, plasma has to be electrically neutral and the sum of its cations equals the sum of its anions. In addition, the ionic product for water has to be constant. Therefore, the plasma concentration of hydrogen ions depends on the plasma ionic composition. Variations in the concentration of plasma ions that alter the relative proportion of anions and cations predictably lead to a change in the plasma concentration of hydrogen ions by driving adaptive adjustments in water ionization that allow plasma electroneutrality while maintaining constant the ionic product for water. The accumulation of plasma anions out of proportion of cations induces an electrical imbalance compensated by a fall of hydroxide ions that brings about a rise in hydrogen ions (acidosis). By contrast, the deficiency of chloride relative to sodium generates plasma alkalosis by increasing hydroxide ions. The adjustment of plasma bicarbonate concentration to these changes is an important compensatory mechanism that protects plasma pH from severe deviations. PMID:24877130

  3. Effects of density and water availability on the behavior, physiology, and weight loss of slaughter horses during transport 

    E-print Network

    Iacono, Christa Marie

    2007-04-25

    The aim of this study was to determine the effects of density and provision of water on behavior, stress, and weight loss in slaughter horses during transport. A 16.2-m long, single deck, semi-trailer was divided into three ...

  4. Water Fluoridation: A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention

    PubMed Central

    2014-01-01

    Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1?ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed. PMID:24719570

  5. Effect of various Na/K ratios in low-salinity well water on growth performance and physiological response of Pacific white shrimp Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Tan, Beiping; Yang, Jinfang; Lin, Yingbo; Chi, Shuyan; Dong, Xiaohui; Yang, Qihui

    2014-09-01

    To investigate the influence of sodium to potassium (Na/K) ratios on the growth performance and physiological response of the Pacific white shrimp ( Litopenaeus vananmei), various concentrations of KCl were added to low-salinity well water (salinity 4) in an 8-week culture trial. Six treatments with Na/K ratios of 60:1, 42:1, 33:1, 23:1, 17:1, and 14:1 were replicated in triplicate. The highest weight-gain rate (3 506±48)% and survival rate (89.38±0.88)% was observed in well water with Na/K ratios of 23:1 and 42:1, respectively, while the feed conversion ratio (1.02±0.01), oxygen consumption, and ammonia-N excretion rate was the lowest in the medium with a Na/K ratio of 23:1. Gill Na+-K+-ATPase activity, as an indicator of osmoregulation, peaked in the treatment where the Na/K ratio was 17:1. The total hemocyte count, respiratory burst, and immune-related enzyme activities (ALP, LSZ, PO, and SOD) of L. vananmei were affected significantly by Na/K ratios ( P<0.05). After challenged with Vibrio harveyi, the cumulative mortality of shrimp reared in a Na/K ratio of 23:1 (30±14.14)% was significantly lower than the control (75±7.07)%. In conclusion, the addition of K+ to low-salinity well water in L. vannamei cultures is feasible. Na/K ratios ranging from 23:1 to 33:1 might improve survival and growth. Immunity and disease resistance are also closely related to the Na/K ratio of the low-salinity well water. The findings may contribute to the development of more efficient K + remediation strategies for L. vananmei culture in low-salinity well water.

  6. Optimal plant water use across temporal scales: bridging eco-hydrological theories and plant eco-physiological responses

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Vico, G.; Palmroth, S.; Katul, G. G.; Porporato, A. M.

    2013-12-01

    In terrestrial ecosystems, plant photosynthesis occurs at the expense of water losses through stomata, thus creating an inherent hydrologic constrain to carbon (C) gains and productivity. While such a constraint cannot be overcome, evolution has led to a number of adaptations that allow plants to thrive under highly variable and often limiting water availability. It may be hypothesized that these adaptations are optimal and allow maximum C gain for a given water availability. A corollary hypothesis is that these adaptations manifest themselves as coordination between the leaf photosynthetic machinery and the plant hydraulic system. This coordination leads to functional relations between the mean hydrologic state, plant hydraulic traits, and photosynthetic parameters that can be used as bridge across temporal scales. Here, optimality theories describing the behavior of stomata and plant morphological features in a fluctuating soil moisture environment are proposed. The overarching goal is to explain observed global patterns of plant water use and their ecological and biogeochemical consequences. The problem is initially framed as an optimal control problem of stomatal closure during drought of a given duration, where maximizing the total photosynthesis under limited and diminishing water availability is the objective function. Analytical solutions show that commonly used transpiration models (in which stomatal conductance is assumed to depend on soil moisture) are particular solutions emerging from the optimal control problem. Relations between stomatal conductance, vapor pressure deficit, and atmospheric CO2 are also obtained without any a priori assumptions under this framework. Second, the temporal scales of the model are expanded by explicitly considering the stochasticity of rainfall. In this context, the optimal control problem becomes a maximization problem for the mean photosynthetic rate. Results show that to achieve maximum C gains under these unpredictable rainfall conditions, plant hydraulic traits (xylem and stomatal response to water availability) and morphological features (leaf and sapwood areas) must be coordinated - thus providing an ecohydrological interpretation of observed coordination (or homeostasis) among hydraulic traits. Moreover, the combinations of hydraulic traits and responses to drought that are optimal are found to depend on both total rainfall and its distribution during the growing season. Both drier conditions and more intense rainfall events interspaced by longer dry periods favor plants with high resistance to cavitation and delayed stomatal closure as soils dry. In contrast, plants in mesic conditions benefit from cavitation prevention through earlier stomatal closure. The proposed ecohydrological optimality criteria can be used as analytical tools to interpret variability in plant water use and predict trends in plant productivity and species composition under future climates.

  7. Investigation of Aerodynamic and Icing Characteristics of Water-Inertia-Separation Inlets for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Blatz, R. E.

    1950-01-01

    The results of an investigation of several internal water-inertia-separation inlets consisting of a main duct and an alternate duct designed to prevent automatically the entrance of large quantities of water into a turbojet engine in icing conditions are presented. Total-pressure losses and icing characteristics for a direct-ram inlet and the inertia-separation inlets are compared at similar aerodynamic and simulated icing conditions. Complete ice protection for inlet guide vanes could not be achieved with the inertia-separation inlets investigated. Approximately 8 percent of the volume of water entering the nacelles remained. In the air passing into the compressor inlet. Heavy alternate-duct-elbow ice formations caused by secondary inertia separation resulted in rapid total-pressure losses and decreases in mass flow. The duration in an icing condition for an inertia-separation- inlet, without local surface heating, was increased approximately four times above that for a direct-ram inlet with a compressor-inlet screen. For normal nonicing operation, the inertia-separation- inlet total-pressure losses were comparable to a direct-ram installation. The pressure losses and the circumferential uniformity of the mass flow in all the inlets were relatively independent of angle of attack. Use of an inertia-separation inlet would in most cases require a larger diameter nacelle than a direct-ram inlet in order to obtain an alternate duct sufficiently large to pass the required engine air flow at duct Mach numbers below 1.0 at the minimum area.

  8. Loop-Closure and Gaussian Models of Collective Structural Characteristics of Capped PEO Oligomers in Water.

    PubMed

    Chaudhari, M I; Pratt, L R; Paulaitis, M E

    2015-07-23

    Parallel-tempering MD results for a CH3(CH2-O-CH2)mCH3 chain in water are exploited as a database for analysis of collective structural characteristics of the PEO globule with a goal of defining models permitting statistical thermodynamic analysis of dispersants of Corexit type. The chain structure factor, relevant to neutron scattering from a deuterated chain in null water, is considered specifically. The traditional continuum-Gaussian structure factor is inconsistent with the simple k ? ? behavior, but we consider a discrete-Gaussian model that does achieve that consistency. Shifting and scaling the discrete-Gaussian model helps to identify the low-k to high-k transition near k ? 2?/0.6 nm when an empirically matched number of Gaussian links is about one-third of the total number of effective atom sites. This short distance-scale boundary of 0.6 nm is directly verified with the r space distributions, and this distance is thus identified with a natural size for coarsened monomers. The probability distribution of Rg(2) is compared with the classic predictions for both the Gaussian model and freely jointed chains. ?Rg(2)(j)?, the contribution of the jth chain segment to ?Rg(2)?, depends on the contour index about as expected for Gaussian chains despite significant quantitative discrepancies that express the swelling of these chains in water. Monomers central to the chain contour occupy the center of the chain globule. The density profiles of chain segments relative to their center of mass can show distinctive density structuring for smaller chains due to the close proximity of central elements to the globule center. However, that density structuring washes out for longer chains where many chain elements additively contribute to the density profiles. Gaussian chain models thus become more satisfactory for the density profiles for longer chains. PMID:25121580

  9. Dynamic and thermodynamic characteristics associated with the glass transition of amorphous trehalose-water mixtures.

    PubMed

    Weng, Lindong; Elliott, Gloria D

    2014-06-21

    The glass transition temperature Tg of biopreservative formulations is important for predicting the long-term storage of biological specimens. As a complementary tool to thermal analysis techniques, which are the mainstay for determining Tg, molecular dynamics simulations have been successfully applied to predict the Tg of several protectants and their mixtures with water. These molecular analyses, however, rarely focused on the glass transition behavior of aqueous trehalose solutions, a subject that has attracted wide scientific attention via experimental approaches. Important behavior, such as hydrogen-bonding dynamics and self-aggregation has yet to be explored in detail, particularly below, or in the vicinity of, Tg. Using molecular dynamics simulations of several dynamic and thermodynamic properties, this study reproduced the supplemented phase diagram of trehalose-water mixtures (i.e., Tg as a function of the solution composition) based on experimental data. The structure and dynamics of the hydrogen-bonding network in the trehalose-water systems were also analyzed. The hydrogen-bonding lifetime was determined to be an order of magnitude higher in the glassy state than in the liquid state, while the constitution of the hydrogen-bonding network exhibited no noticeable change through the glass transition. It was also found that trehalose molecules preferred to form small, scattered clusters above Tg, but self-aggregation was substantially increased below Tg. The average cluster size in the glassy state was observed to be dependent on the trehalose concentration. Our findings provided insights into the glass transition characteristics of aqueous trehalose solutions as they relate to biopreservation. PMID:24803351

  10. Distribution Characteristics of Phosphorus in the Sediments and Overlying Water of Poyang Lake

    PubMed Central

    Wang, Lingqing; Liang, Tao

    2015-01-01

    Phosphorus (P) is a key indicator of the aquatic organism growth and eutrophication in lakes. The distribution and speciation of P and its release characteristics from sediments were investigated by analyzing sediment and water samples collected during high flow and low flow periods. Results showed that the average concentrations (ranges) of total phosphorus (TP) in the surface and deep water were 0.06 mg L-1 (0.03–0.13 mg L-1) and 0.15 mg L-1 (0.06–0.33 mg L-1), respectively, while the average concentration (range) of TP in sediments was 709.17 mg kg-1 (544.76–932.11 mg kg-1). The concentrations of TP and different forms of P varied spatially in the surface sediments, displaying a decreasing trend from south to north. P also varied topographically from estuarine areas to lake areas. The vertical distribution of TP and different forms of P were observed to decrease as depth increased. The P concentrations during the low flow period were higher than those during the high flow period. Inorganic phosphorus (IP) was the dominant form of P, accounting for 61%–82% of TP. The concentration of bioavailable phosphorus in sediments was relatively large, indicating a high risk of release to overlying water. The simulation experiment of P release from sediments showed that the release was relatively fast in the first 0-5 min and then decreased to a plateau after 1 hr. Approximately 84–89% of the maximum amount of P was released during the first hour. PMID:25938758

  11. Water-quality characteristics for selected streams in Lawrence County, South Dakota, 1988-92

    USGS Publications Warehouse

    Williamson, Joyce E.; Hayes, Timothy Scott

    2000-01-01

    During the 1980?s, significant economic development and population growth began to occur in Lawrence County in the northern part of the Black Hills of western South Dakota. Rising gold prices and heap-leach extraction methods allowed the economic recovery of marginal gold ore deposits, resulting in development of several large-scale, open-pit gold mines in Lawrence County. There was increasing local concern regarding potential impacts on the hydrologic system, especially relating to the quantity and quality of water in the numerous streams and springs of Lawrence County. In order to characterize the water quality of selected streams within Lawrence County, samples were collected from 1988 through 1992 at different times of the year and under variable hydrologic conditions. During the time of this study, the Black Hills area was experiencing a drought; thus, most samples were collected during low-flow conditions.Streamflow and water-quality characteristics in Lawrence County are affected by both geologic conditions and precipitation patterns. Most streams that cross outcrops of the Madison Limestone and Minnelusa Formation lose all or large part of their streamflow to aquifer recharge. Streams that are predominantly spring fed have relatively stable streamflow, varying slightly with dry and wet precipitation cycles.Most streams in Lawrence County generally have calcium magnesium bicarbonate type waters. The sites from the mineralized area of central Lawrence County vary slightly from other streams in Lawrence County by having higher concentrations of sodium, less bicarbonate, and more sulfate. False Bottom Creek near Central City has more sulfate than bicarbonate. Nitrogen, phosphorous, and cyanide concentrations were at or near the laboratory reporting limits for most sites and did not exceed any of the water-quality standards. Nitrite plus nitrate concentrations at Annie Creek near Lead, Whitetail Creek at Lead, Squaw Creek near Spearfish, and Spearfish Creek below Robison Gulch were somewhat higher than at other sites. Mining activity, agricultural activity, and domestic development are possible sources of nitrogen to the streams. Increased mining activities were identified as the probable cause of increased nitrogen concentrations in Annie Creek.In the mineralized area of the northern Black Hills, detectable concentrations of trace elements are common in stream water, occasionally exceeding beneficial-use and aquatic-life criteria. In addition, many basins have been disturbed by both historical and recent mining operations and cleanup activities. The maximum dissolved arsenic concentration at Annie Creek near Lead (48 micrograms per liter) approached the current arsenic drinking-water standard. Concentrations at or greater than 5 micrograms per liter were found in samples from Annie Creek near Lead, Spearfish Creek above Spearfish, Whitetail Creek at Lead, and False Bottom Creek near Spearfish. Bear Butte Creek near Deadwood had one sample with a dissolved copper concentration that exceeded acute and chronic aquatic-life criteria. Bear Butte Creek near Deadwood had several manganese concentrations that exceeded the secondary maximum contaminant level of 50 micrograms per liter.Bed-sediment and water-quality data from selected sites in small drainage basins were used to determine if factors such as pH, arsenic concentrations in bed sediments, and calcite saturation control dissolved arsenic concentrations. Arsenic solubility is controlled by adsorption, mainly on ferrihydrite. In addition, adsorption/desorption of arsenic is controlled by the pH of the stream, with high arsenic concentrations appearing only at higher pH conditions (above 8). There are significant arsenic sources available to almost all the small streams of the northern Black Hills mining area, but arsenic is less mobile in streams that are not influenced to the higher pH values by calcite. Streams where arsenic is more mobile have lower iron concentrations i

  12. Long-term (1,243 days), low-temperature (4-15 degrees C), anaerobic biotreatment of acidified wastewaters: bioprocess performance and physiological characteristics.

    PubMed

    McKeown, Rory M; Scully, Colm; Mahony, Thérèse; Collins, Gavin; O'Flaherty, Vincent

    2009-04-01

    The feasibility of long-term (>3 years), low-temperature (4-15 degrees C) and anaerobic bioreactor operation, for the treatment of acidified wastewater, was investigated. A hybrid, expanded granular sludge bed-anaerobic filter bioreactor was seeded with a mesophilic inoculum and employed for the mineralization of moderate-strength (3.75-10 kg chemical oxygen demand (COD)m(-3)) volatile fatty acid-based wastewaters at 4-15 degrees C. Bioprocess performance was assessed in terms of COD removal efficiency (CODRE), methane biogas concentration, and yield, and biomass retention. Batch specific methanogenic activity assays were performed to physiologically characterise reactor biomass. Despite transient disimprovements, CODRE and methane biogas concentrations exceeded 80% and 65%, respectively, at an applied organic loading rate (OLR) of 10 kgCODm(-3)d(-1) between 9.5 and 15 degrees C (sludge loading rate (SLR), 0.6 kgCOD kg[VSS](-1)d(-1)). Over 50% of the granular sludge bed was lost to disintegration during operation at 9.5 degrees C, warranting a reduction in the applied OLR to 3.75-5 kgCODm(-3)d(-1) (SLR, c. 0.4-0.5kgCOD kg[VSS](-1)d(-1)). From that point forward, remarkably stable and efficient performance was observed during operation at 4-10 degrees C, with respect to CODRE (>or=82%), methane biogas concentration (>70%) and methane yields (>4l(Methane)d(-1)), suggesting the adaptation of our mesophilic inoculum to psychrophilic operating conditions. Physiological activity assays indicated the development of psychroactive syntrophic and methanogenic populations, including the emergence of putatively psychrophilic propionate-oxidising and hydrogenotrophic methanogenic activity. The data suggest that mesophilic inocula can physiologically adapt to sub-optimal operational temperatures: treatment efficiencies and sludge loading rates at 4 degrees C (day, 1243) were comparable to those achieved at 15 degrees C (day 0). Furthermore, long-term, low-temperature bioreactor operation may act as a selective enrichment for psychrophilic methanogenic activity from mesophilic inocula. The observed efficient and stable bioprocess performance highlights the potential for long-term, low-temperature bioreactor operation. PMID:19217137

  13. Transcriptional and physiological response of fathead minnows (Pimephales promelas) exposed to urban waters entering into wildlife protected areas.

    PubMed

    Rodriguez-Jorquera, Ignacio A; Kroll, Kevin J; Toor, Gurpal S; Denslow, Nancy D

    2015-04-01

    The mission of protected areas is to conserve biodiversity and improve human welfare. To assess the effect of urban waters entering into protected areas, we performed 48-h whole-effluent exposures with fathead minnows, analyzing changes in steady state levels of mRNAs in the livers of exposed fish. Raw wastewater, treated city wastewater, and treated wastewater from a university were collected for exposures. All exposed fish showed altered mRNA levels of DNA damage-repair genes. Fish exposed to raw and treated wastewaters showed down-regulation of transcripts for key intermediates of cholesterol biosynthesis and elevated plasma cholesterol. The type of wastewater treatment influenced the response of gene transcription. Because of the relevance of some of the altered cellular pathways, we suggest that these effluents may cause deleterious effects on fish inside protected areas that receive these waters. Inclusion of research and mitigation efforts for this type of threat in protected areas management is advised. PMID:25656232

  14. Impact of Natural Conditioners on Water Retention, Infiltration and Evaporation Characteristics of Sandy Soil

    NASA Astrophysics Data System (ADS)

    Abdel-Nasser, G.; Al-Omran, A. M.; Falatah, A. M.; Sheta, A. S.; Al-Harbi, A. R.

    Soil conditioners i.e., natural deposits and organic fertilizer are used for alleviate some of poor physical properties of sandy soils such as low water retention and inefficient water use, especially in arid and semi-arid regions such as in Saudi Arabia conditions. The present study aims to investigate the impact of clay deposits and organic fertilizer on water characteristics, cumulative infiltration and intermittent evaporation of loamy sand soil. Soil sample was collected from surface layer (0-30 cm depth) of the Agricultural Experiment and Research Station at Dierab, 40 km south west of Riyadh, Saudi Arabia. Two samples of clay deposits (CD#22 and CD#23) collected from Khyleis area, Jeddah-Madina road in addition of commercial Organic Fertilizer (OF) were used in the present study. The experiments were done during August to December 2005 in soil physics laboratory, the soil was mixed with clay deposits and organic fertilizer at rates of 0, 1, 2.5, 5.0 and 10.0% (w/w). The transparent PVC columns were packed with soil to depth of 30 cm every 5.0 cm intervals to insure a homogeneity of soil in columns. The clay deposits (CD#22 and CD#23) and Organic Fertilizer (OF) mixed with the soil were packed in the upper 0-5.0 cm of each soil column. The infiltration experiment was done using a flooding apparatus (Marriot device) with constant head of 3.0 cm over the soil surface. The cumulative infiltration and wetting front depth as a function of time were recorded. The evaporation experiment was conducted in 40 cm long transparent sectioned Lucite cylinders (5.0 cm ID). Fifty millimeters of tap water were applied weekly for three wetting/drying cycles. Cumulative evaporation against time was measured daily by weighing each soil column. The soil moisture distribution at the end of the experiment was determined gravimetrically for each 5.0 cm interval. The results indicated that the three conditioners significantly increased the water constants of mixed soil (i.e., SWC, FC, PWP and AW), but the CD#22 has a superior effect. The results clearly indicated that increasing the application rate of conditioners significantly decreased the cumulative infiltration (D). The decrease in D more pronounced at higher rates. The CD#22 was more effective in reducing the cumulative infiltration. The relationship between (D) as a function of Time (T) was done by fitting the data to the Kostiakov and Philip equations. Increasing the application rate of natural conditioners restricted the wetting front movement and need more time to reach 30 cm depth. The natural conditioners significantly reduced the cumulative evaporation throughout the 3 evaporation cycles. The reduction significantly increased with increasing the application rate, except for the higher rate (10%), which increases the cumulative evaporation under the present conditions. The improvement of soil hydro-physical properties and reduction in water infiltration and cumulative evaporation are good practices for plant growth in region limited in water such as most regions in Saudi Arabia.

  15. Leaf ?(15)N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability.

    PubMed

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M; Aranjuelo, Iker

    2015-01-01

    The natural (15)N/(14)N isotope composition (?(15)N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of ?(15)N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 ?mol mol(-1)), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency-WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of ?(15)N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 ?mol mol(-1) [CO2] and WD conditions. In summary, leaf ?(15)N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051

  16. Leaf ?15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    PubMed Central

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J.; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M.; Aranjuelo, Iker

    2015-01-01

    The natural 15N/14N isotope composition (?15N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of ?15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 ?mol mol?1), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency—WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of ?15N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 ?mol mol?1 [CO2] and WD conditions. In summary, leaf ?15N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051

  17. Tool to address green roof widespread implementation effect in flood characteristics for water management planning

    NASA Astrophysics Data System (ADS)

    Tassi, R.; Lorenzini, F.; Allasia, D. G.

    2015-06-01

    In the last decades, new approaches were adopted to manage stormwater as close to its source as possible through technologies and devices that preserve and recreate natural landscape features. Green Roofs (GR) are examples of these devices that are also incentivized by city's stormwater management plans. Several studies show that GR decreases on-site runoff from impervious surfaces, however, the analysis of the effect of widespread implementation of GR in the flood characteristics at the urban basin scale in subtropical areas are little discussed, mainly because of the absence of data. Thereby, this paper shows results related to the monitoring of an extensive modular GR under subtropical weather conditions, the development of a rainfall-runoff model based on the modified Curve Number (CN) and SCS Triangular Unit Hydrograph (TUH) methods and the analysis of large-scale impact of GR by modelling different basins. The model was calibrated against observed data and showed that GR absorbed almost all the smaller storms and reduced runoff even during the most intense rainfall. The overall CN was estimated in 83 (consistent with available literature) with the shape of hydrographs well reproduced. Large-scale modelling (in basins ranging from 0.03 ha to several square kilometers) showed that the widespread use of GRs reduced peak flows (volumes) around 57% (48%) at source and 38% (32%) at the basin scale. Thus, this research validated a tool for the assessment of structural management measures (specifically GR) to address changes in flood characteristics in the city's water management planning. From the application of this model it was concluded that even if the efficiency of GR decreases as the basin scale increase they still provide a good option to cope with urbanization impact.

