Science.gov

Sample records for water pipe smoking

  1. Water pipe tobacco smoking among university students in Jordan

    PubMed Central

    Azab, Mohammed; Khabour, Omar F.; Alkaraki, Almuthanna K.; Eissenberg, Thomas; Alzoubi, Karem H.

    2010-01-01

    Introduction: Although water pipe tobacco smoking is common in Lebanon and Syria, prevalence in neighboring Jordan is uncertain. The purposes of this study were (a) to assess the prevalence of water pipe tobacco smoking among university students in Jordan and (b) to determine associations between sociodemographic variables and water pipe tobacco smoking in this population. Methods: A trained interviewer administered a questionnaire among randomly selected students at four prominent universities in Jordan. The questionnaire assessed sociodemographic data, personal history of water pipe tobacco use, and attitudes regarding water pipe tobacco smoking. We used logistic regression to determine independent associations between sociodemographic and attitudinal factors and each of two dependent variables: ever use of water pipe and use at least monthly. Results: Of the 548 participants, 51.8% were male and mean age was 21.7 years. More than half (61.1%) had ever smoked tobacco from a water pipe, and use at least monthly was reported by 42.7%. Multivariable analyses controlling for all relevant factors demonstrated significant associations between ever use and only two sociodemographic factors: (a) gender (for women compared with men, odds ratio [OR] = 0.11, 95% CI = 0.07–0.17) and (b) income (for those earning 500–999 Jordanian dinar (JD) monthly vs. <250 JD monthly, OR = 2.37, 95% CI = 1.31–4.31). There were also significant associations between perception of harm and addictiveness and each outcome. Discussion: Water pipe tobacco smoking is highly prevalent in Jordan. Although use is associated with male gender and upper middle income levels, use is widespread across other sociodemographic variables. Continued surveillance and educational interventions emphasizing the harm and addictiveness of water pipe tobacco smoking may be valuable in Jordan. PMID:20418383

  2. Syncope associated with water pipe smoking.

    PubMed

    Karaca, Yunus; Eryigit, Umut; Aksut, Nurhak; Turkmen, Suha

    2013-01-01

    The water pipe (narghile) in particular is widely used in the Arabian Peninsula and the Turkish world, and has also recently become an increasingly popular way of consuming tobacco in Europe. Contrary to popular belief, it contains more tar, carbon monoxide (CO) and toxic gases than cigarettes. This report describes a patient presenting to the emergency department with syncope as a result of water pipe use, with tests revealing toxically high CO levels. PMID:23606397

  3. Nicotine and carcinogen exposure after water pipe smoking in hookah bars

    PubMed Central

    St.Helen, Gideon; Benowitz, Neal L; Dains, Katherine M; Havel, Christopher; Peng, Margaret; Jacob, Peyton

    2014-01-01

    Background Water pipe tobacco smoking is spreading globally and is increasingly becoming popular in the United States, particularly among young people. While many perceive water pipe smoking to be relatively safe, clinical experimental studies indicate significant exposures to tobacco smoke carcinogens following water pipe use. We investigated biomarkers of nicotine intake and carcinogen exposure from water pipe smoking in the naturalistic setting of hookah bars. Methods Fifty-five experienced water pipe users were studied before and after smoking water pipe in their customary way in a hookah bar. Urine samples were analyzed for nicotine, cotinine, the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanol (NNAL), and mercapturic acid metabolites of volatile organic compounds (VOCs). Results We found an average 73-fold increase in nicotine, 4-fold increase in cotinine, 2-fold increase in NNAL, and 14-91% increase in VOC mercapturic acid metabolites immediately following water pipe smoking. We saw moderate to high correlations between changes in tobacco-specific biomarkers (nicotine, cotinine, and NNAL) and several mercapturic acid metabolites of VOC. Conclusion Water pipe smoking in a hookah bar is associated with significant nicotine intake and carcinogen exposure. Impact Given the significant intake of nicotine and carcinogens, chronic water pipe use could place users at increased risk of cancer and other chronic diseases. PMID:24836469

  4. Water pipe (Sisha) smoking in cafes in Egypt.

    PubMed

    Israel, Ebenezer; El-Setouhy, Maged; Gadalla, Shahinaz; Aoun, El Saeed Ali; Mikhail, Nabiel; Mohamed, Mostafa K

    2003-12-01

    Shisha café patrons in Cairo, Egypt were interviewed to assess their knowledge, attitudes and practices regarding smoking and health. The median age of initiation of Shisha smoking is 20 years. Shisha smokers know about the hazards of smoking and believe that Shisha smoking is less dangerous than cigarette smoking. Over half the Shisha smokers have tried to quit in the past year. The younger adults who smoke Shisha also tend to smoke more often with friends, smoke cigarettes in addition to Shisha and prefer fruit flavored tobacco as compared to tobacco mixed with molasses favored by Shisha smokers who are older. Heavy Shisha smoking was not related to age. PMID:15119471

  5. Cigarette, Water-pipe, and Medwakh Smoking Prevalence Among Applicants to Abu Dhabi's Pre-marital Screening Program, 2011

    PubMed Central

    Aden, Bashir; Karrar, Sara; Shafey, Omar; Al Hosni, Farida

    2013-01-01

    Background: This study assesses self-reported tobacco use prevalence (cigarette, water-pipe, and medwakh) among applicants to Abu Dhabi's Premarital Screening program during 2011. Methods: Premarital Screening data reported to the Health Authority – Abu Dhabi from April to December 2011 were utilized to estimate tobacco use prevalence among applicants. Smoking prevalence was examined by nationality, age group and gender. Results: Overall, 24.7% of Premarital Screening Program applicants were current smokers; 11.5% smoked cigarettes, 5.9% smoked medwakh (hand-held pipe), 4.8% smoked water-pipe and 2.5% smoked a combination (more than one type). Men (19.2%) were more likely than women (3.5%) to be current cigarette smokers. Women were much less likely to smoke medwakh (0.1%) than men (11.5%), with male UAE Nationals having the highest medwakh smoking prevalence (16.1%). The overall prevalence of water-pipe smoking was 6.8% among men and 2.8% for women with the highest water-pipe smoking prevalence (10.2%) among Arab expatriate men. Conclusions: Variations in tobacco use prevalence among Premarital Screening Program applicants reflect preferences for different modes of tobacco consumption by nationality, age group and gender. Enforcement of tobacco control laws, including implementation of clean indoor air laws and tobacco tax increases, and targeted health education programs are required to reduce tobacco consumption and concomitant tobacco-related morbidity and mortality. PMID:24404364

  6. Predictors of narghile (water-pipe) smoking in a sample of American Arab Yemeni adolescents.

    PubMed

    Baker, Omar G; Rice, Virginia

    2008-01-01

    To explore the predictors of water-pipe smoking among American Arab Yemeni adolescents, a descriptive correlational design was used, and regression models representing the proposed relationships in the study were tested from a convenience sample of 297 adolescents who attended a teen health clinic and two high schools. The participants completed five measures. Fourteen hypotheses were tested. Experimentation with tobacco was found to be significant in predicting narghile smoking. Tobacco use prevention and cessation interventions for this population can be focused on targeting the family and peer units, from which their identity is likely derived. PMID:18165423

  7. Water-Pipe Smoking and Metabolic Syndrome: A Population-Based Study

    PubMed Central

    Shafique, Kashif; Mirza, Saira Saeed; Mughal, Muhammad Kashif; Arain, Zain Islam; Khan, Naveed Ahmed; Tareen, Muhammad Farooq; Ahmad, Ishtiaque

    2012-01-01

    Water-pipe (WP) smoking has significantly increased in the last decade worldwide. Compelling evidence suggests that the toxicants in WP smoke are similar to that of cigarette smoke. The WP smoking in a single session could have acute harmful health effects even worse than cigarette smoking. However, there is no evidence as such on long term WP smoking and its impact on chronic health conditions particularly cardiovascular and metabolic conditions. Therefore, we conducted this study to investigate the relationship between WP smoking and metabolic syndrome (MetS). This was a cross-sectional study carried out in Punjab province of Pakistan using the baseline data of a population-based study – Urban Rural Chronic Diseases Study (URCDS). Information was collected by trained nurses regarding the socio-demographic profile, lifestyle factors including WP smoking, current and past illnesses. A blood sample was obtained for measurement of complete blood count, lipid profile and fasting glucose level. MetS was ascertained by using the International Diabetic Federation’s criteria. We carried out multiple logistic regressions to investigate the association between WP smoking and MetS. Final sample included 2,032 individuals – of those 325 (16.0%) were current WP smokers. Age adjusted-prevalence of MetS was significantly higher among current WP smokers (33.1%) compared with non-smokers (14.8%). Water-pipe smokers were three times more likely to have MetS (OR 3.21, 95% CI 2.38–4.33) compared with non-smokers after adjustment for age, sex and social class. WP smokers were significantly more likely to have hypertriglyceridemia (OR 1.63, 95% CI 1.25–2.10), hyperglycaemia (OR 1.82, 95% CI 1.37–2.41), Hypertension (OR 1.95, 95% CI 1.51–2.51) and abdominal obesity (OR 1.93, 95% CI 1.52–2.45). However, there were no significant differences in HDL level between WP smokers and non-smokers. This study suggests that WP smoking has a significant positive (harmful

  8. Water-Pipe Smoking and Albuminuria: New Dog with Old Tricks

    PubMed Central

    Ishtiaque, Iqra; Shafique, Kashif; Ul-Haq, Zia; Shaikh, Abdul Rauf; Khan, Naveed Ali; Memon, Abdul Rauf; Mirza, Saira Saeed; Ishtiaque, Afra

    2014-01-01

    Water-pipe (WP) smoking is on rise worldwide for the past few years, particularly among younger individuals. Growing evidence indicates that WP smoking is as harmful as cigarette smoking. To date, most of the research has focused on acute health effects of WP smoking, and evidence remains limited when it comes to chronic health effects in relation to long-term WP smoking. Therefore, the aim of this study was to examine the association between WP smoking and albuminuria in apparently healthy individuals. This analysis was conducted on data of a population-based cross-sectional study—the Urban Rural Chronic Diseases Study (URCDS). The study sample was recruited from three sites in Pakistan. Trained nurses carried out individual interviews and obtained the information on demographics, lifestyle factors, and past and current medical history. Measurements of complete blood count, lipid profile, fasting glucose level, and 24-hour albuminuria were also made by using blood and urine samples. Albumin excretion was classified into three categories using standard cut-offs: normal excretion, high-normal excretion and microalbuminuria. Multiple logistic regression models were used to examine the relationship between WP smoking and albuminuria. The final analysis included data from 1,626 health individuals, of which 829 (51.0%) were males and 797 (49.0%) females. Of 1,626 individuals, 267 (16.4%) were current WP smokers and 1,359 (83.6%) were non-WP smokers. WP smoking was significantly associated with high-normal albuminuria (OR  =  2.33, 95% CI 1.68-3.22, p-value <0.001) and microalbuminuria (OR  =  1.75, 95% CI 1.18-2.58, p-value 0.005) after adjustment for age, sex, BMI, social class, hypertension, and diabetes mellitus. WP smoking was significantly associated with high-normal albuminuria and microalbuminuria when analysis was stratified on hypertension and diabetes mellitus categories. WP smoking has a strong association with albuminuria in apparently healthy

  9. Experimentation with and knowledge regarding water-pipe tobacco smoking among medical students at a major university in Brazil*, **

    PubMed Central

    Martins, Stella Regina; Paceli, Renato Batista; Bussacos, Marco Antônio; Fernandes, Frederico Leon Arrabal; Prado, Gustavo Faibischew; Lombardi, Elisa Maria Siqueira; Terra-Filho, Mário; Santos, Ubiratan Paula

    2014-01-01

    OBJECTIVE: Water-pipe tobacco smoking is becoming increasingly more common among young people. The objective of this study was to estimate the prevalence of the use of water pipes and other forms of tobacco use, including cigarette smoking, among medical students, as well as to examine the attitudes, beliefs, and knowledge of those students regarding this issue. METHODS: We administered a questionnaire to students enrolled in the University of São Paulo School of Medicine, in São Paulo, Brazil. The respondents were evaluated in their third and sixth years of medical school, between 2008 and 2013. Comparisons were drawn between the two years. RESULTS: We evaluated 586 completed questionnaires. Overall, the prevalence of current cigarette smokers was low, with a decline among males (9.78% vs. 5.26%) and an increase among females (1.43% vs. 2.65%) in the 3rd and 6th year, respectively. All respondents believed that health professionals should advise patients to quit smoking. However, few of the medical students who smoked received physician advice to quit. Experimentation with other forms of tobacco use was more common among males (p<0.0001). Despite their knowledge of its harmful effects, students experimented with water-pipe tobacco smoking in high proportions (47.32% and 46.75% of the third- and sixth-year students, respectively). CONCLUSIONS: The prevalence of experimentation with water-pipe tobacco smoking and other forms of tobacco use is high among aspiring physicians. Our findings highlight the need for better preventive education programs at medical schools, not only to protect the health of aspiring physicians but also to help them meet the challenge posed by this new epidemic. PMID:24831393

  10. A critique of recent hypotheses on oral (and lung) cancer induced by water pipe (hookah, shisha, narghile) tobacco smoking.

    PubMed

    Chaouachi, Kamal; Sajid, Khan Mohammad

    2010-05-01

    The medical hypothesis that the mainstream smoke (the one inhaled by the user) from "water pipes" (mainly: shisha, hookah, narghile) causes oral cancer is certainly acceptable. However, most of the recent reviews on this issue, including an attempt to develop an hypothesis for hookah carcinogenesis, have not cited key references of the world available literature which, so far, generally do not support such an hypothesis. Besides, the proposal is biased since it is apparently an adaptation of the cigarette model whereas cigarette and hookah smokes are, chemically to start with, completely different. Furthermore, all water pipes, despite their striking varieties and the consequences on the chemical processes, are, according to the same cancer-hypothesis, considered as one. The reason is the use, in the cited mainstream literature, of a nominalism ("waterpipe", often in one word) which does not allow any distinction between devices. This critical article suggests to take into account all the peculiar characteristics into consideration in order to come up with another (or several other) carcinogenesis model(s). "Firmly believ[ing] that water pipe smoking can provoke lung cancer as well as oral cancer", based on what may be seen as a rather reductionist view of the issue, is not enough. PMID:20036075

  11. Early pulmonary events of nose-only water pipe (shisha) smoking exposure in mice

    PubMed Central

    Nemmar, Abderrahim; Hemeiri, Ahmed Al; Hammadi, Naser Al; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Elwasila, Mohamed; Ali, Badreldin H; Adeghate, Ernest

    2015-01-01

    Water pipe smoking (WPS) is increasing in popularity and prevalence worldwide. Convincing data suggest that the toxicants in WPS are similar to that of cigarette smoke. However, the underlying pathophysiologic mechanisms related to the early pulmonary events of WPS exposure are not understood. Here, we evaluated the early pulmonary events of nose-only exposure to mainstream WPS generated by commercially available honey flavored “moasel” tobacco. BALB/c mice were exposed to WPS 30 min/day for 5 days. Control mice were exposed using the same protocol to atmospheric air only. We measured airway resistance using forced oscillation technique, and pulmonary inflammation was evaluated histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid and lung tissue. Lung oxidative stress was evaluated biochemically by measuring the level of reactive oxygen species (ROS), lipid peroxidation (LPO), reduced glutathione (GSH), catalase, and superoxide dismutase (SOD). Mice exposed to WPS showed a significant increase in the number of neutrophils (P < 0.05) and lymphocytes (P < 0.001). Moreover, total protein (P < 0.05), lactate dehydrogenase (P < 0.005), and endothelin (P < 0.05) levels were augmented in bronchoalveolar lavage fluid. Tumor necrosis factor α (P < 0.005) and interleukin 6 (P < 0.05) concentrations were significantly increased in lung following the exposure to WPS. Both ROS (P < 0.05) and LPO (P < 0.005) in lung tissue were significantly increased, whereas the level and activity of antioxidants including GSH (P < 0.0001), catalase (P < 0.005), and SOD (P < 0.0001) were significantly decreased after WPS exposure, indicating the occurrence of oxidative stress. In contrast, airway resistance was not increased in WPS exposure. We conclude that subacute, nose-only exposure to WPS causes lung inflammation and oxidative stress without affecting pulmonary function suggesting that inflammation and oxidative stress are

  12. Use & Misuse of Water-filtered Tobacco Smoking Pipes in the World. Consequences for Public Health, Research & Research Ethics

    PubMed Central

    Chaouachi, Kamal

    2015-01-01

    Background: The traditional definition of an “epidemic” has been revisited by antismoking researchers. After 400 years, Doctors would have realized that one aspect of an ancient cultural daily practice of Asian and African societies was in fact a “global “epidemic””. This needed further investigation particularly if one keeps in his mind the health aspects surrounding barbecues. Method: Here, up-to-date biomedical results are dialectically confronted with anthropological findings, hence in real life, in order to highlight the extent of the global confusion: from the new definition of an “epidemic” and “prevalence” to the myth of “nicotine “addiction”” and other themes in relation to water filtered tobacco smoking pipes (WFTSPs). Results: We found that over the last decade, many publications, -particularly reviews, “meta-analyses” and “systematic reviews”- on (WFTSPs), have actually contributed to fuelling the greatest mix-up ever witnessed in biomedical research. One main reason for such a situation has been the absolute lack of critical analysis of the available literature and the uncritical use of citations (one seriously flawed review has been cited up to 200 times). Another main reason has been to take as granted a biased smoking robot designed at the US American of Beirut whose measured yields of toxic chemicals may differ dozens of times from others' based on the same “protocol”. We also found that, for more than one decade, two other main methodological problems are: 1) the long-lived unwillingness to distinguish between use and misuse; 2) the consistent unethical rejection of biomedical negative results which, interestingly, are quantitatively and qualitatively much more instructive than the positive ones. Conclusion: the great majority of WFTSP toxicity studies have actually measured, voluntarily or not, their misuse aspects, not the use in itself. This is in contradiction with both the harm reduction and public

  13. Prevalence of water pipe smoking in the city of Mashhad (North East of Iran) and its effect on respiratory symptoms and pulmonary function tests

    PubMed Central

    Boskabady, Mohammad Hossain; Farhang, Lila; Mahmoodinia, Mahbobeh; Boskabady, Morteza; Heydari, Gholam Reza

    2014-01-01

    Background: The prevalence of water pipe (WP) smoking was studied using a standard questionnaire. Pulmonary function tests were also compared between WP smokers and non-smokers. Materials and Methods: The prevalence of WP smoking was studied using a standard questionnaire. Pulmonary function tests including forced vital capacity (FVC), forced expiratory volume in one second (FEV1), maximal mid-expiratory flow (MMEF), peak expiratory flow (PEF), maximal expiratory flow at 75%, 50%, and 25% of the FVC (MEF75,50,25) were compared between WP smokers and non-smokers. Results: A total of 673 individuals including 372 males and 301 females were interviewed. The number of WP smokers was 58 (8.6%) including 24 males (6.5%) and 34 females (11.3%). All pulmonary functional test (PFT) values in WP smokers were lower as compared to the non-smokers (P < 0.05 to P < 0.001). The prevalence and severity of respiratory symptoms (RS) in WP smokers were higher than non-smokers (P < 0.05 to P < 0.001). There were negative correlations between PFT values and positive correlation between RS and duration, rate, as well as total smoking (duration X rate) (P < 0.05 to P < 0.001). Conclusion: In this study the prevalence of WP smoking in Mashhad city was evaluated for the first time. The results also showed a significant effect of WP smoking on PFT values and respiratory symptoms. PMID:25125810

  14. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes...

  15. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes...

  16. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes...

  17. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes...

  18. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes...

  19. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  20. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Daxi; Beach, Duane E.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test Data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range.Fabrication and testing issues are being addressed.

  1. Carbon monoxide poisoning in narghile (water pipe) tobacco smokers.

    PubMed

    La Fauci, Giovanna; Weiser, Giora; Steiner, Ivan P; Shavit, Itai

    2012-01-01

    Narghile (water pipe, hookah, shisha, goza, hubble bubble, argeela) is a traditional method of tobacco use. In recent years, its use has increased worldwide, especially among young people. Narghile smoking, compared to cigarette smoking, can result in more smoke exposure and greater levels of carbon monoxide (CO). We present an acutely confused adolescent patient who had CO poisoning after narghile tobacco smoking. She presented with syncope and a carboxyhemoglobin level of 24% and was treated with hyperbaric oxygen. Five additional cases of CO poisoning after narghile smoking were identified during a literature search, with carboxyhemoglobin levels of 20 to 30%. Each patient was treated with oxygen supplementation and did well clinically. In light of the increasing popularity of narghile smoking, young patients presenting with unexplained confusion or nonspecific neurologic symptoms should be asked specifically about this exposure, followed by carboxyhemoglobin measurement. PMID:22417961

  2. Influence of water flow on pipe inspection

    NASA Astrophysics Data System (ADS)

    Ahmad, Rais; Banerjee, Sourav; Kundu, Tribikram

    2005-05-01

    From various studies by different investigators it has been now well established that a number of cylindrical guided wave modes are sensitive to the pipe wall defects. Several investigations by these authors and other researchers showed that the strengths of the guided waves propagating through a pipe that is placed in air are reduced when the pipe wall defects are encountered. This reduction is expected because the pipe wall defects (gouge, dent, removed metal due to corrosion etc.) alter the pipe geometry, hampering the free propagation of guided wave modes. When water flows through the pipes, the guided wave technique becomes more challenging because the flowing water absorbs part of the propagating acoustic energy. Flowing water may also induce some standing modes. The propagating cylindrical guided wave modes become leaky modes in presence of the flowing water, in other words energy leaks into water. Therefore, the energy detected by a receiver, placed at a large distance from the transmitter, is reduced even for a defect free pipe. Further reduction in the signal strength occurs in presence of defects.

  3. Water driven turbine/brush pipe cleaner

    NASA Astrophysics Data System (ADS)

    Werlink, Rudy J.

    1995-04-01

    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  4. Water driven turbine/brush pipe cleaner

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J. (Inventor)

    1995-01-01

    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  5. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  6. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  7. Intrusion of Soil Water through Pipe Cracks

    EPA Science Inventory

    This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...

  8. Direct measurement of toxicants inhaled by water pipe users in the natural environment using a real-time in situ sampling technique.

    PubMed

    Katurji, M; Daher, N; Sheheitli, H; Saleh, R; Shihadeh, A

    2010-11-01

    While narghile water pipe smoking has become a global phenomenon, knowledge regarding its toxicant content and delivery, addictive properties, and health consequences is sorely lagging. One challenge in measuring toxicant content of the smoke in the laboratory is the large number of simplifying assumptions that must be made to model a "typical" smoking session using a smoking machine, resulting in uncertainty over the obtained toxicant yields. In this study, we develop an alternative approach in which smoke generated by a human water pipe user is sampled directly during the smoking session. The method, dubbed real-time in situ sampling (RINS), required developing a self-powered portable instrument capable of automatically sampling a fixed fraction of the smoke generated by the user. Instrument performance was validated in the laboratory, and the instrument was deployed in a field study involving 43 ad libitum water pipe use sessions in Beirut area cafés in which we measured inhaled nicotine, carbon monoxide (CO), and water pipe ma'ssel-derived "tar." We found that users drew a mean of 119 L of smoke containing 150 mg of CO, 4 mg of nicotine, and 602 mg of ma'ssel-derived "tar" during a single use session (mean duration = 61 min). These first direct measurements of toxicant delivery demonstrate that ordinary water pipe use involves inhaling large quantities of CO, nicotine, and dry particulate matter. Results are compared with those obtained using the Beirut method smoking machine protocol. PMID:21062108

  9. Mineralogical Evidence of Galvanic Corrosion in Domestic, Drinking Water Pipes

    EPA Science Inventory

    Drinking water distribution system (DWDS) piping contains numerous examples of galvanically-coupled metals (e.g., soldered copper pipe joints, copper-lead pipes joined during partial replacements of lead service lines). The possible role of galvanic corrosion in the release of l...

  10. PIPING FOR COOLANT WATER IS INSTALLED INSIDE REACTOR STRUCTURE PRIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PIPING FOR COOLANT WATER IS INSTALLED INSIDE REACTOR STRUCTURE PRIOR TO EMBEDMENT IN CONCRETE. HIGHER PIPE IS INLET; THE OTHER, THE OUTLET LOOP. INLET PIPE WILL CONNECT TO TOP SECTION OF REACTOR VESSEL. INL NEGATIVE NO. 1287. Unknown Photographer, 1/18/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Effects of type of smoking (pipe, cigars or cigarettes) on biological indices of tobacco exposure and toxicity.

    PubMed

    Funck-Brentano, Christian; Raphaël, Mathilde; Lafontaine, Michel; Arnould, Jean-Pierre; Verstuyft, Céline; Lebot, Martine; Costagliola, Dominique; Roussel, Ronan

    2006-10-01

    Although all forms of smoking are harmful, smoking pipes or cigars is associated with lower exposure to the lethal products of tobacco products and lower levels of morbidity and mortality than smoking cigarettes. Cytochrome P-450-1A (CYP1A) is a major pathway activating carcinogens from tobacco smoke. Our primary aim was to compare CYP1A2 activity in individuals smoking pipes or cigars only, cigarettes only and in non-smokers. We studied 30 smokers of pipes or cigars only, 28 smokers of cigarettes only, and 30 non-smokers male subjects matched for age. CYP1A2 activity was assessed as the caffeine metabolic ratio in plasma. One-day urine collection was used for determining exposure to products of tobacco metabolism. Nitrosamine and benzo[a]pyrene DNA adducts were measured in lymphocytes. CYP1A2 activity was greater (p<0.0001) in cigarette smokers (median: 0.61; interquartile range: 0.52-0.76) than in pipe or cigar smokers (0.27; 0.21-0.37) and non-smokers (0.34; 0.25-0.42) who did not differ significantly. Urinary cotinine and 1-hydroxypyrene levels were higher in cigarette smokers than in pipe or cigar smokers and higher in the later than in non-smokers. DNA adducts levels were significantly lower in pipe or cigar smokers than in cigarette smokers. In multivariate analysis, cigarette smoking was the only independent predictor of CYP1A2 activity (p<0.0001) and of 1-hydroxypyrene excretion in urine (p=0.0012). In this study, pipe or cigar smoking was associated with lower exposure to products of tobacco metabolism than cigarette smoking and to an absence of CYP1A2 induction. Cigarette smoking was the only independent predictor of CYP1A2 activity in smokers. However, inhalation behaviour, rather than the type of tobacco smoked, may be the key factor linked to the extent of tobacco exposure and CYP1A2 induction. Our results provide a reasonable explanation for the results of epidemiological studies showing pipe or cigar smoking to present fewer health hazards than

  12. Prospective study of effect of switching from cigarettes to pipes or cigars on mortality from three smoking related diseases.

    PubMed Central

    Wald, N. J.; Watt, H. C.

    1997-01-01

    OBJECTIVE: To estimate the extent to which cigarette smokers who switch to cigars or pipes alter their risk of dying of three-smoking related diseases-lung cancer, ischaemic heart disease, and chronic obstructive lung disease. DESIGN: A prospective study of 21520 men aged 35-64 years when recruited in 1975-82 with detailed history of smoking and measurement of carboxyhaemoglobin. MAIN OUTCOME MEASURES: Notification of deaths (to 1993) classified by cause. RESULTS: Pipe and cigar smokers who had switched from cigarettes over 20 years before entry to the study smoked less tobacco than cigarette smokers (8.1 g/day v 20 g/day), but they had the same consumption as pipe and cigar smokers who had never smoked cigarettes (8.1 g) and had higher carboxyhaemoglobin saturations (1.2% v 1.0%, P < 0.001), indicating that they inhaled tobacco smoke to a greater extent. They had a 51% higher risk of dying of the three smoking related diseases than pipe or cigar smokers who had never smoked cigarettes (relative risk 1.51; 95% confidence interval 0.96 to 2.38), a 68% higher risk than lifelong non-smokers (1.68; 1.16 to 2.45), a 57% higher risk than former cigarette smokers who gave up smoking over 20 years before entry (1.57; 1.04 to 2.38), and a 46% lower risk than continuing cigarette smokers (0.54; 0.38 to 0.77). CONCLUSION: Cigarette smokers who have difficulty in giving up smoking altogether are better off changing to cigars or pipes than continuing to smoke cigarettes. Much of the effect is due to the reduction in the quantity of tobacco smoked, and some is due to inhaling less. Men who switch do not, however, achieve the lower risk of pipe and cigar smokers who have never smoked cigarettes. All pipe and cigar smokers have a greater risk of lung cancer than lifelong non-smokers or former smokers. PMID:9224127

  13. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi. PMID:24459990

  14. ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), HEADER BYPASS PIPE (AT RIGHT), AND PUMPHOUSE FOUNDATIONS. Looking northeast - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  15. Fracture of Pipes Due to Freezing of Water Enclosed Inside

    NASA Astrophysics Data System (ADS)

    Oiwake, Shigeyoshi; Inaba, Hideo; Saito, Hakaru; Tokura, Ikuo

    Pressure rise due to freezing of water enclosed in metal pipes has been simulated for the case of various ambient temperatures, -10 to -30°C and heat transfer conditions, taking drop in freezing temperature due to the pressure rise and the change in volume caused by freezing into account. For three kinds of different materials, the pressure change occurring in pipes have been analyzed under the relation of the tangential stresses on the inner surface of the pipes. The dimensionless parameters have been proposed to correlate the calculated results and it has found that the criterion for the fracture of pipes can be expressed as a function mainly of the modified Fourier and Biot numbers and the ratio of the wall thickness and the inner diameter of the pipes. It has also shown that the fracture Fourier number can be increased and the dimensionless maximum pressures in pipes can be reduced by introducing voids inside pipes.