  18. Interacting effects of elevated temperature and additional water on plant physiology and net ecosystem carbon fluxes in a high Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Maseyk, Kadmiel; Seibt, Ulrike; Lett, Céline; Lupascu, Massimo; Czimczik, Claudia; Sullivan, Patrick; Welker, Jeff

    2013-04-01

    Arctic ecosystems are experiencing temperature increases more strongly than the global average, and increases in precipitation are also expected amongst the climate impacts on this region in the future. These changes are expected to strongly influence plant physiology and soil biogeochemistry with subsequent implications for system carbon balance. We have investigated the effects of a long-term (10 years) increase in temperature, soil water and the combination of both on a tundra ecosystem at a field manipulation experiment in NW Greenland. Leaf gas exchange, chlorophyll fluorescence, carbon (C) and nitrogen (N) content and leaf isotopic composition, and leaf morphology were measured on Salix arctica plants in treatment and control plots in June-July 2011, and continuous measurements of net plant and soil fluxes of CO2 and water were made using automatic chambers coupled to a trace gas laser analyzer. Plants in the elevated temperature (T2) treatment had the highest photosynthetic capacity in terms of net CO2 assimilation rates and photosystem II efficiencies, and lowest rates of non-photochemical energy dissipation during photosynthesis. T2 plants also had the highest leaf N content, specific leaf area (SLA) and saturation light level of photosynthesis. It appears that warming increases soil N availability, which the plants direct towards increasing photosynthetic capacity and producing larger thinner leaves. On the other hand, the plants in the plots with both elevated temperatures and additional water (T2W) had the lowest photosystem II efficiencies and the highest rates of non-photochemical energy dissipation, due more to higher levels of constitutive energy dissipation than regulated thermal quenching. Watering, both in combination with higher temperatures and alone (W treatment), also reduced leaf SLA and leaf N relative to control plots. However, net photosynthetic rates remained similar to control plants, due in part to higher stomatal conductance (W) and lower dark respiration rates (T2W). However, net ecosystem fluxes were highest in the T2W plots due to 35% increase in leaf area. Total growing season C accumulation was 3-5 times greater, water fluxes were 1.5-2 times higher, and water use efficiency was about 3 times higher in the combined treatment than the control. Net carbon and water fluxes in the elevated temperature plots were similar to the control plots, possibly indicating that enhanced soil respiration may balance increased photosynthetic uptake. The influence of climatic change on system C budgets and ecosystem-atmosphere fluxes in the high arctic systems clearly depends on the interaction between plant strategies, soil responses and the impact of multiple climatic drivers.

  19. Physiological and ecological implications of coupled heat and water transport mechanisms of endotherms and tundra vegetation. Progress report

    SciTech Connect

    Porter, W.P.; Stewart, W.E.

    1986-01-01

    This research seeks to extend a current quantitative general heat and mass transfer model developed for the porous insulation of endotherms to include the porous media of tundra vegetation, to test the model's predictions for endotherm heat generation requirements and water loss rates for different insulations under conditions measured in the laboratory and in the field on various inanimate objects and live endotherms, and to integrate the porous media model with microclimate models to calculate heat and mass fluxes through the low canopies of tundra vegetation and the soil. 9 refs., 6 figs.

  20. Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis

    PubMed Central

    Voß, Björn; Bolhuis, Henk; Fewer, David P.; Kopf, Matthias; Möke, Fred; Haas, Fabian; El-Shehawy, Rehab; Hayes, Paul; Bergman, Birgitta; Sivonen, Kaarina; Dittmann, Elke; Scanlan, Dave J.; Hagemann, Martin; Stal, Lucas J.; Hess, Wolfgang R.

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems. PMID:23555932

  1. Biomechanical characteristics of adults walking forward and backward in water at different stride frequencies.

    PubMed

    Cadenas-Sánchez, Cristina; Arellano, Raúl; Taladriz, Sonia; López-Contreras, Gracia

    2016-02-01

    The aim of this study was to examine spatiotemporal characteristics and joint angles during forward and backward walking in water at low and high stride frequency. Eight healthy adults (22.1 ± 1.1 years) walked forward and backward underwater at low (50 pulses) and high frequency (80 pulses) at the xiphoid process level with arms crossed at the chest. The main differences observed were that the participants presented a greater speed (0.58 vs. 0.85 m/s) and more asymmetry of the step length (1.24 vs. 1.48) at high frequency whilst the stride and step length (0.84 vs. 0.7 m and 0.43 vs. 0.35 m, respectively) were lower compared to low frequency (P < 0.05). Support phase duration was higher at forward walking than backward walking (61.2 vs. 59.0%). At initial contact, we showed that during forward walking, the ankle and hip presented more flexion than during backward walking (ankle: 84.0 vs. 91.8º and hip: 22.8 vs. 8.0º; P < 0.001). At final stance, the knee and hip were more flexed at low frequency than at high frequency (knee: 150.0 vs. 157.0º and hip: -12.2 vs. -14.5º; P < 0.001). The knee angle showed more flexion at forward walking (134.0º) than backward walking (173.1º) (P < 0.001). In conclusion, these results show how forward and backward walking in water at different frequencies differ and contribute to a better understanding of this activity in training and rehabilitation. PMID:26047156

  2. Assessment of physiological and biochemical responses, metal tolerance and accumulation in two eucalypt hybrid clones for phytoremediation of cadmium-contaminated waters.

    PubMed

    Pietrini, Fabrizio; Iori, Valentina; Bianconi, Daniele; Mughini, Giovanni; Massacci, Angelo; Zacchini, Massimo

    2015-10-01

    Eucalyptus is a promising species for ecological restoration but plant performances under environmental constraints need to be better investigated. In particular, the toxic effects of metals on this plant species are poorly described in the literature. In this work, morpho-physiological and biochemical responses to cadmium were analysed in two eucalypt genotypes (hybrid clones of Eucalyptus camaldulensis × Eucalyptus globulus ssp. bicostata J.B. Kirkp named Velino ex 7 and Viglio ex 358) exposed for 3 weeks to 50 ?M CdSO4 under hydroponics. The two eucalypt clones showed a different sensitivity to the metal. The growth reduction caused by cadmium was less than 30% in clone Velino and about 50% in clone Viglio. Cadmium mostly accumulated in plant roots and, to a lesser extent, in stem, as highlighted by the low translocation factor (Tf) measured in both clones. Net photosynthesis measurement, chlorophyll fluorescence images, transpiration values and chlorophyll content revealed a cadmium-induced impairment of physiological processes at the leaf level, which was more evident in clone Viglio. Metal binding and antioxidative compound content was differentially affected by cadmium exposure in the two eucalypt clones. Particularly, the content of thiols like cysteine and glutathione, organic acids like oxalate and citrate, and polyamines were markedly modulated in plant organs by metal treatment and highlighted different defence responses between the clones. Cadmium tolerance and accumulation ability of the eucalypt clones were evaluated and the potential of E. camaldulensis for the reclamation of metal polluted-waters is discussed. PMID:26253590

  3. The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana.

    PubMed

    Easlon, Hsien Ming; Nemali, Krishna S; Richards, James H; Hanson, David T; Juenger, Thomas E; McKay, John K

    2014-02-01

    Ecologists and physiologists have documented extensive variation in water use efficiency (WUE) in Arabidopsis thaliana, as well as association of WUE with climatic variation. Here, we demonstrate correlations of whole-plant transpiration efficiency and carbon isotope composition (?(13)C) among life history classes of A. thaliana. We also use a whole-plant cuvette to examine patterns of co-variation in component traits of WUE and ?(13)C. We find that stomatal conductance (g s) explains more variation in WUE than does A. Overall, there was a strong genetic correlation between A and g s, consistent with selection acting on the ratio of these traits. At a more detailed level, genetic variation in A was due to underlying variation in both maximal rate of carboxylation (V cmax) and maximum electron transport rate (Jmax). We also found strong effects of leaf anatomy, where lines with lower WUE had higher leaf water content (LWC) and specific leaf area (SLA), suggesting a role for mesophyll conductance (g m) in variation of WUE. We hypothesize that this is due to an effect through g m, and test this hypothesis using the abi4 mutant. We show that mutants of ABI4 have higher SLA, LWC, and g m than wild-type, consistent with variation in leaf anatomy causing variation in g m and ?(13)C. These functional data also add further support to the central, integrative role of ABI4 in simultaneously altering ABA sensitivity, sugar signaling, and CO2 assimilation. Together our results highlight the need for a more holistic approach in functional studies, both for more accurate annotation of gene function and to understand co-limitations to plant growth and productivity. PMID:23893317

  4. Interrelations among the soil-water retention, hydraulic conductivity, and suction-stress characteristic curves

    USGS Publications Warehouse

    Lu, Ning; Kaya, Murat; Godt, Jonathan W.

    2014-01-01

    The three fundamental constitutive relations that describe fluid flow, strength, and deformation behavior of variably saturated soils are the soil-water retention curve (SWRC), hydraulic conductivity function (HCF), and suction-stress characteristic curve (SSCC). Until recently, the interrelations among the SWRC, HCF, and SSCC have not been well established. This work sought experimental confirmation of interrelations among these three constitutive functions. Results taken from the literature for six soils and those obtained for 11 different soils were used. Using newly established analytical relations among the SWRC, HCF, and SSCC and these test results, the authors showed that these three constitutive relations can be defined by a common set of hydromechanical parameters. The coefficient of determination for air-entry pressures determined independently using hydraulic and mechanical methods is >0.99, >0.98 for the pore size parameter, and 0.94 for the residual degree of saturation. One practical implication is that one of any of the four experiments (axis-translation, hydraulic, shear-strength, or deformation) is sufficient to quantify all three constitutive relations.

  5. Statistical characteristics of cloud variability. Part 1: Retrieved cloud liquid water path at three ARM sites

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Campos, Edwin; Liu, Yangang

    2014-09-01

    Statistical characteristics of cloud variability are examined for their dependence on averaging scales and best representation of probability density function with the decade-long retrieval products of cloud liquid water path (LWP) from the tropical western Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement Program. The statistical moments of LWP show some seasonal variation at the SGP and NSA sites but not much at the TWP site. It is found that the standard deviation, relative dispersion (the ratio of the standard deviation to the mean), and skewness all quickly increase with the averaging window size when the window size is small and become more or less flat when the window size exceeds 12 h. On average, the cloud LWP at the TWP site has the largest values of standard deviation, relative dispersion, and skewness, whereas the NSA site exhibits the least. Correlation analysis shows that there is a positive correlation between the mean LWP and the standard deviation. The skewness is found to be closely related to the relative dispersion with a correlation coefficient of 0.6. The comparison further shows that the lognormal, Weibull, and gamma distributions reasonably explain the observed relationship between skewness and relative dispersion over a wide range of scales.

  6. OPTICAL CHARACTERISTICS OF NATURAL WATERS PROTECT AMPHIBIANS FROM UV-B IN THE U.S. PACIFIC NORTHWEST: A REPLY

    EPA Science Inventory

    It has been proposed that UV-B is a cause of malfomations seen in amphibians. This document comments on the paper which discusses the concept that the optical characteristics of water may protect amphibians in the U.S. Pacific Northwest from the harmful effects of UV-B.

  7. Bio-optical characteristics of the snow, ice, and water column of a perennially ice-covered lake in

    E-print Network

    Vincent, Warwick F.

    Bio-optical characteristics of the snow, ice, and water column of a perennially ice-covered lake A is a meromictic, perennially ice-covered lake located at the northern limit of North America (latitude 83°N (PAR) was transmitted through its 2-m ice and 0.5-m snow cover. Removal of snow from 12 m2 increased

  8. The Use of Bacterial Adherence to Hydrocarbons (BATH) Assay in Evaluation of the Hydrophobic Surface Characteristics of Potential Water Pathogens

    EPA Science Inventory

    Bacterial adherence to hydrocarbons, BATH, is a method for determining the hydrophobic surface characteristics of bacterial cells. The strain’s affinity for water is evaluated by thoroughly mixing a culture and hydrocarbon suspension and then evaluating the decrease in optical de...

  9. SPECTRA CHARACTERISTICS OF WATER EXTRACTABLE ORGANIC MATTER FROM SOILS OF DIFFERENT LAND USES IN A SUBARCTIC ALASKA ENVIRONMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to determine characteristics of soil water extractable organic matter (WEOM) under different land uses in a subarctic environment. Soil (Volkmar, Aquic Eutrocrepts) samples were taken in October, 2005 from forestry, agricultural, and USDA Conservation Reserve Prog...

  10. Responses of Fraxinus excelsior L. seedlings to ambient ozone exposure in urban and mountain areas based on physiological characteristics and antioxidant activity.

    PubMed

    Parvanova, Petya; Tzvetkova, Nikolina; Bratanova-Doncheva, Svetla; Chipev, Nesho; Fikova, Radka; Donev, Evgeni

    2013-07-01

    Effects of ozone on the sensitive tree species Fraxinus excelsior L. exposed to ambient air were investigated. The dynamics of photosynthesis, transpiration, stomatal conductance and the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in three-year-old ash seedlings were studied during a four-month period (June-September). Seedlings were exposed to ambient ozone in an urban (the Central City Park of Sofia - Borisova Gradina) and a mountain (Plana Mountain) area in Bulgaria. The sites were located near climate monitoring stations, providing data on ozone concentrations and meteorological parameters. Ozone exposure at the mountain site (AOT40) was more than two times higher compared to the urban site. Significantly higher values of sun radiation, transpiration, stomatal conductance and enzyme activity at the mountain site were also observed. At the urban site higher values of temperature and air humidity were registered. Effects of the measured variables on ash seedlings were complex and interdependent. No direct effect of ozone concentration in ambient air on the leaf physiology and biochemistry could be proved. However, intensified SOD and CAT activity in the presence of elevated ozone suggested antioxidant reaction in response to ozone uptake. PMID:23760537

  11. The Physiological Suppressing Factors of Dry Forage Intake and the Cause of Water Intake Following Dry Forage Feeding in Goats - A Review.

    PubMed

    Sunagawa, Katsunori; Nagamine, Itsuki

    2016-02-01

    The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of NaHCO3 due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h feeding period most water consumption occurring in the second hour. The cause of this thirst sensation during the second hour of dry forage feeding period was not hypovolemia brought about by excessive salivation, but rather increases in plasma osmolality due to the ruminal absorption of salt from the consumed feed. This suggests the water intake following dry forage feeding is determined by the level of salt content in the feed. PMID:26732440

  12. Space Physiology within an Exercise Physiology Curriculum

    ERIC Educational Resources Information Center

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  13. The effect of dystocia on physiological and behavioral characteristics related to vitality and passive transfer of immunoglobulins in newborn Holstein calves.

    PubMed

    Murray, Christine F; Veira, Doug M; Nadalin, Audrey L; Haines, Deborah M; Jackson, Marion L; Pearl, David L; Leslie, Ken E

    2015-04-01

    The objective of this study was to examine the effect of calving difficulty or dystocia on the vitality of newborn calves and its association with blood pH, the apparent efficiency of immunoglobulin G (IgG) absorption (AEA), and weight gain. A total of 45 calving events (N = 48 calves) were monitored from the first sight of fetal membranes. All calves were assessed at the time of first attaining sternal recumbency (SR), at 2 and 24 h, and at 7 and 14 d of age. Measurements included time to SR, rectal temperature, respiration and heart rate, analysis of blood gases and other blood measures, suckling response, time to standing, passive transfer of IgG, and weight gain. Calves were separated from their dam 2 h after birth and fed a commercial colostrum replacer containing 180 g of IgG by esophageal tube feeder. Calves born following dystocia had lower venous blood pH and took longer to attain SR and attempt to stand than those born unassisted. Duration of calving interacted with the number of people required to extract the calf by pulling as a significant predictor of pH at SR. No association was found between pH at SR and AEA. However, reduced AEA was found in calves that were female and in calves that did not achieve SR within 15 min of birth. A longer calving duration, being born in July or August rather than June, and a shorter time spent standing in the first 2 d of life were significantly associated with reduced weight gain to 14 d. It was concluded that factors at calving impact the physiology, vitality, and subsequent weight gain of newborn calves. PMID:25852226

  14. The effect of dystocia on physiological and behavioral characteristics related to vitality and passive transfer of immunoglobulins in newborn Holstein calves

    PubMed Central

    Murray, Christine F.; Veira, Doug M.; Nadalin, Audrey L.; Haines, Deborah M.; Jackson, Marion L.; Pearl, David L.; Leslie, Ken E.

    2015-01-01

    The objective of this study was to examine the effect of calving difficulty or dystocia on the vitality of newborn calves and its association with blood pH, the apparent efficiency of immunoglobulin G (IgG) absorption (AEA), and weight gain. A total of 45 calving events (N = 48 calves) were monitored from the first sight of fetal membranes. All calves were assessed at the time of first attaining sternal recumbency (SR), at 2 and 24 h, and at 7 and 14 d of age. Measurements included time to SR, rectal temperature, respiration and heart rate, analysis of blood gases and other blood measures, suckling response, time to standing, passive transfer of IgG, and weight gain. Calves were separated from their dam 2 h after birth and fed a commercial colostrum replacer containing 180 g of IgG by esophageal tube feeder. Calves born following dystocia had lower venous blood pH and took longer to attain SR and attempt to stand than those born unassisted. Duration of calving interacted with the number of people required to extract the calf by pulling as a significant predictor of pH at SR. No association was found between pH at SR and AEA. However, reduced AEA was found in calves that were female and in calves that did not achieve SR within 15 min of birth. A longer calving duration, being born in July or August rather than June, and a shorter time spent standing in the first 2 d of life were significantly associated with reduced weight gain to 14 d. It was concluded that factors at calving impact the physiology, vitality, and subsequent weight gain of newborn calves. PMID:25852226

  15. Visualization of the freeze/thaw characteristics of a copper/water heat pipe - Effects of non-condensible gas

    NASA Technical Reports Server (NTRS)

    Ochterbeck, J. M.; Peterson, G. P.

    1991-01-01

    The freeze/thaw characteristics of a copper/water heat pipe of rectangular cross section were investigated experimentally to determine the effect of variations in the amount of non-condensible gases (NCG) present. The transient internal temperature profiles in both the liquid and vapor channels are presented along with contours of the frozen fluid configuration obtained through visual observation. Several interesting phenomena were observed including total blockage of the vapor channel by a solid plug, evaporator dryout during restart, and freezing blowby. In addition, the restart characteristics are shown to be strongly dependent upon the shutdown procedure used prior to freezing, indicating that accurate prediction of the startup or restart characteristics requires a complete thermal history. Finally, the experimental results indicate that the freeze/thaw characteristics of room temperature heat pipes may be significantly different from those occurring in higher temperature, liquid metal heat pipes due to differences in the vapor pressures in the frozen condition.

  16. Visualization of the freeze/thaw characteristics of a copper/water heat pipe - Effects of non-condensible gas

    NASA Astrophysics Data System (ADS)

    Ochterbeck, J. M.; Peterson, G. P.

    1991-06-01

    The freeze/thaw characteristics of a copper/water heat pipe of rectangular cross section were investigated experimentally to determine the effect of variations in the amount of non-condensible gases (NCG) present. The transient internal temperature profiles in both the liquid and vapor channels are presented along with contours of the frozen fluid configuration obtained through visual observation. Several interesting phenomena were observed including total blockage of the vapor channel by a solid plug, evaporator dryout during restart, and freezing blowby. In addition, the restart characteristics are shown to be strongly dependent upon the shutdown procedure used prior to freezing, indicating that accurate prediction of the startup or restart characteristics requires a complete thermal history. Finally, the experimental results indicate that the freeze/thaw characteristics of room temperature heat pipes may be significantly different from those occurring in higher temperature, liquid metal heat pipes due to differences in the vapor pressures in the frozen condition.

  17. Distribution of the thermohaline characteristics in the Aegean Sea related to water mass formation processes (2005-2006 winter surveys)

    NASA Astrophysics Data System (ADS)

    Vervatis, Vassilios D.; Sofianos, Sarantis S.; Theocharis, Alexander

    2011-09-01

    Aiming at portraying the Aegean's water mass structure and identifying Dense Water Formation processes, two winter cruises were conducted in 2005-2006, across the plateaus and depressions of the Aegean Sea. The most prominent feature of the water mass distribution in the basin is a distinct "X-shape" of the ?-S characteristics, suggesting a complicated coupling of the major Aegean sub-basins. The surface and deep waters are relatively decoupled with diverse origin characteristics, while the intermediate layers act as connectors of the main thermohaline cells. The Central Aegean seems to play a key role due to formation processes of water masses with densities equal and/or higher than 29.2 kg/m3, that take place in the sub-basin and disperses in the North Aegean. On the other hand, the South Aegean appears greatly influenced by the Eastern Mediterranean circulation and water mass distribution, especially under the Eastern Mediterranean Transient status. The Transitional Mediterranean Water monitored in the post-EMT period and characterized by low temperature at 14.2°C, low salinity at 38.92 and low dissolved oxygen at 3.97 ml/l, with its core around 750 m and above the saline (39.06) Cretan Deep Water, altered significantly the South Aegean structure. The pre-EMT thermohaline pattern of the Central and South Aegean deep layers were similar, while the bottom density of the Central basin was higher than that in the South Aegean. Thus, it is possible that the deep waters of the Central Aegean acted as a dense water reserve supply for the deeper part of the Southern basin.

  18. NRES 725 Plant Physiological Ecology Spring 2006

    E-print Network

    Nowak, Robert S.

    C) Physiological control 1) Roots and water uptake 7, 9 2) Hydraulic conductivity 14, 16 3) Stomatal conductance and transpiration Feb 21 Guest lecture: Dr. Richard Jasoni ­ "Evapotranspiration and Water Budgets of isoprene and its antioxidant role in leaves. Plant Physiology 126:993-1000. 7, 9 B) Carbon gain

  19. Physicochemical characteristics of drip waters: Influence on mineralogy of recent cave carbonate precipitates

    NASA Astrophysics Data System (ADS)

    Riechelmann, Sylvia; Schröder-Ritzrau, Andrea; Wassenburg, Jasper A.; Richter, Detlev K.; Riechelmann, Dana FC; Terente, Mihai; Constantin, Silviu; Immenhauser, Adrian

    2015-04-01

    Speleothems are one of the most intensively explored archives of palaeoclimate variability in continental settings. Considerable advances with respect to climatic and cave forcing of drip characteristics and related speleothem proxy data have been made during the last decades. The parameters, however, that control speleothem mineralogy and its changes with time and space are still poorly understood. In order to shed light on processes influencing speleothem mineralogy, precipitation experiments of recent carbonate crystals on watch glasses and glass plates were performed in seven selected caves. These include three caves in Germany as well as Morocco and one cave in Romania, which are situated in both limestone and dolostone. Drip water sites of these caves were analysed for their fluid Mg/Ca molar ratio, pH, degree of saturation for calcite and aragonite and drip rates. Corresponding precipitates were analysed with respect to their mineralogy using a high resolution scanning electron microscope (SEM). The following results are found: High fluid Mg/Ca ratios are observed only for caves situated in dolostone, hence the hostrock lithology indirectly controls the carbonate mineralogy of speleothems. The precipitation of aragonite in place of calcite occurred only in dolostone caves and is bound to very specific conditions, which are: high fluid Mg/Ca ratios (? 0.5), high fluid pH (> 8.2) and low fluid saturation indices for calcite (< 0.8). These specific conditions are induced by slow drip rates of < 0.2 ml/min (often under more arid conditions), causing the precipitation of calcite / aragonite prior to reaching the stalagmite top. Due to this, fluid chemistry is altered, which in turn leads to changes in carbonate mineralogy and geochemistry on the stalagmite top. Interestingly, all of the above mentioned factors must act in a concerted manner. If this is not the case, calcite is the dominant phase. The threshold, where only aragonite precipitates is at fluid Mg/Ca ratios exceeding 2.4. Generally, calcite growth is inhibited at high fluid Mg/Ca ratios and hence, aragonite precipitation is kinetically stabilized. On the other hand, aragonite precipitation is possibly inhibited by some types of organic compounds leading to calcite precipitation, whilst it is induced in other cases. Based on the data shown here, the parameters inducing aragonite precipitation are now clearly better understood. Thus, conclusions of drip water palaeo-conditions from aragonite speleothems can be drawn, which leads to an improved understanding of aragonite speleothems as climate archives.

  20. Experimentally studying TV3-117 gas-turbine unit characteristics at superheated water injection into a compressor

    NASA Astrophysics Data System (ADS)

    Favorskii, O. N.; Alekseev, V. B.; Zalkind, V. I.; Zeigarnik, Yu. A.; Ivanov, P. P.; Marinichev, D. V.; Nizovskii, V. L.; Nizovskii, L. V.

    2014-05-01

    The results from experimentally studying TV3-117 gas-turbine unit (GTU) characteristics at injection of cold and superheated (metastable) water to the inlet of the GTU compressor are presented. In the latter case, the finer water atomization is obtained. The water injection makes it possible to considerably increase the unit power. At a constant temperature of the working fluid downstream of the turbine combustion chamber, water injection in an amount of 1% of the air flow rate provides an increase in the turbine power by approximately 12% and expands GTU controlling potentialities. The use of the metastable superheated water atomization enables one to more reliably implement the technology of water injection into a compressor, especially into intermediate compressor stages. However, it requires accounting for operational conditions of particular installation. Due to small water droplet residence time in the compressor flow path, even with fine water atomization, in aircraft engine derivative power turbines, about 15-20% of moisture injected have no time to completely evaporate within the compressor. When injecting cold water, this figure is from 5 to 10% larger.

  1. Geochemical characteristics of Au in the water systemfrom abandoned gold mines area

    NASA Astrophysics Data System (ADS)

    Cho, Kanghee; Kim, Bongju; Kim, Byungjoo; Park, Cheonyoung; Choi, Nagchoul

    2013-04-01

    The AMD (acid mine drainage) poses a threat not only to the aquatic life in mountain streams and rivers, but can also contaminate groundwater and downstream water bodies. Besides pyrite, sulfides of copper, zinc, cadmium, lead and arsenic in the drainage tunnels and tailings piles also undergo similar geochemical reactions, releasing toxic metals and more H+ into the mine drainage. The fate of gold in the AMD system is reduced and precipitated with iron oxides by oxidation-reduction reaction between ferrous/ferric iron and Au3+/Au0. The objective of this study was to investigate the influence of the transport characteristic on the distance through distribution of heavy metals and gold on the interrelation between acid mine drainage and sediments in the abandoned Gwang-yang gold mine, Korea. We conducted to confirm the chemical (chemical analysis and sequential extraction) and mineralogical property (XRD, SEM-EDS and polarization microscope) from AMD, sediments and tailing samples. The result of chemical analysis showed that Fe contents in the AMD and sediments from the upstream to the downstream ranged of 10.99 to 18.60 mg/L and 478.74 to 542.98 mg/kg, respectively. Also the contents of Au and As in the sediment were respectively ranged from 14.06 to 22.85 g/t and 0.245 to 0.612 mg/kg. In XRD analysis of the sediments, x-ray diffracted d-value belong to quartz, geothite was observed. The results of SEM-EDS analysis revealed that iron hydroxide were observed in the sediment and tailing. The result of sequential extraction for Au from the sediment showed that Au predominated in 26 to 27% of Organic matter fraction(STEP 4), and 24 to 25% of Residual fraction(STEP 5).

  2. INFLUENCE OF GROUND WATER-SURFACE WATER ON SEDIMENT CHARACTERISTICS AND METAL ACCUMULATION AT A CONTAMINATED SITE

    EPA Science Inventory

    Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into a small lake. The ground water plume contains elevated levels of arsenic and BTEX compounds derived from historical disposal of process wastes from up gr...

  3. Groundwater quality and water-well characteristics in the Kickapoo Tribe of Oklahoma Jurisdictional Area, central Oklahoma, 1948--2011

    USGS Publications Warehouse

    Becker, Carol J.

    2013-01-01

    In 2012, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, compiled historical groundwater-quality data collected from 1948 to 2011 and water-well completion information in parts of Lincoln, Oklahoma, and Pottawatomie Counties in central Oklahoma to support the development of a comprehensive water-management plan for the Tribe’s jurisdictional area. In this study, water-quality data from 155 water wells, collected from 1948 to 2011, were retrieved from the U.S. Geological Survey National Water Information System database; these data include measurements of pH, specific conductance, and hardness and concentrations of the major ions, trace elements, and radionuclides that have Maximum Contaminant Levels or Secondary Maximum Contaminant Levels in public drinking-water supplies. Information about well characteristics includes ranges of well yield and well depth of private water wells in the study area and was compiled from the Oklahoma Water Resources Board Multi-Purpose Well Completion Report database. This report also shows depth to water from land surface by using shaded 30-foot contours that were created by using a geographic information system and spatial layers of a 2009 potentiometric surface (groundwater elevation) and land-surface elevation. Wells in the study area produce water from the North Canadian River alluvial and terrace aquifers, the underlying Garber Sandstone and Wellington Formation that compose the Garber–Wellington aquifer, and the Chase, Council Grove, and Admire Groups. Water quality varies substantially between the alluvial and terrace aquifers and bedrock aquifers in the study area. Water from the alluvial aquifer has relatively high concentrations of dissolved solids and generally is used for livestock only, whereas water from the terrace aquifer has low concentrations of dissolved solids and is used extensively by households in the study area. Water from the bedrock aquifer also is used extensively by households but may have high concentrations of trace elements, including uranium, in some areas where groundwater pH is above 8.0. Well yields vary and are dependent on aquifer characteristics and well-completion practices. Well yields in the unconsolidated alluvial and terrace aquifers generally are higher than yields from bedrock aquifers but are limited by the thickness and extent of these river deposits. Well yields in the alluvium and terrace aquifers commonly range from 50 to 150 gallons per minute and may exceed 300 gallons per minute, whereas well yields in the bedrock aquifers commonly range from 25 to 50 gallons per minute in the western one-third of study area (Oklahoma County) and generally less than 25 gallons per minute in the eastern two-thirds of the study area (Lincoln and Pottawatomie Counties).

  4. Physiological characteristics and stress resistance of great sturgeon (Huso huso) juveniles fed with vitamins C, E, and HUFA-enriched Artemia urmiana nauplii.

    PubMed

    Jalali, Mohammad Ali; Hosseini, Seyed Abbas; Imanpour, Mohammad Reza

    2010-09-01

    This study was carried out to examine the effect of Artemia urmiana nauplii enriched with HUFA, and vitamins C and E on stress tolerance, hematocrit, and biochemical parameters of great sturgeon, Huso huso juveniles. Cod liver oil (EPA 18% and DHA 12%), ascorbyl-6-palmitate and alpha-tocopherol acetate were used as lipid, and vitamin C and E sources, respectively. Beluga juveniles at the stage of first feeding (69.7 +/- 5.9 mg body weight) were randomly divided into five treatments and three tanks were assigned to each diet. All fish groups were fed non-enriched Artemia for the initial 5 days and then fed enriched Artemia for 7 days. Juveniles were fed with Artemia enriched with HUFA + 20% vitamin C (C group); HUFA + 20% vitamin E-enriched Artemia nauplii (E group); HUFA + 20% vitamin C + 20% vitamin E (C and E group); HUFA without vitamins (HUFA) and non-enriched Artemia (control). After the period of enrichment, Juveniles were fed with Daphnia sp. from the 13th to the 40th day. At day 40, the fish were transferred directly from fresh water (0.5 ppt) to brackish water (6 ppt for 4 days and 12 ppt for 2 days) and warm water (from 27 to 33 degrees C) to evaluate juvenile resistance to salinity and thermal shocks. Moreover, all treatments were separately exposed to freshwater in tanks with the same capacity as used for osmotic and thermal tests (as fresh water control). The addition of vitamins C, E, and C + E to HUFA significantly increased fish resistance to 12 ppt salinity and temperature stress tests, whereas survival was not significantly different among challenges at 6 ppt. There was no significant difference in the hematocrit index under stress conditions. Enrichment had significant influence on plasma Na(+) level in the C group on the 4th day at 6 ppt. Na(+) and Ca(2+) concentrations in C, E, and C and E groups on the 1st day at 12 ppt, and Ca(2+) level in E group on the 2nd day at 12 ppt were lower than the other groups. The glucose level in the C and C and E groups was lower than the other treatments on the 1st day at 12 ppt and the 2nd day at 33 degrees C. Regardless of Artemia enrichment, plasma ions (Na(+), K(+), Ca(2+), and Mg(2+)) and glucose concentrations in fish exposed to salinity stress tests were higher than fish in fresh water. Glucose concentration in plasma also increased after 2 days at 33 degrees C. Although most of our results were not significantly different, the use of vitamins C, E, and HUFA in Artemia enrichment can improve Juveniles tolerance under stress conditions, and regardless of enrichment, these data show that beluga juveniles are partly sensitive to high salinity and temperature. PMID:19459059

  5. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range

    NASA Astrophysics Data System (ADS)

    Naumann, Malik S.; Orejas, Covadonga; Ferrier-Pagès, Christine

    2014-01-01

    The scleractinian cold-water corals (CWC) Lophelia pertusa and Madrepora oculata represent two major deep-sea reef-forming species that act as key ecosystem engineers over a wide temperature range, extending from the northern Atlantic (ca. 5-9 °C) to the Mediterranean Sea (ca. 11-13 °C). Recent research suggests that environmental parameters, such as food supply, settling substrate availability or aragonite saturation state may represent important precursors controlling habitat suitability for CWC. However, the effect of one principal environmental factor, temperature, on CWC key physiological processes is still unknown. In order to evaluate this effect on calcification, respiration, and dissolved organic carbon (DOC) net flux, colonies of Mediterranean L. pertusa and M. oculata were acclimated in aquaria to three temperatures (12, 9 and 6 °C), by consecutive decrements of 1 month duration. L. pertusa and M. oculata maintained at Mediterranean control conditions (i.e. 12 °C) displayed constant rates, on average respiring 4.8 and 4.0 ?mol O2 cm-2 coral surface area d-1, calcifying 22.3 and 12.3 ?mol CaCO3 g-1 skeletal dry weight d-1 and net releasing 2.6 and 3.1 ?mol DOC cm-2 coral surface area d-1, respectively. Respiration of L. pertusa was not affected by lowered temperatures, while M. oculata respiration declined significantly (by 48%) when temperature decreased to 9 °C and 6 °C relative to controls. L. pertusa calcification at 9 °C was similar to controls, but decreased significantly (by 58%) at 6 °C. For M. oculata, calcification declined by 41% at 9 °C and by 69% at 6 °C. DOC net flux was similar throughout the experiment for both CWC. These findings reveal species-specific physiological responses by CWC within their natural temperature range. L. pertusa shows thermal acclimation in respiration and calcification, while these mechanisms appear largely absent in M. oculata. Conclusively, species-specific thermal acclimation may significantly affect the occurrence and local abundance of cosmopolitan CWC species, consequently influencing their important role in habitat engineering and ecosystem functioning in various thermal environments.

  6. Temperature Meets Tree Physiology: Potential Influence of Different Characteristics of Recorded Temperature Increases in Alaska on the Diverging Growth Responses of White Spruce.

    NASA Astrophysics Data System (ADS)

    Juday, G. P.

    2007-12-01

    To be useful for temperature reconstructions, tree growth must respond to the same climate parameters today in the same way it has in the past. Recent studies which show tree ring widths from the northern high latitudes are diverging from previous sensitivity to temperature parameters may be partly influenced by new patterns of warm temperature anomalies as well as the limits of possible physiological response by trees. Both factors may be influencing white spruce growth in Alaska. In the 104-year record at UES/Fairbanks, daily maximum temperatures (May:August) have increased only slightly (~0.5 C), while daily minima have increased over 3 C per century, and frost-free growing season length has increased 50% to about 120 days (ca. 150 days at lower temperature thresholds suitable for native species). Total yearly days above freezing have increased by about 20 days. Spring snow and ice dissipation is earlier by about 5 to 6 days. Winters mean temperatures are 2 to 3 C greater and include fewer days below -20, -30, and -40 C. At stations across central Alaska with a shorter 60 to 90-year record (McGrath, Bettles, Talkeetna) trends are similar. In Alaska chronologies, high summer temperatures "kill" growth the following year on many sites. Years with high numbers of days with daily maxima above 70 F (21.1 C) are followed by significant "pointer" years (e.g. 1924, 1940-41, 1958-59, 1974-75, 2005) with small tree rings. White spruce is a determinate growth species, meaning current year growth is disproportionately influenced by reserves accumulated in the previous growing season. In a given year, when maximum moisture stress encountered by a particular tree first exceeds a critical threshold, cell production switches from earlywood (large diameter, thin-walled) to latewood (small diameter, thick-walled) type, which limits further width expansion. These climate trends and tree chronology patterns are consistent with (1) a shorter snow accumulation season and longer evapotranspiration season reducing potential spring melt input, which (2) exhausts early season soil moisture earlier and on previously non-sensitive sites, thus (3) inducing cell type switch earlier in the year and on previously non-sensitive sites, resulting in smaller ring formation and negative sensitivity to previous (and secondarily current) summer-season temperature. The next stage in the warming process would be temperature and moisture combinations near lethal conditions which could injure white spruce so severely that their actual realized growth would underperform previous climatic predictions for a 1 to 3 year period. In addition, outbreaks of insects that reduce tree growth would be released from previous climatic limits and become a more significant factor in determining annual net growth, and thus size of ring formed. Finally, empirical relations of growth versus temperature predictors in existing, negative-responding Alaska white spruce populations suggest that temperature increases of 2.5 to 4 C would result in tree death at low elevations represented by climate stations. Environments suitable for white spruce survival might be found in mountain environments.

  7. Gasification characteristics of an activated carbon catalyst during the decomposition of hazardous waste materials in supercritical water

    SciTech Connect

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.

    1996-10-01

    Recently, carbonaceous materials were proved to be effective catalysts for hazardous waste decomposition in supercritical water. Gasification of the carbonaceous catalyst itself is also expected, however, under supercritical conditions. Thus, it is essential to determine the gasification rate of the carbonaceous materials during this process to determine the active lifetime of the catalysts. For this purpose, the gasification characteristics of granular coconut shell activated carbon in supercritical water alone (600-650{degrees}C, 25.5-34.5 MPa) were investigated. The gasification rate at subatmospheric pressure agreed well with the gasification rate at supercritical conditions, indicating the same reaction mechanism. Methane generation under these conditions is via pyrolysis, and thus is not affected by the water pressure. An iodine number increase of 25% was observed as a result of the supercritical water gasification.

  8. Effect of hot water treatment of beef trimmings on processing characteristics and eating quality of ground beef.

    PubMed

    Pietrasik, Z; Gaudette, N J; Klassen, M

    2016-03-01

    The effect of hot water treatment of beef trimmings on the processing characteristics, shelf-life and consumer acceptability of ground beef was evaluated. Hot water treatment (85°C for 40s) substantially enhanced the microbial quality of trimmings during refrigerated storage and this was independent of the fat level of the trimmings. Treatment had no effect on the oxidative stability of trimmings stored up to 7days, ground beef displayed in a retail cabinet for up to 3days, and had minimal effect on textural properties. Instrumental results demonstrate that ground beef from hot water treated trimmings was slightly lighter and tended to have less red color compared to non-treated beef. These color differences did not impact the consumer acceptance of raw patties, and in addition, hot water treatment did not significantly affect the consumer acceptability of cooked patty attributes. PMID:26610290

  9. Swimming physiology.

    PubMed

    Holmér, I

    1992-05-01

    Swimming takes place in a medium, that presents different gravitational and resistive forces, respiratory conditions and thermal stress compared to air. The energy cost of propulsion in swimming is high, but a considerable reduction occurs at a given velocity as result of regular swim training. In medley swimmers the energy cost is lowest for front crawl, followed by backstroke, butterfly and breast-stroke. Cardiac output is probably not limiting for performance since swimmers easily achieve higher values during running. Maximal heart rate, however, is lowered by approx. 10 beats/min during swimming compared to running. Most likely active muscle mass is smaller and rate of power production lesser in swimming. Local factors, such as peripheral circulation, capillary density, perfusion pressure and metabolic capacity of active muscles, are important determinants of the power production capacity and emphasize the role of swim specific training movements. Improved swimming technique and efficiency are likely to explain much of the continuous progress in performance. Rational principles based on improved understanding of the biomechanics and physiology of swimming should be guidelines for swimmers and coaches in their efforts to explore the limits of human performance. PMID:1642724

  10. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae.

    PubMed

    Pereira, Luciana Filgueira; Bassi, Ana Paula Guarnieri; Avansini, Simoni Helena; Neto, Adauto Gomes Barbosa; Brasileiro, Bereneuza Tavares Ramos Valente; Ceccato-Antonini, Sandra Regina; de Morais, Marcos Antonio

    2012-03-01

    The yeast Dekkera bruxellensis plays an important role in industrial fermentation processes, either as a contaminant or as a fermenting yeast. In this study, an analysis has been conducted of the fermentation characteristics of several industrial D. bruxellensis strains collected from distilleries from the Southeast and Northeast of Brazil, compared with Saccharomyces cerevisiae. It was found that all the strains of D. bruxellensis showed a lower fermentative capacity as a result of inefficient sugar assimilation, especially sucrose, under anaerobiosis, which is called the Custer effect. In addition, most of the sugar consumed by D. bruxellensis seemed to be used for biomass production, as was observed by the increase of its cell population during the fermentation recycles. In mixed populations, the surplus of D. bruxellensis over S. cerevisiae population could not be attributed to organic acid production by the first yeast, as previously suggested. Moreover, both yeast species showed similar sensitivity to lactic and acetic acids and were equally resistant to ethanol, when added exogenously to the fermentation medium. Thus, the effects that lead to the employment of D. bruxellensis in an industrial process and its effects on the production of ethanol are multivariate. The difficulty of using this yeast for ethanol production is that it requires the elimination of the Custer effect to allow an increase in the assimilation of sugar under anaerobic conditions. PMID:22041979

  11. Evaluation of surface water characteristics of novel daily disposable contact lens materials, using refractive index shifts after wear

    PubMed Central

    Schafer, Jeffery; Steffen, Robert; Reindel, William; Chinn, Joseph

    2015-01-01

    Purpose Contact lens wearers today spend much time using digital display devices. Contact lens manufacturers are challenged to develop products that account for longer periods of time where blink rate is reduced and tear-film evaporation rate is increased, affecting both visual acuity and comfort. Two manufacturers recently introduced novel daily disposable contact lenses with high surface water content. The objective of the present study was to compare surface water characteristics before and after initial wear of recently introduced nesofilcon A and delefilcon A high surface water lenses with those of etafilcon A lenses. Patients and methods Twenty healthy subjects wore each of the three lens types studied in a randomly determined order for 15 minutes. After each wearing, lenses were removed and the surface refractive index (RI) of each lens was immediately measured. Results The mean RI of the unworn delefilcon A lens was 1.34, consistent with water content in excess of 80%. After 15 minutes of wear, the surface RI shifted to 1.43, consistent with its reported 33% bulk water content. In contrast, the mean surface RI of the nesofilcon A lens was 1.38, both initially and after 15 minutes of wear, and that of the etafilcon A lens was 1.41 initially and 1.42 after 15 minutes of wear. Conclusion The surface of the delefilcon A lens behaves like a high water hydrogel upon insertion but quickly dehydrates to behave like its low-water silicone-hydrogel bulk material with respect to surface water content during wear, while both nesofilcon A and etafilcon A lenses maintain their water content during initial wear. The nesofilcon A lens appears unique among high water lenses in maintaining high surface and bulk water content during wear. This is important because changes in surface RI due to dehydration are reported to lead to visual aberration affecting user experience. PMID:26543349

  12. Physiology of the APUD system.

    PubMed

    Demeure, M J

    1993-01-01

    The characteristic biochemical pathway of the APUDoma cell, namely amine precursor uptake and decarboxylation, are illustrated by the examples of serotonin and catecholamine metabolism. Increasing understanding of the origins of APUDomas as well as the biochemistry and physiology of the hormones they produce, has led to improved methods of detection, imaging and treatment of afflicted patients. PMID:7902604

  13. Application of linear free energy relationships to characterizing the sorptive characteristics of organic contaminants on organoclays from water.

    PubMed

    Zhu, Runliang; Chen, Wangxiang; Liu, Yun; Zhu, Jianxi; Ge, Fei; He, Hongping

    2012-09-30

    Linear free energy relationships (LFERs) were applied to investigate the sorptive characteristics of organic contaminants (OCs) on organoclays from water. Three cetyltrimethylammonium modified montmorillonites (C-Mts) were selected as representative organoclays. The sorption coefficients (logK(oc)) of OCs on the C-Mts were calculated according to the results of batch sorption experiments. Then the LFER equations for OC sorption on C-Mts from water were developed. The results of this study showed that compared with bulk water, water saturated C-Mts are more polarizable, less polar and cohesive, and have stronger H-bond acceptor capacities and weaker H-bond donor capacities. The primary driving forces for the sorption of OCs from water to C-Mts can be ascribed to the weaker cohesive characteristics of C-Mts as well as the stronger nonspecific Van der Waals interaction between OCs and C-Mts. With increasing CTMA loading amount, the interaction between OCs and C-Mts increases whereas the C-Mts become more cohesive. Consequently, the sorption capacity of C-Mts first increases with CTMA loading amount and then decreases with further increased loading amount. PMID:22841296

  14. Experimental and analytical study of stability characteristics of natural circulation boiling water reactors during startup transient

    NASA Astrophysics Data System (ADS)

    Woo, Kyoungsuk

    Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation, the flow becomes stable below a certain heat flux regardless of the inlet subcooling at the core and system pressure. At higher heat flux, unstable phenomena were indentified within a certain range of inlet subcooling. The unstable region diminishes as the system pressure increases. In natural circulation BWRs, the significant gravitational pressure drop over the tall chimney section induces a Type-I instability. The Type-I instability becomes especially important during low power and pressure conditions during reactor start-up. Under these circumstances the effect of pressure variations on the saturation enthalpy becomes significant. An experimental study shows that the flashing phenomenon in the adiabatic chimney section is dominant during the start-up of a natural circulation BWR. Since flashing occurs outside the core, nuclear feedback effects on the stability are small. Furthermore, the thermal-hydraulic oscillation period is much longer than power fluctuation period caused by void reactivity feedback. In the natural circulation system increasing the inlet restriction reduces the natural circulation flow rate, shifting the unstable region to higher inlet subcooling.

  15. Environmental loads from water-sprinkled softwood timber. 2: Influence of tree species and water characteristics on wastewater discharges

    SciTech Connect

    Borga, P.; Elowson, T.; Liukko, K.