  16. 8. SETTLING TANK, WEST SIDE; WATER PIPE FROM INTAKE STRUCTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SETTLING TANK, WEST SIDE; WATER PIPE FROM INTAKE STRUCTURE IN FOREGROUND. - Hondius Water Line, 1.6 miles Northwest of Park headquarters building & 1 mile Northwest of Beaver Meadows entrance station, Estes Park, Larimer County, CO

  17. 28. Main water inlet and outlet pipes under central corridor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main water inlet and outlet pipes under central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  18. Cigarette, Cigar, and Pipe Smoking and the Risk of Head and Neck Cancers: Pooled Analysis in the International Head and Neck Cancer Epidemiology Consortium

    PubMed Central

    Wyss, Annah; Hashibe, Mia; Chuang, Shu-Chun; Lee, Yuan-Chin Amy; Zhang, Zuo-Feng; Yu, Guo-Pei; Winn, Deborah M.; Wei, Qingyi; Talamini, Renato; Szeszenia-Dabrowska, Neonila; Sturgis, Erich M.; Smith, Elaine; Shangina, Oxana; Schwartz, Stephen M.; Schantz, Stimson; Rudnai, Peter; Purdue, Mark P.; Eluf-Neto, Jose; Muscat, Joshua; Morgenstern, Hal; Michaluart, Pedro; Menezes, Ana; Matos, Elena; Mates, Ioan Nicolae; Lissowska, Jolanta; Levi, Fabio; Lazarus, Philip; La Vecchia, Carlo; Koifman, Sergio; Herrero, Rolando; Hayes, Richard B.; Franceschi, Silvia; Wünsch-Filho, Victor; Fernandez, Leticia; Fabianova, Eleonora; Daudt, Alexander W.; Dal Maso, Luigino; Curado, Maria Paula; Chen, Chu; Castellsague, Xavier; de Carvalho, Marcos Brasilino; Cadoni, Gabriella; Boccia, Stefania; Brennan, Paul; Boffetta, Paolo; Olshan, Andrew F.

    2013-01-01

    Cigar and pipe smoking are considered risk factors for head and neck cancers, but the magnitude of effect estimates for these products has been imprecisely estimated. By using pooled data from the International Head and Neck Cancer Epidemiology (INHANCE) Consortium (comprising 13,935 cases and 18,691 controls in 19 studies from 1981 to 2007), we applied hierarchical logistic regression to more precisely estimate odds ratios and 95% confidence intervals for cigarette, cigar, and pipe smoking separately, compared with reference groups of those who had never smoked each single product. Odds ratios for cigar and pipe smoking were stratified by ever cigarette smoking. We also considered effect estimates of smoking a single product exclusively versus never having smoked any product (reference group). Among never cigarette smokers, the odds ratio for ever cigar smoking was 2.54 (95% confidence interval (CI): 1.93, 3.34), and the odds ratio for ever pipe smoking was 2.08 (95% CI: 1.55, 2.81). These odds ratios increased with increasing frequency and duration of smoking (Ptrend ≤ 0.0001). Odds ratios for cigar and pipe smoking were not elevated among ever cigarette smokers. Head and neck cancer risk was elevated for those who reported exclusive cigar smoking (odds ratio = 3.49, 95% CI: 2.58, 4.73) or exclusive pipe smoking (odds ratio = 3.71, 95% CI: 2.59, 5.33). These results suggest that cigar and pipe smoking are independently associated with increased risk of head and neck cancers. PMID:23817919

  19. Section A, view of cooling water pipes and parking garage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section A, view of cooling water pipes and parking garage entrance/exit on west slurry wall, looking west. (BH) - World Trade Center Site, Bounded by Vesey, Church, Liberty Streets, & Route 9A, New York County, NY

  20. Autogenous Metallic Pipe Leak Repair in Potable Water Systems.

    PubMed

    Tang, Min; Triantafyllidou, Simoni; Edwards, Marc A

    2015-07-21

    Copper and iron pipes have a remarkable capability for autogenous repair (self-repair) of leaks in potable water systems. Field studies revealed exemplars that metallic pipe leaks caused by nails, rocks, and erosion corrosion autogenously repaired, as confirmed in the laboratory experiments. This work demonstrated that 100% (N = 26) of 150 μm leaks contacting representative bulk potable water in copper pipes sealed autogenously via formation of corrosion precipitates at 20-40 psi, pH 3.0-11.0, and with upward and downward leak orientations. Similar leaks in carbon steel pipes at 20 psi self-repaired at pH 5.5 and 8.5, but two leaks did not self-repair permanently at pH 11.0 suggesting that water chemistry may control the durability of materials that seal the leaks and therefore the permanence of repair. Larger 400 μm holes in copper pipes had much lower (0-33%) success of self-repair at pH 3.0-11.0, whereas all 400 μm holes in carbon steel pipes at 20 psi self-repaired at pH 4.0-11.0. Pressure tests indicated that some of the repairs created at 20-40 psi ambient pressure could withstand more than 100 psi without failure. Autogenous repair has implications for understanding patterns of pipe failures, extending the lifetime of decaying infrastructure, and developing new plumbing materials. PMID:26057741

  1. Acoustic imaging in a water filled metallic pipe

    SciTech Connect

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

  2. Design, Baseline Results of Irbid Longitudinal, School-Based Smoking Study

    ERIC Educational Resources Information Center

    Mzayek, Fawaz; Khader, Yousef; Eissenberg, Thomas; Ward, Kenneth D.; Maziak, Wasim

    2011-01-01

    Objective: To compare patterns of water pipe and cigarette smoking in an eastern Mediterranean country. Methods: In 2008, 1781 out of 1877 seventh graders enrolled in 19 randomly selected schools in Irbid, Jordan, were surveyed. Results: Experimentation with and current water pipe smoking were more prevalent than cigarette smoking (boys: 38.7% vs…

  3. Contamination of piped medical gas supply with water.

    PubMed

    Hay, H

    2000-08-01

    The failure of anaesthetic equipment as a result of maintenance is extremely rare. The ingress of water into the flowmeters of an anaesthetic machine from the piped medical air supply is reported and is possibly unique. The piped medical air supply was open to the atmosphere during maintenance. Water condensed in the gas pipeline and this was not noticed during subsequent testing. Water was seen leaking from the orthopaedic air tools used for surgery but was assumed to be from the autoclaving process. Later the same day, when medical air from the piped source was used as part of the gas mixture for a general anaesthetic, water was seen filling the barrel of the flowmeter air control valve. This could have had far-reaching and dangerous consequences for the patient, which were fortunately averted. PMID:10998035

  4. CHARACTERIZING PIPE WALL DEMAND: IMPLICATIONS FOR WATER QUALITY MODELING

    EPA Science Inventory

    It has become generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical or microbiological in nature. Perhaps one of the most serious aspects of water qua...

  5. Slip ratio in dispersed viscous oil-water pipe flow

    SciTech Connect

    Rodriguez, Iara H.; Yamaguti, Henrique K.B.; de Castro, Marcelo S.; Rodriguez, Oscar M.H.; Da Silva, Marco J.

    2011-01-15

    In this article, dispersed flow of viscous oil and water is investigated. The experimental work was performed in a 26.2-mm-i.d. 12-m-long horizontal glass pipe using water and oil (viscosity of 100 mPa s and density of 860 kg/m{sup 3}) as test fluids. High-speed video recording and a new wire-mesh sensor based on capacitance (permittivity) measurements were used to characterize the flow. Furthermore, holdup data were obtained using quick-closing-valves technique (QCV). An interesting finding was the oil-water slip ratio greater than one for dispersed flow at high Reynolds number. Chordal phase fraction distribution diagrams and images of the holdup distribution over the pipe cross-section obtained via wire-mesh sensor indicated a significant amount of water near to the pipe wall for the three different dispersed flow patterns identified in this study: oil-in-water homogeneous dispersion (o/w H), oil-in-water non-homogeneous dispersion (o/w NH) and Dual continuous (Do/w and Dw/o). The phase slip might be explained by the existence of a water film surrounding the homogeneous mixture of oil-in-water in a hidrofilic-oilfobic pipe. (author)

  6. 11. Water treatment plant interior view of pipes, stairs, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Water treatment plant interior view of pipes, stairs, and pump in pump room. View to SW - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  7. 12. Water treatment plant interior view of pipes and pump ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Water treatment plant interior view of pipes and pump in heater room. View to W - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  8. Lead Water Pipes and Infant Mortality at the Turn of the Twentieth Century

    ERIC Educational Resources Information Center

    Troesken, Werner

    2008-01-01

    In 1897, about half of all American municipalities used lead pipes to distribute water. Employing data from Massachusetts, this paper compares infant death rates in cities that used lead water pipes to rates in cities that used nonlead pipes. In the average town in 1900, the use of lead pipes increased infant mortality by 25 to 50 percent.…

  9. Modeling MIC copper release from drinking water pipes.

    PubMed

    Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R

    2014-06-01

    Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. PMID:24398414

  10. Lifetest investigations with stainless steel/water heat pipes

    NASA Astrophysics Data System (ADS)

    Muenzel, W. D.; Kraehling, H.

    Life tests were conducted on water heat pipes, made from four different alloys of stainless steel, at operation temperatures of 120, 160, 220, and 320 C in a reflux boiler mode for more than 20,000 hr. Other parameters varied during the tests included capillary structure, pretreatment and cleaning of the components, additional oxidation of the inner surface, filling procedures, amoung of liquid change, the number of ventings, and the duration of the reaction runs. The best results were obtained with pipes containing stainless steels with molybdenum alloy additions and with carbon contents of greater than 0.03%; with components which formed a protective surface layer; with the use of double-distilled water that had been ultrasonically degassed; with repeated ventings during the initial reaction run of 500 hr minimum duration; and with the addition of gaseous oxygen into the heat pipe during the reaction run with subsequent venting.

  11. THE BEHAVIOR OF ASBESTOS-CEMENT PIPE UNDER VARIOUS WATER QUALITY CONDITIONS: A PROGRESS REPORT

    EPA Science Inventory

    Asbestos-cement pipe has had a reputation for resisting attack by aggressive waters that cause corrosion of metal pipe materials. The results of this study suggest that asbestos-cement pipe behaves much like other piping materials, except PVC, that are commonly used for potable w...

  12. Hydrogen evolution in nickel-water heat pipes.

    NASA Technical Reports Server (NTRS)

    Anderson, W. T.

    1973-01-01

    A study was made of the evolution of hydrogen gas in nickel-water heat pipes for the purpose of investigating methods of accelerated life testing. The data were analyzed in terms of a phenomenological corrosion model of heat pipe degradation which incorporates corrosion and oxidation theory and contains parameters which can be determined by experiment. The gas was evolved with a linear time dependence and an exponential temperature dependence with an activation energy of 1.03 x 10 to the minus 19th joules. A flow-rate dependence of the gas evolution was found in the form of a threshold. The results were used to predict usable lifetimes of heat pipes operated at normal operating conditions from results taken under accelerated operating conditions.

  13. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    NASA Astrophysics Data System (ADS)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  14. Salvage and recovery of the OTEC-1 cold water pipe

    SciTech Connect

    Tracy, D.E.; Vadus, J.R.

    1983-05-01

    During autumn 1982, the National Oceanic and Atmospheric Administration (NOAA) was assisted by the U.S. Navy in recovering the 2,250-foot-long ocean thermal energy conversion (OTEC-1) cold water pipe which was vertically moored in 4,500 feet of water 22 miles off the northwest coast of the island of Hawaii. The pipe recovery was successfully completed on October 9, 1982, in one of the Navy's deepest salvage efforts on record, and will be deployed down the slope at Keahole Point to supply cold water for the Natural Energy Laboratory of Hawaii. The salvage and recovery of such a large flexible object almost 1/2-mile in length, weighing 50 tons in water, from a depth of 4,500 feet, was unique to the Navy's experience. This operation required extensive planning and coordination among numerous Naval and commercial units; shipyard preparation of the ocean heavy lift platform barge; utilization of the deep submersible research vehicle TURTLE; and use of various support vessels and ancillary equipment. It provided an opportunity to test new technology applicable to offshore and deep sea operations and to obtain material specimens for testing of pipe strength degradation due to long-term exposure to sea water.

  15. Lead Pipe Scale Analysis Using Broad-Beam Argon Ion Milling to Elucidate Drinking Water Corrosion

    EPA Science Inventory

    Herein, we compared the characterization of lead pipe scale removed from a drinking water distribution system using two different cross section methods (conventional polishing and argon ion beam etching). The pipe scale solids were analyzed using scanning electron microscopy (SEM...

  16. Reactor Materials Program process water piping indirect failure frequency

    SciTech Connect

    Daugherty, W.L.

    1989-10-30

    Following completion of the probabilistic analyses, the LOCA Definition Project has been subject to various external reviews, and as a result the need for several revisions has arisen. This report updates and summarizes the indirect failure frequency analysis for the process water piping. In this report, a conservatism of the earlier analysis is removed, supporting lower failure frequency estimates. The analysis results are also reinterpreted in light of subsequent review comments.

  17. Smoking

    MedlinePlus

    ... Smoking harms nearly every organ of the body. Cigarette smoking causes 87 percent of lung cancer deaths. ... of the same problems as smokers do. E-cigarettes often look like cigarettes, but they work differently. ...

  18. "I inject less as I have easier access to pipes": injecting, and sharing of crack-smoking materials, decline as safer crack-smoking resources are distributed.

    PubMed

    Leonard, Lynne; DeRubeis, Emily; Pelude, Linda; Medd, Emily; Birkett, Nick; Seto, Joyce

    2008-06-01

    Among injection drug users (IDUs) in Ottawa, the capital of Canada, prevalence rates of HIV (20.6 percent) and hepatitis C HCV (75.8 percent) are among the highest in Canada. Recent research evidence suggests the potential for HCV and HIV transmission through the multi-person use of crack-smoking implements. On the basis of this scientific evidence, in April 2005, Ottawa's needle exchange programme (NEP) commenced distributing glass stems, rubber mouthpieces, brass screens, chopsticks, lip balm and chewing gum to reduce the harms associated with smoking crack. This study aims to evaluate the impact of this initiative on a variety of HCV- and HIV-related risk practices. Active, street-recruited IDUs who also smoked crack consented to personal interviews and provided saliva samples for HCV and HIV testing at four time points: 6-months pre-implementation (N=112), 1-month (N=114), 6-months (N=157) and 12-months (N=167) post-implementation. Descriptive and univariate analyses were completed. Following implementation of the initiative, a significant decrease in injecting was observed. Pre-implementation, 96 percent of IDUs reported injecting in the month prior to the interview compared with 84 percent in the 1-month, and 78 percent in the 6- and 12-month post-implementation interviews (p<.01). Conversely, approximately one-quarter of participants at both the 6- and 12-month post-implementation evaluation points reported that they were smoking crack more frequently since the availability of clean equipment--25 and 29 percent, respectively. In addition to a shift to a less harmful method of drug ingestion, HCV- and HIV-related risks associated with this method were reduced. Among crack-smoking IDUs sharing pipes, the proportion sharing "every time" declined from 37 percent in the 6-month pre-implementation stage, to 31 percent in the 1-month, 12 percent in the 6-month and 13 percent in the 12-month post-implementation stages (p<.01). Since distributing safer crack-smoking

  19. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect.

    PubMed

    Al-Jasser, A O

    2007-01-01

    Water quality can deteriorate in the transmission and distribution system beyond the treatment plant. Minimizing the potential for biological regrowth can be attained by chlorinating the finished water. While flowing through pipes, the chlorine concentration decreases for different reasons. Reaction with the pipe material itself and the reaction with both the biofilm and tubercles formed on the pipe wall are known as pipe wall demand, which may vary with pipe parameters. The aim of this paper was to assess the impact of the service age of pipes on the effective chlorine wall decay constant. Three hundred and two pipe sections of different sizes and eight different pipe materials were collected and tested for their chlorine first-order wall decay constants. The results showed that pipe service age was an important factor that must not be ignored in some pipes such as cast iron, steel, cement-lined ductile iron (CLDI), and cement-lined cast iron (CLCI) pipes especially when the bulk decay is not significant relative to the wall decay. For the range of the 55 years of pipe service age used in this study, effective wall decay constants ranged from a decrease by -92% to an increase by +431% from the corresponding values in the recently installed pipes. The effect of service age on the effective wall decay constants was most evident in cast iron pipes, whereas steel pipes were less affected. Effective chlorine wall decay for CLCI and CLDI pipes was less affected by service age as compared to steel and cast iron pipes. Chlorine wall decay constants for PVC, uPVC, and polyethylene pipes were affected negatively by pipe service age and such effect was relatively small. PMID:17140619

  20. Water Pipe Steam Stones: Familiarity and Use Among US Young Adults

    PubMed Central

    Shensa, Ariel; Primack, Brian A.

    2015-01-01

    Introduction: Water pipe tobacco smoking (WTS) is associated with substantial toxicant exposure. Water pipe steam stones (WSS) are marketed as a healthier alternative. The purpose of this study was to determine, in a nationally representative sample, young adults’ familiarity with, perceptions regarding, and use of WSS. Methods: A survey about WTS was completed by 3,253 members of an online nonvolunteer access panel. Four items specifically addressed WSS. Results: Of the 228 individuals who had heard of WSS, 17% (n = 41) reported using them. Use was associated with ever (adjusted odds ratio [AOR] = 7.7, 95% confidence interval [CI] = 2.7–21.8) and current (AOR = 16.1, 95% CI = 5.1–51.5) WTS. Compared with those who thought that WSS had about the same harm as WTS, those who thought that WSS was “a lot less harmful” to a person’s health had substantially higher odds of having tried WSS (AOR = 6.8, 95% CI = 2.0–23.1). Conclusions: Approximately 1 in 6 young adults who have heard of WSS used them. WSS use is associated with the perception of reduced harm. PMID:25145376

  1. Natural radioactivity in the scale of water well pipes.

    PubMed

    Aksoy, A; Al-Jarallah, M; Al-Haddad, M N

    2002-01-01

    The natural radioactivity of 226Ra and 228Ra in scale samples taken from pipes used in several local water wells was investigated. The results showed 226Ra activities to be varying from 1284 to 3613 Bq/kg whereas, the 228Ra concentrations did not show any significant variation, all being low, below 30 Bq/kg. The 222Rn exhalations from these scale samples were also measured and compared with the 226Ra contents. The average ratio of 222Rn/226Ra was 31%. Chemical analyses showed that the main constituent of the scale samples was iron. The radiation dose rates from the pipes and scale were up to 100nSv/h. Although not a major hazard this could present a long-term risk if the scale materials were handled indiscriminately. PMID:12113504

  2. Reducing widespread pipe sharing and risky sex among crystal methamphetamine smokers in Toronto: do safer smoking kits have a potential role to play?

    PubMed Central

    2012-01-01

    Background Crystal methamphetamine smoking is associated with many negative health consequences, including the potential for transmission of hepatitis. We examined whether or not a kit for crystal methamphetamine smoking might have some potential to reduce the negative health effects of crystal methamphetamine smoking. Methods Five focus groups were conducted with crystal methamphetamine smokers recruited by community health agencies and youth shelters in Toronto, Canada. Target groups included homeless/street-involved youth, sex workers, men who have sex with men, and youth in the party scene. Participants (n = 32) were asked questions about motivations for crystal methamphetamine use, the process of smoking, health problems experienced, sharing behaviour, risky sexual practices, and the ideal contents of a harm reduction kit. Results Pipe sharing was widespread among participants and was deemed integral to the social experience of smoking crystal methamphetamine. Heated pipes were unlikely to cause direct injuries, but participants mentioned having dry, cracked lips, which may be a vector for disease transmission. Many reported having sex with multiple partners and being less likely to use condoms while on the drug. Demand for harm reduction kits was mixed. Conclusions Changing pipe sharing behaviours may be difficult because many participants considered sharing to be integral to the social experience of smoking crystal methamphetamine. Within the context of a broader health promotion and prevention program, pilot testing of safer smoking kits to initiate discussion and education on the risks associated with sharing pipes and unprotected sex for some communities (e.g., homeless/street-involved youth) is worth pursuing. PMID:22339847

  3. Occurrence of nonylphenol and bisphenol A in household water pipes made of different materials.

    PubMed

    Cheng, Yang-Chen; Chen, Huei-Wen; Chen, Wen-Ling; Chen, Chia-Yang; Wang, Gen-Shuh

    2015-10-01

    We assessed the occurrence of nonylphenol (NP) and bisphenol A (BPA) in tap water supplied through polyvinyl chloride (PVC), stainless steel, and galvanized pipes. Water samples were collected from selected households in Taipei and Kaohsiung (Northern and Southern Taiwan, respectively) in different seasons to elucidate the effects of pipeline materials and ambient temperatures on NP and BPA concentrations in tap water. We detected higher concentrations of NP in tap water from households using PVC pipes (64-195 ng/L) than from those using stainless steel pipes (17-44 ng/L) and galvanized pipes (27-96 ng/L). To verify that water can absorb NP and BPA from PVC pipes, we sealed Milli-Q and tap water in PVC and stainless steel pipes to assess the potential release of NP and BPA from the pipes into the water. Both NP and BPA concentrations initially increased with contact time in the PVC pipes, and the concentration profiles during the retention appeared to be more strongly affected by ambient temperatures. Concentration variations in the stainless steel pipes were smaller than those in the PVC pipes. PMID:27624744

  4. Different senescent HDPE pipe-risk: brief field investigation from source water to tap water in China (Changsha City).

    PubMed

    Tang, Jing; Tang, Lin; Zhang, Chang; Zeng, Guangming; Deng, Yaocheng; Dong, Haoran; Wang, Jingjing; Wu, Yanan

    2015-10-01

    Semi-volatile organic compounds (SVOCs) derived from plastic pipes widely used in water distribution definitely influence our daily drinking water quality. There are still few scientific or integrated studies on the release and degradation of the migrating chemicals in pipelines. This investigation was carried out at field sites along a pipeline in Changsha, China. Two chemicals, 2, 4-tert-buthylphenol and 1, 3-diphenylguanidine, were found to be migrating from high density polyethylene (HDPE) pipe material. New pipes released more of these two compounds than older pipes, and microorganisms living in older pipes tended to degrade them faster, indicating that the aged pipes were safer for water transmission. Microorganism degradation in water plays a dominant role in the control of these substances. To minimize the potential harm to human, a more detailed study incorporating assessment of their risk should be carried out, along with seeking safer drinking pipes. PMID:26308926

  5. Cool-down and frozen start-up behavior of a grooved water heat pipe

    SciTech Connect

    Jang, J.H.

    1990-12-01

    A grooved water heat pipe was tested to study its characteristics during the cool-down and start-up periods. The water heat pipe was cooled down from the ambient temperature to below the freezing temperature of water. During the cool-down, isothermal conditions were maintained at the evaporator and adiabatic sections until the working fluid was frozen. When water was frozen along the entire heat pipe, the heat pipe was rendered inactive. The start-up of the heat pipe from this state was investigated under several different operating conditions. The results show the existence of large temperature gradients between the evaporator and the condenser, and the moving of the melting front of the working fluid along the heat pipe. Successful start-up was achieved for some test cases using partial gravity assist. The start-up behavior depended largely on the operating conditions.

  6. Cool-down and frozen start-up behavior of a grooved water heat pipe

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon

    1990-01-01

    A grooved water heat pipe was tested to study its characteristics during the cool-down and start-up periods. The water heat pipe was cooled down from the ambient temperature to below the freezing temperature of water. During the cool-down, isothermal conditions were maintained at the evaporator and adiabatic sections until the working fluid was frozen. When water was frozen along the entire heat pipe, the heat pipe was rendered inactive. The start-up of the heat pipe from this state was studied under several different operating conditions. The results show the existence of large temperature gradients between the evaporator and the condenser, and the moving of the melting front of the working fluid along the heat pipe. Successful start-up was achieved for some test cases using partial gravity assist. The start-up behavior depended largely on the operating conditions.

  7. Smoking

    MedlinePlus

    ... harms nearly every organ of the body. Cigarette smoking causes 87 percent of lung cancer deaths. It is also responsible for many other ... you quit, the greater the benefit. NIH: National Cancer Institute

  8. Correlation between nicotine dependence and barriers to cessation between exclusive cigarette smokers and dual (water pipe) smokers among Arab Americans

    PubMed Central

    El-Shahawy, Omar; Haddad, Linda

    2015-01-01

    Background Evidence suggests that dual cigarette and water pipe use is growing among minority groups, particularly among Arab Americans. Differences in nicotine dependence and barriers to smoking cessation among such dual smokers have not been previously examined in this population. We examined potential differences that might exist between exclusive cigarette smokers and dual smokers (cigarette and water pipe) pertaining to nicotine dependence and barriers to cessation among Arab Americans. Methods We conducted a cross-sectional study using a convenience sample of self-identified Arab immigrant smokers (n=131) living in the Richmond, VA metropolitan area. Data were collected using four questionnaires: Demographic and Cultural Information questionnaire, Tobacco Use questionnaire, Fagerström Test for Nicotine Dependence (FTND) questionnaire, and Barriers to Cessation questionnaire. We examined differences in nicotine dependence and barriers to cessation between exclusive cigarette smokers and dual smokers of cigarettes and water pipe. Furthermore, we explored the correlations of these measures with select variables. Results There was a significant difference in the FTND scores between the exclusive cigarette smokers (mean M=2.55, standard deviation [SD] =2.10) and dual smokers (M=3.71, SD =2.42); t(129) = (2.51), P=0.0066. There was also a significant difference in the Barriers to Cessation scores between exclusive cigarette smokers (M=38.47, SD =13.07) and dual smokers (M=45.21, SD =9.27); t(129) = (2.56), P=0.0058. Furthermore, there was a highly significant correlation among FTND scores, Barriers to Cessation scores, and past quit attempts among dual smokers. Conclusion Water pipe tobacco smoking seems to be both adding to the dependence potential of cigarette smoking and enhancing barriers to cessation in our study sample. However, the high correlation between quit attempts, FTND, and barriers to cessation needs further investigation to ascertain the possible

  9. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved. PMID:20329520

  10. Experimental Studies of the Acoustic Properties of a Finite Elastic Pipe Filled with Water/air

    NASA Astrophysics Data System (ADS)

    Feng, L.

    1996-02-01

    Vibration of, and sound power radiated from, a water/air-filled steel pipe are measured and analyzed. Two types of pipe terminal are employed in the experiments: embedded in sand boxes or without any absorption treatment. Comparisons are made between experiments and theoretical analysis. The measured wavenumbers agree well with those predicted as do modal responses are sound power of the air-filled pipe. For the water-filled steel pipe used in the test (inner diameter 150 mm), measured modal responses and sound power at high frequencies (higher than 4·5 kHz) are much lower than expected for the lossless model. Influences of pipe terminals on the coupling between the water and pipe are also examined.

  11. Water, Water Everywhere, but What's in the Pipes?

    ERIC Educational Resources Information Center

    Hoober, Scott

    1997-01-01

    Waterborne diseases like cholera, typhoid, and dysentery are not problematic in the United States. Most industrial and agricultural chemicals are neutralized by existing treatment technology, but cryptosporidium contamination can occur in dysfunctional treatment/filtration systems. Bottled water is no better than tap water. Awareness is better…

  12. The Effect of Improved Water Chemistry on Corrosion Cracking of BWR Piping: Workshop Proceedings

    SciTech Connect

    1989-12-01

    Implementation of the EPRI BWR water chemistry guidelines by utilities has significantly improved the chemistry of BWRs. Water chemistry improvements extend the service life of BWR piping and provide a technical justification for increased intervals of in-service inspections of BWR piping.

  13. The Analysis of Organotins in Polyvinyl Chloride Pipe and Their Diffusion into Water Over Time

    EPA Science Inventory

    Organotins are commonly used as thermal stabilizers in the manufacturing of PVC pipes, which are widely used in drinking water distribution systems. Additives, such as organotins, have been show to leach through PVC pipe into water. While tri-substituted organotin compounds hav...

  14. WATER QUALITY AND TREATMENT CONSIDERATIONS FOR CEMENT-LINED AND A-C PIPE

    EPA Science Inventory

    Both cement mortar lined (CML) and asbestos-cement pipes (A-C) are widely used in many water systems. Cement linings are also commonly applied in-situ after pipe cleaning, usually to prevent the recurrence of red water or tuberculation problems. Unfortunately, little consideratio...

  15. IR technique for detection of wall thinning in service water piping

    NASA Astrophysics Data System (ADS)

    Zayicek, Paul A.; Shepard, Steven M.

    1997-04-01

    The service water piping system at nuclear power plants provides cooling for a variety of safety and non-safety related components and systems. Reliability of service water piping systems is a key consideration for safe and reliable plant operations. Conventional inspection techniques for detection of pipe wall thinning usually involve the time- intensive process of ultrasonic thickness measurements, based on a grid system, of the entire pipe length. An alternative to this process may lie in the use of active infrared thermography techniques for detection of thin wall areas in the pipe. Infrared thermography (IR), in a passive mode, has been widely used by utilities for a variety of predictive maintenance applications. For assessment of service water piping, an active IR technique, thermal injection, can be used. Application of this IRNDE technique for material evaluation can provide a rapid screening technique for identification of thin wall areas in service water piping. The EPRI NDE Center participated in a preliminary evaluation of this technology at Vermont Yankee Nuclear Power Plant. Based on the promising results of the Vermont Yankee activity, the Center worked with Thermal Wave Imaging, Inc. in an effort to optimize the IR thermal injection technique for service water piping applications. A series of representative pipe mock-ups were used for evaluation. Subsequent modification of the thermal injection hardware and technique yielded more uniform thermal energy transfer, improved detection capabilities, and increased effective inspection area.

  16. Experimental investigation on the slip between oil and water in horizontal pipes

    SciTech Connect

    Xu, Jing-yu; Wu, Ying-xiang; Feng, Fei-fei; Chang, Ying; Li, Dong-hui

    2008-10-15

    This work is devoted to study of the slip phenomenon between phases in water-oil two-phase flow in horizontal pipes. The emphasis is placed on the effects of input fluids flow rates, pipe diameter and viscosities of oil phase on the slip. Experiments were conducted to measure the holdup in two horizontal pipes with 0.05 m diameter and 0.025 m diameter, respectively, using two different viscosities of white oil and tap water as liquid phases. Results showed that the ratios of in situ oil to water velocity at the pipe of small diameter are higher than those at the pipe of big diameter when having same input flow rates. At low input water flow rate, there is a large deviation on the holdup between two flow systems with different oil viscosities and the deviation becomes gradually smaller with further increased input water flow rate. (author)

  17. PROCESS WATER BUILDING, TRA605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES REMAINED OPEN. CAMERA FACES EASTERLY. NOTE DUAL PIPES BETWEEN REACTOR BUILDING AND NORTH SIDE OF PROCESS WATER BUILDING. PIPING NEAR WORKING RESERVOIR HEADS FOR RETENTION RESERVOIR. PIPE FROM DEMINERALIZER ENTERS MTR FROM NORTH. SEE ALSO TRENCH FOR COOLANT AIR DUCT AT SOUTH SIDE OF MTR AND LEADING TO FAN HOUSE AND STACK. INL NEGATIVE NO. 2966-A. Unknown Photographer, 7/31/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Acoustic Propagation in a Water-Filled Cylindrical Pipe

    SciTech Connect

    Sullivan, E J; Candy, J V

    2003-06-01

    This study was concerned with the physics of the propagation of a tone burst of high frequency sound in a steel water-filled pipe. The choice of the pulse was rather arbitrary, so that this work in no way can be considered as recommending a particular pulse form. However, the MATLAB computer codes developed in this study are general enough to carry out studies of pulses of various forms. Also, it should be pointed out that the codes as written are quite time consuming. A computation of the complete field, including all 5995 modes, requires several hours on a desktop computer. The time required by such computations as these is a direct consequence of the bandwidths, frequencies and sample rates employed. No attempt was made to optimize these codes, and it is assumed that much can be done in this regard.