    1996-09-01

    The concentration patterns of a number of compounds in the inlet water and wastewater from sprinkling of timber from Scotch pine and Norway spruce have been studied. The timber was separated with respect to species and sprinkled with water from a eutrophic or an oligotrophic receiving water for 18 weeks. Organic and inorganic compounds including dissolved organic carbon (DOC), distillable phenols, resin acids, bacterial phospholipid fatty acids, organic and inorganic phosphorus, nitrogen and sulfur, and a number of metal ions were monitored in the inlet water and wastewater. The toxicity of the wastewater was estimated during the first 2 weeks using a Microtox{reg_sign} test and appeared to decline in parallel with DOC. Most compounds showed both an environmental net load and an absorption by the timber, the loads being smaller and the absorption larger when using eutrophic water. At both sites the loads were generally largest during the first 2 weeks and larger in magnitude at the oligotrophic site and in the spruce wastewater. The initial growth of the bacterial biomass in the pile system was slower at the oligotrophic site, and the results indicated that a rapid growth of the bacterial biomass reduces the initial environmental loads and that this process is associated with the nutrient status of the receiving water.

  16. INFLUENCE OF SOLVENT AND SORBENT CHARACTERISTICS ON DISTRIBUTION OF PENTACHLOROPHENOL IN OCTANOL-WATER AND SOIL-WATER SYSTEMS

    EPA Science Inventory

    Sorbent and solvent characteristics influencing sorption of pentachlorophenol (PCP) were investigated. Analysis of aqueous sorption data for several sorbents over a broad pH range suggested hydrophobic sorption of neutral PCP predominates at pH 7. At pH > 7, sorption of the penta...

  17. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms

    NASA Astrophysics Data System (ADS)

    Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.

    2014-08-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals (P < 0.05). Zazulwana cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms (P < 0.05). High tick loads were recorded for cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale (P < 0.05). White and brown-white patched cows had significantly longer (P < 0.05) hair strands than those having a combination of red, black and white colour. Cortisol and THI were significantly lower (P < 0.05) in summer season. Red blood cells, haematoglobin, haematocrit, mean cell volumes, white blood cells, neutrophils, lymphocytes, eosinophils and basophils were significantly different (P < 0.05) as some associated with age across all seasons and correlated to THI. It was concluded that the location, coat colour and season had effects on hair length, cortisol levels, THI, HP and tick loads on different body parts and heat stress in Nguni cows.

  18. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms

    NASA Astrophysics Data System (ADS)

    Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.

    2015-06-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals ( P < 0.05). Zazulwana cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms ( P < 0.05). High tick loads were recorded for cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale ( P < 0.05). White and brown-white patched cows had significantly longer ( P < 0.05) hair strands than those having a combination of red, black and white colour. Cortisol and THI were significantly lower ( P < 0.05) in summer season. Red blood cells, haematoglobin, haematocrit, mean cell volumes, white blood cells, neutrophils, lymphocytes, eosinophils and basophils were significantly different ( P < 0.05) as some associated with age across all seasons and correlated to THI. It was concluded that the location, coat colour and season had effects on hair length, cortisol levels, THI, HP and tick loads on different body parts and heat stress in Nguni cows.

  19. Investigation on the effect of different levels of dried sweet orange (Citrus sinensis) pulp on performance, carcass characteristics and physiological and biochemical parameters in broiler chicken

    PubMed Central

    Abbasi, Hossein; Seidavi, Alireza; Liu, Wuyi; Asadpour, Leila

    2014-01-01

    Utilization of agricultural by-products in animal nutrition is a matter of great concern. Dried sweet orange (Citrus sinensis) pulp (DCSP) is a potential source of valuable nutrients and natural antioxidants for poultry feed. In the experiment, a feeding trial was conducted in order to investigate the effect of different levels of dried orange residues in diet on broiler growth performance, carcass characteristics, blood metabolites, humoral immunity, and cecum microbial population. A total of 200 one day experimental broiler chicks were distributed into a completely randomized design (CRD) which included 5 dietary treatments with 4 replicates per each treatment and 10 birds fed in each replicate. The experimental treatments consist of a control group (without additive), 0.5%, 1.0%, 1.5%, and 2% of DCSP (residue) in diet. Weight gain, feed intake and feed conversion ratio (FCR) were measured. Blood parameters and carcass traits were measured in the postnatal 35th day. The highest level of dried orange residues in treatment 5 (T5) had significantly increased the feed intake and body weight of broilers in groups and overall during the rearing period (P > 0.05). Different levels of dried orange residues had no significant effect on chicken FCR. Using of dried orange residues significantly decreased the liver and abdominal fat of broilers (P < 0.05). T5 has also significantly lower level of triglyceride than the control (T1) and treatment 2 (T2) (P < 0.05). In conclusion, the use of dried orange residues improved some performance (e.g. feed intake and body weight gain), decreased liver and abdominal fat and also serum triglyceride level in broiler chicken. PMID:25737644

  20. Biomedical Physiology and Kinesiology

    E-print Network

    Chauve, Cedric

    .ca/science/undergrad/advising Biomedical Physiology and Kinesiology This department links the study of physiology, anatomy and movement degree. All provide a background in physiology and anatomy. Biomedical Physiology provides a strongSCIENCE Biomedical Physiology and Kinesiology SFU.CA/ SCIENCE #12;Further Information Student info

  1. Pioneering in gravitational physiology

    NASA Technical Reports Server (NTRS)

    Soffen, G. A.

    1983-01-01

    Gravity affects biology at almost all levels above that of the cell organelle. Attention is presently given to progress made in the understanding of gravitational effects through studies employing centrifuges, clinostats, inverted preparations, linear devices, water immersion, free fall, and short- and long-term spaceflight. The cardiovascular changes which cause malaise and illness during the first few days of extended space missions are the direct result of fluid translocation from the lower extremities. Upon reentry, there is hypovolumnia and a cardiovascular deconditioning that can include tachycardia, changes in arterial blood pressure, narrow pulse pressure, and syncope. Attention is also given to NASA's gravitational physiology reseach program.

  2. Physiology and biochemistry of honey bees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite their tremendous economic importance, honey bees are not a typical model system for studying general questions of insect physiology. This is primarily due to the fact that honey bees live in complex social settings which impact their physiological and biochemical characteristics. Not surpris...

  3. Water quality and hydrogeochemical characteristics of the River Buyukmelen, Duzce, Turkey

    NASA Astrophysics Data System (ADS)

    Pehlivan, Rustem; Yilmaz, Osman

    2005-12-01

    The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s-1. The geological succession in the basin comprises limestone and dolomitic limestone of the Ylanl formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano-clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved.The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2-4, Cl- and HCO3- in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2-4, HCO-3, Cl-, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks.The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l-1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river-bed sediments. The muddy feature of the waters is related to the petrographic features of the rocks in the basin and their mineralogical compositions, as most of the sandstones and volcanic rocks (basalt, tuffite and agglomerate) are decomposed to a clay-rich composition at the surface. Thus, the suspended sediment in stream waters increases by physical weathering of the rocks and water-rock interaction. Owing to the growing population and industrialization, water demand is increasing. The plan is to bring water from the River Buyukmelen to Istanbul's drinking-water reservoirs. According to the Water Pollution Regulations, the River Buyukmelen belongs to quality class 1 based on Hg, Cd, Pb, As, Cu, Cr, Zn, Mn, Se, Ba, Na+, Cl-, and SO2-4; and to quality class 3 based on Fe concentration. The concentration of Fe in the River Buyukmelen exceeds the limit values permitted by the World Health Organization and the Turkish Standard. Because water from the River Buyukmelen will be used as drinking water, it will have an adverse effect on water quality and humans if not treated in advance. In addition, the inclusion of Mn and Zn in the Elmali drinking-water reservoir of Istanbul and Fe in the River Buyukmelen water indicates natural inorganic contamination. Mn, Zn and Fe contents in the waters are related to geological origin. Moreover, the River Buyukmelen flow is very muddy in the rainy seasons and it is inevitable that this will pose problems during the purification process. Copyright

  4. Impact of acute water and feed deprivation events on growth performance, intestinal characteristics, and serum stress markers in weaned pigs.

    PubMed

    Horn, N; Ruch, F; Miller, G; Ajuwon, K M; Adeola, O

    2014-10-01

    The impact of acute stressors (24-h feed or water deprivation) on growth performance, intestinal characteristics, and serum stress markers in weaned pigs was evaluated. Pigs (6.21 ± 0.29 kg) were allotted in a randomized complete block design to 4 treatments on the basis of BW at the time of weaning. There were 8 mixed-sex pigs in each of 12 pens per treatment. Treatments were arranged as a 2 × 2 factorial and consisted of a feed or water stressor that included a 0- or 24-h deprivation period postweaning, and pigs were subsequently allowed access to feed and water. Growth performance was measured 1, 7, 14, and 28 d postweaning. Serum and intestinal samples were taken 1 and 7 d postweaning. Serum was analyzed for cortisol and corticotrophin-releasing factor, and villus height, crypt depth, and mast cell density were measured in the jejunum and the ileum. Expression of mucin (MUC2), tumor necrosis factor ? (TNF-?), interleukin 6 (IL-6), claudin 1 (CL-1), occludin (OC), and zonula occludens 1 (ZO-1) genes were measured on d 1 and 7 postweaning in the jejunum and ileum by real-time PCR. There was a decrease (P < 0.05) in ADG with the water stressor 1 d postweaning, although subsequently, there were improvements (P < 0.05) in ADG and feed efficiency. Furthermore, the water stressor reduced ADFI during the last 14 d of the trial and cumulatively (P < 0.05). Seven days postweaning there was an increase (P < 0.05) in jejunal villous height to depth ratio due to the feed stressor and a decrease (P < 0.05) in the ileal villous height to depth ratio due to the water stressor. There was an increase (P < 0.05) in serum cortisol levels due to the water stressor both 1 and 7 d postweaning. Furthermore, there was an increase in serum corticotrophin-releasing factor 1 d but not 7 d postweaning due to the water stressor (P < 0.05). The feed stressor reduced (P < 0.05) TNF-? gene expression, and the water stressor reduced (P < 0.05) OC gene expression in the jejunum 1 d postweaning. In the ileum, there was a reduction in CL-1 and ZO-1 gene expression (P < 0.05) due to the water stressor 7 d postweaning. The results from the current investigation showed that a 24-h feed or water deprivation at the time of weaning has negative impacts on growth performance, intestinal characteristics, and serum stress responses immediately following the stress event and throughout the nursery period. PMID:25184845

  5. Effects of water quality and dietary potassium on performance and carcass characteristics of yearling steers.

    PubMed

    Sexson, J L; Wagner, J J; Engle, T E; Spears, J W

    2010-01-01

    Four hundred thirty-two crossbred yearling steers (339 kg +/- 4.8) were used to investigate the effects of water quality and dietary potassium concentration and source on feedlot performance and carcass merit. The study was conducted using a 2 x 3 factorial treatment arrangement. Factors evaluated included 2 water sources: 1) a blend of reverse osmosis and well water (RO; 608 +/- 164 mg/L of SO(4)) and 2) 100% well water with SO(4) concentration of 1,933 +/- 53 mg/L and 3 dietary K treatments. Potassium treatments included 0.75% K with supplemental K from potassium chloride (0.75% K-KCl), 0.75% K with supplemental K from potassium carbonate (0.75% K-K(2)CO(3)), and 1.0% K with supplemental K from potassium carbonate (1.0% K-K(2)CO(3)). Interactions between water quality and dietary treatments were not significant. Dry matter intake tended (P = 0.10) to be greater for steers consuming RO water compared with well water and was not affected by dietary treatment. Feed efficiency (P = 0.04) and NE(g) recovery (P = 0.04) were greater for 1.0% K-K(2)CO(3) compared with 0.75% K-KCl but were not affected by water quality. Final BW was heavier (P < 0.001) and ADG was greater (P = 0.04) for RO water compared with well water but were not affected by diet. Carcasses from steers that consumed RO water tended (P = 0.08) to be heavier than carcasses from steers consuming well water. Dietary treatment did not affect HCW (P = 0.52). Yield grade calculated from carcass measurements was not affected by dietary treatment or water quality. Carcasses from steers consuming well water had greater (P = 0.04) marbling scores than RO water. These data demonstrate that steers consuming RO water achieved improved feedlot performance. Steers fed 1.0% K-K(2)CO(3) were more efficient and demonstrated improved energy recovery compared with steers fed 0.75% K-KCl. Improved efficiency and energy recovery may be related to a reduction (P = 0.06) in the liver abscess rate for steers consuming 1.0% K-K(2)CO(3). Dietary cation-anion balance was positively related to ADG (P < 0.01) and NE(g) (P = 0.03) recovery but negatively related to marbling score (P = 0.04). PMID:19749025

  6. Journal of Plant Physiology 165 (2008) 631--640 Can elevated CO2 improve salt tolerance in

    E-print Network

    Etxeberria, Edgardo

    2008-01-01

    Journal of Plant Physiology 165 (2008) 631--640 Can elevated CO2 improve salt tolerance in olive Experiment Station Road, Lake Alfred, FL 33850, USA c Centro de Edafologi´a y Biologi´a Aplicada del Segura; Photosynthesis; Salt stress; Salt tolerance Summary We compared growth, leaf gas exchange characteristics, water

  7. Effects of Water Quality and Orthophosphate on Surface Characteristics of Cu Corrosion in Drinking Water using Atomic Force Microscopy

    EPA Science Inventory

    Since the passage of the Lead and Copper Rule (LCR) in 1991, researchers have examined the effects of water chemistry on the solubility of copper to establish best approaches for reducing copper levels. Despite recent developments, important gaps still exist regarding copper cor...

  8. A new approach for the in situ determination of soil water retention characteristics for shallow groundwater systems

    NASA Astrophysics Data System (ADS)

    Dettmann, Ullrich; Bechtold, Michel

    2015-04-01

    Obtaining representative effective hydraulic properties for the pedon to field scale as input for models is a major challenge in hydrology. Hydraulic properties are often determined by laboratory measurements on small soil cores. Due to the high small-scale variability, many samples are needed to obtain representative values, which is time consuming and costly. Here, we present a new approach which is focused on the in situ determination of the soil water retention characteristics that is applicable to shallow groundwater systems. The method integrates over small-scale heterogeneity (appr. several meters) and uses only precipitation and water-level data. Our approach is built on two assumptions: i) for shallow groundwater systems (with water table depths of appr. < 0.5 to 1 m) , e.g. wetlands, with medium- to high conductive soils the soil moisture profile is close to hydrostatic equilibrium before and after rain events (Dettmann et al., 2014, J Hydrol, 515, 103-115) and ii) over short time periods lateral fluxes into and out of the system are negligible. Given these assumptions, the height of a water level rise after a precipitation event only depends on the soil water retention characteristics, the precipitation amount of the event and the initial water table depths. We use this dependency, to determine van Genuchten-parameters by Bayesian inversion. The applicability of the method is proved by synthetic data. Water retention characteristics are very well-constrained for the low suction range. At high suctions uncertainties strongly increase as this suction range is not covered by the approach. With real field data, some phenomena make an accurate determination more difficult. Wetlands are typically characterized by a distinct microrelief leading to partly inundated areas around a monitoring well in dependence of the water level. For field application, we thus developed a model that takes into account the microrelief by assuming frequency distributions. Furthermore, preferential flow phenomena were accounted for by waiting for the system to equilibrate a few hours after the rain events. The inversely-determined parameters are compared against laboratory data.

  9. Chemical Characteristics of Water-Soluble Ions in Particulate Matter in Three Metropolitan Areas in the North China Plain

    PubMed Central

    Dao, Xu; Wang, Zhen; Lv, Yibing; Teng, Enjiang; Zhang, Linlin; Wang, Chao

    2014-01-01

    PM2.5 and PM10 samples were collected simultaneously in each season in Beijing, Tianjin and Shijiazhuang to identify the characteristics of water-soluble ion compositions in the North China Plain. The water-soluble ions displayed significant seasonal variation. The dominant ions were NO3?, SO42?, NH4+ and Cl?, accounting for more than 90% and 86% to the mass of total water-soluble ions in PM2.5 and PM10, respectively. The anion/cation ratio indicated that the ion acidity of each city varied both between sites and seasonally. Over 50% of the ion species were enriched in small particles ?1 µm in diameter. The [NO3?]/[SO42?] ratio indicated that vehicles accounted for the majority of the particulate pollution in Beijing. Shijiazhuang, a city highly reliant on coal combustion, had a higher SO42? concentration. PMID:25437210

  10. Characteristics and variability of the Indonesian throughflow water at the outflow straits

    E-print Network

    Sprintall, Janet

    Seasonal cycles Freshening thermocline Java Sea a b s t r a c t Property structure and variability of the Indonesian Throughflow Water in the major outflow straits (Lombok, Ombai and Timor) are revised from newly and is related to the supply of fresh near-surface Java Sea water that is drawn eastward by surface monsoon

  11. EFFECT OF COMMERCIAL BIRD WASHERS ON BROILER CARCASS MICROBIOLOGICAL CHARACTERISTICS AND WASTE WATER QUALITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA mandated "Pathogen Reduction, Hazard Analysis and Critical Control Point System" regulation has resulted in an increase in water usage during processing of poultry. Industry surveys suggest that nationwide this increase in water usage is at least 5.7 liters (1.5 gallons) per bird during s...

  12. COLD WATER PATCHES IN WARM STREAMS: PHYSICOCHEMICAL CHARACTERISTICS AND THE INFLUENCE OF SHADING

    EPA Science Inventory

    Discrete coldwater patches within the surface waters of summer-warm streams afford potential thermal refuge for coldwater fishes during periods of heat stress. This analysis focused on reach-scale heterogeneity in water temperatures as influenced by local influx of cooler subsur...

  13. Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3-Cu hybrid nanofluids.

    PubMed

    Suresh, S; Venkitaraj, K P; Hameed, M Shahul; Sarangan, J

    2014-03-01

    A study on fully developed turbulent convective heat transfer and pressure drop characteristics of Al2O3-Cu/water hybrid nanofluid flowing through a uniformly heated circular tube is presented in this paper. For this, Al2O3-Cu nanocomposite powder was synthesized in a thermo chemical route using hydrogen reduction technique and dispersed the hybrid nano powder in deionised water to form a stable hybrid nanofluid of 0.1% volume concentration. The prepared powder was characterized by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) to confirm the chemical composition, determine the particle size and study the surface morphology. Stability of the nanofluid was ensured by pH and zeta potential measurements. The average heat transfer enhancement for Al2O3-Cu/water hybrid nanofluid is 8.02% when compared to pure water. The experimental results also showed that 0.1% Al2O3-Cu/water hybrid nanofluids have slightly higher friction factor compared to 0.1% Al2O3/water nanofluid. The empirical correlations proposed for Nusselt number and friction factor were well agreed with the experimental data. PMID:24745264

  14. Palms versus trees: water use characteristics of native fruit-bearing plant species in the Central Amazon

    NASA Astrophysics Data System (ADS)

    Kunert, N.; Barros, P.; Higuchi, N.

    2012-12-01

    Native fruiting plants are widely cultivated in the Amazon but only little information on their water use characteristics can be found in the literature. Due to the growing local consumption and the increasing popularity for new "exotic" fruits all over Brazil and worldwide, additional new plantations cultivating such fruit-bearing species might be established in the Amazon in the future. These new plantations will affect the water table of the cultivated areas, however, the impact of these changes on the regional hydrology are not known. We, therefore, decided to study plant water use characteristics of two native fruit plants commonly occurring in the Amazon region, a tree species (Cupuaçu, Theobroma grandiflorum, (Willd. ex Spreng.) Schum., Malvaceae) and a palm species (Açai, Euterpe oleraceae Mart., Arecaceae). This study was conducted in a fruit plantation close to the city of Manaus, in the Central Amazon, Brazil. The objectives of our study were 1) to compare variables controlling plant water use and 2) to identify differences in water use between woody monocot and dicot plant species. We chose three representative individuals with well-sun-exposed crowns for each species, which were equipped with Granier-type thermal dissipation probes to measure sap flux density continuously for six weeks from August 1st 2011 until September 6th 2011. We used a simple sap flux model with two environmental variables, photosynthetic photon flux density and vapor pressure deficit, to compare sap flux densities between species. We achieved a good model fit and modeled sap flux densities corresponded very well with the actual measured values. No significant differences among species in sap flux densities were indicated by the model. Overall, palms had a 3.5 fold higher water consumption compared to trees with similar diameter. Water use scaled independent from species with the size of the conductive xylem area (r2 = 0.85), so that the higher water use of the palms was largely explained by higher conductivity of the xylem cross section area. Palms transpired a mean of 1.67 mm m-2 of water per unit crown projection area per day, whereas trees transpired only 0.30 mm m-2 per day, resulting in a 5.6 times lower transpiration rate. We conclude that changes in the water table due to land use change are predictable and highly depending on the species planted in the area with altered land use.

  15. Analytical Analyses of Spatial and Temporal Characteristics of Infiltrated Water for Managed Aquifer Recharge

    NASA Astrophysics Data System (ADS)

    Zlotnik, V. A.; Ledder, G.; Kacimov, A. R.

    2014-12-01

    Disposal of excessive runoff or treated sewage into wadis and ephemeral streams is a common practice and an important hydrological problem in many Middle Eastern countries. While chemical and biological properties of the injected treated wastewater may be different from those of the receiving aquifer, the density contrast between the two fluids can be small. Therefore, studies of the fluid interface for variable density fluids or water intrusion are not directly relevant in many Managed Aquifer Recharge (MAR) problems. Other factors, such as the transient nature of injection and lack of detailed aquifer information must be considered. The disposed water reaching the water table through the vadose zone creates groundwater mounds, deforms the original water table, and develops finite-size convex-concave lenses of treated water over receiving water. After cessation of infiltration, these mounds flatten, water levels become horizontal, and infiltrated water becomes fully embedded in the receiving aquifer. The shape of the treated water body is controlled by the aquifer parameters, the magnitude of ambient flow, and the duration, rate, and cyclicity of infiltration. In case of limited aquifer data, advective transport modeling offers the most appropriate tools for predicting plume shapes over time, but surprisingly little work has been done on this important 3D flow problem. We investigate the lateral and vertical spreading of infiltrated water combining techniques of spatial velocity analyses by Zlotnik and Ledder (1992, 1993) with particle tracking. This approach allows for evaluating the geometry of the plume and the protection zone, the flow development phases, and other temporal and spatial effects and results can be used in conditions of limited data availability and quality. (Funding was provided by the USAID, DAI Subcontract 1001624-12S-19745)

  16. Shallow ground water flow in unmined regions of the northern Appalachian Plateau: Part 1. Physical characteristics

    SciTech Connect

    Hawkins, J.W.; Brady, K.B.C.; Barnes, S.; Rose, A.W.

    1996-12-31

    At a Pennsylvania study site, ground-water flow and aquifer properties in undisturbed strata are controlled by fracture frequency and aperture development. Analysis of images from a borehole video camera illustrate that the frequency of horizontal and vertical fractures decreases non-linearly with increasing depth. A highly transmissive fractured zone extends from 0 to roughly 15 meters in the strata underlying hilltops and hillsides. This zone exhibited hydraulic conductivities over 100 times higher than strata lying 8 meters or more deeper. These extreme hydraulic conductivity changes permit a temporary perched water table to arise from rainfall events. Surface water quickly enters near-surface fractures and flows rapidly downward and laterally through the shallow fractured zone. Well hydrographs illustrate that the residence time for much of this water is relatively short--a few days up to a week. Most of this shallow ground-water flow emanates at cropline springs, while most of the remainder continues as shallow ground-water flow and a small portion of the ground water enters the deeper flow system. In the deeper system, the flow rate is substantially slower with a much longer residence time than the shallow zone. This is caused by a low hydraulic conductivity (i.e. geometric mean of 1.1 x 10{sup 6} m/s). The longer residence time allows the deep-flowing ground water more time to react with the minerals in the strata, increasing conductance and dissolved solids concentrations, relative to the shallow ground water. Specific conductivity profiles in the uncased boreholes illustrate that the conductance of the ground water increases with depth. The increases in conductance observed in some cases were gradual, while in other cases conductance increases were very discrete, corresponding to major fractures intersected by the borehole.