  19. Cold Start of a Radiator Equipped with Titanium-Water Heat Pipes

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Sanzi, James L.; Siamidis, John

    2008-01-01

    Radiator panels utilizing titanium-water heat pipes are being considered for lunar applications. A traditional sandwich structure is envisioned where heat pipes are embedded between two high thermal conductivity face sheets. The heat pipe evaporators are to be thermally connected to the heat source through one or more manifolds containing coolant. Initial radiator operation on the lunar surface would likely follow a cold soak where the water in the heat pipes is purposely frozen. To achieve heat pipe operation, it will be necessary to thaw the heat pipes. One option is to allow the sunlight impinging on the surface at sunrise to achieve this goal. Testing was conducted in a thermal vacuum chamber to simulate the lunar sunrise and additional modeling was conducted to identify steady-state and transient response. It was found that sunlight impinging on the radiator surface at sunrise was insufficient to solely achieve the goal of thawing the water in the heat pipes. However, starting from a frozen condition was accomplished successfully by applying power to the evaporators. Start up in this fashion was demonstrated without evaporator dryout. Concern is raised over thawing thermosyphons, vertical heat pipes operating in a gravity field, with no wick in the condenser section. This paper presents the results of the simulated cold start study and identifies future work to support radiator panels equipped with titanium-water heat pipes.

  20. A study of vibroacoustic coupling between a pump and attached water-filled pipes.

    PubMed

    Li, Bilong; Hodkiewicz, Melinda; Pan, Jie

    2007-02-01

    This paper presents a model for the vibroacoustical behavior of a pump coupled with water-filled pipes. Coupling between (a) the pump and the inlet and outlet pipes, and (b) the pipe wall and the fluid contained in the pipe, is investigated through analytical modeling and numerical simulation. In the model, the pump is represented by a rigid body supported by multiple elastic mounts, and the inlet and outlet pipes by two semi-infinite water-filled pipes. The vibration characteristics of the coupled system under the excitation of mechanical forces and fluid-borne forces at the pump are calculated. The results enhance our understanding about how the input mechanical and fluid excitation energy at the pump is transmitted to the pipes and how to relate the piping vibroacoustical response to the excitations at the pump. This study assists in predicting dynamic stress in pipes for given excitations at the pump, and in developing methods to identify the nature (fluid or mechanical) of the excitation forces at the pump using the vibration and dynamic pressure measurements on the pump/pipe system. PMID:17348514

  1. Fluid-structure interaction in water-filled thin pipes of anisotropic composite materials

    NASA Astrophysics Data System (ADS)

    You, Jeong Ho; Inaba, K.

    2013-01-01

    The effects of elastic anisotropy in piping materials on fluid-structure interaction are studied for water-filled carbon-fiber reinforced thin plastic pipes. When an impact is introduced to water in a pipe, there are two waves traveling at different speeds. A primary wave corresponding to a breathing mode of pipe travels slowly and a precursor wave corresponding to a longitudinal mode of pipe travels fast. An anisotropic stress-strain relationship of piping materials has been taken into account to describe the propagation of primary and precursor waves in the carbon-fiber reinforced thin plastic pipes. The wave speeds and strains in the axial and hoop directions are calculated as a function of carbon-fiber winding angles and compared with the experimental data. As the winding angle increases, the primary wave speed increases due to the increased stiffness in the hoop direction, while the precursor wave speed decreases. The magnitudes of precursor waves are much smaller than those of primary waves so that the effect of precursor waves on the deformation of pipe is not significant. The primary wave generates the hoop strain accompanying the opposite-signed axial strain through the coupling compliance of pipe. The magnitude of hoop strain induced by the primary waves decreases with increasing the winding angle due to the increased hoop stiffness of pipe. The magnitude of axial strain is small at low and high winding angles where the coupling compliance is small.

  2. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    PubMed

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes. PMID:26322761

  3. Investigation of organic matter migrating from polymeric pipes into drinking water under different flow manners.

    PubMed

    Zhang, Ling; Liu, Shuming; Liu, Wenjun

    2014-02-01

    Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC

  4. The physico-chemistry of biofilm-mediated pitting corrosion of copper pipe supplying potable water.

    PubMed

    Keevil, C W

    2004-01-01

    Copper is a generally robust material that has beneficial properties to reduce biofilm formation and pathogen colonisation of pipes supplying potable water. However, a rare pitting corrosion can occur in soft, poorly buffered waters that can lead to pipe failure. This has been shown to be mediated by a copper-tolerant biofilm whose physical and chemical heterogeneity can establish microenvironments for corrosion potentials, causing micro pits that eventually coalesce into large perforations through the pipe wall. Control of the biofilm, for example through reduced cold water or elevated hot water temperatures, can suppress this corrosion phenomenon. PMID:14982168

  5. Transient characteristics of a grooved water heat pipe with variable heat load

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon

    1990-01-01

    The transient characteristics of a grooved water heat pipe were studied by using variable heat load. First, the effects of the property variations of the working fluid with temperature were investigated by operating the water heat pipe at several different temperatures. The experimental results show that, even for the same heat input profile and heat pipe configuration, the heat pipe transports more heat at higher temperature within the tested temperature range. Adequate liquid return to the evaporator due to decreasing viscosity of the working fluid permits continuous vaporization of water without dry-out. Second, rewetting of the evaporator was studied after the evaporator had experienced dry-out. To rewet the evaporator, the elevation of the condenser end was the most effective way. Without elevating the condenser end, rewetting is not straight-forward even with power turned off unless the heat pipe is kept at isothermal condition for sufficiently long time.

  6. Transient formation characteristics of temperature stratified flow in a horizontal water pipe with an injection of hot water from a hole of a pipe

    SciTech Connect

    Okinotani, Takeshi; Ozoe, Hiroyuki

    1999-07-01

    Temperature stratified flow was numerically analyzed in a horizontal pipe. Initially cold water is running and developed in a pipe. From a part of a pipe wall, hot water is injected. Subsequent transient velocity and temperature stratification process was numerically analyzed. This process is a model for such transfer phenomena as follows, i.e., blowing of fresh air into a long tunnel, replacing process of hazardous fluids from a pipeline of an industrial plant with safer fluids, ventilation of a large construction house or ducts, transient combustion process in a tunnel or huge duct, transient flow and temperature characteristics in a canal or river with multiple sub channels. These various cases become more complicated and more serious for the larger scale systems. Temperature stratified flow is everywhere established which makes the prediction difficult. This paper presents transient three-dimensional numerical analyses for a horizontal pipe in which laminar cold water runs steadily. Hot water is injected from a lower side corner of a pipe. Model equations consist of fully three-dimensional balance equations in a cylindrical coordinate. Total tube length computed is 10 times of a pipe diameter d{sub 0}. Hot water inlet hole is 0.4d{sub 0} long in an axial direction and {pi}d{sub 0}/8 in a circumferential direction near the entrance of the system. Reynolds number in a pipe is 1000. Reynolds number of the hot water at the injection hole is 447. Grashof number based on the temperature difference is 5 x 10{sup 7} and Pr = 5.41. Transient three-dimensional velocity profiles and isotherms are presented. The instantaneous water temperature represents oscillatory fluctuation depending on the level in a pipe and on the axial distance from the injection hole. For the tube diameter 0.1m, an average temperature arrived a quasi-steady state after 5 minutes with strong temperature stratification even at 1m from an injection hole. Near the injection hole, hot water makes

  7. Scientific-Chemical Viewpoints regarding Smoking: A Science Laboratory for All

    ERIC Educational Resources Information Center

    Blonder, Ron

    2008-01-01

    This article describes laboratory activity that examines the chemical process of smoking and the components of smoke, of both cigarettes and water pipes (narghiles also known as "hookah"). The aim of this activity is to expose adolescents to the scientific aspects of smoking; and to present the relevance of chemistry in everyday life. (Contains 3…

  8. Detonation and Transition to Detonation in Horizontal Water-Filled Pipes

    NASA Astrophysics Data System (ADS)

    Bitter, Neal P.; Shepherd, Joseph E.

    2012-11-01

    Detonations and deflagration-to-detonation transition (DDT) are experimentally studied in horizontal pipes which are partially filled with water. The gas layer above the water is stoichiometric hydrogen-oxygen at 1 bar. The detonation wave produces oblique shock waves in the water, which focus at the bottom of the pipe due to the curvature of the walls. This results in peak pressures at the bottom of the pipe that are 4-6 times greater than the peak detonation pressure. Such pressure amplification is measured for water depths of 0.25, 0.5, 0.75, 0.87, and 0.92 pipe diameters. Focusing of the oblique shock waves is studied further by measuring the circumferential variation of pressure when the water depth is 0.5 pipe diameters, and reasonable agreement with theoretical modeling is found. Failure of the detonation waves was not observed, even for water depths as high as 0.92 pipe diameters. Transition to detonation also occurred at every water height, and transition distance did not vary significantly with water height.

  9. Fracture mechanics models developed for piping reliability assessment in light water reactors: piping reliability project

    SciTech Connect

    Harris, D.O.; Lim, E.Y.; Dedhia, D.D.; Woo, H.H.; Chou, C.K.

    1982-06-01

    The efforts concentrated on modifications of the stratified Monte Carlo code called PRAISE (Piping Reliability Analysis Including Seismic Events) to make it more widely applicable to probabilistic fracture mechanics analysis of nuclear reactor piping. Pipe failures are considered to occur as the result of crack-like defects introduced during fabrication, that escape detection during inspections. The code modifications allow the following factors in addition to those considered in earlier work to be treated: other materials, failure criteria and subcritical crack growth characteristic; welding residual and vibratory stresses; and longitudinal welds (the original version considered only circumferential welds). The fracture mechanics background for the code modifications is included, and details of the modifications themselves provided. Additionally, an updated version of the PRAISE user's manual is included. The revised code, known as PRAISE-B was then applied to a variety of piping problems, including various size lines subject to stress corrosion cracking and vibratory stresses. Analyses including residual stresses and longitudinal welds were also performed.

  10. CHLORINE DECAY AND BIOFILM STUDIES IN A PILOT SCALE DRINKING WATER DISTRIBUTION DEAD END PIPE SYSTEM

    EPA Science Inventory

    Chlorine decay experiments using a pilot-scale water distribution dead end pipe system were conducted to define relationships between chlorine decay and environmental factors. These included flow rate, biomass concentration and biofilm density, and initial chlorine concentrations...

  11. Vacuum hand pump apparatus for collecting water samples from a horizontal intragravel pipe

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.

    1996-01-01

    We describe a lightweight, portable vacuum hand pump apparatus for use in collecting water samples from horizontal intragravel pipe samplers buried in the stream bottom. The apparatus is easily fabricated from relatively inexpensive materials available at many laboratory supply houses.

  12. Permeability of methane, carbon dioxide and water in PA11 and PVDF used for flexible pipes

    SciTech Connect

    Andersen, T.R.; Skar, J.I.; Hansteen, C.

    1999-11-01

    Permeability of methane, carbon dioxide and water in plasticized polyvinylidene fluoride (PVDF) and plasticized polyarnid 11 (PA11 ) has been measured for a number of temperatures and pressures in a small scale test apparatus and permeability coefficients have been calculated. The results have been used to predict if the annulus of flexible pipes will be water wet. For verification of the small scale test, a large scale test has also been carried out in a 50 mm flexible pipe. Both test methods show that the annulus of flexible pipes will be water wet when carrying gas and water. This implies that the conditions in the annulus will be corrosive when pipes are carrying gas which contains carbon dioxide or hydrogen sulfide. The corrosive conditions and corrosion fatigue must be taken into account when the fatigue life of flexible risers is calculated.

  13. Secondhand Smoke

    MedlinePlus

    ... comes from the burning end of a cigarette, cigar, or pipe, and the smoke breathed out by the smoker. It contains more than 7,000 chemicals. Hundreds of those chemicals are toxic and about 70 can cause cancer. Health effects of secondhand smoke include Ear infections in children ...

  14. Clastic Pipes: Proxies of High Water Tables and Strong Ground Motion, Jurassic Carmel Formation, Southern Utah

    NASA Astrophysics Data System (ADS)

    Wheatley, David; Chan, Marjorie

    2015-04-01

    Multiple soft sediment deformation features from bed-scale to basin-scale are well preserved within the Jurassic Carmel Formation of Southern Utah. Field mapping reveals thousands of small-scale clastic injectite pipes (10 cm to 10 m diameter, up to 20 m tall) in extremely high densities (up to 500+ pipes per 0.075 square kilometers). The pipes weather out in positive relief from the surrounding host strata of massive sandstone (sabkha) and crossbedded sands with minor conglomerate and shale (fluvial) deposits. The host rock shows both brittle and ductile deformation. Reverse, normal, and antithetical faulting is common with increased frequency, including ring faults, surrounding the pipes. The pipes formed from liquefaction and subsequent fluidization induced by strong ground motion. Down-dropped, graben blocks and ring faults surrounding pipes indicate initial sediment volume increase during pipe emplacement followed by sediment volume decrease during dewatering. Complex crosscutting relationships indicate several injection events where some pipe events reached the surface as sand blows. Multiple ash layers provide excellent stratigraphic and temporal constraints for the pipe system with the host strata deposited between 166 and 164 Ma. Common volcanic fragments and rounded volcanic cobbles occur within sandstone and conglomerate beds, and pipes. Isolated volcanic clasts in massive sandstone indicate explosive volcanic events that could have been the exogenic trigger for earthquakes. The distribution of pipes are roughly parallel to the Middle Jurassic paleoshoreline located in marginal environments between the shallow epicontinental Sundance Sea and continental dryland. At the vertical stratigraphic facies change from dominantly fluvial sediments to dominantly massive sabkha sediments, there is a 1-2 m-thick floodplain mudstone that was a likely seal for underlying, overpressurized sediments. The combination of loose porous sediment at a critical depth of water

  15. OTEC (Ocean Thermal Energy Conversion) Cold Water Pipe At-Sea Test Program. Phase 2: Suspended pipe test

    NASA Astrophysics Data System (ADS)

    McHale, F. A.

    1984-08-01

    An important step in the development of technology for Ocean Thermal Energy Conversion (OTEC) cold water pipes (CWP) is the at-sea testing and subsequent evaluation of a large diameter fiberglass reinforced plastic (FRP) pipe. Focus was on the CWP since it is the most critical element in any OTEC design. The results of the second phase of the CWP At-Sea Test Program are given. During this phase an 8 foot diameter, 400 foot long sandwich wall FRP syntactic foam configuration CWP test article was developed, constructed, deployed and used for data acquisition in the open ocean near Honolulu, Hawaii. This instrumented CWP as suspended from a moored platform for a three week experiment in April-May, 1983. The CWP represented a scaled version of a 40 megawatt size structure, nominally 30 feet in diameter and 3000 feet long.

  16. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    SciTech Connect

    Dr. Alan Miller; Matthew Ascari

    2011-09-12

    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline between

  17. Clad piping - a novel approach for solving nuclear plant service water and erosion-corrosion problems

    SciTech Connect

    Chakravarti, B.

    1992-12-31

    This paper discusses the application of clad piping components to solve various nuclear plant corrosion problems, such as service water system corrosion and feedwater/condensate/steam erosion-corrosion. This approach uses a carbon steel piping component which has a metallurgically bonded alloy cladding on the ID. Different alloys are available as cladding, from stainless steels to Inconel 625, so that a specific alloy can be selected based on the service requirements. Clad piping components represent a novel approach, as they provide a mechanism to utilize resistant alloys to solve corrosion problems without affecting the plant design. Clad piping products are designed such that the carbon steel backing acts as the pressure boundary and the cladding the corrosion allowance. By selecting the proper carbon steel backing, the clad product can be engineered to allow {open_quotes}like-for-like{close_quotes} component replacement. The wall thickness, weight and stiffness of the piping would remain essentially the same. The thermal expansion coefficient of the bulk piping also remains the same. Thus, the piping design and layout is wholly unaffected, with no structural reanalysis being required. This paper discusses two applications where clad piping products are being applied for solving nuclear power plant corrosion problems. The first is in solving steam/condensate/feedwater erosion-corrosion. The second application is the utilization of Inconel 625 clad piping products for solving service water system corrosion. Clad piping products solve these problems while improving plant operation and performance by basically providing the benefits of the alloy without any of the accompanying disadvantages of redesign.

  18. IRON TUBERCULATION: PHYSIO-CHEMICAL CHARACTERIZATION OF A SINGLE PIPE FROM A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    The nature of iron tubercles inside unlined iron pipes of drinking water distribution systems are influenced by water quality and therefore susceptible to changes in water chemistry. The underlying assumption is that tubercles in a system have similar physio-chemical properties. ...

  19. Assimilable organic carbon release, chemical migration, and drinking water impacts of multiple brands of plastic pipes available in the USA

    NASA Astrophysics Data System (ADS)

    Connell, Matthew

    Increased installation of polymer potable water pipes in United States plumbing systems has created a need to thoroughly evaluate their water quality impacts. Eleven brands of new polymer drinking water pipe were evaluated for assimilable organic carbon (AOC) release at room temperature for 28 days. They included polyvinyl chloride (PVC), high-density polyethylene (HDPE), polypropylene (PP), and cross-linked polyethylene (PEX) pipes. Three of eight PEX pipe brands exceeded a 100 microg/L AOC threshold for microbial regrowth for the first exposure period and no brands exceeded this value on day 28. No detectable increase in AOC was found for PP and PEX-a1 pipes; the remaining pipe brands contributed marginal AOC levels. Water quality impacts were more fully evaluated for two brands of PEX-b and one brand of PP pipe. PEX pipes released more total organic carbon (TOC), volatile organic compounds (VOC), and semivolatile organic compounds (SVOC) and caused greater odor than the PP pipe. All three materials showed reductions in these water quality parameters over 30 days. Three PEX pipe field studies revealed that aged systems did not display more intense odors than distribution systems. However, the organic releases from polymer pipes may still alter water quality and contribute to rapid microbial growth, even though the aesthetic impacts are temporary.

  20. Dynamic effect of sodium-water reaction in fast flux test facility power addition sodium pipes

    SciTech Connect

    Huang, S.N.; Anderson, M.J.

    1990-03-01

    The Fast Flux Facility (FFTF) is a demonstration and test facility of the sodium-cooled fast breeder reactor. A power addition'' to the facility is being considered to convert some of the dumped, unused heat into electricity generation. Components and piping systems to be added are sodium-water steam generators, sodium loop extensions from existing dump heat exchangers to sodium-water steam generators, and conventional water/steam loops. The sodium loops can be subjected to the dynamic loadings of pressure pulses that are caused by postulated sodium leaks and subsequent sodium-water reaction in the steam generator. The existing FFTF secondary pipes and the new power addition sodium loops were evaluated for exposure to the dynamic effect of the sodium-water reaction. Elastic and simplified inelastic dynamic analyses were used in this feasibility study. The results indicate that both the maximum strain and strain range are within the allowable limits. Several cycles of the sodium-water reaction can be sustained by the sodium pipes that are supported by ordinary pipe supports and seismic restraints. Expensive axial pipe restraints to withstand the sodium-water reaction loads are not needed, because the pressure-pulse-induced alternating bending stresses act as secondary stresses and the pressure pulse dynamic effect is a deformation-controlled quantity and is self-limiting. 14 refs., 7 figs., 3 tabs.

  1. Design of ceramic fabric heat pipe with water working fluid

    NASA Astrophysics Data System (ADS)

    Antoniak, Z. I.; Bates, J. M.; Webb, B. J.

    1989-08-01

    A novel class of space radiators, constructed of ceramic fabric materials selected for their high-temperature strength and optical characteristics, is under development at Pacific Northwest Laboratory (PNL). An earlier study indicated that heat pipe radiators constructed of fabric tubes lined with metal foil will have superior performance characteristics with lower mass than most other radiator types. Test results confirm these earlier predictions.

  2. Water-filled heat pipe useful at moderate temperatures

    NASA Technical Reports Server (NTRS)

    Mc Kinney, B. G.

    1970-01-01

    Heat pipe is used in the primary heat exchanger for nuclear power plants, as a heat sink for high-power electronic devices, and in a closed-cycle heat rejection mechanism for cryogenic storage tanks. It serves simultaneously as a heat transfer device and as a structural member.

  3. Evaluation of surface sampling techniques for collection of Bacillus spores on common drinking water pipe materials.

    PubMed

    Packard, Benjamin H; Kupferle, Margaret J

    2010-01-01

    Drinking water utilities may face biological contamination of the distribution system from a natural incident or deliberate contamination. Determining the extent of contamination or the efficacy of decontamination is a challenge, because it may require sampling of the wetted surfaces of distribution infrastructure. This study evaluated two sampling techniques that utilities might use to sample exhumed pipe sections. Polyvinyl chloride (PVC), cement-lined ductile iron, and ductile iron pipe coupons (3 cm x 14 cm) cut from new water main piping were conditioned for three months in dechlorinated Cincinnati, Ohio tap water. Coupons were spiked with Bacillus atrophaeus subsp. globigii, a surrogate for Bacillus anthracis. Brushing and scraping were used to recover the inoculated spores from the coupons. Mean recoveries for all materials ranged from 37 +/- 30% to 43 +/- 20% for brushing vs. 24 +/- 10% to 51 +/- 29% for scraping. On cement-lined pipe, brushing yielded a significantly different recovery than scraping. No differences were seen between brushing and scraping the PVC and iron pipe coupons. Mean brushing and scraping recoveries from PVC coupons were more variable than mean recoveries from cement-lined and iron coupons. Spore retention differed between pipe materials and the presence of established biofilms also had an impact. Conditioned PVC coupons (with established biofilms) had significantly lower spore retention (31 +/- 11%) than conditioned cement-lined coupons (61 +/- 14%) and conditioned iron coupons (71 +/- 8%). PMID:20082033

  4. Reactor materials program process water piping: K Reactor indirect failure probability

    SciTech Connect

    Daugherty, W.L.

    1988-05-09

    The hypothetical maximum rate loss of coolant accident (LOCA) for the Savannah River Production Reactors is the abrupt double-ended guillotine break (DEGB) of a large process water pipe. This accident is not considered credible in light of the low applied stresses and the inherent ductility of the piping material. The Reactor Materials Program was initiated to provide the technical basis for an alternate, credible design basis accident. The major thrust of this program is to develop an alternate maximum rate LOCA by deterministic means. Additionally, the probability of a DEGB is being determined; to show that in addition to being mechanistically implausible, a DEGB is also highly improbable. The probability of a DEGB of the piping has been evaluated in two parts: failure by direct means, and indirectly-induced failure. Failure by direct means can be credibly postulated to occur as an undetected crack grows to the point of instability, causing a large pipe break. Indirect failure of the piping can be triggered by an earthquake which causes other reactor components or the reactor building to fall on the piping or pull it from its anchor points. The indirect failure of the piping in K reactor is the subject of this report. 5 refs.

  5. Seismic characterization of deep-water pipe structures in the Levant Basin, SE Mediterranean

    NASA Astrophysics Data System (ADS)

    Eruteya, Ovie Emmanuel; Waldmann, Nicolas; Schalev, Dagan; Makovsky, Yizhaq; Ben-Avraham, Zvi

    2015-04-01

    Analysis of a new deep-water (1100 m - 1500 m) high resolution 3D seismic dataset covering part of the central Levant Basin, offshore Israel reveals previously undocumented evidences for subsurface fluid flow in the post-Messinian overburden manifested as pipe structures. Interestingly, these pipe structures are genetically and spatially contextualized east and west of the study area, all emanating from the Messinian evaporite substratum. Pipes in the western group accounts for 83% of the pipe population, are crudely cylindrical, oval to elliptical in planform, with diameter and height ranging ca. 350 m - 2000 m and 320 m - 420 m, respectively. Internal configuration within this group varies from chaotic to concave upward reflections diagnostic of fluid induced collapse. Pipes in the eastern group are seepage pipes appearing conical in shape, with height of ~350 m - 510 m and diameter of 320 m - 420 m. The western group indicates an episode of fluid flow till the mid-Pliocene, compared to late Pliocene in the eastern group where successive mass wasting events during the late Pliocene plugged piping. A conceptual model for the pipes in the western group is proposed to have occurred from subjacent dissolution of the Messinian evaporite under deep-water marine conditions during the Pliocene by vertically focused fluid flow from intra-Messinian realm dissolving the top evaporites and inducing systematic collapse in the overburden. The onset of which may have been triggered by seismicity. Conversely, pipes in the eastern group are proposed to develop from breaching the top evaporite by pressurized fluids that developed from lateral pressure transfer due to differential loading of the overburden and salt tectonics. Most likely, these fluids are biogenic gas since the major gas fields in deep-waters offshore Israel and close to the study area are of this composition. The pipe structures identified in the study area extend the current understanding of fluid flow subsequent

  6. Analysis of clay smoking pipes from archeological sites in the region of the Guanabara Bay (Rio de Janeiro, Brazil) by FT-IR

    NASA Astrophysics Data System (ADS)

    Freitas, Renato P.; Ribeiro, Iohanna M.; Calza, Cristiane; Oliveira, Ana L.; Silva, Mariane L.; Felix, Valter S.; Ferreira, Douglas S.; Coelho, Felipe A.; Gaspar, Maria D.; Pimenta, André R.; Medeiros, Elanio A.; Lopes, Ricardo T.

    2016-06-01

    In this study, twenty samples of clay smoking pipes excavated in an 18 km2 area between the Macacu and Caceribu rivers, in the municipality of Itaboraí, Rio de Janeiro, Brazil were analyzed by FT-IR technique. The samples, excavated in different archeological sites of the region, are dated between the seventeenth and the nineteenth centuries and are part of the material culture left by Africans and African descendants that lived in the complex. FT-IR analyses and complementary SEM-EDS studies showed that the clay paste used in the manufacture of smoking pipes, mostly handcrafted, is composed of quartz, feldspar, phyllosilicates and iron oxides. Multivariate statistical tests (PCA) were applied to FT-IR data to assess the interactions between the archeological sites. The results indicated that one archeological site - Macacu IV - is greatly related to the other sites. The results obtained have helped archeologists and anthropologists in better understanding the manufacturing process employed in ancient ceramic artifacts produced during the period of colonial Brazil.

  7. Analysis of clay smoking pipes from archeological sites in the region of the Guanabara Bay (Rio de Janeiro, Brazil) by FT-IR.

    PubMed

    Freitas, Renato P; Ribeiro, Iohanna M; Calza, Cristiane; Oliveira, Ana L; Silva, Mariane L; Felix, Valter S; Ferreira, Douglas S; Coelho, Felipe A; Gaspar, Maria D; Pimenta, André R; Medeiros, Elanio A; Lopes, Ricardo T

    2016-06-15

    In this study, twenty samples of clay smoking pipes excavated in an 18km(2) area between the Macacu and Caceribu rivers, in the municipality of Itaboraí, Rio de Janeiro, Brazil were analyzed by FT-IR technique. The samples, excavated in different archeological sites of the region, are dated between the seventeenth and the nineteenth centuries and are part of the material culture left by Africans and African descendants that lived in the complex. FT-IR analyses and complementary SEM-EDS studies showed that the clay paste used in the manufacture of smoking pipes, mostly handcrafted, is composed of quartz, feldspar, phyllosilicates and iron oxides. Multivariate statistical tests (PCA) were applied to FT-IR data to assess the interactions between the archeological sites. The results indicated that one archeological site - Macacu IV - is greatly related to the other sites. The results obtained have helped archeologists and anthropologists in better understanding the manufacturing process employed in ancient ceramic artifacts produced during the period of colonial Brazil. PMID:27045787

  8. Performance improvement of wire-bonded mesh screen flat heat pipe using water-based nanofluid

    NASA Astrophysics Data System (ADS)

    Wang, Ping-Yang; Chen, Yan-Jun; Liu, Zhen-Hua

    2016-02-01

    An experimental study was conducted to investigate the thermal performances of a new type of wire-bonded mesh screen flat heat pipe using water and nanofluid as working fluid to find better structure and the working fluid based on the present flat heat pipes. The influences of the kind of working fluid, mass concentration of nanofluid and operating pressure on the thermal performance of the heat pipe were investigated under the three steady operating pressures. It is found from the results that the thermal performance of wire-bonded mesh screen heat pipe are superior to that of wire-bonded flat heat pipe either using water or using nanofluid as working fluid; the thermal resistance of the former reduces distinctly and the maximum power increases obviously. Moreover, using nanofluid can significantly enhance the thermal performance of this heat pipe; enhanced ratios of the both heat transfer coefficient and maximum heat flux gradually increase with increasing the nanoparticle mass concentration in the nanofluid at the same operating pressure, peaking at the 1.0 wt%. Then, they will gradually reduce with further increase of mass concentration of nanofluid.

  9. Shelf-mounted OTEC cold water pipe experiment gets underway in Hawaii

    SciTech Connect

    Taylor, B.J.; Vadus, J.R.

    1984-06-01

    The tropical island market has emerged as having the greatest immediate OTEC potential because of the modest need for accessible power and the abundance of large temperature gradients needed for efficient operation. These plants will require the installation of cold water intake pipes on steep slopes to depths of 1000 meters. Cold water pipe installations require careful attention to site selection, environmental loading, and geotechnical considerations for foundation integrity. To date, there is very little experience in the offshore industry for large installations on steep slopes. In April 1984, a major research project was started just offshore of the island of Hawaii to address some of these problems. A section of pipe 2.4 meters in diameter and 24 meters in length was installed using a combination of concrete foundations and steel joints. This pipe is approximately one-third the size required for a 40-megawatt plant. The pipe and foundations are fully instrumented to measure forces due primarily to currents and waves. Environmental measurements are also being taken in the test area. The measurement data taken over the next year will be used to validate analytical models which will be available to industry for design of OTEC pipes and foundations.

  10. Seabrook Station service water piping refurbishment using the joint seal method

    SciTech Connect

    Veilleux, J.E.; Kodal, A.S.

    1996-12-31

    The Seabrook Station service water system is fabricated from butt welded, cement lined, carbon steel piping. The service water system fluid is sea water from the Atlantic Ocean and/or potable water from a backup evaporative cooling tower. Joint compound was applied at field welds to seal cement liner crevices. Inspections of 24 inch (61 cm) above ground piping during a refueling outage revealed that the joint compound was degrading in a small percentage of the weld joints. At these locations, sea water was allowed to contact the piping substrate and initiate pitting corrosion. This paper discusses the refurbishment project conducted at Seabrook Station in which Miller Pipeline Corp. AMEX-10/WEKO Seals were installed in safety related service water piping at field weld joint cement liner crevices. This joint seal system utilizes an elastomer boot seal with 6% molybdenum stainless steel circumferential retaining bands on each side of the joint to secure the boot in place. This joint seal design provides a pressure tight seal in order to prevent further sea water intrusion into field weld joints due to degraded joint compound. Isolation of joints from the bulk oxygenated service water flow and high chlorides will arrest any current corrosion and prevent future degradation of these welded joints.

  11. Biofilms in irrigation pipes affect the microbial quality of irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is an essential element in the production of many food crops. Irrigation water is often delivered to fields from surface or subsurface sources via pipe-based systems. Surface waters are known to contain pathogenic microorganisms. Disease outbreaks in crops that are eaten raw (i.e. leafy g...

  12. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    PubMed Central

    Lee, Ho Min; Sadollah, Ali

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252

  13. The cleaning method selected for new PEX pipe installation can affect short-term drinking water quality.

    PubMed

    Kelley, Keven M; Stenson, Alexandra C; Cooley, Racheal; Dey, Rajarashi; Whelton, Andrew J

    2015-12-01

    The influence of four different cleaning methods used for newly installed polyethylene (PEX) pipes on chemical and odor quality was determined. Bench-scale testing of two PEX (type b) pipe brands showed that the California Plumbing Code PEX installation method does not maximize total organic carbon (TOC) removal. TOC concentration and threshold odor number values significantly varied between two pipe brands. Different cleaning methods impacted carbon release, odor, as well the level of drinking water odorant ethyl tert-butyl ether. Both pipes caused odor values up to eight times greater than the US federal drinking water odor limit. Unique to this project was that organic chemicals released by PEX pipe were affected by pipe brand, fill/empty cycle frequency, and the pipe cleaning method selected by the installer. PMID:26608758

  14. Steam bubble collapse, water hammer and piping network response. Volume I. Steam bubble collapse and water hammer in piping systems: experiments and analysis. Final report

    SciTech Connect

    Gruel, R.; Hurwitz, W.; Huber, P.; Griffith, P.

    1980-06-01

    Water hammer incidents in conventional and nuclear steam systems are an important problem of broad general interest in piping network design and transient operation. Water hammer in PWR steam generator sparger feed lines has, for example, been a recurrent problem when the sparger becomes uncovered during certain operational transients (Creare 1977). The central goal of this research has been to develop experimental data and supporting analyses that will contribute to the evolving understanding of water hammer created by steam bubble entrapment in a pipe containing subcooled liquid. The first objective of this study has been to obtain a body of experimental data on water hammer initiated by steam bubble collapse. These experiments include measurement of pressure transients and high speed films of the process of bubble collapse and impact, and, in conjunction with Hurwitz (1980), records of the resultant pressure wave propagation through a variety of simple piping configurations and measurements of the induced structural response. The data that have been obtained should be useful in benchmarking existing analytic models and numerical codes.

  15. Tobacco smoking and vertical periodontal bone loss.

    PubMed

    Baljoon, Mostafa

    2005-01-01

    Cigarette smoking is associated with increased prevalence and severity of destructive periodontal disease in terms of periodontal pocketing, periodontal bone loss, and tooth loss. The smoking destructive effect on periodontal bone may be of even "horizontal" and vertical "angular" pattern. The vertical bone loss or the "vertical defect" is a sign of progressive periodontal breakdown that involves the periodontal bone. Water pipe smoking has a sharp rise by the popularity in the recent years by men and women in Middle East countries. The general objective of this thesis was to investigate the relationship between tobacco smoking and vertical periodontal bone loss cross-sectionally and longitudinally. This thesis is based on two study populations, Swedish musicians and a Saudi Arabian population. All participants had a full set of intra-oral radiographs including 16 periapical and 4 bitewing projections that were assessed with regard to presence or absence of vertical defects. In Study I, the number of defects per person increased with age. Vertical defects were more common in the posterior as compared to the anterior region of the dentition and the distribution of defects within the maxilla as well as the mandible typically revealed a right-left hand side symmetry. Cigarette smoking was significantly associated with the prevalence and severity of vertical bone defects (Studies II and III). The relative risk associated with cigarette smoking was 2 to 3-fold increased. The impact of water pipe smoking was of the same magnitude as that of cigarette smoking and the relative risk associated with water pipe smoking was 6-fold increased compared to non-smoking. In addition, the risk of vertical defects increased with increased exposure in cigarette smokers as well as water pipe smokers (Study III). In Study IV, the proportion of vertical defects increased over a 10-year period and the increase over time was significantly associated with smoking. Moreover, the 10-year

  16. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation.

    PubMed

    Alexander, Brittany E; Mueller, Benjamin; Vermeij, Mark J A; van der Geest, Harm H G; de Goeij, Jasper M

    2015-01-01

    Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium) were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell) proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community). This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality. PMID:26664799

  17. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation

    PubMed Central

    Mueller, Benjamin; Vermeij, Mark J.A.; van der Geest, Harm H.G.

    2015-01-01

    Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium) were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell) proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community). This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality. PMID:26664799

  18. Development of shellfish removing machine for large-diameter sea-water piping

    SciTech Connect

    Murakami, Seiichi; Nakazawa, Toyohiko; Watanabe, Seiji

    1996-08-01

    At nuclear and thermal power plants, the large amount of marine organisms that grow on the inside of condenser cooling, sea-water pipes, such as blue mussels and barnacles, significantly increases the pressure loss of the fluid in the pipes. This causes a deterioration in pumping efficiency and causes damage and corrosion to the paint coating on the inside of the pipes. These marine organisms must be removed, and this takes place by hand during each scheduled outage of the power plants. The working environment within these long lengths of large-diameter pipes is very harsh, requiring a great deal of time and physical labor to remove these organisms. Moreover, finding people to perform this task is becoming difficult. For these reasons. There has been a strong desire to mechanize this task. And this led to the development of a shellfish removing machine for these large-diameter sea-water pipes. The most important considerations in developing this machine were that the removal of the marine organisms be efficient and that the method of removal cause minimum damage to the coating on the inside of the pipes. Good results were obtained using a special cleaning brush that has a removing fixture attached to the end of a wire rope. After several application tests, the machine was used to remove shellfish from condenser cooling sea-water pipes during the sixth scheduled outage of the Japan Atomic Power Company`s Tsuruga No. 2 Unit in September, 1994. There, the capability and reliability of this machine were verified

  19. [Microbial contamination of water by pipe and hose material. 1. Detection of colony count changes].

    PubMed

    Schoenen, D; Wehse, A

    1988-05-01

    Materials may produce a growth of microorganisms by contact with water. Pipes and hoses with a narrow diameter have not yet been tested on their influence on the microbial colonization of the water. A harmful change has been discussed especially in dental treatment units. Pipes and hoses were tested in their influence on the microbial growth for half a year. Glass, high grade steel, copper and PTFE showed no increase in microorganisms or only a little in the beginning. The other tested materials, PVC, PE, PA, silicon and rubber, produced an intensive microbial growth. PMID:3138830

  20. Construction and testing of ceramic fabric heat pipe with water working fluid

    NASA Technical Reports Server (NTRS)

    Antoniak, Zenen I.; Webb, Brent J.; Bates, James M.; Cooper, Matthew F.

    1991-01-01

    A prototype ceramic fabric/titanium water heat pipe has been constructed and tested; it transported 25 to 80 W of power at 423 K. Component development and testing is continuing with the aim of providing an improved prototype, with a 38 micron stainless steel liner covered by a biaxially-braided Nextel (trademark) sleeve that is approximately 300 microns thick. This fabric has been tested to 800 K, and its emittance is about 0.5 at that temperature. Advanced versions of the water heat pipe will probably require a coating over the ceramic fabric in order to increase this emittance to the 0.8 to 0.9 range.

  1. Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water.

    PubMed

    Zhang, Yuanyuan; Lin, Yi-Pin

    2015-06-01

    Unplasticized polyvinyl chloride (uPVC) pipes have been used in the premise plumbing system due to their high strength, long-term durability, and low cost. uPVC pipes, however, may contain lead due to the use of lead compounds as the stabilizer during the manufacturing process. The release of lead from three locally purchased uPVC pipes was investigated in this study. The effects of various water quality parameters including pH value, temperature, and type of disinfectant on the rate of lead release were examined. The elemental mapping obtained using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) confirmed the presence of lead on the inner surfaces of the uPVC pipes and their surface lead weight percentages were determined. The leachable lead concentration for each pipe was determined using high strength acidic EDTA solutions (pH 4, EDTA = 100 mg/L). Lead leaching experiments using tap water and reconstituted tape water under static conditions showed that the rate of lead release increased with the decreasing pH value and increasing temperature. In the presence of monochloramine, lead release was faster than that in the presence of free chlorine. PMID:25539706

  2. High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2006-01-01

    A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at ~ 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the

  3. High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2006-01-20

    A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at {approx} 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By

  4. Pilot study of the effect of biofilms in irrigation pipes on the microbial water quality of irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is an essential element in the production of many food crops. Irrigation water is often delivered to fields from surface or subsurface sources via pipe-based systems. Surface waters are known to contain pathogenic microorganisms. Disease outbreaks in crops that are eaten raw (i.e. leafy g...

  5. Electrokinetically enhanced flow and dewatering characteristics of concentrated black coal-water suspensions in pipes

    SciTech Connect

    Rozakeas, P.K.; Snow, R.J.

    1997-07-01

    The transportability and dewatering of coal-water mixtures flowing in a pipe may be enhanced by the application of electrokinetic techniques. Previous experimental work by other workers shows a significant reduction in the wall shear stress, and consequently a decrease in pumping energy requirements for the flow of coal-water mixtures in pipes combined with electrodewatering. In this process the pipe wall acts as the cathode and a centrally aligned tube as the anode. The effects of {open_quote}In-pipe electrodewatering{close_quote} on the flow properties and stability of concentrated coal-water mixtures flowing in various alternative anode-cathode arrangements are presented in this paper. The application of an electrical energy flux at the electrode surface (< 6.1 kW/m{sup 2}) in a dewatering section of pipe (L{sub e}=1m) effectively reduces the pumping energy requirements by as much as one order of magnitude. The stability of flow conditions is investigated in a concentric anode-cathode pipe arrangement consisting of a dewatering and a non-dewatering section (L{sub o}). In this system (L{sub o}/L{sub e}) < 4.0. A microscopic study of dilute coal-water suspensions in the presence of a DC electric field revealed the migration of coal particles towards the anode and the structural formation of coal particle chains. The electrorheological behaviour of concentrated coal-water suspensions is examined with the use of a modified coaxial rheometer. The coal fines (d{sub 50}=17.7{mu}m) used in all experiments were produced by milling a low rank bituminous black coal which was followed by a sieving process that eliminated coal particles that were greater than 75{mu}m in size.

  6. Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions.

    PubMed

    Shao, Yu; Jeffrey Yang, Y; Jiang, Lijie; Yu, Tingchao; Shen, Cheng

    2014-06-01

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. The effect can lead to different outcomes of water quality modeling and, hence, drinking water management in a distribution network. Here we have investigated solute mixing behavior in pipe junctions of five hydraulic types, for which flow distribution factors and analytical equations for network modeling are proposed. First, based on experiments, the degree of mixing at a cross is found to be a function of flow momentum ratio that defines a junction flow distribution pattern and the degree of departure from complete mixing. Corresponding analytical solutions are also validated using computational-fluid-dynamics (CFD) simulations. Second, the analytical mixing model is further extended to double-Tee junctions. Correspondingly the flow distribution factor is modified to account for hydraulic departure from a cross configuration. For a double-Tee(A) junction, CFD simulations show that the solute mixing depends on flow momentum ratio and connection pipe length, whereas the mixing at double-Tee(B) is well represented by two independent single-Tee junctions with a potential water stagnation zone in between. Notably, double-Tee junctions differ significantly from a cross in solute mixing and transport. However, it is noted that these pipe connections are widely, but incorrectly, simplified as cross junctions of assumed complete solute mixing in network skeletonization and water quality modeling. For the studied pipe junction types, analytical solutions are proposed to characterize the incomplete mixing and hence may allow better water quality simulation in a distribution network. PMID:24675269

  7. [Asbestos concentrations in drinking water. Asbestos cement pipes and geogenic sources in Austria].

    PubMed

    Neuberger, M; Frank, W; Golob, P; Warbichler, P

    1996-03-01

    Sources of asbestos in drinking water may be natural deposits or the use of asbestos cement for water distribution. 50 water samples were selected in Austria to detect fibre contamination from either geology or asbestos cement by comparison with control areas and by comparison of raw and treated water. Standardized EPA/BGA methodology with transmission electron microscopy, energy dispersive X-ray analysis and selected area electron diffraction was used to quantify concentrations of different sized amphibole and chrysotile fibres. In 10 areas with asbestos deposits and in 14 areas with use of asbestos cement pipes asbestos concentrations in drinking water were low and not significantly different from 6 control areas (median 32,000 total asbestos fibres per litre). The relative highest concentration was found in an area with natural deposits at the source of the water supply (190,000 per litre). In areas without natural deposits the increase of asbestos concentrations from origin to consumer of water was not significant and unrelated to water aggressiveness, age and length of asbestos cement pipes. This could be mainly due to the fact that in areas with aggressive water asbestos cement pipes have been coated in Austria. A sample from a cistern, however, showed considerable asbestos contamination and raises concern about the use of surface water for room air humidification. PMID:9376056

  8. Drinking water contaminants from epoxy resin-coated pipes: A field study.

    PubMed

    Rajasärkkä, Johanna; Pernica, Marek; Kuta, Jan; Lašňák, Jonáš; Šimek, Zdenĕk; Bláha, Luděk

    2016-10-15

    Rehabilitation of aged drinking water pipes is an extensive renovation and increasingly topical in many European cities. Spray-on-lining of drinking water pipes is an alternative cost-effective rehabilitation technology in which the insides of pipes are relined with organic polymer. A commonly used polymer is epoxy resin consisting of monomer bisphenol A (BPA). Leaching of BPA from epoxy lining to drinking water has been a concern among public and authorities. Currently epoxy lining is not recommended in some countries. BPA leaching has been demonstrated in laboratory studies but the behavior and ageing process of epoxy lining in situ is not well known. In this study 6 locations with different age epoxy linings of drinking water pipes done using two distinct technologies were studied. While bisphenol F, 4-n-nonylphenol, and 4-t-octylphenol were rarely found and in trace concentrations, BPA was detected in majority of samples. Pipes lined with the older technology (LSE) leached more BPA than those with more recent technology (DonPro): maxima in cold water were 0.25 μg/L and 10 ng/L, respectively. Incubation of water in pipes 8-10 h prior to sampling increased BPA concentration in cold water 1.1-43-fold. Hot water temperature caused even more BPA leaching - at maximum 23.5 μg/L. The influence of ageing of epoxy lining on BPA leaching on could be shown in case of LSE technology: locations with 8-9 years old lining leached 4-20-fold more BPA compared to a location with 2-year-old lining. Analysis of metals showed that epoxy lining can reduce especially iron concentration in water. No significant burden to water could be shown by the analyzed 72 volatile organic compounds, including epichlorhydrin, precursor used in epoxy resin. Estrogenicity was detected in water samples with the highest BPA loads. Comparable responses of two yeast bioreporters (estrogen receptor α and BPA-targeted) indicated that bisphenol-like compounds were the main cause of estrogenicity

  9. The decay of chlorine associated with the pipe wall in water distribution systems.

    PubMed

    Hallam, N B; West, J R; Forster, C F; Powell, J C; Spencer, I

    2002-08-01

    Free chlorine decay rates in water distribution systems for bulk and wall demands should be modelled separately as they have different functional dependencies. Few good quality determinations of in situ wall demand have been made due to the difficulty of monitoring live systems and due to their complexity. Wall demands have been calculated from field measurements at 11 locations in a distribution system fed from a single source. A methodology for the laboratory determination has been evolved and shown to give results that are similar to the in situ results. Pipe materials were classified as either having high reactivity (unlined iron mains) or low reactivity (PVC, MDPE and cement-lined ductile iron). The results indicate that wall decay rates for the former are limited by chlorine transport and for the latter by pipe material characteristics. The wall decay rate is inversely related to initial chlorine concentration for low reactivity pipes. In general, water velocity increases wall decay rates though the statistical confidence is low for low reactivity pipes. A moderate biofilm coating did not influence the wall decay rate for low reactivity pipes. PMID:12230193

  10. Flow development investigation of concentrated unstable oil-water dispersions in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Voulgaropoulos, Victor; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Karolina Ioannou Collaboration

    2015-11-01

    This study explores the separation characteristics of unstable oil-water dispersed flows in pipes. The test section is a 7 m long acrylic pipe with a 37mm ID and the fluids used are tap water and an Exxsol oil (6.6cSt) An inlet system with more than a thousand capillary tubes of 1mm ID is implemented to actuate highly concentrated dispersions for a wider range of flow rates. High speed imaging combined with ring conductivity probes and pressure transducers are implemented in several axial positions along the pipe to study the flow development. Phase distribution and continuity are measured in the pipe cross-section and drop size information is acquired by high frequency dual impedance probes. The coalescence and sedimentation dynamics of the concentrated dispersions and the development of separate layers downstream the pipe are investigated. The experimental results are coupled with theoretical and semi-empirical models in an effort to predict the separation properties of the highly concentrated dispersed flows. Chevron Energy Technology, Houston, USA.

  11. Nitrate contents of well, raw, treated and pipe borne water in Vom, Plateau State, Nigeria.

    PubMed

    Gbodi, T A; Atawodi, S E

    1987-04-01

    Nitrate content of water available to man and animals in a rural community in Plateau State, Nigeria was determined. Water samples were obtained from artesian wells, raw untreated surface water, treated raw water, and pipe borne water. The examination of the samples was over a period of 3 mo at weekly intervals. Sixty percent of the artesian wells sampled had nitrate concentration above 5-50 ppm in June and August, while samples from other sources had less than 1 ppm. The proximity of pit latrines to some of the wells may have been responsible for high nitrate content of the well water. PMID:3576949

  12. Nitrate contents of well, raw, treated and pipe borne water in Vom, Plateau State, Nigeria

    SciTech Connect

    Gbodi, T.A.; Atawodi, S.E.

    1987-04-01

    Nitrate content of water available to man and animals in a rural community in Plateau State, Nigeria was determined. Water samples were obtained from artesian wells, raw untreated surface water, treated raw water, and pipe borne water. The examination of the samples was over a period of 3 mo at weekly intervals. Sixty percent of the artesian wells sampled had nitrate concentration above 5-50 ppm in June and August, while samples from other sources had less than 1 ppm. The proximity of pit latrines to some of the wells may have been responsible for high nitrate content of the well water.

  13. Corrosion of stainless steel piping in a high manganese fresh water

    SciTech Connect

    Avery, R.E.; Lutey, R.W.; Musick, J.; Pinnow, K.E.; Tuthill, A.H.

    1996-07-01

    In March of 1993, about two years after startup in early 1991, pinhole leaks were found in the 16 in. (406 mm) type 304L stainless steel (UNS S30403) raw water piping at the Brunswick-Topsham Water District (BTWD) Potable Water Treatment Plant (PWTP) in Brunswick, Maine. The low chloride manganese-containing well water is chlorinated in the pump house. After reaching the plant, the raw water is handled in type 304L stainless steel (UNS S30403) piping. It was initially felt that the corrosion might be the microbiologically influenced corrosion (MIC) type corrosion described by Tverberg, Pinnow, and Redmerski. Investigation showed that the role of manganese and chlorine differed, in important respects, from that described by Tverberg et. al., and that heat tint scale may have played a significant role in the corrosion that occurred at the BTWD plant.

  14. Pore-water pressures associated with clogging of soil pipes: Numerical analysis of laboratory experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clogging of soil pipes due to excessive internal erosion has been hypothesized to cause extreme erosion events such as landslides, debris flows, and gullies, but confirmation of this phenomenon has been lacking. Laboratory and field measurements have failed to measure pore water pressures within pip...

  15. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong

    2016-01-01

    To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals. PMID:26605686

  16. Effect of biofilm in irrigation pipes on the microbial quality of irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: To test the hypothesis that microbial quality of irrigation water can be substantially altered by the association of E. coli with pipe lining in irrigation systems. Methods and Results: The sprinkler irrigation system was outfitted with coupons that were extracted before four 2-hour long irri...

  17. Mineralogy of Galvanic Corrosion By-products in Domestic Drinking Water Pipes

    EPA Science Inventory

    This study presents the results of a visual and mineralogical characterization of scales developed over long time periods at galvanically coupled lead-brass and lead-copper pipe joints from several different drinking water distribution systems. The long-term exposure aspect of t...

  18. A COMPARISON OF RESIDENTIAL COPPER PIPES CARRYING HOT AND COLD WATER

    EPA Science Inventory

    Each year, the U.S. EPA examines numerous lead, iron, and copper pipes pulled from active use in homes and drinking water distribution systems throughout the United States. The intent of the work is to better understand factors that influence the release of metals into drinking ...

  19. Predicting the Migration Rate of Dialkyl Organotins from PVC Pipe into Water

    EPA Science Inventory

    Organotins (OTs) are additives widely used as thermal and light stabilizers in polyvinyl chloride (PVC) plastics. OTs can leach into water flowing through PVC pipes. This work examines the leaching rates of two neurotoxic OTs, dimethyl tin (DMT) and dibutyl tin (DBT), from PVC pi...

  20. Surface Characterization on Corrosion By-products on Cu in Drinking Water Pipes

    EPA Science Inventory

    Copper is widely used in house-hold plumbing due to its anti-corrosion property. However, as water travels within the distribution system into corroded copper pipes, copper may be released into consumer’s tap causing major problems. In an attempt to understand the mechanism and...

  1. Probability of failure in BWR (Boiling Water Reactor) reactor coolant piping: Volume 2, Pipe failure induced by crack growth and failure of intermediate supports

    SciTech Connect

    Lo, T.; Bumpus, S.E.; Chinn, D.J.; Mensing, R.W.; Holman, G.S.

    1989-03-01

    The US Nuclear Regulatory Commission (NRC) contracted with the Lawrence Livermore National Laboratory (LLNL) to conduct a study to determine if the probability of occurrence of a double-ended guillotine break (DEGB) in the major coolant piping systems of nuclear power plants is large enough to warrant the current stringent design requirements of designing against the postulated effects of a DEGB. The study includes both the PWR (Pressurized Water Reactor) and the BWR (Boiling Water Reactor) plants in the United States. Following the study of PWR plants, a study of BWR reactor coolant piping was performed. The Brunswick Steam Electric Plant at Southport, North Carolina was selected as the pilot plant for the BWR evaluation. The probability of pipe failure in three major coolant pipings was assessed: the recirculation loops, the primary steam lines, and the main feedwater lines. In the case of recirculation loops, both the existing and a proposed replacement system were studied. A probabilistic fracture mechanics approach was used in this study to estimate the crack growth and to assess the crack stability in the piping systems throughout the lifetime of the plant. The effects of the failure of intermediate pipe supports were also examined. The results of the assessment indicated that the probability of occurrence of DEGB due to crack growth and instability is small if the problem of intergranular stress corrosion cracking (IGSCC) is resolved by the use of the replacement system. 33 refs., 41 figs., 32 tabs.

  2. Piping benchmark problems for the General Electric Advanced Boiling Water Reactor

    SciTech Connect

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1993-08-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for an advanced boiling water reactor standard design, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the advanced reactor standard design. It will be required that the combined license holders demonstrate that their solutions to these problems are in agreement with the benchmark problem set.

  3. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  4. Apparatus for and Method of Monitoring Condensed Water in Steam Pipes at High Temperature

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh (Inventor); Lee, Hyeong Jae (Inventor); Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor)

    2016-01-01

    A system and method for monitoring the properties of a fluid, such as water, in a steam pipe without mechanically penetrating the wall of the pipe. The system uses a piezoelectric transducer to launch an ultrasonic probe signal into the pipe. Reflected ultrasonic signals are captured in a transducer, which can be the same transducer that launched the probe signal. The reflected signals are subjected to data processing, which can include filtering, amplification, analog-to-digital conversion and autocorrelation analysis. A result is extracted which is indicative of a property of the fluid, such as a height of the condensed fluid, a cavitation of the condensed fluid, and a surface perturbation of the condensed fluid. The result can be recorded, displayed, and/or transmitted to another location. One embodiment of the system has been constructed and tested based on a general purpose programmable computer using instructions recorded in machine-readable non-volatile memory.

  5. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  6. High temperatures health monitoring of the condensed water height in steam pipe systems

    NASA Astrophysics Data System (ADS)

    Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-04-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 °C while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the airbacked probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  7. Evaluation of cracking in steam generator feedwater piping in pressurized water reactor plants

    SciTech Connect

    Goldberg, A.; Streit, R.D.

    1981-05-01

    Cracking in feedwater piping was detected near the inlet to steam generators in 15 pressurized water reactor plants. Sections with cracks from nine plants are examined with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Using transmission electron microscopy, fatigue striations are observed on replicas of cleaned crack surfaces. Calculations based on the observed striation spacings gave a cyclic stress value of 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses and it is concluded that the overriding factor in the cracking problem was the presence of such undocumented cyclic loads.

  8. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  9. High temperature monitoring the height of condensed water in steam pipes

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, M.; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-04-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250oC. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250oC. Measurements were made at temperatures as high as 250oC and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  10. Failure mechanisms and lifetime prediction methodology for polybutylene pipe in water distribution system

    NASA Astrophysics Data System (ADS)

    Niu, Xiqun

    Polybutylene (PB) is a semicrystalline thermoplastics. It has been widely used in potable water distribution piping system. However, field practice shows that failure occurs much earlier than the expected service lifetime. What are the causes and how to appropriately evaluate its lifetime motivate this study. In this thesis, three parts of work have been done. First is the understanding of PB, which includes material thermo and mechanical characterization, aging phenomena and notch sensitivity. The second part analyzes the applicability of the existing lifetime testing method for PB. It is shown that PB is an anomaly in terms of the temperature-lifetime relation because of the fracture mechanism transition across the testing temperature range. The third part is the development of the methodology of lifetime prediction for PB pipe. The fracture process of PB pipe consists of three stages, i.e., crack initiation, slow crack growth (SCG) and crack instability. The practical lifetime of PB pipe is primarily determined by the duration of the first two stages. The mechanism of crack initiation and the quantitative estimation of the time to crack initiation are studied by employing environment stress cracking technique. A fatigue slow crack growth testing method has been developed and applied in the study of SCG. By using Paris-Erdogan equation, a model is constructed to evaluate the time for SCG. As a result, the total lifetime is determined. Through this work, the failure mechanisms of PB pipe has been analyzed and the lifetime prediction methodology has been developed.

  11. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system.

    PubMed

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-11-01

    In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography-Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better. PMID:27244696

  12. A closed-loop control "playback" smoking machine for generating mainstream smoke aerosols.

    PubMed

    Shihadeh, Alan; Azar, Sima

    2006-01-01

    A first generation smoking machine capable of reading and replicating detailed puffing behavior from recorded smoking topography data is presented. Unlike standard smoking machines, which model human puffing behavior as a steady periodic waveform with a fixed puff frequency, volume, and duration, this novel machine generates a mainstream smoke aerosol by automatically "playing-back" puff topography recordings. Because combustion chemistry is highly non-linear, representing real smoking behavior with a smoothed periodic waveform may result in a tobacco smoke aerosol with a significantly different chemical composition and physical properties than that generated by a smoker. The machine presented here utilizes a rapid closed-loop control algorithm coded in Labview to generate smoke aerosols for toxicological assessment and inhalation studies. To illustrate its use, dry particulate matter and carbon monoxide yields generated using the playback and equivalent periodic puffing regimens are compared for a single smoking session by a 26-year-old male narghile water-pipe smoker. It was found that the periodic puffing regimen yielded 20% less carbon monoxide (CO) than the played-back smoking session, indicating that steady periodic smoking regimens, which are widely used in tobacco smoke research, may not produce realistic smoke aerosols. PMID:16796538

  13. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.

    PubMed

    Ji, Pan; Parks, Jeffrey; Edwards, Marc A; Pruden, Amy

    2015-01-01

    A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing). To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe) were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9-10) had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome. PMID:26495985

  14. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome

    PubMed Central

    Ji, Pan; Parks, Jeffrey; Edwards, Marc A.; Pruden, Amy

    2015-01-01

    A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing). To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe) were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9–10) had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome. PMID:26495985

  15. Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing

    PubMed Central

    Rhoads, William J.; Pruden, Amy; Edwards, Marc A.

    2016-01-01

    Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23–24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular. PMID:26985908

  16. Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing.

    PubMed

    Rhoads, William J; Pruden, Amy; Edwards, Marc A

    2016-01-01

    Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23-24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular. PMID:26985908

  17. The short pipe path – safe water, energy & nutrient recovery

    EPA Science Inventory

    The step-by-step refinement of our urban water systems has yielded unsustainable, centralized urban water services in many developed regions of the world. These large systems also provide the wrong role model and promote conservative thinking for the rapidly developing regions of...