  17. Chemical characteristics of Delaware River water, Trenton, New Jersey, to Marcus Hook, Pennsylvania

    USGS Publications Warehouse

    Durfor, Charles N.; Keighton, Walter B.

    1954-01-01

    This progress report gives the results of an investigation of the quality of water in the Delaware River from Trenton, N. J. to Marcus Hook, Pa., for the period August 1949 to December 1952. The Delaware River is the principal source of water for the many industries and municipal water supplies along this reach of the river and both industries and municipalities use it for the disposal of their wastes. Consequently, a study of the quality of the water and variations in the quality caused by changes in streamflow, tidal effects, pollution and other factors is important to the many users. In both New Jersey and Pennsylvania steps are being taken to abate pollution, thus it is of more than passing interest to measure the effects of waste treatment on the quality of the Delaware River water. At average or higher rates of streamflow the mineral content of the water increases slightly from Trenton to Marcus Hook. There is little variation in the concentration of dissolved minerals from bank to bank or from top to bottom of the river. At times of protracted low rates of flow the effect of ocean water mixing with the river water may be noted as far upstream as Philadelphia. At such times the salinity is often greater near the bottom of the river than near the top. The increase in chloride concentration upstream from Philadelphia is small compared to the rapid increase downstream from Philadelphia. Temperatures of offshore water vary with the season, but on a given day are substantially uniform throughout the reach of the river from Trenton to Marcus Hook. The water contains less dissolved oxygen as it flows downstream indicating that oxygen is being consumed by oxidizable matter. From Philadelphia downstream there are periods, especially in late summer, when the dissolved oxygen is barely sufficient to meet the oxygen demands of the pollution load.

  18. Effects of Produced Water on Soil Characteristics, Plant Biomass, and Secondary Metabolites.

    PubMed

    Burkhardt, Andy; Gawde, Archana; Cantrell, Charles L; Baxter, Holly L; Joyce, Blake L; Stewart, C Neal; Zheljazkov, Valtcho D

    2015-11-01

    The Powder River Basin in Wyoming and Montana contains the United States' largest coal reserve. The area produces large amounts of natural gas through extraction from water-saturated coalbeds. Determining the impacts of coalbed natural gas-produced efflux water on crops is important when considering its potential use as supplemental irrigation water. We hypothesized that coalbed natural gas water, because of its high salinity and sodicity, would affect plant secondary metabolism (essential oils) and biomass accumulation. A 2-yr field study was conducted in Wyoming to investigate the effects of produced water on two traditional bioenergy feedstocks-corn ( L.) and switchgrass ( L.)-and four novel biofuel feedstock species-spearmint ( L.), Japanese cornmint ( L.), lemongrass [ (Nees ex Steud.) J.F. Watson]), and common wormwood ( L.). The four nontraditional feedstock species were chosen because they contain high-value plant chemicals that can offset production costs. Essential oil content was significantly affected by coalbed natural gas water in lemongrass and spearmint. Oil content differences between two spearmint harvests in the same year indicated that there were significant changes between the growth stage of the plant and essential oil content; the first harvest averaged 0.42 g of oil per 100 g biomass while the second harvest (harvested before flowering) yielded only 0.19 g oil per 100 g dry biomass. Results indicated that produced water can be used for short-period (2 yr) irrigation of crops. However, prolonged use of untreated produced water for irrigation would likely have deleterious long-term effects on the soil and plants unless the water was treated or diluted (mixed) with good-quality water. PMID:26641346

  19. Water Consumption Characteristics and Water Use Efficiency of Winter Wheat under Long-Term Nitrogen Fertilization Regimes in Northwest China

    PubMed Central

    Zhong, Yangquanwei; Shangguan, Zhouping

    2014-01-01

    Water shortage and nitrogen (N) deficiency are the key factors limiting agricultural production in arid and semi-arid regions, and increasing agricultural productivity under rain-fed conditions often requires N management strategies. A field experiment on winter wheat (Triticum aestivum L.) was begun in 2004 to investigate effects of long-term N fertilization in the traditional pattern used for wheat in China. Using data collected over three consecutive years, commencing five years after the experiment began, the effects of N fertilization on wheat yield, evapotranspiration (ET) and water use efficiency (WUE, i.e. the ratio of grain yield to total ET in the crop growing season) were examined. In 2010, 2011 and 2012, N increased the yield of wheat cultivar Zhengmai No. 9023 by up to 61.1, 117.9 and 34.7%, respectively, and correspondingly in cultivar Changhan No. 58 by 58.4, 100.8 and 51.7%. N-applied treatments increased water consumption in different layers of 0–200 cm of soil and thus ET was significantly higher in N-applied than in non-N treatments. WUE was in the range of 1.0–2.09 kg/m3 for 2010, 2011 and 2012. N fertilization significantly increased WUE in 2010 and 2011, but not in 2012. The results indicated the following: (1) in this dryland farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2) N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3) comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic. PMID:24905909

  20. Abundance and characteristics of the recreational water quality indicator bacteria Escherichia coli and enterococci in gull faeces

    USGS Publications Warehouse

    Fogarty, L.R.; Haack, S.K.; Wolcott, M.J.; Whitman, R.L.

    2003-01-01

    Aims: To evaluate the numbers and selected phenotypic and genotypic characteristics of the faecal indicator bacteria Escherichia coli and enterococci in gull faeces at representative Great Lakes swimming beaches in the United States. Methods and Results: E. coli and enterococci were enumerated in gull faeces by membrane filtration. E. coli genotypes (rep-PCR genomic profiles) and E. coli (Vitek?? GNI+) and enterococci (API?? rapid ID 32 Strep and resistance to streptomycin, gentamicin, vancomycin, tetracycline and ampicillin) phenotypes were determined for isolates obtained from gull faeces both early and late in the swimming season. Identical E. coli genotypes were obtained only from single gull faecal samples but most faecal samples yielded more than one genotype (median of eight genotypes for samples with 10 isolates). E. coli isolates from the same site that clustered at ???85% similarity were from the same sampling date and shared phenotypic characteristics, and at this similarity level there was population overlap between the two geographically isolated beach sites. Enterococcus API?? profiles varied with sampling date. Gull enterococci displayed wide variation in antibiotic resistance patterns, and high-level resistance to some antibiotics. Conclusions: Gull faeces could be a major contributor of E. coli (105-109 CFU g-1) and enterococci (104-108 CFU g-1) to Great Lakes recreational waters. E. coli and enterococci in gull faeces are highly variable with respect to their genotypic and phenotypic characteristics and may exhibit temporal or geographic trends in these features. Significance and Impact of the Study: The high degree of variation in genotypic or phenotypic characteristics of E. coli or enterococci populations within gull hosts will require extensive sampling for adequate characterization, and will influence methods that use these characteristics to determine faecal contamination sources for recreational waters.

  1. Tau in physiology and pathology.

    PubMed

    Wang, Yipeng; Mandelkow, Eckhard

    2016-01-01

    Tau is a microtubule-associated protein that has a role in stabilizing neuronal microtubules and thus in promoting axonal outgrowth. Structurally, tau is a natively unfolded protein, is highly soluble and shows little tendency for aggregation. However, tau aggregation is characteristic of several neurodegenerative diseases known as tauopathies. The mechanisms underlying tau pathology and tau-mediated neurodegeneration are debated, but considerable progress has been made in the field of tau research in recent years, including the identification of new physiological roles for tau in the brain. Here, we review the expression, post-translational modifications and functions of tau in physiology and in pathophysiology. PMID:26631930

  2. Fractals in physiology and medicine

    NASA Technical Reports Server (NTRS)

    Goldberger, Ary L.; West, Bruce J.

    1987-01-01

    The paper demonstrates how the nonlinear concepts of fractals, as applied in physiology and medicine, can provide an insight into the organization of such complex structures as the tracheobronchial tree and heart, as well as into the dynamics of healthy physiological variability. Particular attention is given to the characteristics of computer-generated fractal lungs and heart and to fractal pathologies in these organs. It is shown that alterations in fractal scaling may underlie a number of pathophysiological disturbances, including sudden cardiac death syndromes.

  3. Transient formation characteristics of temperature stratified flow in a horizontal water pipe with an injection of hot water from a hole of a pipe

    SciTech Connect

    Okinotani, Takeshi; Ozoe, Hiroyuki

    1999-07-01

    Temperature stratified flow was numerically analyzed in a horizontal pipe. Initially cold water is running and developed in a pipe. From a part of a pipe wall, hot water is injected. Subsequent transient velocity and temperature stratification process was numerically analyzed. This process is a model for such transfer phenomena as follows, i.e., blowing of fresh air into a long tunnel, replacing process of hazardous fluids from a pipeline of an industrial plant with safer fluids, ventilation of a large construction house or ducts, transient combustion process in a tunnel or huge duct, transient flow and temperature characteristics in a canal or river with multiple sub channels. These various cases become more complicated and more serious for the larger scale systems. Temperature stratified flow is everywhere established which makes the prediction difficult. This paper presents transient three-dimensional numerical analyses for a horizontal pipe in which laminar cold water runs steadily. Hot water is injected from a lower side corner of a pipe. Model equations consist of fully three-dimensional balance equations in a cylindrical coordinate. Total tube length computed is 10 times of a pipe diameter d{sub 0}. Hot water inlet hole is 0.4d{sub 0} long in an axial direction and {pi}d{sub 0}/8 in a circumferential direction near the entrance of the system. Reynolds number in a pipe is 1000. Reynolds number of the hot water at the injection hole is 447. Grashof number based on the temperature difference is 5 x 10{sup 7} and Pr = 5.41. Transient three-dimensional velocity profiles and isotherms are presented. The instantaneous water temperature represents oscillatory fluctuation depending on the level in a pipe and on the axial distance from the injection hole. For the tube diameter 0.1m, an average temperature arrived a quasi-steady state after 5 minutes with strong temperature stratification even at 1m from an injection hole. Near the injection hole, hot water makes circumferential convection with oscillatory up and down vortex flow in an axial direction. Warmer water makes stratified flow with faster axial velocity near the top of the tube with much slower axial velocity near the bottom of the tube. These fully three-dimensionally complicated flow and temperature stratification characteristics are presented in various ends view and side views of a long pipe. The importance to note the temperature stratified flow is discussed.

  4. Hydrochemical Regions of the Glacial Aquifer System, Northern United States, and Their Environmental and Water-Quality Characteristics

    USGS Publications Warehouse

    Arnold, Terri L.; Warner, Kelly L.; Groschen, George E.; Caldwell, James P.; Kalkhoff, Stephen J.

    2008-01-01

    The glacial aquifer system in the United States is a large (953,000 square miles) regional aquifer system of heterogeneous composition. As described in this report, the glacial aquifer system includes all unconsolidated geologic material above bedrock that lies on or north of the line of maximum glacial advance within the United States. Examining ground-water quality on a regional scale indicates that variations in the concentrations of major and minor ions and some trace elements most likely are the result of natural variations in the geologic and physical environment. Study of the glacial aquifer system was designed around a regional framework based on the assumption that two primary characteristics of the aquifer system can affect water quality: intrinsic susceptibility (hydraulic properties) and vulnerability (geochemical properties). The hydrochemical regions described in this report were developed to identify and explain regional spatial variations in ground-water quality in the glacial aquifer system within the hypothetical framework context. Data analyzed for this study were collected from 1991 to 2003 at 1,716 wells open to the glacial aquifer system. Cluster analysis was used to group wells with similar ground-water concentrations of calcium, chloride, fluoride, magnesium, potassium, sodium, sulfate, and bicarbonate into five unique groups. Maximum Likelihood Classification was used to make the extrapolation from clustered groups of wells, defined by points, to areas of similar water quality (hydrochemical regions) defined in a geospatial model. Spatial data that represented average annual precipitation, average annual temperature, land use, land-surface slope, vertical soil permeability, average soil clay content, texture of surficial deposits, type of surficial deposit, and potential for ground-water recharge were used in the Maximum Likelihood Classification to classify the areas so the characteristics of the hydrochemical regions would resemble the characteristics of the clusters. The result of the Maximum Likelihood Classification is a map showing five hydrochemical regions of the glacial aquifer system. Statistical analysis of ion concentrations (calcium, chloride, fluoride, magnesium, sodium, potassium, sulfate, and bicarbonate) in samples collected from wells completed in the glacial aquifer system illustrates that variations in water quality can be explained, in part, by related environmental characteristics that control the movement of ground water through the aquifer system. A comparison of median concentrations of chemical constituents in ground water among the five hydrochemical regions indicates that ground water in the Midwestern Agricultural Region, the Urban-Influenced Region, and the Western Agriculture and Grassland Region has the highest concentrations of major and minor ions, whereas ground water in the Northern and Great Lakes Forested Region and the Mountain and Coastal Forested Region has the lowest concentrations of these ions. Median concentrations of barium, arsenic, lithium, boron, strontium, and nitrite plus nitrate as nitrogen also are significantly different among the hydrochemical regions.

  5. Characteristics of water, sediment, and benthic communities of the Wolf River, Menominee Indian Reservation, Wisconsin, water years 1986-98

    USGS Publications Warehouse

    Garn, Herbert S.; Scudder, Barbara C.; Richards, Kevin D.; Sullivan, Daniel J.

    2001-01-01

    Analyses and interpretation of water quality, sediment, and biological data from water years 1986 through 1998 indicated that land use and other human activities have had only minimal effects on water quality in the Wolf River upstream from and within the Menominee Indian Reservation in northeastern Wisconsin. Relatively high concentrations of calcium and magnesium (natural hardness), iron, manganese, and aluminum were measured in Wolf River water samples during water years 1986?98 from the three sampled sites and attributed to presence of highly mineralized geologic materials in the basin. Average calcium and magnesium concentrations varied from 22?26 milligrams per liter (mg/L) and 11?13 mg/L, respectively. Average iron concentrations ranged from 290?380 micrograms per liter (?g/L); average manganese concentrations ranged from 53?56 mg/L. Average aluminum concentrations ranged from 63?67 ?g/L. Mercury was present in water samples but concentrations were not at levels of concern. Levels of Kjeldahl nitrogen, ammonia, nitrite plus nitrate, total phosphorus, and orthophosphorus in water samples were often low or below detection limits (0.01? 0.10 mg/L). Trace amounts of atrazine (maximum concentration of 0.031 ?g/L), deethylatrazine (maximum 0.032 ?g/L), and alachlor (maximum of 0.002 ?g/L) were detected. Low concentrations of most trace elements were found in streambed sediment. Tissues of fish and aquatic invertebrates collected once each year from 1995 through 1998 at the Langlade and Keshena sites, near the northern and southern boundaries of the Reservation, respectively, were low in concentrations of most trace elements. Arsenic and silver in fish livers from both sites were less than or equal to 2 ?g/g arsenic and less than 1 ?g/g silver for dry weight analysis, and concentrations of antimony, beryllium, cadmium, cobalt, lead, nickel, and uranium were all below detection limits (less than 1 ?g/g dry weight). Concentrations of most other trace elements in fish were low, with the exceptions of chromium, copper, mercury, and selenium; however, these concentrations are not at levels of concern. Concentrations of all trace elements analyzed in whole caddisfly larvae also were low compared to those reported in the literature. During 1998, a total of 48 species of macroinvertebrates were identified at each of two sampled sites, with similar numbers of genera represented at both: 41 at Keshena and 44 at Langlade. The percentage EPT (Ephemeroptera, Plecoptera, and Trichoptera) was 52 at Keshena and 77 at Langlade; these relatively large percentages suggest very good to excellent water quality at these sites. A total of 52 algal taxa were identified at the Wolf River near Langlade. Diatoms made up 96 percent of the algal biomass. A total of 58 algal taxa were identified at Keshena, including 48 diatom taxa (83 percent). Although diatoms accounted for just 22 percent of the algal relative abundance, in cells per square centimeter, diatoms contributed 91 percent of the total algal biomass. The overall biological integrity of the Keshena and Langlade sites, based on diversity, siltation, and pollution indexes for diatoms is excellent.

  6. Analysis of the effect of wash water reduction on bleached pulp characteristics.

    PubMed

    Frigieri, Tânia Cristina; Ventorim, Gustavo; Savi, Antônio Francisco; Favaro, Jaqueline Silveira Comelato

    2015-01-01

    The main objective of this study was to analyse cost reduction by reducing the use of fresh water in the cellulose bleaching process and to make it easier to obtain water in a closed circuit. Eucalyptus oxygen delignified industrial pulp was used. The pulp was bleached 10 times in the D(E+P)DP sequence in the same conditions. Counter current washing was used in the bleaching stages, and each sequence was carried out with different wash factors: 9, 6, 3, and 0?m³ of distilled water/ton of oven dry pulp. The goal was to reach brightness of 92±0.5% ISO. The results showed that there was a chemical oxygen demand (COD) increase and brightness reversion, but the kappa number and viscosity did not change. The apparent colour was increased by increasing COD in the effluent during the cycles and by decreasing the wash water. Up to 3?m³/t of water was tolerable and even recommended to wash pulp. Nine cubic metre per tonne of fresh water is most commonly used in the industry, so water savings make the implementation of the process possible. PMID:25204209

  7. Laboratory measurements of physical, chemical, and optical characteristics of Lake Chicot sediment waters

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Usry, J. W.; Morris, W. D.; Gurganus, E. A.

    1981-01-01

    Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude.

  8. [Excitation-Emission Matrix Fluorescence Spectra Characteristics of DOM in Integrated Verical Flow Constructed Wetland for Treating Eutrophic Water].

    PubMed

    Li, Shu-juan; Ge, Li-yun; Deng, Huan-huan

    2015-04-01

    Three-dimensional fluorescence parameters can reflect classification, properties and content change of pollutants in wastewater treatment. In the present paper, by using three-dimensional fluorescence characteristic analysis, comparative analysis of conventional organic pollutants such as COD, TN and TP, and three dimensional fluorescence spectrum analysis, the classification and content of dissolved organic pollutants were identified. We studied fluorescence spectra, fluorescence peak (R. U.), fluorescence index (FI), humification index (HIX) of DOM's four components in the entrance and effluent water and interstitial water, as well as the correlation between these four components and COD, TN and TP. The results showed that the position and intensity of the characteristic fluorescence peak center changed significantly before and after sewage treatment, indicating that the relative composition and content of the organic wastewater varied with wastewater treatment. Furthermore, the test results presented that humic-like composition was not degraded significantly, while protein-like composition was degraded significantly. And the protein-like component and COD, TN and TP presented significant positive correlation. This paper analyzed the fluorescence characteristics changes of dissolved organic matter in sewage treatment by using three-dimensional fluorescence spectrometry, and discussed the feasibility of three-dimensional fluorescence technique applied for description of dissolved organic pollutant degradation rule in the wastewater treatment process. PMID:26197580

  9. 14 CFR 25.239 - Spray characteristics, control, and stability on water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to the most adverse condition established in accordance with § 25.231; (2) In wind and cross-wind... requested. (c) In the water conditions of paragraph (b) of this section, and in the corresponding...

  10. Determination of the Burning Characteristics of a Slick of Oil on Water 

    E-print Network

    Torero, Jose L; Olenick, Stephen M; Garo, Jean P; Vantelon, Jean P

    2003-01-01

    The burning rate of a slick of oil on a water bed is characterized by three distinct processes, ignition, flame spread and burning rate. Although all three processes are important, ignition and burning rate are critical. ...

  11. 14 CFR 25.239 - Spray characteristics, control, and stability on water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...control, and stability on water. (a) For seaplanes and amphibians, during takeoff, taxiing, and landing, and in the conditions...and in the corresponding wind conditions, the seaplane or amphibian must be able to drift for five minutes with engines...

  12. 14 CFR 25.239 - Spray characteristics, control, and stability on water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...control, and stability on water. (a) For seaplanes and amphibians, during takeoff, taxiing, and landing, and in the conditions...and in the corresponding wind conditions, the seaplane or amphibian must be able to drift for five minutes with engines...

  13. 14 CFR 25.239 - Spray characteristics, control, and stability on water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...control, and stability on water. (a) For seaplanes and amphibians, during takeoff, taxiing, and landing, and in the conditions...and in the corresponding wind conditions, the seaplane or amphibian must be able to drift for five minutes with engines...

  14. 14 CFR 25.239 - Spray characteristics, control, and stability on water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...control, and stability on water. (a) For seaplanes and amphibians, during takeoff, taxiing, and landing, and in the conditions...and in the corresponding wind conditions, the seaplane or amphibian must be able to drift for five minutes with engines...

  15. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    PubMed

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50 % of the total volume and 50-60 % of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ?350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria. PMID:26612563

  16. Watershed Characteristics and Pre-Restoration Surface-Water Hydrology of Minebank Run, Baltimore County, Maryland, Water Years 2002-04

    USGS Publications Warehouse

    Doheny, Edward J.; Starsoneck, Roger J.; Striz, Elise A.; Mayer, Paul M.

    2006-01-01

    Stream restoration efforts have been ongoing in Maryland since the early 1990s. Physical stream restoration often involves replacement of lost sediments to elevate degraded streambeds, re-establishment of riffle-pool sequences along the channel profile, planting vegetation in riparian zones, and re-constructing channel banks, point bars, flood plains, and stream-meanders. The primary goal of many restoration efforts is to re-establish geomorphic stability of the stream channel and reduce erosive energy from urban runoff. Monitoring streams prior to and after restoration could help quantify other possible benefits of stream restoration, such as improved water quality and biota. This report presents general watershed characteristics associated with the Minebank Run watershed; a small, urban watershed in the south-central section of Baltimore County, Maryland that was physically restored in phases during 1999, 2004, and 2005. The physiography, geology, hydrology, land use, soils, and pre-restoration geomorphic setting of the unrestored stream channel are discussed. The report describes a reach of Minebank Run that was selected for the purpose of collecting several types of environmental data prior to restoration, including continuous-record and partial-record stage and streamflow data, precipitation, and ground-water levels. Examples of surface-water data that were collected in and near the study reach during water years 2002 through 2004, including continuous-record streamflow, partial-record stage and discharge, and precipitation, are described. These data were used in analyses of several characteristics of surface-water hydrology in the watershed, including (1) rainfall totals, storm duration, and intensity, (2) instantaneous peak discharge and daily mean discharge, (3) stage-discharge ratings, (4) hydraulic-geometry relations, (5) water-surface slope, (6) time of concentration, (7) flood frequency, (8) flood volume, and (9) rainfall-runoff relations. Several hydrologic characteristics that are typical of urban environments were quantified by these analyses. These include (1) large ratios of peak discharge to daily mean discharge as an indicator of flashiness, (2) consistent shifting of the stage-discharge rating over short periods of time that indicates instability of the stream channel, (3) analyses of hydraulic-geometry relations that indicate mean velocities of 11 feet per second or more while the flow is contained in the stream channel, (4) discharges that are 4 to 5 times larger in Minebank Run for corresponding flood frequency recurrence intervals than in Slade Run, which is a Piedmont watershed of similar size with smaller percentages of urban development, and (5) flood waves that can travel through the stream channel at a velocity of 412 feet per minute, or 6.9 feet per second.