  18. Do piped water and flush toilets prevent child diarrhea in rural Philippines?

    PubMed

    Capuno, Joseph J; Tan, Carlos Antonio R; Fabella, Vigile Marie

    2015-03-01

    Similar to other developing countries, diarrhea in the Philippines continues to be among the top causes of child mortality and morbidity. In pursuit of its Millennium Development Goals, the Philippine government commits to reduce child deaths and provide water and sanitation services to more rural households by 2015. Applying propensity score matching on the 1993, 1998, 2003, and 2008 rounds of the National Demographic and Health Survey to estimate the average treatment effect on the treated, it is found that the incidence of diarrhea among under-5 children is lower by as much as 4.5% in households with access to piped water and 10% in those with their own flush toilets, relative to comparable households. These findings underscore the need to ensure the quality of drinking water from the pipe or from other improved sources at the point of use, and the provision of improved and own sanitation facilities. PMID:22186402

  19. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    PubMed

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing. PMID:25723068

  20. WATER SUPPLY PIPE REPLACEMENT CONSIDERING SUSTAINABLE TRANSITION TO POPULATION DECREASED SOCIETY

    NASA Astrophysics Data System (ADS)

    Hosoi, Yoshihiko; Iwasaki, Yoji; Aklog, Dagnachew; Masuda, Takanori

    Social infrastructures are aging and population is decreasing in Japan. The aged social infrastructures should be renewed. At the same time, they are required to be moved into new framework suitable for population decreased societies. Furthermore, they have to continue to supply sufficient services even during transition term that renewal projects are carried out. Authors propose sustainable soft landing management of infrastructures and it is tried to apply to water supply pipe replacement in this study. Methodology to replace aged pipes not only aiming for the new water supply network which suits for population decreased condition but also ensuring supply service and feasibility while the project is carried out was developed. It is applied for a model water supply network and discussions were carried out.

  1. Wireless Monitoring of the Height of Condensed Water in Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.

    2014-01-01

    A wireless health monitoring system has been developed for determining the height of water condensation in the steam pipes and the data acquisition is done remotely using a wireless network system. The developed system is designed to operate in the harsh environment encountered at manholes and the pipe high temperature of over 200 °C. The test method is an ultrasonic pulse-echo and the hardware includes a pulser, receiver and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of in the condensed water under high noise conditions and other environmental factors.

  2. Signal processing for determining water height in steam pipes with dynamic surface conditions

    NASA Astrophysics Data System (ADS)

    Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph

    2015-03-01

    An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.

  3. Wireless monitoring of the height of condensed water in steam pipes

    NASA Astrophysics Data System (ADS)

    Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.

    2014-04-01

    A wireless health monitoring system has been developed for determining the height of water condensation in steam pipes. The data acquisition in this system is done remotely using a wireless network system. The developed system is designed to operate in the harsh manhole environment and the pipe temperature of over 200 °C. The test method is an ultrasonic pulse-echo and the hardware that includes a pulser, receiver, a data processor and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of the condensed water height under high noise conditions and other environmental factors.

  4. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen; OU, CHANGQI

    2011-01-01

    Pressure transients in a rapidly filling pipe with an entrapped air pocket are investigated analytically. A rigid-plug elastic water model is developed by applying elastic water hammer to the majority of the water column while applying rigid water analysis to a small portion near the air-water interface, which avoids effectively the interpolation error of previous approaches. Moreover, another two simplified models are introduced respectively based on constant water length and by neglecting water elasticity. Verification of the three models is confirmed by experimental results. Calculations show that the simplification of constant water length is feasible for small air pockets. The complete rigid water model is appropriate for cases with large initial air volume. The rigid-plug elastic model can predict all the essential features for the entire range of initial air fraction considered in this study, and it is the effective model for analysis of pressure transients of entrapped air.

  5. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    SciTech Connect

    Springer, David; Seitzler, Matt; Backman, Christine; Weitzel, Elizabeth

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  6. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    PubMed Central

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  7. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    PubMed

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  8. CORRELATION BETWEEN THE DAMAGE RATIOS OF WOODEN HOUSES AND WATER DISTRIBUTION PIPES AFTER THE SCENARIO TOKYO METROPOLITAN EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Maruyama, Yoshihisa; Yamazaki, Fumio

    This study estimated the damage ratios of wooden houses and water distribution pipes in Tokyo, Kanagawa, Saitama, and Chiba prefectures after the scenario Tokyo Metropolitan earthquake. Since the damage ratios were evaluated by common fragility functions, the amount of damage can be compared seamlessly for the areas around Tokyo Metropolis. This study also considers the correlations between the damage ratios of wooden houses and water distribution pipes with respect to the postal address areas (cho-cho-moku) along the Tokyo Bay. The areas associated with higher damage ratios of wooden houses and water pipes were detected and the delay of restoration work is anticipated in these areas.

  9. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. The external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water ...

  10. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. he external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water th...

  11. Corrosion of stainless steel piping in high manganese fresh water

    SciTech Connect

    Avery, R.E.; Lutey, R.W.; Musick, J.; Pinnow, K.E.; Tuthill, A.H.

    1996-09-01

    A potable water treatment plant, designed to reduce manganese and iron in well water, experienced leaks in the 16 in. (406 mm) raw water headers about nine months after startup. The material, type 304 (UNS 30403) stainless steel, was purchased to American Society of Testing Materials specification A 778, with additional stipulations governing internal finish, the use of filler metal, and pickling for scale removal. Laboratory screenings of deposits for bacteria revealed some potentially additive corrosive effects from microbial action. However, the correlation of corrosion with the presence or absence of heat tint in the heat-affected zone of the circumferential welds prevailed as a primary cause of the corrosion observed beneath an adherent manganese-iron deposit in a low chloride, high manganese, raw water.

  12. [Concentration and form of asbestos fibers in tap drinking water contaminated from a water supply pipe with asbestos-cement].

    PubMed

    Saitoh, K; Takizawa, Y; Muto, H; Hirano, K

    1992-10-01

    The identification and concentration of asbestos fibers in tap drinking water supplied in a central area of Akita Prefecture, Japan, were determined by phase-contrast microscopy and a scanning electron microscope equipped with an energy-dispersive X-ray microanalyzer. The following results were obtained. 1. Asbestos fibers were found in the tap water from two areas in which an asbestos-cement pipe was used for public water supply. The concentrations of asbestos fibers in the tap water were 2.7 x 10(4) to 27.0 x 10(4) fibers per liter of water in area A and 10.0 x 10(4) to 21.0 x 10(4) in area B. On the other hand, no asbestos fiber contamination was observed in tap water of area C, which shared a common water source with area A. A vinyl chloride pipe was used over the entire length of the water supply in route C. 2. Crocidolite was the predominant type of asbestos fiber detected in the tap water. Chrysotile and a mixture of chrysotile and amosite were also observed. 3. Almost all asbestos fibers detected in the tap water possessed the form of thick or sheaved fibers with lengths ranging from ca. 5 to 10 microns. Their shapes were very different from those of asbestos fibers found in the atmosphere. The typical form of the latter is short (ca. 1 micron in length) and needle-like. 4. It was suggested that the contamination of asbestos fibers in the tap water was caused by erosion and peeling off of the inner wall of the asbestos-cement pipe used as a conduit. In order to evaluate the safety of drinking water in Japan, an extensive survey on asbestos-fiber contamination in tap water is necessary. PMID:1464953

  13. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes.

    PubMed

    Kelly, John J; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  14. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    PubMed Central

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  15. Spatial and seasonal variability of tap water disinfection by-products within distribution pipe networks.

    PubMed

    Charisiadis, Pantelis; Andra, Syam S; Makris, Konstantinos C; Christophi, Costas A; Skarlatos, Dimitrios; Vamvakousis, Vasilis; Kargaki, Sophia; Stephanou, Euripides G

    2015-02-15

    Gradually-changing shocks associated with potable water quality deficiencies are anticipated for urban drinking-water distribution systems (UDWDS). The impact of structural UDWDS features such as, the number of pipe leaking incidences on the formation of water trihalomethanes (THM) at the geocoded household level has never been studied before. The objectives were to: (i) characterize the distribution of water THM concentrations in households from two district-metered areas (DMAs) with contrasting UDWDS characteristics sampled in two seasons (summer and winter), and (ii) assess the within- and between-household, spatial variability of water THM accounting for UDWDS characteristics (household distance from chlorination tank and service pipe leaking incidences). A total of 383 tap water samples were collected from 193 households located in two DMAs within the UDWDS of Nicosia city, Cyprus, and analyzed for the four THM species. The higher intraclass correlation coefficient (ICC) values for water tribromomethane (TBM) (0.75) followed by trichloromethane (0.42) suggested that the two DMAs differed with respect to these analytes. On the other hand, the low ICC values for total THM levels between the two DMAs suggested a large variance between households. The effect of households nested under each DMA remained significant (p<0.05) for TBM (not for the rest of the THM species) in the multivariate mixed-effect models, even after inclusion of pipe network characteristics. Our results could find use by water utilities in overcoming techno-economic difficulties associated with the large spatiotemporal variability of THM, while accounting for the influence of UDWDS features at points of water use. PMID:25460936

  16. Bacterial repopulation of drinking water pipe walls after chlorination.

    PubMed

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water. PMID:27483985

  17. Construction and testing of ceramic fabric heat pipe with water working fluid

    SciTech Connect

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.; Cooper, M.F.

    1991-01-01

    A prototype ceramic fabric/titanium water heat pipe has been constructed and tested; it transported 25 to 80 W of power at 423 K. Component development and testing is continuing with the aim of providing an improved prototype, with a 38-{mu}m stainless steel linear covered by a biaxially-braided Nextel (trademark of the 3M Co., St. Paul Minnesota) sleeve that is approximately 300-{mu}m thick. This fabric has been tested to 800 K, and its emittance is about 0.5 at that temperature. Advanced versions of the water heat pipe will probably require a coating over the ceramic fabric in order to increase this emittance to the 0.8 to 0.9 range. 2 refs., 3 figs., 1 tab.

  18. Changes in Water Sorption and Solubility of Dental Adhesive Systems after Cigarette Smoke

    PubMed Central

    Vitória, Lívia Andrade; Aguiar, Thaiane Rodrigues; Santos, Poliana Ramos Braga; Cavalcanti, Andrea Nóbrega

    2013-01-01

    Aim. To evaluate the effect of cigarette smoke on water sorption and solubility of four adhesive systems. Materials and Methods. Sixteen disks of each adhesive system were prepared (Adper Scotchbond Multipurpose Adhesive (SA); Adper Scotchbond Multipurpose Adhesive System (Adhesive + Primer) (SAP); Adper Single Bond Plus (SB); Adper Easy One (EO)). Specimens were desiccated until a constant mass was obtained and divided into two groups (n = 8). One-half of the specimens were immersed in deionized water, while the other half were also immersed, but with daily exposure to tobacco smoke. After 21 days, disks were measured again and stored in desiccators until constant mass was achieved. Data were calculated according to ISO specifications and statistically analyzed. Results. The tobacco smoke only significantly affected the water sorption and solubility of EO. There were significant differences in both analyses among materials tested. The SB exhibited the highest water sorption, followed by EO, which demonstrated significantly higher solubility values than SB. The SA and SAP showed low water sorption and solubility, and there were no significant differences between the two. Conclusion. Regardless of smoke exposure, both simplified adhesive systems presented an inferior performance that could be related to the complex mixture of components in such versions. PMID:23984078

  19. Corrosion in three-phase oil/water/gas slug flow in horizontal pipes

    SciTech Connect

    Zhou, X.; Jepson, W.P.

    1994-12-31

    A study of corrosion in the mixing zone at the front of slugs has been carried out in a 10 cm internal diameter, horizontal, three-phase flow system using a light condensate oil and saltwater as liquids and carbon dioxide as the gas phase. Visual observations show that stratified water layers are apparent at the bottom of the pipe at oil compositions up to 60%. Pulses of gas bubbles are formed at high Froude numbers which impinge on the lower surfaces of the pipe. The corrosion rate increased with an increase in Froude number. This is due to the increases in wall shear stress, turbulence, and gas present at the bottom of the pipe as the Froude number increases. The presence of gas at the bottom of the pipe has a significant effect on the corrosion rate. It provides an erosion component to the corrosion processes. The corrosion rate can be related to pressure drop across the slug but average wall shear stress does not seem to be appropriate.

  20. Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

    2013-08-01

    Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

  1. OTEC cold water pipe design for problems caused by vortex-excited oscillations

    SciTech Connect

    Griffin, O. M.

    1980-03-14

    Vortex-excited oscillations of marine structures result in reduced fatigue life, large hydrodynamic forces and induced stresses, and sometimes lead to structural damage and to diestructive failures. The cold water pipe of an OTEC plant is nominally a bluff, flexible cylinder with a large aspect ratio (L/D = length/diameter), and is likely to be susceptible to resonant vortex-excited oscillations. The objective of this report is to survey recent results pertaining to the vortex-excited oscillations of structures in general and to consider the application of these findings to the design of the OTEC cold water pipe. Practical design calculations are given as examples throughout the various sections of the report. This report is limited in scope to the problems of vortex shedding from bluff, flexible structures in steady currents and the resulting vortex-excited oscillations. The effects of flow non-uniformities, surface roughness of the cylinder, and inclination to the incident flow are considered in addition to the case of a smooth cyliner in a uniform stream. Emphasis is placed upon design procedures, hydrodynamic coefficients applicable in practice, and the specification of structural response parameters relevant to the OTEC cold water pipe. There are important problems associated with in shedding of vortices from cylinders in waves and from the combined action of waves and currents, but these complex fluid/structure interactions are not considered in this report.

  2. Detection of Escherichia coli in Biofilms from Pipe Samples and Coupons in Drinking Water Distribution Networks▿

    PubMed Central

    Juhna, T.; Birzniece, D.; Larsson, S.; Zulenkovs, D.; Sharipo, A.; Azevedo, N. F.; Ménard-Szczebara, F.; Castagnet, S.; Féliers, C.; Keevil, C. W.

    2007-01-01

    Fluorescence in situ hybridization (FISH) was used for direct detection of Escherichia coli on pipe surfaces and coupons in drinking water distribution networks. Old cast iron main pipes were removed from water distribution networks in France, England, Portugal, and Latvia, and E. coli was analyzed in the biofilm. In addition, 44 flat coupons made of cast iron, polyvinyl chloride, or stainless steel were placed into and continuously exposed to water on 15 locations of 6 distribution networks in France and Latvia and examined after 1 to 6 months exposure to the drinking water. In order to increase the signal intensity, a peptide nucleic acid (PNA) 15-mer probe was used in the FISH screening for the presence or absence of E. coli on the surface of pipes and coupons, thus reducing occasional problems of autofluorescence and low fluorescence of the labeled bacteria. For comparison, cells were removed from the surfaces and examined with culture-based or enzymatic (detection of β-d-glucuronidase) methods. An additional verification was made by using PCR. Culture method indicated presence of E. coli in one of five pipes, whereas all pipes were positive with the FISH methods. E. coli was detected in 56% of the coupons using PNA FISH, but no E. coli was detected using culture or enzymatic methods. PCR analyses confirmed the presence of E. coli in samples that were negative according to culture-based and enzymatic methods. The viability of E. coli cells in the samples was demonstrated by the cell elongation after resuscitation in low-nutrient medium supplemented with pipemidic acid, suggesting that the cells were present in an active but nonculturable state, unable to grow on agar media. E. coli contributed to ca. 0.001 to 0.1% of the total bacterial number in the samples. The presence and number of E. coli did not correlate with any of physical and/or chemical characteristic of the drinking water (e.g., temperature, chlorine, or biodegradable organic matter concentration

  3. Stability of Water Lubricated Flow of Yield Stress Fluid in Sloping Pipe

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Nsom, B.; Decruppe, J.

    2010-06-01

    To facilitate the transport of viscous crudes in a pipe, an immiscible lubricating liquid, usually water, is added. In such configuration, the water migrates into the regions of high shear at the pipe wall where it lubricates the flow. The pumping pressures being balanced by wall shear stresses in the water, the flow therefore requires pressures comparable to pumping water alone, at the same total throughput [1]. So significant savings in pumping power can be derived from this process provided that it is well monitored. Indeed, instabilities usually take place at the oil/water interface and they constitute an important source of energy dissipation. Precisely, a core annular flow is known to undergo a long-wave instability of capillary type, modified by shear occuring at low Reynolds. Above a given critical Reynolds number, the flow is unstable to shorter waves which leads to an emulsification system of water droplets in oil. In present work, an experimental study of the stability of sloping plane Poiseuille flow of well characterized viscoplastic mineral oils lubricated by water was performed. The investigation was carried out by means of image analysis based on spatiotemporal diagrams (STD). Notably indicated are the effects of bed slope, flow rates ratio and oil rheology on flow stability.

  4. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.

    PubMed

    Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A

    2016-01-01

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms. PMID:26703979

  5. Water quality criteria for colored smokes: Solvent Yellow 33, Final report. [Contains glossary

    SciTech Connect

    Davidson, K.A.; Hovatter, P.S.

    1987-11-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of Solvent Yellow 33, a quinoline dye used in colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of aquatic life and its use and of human health. 87 refs., 2 figs., 13 tabs.

  6. "Meth circles" and "pipe pirates": crystal methamphetamine smoking and identity management among a social network of young adults.

    PubMed

    Green, Rachael; Moore, David

    2013-06-01

    This article analyzes crystal methamphetamine smoking among a social network of young Australian adults. Ethnographic data were collected from 2005 to 2007 among 60 individuals, and semistructured in-depth interviews were conducted with a sub-set of 25 individuals. Fieldnotes and interview transcripts were entered into NVivo7 and thematically analyzed. We argue that although drug use may be considered "normal" among some social networks, the management of stigma associated with drug use is more complex and contested than portrayed in the literature. Policy implications are discussed. The study was supported by funds from Australia's National Health and Medical Research Council. PMID:23581505

  7. Life Test Results for Water Heat Pipes Operating at 200 °C to 300 °C

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Gernert, Nelson J.

    2008-01-01

    For lunar or planetary bases to be viable, a robust electric generating system will be required for powering the habitat. Water heat pipes offer an attractive solution for lunar base heat rejection, and would serve as a qualification for them on other long duration missions. Successful operation near the upper end of water operating range is a requirement for the application. Results are reported for life tests on water heat pipes that were operated at various temperatures between 200 °C and 300 °C. Tests were conducted on twenty three gravity-assisted water heat pipes. Eleven titanium/water heat pipes and ten Monel/water heat pipes were tested at temperatures above 200 °C. Two cupronickel heat pipes were also assembled and tested. Titanium alloys tested included CP-2 titanium, as well as two beta-titanium alloys, namely 15-3 and Nitinol alloys. Some of the titanium alloy life tests used wicks fabricated from CP-2 titanium screen or porous felt. Monel alloys tested included 400 and K-500 alloys. Some of the Monel heat pipes contained copper/nickel wicks that were fabricated by brazing nickel-plated copper felt metal wicks. Although most of the envelope/material combinations exhibit favorable results at 200 °C, some of the combinations failed at higher temperatures. Causes of failure included stress-creep of envelopes and corrosion at axial or end cap welds. This information represents a significant advance in selection of materials for 200 °C to 300 °C water heat pipes. Life testing work is being continued.

  8. Data report for the model test of a slope-mounted cold water pipe: final report and appendices

    SciTech Connect

    Kompare, D.J.; Cotter, D.C.; Chakrabarti, S.K.

    1985-04-01

    A model test of a slope-mounted cold water pipe for a shelf-mounted Ocean Thermal Energy Conversion (OTEC) platform was performed in CBI Industries wave tank. The baseline model consisted of a cold water pipe mounted on a foundation sloped at 40/sup 0/ to the horizontal. This setup was chosen to simulate an at-sea test with a section of cold water pipe underway at Keahole Point, Hawaii. The baseline model was subjected to various environmental conditions involving waves and currents. The variations of the model consisted of different wave angles of attack, various elevations of the pipe off the bottom and two additional bottom slopes. Thus, the range of applicability of data covering the variations of wave angle, bottom gap, and bottom slope was substantially increased. In all cases, the model was completely submerged.

  9. Reactor Materials Program probability of indirectly--induced failure of L and P reactor process water piping

    SciTech Connect

    Daugherty, W.L.

    1988-03-11

    The design basis accident for the Savannah River Production Reactors is the abrupt double-ended guillotine break (DEGB) of a large process water pipe. This accident is not considered credible in light of the low applied stresses and the inherent ductility of the piping material. The Reactor Materials Program was initiated to provide the technical basis for an alternate credible design basis accident. One aspect of this work is to determine the probability of the DEGB; to show that in addition to being incredible, it is also highly improbable. The probability of a DEGB is broken into two parts: failure by direct means, and indirectly-induced failure. Failure of the piping by direct means can only be postulated to occur if an undetected crack grows to the point of instability, causing a large pipe break. While this accident is not as severe as a DEGB, it provides a conservative upper bound on the probability of a direct DEGB of the piping. The second part of this evaluation calculates the probability of piping failure by indirect causes. Indirect failure of the piping can be triggered by an earthquake which causes other reactor components or the reactor building to fall on the piping or pull it from its supports. Since indirectly-induced failure of the piping will not always produce consequences as severe as a DEGB, this gives a conservative estimate of the probability of an indirectly- induced DEGB. This second part, indirectly-induced pipe failure, is the subject of this report. Failure by seismic loads in the piping itself will be covered in a separate report on failure by direct causes. This report provides a detailed evaluation of L reactor. A walkdown of P reactor and an analysis of the P reactor building provide the basis for extending the L reactor results to P reactor.

  10. Experimental Testing and Modeling Analysis of Solute Mixing at Water Distribution Pipe Junctions

    EPA Science Inventory

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. Here we have categorized pipe junctions into five hydraulic types, for which flow distribution factors and analytical equations for describing the solute mixing ...

  11. Experimental investigation of freezing blowby in a copper/water heat pipe

    NASA Technical Reports Server (NTRS)

    Ochterbeck, J. M.; Peterson, G. P.

    1992-01-01

    An experimental investigation designed to evaluate and better define the overall characteristics of freezing blowby in a copper/water heat pipe was conducted. The results from various rates of restart heat addition and channel blockage, indicate that upon breakthrough the depressurization of the evaporator may result in an effective heat transport capacity far in excess of the steady-state transport limit. The resulting transient conditions imposed on the heat pipe by the effective increased heat transport capacity can cause a loss of liquid in the evaporator and potential dryout. Evidence is presented which indicates that in order to prevent either temporary or permanent dryout, sufficient liquid inventory must be present in the evaporator wicking structure to accommodate the increased transient thermal load and allow sufficient time for the capillary wicking structure to reprime.

  12. Conceptual design study: Cold water pipe systems for self-mounted OTEC powerplants

    NASA Astrophysics Data System (ADS)

    1981-02-01

    The conceptual design and installation aspects of cold water pipes (CWP) systems for shelf mounted OTEC power plants in Puerto Rico and Hawaii are considered. The CWP systems using Fiberglass Reinforced Plastic (FRP) and steel were designed; the FRP, can be controlled by varying the core thickness; and steel is used as a structural material in offshore applications. A marine railway approach was chosen for installation of the CWP. Two methods for pulling the track for the railway down the pipe fairway to its final location are presented. The track is permanently fastened to the sloping seabed with piles installed by a remotely controlled cart that rides on the track itself. Both the marine railway and the shelf mounted platform that houses the OTEC power plant require an anodic or equivalent corrosion protection system.

  13. A Thermosyphon Titanium-Water Heat Pipe Design for a Lunar Surface Power System

    SciTech Connect

    Thayer, John; Semenov, Sergey

    2009-03-16

    A long titanium-water thermosyphon heat pipe was designed and tested in support of NASA's lunar surface power system. With a {delta}T of 11.6 C, a prototype has been shown to meet the temperature drop specification of 15 C at 400 W and 400 K. The heat pipe is designed to be embedded in a composite radiator panel to spread waste heat delivered by a circulating pumped loop. The major challenge was managing the fluid inventory to balance the conflicting requirements of power capacity and freeze-thaw tolerance. A unique hybrid wick was designed to achieve the required thermal performance and yet store all the working fluid during idle periods in a freeze-thaw tolerant fashion. A non-condensable gas charge was used to boost power capacity at lower operating temperatures. Eighteen prototypes will be built and tested.

  14. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. PMID:27070382

  15. Simulation of external contamination into water distribution systems through defects in pipes

    NASA Astrophysics Data System (ADS)

    López, P. A.; Mora, J. J.; García, F. J.; López, G.

    2009-04-01

    Water quality can be defined as a set of properties (physical, biological and chemical) that determine its suitability for human use or for its role in the biosphere. In this contribution we focus on the possible impact on water distribution systems quality of external contaminant fluids entering through defects in pipes. The physical integrity of the distribution system is a primary barrier against the entry of external contaminants and the loss in quality of the treated drinking water, but this integrity can be broken. Deficiencies in physical and hydraulic integrity can lead into water losses, but also into the influx of contaminants through pipes walls, either through breaks coming from external subsoil waters, or via cross connections coming from sewerage or other facilities. These external contamination events (the so called pathogen intrusion phenomenon) can act as a source of income by introducing nutrients and sediments as well as decreasing disinfectant concentrations within the distribution system, thus resulting in a degradation of the distribution water quality. The objective of this contribution is to represent this pathogen intrusion phenomenon. The combination of presence of defects in the infrastructures (equipment failure), suppression and back-siphonage and lack of disinfection is the cause of propagation of contamination in the clean current of water. Intrusion of pathogenic microorganisms has been studied and registered even in well maintained services. Therefore, this situation can happen when negative pressure conditions are achieved in the systems combined with the presence of defects in pipes nearby the suppression. A simulation of the process by which the external fluids can come inside pipes across their defects in a steady-state situation will be considered, by using different techniques to get such a successful modeling, combining numerical and experimental simulations. The proposed modeling process is based on experimental and

  16. Simulation of external contamination into water distribution systems through defects in pipes

    NASA Astrophysics Data System (ADS)

    López, P. A.; Mora, J. J.; García, F. J.; López, G.

    2009-04-01

    Water quality can be defined as a set of properties (physical, biological and chemical) that determine its suitability for human use or for its role in the biosphere. In this contribution we focus on the possible impact on water distribution systems quality of external contaminant fluids entering through defects in pipes. The physical integrity of the distribution system is a primary barrier against the entry of external contaminants and the loss in quality of the treated drinking water, but this integrity can be broken. Deficiencies in physical and hydraulic integrity can lead into water losses, but also into the influx of contaminants through pipes walls, either through breaks coming from external subsoil waters, or via cross connections coming from sewerage or other facilities. These external contamination events (the so called pathogen intrusion phenomenon) can act as a source of income by introducing nutrients and sediments as well as decreasing disinfectant concentrations within the distribution system, thus resulting in a degradation of the distribution water quality. The objective of this contribution is to represent this pathogen intrusion phenomenon. The combination of presence of defects in the infrastructures (equipment failure), suppression and back-siphonage and lack of disinfection is the cause of propagation of contamination in the clean current of water. Intrusion of pathogenic microorganisms has been studied and registered even in well maintained services. Therefore, this situation can happen when negative pressure conditions are achieved in the systems combined with the presence of defects in pipes nearby the suppression. A simulation of the process by which the external fluids can come inside pipes across their defects in a steady-state situation will be considered, by using different techniques to get such a successful modeling, combining numerical and experimental simulations. The proposed modeling process is based on experimental and

  17. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 1. Investigation and evaluation of stress corrosion cracking in piping of boiling water reactor plants

    SciTech Connect

    Not Available

    1984-08-01

    IGSCC in BWR piping is occurring owing to a combination of material, environment, and stress factors, each of which can affect both the initiation of a stress-corrosion crack and the rate of its subsequent propagation. In evaluating long-term solutions to the problem, one needs to consider the effects of each of the proposed remedial actions. Mitigating actions to control IGSCC in BWR piping must be designed to alleviate one or more of the three synergistic factors: sensitized material, the convention BWR environment, and high tensile stresses. Because mitigating actions addressing each of these factors may not be fully effective under all anticipated operating conditions, mitigating actions should address two and preferably all three of the causative factors; e.g., material plus some control of water chemistry, or stress reversal plus controlled water chemistry.

  18. Epidemiology study of the use of asbestos-cement pipe for the distribution of drinking water in Escambia County, Florida.

    PubMed Central

    Millette, J R; Craun, G F; Stober, J A; Kraemer, D F; Tousignant, H G; Hildago, E; Duboise, R L; Benedict, J

    1983-01-01

    Cancer mortality for the population census tracts of Escambia County, FL, which use asbestos-cement (AC) pipe for public potable water distribution, was compared with cancer mortality data collected from census tracts in the same county where other types of piping materials are used. An analysis of covariance was run to test for differences in standard mortality ratios for seven cancer sites among three potential asbestos exposure groups based on AC pipe usage. Twelve variables representing nonexposure-related influences on disease rates were combined in four independent factors and used as covariates in these analyses. No evidence for an association between the use of AC pipe for carrying drinking water and deaths due to gastrointestinal and related cancers was found. The limitations on the sensitivity of the analysis are discussed. PMID:6559131

  19. Lifetime Prediction of Polyethylene Pipes Transporting Drinking Water in the Presence of Chlorine Dioxide

    NASA Astrophysics Data System (ADS)

    Colin, X.; Audouin, L.; Verdu, J.

    2008-08-01

    A kinetic model for lifetime prediction of polyethylene pipes transporting pressurized water disinfected by chlorine dioxide (DOC) has been elaborated. This model is composed of three sub-models: —A system of differential equations, derived from a realistic mechanistic scheme for radical chain oxidation in the presence of DOC of stabilized polyethylene (PE), giving access to the spatial distribution of structural changes in the pipe wall and its evolution against time of exposure; —The classical Saito's equation to predict the profiles of average molar masses from the spatial distribution of chain scissions and crosslinking events; —An empirical creep equation and an empirical fracture criterion derived from regression curves obtained in pure water. It is assumed that chemical degradation modifies only the time to transition tc between ductile and brittle regimes of failure, and that tc is linked to the weight average molar mass by a power law. By combining these three sub-models, it is possible to predict the time to failure tF under the coupled effects of pressure and chemical degradation. In current use conditions (under 3-12 bars water pressure, at 15 °C, in the presence of 0.15 mg of DOC per liter of water), the model predicts a tF of the order of 15 years against more than 50 years expected lifetime, that agrees well with experimental results.

  20. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    SciTech Connect

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  1. In-situ measurement of the height of condensed water in steam pipes with dynamic flow

    NASA Astrophysics Data System (ADS)

    Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph

    2016-04-01

    A method based on the use of enhanced filtered Hilbert envelope of the wave signal was developed in order to monitor the height of condensed water through the wall of steam pipes having dynamic flow conditions. A prototype testbed was designed and fabricated in this study to simulate the dynamic flow conditions including the air stream flowing above the water and bubble induced disturbance. A dual-transducer was used to perform the test as a basis for the multiple transducers system to facilitate the detectability and reliability for long term monitoring of the condensed water height in dynamic conditions. The results demonstrated that the method of measuring the water height using multiple-transducer system employing the developed novel signal processing technique is an efficient and accurate tool for practical applications.