  17. Effects of water-control structures on hydrologic and water-quality characteristics in selected agricultural drainage canals in eastern North Carolina

    USGS Publications Warehouse

    Treece, M.W., Jr.; Jaynes, M.L.

    1994-01-01

    November of water into and out of tidally affected canals in eastern North Carolina was documented before and after the installation of water-control structures. Water levels in five of the canals downstream from the water-control structures were controlled primarily by water-level fluctuations in estuarine receiving waters. Water-control structures also altered upstream water levels in all canals. Water levels were lowered upstream from tide gates, but increased upstream from flashboard risers. Both types of water-control structures attenuated the release of runoff following rainfall events, but in slightly different ways. Tide gates appeared to reduce peak discharge rates associated with rainfall, and flashboard risers lengthened the duration of runoff release. Tide gates had no apparent effect on pH, dissolved oxygen, suspended-sediment, or total phosphorus concentrations downstream from the structures. Specific conductance measured from composite samples collected with automatic samples increased downstream of tide gates after installation. Median concentrations of nitrite plus nitrate nitrogen were near the minimum detection level throughout the study; however, the number of observations of concentrations exceeding 0.1 milligram per liter dropped significantly after tide gates were installed. Following tide-gate installation, instantaneous loadings of nitrite plus nitrate nitrogen were significantly reduced at one test site, but this reduction was not observed at the other test site. Loadings of other nutrient species and suspended sediment did not change at the tide-gate test sites after tide-gate installation. Specific conductance was lower in the Beaufort County canals than in the Hyde County canals. Although there was a slight increase in median values at the flashboard-riser sites, the mean and maximum values declined substantially downstream from the risers following installation. This decline of specific conductance in the canals occurred despite a large increase of specific conductance in the tidal creek. Flashboard risers had no significant effect on concentrations of dissolved oxygen, suspended sediment, total ammonia plus organic nitrogen, or phosphorus. Maximum concentrations of ammonia nitrogen were smaller at both test sites after riser installation. In addition, concentrations of nitrite plus nitrate nitrogen exceeding 1.0 milligram per liter rarely occurred at the flashboard-riser test sites following installation of the risers. Median loadings of nitrite plus nitrate nitrogen and total nitrogen decreased at one riser test site following flashboard-riser installation. Tide gates and flashboard risers were associated with reductions in concentrations and export of nitrite plus nitrate nitrogen; however, these changes should be interpreted cautiously because reductions were not observed consistently at every site. The hydrology and baseline water-quality characteristics of the two study areas differ, making comparisons of the effectiveness of the two types of water-control structures difficult to interpret. The effects of water-control structures on the hydrology of the drainage canals are more meaningful than the changes in water quality. Tide gates and flashboard risers altered the hydrologic characteristics of the drainage canals and created an environment favorable for nutrient loss or transformation. Both structures retained agricultural drainage upstream, which increased potential storage for infiltration and reduced the potential for surface runoff, sediment, and nutrient transport, and higher peak outflow rates.

  18. [Spatio-temporal characteristics and source identification of water pollutants in Wenruitang River watershed].

    PubMed

    Ma, Xiao-xue; Wang, La-chun; Liao, Ling-ling

    2015-01-01

    Identifying the temp-spatial distribution and sources of water pollutants is of great significance for efficient water quality management pollution control in Wenruitang River watershed, China. A total of twelve water quality parameters, including temperature, pH, dissolved oxygen (DO), total nitrogen (TN), ammonia nitrogen (NH4+ -N), electrical conductivity (EC), turbidity (Turb), nitrite-N (NO2-), nitrate-N(NO3-), phosphate-P(PO4(3-), total organic carbon (TOC) and silicate (SiO3(2-)), were analyzed from September, 2008 to October, 2009. Geographic information system(GIS) and principal component analysis(PCA) were used to determine the spatial distribution and to apportion the sources of pollutants. The results demonstrated that TN, NH4+ -N, PO4(3-) were the main pollutants during flow period, wet period, dry period, respectively, which was mainly caused by urban point sources and agricultural and rural non-point sources. In spatial terms, the order of pollution was tertiary river > secondary river > primary river, while the water quality was worse in city zones than in the suburb and wetland zone regardless of the river classification. In temporal terms, the order of pollution was dry period > wet period > flow period. Population density, land use type and water transfer affected the water quality in Wenruitang River. PMID:25898648

  19. Hydrogeologic and water-quality characteristics of the Prairie du Chien-Jordan aquifer, Southeast Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.; Wolf, R.J.; Adolphson, D.G.

    1983-01-01

    The Prairie du Chien-Jordan aquifer is part of a sequence of sedimentary bedrock units in southeast Minnesota. The Jordan Sandstone is a white to yellow, fine- to coarse-grained sandstone. The Prairie du Chien Group comprises two dolomitic formations, which are vuggy and fractured and interbedded with thin layers of shale. The aquifer was deposited from Paleozoic seas that occupied the Hollandale embayment. The surface of the aquifer dips toward the interior of the embayment where it is as deep as 750 feet below land surface and as thick as 500 feet. Permeability is secondary in the Prairie du Chien Group because of solution cavities and fractures and is intergranular in the Jordan Sandstone. Water in the aquifer is confined and generally flows to the north and east into the Minnesota and Mississippi Rivers. A ground-water divide separates part of the flow southward into Iowa. This aquifer supplies more water than any other in the State. Quality of water is generally good throughout the aquifer. Calcium magnesium bicarbonate type water is most common. The potential for contamination from surface sources is low except near the Mississippi River valley, where the overlying drift is thin. The most serious water-quality problem is contamination by chemical wastes in St. Louis Park. (USGS)

  20. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    SciTech Connect

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D.

    1993-12-31

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}, the break-up time was 0. 30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6{degree}. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  1. Water and sediment characteristics associated with avian botulism outbreaks in wetlands

    USGS Publications Warehouse

    Rocke, Tonie E.; Samuel, Michael D.

    1999-01-01

    Avian botulism kills thousands of waterbirds annually throughout North America, but management efforts to reduce its effects have been hindered because environmental conditions that promote outbreaks are poorly understood. We measured sediment and water variables in 32 pairs of wetlands with and without a current outbreak of avian botulism. Wetlands with botulism outbreaks had greater percent organic matter (POM) in the sediment (P = 0.088) and lower redox potential in the water (P = 0.096) than paired control wetlands. We also found that pH, redox potential, temperature, and salinity measured just above the sediment-water interface were associated (P ? 0.05) with the risk of botulism outbreaks in wetlands, but relations were complex, involving nonlinear and multivariate associations. Regression models indicated that the risk of botulism outbreaks increased when water pH was between 7.5 and 9.0, redox potential was negative, and water temperature was >20°C. Risk declined when redox potential increased (>100), water temperature decreased (10-15°C), pH was 9.0, or salinity was low (<2.0 ppt). Our predictive models could allow managers to assess potential effects of wetland management practices on the risk of botulism outbreaks and to develop and evaluate alternative management strategies to reduce losses from avian botulism.

  2. Water quality characteristics of Densu River basin in south-east Ghana.

    PubMed

    Amoako, J; Karikari, A Y; Ansa-Asare, O D; Adu-Ofori, E

    2010-01-01

    Water quality of the Densu River was studied by determining the levels of various physico-chemical parameters including trace metals for planning of the basin. The pH range (7.40-8.22) fell within the natural background level 6.5-8.5. The river was moderately hard with high turbidity due to poor farming practices, which result in large quantities of topsoil ending up in the river after rains. The river waters were well oxygenated with a mean DO concentration of 6.3 mg/l. Nitrogen and phosphorus levels were below their natural background values. The Densu River showed an overall ionic dominance pattern of Na > Ca > K > Mg and Cl > HCO(3) > SO(4), a pattern which is an intermediate between fresh and sea water systems. The mean concentrations of metals for the basin followed the order: Fe > Mn > Zn > Pb > Cu > Cd. 84.6% of the sampling sites exceeded the background values of 0.3 mg/l and 0.1 mg/l for Fe and Mn respectively. Other metals Zn, Pb, Cu and Cd were all below their background levels indicating the river is unpolluted with respect to these metals. Water Quality index performed on the data depicted that River Densu is of poor to fairly good water quality. Regular water quality monitoring is recommended. PMID:20351426

  3. 14 CFR 25.239 - Spray characteristics, control, and stability on water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    (a) For seaplanes and amphibians, during takeoff, taxiing, and landing, and in the conditions set forth in paragraph (b) of this section, there may be no— (1) Spray characteristics that would impair the pilot's view, cause damage, or result in the taking in of an undue quantity of...

  4. Physical and chemical characteristics of water in coal-mine ponds, eastern Oklahoma, June to November 1977-81

    USGS Publications Warehouse

    Slack, L.J.; Blumer, S.P.

    1984-01-01

    Water at 102 sites in 59 coal-mine ponds in eastern Oklahoma was sampled at lease twice during June to November 1977-81 to determine temperature, specific conductance, dissolved oxygen, pH, and dissolved sulfate, chloride, iron, and manganese--as part of a study of the hydrology of the Oklahoma coalfield. These determinations show that during June to October water in ponds deeper than ~10 ft was stratified; ponds which had little or not change of temperature with depth generally were shallow or were sampled in early November. Temperature, dissolved oxygen, and pH usually decreased with depth, whereas specific conductance usually increased with depth. Concentrations of dissolved sulfate, chloride, iron, and manganese varied from site to site. Specific conductance, which is a measure of dissolved solids in the water, ranged from 93 to 4,800 mmho/cm at 25oC. Some physical and chemical characteristics of the mine-pond water are related to the coal bed adjacent to the pond. Mean specific-conductance values and dissolved-sulfate concentrations were greatest in ponds associated with mining of Dawson, Weir-Pittsburg, and Secor coals. Mean dissolved-iron concentrations were greatest in ponds associated with mining of the Dawson, Secor, and Hartshorne coals. Mean dissolved-manganese concentrations were greatest in ponds associated with mining of the Dawson, Weir-Pittsburg, and Secor coals, but greatly exceeded secondary drinking-water limits regardless of coal bed mined.

  5. Biochar as a Substitute for Peat in Greenhouse Growing Media: Soil Water Characteristics and Carbon Leaching Dynamics

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Hilbert, I.; Jollymore, A. J.

    2012-12-01

    Biochar (charcoal derived from waste biomass via pyrolysis) has the potential to be used as part of regional scale carbon sequestration strategies. By providing a stable form of carbon that is resistant to decay in soils, biochar can be utilized in a wide range of applications to improve the sustainability of land use management practices. Due to its high water holding capacity, surface area and charge density, it could provide a substitute for peat that is widely used in horticultural activities. Globally, peat production in 2010 amounted to 23.4 Mt, with more than a third of this used for horticulture. In Canada, essentially all peat produced is used for horticulture, with each ton of peat extracted also contributing about 0.7 t CO2e in combined greenhouse gas emissions related to production, transportation and use of peat. We evaluated biochar produced on farm from red alder as a peat substitute in terms of soil water characteristics and carbon leaching in greenhouse growing media (e.g. potting mix). Biochar mixing ratios of 10% (v/v) and greater provided water holding capacity equivalent to peat-based potting mixes. We also present results from a laboratory wetting experiment in which we characterized leachate for dissolved organic carbon (DOC) concentration and DOC characteristics using spectral methods (uV-Vis and fluorescence spectroscopy).

  6. Vertical characteristics of levels and potential sources of water-soluble ions in PM?? in a Chinese megacity.

    PubMed

    Tian, Ying-Ze; Shi, Guo-Liang; Han, Su-Qin; Zhang, Yu-Fen; Feng, Yin-Chang; Liu, Gui-Rong; Gao, Li-Jie; Wu, Jian-Hui; Zhu, Tan

    2013-03-01

    To investigate the vertical characteristics of ions in PM10 as well as the contributions and possible locations of their sources, eight water-soluble ions were measured at four heights simultaneously along a meteorological tower in Tianjin, China. The total ion concentrations showed a general decreasing trend with increasing height, ranging from 64.94?gm(-3) at 10m to 44.56?gm(-3) at 220m. NH4(+), SO4(2-) and NO3(-) showed higher height-to-height correlations. In addition, relationships between ions are discussed using Pearson correlation coefficients and hierarchical clustering analysis (HCA), which implied that, for each height, the correlations among NH4(+), SO4(2-) and NO3(-) were higher. Finally, sources were identified qualitatively by the ratio of certain ions and quantitatively by principal component analysis/multiple linear regression (PCA/MLR) and positive matrix factorisation (PMF). Secondary sources played a dominant role for PM10 and water-soluble ions at four heights and became more important at greater heights (the percentage contributions were 43.04-66.41% for four heights by PCA/MLR and 46.93-67.62% by PMF). Then, the redistributed concentration field (RCF) combined with PCA/MLR and PMF was applied, which indicated the high potential source regions. The vertical characteristics of the levels, relationships, source contributions and locations would support the effective management of the water-soluble ions in particulate matter. PMID:23376287

  7. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  8. Hydrodynamic and Aerodynamic Characteristics of a Model of a Supersonic Multijet Water-Based Aircraft Equipped with Supercavitating Hydrofoils

    NASA Technical Reports Server (NTRS)

    McKann, Robert E.; Blanchard, Ulysse J.; Pearson, Albin O.

    1960-01-01

    The hydrodynamic and aerodynamic characteristics of a model of a multijet water-based Mach 2.0 aircraft equipped with hydrofoils have been determined. Takeoff stability and spray characteristics were very good, and sufficient excess thrust was available for takeoff in approximately 32 seconds and 4,700 feet at a gross weight of 225,000 pounds. Longitudinal and lateral stability during smooth-water landings were good. Lateral stability was good during rough-water landings, but forward location of the hydrofoils or added pitch damping was required to prevent diving. Hydrofoils were found to increase the aerodynamic lift-curve slope and to increase the aerodynamic drag coefficient in the transonic speed range, and the maximum lift-drag ratio decreased from 7.6 to 7.2 at the cruise Mach number of 0.9. The hydrofoils provided an increment of positive pitching moment over the Mach number range of the tests (0.6 to 1.42) and reduced the effective dihedral and directional stability.

  9. CHARACTERISTICS OF WATER AND ENERGY EXCHANGE IN A BLACK SPRUCE FOREST OVER PERMAFROST IN INTERIOR ALASKA

    NASA Astrophysics Data System (ADS)

    Iwata, H.; Harazono, Y.; Ueyama, M.

    2009-12-01

    In the high latitudes, ecosystem development is influenced by low precipitation, the supply of snowmelt water, and limited water storage capacity due to the presence of permafrost. The ecosystem development, in turn, affects the regional climate through surface fluxes. Thus, to predict climate change, it is necessary to quantify the water and energy budgets. Using data observed over six years in a black spruce forest that stands on discontinuous permafrost in Interior Alaska (64°52N, 147°51W), we investigated the water and energy exchange in order to clarify the response of water balance in a boreal forest to climate variation. The black spruce forest is 120 years old, and the forest floor is covered with mosses, sedges, and shrubs. In this forest, fluxes of energy, CO2, and water were observed using a sonic anemometer and open-path gas analyzer. Micrometeorology such as net radiation, PAR, temperature, rainfall, and soil heat flux were also observed at and around the observation tower. Energy Partitioning After the snow melted, a larger fraction of available energy was partitioned into sensible heat flux due to low transpiration limited by shallow soil thawing. The Bowen ratio (BR) was approximately 2.0 in this period. With increased thaw depth, more energy partitioned into latent heat (LE) flux during the latter half of the growing season (BR was approximately 0.7). Energy balance of this site during the growing season was close to 90% when heat storage in the soil above the soil heat flux plates was accounted for. It is also important to consider LE absorption during the snowmelt period for closure of energy balance. This energy ranged from 15 to 20% of available energy. Water balance During the first half of the growing season, water was supplied first by snowmelt (50-130mm) and subsequently by soil thawing. As a result, the evapotranspiration (ET) exceeded precipitation. Some of the snowmelt was used to saturate the shallow layer of thawed soil, but most was lost as runoff because of the shallow thawed layer (up to 80mm in this season). Peak ET was observed around DOY 200 with a maximum of 2.5mm/day. Thereafter, ET decreased due to leaf senescence of annual plants despite an increase of precipitation. The excess water supply was preserved in the frozen ground to support vegetation growth in the next early growing season. Total precipitation and ET were 327mm and 246mm, respectively, for hydrological year 2007 and 290mm and 225mm, respectively, for 2008. Consequently, the water balance at the site remained in a sustainable condition under the current climate.

  10. Factors controlling physico-chemical characteristics in the coastal waters off Mangalore-A multivariate approach

    SciTech Connect

    Shirodkar, P.V. Mesquita, A.; Pradhan, U.K.; Verlekar, X.N.; Babu, M.T.; Vethamony, P.

    2009-04-15

    Water quality parameters (temperature, pH, salinity, DO, BOD, suspended solids, nutrients, PHc, phenols, trace metals-Pb, Cd and Hg, chlorophyll-a (chl-a) and phaeopigments) and the sediment quality parameters (total phosphorous, total nitrogen, organic carbon and trace metals) were analysed from samples collected at 15 stations along 3 transects off Karnataka coast (Mangalore harbour in the south to Suratkal in the north), west coast of India during 2007. The analyses showed high ammonia off Suratkal, high nitrite (NO{sub 2}-N) and nitrate (NO{sub 3}-N) in the nearshore waters off Kulai and high nitrite (NO{sub 2}-N) and ammonia (NH{sub 3}-N) in the harbour area. Similarly, high petroleum hydrocarbon (PHc) values were observed near the harbour, while phenols remained high in the nearshore waters of Kulai and Suratkal. Significantly, high concentrations of cadmium and mercury with respect to the earlier studies were observed off Kulai and harbour regions, respectively. R-mode varimax factor analyses were applied separately to surface and bottom water data sets due to existing stratification in the water column caused by riverine inflow and to sediment data. This helped to understand the interrelationships between the variables and to identify probable source components for explaining the environmental status of the area. Six factors (each for surface and bottom waters) were found responsible for variance (86.9% in surface and 82.4% in bottom) in the coastal waters between Mangalore and Suratkal. In sediments, 4 factors explained 86.8% of the observed total variance. The variances indicated addition of nutrients and suspended solids to the coastal waters due to weathering and riverine transport and are categorized as natural sources. The observed contamination of coastal waters indicated anthropogenic inputs of Cd and phenol from industrial effluent sources at Kulai and Suratkal, ammonia from wastewater discharges off Kulai and harbour, PHc and Hg from boat traffic and harbour activities of New Mangalore harbour. However, the strong seasonal currents and the seasonal winds keep the coastal waters well mixed and aerated, which help to disperse the contaminants, without significantly affecting chlorophyll-a concentrations. The interrelationship between the stations as shown by cluster analyses and depicted in dendograms, categorize the contamination levels sector-wise.

  11. Water-Quality Characteristics for Selected Sites Within the Milwaukee Metropolitan Sewerage District Planning Area, Wisconsin, February 2004-September 2005

    USGS Publications Warehouse

    Thomas, Judith C.; Lutz, Michelle A.; Bruce, Jennifer L.; Graczyk, David J.; Richards, Kevin D.; Krabbenhoft, David P.; Westenbroek, Stephen M.; Scudder, Barbara C.; Sullivan, Daniel J.; Bell, Amanda H.

    2007-01-01

    The Milwaukee Metropolitan Sewerage District (MMSD) Corridor Study is a three-phase project designed to improve the understanding of water resources in the MMSD planning area to assist managers and policy makers in their decisions. Phase I of the Study involved the compilation of existing data from multiple agencies into a single database. These data were analyzed to identify spatial, temporal, and technological gaps in the planning area, and were used to develop Phase II of the Study. Phase II, the subject of this report, involved an intensive data-collection effort by the U.S. Geological Survey (USGS) in cooperation with MMSD (from February, 2004, through September, 2005). This phase addressed the data gaps identified in Phase I and completed a baseline assessment of water quality for selected stream and harbor sites in the MMSD planning area. This baseline assessment included evaluations of surface-water chemistry and microbial concentrations in the streams and harbor sites; additionally, stream sites were evaluated for discharge, sediment chemistry, fish-tissue chemistry, habitat, and the quality of biological communities (including fish, macroinvertebrates, and algae). In all, data were collected at 15 stream and 6 harbor sites within the MMSD planning area, including manual sampling and analysis for more than 220 water-quality properties and constituents at all 21 sites, stream-discharge data for 14 stream sites, and automated water-quality sampling at 4 stream sites. A bioassessment during autumn 2004 included collection of biologic-community data and stream-habitat data at wadeable streams. Quartiles of Phase II aggregate bioassessment rankings were used to divide the 14 wadeable stream sites into four groups to investigate relations between bioassessment data and site characteristic and water-quality data. Quartile numbers reflect relative water quality: quartile 1 contained sites where the bioassessment data indicated the least-degraded water quality among those sampled, and quartile 4 contained sites that indicated the most-degraded water quality. Quartiles contained the following stream sites: Quartile 1: Milwaukee River near Cedarburg, Milwaukee River at Milwaukee, Jewel Creek, and Menomonee River at Menomonee Falls; Quartile 2: Willow Creek, Root River near Franklin, and Root River at Grange Avenue; Quartile 3: Menomonee River at Wauwatosa, Oak Creek, and Little Menomonee River; and Quartile 4: Honey Creek, Underwood Creek, Lincoln Creek, and Kinnickinnic River. Site characteristics (in this case, drainage area and land use) and selected water-quality data were summarized based on the four bioassessment quartiles to determine if there were relations with the aggregate bioassessment rankings. In general, sites having the largest drainage basins with the lowest proportion of urban land use were in quartile 1, and the smallest drainage basins with the highest proportion of urban land use were in quartile 4. Major ions, indicator organisms, and wastewater compounds generally had the lowest overall results in quartile 1 and highest overall results in quartile 4, with intermediate results in quartiles 2 and 3. Results for other constituent types (nutrients, mercury, pathogenic organisms, and bed sediment) were mixed, with results for some constituents decreasing from quartile 1 to quartile 4. Where sufficient Phase I data were available, summary statistics (including medians) for chemical and biological data were calculated, allowing some comparisons to be made between Phase I and Phase II data. Comparisons between Phase I and Phase II results indicated a variety of changes with respect to water quality. Concentrations of chloride, nitrate, chlorophyll a, total phosphorus in water; arsenic in bed sediment; and fish Index of Biotic Integrity ratings generally indicated declines in water quality. However, concentrations of total nitrogen, suspended sediment, and fecal coliform in water; some trace eleme

  12. Teaching Stress Physiology Using Zebrafish ("Danio Rerio")

    ERIC Educational Resources Information Center

    Cooper, Michael; Dhawale, Shree; Mustafa, Ahmed

    2009-01-01

    A straightforward and inexpensive laboratory experiment is presented that investigates the physiological stress response of zebrafish after a 5 degree C increase in water temperature. This experiment is designed for an undergraduate physiology lab and allows students to learn the scientific method and relevant laboratory techniques without causing…

  13. Water-tunnel and analytical investigation of the effect of strake design variables on strake vortex breakdown characteristics

    NASA Technical Reports Server (NTRS)

    Frink, N. T.; Lamar, J. E.

    1980-01-01

    A systematic water-tunnel study was made to determine the vortex breakdown characteristics of 43 strakes. The strakes were mounted on a 1/2-scale model of a Langley Research Center general research fighter fuselage model with a 44deg leading-edge-sweep trapezoidal wing. The analytically designed strake shapes provided examples of the effects of the primary design parameters (size, span, and slenderness) on vortex breakdown characteristics. These effects were analyzed in relation to the respective strake leading-edge suction distributions. Included were examples of the effects of detailed strake planform shaping. It was concluded that, consistent with the design criterion, those strakes with leading-edge suction distributions which increase more rapidly near, and have a higher value at, the spanwise tip of the strake produce a more stable vortex.

  14. Impacts of the Nile River damming on the thermohaline circulation and water mass characteristics of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Lascaratos, A.

    2004-12-01

    The long-term changes in the thermohaline circulation and water mass characteristics of the Mediterranean Sea caused by the damming of the Nile in 1964 are investigated using a 3-D primitive equation model (Princeton Ocean Model, POM). The model is first integrated for 65 years under climatological forcing and without taking into account the Nile runoff to obtain an initial steady state. Then the model is integrated for 75 years with the Nile outflow included until it reaches a steady state representative of that existing in the Mediterranean prior to the damming. Finally, the model is integrated for another 75 years eliminating the Nile runoff to reach a new steady state. The model results show that the absence of the Nile freshwater input induces a saltier surface layer in the vicinity of the Rhodes Gyre thus favoring the preconditioning for the formation of the Levantine Intermediate Water (LIW). This results in about 30% increase of the LIW formation rate. Intermediate waters become saltier, and as they are transported westward they reduce the stability of the water column in the deep-water formation sites, namely the South Adriatic and the Gulf of Lions. Thus saltier and larger amounts of dense waters are formed filling the deep parts of the Mediterranean Sea. According to the model, the Nile damming explains about 45% of the observed salinity increasing trend occurring over the last 40 years in the Western Mediterranean Deep Water (WMDW). Furthermore, model results demonstrate that the Nile damming played a crucial role in the long-term salt preconditioning of the surface/intermediate layers of the Cretan Sea, thus contributing in triggering the Eastern Mediterranean climatic transient in the late 1980s.

  15. Overview of the Stratospheric Aerosol and Gas Experiment II water vapor observations: Method, validation, and data characteristics

    SciTech Connect

    Rind, D. ); Chiou, E.W.; Larsen, J. ); Chu, W.; McCormick, M.P.; McMaster, L. ); Oltmans, S. ); Lerner, J. )

    1993-03-20

    Water vapor observations obtained from the Stratospheric Aerosol and Gas Experiment II (SAGE II) solar occulation instrument for the troposphere and stratosphere are presented and compared with correlative in situ measurement techniques and other satellite data. The SAGE II instrument produces water vapor values from cloud top to approximately 1 mbar, except in regions of high aerosol content such as occurs in the low to middle stratosphere after volcanic eruptions. Details of the analysis procedure, instrumental errors, and data characteristics are discussed. Various features of the data set for the first 5 years after launch (1985-1989) are identified. These include an increase in middle and upper tropospheric water vapor during northern hemisphere summer and autumn, thus at times of warmest sea surface temperature; minimum water vapor values of 2.5-3 ppmv in the tropical lower stratosphere, with lower values during northern hemisphere winter and spring; slowly increasing water vapor values with altitude in the stratosphere, reaching 5-6 ppmv or greater near the stratopause; extratropical values with minimum profile amounts occurring above the conventionally defined tropopause; and higher extratropical than tropical water vapor values throughout the stratosphere except in locations of possible polar stratospheric clouds. SAGE II data will be useful for studying individual water vapor profiles, tropospheric response to climate perturbations, tropospheric-stratospheric exchange (due to its inherent high vertical resolution), and stratospheric transports. It should also aid in the preparation, for the first time on a global scale, of climatologies of the stratosphere and the upper level cloud-free troposphere, for use in radiative, dynamical, and chemical studies. 57 refs., 6 figs., 5 tabs.

  16. Characteristics of produced water discharged to the Gulf of Mexico hypoxiczone.

    SciTech Connect

    Veil, J. A.; Kimmell, T. A.; Rechner, A. C.

    2005-08-24

    Each summer, an area of low dissolved oxygen (the hypoxic zone) forms in the shallow nearshore Gulf of Mexico waters from the Mississippi River Delta westward to near the Texas/Louisiana border. Most scientists believe that the leading contributor to the hypoxic zone is input of nutrients (primarily nitrogen and phosphorus compounds) from the Mississippi and Atchafalaya Rivers. The nutrients stimulate growth of phytoplankton. As the phytoplankton subsequently die, they fall to the bottom waters where they are decomposed by microorganisms. The decomposition process consumes oxygen in the bottom waters to create hypoxic conditions. Sources other than the two rivers mentioned above may also contribute significant quantities of oxygen-demanding pollutants. One very visible potential source is the hundreds of offshore oil and gas platforms located within or near the hypoxic zone. Many of these platforms discharge varying volumes of produced water. However, only limited data characterizing oxygen demand and nutrient concentration and loading from offshore produced water discharges have been collected. No comprehensive and coordinated oxygen demand data exist for produced water discharges in the Gulf of Mexico. This report describes the results of a program to sample 50 offshore oil and gas platforms located within the Gulf of Mexico hypoxic zone. The program was conducted in response to a requirement in the U.S. Environmental Protection Agency (EPA) general National Pollutant Discharge Elimination System (NPDES) permit for offshore oil and gas discharges. EPA requested information on the amount of oxygen-demanding substances contained in the produced water discharges. This information is needed as inputs to several water quality models that EPA intends to run to estimate the relative contributions of the produced water discharges to the occurrence of the hypoxic zone. Sixteen platforms were sampled 3 times each at approximately one-month intervals to give an estimate of temporal variability. An additional 34 platforms were sampled one time. The 50 sampled platforms were scattered throughout the hypoxic zone to give an estimate of spatial variability. Each platform was sampled for biochemical oxygen demand (BOD), total organic carbon (TOC), nitrogen (ammonia, nitrate, nitrite, and total Kjeldahl nitrogen [TKN]), and phosphorus (total phosphorus and orthophosphate). In addition to these parameters, each sample was monitored for pH, conductivity, salinity, and temperature. The sampling provided average platform concentrations for each parameter. Table ES-1 shows the mean, median, maximum, and minimum for the sampled parameters. For some of the parameters, the mean is considerably larger than the median, suggesting that one or a few data points are much higher than the rest of the points (outliers). Chapter 4 contains an extensive discussion of outliers and shows how the sample results change if outliers are deleted from consideration. A primary goal of this study is to estimate the mass loading (lb/day) of each of the oxygen-demanding pollutants from the 50 platforms sampled in the study. Loading is calculated by multiplying concentrations by the discharge volume and then by a conversion factor to allow units to match. The loadings calculated in this study of 50 platforms represent a produced water discharge volume of about 176,000 bbl/day. The total amount of produced water generated in the hypoxic zone during the year 2003 was estimated as 508,000 bbl/day. This volume is based on reports by operators to the Minerals Management Service each year. It reflects the volume of produced water that is generated from each lease, not the volume that is discharged from each platform. The mass loadings from offshore oil and gas discharges to the entire hypoxic zone were estimated by multiplying the 50-platform loadings by the ratio of total water generated to 50-platform discharge volume. The loadings estimated for the 50 platforms and for the entire hypoxic zone are shown in Table ES-2. These estimates and the sampling data from 50 platfo

  17. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    NASA Technical Reports Server (NTRS)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  18. Flow characteristics and injectivity behavior of water-soluble polymers: Final report. [144 references

    SciTech Connect

    Martin, F.D.

    1987-04-01

    The objective of this project was to determine the key properties of water-soluble polymers that affect injectivity of polymer solutions used in enhanced recovery processes. The project consisted of performing a thorough literature survey on this subject, followed by laboratory tests to assess various properties of polymer solutions. In the literature survey, laboratory and field projects were reviewed. Information from the literature survey on field projects and from experiments performed as part of this study points out that water quality is very important in the injectivity of polymer solutions. Specifically, if iron is introduced as a corrosion byproduct, the polymers can be crosslinked which can lead to severe plugging when the polymer solution is injected. For some polymers, procedures used for mixing solutions can be important. Higher solution viscosities may be obtained if emulsion polymers are inverted in a very fresh water prior to mixing with a brine water. Filterability and injectivity of some emulsion polymers are better when the polymers are dissolved in a fresher water. As expected, injectivity of xanthan gum polymers was better than for polyacrylamide polymers. For polyacrylamides, adsorption was higher on dolomite than on sandstone, but the adsorption on either media was not affected greatly by anionic charge of the polymers. Injectivity of polymer solutions may be improved by pretreatment with certain solvents or chemicals. After a loss of injectivity caused by plugging from a polymer solution, selected chemicals can provide improvement in injectivity. 155 refs., 30 figs., 27 tabs.

  19. Soil water characteristics of two soil catenas in Illinois: Implications for irrigation

    SciTech Connect

    Schaetzl, R.J. ); Kirsch, S.W. ); Hendrie, L.K.

    1989-10-01

    Soil water was monitored by neutron scattering in six soils, three each within two drainage catenas in east-central Illinois, over a 15-month time span. The prairie soils have formed in: (1) 76-152 cm of silt loam, eolian sediments (loess) over glacial till (Catlin-Flanagan-Drummer catena), and (2) loess greater than 152 cm in thickness (Tama-Ipava-Sable catena). The authors characterized the water content of these soils over the total time span and for wet and dry climatic subsets, as an aid to potential irrigation decisions. Soils of the thin loess, C-F-D catena dried out to lower water contents and had greater soil water variability than did the thick loess soils. Under wet conditions, soil water contents in the two catenas were quite similar. Alleviation of surface and subsurface drying via irrigation would thus be more advantageous to yields on the C-F-D soils than on the T-I-S soils.

  20. Growth characteristics of mung beans and water convolvuluses exposed to 425-MHz electromagnetic fields.

    PubMed

    Jinapang, Peeraya; Prakob, Panida; Wongwattananard, Pongtorn; Islam, Naz E; Kirawanich, Phumin

    2010-10-01

    Effects of high-frequency, continuous wave (CW) electromagnetic fields on mung beans (Vigna radiata L.) and water convolvuluses (Ipomoea aquatica Forssk.) were studied at different growth stages (pre-sown seed and early seedling). Specifically, the effects of the electromagnetic source's power and duration (defined as power-duration level) on the growth of the two species were studied. Mung beans and water convolvuluses were exposed to electromagnetic fields inside a specially designed chamber for optimum field absorption, and the responses of the seeds to a constant frequency at various power levels and durations of exposure were monitored. The frequency used in the experiments was 425?MHz, the field strengths were 1?mW, 100?mW, and 10?W, and the exposure durations were 1, 2, and 4?h. Results show that germination enhancement is optimum for the mung beans at 100?mW/1?h power-duration level, while for water convolvuluses the optimum germination power-duration level was 1?mW/2?h. When both seed types were exposed at the early sprouting phase with their respective optimum power-duration levels for optimum seed growth, water convolvuluses showed growth enhancement while mung bean sprouts showed no effects. Water content analysis of the seeds suggests thermal effects only at higher field strength. PMID:20564175

  1. Thermal desorption characteristics of CO, O2 and CO2 on non-porous water, crystalline water and silicate surfaces at sub-monolayer and multilayer coverages

    E-print Network

    Noble, J A; Dulieu, F; Fraser, H J

    2011-01-01

    The desorption characteristics of molecules on interstellar dust grains are important for modelling the behaviour of molecules in icy mantles and, critically, in describing the solid-gas interface. In this study, a series of laboratory experiments exploring the desorption of three small molecules from three astrophysically relevant surfaces are presented. The desorption of CO, O2 and CO2 at both sub-monolayer and multilayer coverages was investigated from non-porous water, crystalline water and silicate surfaces. Experimental data was modelled using the Polanyi-Wigner equation to produce a mathematical description of the desorption of each molecular species from each type of surface, uniquely describing both the monolayer and multilayer desorption in a single combined model. The implications of desorption behaviour over astrophysically relevant timescales are discussed.

  2. Extraction characteristics of subcritical water depending on the number of hydroxyl group in flavonols.

    PubMed

    Cheigh, Chan-Ick; Yoo, Seo-Yeon; Ko, Min-Jung; Chang, Pahn-Shick; Chung, Myong-Soo

    2015-02-01

    This study compared the efficiencies of using subcritical water, hot water, and organic solvents to extract flavonols from black tea, celery, and ginseng leaf. The effect of key operating conditions was determined by varying the temperature (110-200°C), extraction time (5-15min), and pressure (about 10MPa) and the extracts were analysed quantitatively using HPLC. The yields of myricetin, quercetin, and kaempferol from plants were maximal at extraction temperatures of 170°C, 170°C and 200°C, respectively, and they depend on the number of hydroxyl groups included in the chemical structure of the flavonols, with more of those with fewer hydroxyl (OH) groups attached being extracted at higher temperatures. The results also showed that the yields of flavonols by subcritical water extraction were 2.0- to 22.7- and 1.8- to 23.6-fold higher than those obtained using the ethanol and methanol as traditional extraction methods, respectively. PMID:25172678

  3. Heat Pump Water Heaters: Controlled Field Research of Impact on Space Conditioning and Demand Response Characteristics

    SciTech Connect

    Parker, Graham B.; Widder, Sarah H.; Eklund, Ken; Petersen, Joseph M.; Sullivan, Greg

    2015-10-05

    A new generation of heat pump water heaters (HPWH) has been introduced into the U.S. market that promises to provide significant energy savings for water heating. Many electric utilities are promoting their widespread adoption as a key technology for meeting energy conservation goals and reducing greenhouse gas emissions. There is, however, considerable uncertainty regarding the space conditioning impact of an HPWH installed in a conditioned space. There is also uncertainty regarding the potential for deployment of HPWHs in demand response (DR) programs to help manage and balance peak utility loads in a similar manner as conventional electric resistance water heaters (ERWH). To help answer these uncertainties, controlled experiments have been undertaken over 30 months in a matched pair of unoccupied Lab Homes located on the campus of the Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  4. Characteristics of nutrients in the Jiulong River and its impact on Xiamen Water, China

    NASA Astrophysics Data System (ADS)

    Chen, Baohong; Ji, Weidong; Chen, Jinmin; Lin, Cai; Huang, Haining; Huo, Yunlong; Ji, Xianbiao

    2013-09-01

    Water samples were collected at 20 sites on 4 occasions in 2009 (twice in May, and once in both August and November) along the Jiulong River, South China to examine how nutrient inputs from the Jiulong River could affect the nutrient status of the Xiamen Water. Samples were analyzed for nitrite (NO2-N), nitrate (NO3-N), ammonium (NH4-N), phosphate (PO4-P), silicate (SiO3-Si), salinity, and temperature, to determine the nutrient and trophic status of the river. The results indicate that nutrients are derived mainly from river runoff. NO3-N was the main form of DIN in most parts of the river. In addition, NO3-N, DIN, and SiO3-Si behave conservatively. There is a surplus of DIN and SiO3-Si in the river, and PO4-P is a limitation on phytoplankton growth. The concentration of DIN is typically above 0.60 mg/dm3, and higher than 1.00 mg/dm3 in most parts of the river. The concentration of PO4-P is typically above 0.02 mg/dm3, while the concentration of SiO3-Si is higher than 1.00 mg/dm3. Between 2003 and 2008, samples were collected 3 times per year (May, August and November) at 27 sites in the Xiamen Water and analyzed for NO2-N, NO3-N, NH4-N, PO4-P, salinity, and temperature. We discovered that the Jiulong River was the key source of DIN into the Xiamen Water, but not PO4-P, indicating the reason of the N/P molar ratio imbalance in the Xiamen Water. In the future, the effects of high DIN concentrations on the phytoplankton communities and marine ecosystems of the Xiamen Water shall be studied.

  5. Oxygen and hydrogen isotopic water characteristics of the Aral Sea, Central Asia

    NASA Astrophysics Data System (ADS)

    Oberhänsli, Hedi; Weise, Stephan M.; Stanichny, Sergej

    2009-03-01

    The Aral Sea, located in a semi-arid environment, undergoes substantial annual (1200 mm/yr) and decadal lake-level fluctuations due to extreme seasonality in evaporation and precipitation along with steadily reduced river discharge. To trace the source of the lake water and understand the internal dynamics of the lake, we used oxygen and deuterium isotope composition of the lake water collected at different depths during spring and autumn from 2004 to 2006. We collected data from both the western (W) and eastern (E) basins of the Large Aral Sea as well as the channel connecting the two basins. The oxygen and hydrogen isotope ratios of the lake water vary widely (+ 4.6 to - 5.3‰ and - 48 to + 11‰, respectively). We further measured isotopic ratios of groundwater leakage near the shoreline of the W basin of the Large Aral Sea and released in an artesian well on the Kulandy Peninsula. These ratios range from - 16 to + 3.4‰ ( ?18O) and - 120 to + 2.2‰ ( ?D). The river water displays ratios of - 12‰ ( ?18O) and - 81.3‰ ( ?D). Precipitation from winter and early spring 2006 exhibit ?18O values of - 14‰ (snow) and + 0.2‰ (rain) and ?D values of - 97‰ (snow) and + 3.6‰ (rain). The oxygen and hydrogen isotope snapshots show that in addition to evaporation, groundwater effluent flows at different depths are major contributors to the lake in spring and autumn. The d-excess, ranging between - 25‰ (lake water) and + 10‰ (groundwater), further demonstrates the impact of both effluent groundwater and evaporation on the isotopic composition of the lake water. Thus, stable isotope ratios can provide a first insight into seasonally triggered hydrologic interactions in the western part of the endorheic Aral Sea region. Remote sensing studies prove that major groundwater leakage occurs along the entire shoreline, except for the western shore where spatial resolution was too low.

  6. [Characteristics of soil water movement using stable isotopes in red soil hilly region of northwest Hunan].

    PubMed

    Tian, Ri-Chang; Chen, Hong-Song; Song, Xian-Fang; Wang, Ke-Lin; Yang, Qing-Qing; Meng, Wei

    2009-09-15

    Stable isotope techniques provide a new approach to study soil water movement. The process of water movement in soils under two kinds of plant types (oil tea and corn) were studied based on the observed values of hydrogen and oxygen isotopes of precipitation and soil water at different depths in red-soil sloping land. The results showed that stable isotopes of precipitation in this area had obvious seasonal effect and rainfall effect. The stable isotopes at 0-50 cm depth in oil tea forestland and at 0-40 cm depth in corn cropland increased with the increase in depth, respectively, but they had the opposite tendency after rainfall in arid time. The stable isotopes decreased with the increase in depth below 50 cm depth in oil tea forestland and below 40 cm depth in corn cropland where evaporation influence was weak. The infiltrate rate of soil in oil tea land was affected by precipitation obviously, and it was about 50-100 mm/d after 2-3 days in heavy rain, slowed sharply later, and soil water at 50 cm depth often became a barrier layer. The permeability of soil in corn land was poor and the infiltration rate was lower. The change of stable isotopes in soil water in red soil hilly region was mainly affected by the mixing water which was formed by the antecedent precipitation, and evaporation effect took the second place. The evaporation intensity in oil tea land was lower than that in corn land, but the evaporation depth was higher. PMID:19927835

  7. Evaluation of hydraulic characteristics of a deep artesian aquifer from natural water-level fluctuations, Miami, Florida

    USGS Publications Warehouse

    Meyer, Frederick W.

    1974-01-01

    Knowledge of tho hydraulic characteristics of aquifer systems is fundamental to defining the vertical and horizontal controls on fluid movement, information which is needed for assessing the environmental impact of subsurface waste storage. To meet this objective, natural water-level fluctuations in the 2,947-foot deep Peninsula Utilities disposal well near Miami, Florida were analyzed to obtain estimates of the hydraulic diffusivity, hydraulic conductivity, specific storage, transmissivity, and the storage coefficient of the Boulder Zone. The fluctuations are caused chiefly by oceanic and earth tides, and by changes in atmospheric pressure. The oceanic tidal fluctuations probably result from loading due to tides in Biscayne Bay.

  8. Moisture absorption characteristics of the Orbiter thermal protection system and methods used to prevent water ingestion

    NASA Technical Reports Server (NTRS)

    Schomburg, C.; Dotts, R. L.; Tillian, D. J.

    1983-01-01

    The Space Shuttle Orbiter's silica tile Thermal Protection System (TPS) is beset by the moisture absorption problems inherently associated with low density, highly porous insulation systems. Attention is presently given to the comparative success of methods for the minimization and/or prevention of water ingestion by the TPS tiles, covering the development of water-repellent agents and their tile application techniques, flight test program results, and materials improvements. The use of external films for rewaterproofing of the TPS tiles after each mission have demonstrated marginal to unacceptable performance. By contrast, a tile interior waterproofing agent has shown promise.

  9. Climate and streamflow characteristics for selected streamgages in eastern South Dakota, water years 1945–2013

    USGS Publications Warehouse

    Hoogestraat, Galen K.; Stamm, John F.

    2015-01-01

    The correlation between streamflow and precipitation metrics was low as indicated by the mean coefficient of determination (R2) of 0.18 for all pairs considered. The highest locally-weighed scatterplot smoothing (LOWESS) correlation was between annual precipitation (by water year) and annual mean streamflow (by water year), which had a mean R2 of 0.47 for all streamgages and was as high as 0.72 for one streamgage. The correlation between annual precipitation and March–May mean streamflow had a mean R2 of 0.33 for al

  10. Redox Characteristics of Thiol Compounds Using Radicals Produced by Water Vapor Radio Frequency Discharge

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuya; Nakahigashi, Akari; Goto, Masaaki; Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu

    2011-08-01

    The redox reaction between cystein and cystine is observed using radicals produced in water vapor plasma for the control of plant growth. Cystein is oxidized to cystine using the OH radical in the higher-pressure regime and cystine is reduced to cystein by the H radical generated in the lower-pressure regime. Also, the oxidative stress reaction of plants is observed when water vapor plasma is irradiated onto seeds of plants such as radish sprouts. The mechanism of the control of plant growth is explained by the change in thiol compound quantity of the plant cells induced by the radical reaction.

  11. Synergetic effect of temperature and pressure on energetic and structural characteristics of {ZIF-8 + water} molecular spring

    NASA Astrophysics Data System (ADS)

    Grosu, Ya.; Renaudin, G.; Eroshenko, V.; Nedelec, J.-M.; Grolier, J.-P. E.