  2. Investigation of Temperature Fluctuations Caused by Steam-Water Two-Phase Flow in Pressurizer Spray Piping

    NASA Astrophysics Data System (ADS)

    Miyoshi, Koji; Nakamura, Akira; Takenaka, Nobuyuki; Oumaya, Toru

    In a PWR plant, a steam-water two-phase flow may possibly exist in the pressurizer spray pipe under a normal operating condition since the flow rate of the spray water is not sufficient to fill the horizontal section of the pipe completely. Initiation of high cycle fatigue cracks is suspected to occur under such thermally stratified two phase flow conditions due to cyclic thermal stress fluctuations caused by oscillations of the water surface. Such oscillations cannot be detected by the measurement of temperature on outer surface of the pipe. In order to clarify the flow and thermal conditions in the pressurizer spray pipe and assess their impact on the pipe structure, an experiment was conducted for a steam-water flow at a low flow rate using a mock-up pressurizer spray pipe. The maximum temperature fluctuation of about 0.2 times of the steam-water temperature difference was observed at the inner wall around water surface in the test section. Visualization tests were conducted to investigate the temperature fluctuation phenomena. It was shown that the fluid temperature fluctuations were not caused by the waves on the water surface, but were caused by liquid temperature fluctuations in water layer below the interface. The influence of small amount of non-condensable gas dissolved in the reactor coolant on the liquid temperature fluctuation phenomena was investigated by injecting air into the experimental loop. The air injection attenuated the liquid temperature fluctuations in the water layer since the condensation was suppressed by the non- condensable gas. It is not expected that wall temperature fluctuation in the actual PWR plant may exceed the temperature equivalent to the fatigue limit stress amplitude when it is assumed to be proportional to the steam-water temperature difference.

  3. 65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL MAST IN LOWER LEFT CORNER; PIPES TO LAUNCHER IN UPPER LEFT CORNER; PIPES TO FLAME BUCKET IN LOWER RIGHT CORNER OF PHOTOGRAPH. POTABLE WATER PIPING IN UPPER RIGHT CORNER OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Acoustic Signal Processing for Pipe Condition Assessment (WaterRF Report 4360)

    EPA Science Inventory

    Unique to prestressed concrete cylinder pipe (PCCP), individual wire breaks create an excitation in the pipe wall that may vary in response to the remaining compression of the pipe core. This project was designed to improve acoustic signal processing for pipe condition assessment...

  5. Water pipe flow simulation using improved virtual particles on smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ting, E. S.; Yeak, S. H.

    2014-12-01

    Smoothed Particle Hydrodynamics (SPH) is a meshless method used widely to solve problems such as fluid flows. Due to its meshless property, it is ideal to solve problems on complex geometry. In this paper, boundary treatment were implied for the rectangular pipe flow simulations using SPH. The repulsive force is applied to the boundary particles along with the improved virtual particles on different geometry alignment. The water flow is solved using incompressible SPH and will be examined throughout the simulation. Results from this simulation will be compared with single layered virtual particles. Based on the result of the study, it is found that the improved virtual particles is more accurate and stable.

  6. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    NASA Astrophysics Data System (ADS)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-12-01

    Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  7. Water quality criteria for colored smokes: 1,4-diamino-2,3-dihydroanthraquinone: Final report

    SciTech Connect

    Davidson, K.A.; Hovatter, P.S.; Ross, R.H.

    1988-01-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of 1,4-diamino-2,3-dihydroanthraquinone (DDA), and anthraquinone dye used in violet-colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of human health and of aquatic life and its uses. DDA will readily oxidize to 1,4-diaminoanthraquinone (DAA) in air or during combustion of the smoke grenade. The dye is insoluble in water; however, no information is available concerning its transformation or transport in soil, water, and sediments. No data are available concerning the toxic effects of DDA in aquatic organisms; therefore, a Criterion maximum Concentration and a Criterion Continuous Concentration cannot be determined. Toxicity studies following the USEPA guidelines are recommended. DDA is a weak mutagen in the Salmonella Reversin Assay, but the combustion or oxidation product, DAA is a strong mutagen in the same test. Violet smoke is noncarcinogenic in the SENCAR Mouse Skin Tumor Bioassay. 63 refs., 1 fig., 3 tabs.

  8. Pyrosequencing analysis of bacterial communities in biofilms from different pipe materials in a city drinking water distribution system of East China.

    PubMed

    Ren, Hongxing; Wang, Wei; Liu, Yan; Liu, Shuai; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Liu, Jingqing; Hu, Baolan

    2015-12-01

    Biofilms in drinking water distribution systems (DWDSs) could cause several types of problems, such as the deterioration of water quality, corrosion of pipe walls, and potential proliferation of opportunistic pathogens. In this study, ten biofilm samples from different pipe materials, including ductile cast iron pipe (DCIP), gray cast iron pipe (GCIP), galvanized steel pipe (GSP), stainless steel clad pipe (SSCP), and polyvinyl chloride (PVC), were collected from an actual DWDS to investigate the effect of pipe material on bacterial community. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the numbers of total bacteria and culturable heterotrophic bacteria from iron pipes were higher than that in PVC, while the numbers of Shigella and vibrios were low in biofilms from iron pipes. Bacterial community analysis showed that Hyphomicrobium or Desulfovibrio were the predominant microorganism in iron pipes, whereas Sphingomonas or Pseudomonas were dominant in other types of pipe. This study revealed differences in bacterial communities in biofilms among different pipe materials, and the results were useful for pipeline material selection in DWDSs. PMID:26311220

  9. OTEC (Ocean Thermal Energy Conversion) cold-water pipe at-sea test program. Phase 2. Suspended pipe test. Final report

    SciTech Connect

    McHale, F.A.

    1984-08-01

    An important step in the development of technology for Ocean Thermal Energy Conversion (OTEC) cold water pipes (CWP) is the at-sea testing and subsequent evaluation of a large-diameter fiberglass-reinforced plastic (FRP) pipe. Focus has been on the CWP since it is the most critical element in any OTEC design. This report presents the results of the second phase of the CWP At-Sea Test Program. During this phase an 8-foot diameter, 400-foot long sandwich wall FRP syntactic foam configuration CWP test article was developed, constructed, deployed and used for data acquisition in the open ocean near Honolulu, Hawaii. This instrumented CWP was suspended from a moored platform for a three-week experiment in April - May, 1983. The CWP represented a scaled version of a 40-megawatt size structure, nominally 30 feet in diameter and 3000 feet long.

  10. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes

    EPA Science Inventory

    The stability of iron corrosion products and the bacterial composition of biofilm in drinking water distribution systems (DWDS) could have great impact on the water safety at the consumer ends. In this work, pipe loops were setup to investigate the transformation characteristics ...

  11. Water pipes and E-cigarettes: new faces of an ancient enemy.

    PubMed

    Dagaonkar, Rucha S; Udwadi, Zarir F

    2014-04-01

    In a world grappling with tobacco addiction, the hookah (water-pipe) and the electronic cigarette (e-cigarette) are creating new problems. Apart from posing the inherent danger of nicotine addiction, they both seem to be wolves cloaked in the sheep-skin of consumer-perceived safety, at least in comparison to the cigarette. However it seems that the e-cigarette may have a role in a nicotine-replacement therapy. There has been a wave of interest around the world in analysing these phenomena. The following review discusses the current data regarding the hookah and the e-cigarette. A PubMed, Medline and Google search using the keywords'sheesha', 'hookah', water-pipe', 'electronic cigarette', 'e-cigarette', 'vapers' was carried out.The studies carried out between 2007-2013 were included in this review. Information available in the public domain on internet websites was included to study the perception of the lay consumer regarding the hookah and the e-cigarette. PMID:25327035

  12. Route Planning and Estimate of Heat Loss of Hot Water Transportation Piping for Fuel Cell Local Energy Network

    NASA Astrophysics Data System (ADS)

    Obara, Shinya; Kudo, Kazuhiko

    The method of supplying the electric power and heat energy for the energy demand of buildings by Centralized system type and distributed system type of fuel cell network is studied. The hot-water piping route planning program of fuel cell network was developed by using genetic algorithm based on the view of TSP ( Traveling salesman problem) . In this program, the piping route planning which minimizes the quantity of heat loss in hot-water piping can be performed. The residential section model of Sapporo city of 74 buildings was analyzed, and the quantity of heat loss from the hot-water piping of both systems was estimated. Consequently, the ratio of the quantity of heat loss of a distributed system to a centralized system was about 50% in the full year average. This program is introduced into the route planning of hot- Water piping system of the fuel cell network, and plan to reduce the quantity of heat loss in a distributed system will be made.

  13. Smoke in the Pipe Nebula: dust emission and grain growth in the starless core FeSt 1-457

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Lada, Charles J.; Lombardi, Marco; Román-Zúñiga, Carlos; Alves, João

    2015-08-01

    Context. The availability of submillimeter dust emission data in an unprecedented number of bands provides us with new opportunities to investigate the properties of interstellar dust in nearby clouds. Aims: The nearby Pipe Nebula is an ideal laboratory to study starless cores. We here aim to characterize the dust properties of the FeSt 1-457 core, as well as the relation between the dust and the dense gas, using Herschel, Planck, 2MASS, ESO Very Large Telescope, APEX-Laboca, and IRAM 30 m data. Methods: We derive maps of submillimeter dust optical depth and effective dust temperature from Herschel data that were calibrated against Planck. After calibration, we then fit a modified blackbody to the long-wavelength Herschel data, using the Planck-derived dust opacity spectral index β, derived on scales of 30' (or ~1 pc). We use this model to make predictions of the submillimeter flux density at 850 μm, and we compare these in turn with APEX-Laboca observations. Our method takes into account any additive zeropoint offsets between the Herschel/Planck and Laboca datasets. Additionally, we compare the dust emission with near-infrared extinction data, and we study the correlation of high-density-tracing N2H+ emission with the coldest and densest dust in FeSt 1-457. Results: A comparison of the submillimeter dust optical depth and near-infrared extinction data reveals evidence for an increased submillimeter dust opacity at high column densities, interpreted as an indication of grain growth in the inner parts of the core. Additionally, a comparison of the Herschel dust model and the Laboca data reveals that the frequency dependence of the submillimeter opacity, described by the spectral index β, does not change. A single β that is only slightly different from the Planck-derived value is sufficient to describe the data, β = 1.53 ± 0.07. We apply a similar analysis to Barnard 68, a core with significantly lower column densities than FeSt 1-457, and we do not find

  14. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  15. Flexible Pipes-Permeation of Methane, Carbon Dioxide and Water Through Tefzel ETFE: Experiments 1996

    NASA Technical Reports Server (NTRS)

    Wang, Per Arne; Hydro, Norsk

    1997-01-01

    The permeation of a mixture of CH4 and CO2 (97% CH4 and 3% CO2) saturated with water vapour through Tefzel has been studied at 950 C and 25 and 50 bars. Tefzel is the Du Pont trademark of an ETFE (ethylenetetrafluorethylene) which is a copolymer of ethylene and tetrafluorethylene. This material might be used as inner plastic lining of flexible pipes. For methane and carbon dioxide, the permeability of Tefzel is higher than the deplasticized PVDF (Polyvinylidenefluoride), but lower than the plasticized PVDF. For water, the situation seems to be the other way round; Tefzel has a lower permeability than deplasticized PVDF. Whether the permeability tests on Tefzel at higher temperatures and pressures will be pursued or not, will be considered by the steering committee of the CAPP project in May.

  16. Analysis of cracked core spray piping from the Quad Cities Unit 2 boiling water reactor

    SciTech Connect

    Diercks, D.R.; Gaitonde, S.M.

    1982-09-01

    The results of a metallurgical analysis of leaking cracks detected in the core spray injection piping of Commonwealth Edison Company's Quad Cities Unit 2 Boiling Water Reactor are described. The cracks were present in a welded 105/sup 0/ elbow assembly in the line, and were found to be caused by intergranular stress corrosion cracking associated with the probable presence of dissolved oxygen in the reactor cooling water and the presence of grain boundary sensitization and local residual stresses induced by welding. The failure is unusual in several respects, including the very large number of cracks (approximately 40) present in the failed component, the axial orientation of the cracks, and the fact that at least one crack completely penetrated a circumferential weld. Virtually all of the cracking occurred in forged material, and the microstructural evidence presented suggests that the orientation of the cracks was influenced by the presence of axially banded delta ferrite in the microstructure of the forged components.

  17. Installation Of Service Connections For Sensors Or Transmitters In Buried Water Pipes

    DOEpatents

    Burnham, Alan K.; Cooper, John F.

    2006-02-21

    A system for installing warning units in a buried pipeline. A small hole is drilled in the ground to the pipeline. A collar is affixed to one of the pipes of the pipeline. A valve with an internal passage is connected to the collar. A hole is drilled in the pipe. A warning unit is installed in the pipe by moving the warning unit through the internal passage, the collar, and the hole in the pipe.

  18. Identification of significant problems related to light water reactor piping systems

    SciTech Connect

    1980-07-01

    Work on the project was divided into three tasks. In Task 1, past surveys of LWR piping system problems and recent Licensee Event Report summaries are studied to identify the significant problems of LWR piping systems and the primary causes of these problems. Pipe cracking is identified as the most recurring problem and is mainly due to the vibration of pipes due to operating pump-pipe resonance, fluid-flow fluctuations, and vibration of pipe supports. Research relevant to the identified piping system problems is evaluated. Task 2 studies identify typical LWR piping systems and the current loads and load combinations used in the design of these systems. Definitions of loads are reviewed. In Task 3, a comparative study is carried out on the use of nonlinear analysis methods in the design of LWR piping systems. The study concludes that the current linear-elastic methods of analysis may not predict accurately the behavior of piping systems under seismic loads and may, under certain circumstances, result in nonconservative designs. Gaps at piping supports are found to have a significant effect on the response of the piping systems.

  19. Conceptual design study: cold water pipe systems for shelf-mounted OTEC powerplants. Final report

    SciTech Connect

    Not Available

    1981-02-01

    This study considers the conceptual design and installation aspects of CWP systems for shelf-mounted OTEC power plants in Puerto Rico and Hawaii. CWP systems using FRP (Fiberglass Reinforced Plastic) and steel have been designed: FRP, because the buoyancy of the pipe can be controlled by varying the core thickness; and steel, because of decades of successful use as a structural material in offshore applications. A marine railway approach was chosen for installation of the CWP. Two methods for pulling the track for the railway down the pipe fairway to final location are presented. The track is then permanently fastened to the sloping seabed with piles installed by a remotely controlled cart that rides on the track itself, thus minimizing deep water control problems. Both the marine railway and the shelf-mounted platform that houses the OTEC power plant must have an anodic or equivalent corrosion protection system, which would require the same inspection and maintenance procedures as currently used for offshore oil production platforms.

  20. Reactor Materials Program -- weldment component toughness of SRS PWS piping materials. [Process Water System

    SciTech Connect

    Sindelar, R.L.

    1993-02-01

    The mechanical properties of austenitic stainless steel materials from the reactor systems in the unirradiated (baseline) and the irradiated conditions have been developed previously for structural and fracture analyses of the pressure boundary of the SRS reactor Process Water System (PWS) components. Individual mechanical specimen test results were compiled into three separate weldment components or regions, namely, the base, weld, and weld heat-affected-zone (HAZ), for two orientations (L-C and C-L) with respect to the pipe axis of the source materials and for two test temperatures of 25 and 125[degrees]C. Twelve separate categories were thus defined to assess the effect of test conditions on the mechanical properties and to facilitate selection of properties for structural and fracture analyses. The testing results show high fracture toughness of the materials and support the demonstration of PWS pressure boundary structural integrity under all conditions of reactor operation. The fracture toughness of a fourth weldment component, namely, the weld fusion line region, has been measured to evaluate the potential for a region of low toughness in the interface between the Type 308 stainless steel weld metal and the Type 304 stainless steel pipe. The testing details and results of the weld fusion line toughness are contained in this report.

  1. Cultured Construction: Global Evidence of the Impact of National Values on Piped-to-Premises Water Infrastructure Development.

    PubMed

    Kaminsky, Jessica A

    2016-07-19

    In 2016, the global community undertook the Sustainable Development Goals. One of these goals seeks to achieve universal and equitable access to safe and affordable drinking water for all people by the year 2030. In support of this undertaking, this paper seeks to discover the cultural work done by piped water infrastructure across 33 nations with developed and developing economies that have experienced change in the percentage of population served by piped-to-premises water infrastructure at the national level of analysis. To do so, I regressed the 1990-2012 change in piped-to-premises water infrastructure coverage against Hofstede's cultural dimensions, controlling for per capita GDP, the 1990 baseline level of coverage, percent urban population, overall 1990-2012 change in improved sanitation (all technologies), and per capita freshwater resources. Separate analyses were carried out for the urban, rural, and aggregate national contexts. Hofstede's dimensions provide a measure of cross-cultural difference; high or low scores are not in any way intended to represent better or worse but rather serve as a quantitative way to compare aggregate preferences for ways of being and doing. High scores in the cultural dimensions of Power Distance, Individualism-Collectivism, and Uncertainty Avoidance explain increased access to piped-to-premises water infrastructure in the rural context. Higher Power Distance and Uncertainty Avoidance scores are also statistically significant for increased coverage in the urban and national aggregate contexts. These results indicate that, as presently conceived, piped-to-premises water infrastructure fits best with spatial contexts that prefer hierarchy and centralized control. Furthermore, water infrastructure is understood to reduce uncertainty regarding the provision of individually valued benefits. The results of this analysis identify global trends that enable engineers and policy makers to design and manage more culturally appropriate

  2. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  3. Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products

    SciTech Connect

    Gerke, Tammie L.; Scheckel, Kirk G.; Maynard, J. Barry

    2010-11-12

    Vanadium (V) when ingested from drinking water in high concentrations (> 15 {micro}g L{sup -1}) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb{sub 5}(V{sup 5+}O{sub 4}){sub 3}Cl (vanadinite) which, in natural deposits is associated with iron oxides/oxyhydroxides, phases common in iron pipe corrosion by-products. The extent of potential reservoirs of V in iron corrosion by-products, its speciation, and mechanism of inclusion however are unknown. The aim of this study is to assess these parameters in iron corrosion by-products, implementing synchrotron-based {mu}-XRF mapping and {mu}-XANES along with traditional physiochemical characterization. The morphologies, mineralogies, and chemistry of the samples studied are superficially similar to typical iron corrosion by-products. However, we found V present as discrete grains of Pb{sub 5}(V{sup 5+}O{sub 4}){sub 3}Cl likely embedded in the surface regions of the iron corrosion by-products. Concentrations of V observed in bulk XRF analysis ranged from 35 to 899 mg kg{sup -1}. We calculate that even in pipes with iron corrosion by-products with low V concentration, 100 mg kg{sup -1}, as little as 0.0027% of a 0.1-cm thick X 100-cm long section of that corrosion by-product needs to be disturbed to increase V concentrations in the drinking water at the tap to levels well above the 15 {micro}g L{sup -1} notification level set by the State of California and could adversely impact human health. In addition, it is likely that large reservoirs of V are associated with iron corrosion by-products in unlined cast iron mains and service branches in numerous drinking water distribution systems.

  4. Investigation of factors affecting the accumulation of vinyl chloride in polyvinyl chloride piping used in drinking water distribution systems.

    PubMed

    Walter, Ryan K; Lin, Po-Hsun; Edwards, Marc; Richardson, Ruth E

    2011-04-01

    Plastic piping made of polyvinyl chloride (PVC), and chlorinated PVC (CPVC), is being increasingly used for drinking water distribution lines. Given the formulation of the material from vinyl chloride (VC), there has been concern that the VC (a confirmed human carcinogen) can leach from the plastic piping into drinking water. PVC/CPVC pipe reactors in the laboratory and tap samples collected from consumers homes (n = 15) revealed vinyl chloride accumulation in the tens of ng/L range after a few days and hundreds of ng/L after two years. While these levels did not exceed the EPA's maximum contaminant level (MCL) of 2 μg/L, many readings that simulated stagnation times in homes (overnight) exceeded the MCL-Goal of 0 μg/L. Considerable differences in VC levels were seen across different manufacturers, while aging and biofilm effects were generally small. Preliminary evidence suggests that VC may accumulate not only via chemical leaching from the plastic piping, but also as a disinfection byproduct (DBP) via a chlorine-dependent reaction. This is supported from studies with CPVC pipe reactors where chlorinated reactors accumulated more VC than dechlorinated reactors, copper pipe reactors that accumulated VC in chlorinated reactors and not in dechlorinated reactors, and field samples where VC levels were the same before and after flushing the lines where PVC/CPVC fittings were contributing. Free chlorine residual tests suggest that VC may be formed as a secondary, rather than primary, DBP. Further research and additional studies need to be conducted in order to elucidate reaction mechanisms and tease apart relative contributions of VC accumulation from PVC/CPVC piping and chlorine-dependent reactions. PMID:21420710

  5. Singing Corrugated Pipes

    ERIC Educational Resources Information Center

    Crawford, Frank S.

    1974-01-01

    Presents theoretical and experimental observations made with a musical toy called Hummer consisting of a corrugated flexible plastic tube about three-feet long and one-inch diam open at both ends. Included are descriptions of three new instruments: the Water Pipe, the Gas-Pipe Corrugahorn Bugle, and the Gas-Pipe Blues Corrugahorn. (CC)

  6. A statistical treatment of accelerated life test data for copper-water heat pipes

    NASA Astrophysics Data System (ADS)

    Murakami, M.; Arai, K.; Kojima, Y.

    1988-03-01

    A statistical method is proposed to treat accelerated life test data conducted at several elevated temperatures for a sufficient number of commercially available Cu-water heat pipes to predict the operation life. The temperature distribution measurements periodically carried out yield both data sets concerning the temperature drop and the gas column length as measures of noncondensible gas accumulation. The gas analysis with a mass spectrometer is also carried out to obtain the gas quantity data. A method of unified regression analysis to take account of the acceleration factor resulted from a number of elevated test temperatures is proposed to establish a method to predict the long term performance degradation from life test data. The mutual correlations among three kinds of data sets are also discussed.

  7. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska

    USGS Publications Warehouse

    Keith, T.E.C.; Thompson, J.M.; Hutchinson, R.A.; White, L.D.

    1992-01-01

    Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8??C in early summer and from 15 to 17??C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. ?? 1992.

  8. THE PUBLIC HEALTH IMPORTANCE OF BIOFILM SLIME IN DRINKING WATER PIPES: CREATING HIDEOUTS FOR THE PATHOGENIC UNDERWORLD OF MICROBIOLOGY

    EPA Science Inventory

    Biofilms consist of many species of bacteria, protozoa, and other microbes living together on almost any type of moist surface. Within drinking water distribution systems, biofilms grow readily on the inner walls of pipes, even in the presence of chlorine disinfectants. Some mi...

  9. The effect of applying a pipe-joint lubricant to connect ductile iron pipe on off-flavors in drinking water distribution systems.

    PubMed

    Wiesenthal, K E; Amah, G; Lam, T; Suffet, I H

    2004-01-01

    This study was used to help define the contribution to taste and odor problems caused by the application of a pipe-joint lubricant to connect ductile iron pipe in drinking water distribution systems. Tyton Joint Lubricant (TJL) was studied. The lubricant produced odors that are continually oxidized by chlorine or oxygen. The mechanism of oxidative rancidity, one of the major causes of food spoilage is the apparent mechanism of oxidation. The odors produced by the lubricant were characterized by a Flavor Profile Analysis (FPA) panel as well as GC/MS and Sensory GC analysis. The most common odors perceived in the TJL water samples for the first six days were waxy/oily and soapy odors with a rancid oil, odor note. The waxy/oily and soapy odors decreased with time in the chlorine medium as the rancid oily odor note increased. Numerous aldehydes, ketones, alcohols and borneol compounds, produced from the lubricants, were tentatively identified and linked to the odors perceived by the FPA panel. PMID:15237630

  10. Fracture mechanics and full scale pipe break testing for the Department of Environment's New Production Reactor-Heavy Water Reactor

    NASA Astrophysics Data System (ADS)

    Poole, A. B.

    Oak Ridge National Laboratory (ORNL) is completing a major task for the Department of Energy (DOE) in the demonstration that the primary piping of the New Production Heavy Water Reactor (NPR-HWR), with its relatively moderate temperature and pressure, should not suffer an instantaneous Double-Ended-Guillotine-Break (DEGB) under design basis loadings and conditions. The growth of possible small preexisting defects in the piping wall was estimated over a plant life of 60 years. This worst case flaw was then evaluated using fracture mechanics methods. J estimation methods and tearing instability approximations used in this analysis are discussed in this paper. It was established that this worst case flaw would increase in size by at least 14 times before pipe instability during an earthquake would even begin to be possible. The fatigue crack growth analysis is discussed in this paper.

  11. Visualization of the freeze/thaw characteristics of a copper/water heat pipe - Effects of non-condensible gas

    NASA Technical Reports Server (NTRS)

    Ochterbeck, J. M.; Peterson, G. P.

    1991-01-01

    The freeze/thaw characteristics of a copper/water heat pipe of rectangular cross section were investigated experimentally to determine the effect of variations in the amount of non-condensible gases (NCG) present. The transient internal temperature profiles in both the liquid and vapor channels are presented along with contours of the frozen fluid configuration obtained through visual observation. Several interesting phenomena were observed including total blockage of the vapor channel by a solid plug, evaporator dryout during restart, and freezing blowby. In addition, the restart characteristics are shown to be strongly dependent upon the shutdown procedure used prior to freezing, indicating that accurate prediction of the startup or restart characteristics requires a complete thermal history. Finally, the experimental results indicate that the freeze/thaw characteristics of room temperature heat pipes may be significantly different from those occurring in higher temperature, liquid metal heat pipes due to differences in the vapor pressures in the frozen condition.

  12. 14 CFR 252.15 - Cigars and pipes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Cigars and pipes. 252.15 Section 252.15... REGULATIONS SMOKING ABOARD AIRCRAFT § 252.15 Cigars and pipes. Air carriers shall prohibit the smoking of cigars and pipes aboard aircraft....

  13. Visualization of Flow in Pressurizer Spray Line Piping and Estimation of Thermal Stress Fluctuation Caused by Swaying of Water Surface

    NASA Astrophysics Data System (ADS)

    Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki

    The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.

  14. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season

    PubMed Central

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-01-01

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight (“before”) in the indoor water pipes was 15–17 °C, and the water temperature decreased to 4–6 °C after flushing for 10 min (“flushed”). The highest bacterial cell number was observed in water stagnated overnight, and was 5–11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant “flushed” and “taps” values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p < 0.01). Heatmap fingerprints and principle component analyses (PCA) revealed a significant discrimination bacterial community functional metabolic profiles in the water stagnated overnight and flushed water. Serine, threonine, glucose-phosphate, ketobutyric acid, phenylethylamine, glycerol, putrescine were significantly used by “before” water samples. The results suggested that water stagnated at higher temperature should be treated before drinking because of bacterial regrowth. The data from this work provides useful information on reasonable utilization of drinking water after stagnation in indoor pipes during indoor heating periods. PMID:26516885

  15. Water quality permitting: From end-of-pipe to operational strategies.

    PubMed

    Meng, Fanlin; Fu, Guangtao; Butler, David

    2016-09-15

    End-of-pipe permitting is a widely practised approach to control effluent discharges from wastewater treatment plants. However, the effectiveness of the traditional regulation paradigm is being challenged by increasingly complex environmental issues, ever growing public expectations on water quality and pressures to reduce operational costs and greenhouse gas emissions. To minimise overall environmental impacts from urban wastewater treatment, an operational strategy-based permitting approach is proposed and a four-step decision framework is established: 1) define performance indicators to represent stakeholders' interests, 2) optimise operational strategies of urban wastewater systems in accordance to the indicators, 3) screen high performance solutions, and 4) derive permits of operational strategies of the wastewater treatment plant. Results from a case study show that operational cost, variability of wastewater treatment efficiency and environmental risk can be simultaneously reduced by at least 7%, 70% and 78% respectively using an optimal integrated operational strategy compared to the baseline scenario. However, trade-offs exist between the objectives thus highlighting the need of expansion of the prevailing wastewater management paradigm beyond the narrow focus on effluent water quality of wastewater treatment plants. Rather, systems thinking should be embraced by integrated control of all forms of urban wastewater discharges and coordinated regulation of environmental risk and treatment cost effectiveness. It is also demonstrated through the case study that permitting operational strategies could yield more environmentally protective solutions without entailing more cost than the conventional end-of-pipe permitting approach. The proposed four-step permitting framework builds on the latest computational techniques (e.g. integrated modelling, multi-objective optimisation, visual analytics) to efficiently optimise and interactively identify high performance

  16. Comparison of germination responses of Anigozanthos flavidus (Haemodoraceae), Gyrostemon racemiger and Gyrostemon ramulosus (Gyrostemonaceae) to smoke-water and the smoke-derived compounds karrikinolide (KAR1) and glyceronitrile

    PubMed Central

    Downes, Katherine S.; Light, Marnie E.; Pošta, Martin; Kohout, Ladislav; van Staden, Johannes

    2013-01-01

    Background and Aims A major germination-promoting chemical in smoke-water is 3-methyl-2H-furo[2,3-c]pyran-2-one (karrikinolide, KAR1). However, not all species that germinate in response to smoke-water are responsive to KAR1, such as Tersonia cyathiflora (Gyrostemonaceae). In this study, a test was made of whether two Gyrostemon species (Gyrostemonaceae) that have previously been shown to respond to smoke-water, respond to KAR1. If not, then the smoke-derived chemical that stimulates germination of these species is currently unknown. Recently, glyceronitrile was isolated from smoke-water and promoted the germination of certain Anigozanthos species (Haemodoraceae). Whether this chemical promotes Gyrostemon racemiger germination is also examined. Furthermore, an investigation was carried out into whether these species germinate in response to smoke-water derived from burning cellulose alone. Methods Gyrostemon racemiger and G. ramulosus seeds were buried after collection and retrieved in autumn the following year when dormancy was alleviated and seeds had become responsive to smoke-water. Anigozanthos flavidus seeds were after-ripened at 35 °C to alleviate dormancy. Gyrostemon and Anigozanthos seeds were then tested with ‘Seed Starter’ smoke-water, KAR1, glyceronitrile and cellulose-derived smoke-water. Key Results Although Gyrostemon racemiger, G. ramulosus and A. flavidus were all stimulated to germinate by ‘Seed Starter’ smoke-water, none of these species responded to KAR1. Gyrostemon racemiger germination was not promoted by glyceronitrile. This is in contrast to A. flavidus, where glyceronitrile, at concentrations of 1–500 µm, promoted germination, although seedling growth was inhibited at ≥400 µm. Maximum A. flavidus germination occurred at glyceronitrile concentrations of 25–300 µm. Some Gyrostemon germination was promoted by cellulose-derived smoke-water. Conclusions KAR1 and glyceronitrile, chemicals in smoke-water that are known to

  17. Evaluation of sea water piping system after fifteen years of service

    SciTech Connect

    Al Beed, A.A.; Ali, M.