    2015-05-01

    Metal-organic frameworks (MOFs) and particularly their subclass - Zeolite Imidazolate Frameworks (ZIFs) - are used for a variety of applications including particularly energy storage. Highly porous MOFs mixed with non-wetting liquids can be used to form molecular springs (MS) for efficient mechanical and thermal energy storage/transformation. In this paper by means of high-pressure calorimetry the energetic characteristics of {ZIF-8 + water} MS were investigated in wide temperature and pressure ranges. Unexpectedly XRD measurements show that the concomitant effects of temperature and pressure on {ZIF-8 + water} MS leads to an irreversible change of the ZIF-8 structure, transforming its symmetry from cubic to orthorhombic. Whereas, previous studies have demonstrated the stability of ZIF-8 under either high pressure or high temperature.Metal-organic frameworks (MOFs) and particularly their subclass - Zeolite Imidazolate Frameworks (ZIFs) - are used for a variety of applications including particularly energy storage. Highly porous MOFs mixed with non-wetting liquids can be used to form molecular springs (MS) for efficient mechanical and thermal energy storage/transformation. In this paper by means of high-pressure calorimetry the energetic characteristics of {ZIF-8 + water} MS were investigated in wide temperature and pressure ranges. Unexpectedly XRD measurements show that the concomitant effects of temperature and pressure on {ZIF-8 + water} MS leads to an irreversible change of the ZIF-8 structure, transforming its symmetry from cubic to orthorhombic. Whereas, previous studies have demonstrated the stability of ZIF-8 under either high pressure or high temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01340b

  12. Characteristics and variability of the Indonesian throughflow water at the outflow straits

    NASA Astrophysics Data System (ADS)

    Atmadipoera, Agus; Molcard, Robert; Madec, Gurvan; Wijffels, Susan; Sprintall, Janet; Koch-Larrouy, Ariane; Jaya, Indra; Supangat, Agus

    2009-11-01

    Property structure and variability of the Indonesian Throughflow Water in the major outflow straits (Lombok, Ombai and Timor) are revised from newly available data sets and output from a numerical model. Emphasis is put on the upper layers of the Indonesian Throughflow that impacts the heat and freshwater fluxes of the South Equatorial Current in the Indian Ocean. During the April-June monsoon transition the salinity maximum signature of the North Pacific thermocline water is strongly attenuated. This freshening of the thermocline layer is more intense in Ombai and is related to the supply of fresh near-surface Java Sea water that is drawn eastward by surface monsoon currents and subject to strong diapycnal mixing. The freshwater exits to the Indian Ocean first through Lombok Strait and later through Ombai and Timor, with an advective phase lag of between one and five months. Because of these phase lags, the fresher surface and thermocline water is found in the southeast Indian Ocean from the beginning of the monsoon transition period in April through until the end of the southeast monsoon in September, a much longer time period than previously estimated.

  13. DISSOLVED ORGANIC CARBON CHARACTERISTICS IN METAL-RICH WATERS AND THE IMPLICATIONS FOR COPPER AQUATIC TOXICITY

    EPA Science Inventory

    This research will aim to quantify the effects of fractionation between DOC, HFO, HAO, free copper and the behavior of resultant free DOC in the water column on the toxicological effects of copper. Fractionation between DOC, free metals and iron (Fe) and aluminum (Al) hydro...

  14. Characteristics of plant-derived water extractable organic matter and its effects on phosphorus sorption behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incorporation of crop residues into soil is an important agricultural management technique for maintaining soil quality and nutrient availability through the replenishment of C to soil ecosystems. Water-extractable organic matter (WEOM) fraction is the most labile and mobile fraction of organic ...

  15. Leaching and standing water characteristics of bottom ash and composted manure blends 

    E-print Network

    Mathis, James Gregory

    2001-01-01

    be evaluated for its effectiveness and environmental integrity. Two column studies were conducted to evaluate three blends of acidic and alkaline BA and CM, namely B1 (95:5%), B2 (90:10%), and B3 (80:20%). Samples from standing water (top) and leachate...

  16. Physical and chemical characteristics of water in coal-mine ponds of eastern Oklahoma.

    USGS Publications Warehouse

    Blumer, S.P.; Slack, L.J.

    1986-01-01

    Coal-mine ponds cover 4000 acres and have a storage capacity of about 100 000 acre-feet. They are important wild-life habitats and contribute locally to agricultural and municipal water supply. The physical and chemical properties of the water are very variable. By and large, the pond waters showed a lack of mixing and thermal stratification with bottom to surface temperatures differing by up to 30oC over 20 ft depth in July. The medium pH was 7.7, except for ponds associated with the Secor coal bed (pH 3.3). Sulphate was the principal ion in the mine pond water. Other chemicals varied with the associated coal-bed. Chloride concentrations were 11 mg/L or less, except for ponds associated with the Dowson coal (140 mg/L). Dissolved concentration was low 40 mu g/L, except in ponds associated with the Secor (3000 mu g/L and Dowson (2100) coals. Dissolved manganese was less than 1500 micrograms/L except for Secor (35 000), Dowson (4300) and Weir-Pittsburg (3700 micrograms/L). -M.J.Haigh

  17. In-Soil and Down-Hole Soil Water Sensors: Characteristics for Irrigation Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The past use of soil water sensors for irrigation management was variously hampered by high cost, onerous regulations in the case of the neutron probe (NP), difficulty of installation or maintenance, and poor accuracy. Although many sensors are now available, questions of their utility still abound....

  18. [Effects of water supply tension on photosynthetic characteristics and root activity of greenhouse cucumber].

    PubMed

    Li, Shao; Xue, Xu-Zhang; Guo, Wen-Shan; Li, Xia; Chen, Fei

    2010-01-01

    To study the effects of soil water content on the photosynthesis, fluorescence parameters, and root growth of greenhouse cucumber (Cucumis sativus L.), a pot experiment was conducted, using a negative pressure water supplying and controlling device to control soil moisture regime. Seven levels of water supply tension (WST), i. e., 1, 3, 5, 7, 9, 11, and 13 kPa, were designed. The WST was inversely proportional to soil water content, and the gravimetric soil water content was maintained in the range of 14.23%-42.32%. With increasing WST, the leaf net photosynthetic rate (P(n)) in different growth periods showed a parabolic trend, being higher when the WST was 7-11 kPa at initial flowering stage, and was 3-5 kPa at fruiting stage. The reason for the decreased P(n) at 9-13 kPa WST was stomatal limitation. Under 1-5 kPa WST, the actual photochemical efficiency (phi(PS II) had a high value, and the possibility of photo inhibition was small. Both the leaf transpiration rate and the chlorophyll content were positively correlated with leaf P(n) in different growth periods. Root growth and activity also had a parabolic trend with increasing WST. The maximum root dry mass and root activity happened at 7 kPa and 5 kPa WST, respectively. Our results indicated that a WST of 3-7 kPa was more profitable for the leaf photosynthesis and root growth of greenhouse cucumber. PMID:20387425

  19. Electrokinetically enhanced flow and dewatering characteristics of concentrated black coal-water suspensions in pipes

    SciTech Connect

    Rozakeas, P.K.; Snow, R.J.

    1997-07-01

    The transportability and dewatering of coal-water mixtures flowing in a pipe may be enhanced by the application of electrokinetic techniques. Previous experimental work by other workers shows a significant reduction in the wall shear stress, and consequently a decrease in pumping energy requirements for the flow of coal-water mixtures in pipes combined with electrodewatering. In this process the pipe wall acts as the cathode and a centrally aligned tube as the anode. The effects of {open_quote}In-pipe electrodewatering{close_quote} on the flow properties and stability of concentrated coal-water mixtures flowing in various alternative anode-cathode arrangements are presented in this paper. The application of an electrical energy flux at the electrode surface (< 6.1 kW/m{sup 2}) in a dewatering section of pipe (L{sub e}=1m) effectively reduces the pumping energy requirements by as much as one order of magnitude. The stability of flow conditions is investigated in a concentric anode-cathode pipe arrangement consisting of a dewatering and a non-dewatering section (L{sub o}). In this system (L{sub o}/L{sub e}) < 4.0. A microscopic study of dilute coal-water suspensions in the presence of a DC electric field revealed the migration of coal particles towards the anode and the structural formation of coal particle chains. The electrorheological behaviour of concentrated coal-water suspensions is examined with the use of a modified coaxial rheometer. The coal fines (d{sub 50}=17.7{mu}m) used in all experiments were produced by milling a low rank bituminous black coal which was followed by a sieving process that eliminated coal particles that were greater than 75{mu}m in size.

  20. Assessing mariculture water quality with the structural and functional characteristics of a ciliate community

    NASA Astrophysics Data System (ADS)

    Li, Jiqiu; Xu, Henglong; Lin, Xiaofeng; Al-Rasheid, Khaled A. S.

    2011-01-01

    Ciliated protozoa play important roles in micro-ecosystems, especially in marine biotopes. However, few studies have been carried out on the periphytic, or aufwuch, forms in mariculture waters so far. In this study, we sampled periphytic ciliate communities in two closed mariculture ponds (ponds CP1 and CP2) and a natural seawater reservoir (pond RP) using a glass slide method to evaluate their colonizing processes and general ecological features, as well as their application as water quality indicators. We analyzed species compositions, structural parameters (species number, richness, diversity, evenness, abundance and d BP) and functional parameters ( G, S eq and T 90%). Pond RP was characterized by higher levels of structural parameters (except for abundance and d BP) and more equal proportion of the major taxonomic groups. The values of S eq were significantly higher in pond RP and similar in both pond CP1 and CP2. It was also demonstrated that environmental factors, including NO2-H, NO3-H, NH3-H, soluble reactive phosphate, temperature and pH, were the first principal factors affecting the communities. Among them, temperature and chemical factors were all significantly and negatively correlated with species number ( P<0.01), richness ( P<0.01), diversity ( P<0.01), and positive correlated with abundance ( P<0.01). Opposite correlations between pH and structural parameters were observed. This study showed that there were significant differences in species composition, structural parameters and functional parameters of the periphytic ciliate communities among the ponds, which were in agreement with the water quality. Results of this study confirmed the periphytic ciliate communities to be useful bioindicators of water quality in intensive mariculture waters.

  1. Surface water characteristics and trace metals level of the Bonny/New Calabar River Estuary, Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Onojake, M. C.; Sikoki, F. D.; Omokheyeke, O.; Akpiri, R. U.

    2015-07-01

    Surface water samples from three stations in the Bonny/New Calabar River Estuary were analyzed for the physicochemical characteristics and trace metal level in 2011 and 2012, respectively. Results show pH ranged from 7.56 to 7.88 mg/L; conductivity, 33,489.00 to 33,592.00 µScm-1; salinity, 15.33 to 15.50 ‰; turbidity, 4.35 to 6.65 NTU; total dissolved solids, 22111.00 to 23263.00 gm-3; dissolved oxygen, 4.53 to 6.65 mg/L; and biochemical oxygen demand, 1.72 mg/L. The level of some trace metals (Ca, Mg, K, Zn, Pb, Cd, Co, Cr, Cu, Fe, Ni, and Na) were also analyzed by Atomic absorption spectrometry with K, Zn, and Co being statistically significant (P < 0.05). The results were compared with USEPA and WHO Permissible Limits for water quality standards. It was observed that the water quality parameters in the Bonny Estuary show seasonal variation with higher values for pH, DO, BOD, temperature, and salinity during the dry season than wet season. Concentrations of trace metals such as Pb, Cd, Zn, Ni, and Cr were higher than stipulated limits by WHO (2006). The result of the Metal Pollution Index suggests that the river was slightly affected and therefore continuous monitoring is necessary to avert possible public health implications of these metals on consumers of water and seafood from the study area.

  2. [Spatial Distribution Characteristics of Different Species Mercury in Water Body of Changshou Lake in Three Gorges Reservoir Region].

    PubMed

    Bai, Wei-yang; Zhang, Cheng; Zhao, Zheng; Tang, Zhen-ya; Wang, Ding-yong

    2015-08-01

    An investigation on the concentrations and the spatial distribution characteristics of different species of mercury in the water body of Changshou Lake in Three Gorges Reservoir region was carried out based on the AreGIS statistics module. The results showed that the concentration of the total mercury in Changshou Lake surface water ranged from 0.50 to 3.78 ng x L(-1), with an average of 1.51 ng x L(-1); the concentration of the total MeHg (methylmercury) ranged from 0.10 to 0.75 ng x L(-1), with an average of 0.23 ng x L(-1). The nugget effect value of total mercury in surface water (50.65%), dissolved mercury (49.80%), particulate mercury (29.94%) and the activity mercury (26.95%) were moderate spatial autocorrelation. It indicated that the autocorrelation was impacted by the intrinsic properties of sediments (such as parent materials and rocks, geological mineral and terrain), and on the other hand it was also disturbed by the exogenous input factors (such as aquaculture, industrial activities, farming etc). The nugget effect value of dissolved methylmercury (DMeHg) in Changshou lake surface water (3.49%) was less than 25%, showing significant strong spatial autocorrelation. The distribution was mainly controlled by environmental factors in water. The proportion of total MeHg in total Hg in Changshou Lake water reached 30% which was the maximum ratio of the total MeHg to total Hg in freshwater lakes and rivers. It implied that mercury was easily methylated in the environment of Chanashou Lake. PMID:26592014

  3. Nitrogen Removal Characteristics of a Newly Isolated Indigenous Aerobic Denitrifier from Oligotrophic Drinking Water Reservoir, Zoogloea sp. N299

    PubMed Central

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao

    2015-01-01

    Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h?1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53% ± 1.69% and 58.65% ± 0.61%, respectively. The ammonia removal rate reached 44.12% ± 1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5–9 mg/L, pH 8–9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41% ± 3.17% (sterilized) and 44.88% ± 4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p < 0.05). High C/N was beneficial for nitrate reduction (p < 0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p > 0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem. PMID:25946341

  4. Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms

    NASA Astrophysics Data System (ADS)

    Darecki, Miroslaw; Weeks, Alison; Sagan, Slawomir; Kowalczuk, Piotr; Kaczmarek, Slawomir

    2003-03-01

    This paper describes the results of measurements of inherent and apparent optical properties of two contrasting Case 2 waters (Southern Baltic and off the west coast of Ireland). The experiments were carried out over two seasons, both before the peak of the phytoplankton growth period, and during the bloom events. The first study was made when the concentration of chlorophyll (phytoplankton pigment) was similar in both waters and in the range of 0.6-3.23 mg m -3. The second study was made when concentrations of chlorophyll were very high, reaching 14 mg m -3 in the west coast of Ireland and 70 mg m -3 in Southern Baltic. Optical measurements of surface reflectance were made with a profiling spectroradiometer. The spectral shapes of the particulate absorption spectra and the diffuse attenuation coefficient in both regions and seasons are compared. The contribution of detritus and coloured dissolved organic matter absorption to the apparent optical properties of water have impact on the accuracy of remote sensing retrieval algorithm for chlorophyll a. Differences have been found between algorithms based on conventional spectral bands (e.g. SeaWiFS) and proposed new spectral channels. The most accurate ratio for chlorophyll retrieval (490/550) was for the western Irish shelf ( R2=76%, and the standard error of the estimate ranged from 30% to 37%), with poor results for this ratio in the Baltic. The Rrs (550/590) ratio gave better results for the Baltic ( R2=75%, and the standard error of the estimate ranged from 20% to 55%), with poor results for the Irish shelf. The results show that a unique combination of spectral bands needs to be applied in Baltic waters to achieve an acceptable accuracy of the in-water remote sensing algorithm whereas the more commonly accepted band ratios were acceptable for the Irish Shelf. This suggests that for accurate determination of chlorophyll from satellite-borne sensors in different coastal waters a wider choice of spectral bands is needed.

  5. Stable isotopes in river waters in the Tajik Pamirs: regional and temporal characteristics.

    PubMed

    Meier, Christiane; Knoche, Malte; Merz, Ralf; Weise, Stephan M

    2013-01-01

    The Gunt River catchment in the Central Pamirs is a representative of the headwater catchments of the Aral Sea Basin. It covers 14,000 km(2), spanning altitudes between 2000 and 6700 m a.s.l. In a monitoring network, water samples were taken at 30 sampling points every month and analysed for the stable water isotopes ((18)O and (2)H). Our first results show ?(2)H values in the range from-131.2 to-94.9 ‰ and ?(18)O values from-18.0 to-14.0 ‰. The stable isotope patterns in the catchment seem to follow a systematic way, dominated by an altitude effect with a mean ? ?(2)H=-3.6 ‰/100 m. The observed seasonal variations can be explained by geographical aspects such as the influence of different wind systems as well as melting processes. PMID:24313375

  6. Key to GHG fluxes from organic soils: site characteristics, agricultural practices or water table management?

    NASA Astrophysics Data System (ADS)

    Tiemeyer, Bärbel

    2015-04-01

    Drained peatlands are hotspots of greenhouse gas (GHG) emissions. Agriculture is the major land use type for peatlands in Germany and other European countries, but strongly varies in its intensity regarding the groundwater level and the agricultural management. Although the mean annual water table depth is sometimes proposed as an overall predictor for GHG emissions, there is a strong variability of its effects on different peatlands. Furthermore, re-wetting measures generally decrease carbon dioxide emissions, but may strongly increase methane emissions. We synthesized 250 annual GHG budgets for 120 different sites in 13 German peatlands. Carbon dioxide (net ecosystem exchange and ecosystem respiration), nitrous oxide and methane fluxes were measured with transparent and opaque manual chambers. Land management ranged from very intensive use with arable land or grassland with up to five cuts per year to partially or completely re-wetted peatlands. Besides the GHG fluxes, biomass yield, fertilisation, groundwater level, climatic data, vegetation composition and soil properties were measured. Overall, we found a large variability of the total GHG budget ranging from small uptakes to extremely high emissions (> 70 t CO2-equivalents/(ha yr)). At nearly all sites, carbon dioxide was the major component of the GHG budget. Site conditions, especially the nitrogen content of the unsaturated zone and the intra-annual water level distribution, controlled the GHG emissions of the agricultural sites. Although these factors are influenced by natural conditions (peat type, regional hydrology), they could be modified by an improved water management. Agricultural management such as the number of cuts had only a minor influence on the GHG budgets. At the level of individual peatlands, higher water levels always decreased carbon dioxide emissions. In nearly all cases, the trade-off between reduced carbon dioxide and increased methane emissions turned out in favour of the re-wetting measures. Some very high methane emissions were caused by a combination of nutrient-rich site conditions and continuous ponding during the vegetation period.

  7. Water mass characteristics and their temporal changes in a biological hotspot in the southern Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Nishino, S.; Kikuchi, T.; Fujiwara, A.; Hirawake, T.; Aoyama, M.

    2015-10-01

    We analysed mooring and ship-based hydrographic and biogeochemical data obtained from a Hope Valley biological hotspot in the southern Chukchi Sea. The moorings were deployed from 16 July 2012 to 19 July 2014, and data were captured during spring and fall blooms with high chlorophyll a concentrations. Turbidity increased and dissolved oxygen decreased in the bottom water at the mooring site before the fall bloom, suggesting an accumulation of particulate organic matter and its decomposition (nutrient regeneration) at the bottom. This event may have been a trigger for the fall bloom at this site. The bloom was maintained for 1 month in 2012 and for 2 months in 2013. The maintenance mechanism for the fall bloom was also studied by hydrographic and biogeochemical surveys in late summer to fall 2012 and 2013. Nutrient-rich water from the Bering Sea supplied nutrients to Hope Valley, although a reduction in nutrients may have occurred in 2012 by mixing of lower-nutrient water that would have remained on the Chukchi Sea shelf during the spring and fall blooms. In addition, nutrient regeneration at the bottom of Hope Valley could have increased nutrient concentrations and explained 60 % of its nutrient content in fall 2012. The high nutrient content with the dome-like structure of the bottom water may have maintained the high primary productivity at this site during the fall bloom. Primary productivity was 0.3 in September 2012 and 1.6 g C m-2 d-1 in September 2013. The lower productivity in 2012 was related to strong stratification caused by the high fraction of surface sea ice meltwater.

  8. Transport Characteristics of Selected Pressurized Water Reactor LOCA-Generated Debris

    SciTech Connect

    Maji, Arup K.; Rao, Daseri V.; Letellier, Bruce; Bartlein, Luke; Marshall, Brooke

    2002-08-15

    In the unlikely event of a loss-of-coolant accident (LOCA) in a pressurized water reactor, break jet impingement would dislodge thermal insulation from nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS.A systematic study was conducted on various types of fibrous and metallic foil debris to determine their transport in water. Test results reported include incipient movement, bulk movement, accumulation on a screen, the ability of debris to jump over 5-cm (2-in.) and 15-cm (6-in.) curbs, and the effects of accelerating flow and turbulence. These data are currently being used in conjunction with computational fluid dynamics modeling to determine the potential for each debris type to reach the suction screen.

  9. Sediment characteristics and water circulation of Big Jemsa Bay, Red Sea, Egypt

    NASA Astrophysics Data System (ADS)

    Hamouda, Amr Z.; El-Wahhab, Mahamed Abd

    2009-06-01

    Big Jemsa Bay is one of the indentations dissecting the continuity of the Red Sea north-western shoreline. The data was collected from bathymetric survey, current meters and sediment samples. Analyses have been undertaken of coastal processes, seabed morphology, grain size characteristics and the effect of current circulation on the distribution of sediment characteristics. The sediment pattern varies from coarse sand in the southern part to silt and fine sand in the northern part. The central part of the study area is mainly composed of terrigenous isometric-medium sand facies. The sorting distribution of sediments varies from moderately well sorted to poorly sort. The significant factors that control the sediment transport process are downslope gravity and wave-induced currents that are affected by the seafloor configuration and the shoreline orientation. According to the circulation effect on the sediment transport of the study area where deposition of fine sand and silt was observed in the northern part. Because sediment transport mitigates the occurrence of pollutant deposition in this part of the bay, we recommend that future constructions along the bay should be in the southern part.

  10. An Eulerian-Lagrangian approach with an adaptively corrected method of characteristics to simulate variably saturated water flow

    NASA Astrophysics Data System (ADS)

    Huang, K.; Zhang, R.; van Genuchten, M. T.

    1994-02-01

    A relatively simple method of characteristics is developed to simulate one-dimensional variably saturated water flow. The method uses the Eulerian-Lagrangian approach to separate the governing flow equation into "convection" and "diffusion" parts, which are solved with the method of characteristics and the conventional finite element method, respectively. The method of characteristics combines a single-step reverse particle tracking technique with a correction strategy to ensure accurate mass balances. The correction process is implemented by weighing the calculated convective contribution to the pressure head at each node with the pressure head values of two upstream nodes, using an adaptive weighing factor ?. The value of ? is automatically adjusted by considering the global mass balance at each time step. Numerical experiments for ponded infiltration are presented to illustrate the scheme's performance for situations involving highly nonlinear soil hydraulic properties and extremely dry initial conditions. Results indicate that the proposed method is mass-conservative, virtually oscillation-free, and computationally quite efficient. The method is especially effective for simulating highly nonlinear flow scenarios for which traditional finite difference and finite element numerical methods often fail to converge.

  11. Dynamic characteristics and simplified numerical methods of an all-vertical-piled wharf in offshore deep water

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-qing; Sun, Xi-ping; Wang, Yuan-zhan; Yin, Ji-long; Wang, Chao-yang

    2015-10-01

    There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.

  12. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals

    PubMed Central

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters. PMID:26214849

  13. Characteristics of Loads of Cattle Stopping for Feed, Water and Rest during Long-Distance Transport in Canada

    PubMed Central

    Flint, Hannah E.; Schwartzkopf-Genswein, Karen S.; Bateman, Ken G.; Haley, Derek B.

    2014-01-01

    Simple Summary This study was designed to benchmark the characteristics of loads of cattle stopping for feed, water and rest during long distance transport in Canada. Another objective of this study was to determine how well these loads were following current Canadian regulations for the length of time animals can spend in transit, and how long they must be rested for. The majority of loads stopping for feed water and rest were transporting cattle to feedlots rather than processing plants. All loads were under the 48 hour maximum allowable time in transit defined under the Canadian transport regulations and all loads exceeded the minimum duration of 5 hours required for feed, water and rest. Abstract This study is the first comprehensive examination of long-haul cattle being transported across Canada and off-loaded for feed, water and rest. A total of 129 truckloads were observed at one of two commercial rest stations near Thunder Bay, Ontario. Data collected included information regarding the truck driver, the trailer, the trip, the animals and animal handling. The majority of the loads stopping were feeder calves (60.94%) while 21.09% were weaned calves, and the remaining 14.84% were market weight cattle. The truck loads surveyed were in transit for, on average, 28.2 ± 5.0 hours before stopping and cattle were rested for an average of 11.2 ± 2.8 hours. These data suggest that loads stopping at the rest station were adhering to the regulations