    1999-11-01

    Seawater is the main cooling medium in the petrochemical plant. Failure of the seawater piping systems could lead to total shutdown of the plant. The main piping system in the plant consists of prestressed concrete cylinder pipe (PCCP), cement mortar--lined carbon steel, fiberglass and nickel-copper alloy N04400/ASTM B165 pipe. After more than fifteen years of experience with these materials, evaluation was made to select the most durable material for replacement projects and new construction. This paper discusses the problems associated with each material, repair procedure and materials selection decisions for the long-term operation of the plant.

  18. Secondhand Smoke

    MedlinePlus

    ... Slips & Relapses Slips Happen Tips for Slips Understanding Smoking Secondhand Smoke Quiz: How Bad is Secondhand Smoke? E- ... Slips & Relapses Slips Happen Tips for Slips Understanding Smoking Secondhand Smoke Quiz: How Bad is Secondhand Smoke? E- ...

  19. Detection, integration and persistence of aeromonads in water distribution pipe biofilms.

    PubMed

    Bomo, A-M; Storey, M V; Ashbolt, N J

    2004-06-01

    The occurrence of Aeromonas spp. within biofilms formed on stainless steel (SS), unplasticized polyvinyl chloride (uPVC) and glass (GL) substrata was investigated in modified Robbins Devices (MRD) in potable (MRD-p) and recycled (MRD-r) water systems, a Biofilm Reactor (BR) and a laboratory-scale pipe loop (PL) receiving simulated recycled wastewater. No aeromonads were isolated from the MRD-p whereas 3-10% of SS and uPVC coupons (mean 3.85 CFU cm(-2) and 12.8 CFU cm(-2), respectively) were aeromonad-positive in the MRD-r. Aeromonads were isolated from six SS coupons (67%) (mean 63.4 CFU cm(-2)) and nine uPVC coupons (100%) (mean 6.50x 10(2) CFU cm(-2)) in the BR fed with recycled water and from all coupons (100%) in the simulated recycled water system (PL). Mean numbers of aeromonads on GL and SS coupons were 5.83 x 10(2) CFU cm(-2) and 8.73 x 10(2) CFU cm(-2), respectively. No isolate was of known human health significance (i.e. Aeromonas caviae, A. hydrophila or A. veronii), though they were confirmed as Aeromonas spp. by PCR and fluorescence in situ hybridization (FISH). Challenging the PL biofilms with a slug dose of A. hydrophila (ATCC 14715) showed that biofilm in the PL accumulated in the order of 10(3)-10(4) A. hydrophila cm(-2), the number of which decreased over time, though could not be explained in terms of conventional 1st order decay kinetics. A sub-population of FISH-positive A. hydrophila became established within the biofilm, thereby demonstrating their ability to incorporate and persist in biofilms formed within distribution pipe systems. A similar observation was not made for culturable aeromonads, though the exact human health significance of this remains unknown. These findings, however, further question the adequacy of culture-based techniques and their often anomalous discrepancy with direct techniques for the enumeration of bacterial pathogens in environmental samples. PMID:15387132

  20. Strategies to promote smoking cessation among adolescents.

    PubMed

    Harvey, Johanne; Chadi, Nicholas

    2016-05-01

    In recent years, youth have been exposed to a broader spectrum of tobacco products including smokeless tobacco, hookah (water pipe) and e-cigarettes. Despite active local, provincial/territorial and national prevention strategies and legislated controls, thousands of teenagers develop an addiction to tobacco products each year. Current and available smoking cessation interventions for youth have the potential to help teens stop smoking and, as a result, greatly reduce Canada's health burden in the future. Paediatricians and health care professionals can play a key role in helping teens make informed decisions related to tobacco consumption and cessation. This practice point presents the evidence and rationales for smoking cessation interventions which have been studied in youth specifically, such as individual counselling, psychological support, nicotine replacement therapy, bupropion and varenicline. Interventions for which limited or conflicting data exist are also discussed. PMID:27429574

  1. A MIXTURE OF ORGANOTINS FOUND IN POLYVINYL CHLORIDE (PVC) PIPE IS NOT IMMUNOTOXIC TO SPRAGUE-DAWLEY RATS WHEN GIVEN IN DRINKING WATER

    EPA Science Inventory

    Organotin compounds used in PVC pipe production are of concern to the U.S. EPA because they leach from supply pipes into drinking water and are reported multisystem toxicants. We assessed immune functions in male Sprague-Dawley rats exposed to the mixture of organotins used in P...

  2. Public health and pipe breaks in water distribution systems: analysis with internet search volume as a proxy.

    PubMed

    Shortridge, Julie E; Guikema, Seth D

    2014-04-15

    Drinking water distribution infrastructure has been identified as a factor in waterborne disease outbreaks and improved understanding of the public health risks associated with distribution system failures has been identified as a priority area for research. Pipe breaks may pose a risk, as their occurrence and repair can result in low or negative pressure, potentially allowing contamination of drinking water from adjacent soils. However, measuring this phenomenon is challenging because the most likely health impact is mild gastrointestinal (GI) illness, which is unlikely to result in a doctor or hospital visit. Here we present a novel method that uses data mining techniques and internet search volume to assess the relationship between pipe breaks and symptoms of GI illness in two U.S. cities. Weekly search volume for the terms diarrhea and vomiting was used as the response variable with the number of pipe breaks in each city as a covariate as well as additional covariates to control for seasonal patterns, search volume persistence, and other sources of GI illness. The fit and predictive accuracy of multiple regression and data mining techniques were compared, with the best performance obtained using random forest and bagged regression tree models. Pipe breaks were found to be an important and positively correlated predictor of internet search volume in multiple models in both cities, supporting previous investigations that indicated an increased risk of GI illness from distribution system disturbances. PMID:24495984

  3. Installation of 66kV XLPE power-optical fiber composite submarine cable and water pipe for the Trans-Tokyo Bay Highway

    SciTech Connect

    Nakamura, Y.; Kuroshima, T.; Takeuchi, M.; Sanpei, T.; Suzuki, S.; Ishikura, S.; Inoue, H.; Uematsu, T.

    1995-07-01

    The manufacturing and the installation of the optical fiber composite submarine cable and water pipe for the Trans-Tokyo Bay Highway were completed in 1993. It was the Japanese longest 66kV XLPE power-optical fiber composite submarine cable and the first application of optical fiber composite submarine water pipe composed of two hollow galvanized steel armor wires inserted with optical fiber to monitor and control of construction sites. This paper describes the application and development of the hollow steel armor wire with optical fiber ribbon and the features of construction and installation of the optical fiber composite submarine cable and water pipe.

  4. Ground deformation at Campi Flegrei caldera using long water pipe tiltmeters and sea level gauges

    NASA Astrophysics Data System (ADS)

    Scarpa, R.; Capuano, P.; Tammaro, U.; Bilham, R.

    2012-04-01

    Campi Flegrei is a caldera complex located in the Campanian plain region of southern Italy, 15 km west of the city of Naples, and forms part of the Roman co-magmatic province which is a volcanic chain that characterizes the western coast of the country. The Campi Flegrei caldera was generated by several collapses produced by strong explosive eruptions. The main caldera at Campi Flegrei is 12 - 15km across and its rim is thought to have been formed during the catastrophic eruption, occurred 39 ky ago ca. which produced a deposit referred to as the Campanian Ignimbrite. Campi Flegrei area periodically experiences significant unrest episodes which include ground deformations, the so-called "bradisismo", recorded both by marine terraces, archaeological record and harbour structures. Following the last eruption (Monte Nuovo, 1538) a general subsidence has been interrupted by episodes of uplift, the most recent of which occurred in 1970-72 and 1982-84. In the past decade subsidence has been arrested and has been replaced by intermittent episodes of inflation with short time duration and various maximum amplitude. They occurred in 1989, 1994, 2000, 2004, 2005-06, 2009 and 2011 with duration of few months and maximum amplitude ranging between 3 and 11 cm. Since 2008 an array of water-pipe tiltmeters with lengths between 28 m and 278 m in tunnels on the flanks of the region of maximum inflation has been installed to avoid problems common to the traditional tiltmeters. The tiltmeters record inflation episodes upon which are superimposed local load tides, with amplitudes roughly an order of magnitude greater than the solid Earth body tides. In addition to the tides, the tiltmeters record a line spectrum of seiches in the Bay of Naples and in the Tyrrenian sea. We use data recorded by three tide gauges in the Bay of Pozzuoli to compare water pipe data with sea level to extract astronomical tidal components and seiches periods particularly between 20 minutes and 56 minutes that

  5. Enhancing Phytoremediation Potential of Pennisetum clandestinum Hochst in Cadmium-Contaminated Soil Using Smoke-Water and Smoke-Isolated Karrikinolide.

    PubMed

    Okem, Ambrose; Kulkarni, Manoj G; Van Staden, Johannes

    2015-01-01

    The use of plant growth regulators (PGRs) and biostimulants to enhance phytoextraction is gaining popularity in phytoremediation technology. This study investigated the stimulatory effects of smoke-water (SW), a smoke-derived compound karrikinolide (KAR1) and other known plant growth regulators (PGRs) [gibberellic acid (GA3), kinetin (Kin) and indole-3-butyric acid (IBA)] to enhance the phytoextraction potential of Pennisetum clandestinum. Pennisetum clandestinum seedlings were grown for 10 weeks in vermiculite using Hoagland's nutrient solution and were treated with cadmium (Cd) (2, 5, and 10 mg L(-1)) and SW, KAR1 and PGRs. KAR1 exhibited positive effects on shoot and root dry weight (140 and 137 mg respectively) at the highest concentration of Cd (10 mg L(-1)) compared to all the other treatments. KAR1 and SW treatments used in the present study significantly improved the phytoextraction potential of P. clandestinum (602 and 575 mg kg(-1) respectively) compared to the other tested PGRs. This is the first report on the use of SW and KAR1 to enhance phytoremediation potential in P. clandestinum. Further studies are needed to elucidate the exact mechanisms of smoke constituents involved in phytoextraction potential of plant species. PMID:25581641

  6. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Phase 1, Final report

    SciTech Connect

    Rice, S.F.; LaJeunesse, C.A.; Hanush, R.G.; Aiken, J.D.; Johnston, S.C.

    1994-01-01

    The US military stockpile has large quantities of obsolete munitions awaiting disposal. Although suitable means for the safe dismantlement of much of this stockpile have been identified, there are still considerable quantities of specialty materials for which existing methods have been deemed inappropriate from an environmental standpoint. Among these munitions are colored spotting dyes and a wide assortment of pyrotechnics, including colored smokes and flares. In open bum or incineration treatment processes these materials produce large quantities of toxic, and possibly carcinogenic, gases and particulate matter. The U.S Army Armament Research, Development and Engineering Center at Picatinny Arsenal, NJ is interested in developing a method of treatment that will dispose of these munitions without the difficulties identified above. This report examines the feasibility of supercritical water oxidation, an emerging waste treatment technology, to process these materials. Four colored dyes and one pyrotechnic smoke composition were processed in a flow reactor, and the effluent was analyzed to determine the effectiveness of the processing. The tests showed that all of these materials could by oxidized to much less hazardous compounds in less than 10 seconds with a destruction and removal efficiency (DRE) typically > 99.5%. Two technical issues were identified as needing more attention in Phase II of this project: formation of sulfate and chloride salt deposits within the flow reactor and corrosion of the materials of construction.

  7. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Final report: Pilot plant conceptual design

    SciTech Connect

    LaJeunesse, C.A.; Chan, Jennifer P.; Raber, T.N.; Macmillan, D.C.; Rice, S.F.; Tschritter, K.L.

    1993-11-01

    The existing demilitarization stockpile contains large quantities of colored smoke, spotting dye, and pyrotechnic munitions. For many years, these munitions have been stored in magazines at locations within the continental United States awaiting completion of the life-cycle. The open air burning of these munitions has been shown to produce toxic gases that are detrimental to human health and harmful to the environment. Prior efforts to incinerate these compositions have also produced toxic emissions and have been unsuccessful. Supercritical water oxidation (SCWO) is a rapidly developing hazardous waste treatment method that can be an alternative to incineration for many types of wastes. The primary advantage SCWO affords for the treatment of this selected set of obsolete munitions is that toxic gas and particulate emissions will not occur as part of the effluent stream. Sandia is currently designing a SCWO reactor for the US Army Armament Research, Development & Engineering Center (ARDEC) to destroy colored smoke, spotting dye, and pyrotechnic munitions. This report summarizes the design status of the ARDEC reactor. Process and equipment operation parameters, process flow equations or mass balances, and utility requirements for six wastes of interest are developed in this report. Two conceptual designs are also developed with all process and instrumentation detailed.

  8. Effects of dynamic load on flow and heat transfer of two-phase boiling water in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Yao, Qiu-Ping; Song, Bao-Yin; Zhao, Mei; Cao, Xi

    2009-07-01

    An experimental investigation was performed to obtain the flow and heat transfer characteristics of single-phase water flow and two-phase pipe boiling water flow under high gravity (Hi-G) in present work. The experiments were conducted on a rotating platform, and boiling two-phase flow state was obtained by means of electric heating. The data were collected specifically in the test section, which was a lucite pipe with inner diameter of 20 mm and length of 400 mm. By changing the parameters, such as rotation speed, inlet temperature, flow rate, and etc., and analyzing the fluid resistance, effective heat and heat transfer coefficient of the experimental data, the effects of dynamic load on the flow and heat transfer characteristics of single phase water and two-phase boiling water flow were investigated and obtained. The two-phase flow patterns under Hi-G condition were obtained with a video camera. The results show that the dynamic load significantly influences the flow characteristic and boiling heat transfer of the two-phase pipe flow. As the direction of the dynamic load and the flow direction are opposite, the greater the dynamic load, the higher the outlet pressure and the flow resistance, and the lower the flow rate, the void fraction, the wall inner surface temperature and the heat transfer capability. Therefore, the dynamic load will block the fluid flow, enhance heat dissipation toward the ambient environment and reduce the heat transfer to the two-phase boiling flow.

  9. Signal Coherence and Improved Bandwidth in Kilometer-Scale Water-Pipe Tilt-Meters for Monitoring Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Bilham, R.; Suszek, N.; Flake, R.; Szeliga, W.; Melbourne, T.

    2005-12-01

    Slow earthquakes have been detected by GPS networks in numerous subduction zones but signals are frequently close to detection levels. Although strain-meters and tilt-meters possess a thousandfold higher resolution (~ 1 nstrain & 1 nrad), noise levels in these instruments tend to be site specific and it is sometimes considered necessary to instal clusters to distinguish tectonic signal from local noise. This approach to strain measurement can more than double the cost of initial installation. We report here first results from a half-km-long water pipe tiltmeter in which a test for signal coherence is an inherent product of the geometry of the instrument. An appealing feature of water-pipe tiltmeters is that they cost 25% less than a borehole strain-meter, assume long good long term stability within days of installation, and unlike the decade-longevity of borehole systems, have an indefinite life span. In a Michelson tilt-meter, tilt of the earth's surface is manifest as a rise in water level at one end of the pipe and an equal and opposite reduction in water level at the other. In newly installed tiltmeters in the Cascadia region we have introduced a central transducer that effectively provides two 250-m-long independent measures of tilt in each 500 m long pipe, and hence a measure of signal coherence for little extra cost. Data from each sensor are telemetered via radio modem to a remote computer at rates of 1-6 samples/minute. Initial results from four 500 m long water pipes installed in the Cascadia region, reveal that a secular drift level of better than 0.1 microradian/yr is established within a week of installation and that the two half-tiltmeters track each other closely at all periods. Noise levels are frequency dependent and vary form 0.2 nrad at hourly periods to 100 nrad at yearly periods. Atmospheric and aperiodic ocean loading appears to be the largest souce of noise at periods of several days to weeks in the bandwidth where slow earthquakes are

  10. Experimental and analytical study of water pipe's rupture for damage identification purposes

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Konstantinos G.; Shinozuka, Masanobu; Beikae, Mohsen

    2011-04-01

    A malfunction, local damage or sudden pipe break of a pipeline system can trigger significant flow variations. As shown in the paper, pressure variations and pipe vibrations are two strongly correlated parameters. A sudden change in the flow velocity and pressure of a pipeline system can induce pipe vibrations. Thus, based on acceleration data, a rapid detection and localization of a possible damage may be carried out by inexpensive, nonintrusive monitoring techniques. To illustrate this approach, an experiment on a single pipe was conducted in the laboratory. Pressure gauges and accelerometers were installed and their correlation was checked during an artificially created transient flow. The experimental findings validated the correlation between the parameters. The interaction between pressure variations and pipe vibrations was also theoretically justified. The developed analytical model explains the connection among flow pressure, velocity, pressure wave propagation and pipe vibration. The proposed method provides a rapid, efficient and practical way to identify and locate sudden failures of a pipeline system and sets firm foundations for the development and implementation of an advanced, new generation Supervisory Control and Data Acquisition (SCADA) system for continuous health monitoring of pipe networks.

  11. Transient temperature responses of hydronic radiant floor heating system by different pipe embedding depth and water supply condition.

    PubMed

    Chung, K S; Sohn, J Y; Baik, Y K; Kang, J S

    1993-07-01

    "Ondol" is a Korean unique heating system. It is a specific radiant floor heating system using combustion heat of briquette or timber in Korea. Such traditional "Ondol" is changed to radiant heating system with pipe-coil embedded in the floor or slab. This study has contributed to the understandings of the transient behaviours of Ondol-heated floor panels and enclosure exposed to this type of heating system. The result is that the water supply temperature had a large effect on the rate of increase in floor surface and room air temperature. But, in spite of a higher water supply temperature, the heat flow rate was not increased considerably. The shallow pipe embedding depths, of course, result in a low heat flow rate. PMID:8373479

  12. Using Liquid Smoke to Improve Mechanical and Water Resistance Properties of Gelatin Films.

    PubMed

    Wang, Wenwang; Li, Cong; Zhang, Hongjie; Ni, Yonghao

    2016-05-01

    Improvement of mechanical and water barrier properties is critical for gelatin films when applied to edible food packaging. A liquid smoke (LS) obtained from hawthorn nucleus was used to improve the performance of gelatin film based on its abundant compounds. Through SPME-GC-MS analysis, 86 volatile and semi-volatile chemical compounds was detected in LS, in which the total carbonyl compounds were 27.60%, with the main aldehyde as 2-furaldehyde (9.83%). For gelatin films, an observable influence of LS on film transparency was observed in gelatin films, but not for its thickness and microstructure. Desirably, adding LS into gelatin solution increased the tensile strength of the films, with a better value of 16.38 MPa as 3 wt% LS added, compared with the control (10.30 MPa). Accordingly, film elongation decreased with a LS dependent manner. Furthermore, the water resistance properties of gelatin film were improved by the LS addition, which was supported by the results of water contact angle, water vapor permeability. Moreover, the addition of LS also led to a higher insolubility for gelatin films. Also, thermal stability of the LS treated gelatin films was slightly enhanced with the DSC analysis. According to the FTIR spectra and crosslinking degree detection results, all the above enhancing of gelatin film should be attributed to the crosslinking between carbonyl groups in LS and amide functionalities in gelatin based on nucleophilic reaction. PMID:27061211

  13. Statistical failure models for water distribution pipes - A review from a unified perspective.

    PubMed

    Scheidegger, Andreas; Leitão, João P; Scholten, Lisa

    2015-10-15

    This review describes and compares statistical failure models for water distribution pipes in a systematic way and from a unified perspective. The way the comparison is structured provides the information needed by scientists and practitioners to choose a suitable failure model for their specific needs. The models are presented in a novel framework consisting of: 1) Clarification of model assumptions. The models originally formulated in different mathematical forms are all presented as failure rate. This enables to see differences and similarities across the models. Furthermore, we present a new conceptual failure rate that an optimal model would represent and to which the failure rate of each model can be compared. 2) Specification of the detailed data assumptions required for unbiased model calibration covering the structure and completeness of the data. 3) Presentation of the different types of probabilistic predictions available for each model. Nine different models and their variations or further developments are presented in this review. For every model an overview of its applications published in scientific journals and the available software implementations is provided. The unified view provides guidance to model selection. Furthermore, the model comparison presented herein enables to identify areas where further research is needed. PMID:26162313

  14. Innovative technology summary report: High-speed clamshell pipe cutter

    SciTech Connect

    1998-09-01

    The Hanford Site C Reactor Technology Demonstration Group demonstrated the High-Speed Clamshell Pipe Cutter technology, developed and marketed by Tri Tool Inc. (Rancho Cordova, California). The models demonstrated are portable, split-frame pipe lathes that require minimal radial and axial clearances for severing and/or beveling in-line pipe with ranges of 25 cm to 41 cm and 46 cm to 61 cm nominal diameter. The radial clearance requirement from the walls, floors, or adjacent pipes is 18 cm. The lathes were supplied with carbide insert conversion kits for the cutting bits for the high-speed technique that was demonstrated. Given site-specific factors, this demonstration showed the cost of the improved technology to be approximately 30% higher than the traditional (baseline) technology (oxyacetylene torch) cost of $14,400 for 10 cuts of contaminated 41-cm and 61-cm-diameter pipe at C Reactor. Actual cutting times were faster than the baseline technology; however, moving/staging the equipment took longer. Unlike the baseline torch, clamshell lathes do not involve applied heat, flames, or smoke and can be operated remotely, thereby helping personal exposures to be as low as reasonably achievable. The baseline technology was demonstrated at the C Reactor north and south water pipe tunnels August 19--22, 1997. The improved technology was demonstrated in the gas pipe tunnel December 15--19.

  15. Durability and Reliability of Large Diameter HDPE Pipe for Water Main Applications (Web Report 4485)

    EPA Science Inventory

    Research validates HDPE as a suitable material for use in municipal piping systems, and more research may help users maximize their understanding of its durability and reliability. Overall, corrosion resistance, hydraulic efficiency, flexibility, abrasion resistance, toughness, f...

  16. Large-basin ground water circulation and paleo-reconstruction of circulation leading to uranium mineralization in Grand Canyon breccia pipes, Arizona

    SciTech Connect

    Huntoon, P.W.

    1996-07-01

    Breccia pipes - vertical collapse structures - are common in the Phanerozoic sedimentary section in the Grand Canyon region. Breccias in economically significant pipes are as great as 900 m high and 90 m in diameter. The pipes originated through collapse into paleocaverns in Mississippian carbonates. The large heights of the mineralized pipes is attributed to upward stoping resulting from progressive creation of space within the pipes through dissolution of wall rocks and soluble constituents in the breccia clasts. The paleocaves that served as nucleation sites for the pipes date from Mississippian time. Stoping appears to have been reactivated or accelerated during Triassic time as terrains to the south became uplifted. Uplift cause hydraulic gradients within aquifers in the Paleozoic section to increase significantly which enhanced ground water circulation and attendant dissolution. The most likely source for uranium in the Grand Canyon breccia pipes was eroding volcanic and Precambrian crystalline rocks in the Triassic Mogollon highlands south of the Grand Canyon region. The circulation model proposed herein assumes that uranium-rich waters originating in the highlands recharged through the exposed Redwall Limestone and circulated northward in the artesian Redwall aquifer. On reaching the Grand Canyon region, the water circulated upward into the Phanerozoic section in the breccia pipes which served as permeability pathways through thick confining strata. The pipes concentrated fluid circulation and directed it through reducing environments which caused precipitation of the uranium and associated metals yielding a number of economic uranium ore bodies. The architecture of the circulation systems in the Colorado plateau prior to incision of the Colorado river was such that hydraulic heads decreased within successively shallower aquifers. Consequently, head gradients at any location were upward in the pipes during the mineralizing stages.

  17. 31 CFR 700.14 - Smoking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.14 Smoking. Smoking of cigarettes, cigars and pipes is prohibited in all FLETC buildings and vehicles. 31 CFR Ch. VIII (7-1-13 Edition) Office of... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Smoking. 700.14 Section 700.14...

  18. 31 CFR 700.14 - Smoking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.14 Smoking. Smoking of cigarettes, cigars and pipes is prohibited in all FLETC buildings and vehicles. 31 CFR Ch. VIII (7-1-10 Edition) Office of... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Smoking. 700.14 Section 700.14...

  19. 31 CFR 700.14 - Smoking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.14 Smoking. Smoking of cigarettes, cigars and pipes is prohibited in all FLETC buildings and vehicles. 31 CFR Ch. VIII (7-1-12 Edition) Office of... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Smoking. 700.14 Section 700.14...

  20. 31 CFR 700.14 - Smoking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.14 Smoking. Smoking of cigarettes, cigars and pipes is prohibited in all FLETC buildings and vehicles. 31 CFR Ch. VIII (7-1-11 Edition) Office of... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Smoking. 700.14 Section 700.14...

  1. The difference of detecting water mist and smoke by electromagnetic wave in simulation experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Cui, Bing; Xiao, Si

    2015-10-01

    Although mist is similar to smoke in morphology, their compositions are very different. Therefore there is a significant difference between mist and smoke when detected by electromagnetic wave. This paper puts forward a kind of feasible solution based on Ansoft HFSS software about how to determine the forest fire by distinguishing mist and smoke above the forest. The experiments simulate the difference between mist and smoke model when detected by electromagnetic wave in different wavelengths. We find the mist and smoke model cannot absorb or reflect electromagnetic wave efficiently in Megahertz band. While in Gigahertz band mist model began to absorb and reflect electromagnetic wave above 650 Gigahertz band, but no change in smoke model. And the biggest difference appears in Terahertz band.

  2. Heterogeneous nucleation and growth of water vapor on meteoric smoke particle analogues at mesospheric conditions

    NASA Astrophysics Data System (ADS)

    Nachbar, Mario; Duft, Denis; Leisner, Thomas

    2016-04-01

    Sub 2 nm meteoric smoke particles (MSP) produced from the ablation and recondensation of meteoric material are believed to be the major kind of nuclei causing the formation of water ice particles in the mesopause of Earth at heights of 80-90 km. These so called noctiLucent clouds (NLC) are frequently detected during polar summer, whereas the microphysical nucleation process and subsequent growth on such small particles are understood only poorly. Parameterizing these processes results in large uncertainties especially due to a lack of experimental data on desorption energies and critical saturation for the activation of nucleation under realistic mesospheric conditions, which states the need of laboratory measurements. We produce charged nanometer sized (2-3 nm) MSP analogues in a microwave plasma particle source and transfer them to a novel linear ion trap which allows us to trap the particles under typical mesospheric temperatures and H2O concentrations. The adsorption of H2O molecules on the particles surface followed by nucleation and growth can be examined by analyzing the mass distribution of the particles with a time-of-flight mass spectrometer as function of the residence time under supersaturated conditions. In this contribution we present such measurements for single positively as well as negatively charged particles which allow us to determine the desorption energy of water vapor on the investigated nanoparticles as well as the critical saturation needed to activate nucleation and subsequent growth.

  3. Smart Pipes—Instrumented Water Pipes, Can This Be Made a Reality?

    PubMed Central

    Metje, Nicole; Chapman, David N.; Cheneler, David; Ward, Michael; Thomas, Andrew M.

    2011-01-01

    Several millions of kilometres of pipes and cables are buried beneath our streets in the UK. As they are not visible and easily accessible, the monitoring of their integrity as well as the quality of their contents is a challenge. Any information of these properties aids the utility owners in their planning and management of their maintenance regime. Traditionally, expensive and very localised sensors are used to provide irregular measurements of these properties. In order to have a complete picture of the utility network, cheaper sensors need to be investigated which would allow large numbers of small sensors to be incorporated into (or near to) the pipe leading to so-called smart pipes. This paper focuses on a novel trial where a short section of a prototype smart pipe was buried using mainly off-the-shelf sensors and communication elements. The challenges of such a burial are presented together with the limitations of the sensor system. Results from the sensors were obtained during and after burial indicating that off-the-shelf sensors can be used in a smart pipes system although further refinements are necessary in order to miniaturise these sensors. The key challenges identified were the powering of these sensors and the communication of the data to the operator using a range of different methods. PMID:22164027

  4. Assessing the Spatial Distribution of Perfluorooctanoic Acid Exposure via Public Drinking Water Pipes Using Geographic Information Systems

    PubMed Central

    Hoffman, Kate; Fletcher, Tony

    2013-01-01

    Objectives Geographic Information Systems (GIS) is a powerful tool for assessing exposure in epidemiologic studies. We used GIS to determine the geographic extent of contamination by perfluorooctanoic acid, C8 (PFOA) that was released into the environment from the DuPont Washington Works Facility located in Parkersburg, West Virginia. Methods Paper maps of pipe distribution networks were provided by six local public water districts participating in the community cross-sectional survey, the C8 Health Project. Residential histories were also collected in the survey and geocoded. We integrated the pipe networks and geocoded addresses to determine which addresses were serviced by one of the participating water districts. The GIS-based water district assignment was then compared to the participants' self-reported source of public drinking water. Results There were a total of 151,871 addresses provided by the 48,800 participants of the C8 Health Project that consented to geocoding. We were able to successfully geocode 139,067 (91.6%) addresses, and of these, 118,209 (85.0%) self-reported water sources were confirmed using the GIS-based method of water district assignment. Furthermore, the GIS-based method corrected 20,858 (15.0%) self-reported public drinking water sources. Over half (54%) the participants in the lowest GIS-based exposure group self-reported being in a higher exposed water district. Conclusions Not only were we able to correct erroneous self-reported water sources, we were also able to assign water districts to participants with unknown sources. Without the GIS-based method, the reliance on only self-reported data would have resulted in exposure misclassification. PMID:24010064

  5. [Smoking and smoking weaning].

    PubMed

    Gutzwiller, F; Bucher, H

    1994-10-01

    Stop-smoking counselling is a challenging task in primary health care, its efficacy being often underestimated by the physician. Health care physicians are not very inclined to advise their smoking patients to stop smoking and give specific counselling. This is in contradiction with the expectations of more than two thirds of the smoking patients, who expect their physicians to help them. The present article discusses the therapeutical methods for stop-smoking counselling in primary health care. In particular, the article illustrates the importance for this support (including the possibilities for nicotin substitution in the weaning stage). PMID:7839325

  6. Farm Water Supply and Sanitation--Pipe, Plumbing, Skills and Symbols. Student Materials. V.A. III. V-D-1, V-D-2.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Designed for use by individuals enrolled in vocational agricultural classes, these student materials deal with farm water supply, sanitation, and plumbing skills. Topics covered in the unit are maintaining the farm water supply; repairing faucets and valves, leaks in pipes and storage tanks, and water closets; clearing clogged drains and traps;…

  7. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    SciTech Connect

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  8. Statistical evaluation of light water reactor piping damping data for use in PRA (Probabilistic Risk Assessment) analyses

    NASA Astrophysics Data System (ADS)

    Ware, A. G.

    This paper presents the results of studies used to quantify, on a statistical basis, one of the parameters (piping system damping) input to probabilistic risk assessment (PRA) analyses of nuclear structures. Damping data were selected from tests in which the piping had been vibrated at levels representative of at least moderate severity seismic or hydrodynamic transients. These data, representing 27 light water reactor type piping systems, formed the basis for the statistical damping study. Most of these systems were actual nuclear power plant systems, and the lowest mode was < 8 Hz in over 80/percent/ of the systems. Damping was treated as independent of frequency (or mode number). The statistical analysis showed that a lognormal probability fit provided a suitable approximation of the raw data. For the cases in which all data were considered (which allowed duplicate tests for each system to be included so that the overall data were biased by those systems with the most data), mean lognormal damping values ranged from 2.68/percent/ to 3.55/percent/ of critical. When duplicate tests were eliminated, the means ranged from 3.12/percent/ to 3.72/percent/ of critical. For the final cases, which considered only the lowest mode at its highest excitation level, mean lognormal damping values ranged from 3.28/percent/ to 6.50/percent/ of critical.

  9. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  10. Evaluation of cracking in feedwater piping adjacent to the steam generators in Nine Pressurized Water Reactor Plants

    SciTech Connect

    Goldberg, A.; Streit, R.D.; Scott, R.G.

    1980-06-25

    Cracking in ASTM A106-B and A106-C feedwater piping was detected near the inlet to the steam generators in a number of pressurized water reactor plants. We received sections with cracks from nine of the plants with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Variations were observed in piping surface irregularities, corrosion-product, pit, and crack morphology, surface elmental and crystal structure analyses, and steel microstructures and mechanical properties. However, with but two exceptions, namely, arrest bands and major surface irregularities, we were unable to relate the extent of cracking to any of these factors. Tensile and fracture toughness (J/sub Ic/ and tearing modulus) properties were measured over a range of temperatures and strain rates. No unusual properties or microstructures were observed that could be related to the cracking problem. All crack surfaces contained thick oxide deposits and showed evidence of cyclic events in the form of arrest bands. Transmission electron microscopy revealed fatigue striations on replicas of cleaned crack surfaces from one plant and possibly from three others. Calculations based on the observed striation spacings gave a value of ..delta..sigma = 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses. Although surface irregularities and corrosion pits were sources for crack initiation and corrosion may have contributed to crack propagation, it is proposed that the overriding factor in the cracking problem is the presence of unforeseen cyclic loads.

  11. A case study to detect the leakage of underground pressureless cement sewage water pipe using GPR, electrical, and chemical data.

    PubMed

    Liu, Guanqun; Jia, Yonggang; Liu, Hongjun; Qiu, Hanxue; Qiu, Dongling; Shan, Hongxian

    2002-03-01

    The exploration and determination of leakage of underground pressureless nonmetallic pipes is difficult to deal with. A comprehensive method combining Ground Penetrating Rader (GPR), electric potential survey and geochemical survey is introduced in the leakage detection of an underground pressureless nonmetallic sewage pipe in this paper. Theoretically, in the influencing scope of a leakage spot, the obvious changes of the electromagnetic properties and the physical-chemical properties of the underground media will be reflected as anomalies in GPR and electrical survey plots. The advantages of GPR and electrical survey are fast and accurate in detection of anomaly scope. In-situ analysis of the geophysical surveys can guide the geochemical survey. Then water and soil sampling and analyzing can be the evidence for judging the anomaly is caused by pipe leakage or not. On the basis of previous tests and practical surveys, the GPR waveforms, electric potential curves, contour maps, and chemical survey results are all classified into three types according to the extent or indexes of anomalies in orderto find out the leakage spots. When three survey methods all show their anomalies as type I in an anomalous spot, this spot is suspected as the most possible leakage location. Otherwise, it will be down grade suspected point. The suspect leakage spots should be confirmed by referring the site conditions because some anomalies are caused other factors. The excavation afterward proved that the method for determining the suspected location by anomaly type is effective and economic. Comprehensive method of GRP, electric potential survey, and geochemical survey is one of the effective methods in the leakage detection of underground nonmetallic pressureless pipe with its advantages of being fast and accurate. PMID:11917994

  12. These Pipes Are "Happening"

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  13. An experimental study on the performance of a stainless steel-water loop heat pipe under natural cooling condition

    NASA Astrophysics Data System (ADS)

    Wang, Yiwei; Cen, Jiwen; Jiang, Fangming; Zhu, Xiong

    2014-02-01

    Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe (LHP) under natural cooling condition. The LHP heat transfer performance, including start-up performance, temperature oscillation and total thermal resistance at different heat loads and with different incline angles have been investigated systematically. Experimental results show that at an optimal heat load (i.e. 60 W) and with the LHP being inclined 60° to the horizontal plane, the total thermal resistance is lowered to be ˜0.24 K/W, and the temperature of evaporator could be controlled steadily at around 90°C.

  14. Pattern transitions of oil-water two-phase flow with low water content in rectangular horizontal pipes probed by terahertz spectrum.

    PubMed

    Feng, Xin; Wu, Shi-Xiang; Zhao, Kun; Wang, Wei; Zhan, Hong-Lei; Jiang, Chen; Xiao, Li-Zhi; Chen, Shao-Hua

    2015-11-30

    The flow-pattern transition has been a challenging problem in two-phase flow system. We propose the terahertz time-domain spectroscopy (THz-TDS) to investigate the behavior underlying oil-water flow in rectangular horizontal pipes. The low water content (0.03-2.3%) in oil-water flow can be measured accurately and reliably from the relationship between THz peak amplitude and water volume fraction. In addition, we obtain the flow pattern transition boundaries in terms of flow rates. The critical flow rate Qc of the flow pattern transitions decreases from 0.32 m3 h to 0.18 m3 h when the corresponding water content increases from 0.03% to 2.3%. These properties render THz-TDS particularly powerful technology for investigating a horizontal oil-water two-phase flow system. PMID:26698815

  15. [Effect of smoke water and distillation liquid on the seed germination and seedling growth of Trichosathes kirilowii].

    PubMed

    Zhou, Jie; Bian, Li-hua; Zou, Lin; Zhou, Bin-qian; Liu, Wei; Wang, Xiao

    2015-10-01

    Smoke water and distillation liquid were used to treat the seeds of Trichosathes kirilowii and to study the effects of smoke water and distillation liquid on the seed germination and seedling growth of T. kirilowii. The results showed that germination rate, germination index and germination vigor of T. kirilowii all were significantly improved with the treatment of SW and DL treatment. The activity of α-amylase were significantly increased with the treatment of SW and DL at 1:2,000. SW and DL treatment showed no significant effects on the activity of SOD. The activity of POD were markedly enhanced under the treatment of SW (1:000) and DL (1:2,000). CAT activity were increased with the treatment of SW and DL at 1:2,000 while were inhibited by SW and DL at 1:500. Seedling height and root length were increased with the treatment of SW and DL (1:1,000, 1:2,000). SW and DL treaments improved the content of chlorophyll, and moreover with the concentration of SW and DL, the stimulatory were also increased. This work demonstrated that smoke water and diatillation liquid at 1:2,000 could stimulate the seed germination and seedling growth of T. kirilowii, and it provided the references for the study of seed germination technology. PMID:27062809

  16. 14 CFR 252.15 - Cigars and pipes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Cigars and pipes. 252.15 Section 252.15 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.15 Cigars and pipes. Air carriers shall prohibit the smoking...

  17. 14 CFR 252.15 - Cigars and pipes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Cigars and pipes. 252.15 Section 252.15 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.15 Cigars and pipes. Air carriers shall prohibit the smoking...

  18. 14 CFR 252.15 - Cigars and pipes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Cigars and pipes. 252.15 Section 252.15 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.15 Cigars and pipes. Air carriers shall prohibit the smoking...

  19. 14 CFR 252.15 - Cigars and pipes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Cigars and pipes. 252.15 Section 252.15 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.15 Cigars and pipes. Air carriers shall prohibit the smoking...

  20. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    PubMed

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems. PMID:22367933

  1. Research on Fuzzy Diagnosis Method of Boiler Steam and Water Pipe Leakage

    NASA Astrophysics Data System (ADS)

    Yin, Xianglei; Wang, Yan

    Diagnosis pipe leakage timely and accurately is of great significance for safe and economic operation for boilers. According to the characteristics of the failure of boiler, this paper gives new function to describe fault symptoms and puts forward a new method of fault fuzzy recognition. Through simulation experiment, the new method was validated and compared with the existing fault diagnosis methods. The simulation results show that the new method for boiler failure recognition has high accuracy, and is better than other methods.

  2. Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system--effects of pipe material and sedimentation.

    PubMed

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2011-05-01

    Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (<2 mm) and annelida. In total, 52 water samples were collected from fire hydrants at 31 locations, and two elevated tanks (6000 and 36,000 m(3)) as well as one clean water tank at a waterworks (700 m(3)) were inspected. Several types of invertebrates from the phyla: arthropoda, annelida (worms), plathyhelminthes (flatworms) and mollusca (snails) were found. Invertebrates were found at 94% of the sampling sites in the piped system with A. aquaticus present at 55% of the sampling sites. Populations of A. aquaticus were present in the two investigated elevated tanks but not in the clean water tank at a waterworks. Both adult and juvenile A. aquaticus (length of 2-10 mm) were found in tanks as well as in pipes. A. aquaticus was found only in samples collected from two of seven investigated distribution zones (zone 1 and 2), each supplied directly by one of the two investigated elevated tanks containing A. aquaticus. Microinvertebrates were distributed throughout all zones. The distribution pattern of A. aquaticus had not changed considerably over 20 years when compared to data from samples collected in 1988-89. Centrifugal pumps have separated the distribution zones during the whole period and may have functioned as physical barriers in the distribution systems, preventing large invertebrates such as A. aquaticus to pass alive. Another factor characterising zone 1 and 2 was the presence of cast iron pipes. The frequency of A. aquaticus was significantly higher in cast iron pipes than in plastic pipes. A. aquaticus caught from plastic pipes were mainly single living specimens or dead specimens, which may have been transported passively trough by the water flow, while cast iron pipes provided an environment suitable for relatively large populations of A. aquaticus. Sediment volume for each sample was

  3. Performance and reliability analysis of water distribution systems under cascading failures and the identification of crucial pipes.

    PubMed

    Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo

    2014-01-01

    As a mean of supplying water, Water distribution system (WDS) is one of the most important complex infrastructures. The stability and reliability are critical for urban activities. WDSs can be characterized by networks of multiple nodes (e.g. reservoirs and junctions) and interconnected by physical links (e.g. pipes). Instead of analyzing highest failure rate or highest betweenness, reliability of WDS is evaluated by introducing hydraulic analysis and cascading failures (conductive failure pattern) from complex network. The crucial pipes are identified eventually. The proposed methodology is illustrated by an example. The results show that the demand multiplier has a great influence on the peak of reliability and the persistent time of the cascading failures in its propagation in WDS. The time period when the system has the highest reliability is when the demand multiplier is less than 1. There is a threshold of tolerance parameter exists. When the tolerance parameter is less than the threshold, the time period with the highest system reliability does not meet minimum value of demand multiplier. The results indicate that the system reliability should be evaluated with the properties of WDS and the characteristics of cascading failures, so as to improve its ability of resisting disasters. PMID:24551102

  4. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    PubMed

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus. PMID:14982163

  5. Modeling and testing of reactive contaminant transport in drinking water pipes: chlorine response and implications for online contaminant detection.

    PubMed

    Jeffrey Yang, Y; Goodrich, James A; Clark, Robert M; Li, Sylvana Y

    2008-03-01

    A modified one-dimensional Danckwerts convection-dispersion-reaction (CDR) model is numerically simulated to explain the observed chlorine residual loss for a "slug" of reactive contaminants instantaneously introduced into a drinking water pipe of assumed no or negligible wall demand. In response to longitudinal dispersion, a contaminant propagates into the bulk phase where it reacts with disinfectants in the water. This process generates a U-shaped pattern of chlorine residual loss in a time-series concentration plot. Numerical modeling indicates that the residual loss curve geometry (i.e., slope, depth, and width) is a function of several variables such as axial Péclet number, reaction rate constants, molar fraction of the fast- and slow-reacting contaminants, and the quasi-steady-state chlorine decay inside the "slug" which serves as a boundary condition of the CDR model. Longitudinal dispersion becomes dominant for less reactive contaminants. Pilot-scale pipe flow experiments for a non-reactive sodium fluoride tracer and the fast-reacting aldicarb, a pesticide, were conducted under turbulent flow conditions (Re=9020 and 25,000). Both the experimental results and the CDR modeling are in agreement showing a close relationship among the aldicarb contaminant "slug", chlorine residual loss and its variations, and a concentration increase of chloride as the final reaction product. Based on these findings, the residual loss curve and its geometry are useful tools to identify the presence of a contaminant "slug" and infer its reactive properties in adaptive contaminant detections. PMID:17991507

  6. Provision of private, piped water and sewerage connections and directly observed handwashing of mothers in a peri-urban community of Lima, Peru

    PubMed Central

    Oswald, William E.; Hunter, Gabrielle C.; Kramer, Michael R.; Leontsini, Elli; Cabrera, Lilia; Lescano, Andres G.; Gilman, Robert H.

    2014-01-01

    OBJECTIVES To estimate the association between improved water and sanitation access and handwashing of mothers living in a peri-urban community of Lima, Peru. METHODS We observed 27 mothers directly, before and after installation of private, piped water and sewerage connections in the street just outside their housing plots, and measured changes in the proportion of faecal-hand contamination and hand-to-mouth transmission events with handwashing. RESULTS After provision of water and sewerage connections, mothers were approximately two times more likely to be observed washing their hands within a minute of defecation, compared with when they relied on shared, external water sources and non-piped excreta disposal (RR = 2.14, 95% CI = 0.99–4.62). With piped water and sewerage available at housing plots, handwashing with or without soap occurred within a minute after 48% (10/21) of defecation events and within 15 min prior to 8% (11/136) of handling food events. CONCLUSIONS Handwashing increased following installation of private, piped water and sewerage connections, but its practice remained infrequent, particularly before food-related events. Infrastructural interventions should be coupled with efforts to promote hygiene and ensure access to water and soap at multiple on-plot locations convenient to mothers. PMID:24438038

  7. Water-quality data collected to determine the presence, source, and concentration of lead in the drinking water supply at Pipe Spring National Monument, northern Arizona

    USGS Publications Warehouse

    Macy, Jamie P.; Sharrow, David; Unema, Joel

    2013-01-01

    Pipe Spring National Monument in northern Arizona contains historically significant springs. The groundwater source of these springs is the same aquifer that presently is an important source of drinking water for the Pipe Spring National Monument facilities, the Kaibab Paiute Tribe, and the community of Moccasin. The Kaibab Paiute Tribe monitored lead concentrations from 2004 to 2009; some of the analytical results exceeded the U.S. Environmental Protection Agency action level for treatment technique for lead of 15 parts per billion. The National Park Service and the Kaibab Paiute Tribe were concerned that the local groundwater system that provides the domestic water supply might be contaminated with lead. Lead concentrations in water samples collected by the U.S. Geological Survey from three springs, five wells, two water storage tanks, and one faucet were less than the U.S. Environmental Protection Agency action level for treatment technique. Lead concentrations of rock samples representative of the rock units in which the local groundwater resides were less than 22 parts per million.

  8. Pipe support

    DOEpatents

    Pollono, Louis P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.

  9. Exploring the Relationship Between Fe:Si and Smoke:Water Ratios During Aqueous Alteration of Amorphous Fe-Silicate Smokes

    NASA Astrophysics Data System (ADS)

    Chizmadia, L. J.; Santiago-Soto, W.; Lebron-Rivera, S. A.

    2011-03-01

    The minimum pH values of 3.9 were achieved by the smokes with the highest Fe:Si ratio. The 40 mg:2mL ratios usually provide the lowest pH values for each given composition. The temperature profiles for hydration of Fe-silicate smokes are complex.

  10. Preliminary investigation of structural controls of ground-water movement in Pipe Spring National Monument, Arizona

    USGS Publications Warehouse

    Truini, Margot; Fleming, John B.; Pierce, Herb A.

    2004-01-01

    Pipe Spring National Monument, near the border of Arizona and Utah, includes several low-discharge springs that are the primary natural features of the monument. The National Park Service is concerned about the declines in spring discharge. Seismic-refraction and frequency-domain electromagnetic-induction methods were employed in an attempt to better understand the relation between spring discharge and geologic structure. The particular method used for the seismic-refraction surveys was unable to resolve structural features in the monument. Electromagnetic surveys delineated differences in apparent conductivity of the shallow subsurface deposits. The differences are attributable to differences in saturation, lithology, and structure of these deposits.

  11. Recorded seismic response of a base-isolated steel bridge carrying a steel water pipe

    USGS Publications Warehouse

    Safak, E.; Brady, A.G.

    1989-01-01

    A set of strong motion records was obtained from the base-isolated Santa Ana River Pipeline Bridge during the magnitude 5.9 Whittier Narrows, California, earthquake of October 1, 1987. The analysis of the records show that the level of excitation was not strong enough to fully activate the base isolators. The dominant modes of the response are the translations of the abutment-bridge-pipe system in the longitudinal and transverse directions, and the bending of the steel truss between supports in the vertical direction.

  12. Defect characterization in pipe-to-pipe welds in large diameter stainless steel piping

    SciTech Connect

    Rawl, D.E. Jr.; West, S.L.; Wheeler, D.A.; Louthan, M.R. Jr.

    1990-01-01

    Metallurgical evaluation of pipe-to-pipe welds in large-diameter, Type 304 stainless steel piping used to construct the moderator/coolant water systems for Savannah River Site reactors has demonstrated that small weld defects found in this 1950-vintage system do not compromise the integrity of the system. The weld defects were too small for detection by the pre-service standard radiographic inspection, but were found through systematic ultrasonic testing (UT) and penetrant testing (PT) evaluations of piping that had been removed during upgrades to the piping system. The defects include lack of weld penetration, slag inclusions, and other weld metal discontinuities. These discontinuities typically did not propagate during more than 35 years of service. The defects examined were too small and isolated to degrade the mechanical properties of the pipe-to-pipe weldments and therefore did not compromise the integrity of the piping system. 14 refs., 7 figs.

  13. Experimental investigation on the interfacial characteristics of stratified air-water two-phase flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Hudaya, Akhmad Zidni; Kuntoro, Hadiyan Yusuf; Dinaryanto, Okto; Deendarlianto, Indarto

    2016-06-01

    The interfacial wave characteristics of stratified air-water two-phase flow in a horizontal pipe were experimentally investigated by using the flush-mounted constant electric current method (CECM) sensors. The experiments were conducted in a horizontal two-phase flow loop 9.5 m long (L) consisting of transparent acrylic pipe of 26 mm i.d. (D). To obtain the stratified flow pattern, the superficial gas and liquid velocities were set to 1.02 - 3.77 m/s and 0.016 - 0.92 m/s, respectively. Several interfacial wave patterns as described by several investigators were identified. The common parameters such as liquid hold-up, probability distribution function, wave velocity and wave frequency were investigated as the function of the liquid and gas flow rates. The interfacial curvature was calculated on the basis of the liquid hold-up data from the CECM sensors and the liquid film thickness data from the image processing technique in the previous work. As a result, it was found that the mean liquid hold-up decreases with the increase of the superficial gas velocity. In the same sub flow pattern, the wave velocity increases as the superficial gas velocity increases. On the other hand, in the two-dimensional wave region, the dominant frequency decreases with the increase of the superficial liquid velocity.

  14. Analysis of cracked core spray injection line piping from the Quad Cities Units 1 and 2 boiling water reactors

    SciTech Connect

    Diercks, D.R.

    1983-12-01

    Elbow assemblies and adjacent piping from the loops A and B core spray injection lines of Quad Cities Units 1 and 2 Boiling Water Reactors have been examined in order to determine the nature and causes of coolant leakages and flaw indications detected during hydrostatic tests and subsequent ultrasonic inspections. The elbow assemblies were found to contain multiple intergranular cracks in the weld heat-affected zones. The cracking was predominantly axial in orientation in the forged elbow and wedge components, whereas mixed axial and circumferential cracking was seen in the wrought piping pieces. In at least two instances, axial cracks completely penetrated the circumferential weld joining adjacent components. Based upon the observations made in the present study, the failures were attributed to intergranular stress corrosion cracking caused by the weld-induced sensitized microstructure and residual stresses present; dissolved oxygen in the reactor coolant apparently served as the corrosive species. The predominantly axial orientation of the cracks present in the forged components is believed to be related to the banded microstructure present in these components. The metallographic studies reported are supplemented by x-radiography, chemical analysis and mechanical test results, determinations of the degree of sensitization present, and measurements of weld metal delta ferrite content.

  15. Pipe Dreams.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Discusses the importance of attention to plumbing in college facilities, offering examples from various campuses. Addresses preventive maintenance, technology, and piping materials, including the debate between cast iron and PVC for drain pipes. (EV)

  16. Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection.

    PubMed

    Zhu, Ying; Wang, Haibo; Li, Xiaoxiao; Hu, Chun; Yang, Min; Qu, Jiuhui

    2014-09-01

    The effect of UV/Cl2 disinfection on the biofilm and corrosion of cast iron pipes in drinking water distribution system were studied using annular reactors (ARs). Passivation occurred more rapidly in the AR with UV/Cl2 than in the one with Cl2 alone, decreasing iron release for higher corrosivity of water. Based on functional gene, pyrosequencing assays and principal component analysis, UV disinfection not only reduced the required initial chlorine dose, but also enhanced denitrifying functional bacteria advantage in the biofilm of corrosion scales. The nitrate-reducing bacteria (NRB) Dechloromonas exhibited the greatest corrosion inhibition by inducing the redox cycling of iron to enhance the precipitation of iron oxides and formation of Fe3O4 in the AR with UV/Cl2, while the rhizobia Bradyrhizobium and Rhizobium, and the NRB Sphingomonas, Brucella producing siderophores had weaker corrosion-inhibition effect by capturing iron in the AR with Cl2. These results indicated that the microbial redox cycling of iron was possibly responsible for higher corrosion inhibition and lower effect of water Larson-Skold Index (LI) changes on corrosion. This finding could be applied toward the control of water quality in drinking water distribution systems. PMID:24859195

  17. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  18. Hookah (Shisha, Narghile) Smoking and Environmental Tobacco Smoke (ETS). A critical review of the relevant literature and the public health consequences.

    PubMed

    Chaouachi, Kamal

    2009-02-01

    Hookah (narghile, shisha, "water-pipe") smoking is now seen by public health officials as a global tobacco epidemic. Cigarette Environmental Tobacco Smoke (ETS) is classically understood as a combination of Side-Stream Smoke (SSS) and Exhaled Main-Stream Smoke (EMSS), both diluted and aged. Some of the corresponding cigarette studies have served as the scientific basis for stringent legislation on indoor smoking across the world. Interestingly, one of the distinctive traits of the hookah device is that it generates almost no SSS. Indeed, its ETS is made up almost exclusively by the smoke exhaled by the smoker (EMSS), i.e. which has been filtered by the hookah at the level of the bowl, inside the water, along the hose and then by the smoker's respiratory tract itself. The present paper reviews the sparse and scattered scientific evidence available about hookah EMSS and the corresponding inferences that can be drawn from the composition of cigarette EMSS. The reviewed literature shows that most of hookah ETS is made up of EMSS and that the latter qualitatively differs from MSS. Keeping in mind that the first victim of passive smoking is the active smoker her/himself, the toxicity of hookah ETS for non-smokers should not be overestimated and hyped in an unscientific way. PMID:19440416

  19. Microseismic response characteristics modeling and locating of underground water supply pipe leak

    NASA Astrophysics Data System (ADS)

    Wang, J.; Liu, J.

    2015-12-01

    In traditional methods of pipeline leak location, geophones must be located on the pipe wall. If the exact location of the pipeline is unknown, the leaks cannot be identified accurately. To solve this problem, taking into account the characteristics of the pipeline leak, we propose a continuous random seismic source model and construct geological models to investigate the proposed method for locating underground pipeline leaks. Based on two dimensional (2D) viscoacoustic equations and the staggered grid finite-difference (FD) algorithm, the microseismic wave field generated by a leaking pipe is modeled. Cross-correlation analysis and the simulated annealing (SA) algorithm were utilized to obtain the time difference and the leak location. We also analyze and discuss the effect of the number of recorded traces, the survey layout, and the offset and interval of the traces on the accuracy of the estimated location. The preliminary results of the simulation and data field experiment indicate that (1) a continuous random source can realistically represent the leak microseismic wave field in a simulation using 2D visco-acoustic equations and a staggered grid FD algorithm. (2) The cross-correlation method is effective for calculating the time difference of the direct wave relative to the reference trace. However, outside the refraction blind zone, the accuracy of the time difference is reduced by the effects of the refracted wave. (3) The acquisition method of time difference based on the microseismic theory and SA algorithm has a great potential for locating leaks from underground pipelines from an array located on the ground surface. Keywords: Viscoacoustic finite-difference simulation; continuous random source; simulated annealing algorithm; pipeline leak location

  20. FIELD DEMONSTRATION OF INNOVATIVE CONDITION ASSESSMENT TECHNOLOGIES FOR WATER MAINS: ACOUSTIC PIPE WALL ASSESSMENT, INTERNAL INSPECTION, AND EXTERNAL INSPECTIONVOLUME 1: TECHNICAL REPORT AND VOLUME 2: APPENDICES

    EPA Science Inventory

    Nine pipe wall integrity assessment technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condi...

  1. Thermal laminarization of a stratified pipe flow

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    The present work constitutes a new program that grew out of a scoping assessment by ANL to determine the propensity for pipe stratification to occur in the reactor outlet nozzles and hot-leg piping of a generic LMFBR during events producing reverse pipe flow. This paper focuses on the role that thermal buoyancy plays relative to being able to laminarize a turbulent stratified shear zone in a horizontal pipe. The preceeding can influence the behavior of a pipe stratified-backflow-recirculation zone (cold plenum water down into the hot pipe flow) which developes as the result of a temperature difference between the pipe flow and the plenum.

  2. Heat pipe life and processing study

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Luedke, E. E.

    1979-01-01

    The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.

  3. PHYLOGENETIC ANALYSIS OF PROKARYOTIC AND EUKAROYOTIC MICROOORGANISMS IN A DRINKING WATER PIPE LOOP SYSTEM

    EPA Science Inventory

    Within potable water distribution systems, opportunistic pathogens such as Legionella species infect protozoa, gaining protection from disinfectant residuals. Analyzing the prokaryotic and eukaryotic populations in distribution system water provides a basis for understanding the...

  4. PHYLOGENETIC ANALYSIS OF PROKARYOTIC AND EUKARYOTIC MICROORGANISMS IN A DRINKING WATER PIPE LOOP SYSTEM

    EPA Science Inventory

    Within potable water distribution systems, opportunistic pathogens such as Legionella species infect protozoa, gaining protection from disinfectant residuals. Analyzing the prokaryotic and eukaryotic populations in distribution system water provides a basis for understanding the...

  5. Quitting Smoking

    MedlinePlus

    ... half of the people who don't quit smoking will die of smoking-related problems. Quitting smoking is important for your health. Soon after you ... they succeed. There are many ways to quit smoking. Some people stop "cold turkey." Others benefit from ...

  6. Qualification requirements of guided ultrasonic waves for inspection of piping in light water reactors

    SciTech Connect

    Meyer, R. M.; Ramuhalli, P.; Doctor, S. R.; Bond, L. J.

    2013-01-25

    It is anticipated that guided ultrasonic wave (GUW) techniques will eventually see widespread application in the nuclear power industry as there are several near-term and future needs that could benefit from the availability of GUW technologies. Already, GUW techniques are receiving consideration for inspecting buried piping at nuclear power plants and future applications may include several Class 1 and 2 components. To accept the results of a nondestructive examination of safety critical components, the U.S. Nuclear Regulatory Commission requires that the examinations be performed using qualified equipment, personnel, and procedures. As the use of GUW techniques becomes more frequent, qualification may be required. Performance demonstration has been the approach to qualifying conventional NDE methods in the nuclear power industry. This paper highlights potential issues and research needs associated with facilitating GUW qualification for the nuclear power industry. Parametric studies of essential inspection parameters are necessary to understand their influence on inspection performance. The large volume sampling capability introduces several challenges for qualifying GUW techniques including the quantification of performance, potential interference caused by the presence of multiple flaws in the inspection region, and the practicality of manufacturing several large qualification specimens. Computer simulation may have a significant role in reducing the experimental burden associated with qualifying GUW techniques for nuclear power plant examinations.

  7. Qualification requirements of guided ultrasonic waves for inspection of piping in light water reactors

    NASA Astrophysics Data System (ADS)

    Meyer, R. M.; Ramuhalli, P.; Doctor, S. R.; Bond, L. J.

    2013-01-01

    It is anticipated that guided ultrasonic wave (GUW) techniques will eventually see widespread application in the nuclear power industry as there are several near-term and future needs that could benefit from the availability of GUW technologies. Already, GUW techniques are receiving consideration for inspecting buried piping at nuclear power plants and future applications may include several Class 1 and 2 components. To accept the results of a nondestructive examination of safety critical components, the U.S. Nuclear Regulatory Commission requires that the examinations be performed using qualified equipment, personnel, and procedures. As the use of GUW techniques becomes more frequent, qualification may be required. Performance demonstration has been the approach to qualifying conventional NDE methods in the nuclear power industry. This paper highlights potential issues and research needs associated with facilitating GUW qualification for the nuclear power industry. Parametric studies of essential inspection parameters are necessary to understand their influence on inspection performance. The large volume sampling capability introduces several challenges for qualifying GUW techniques including the quantification of performance, potential interference caused by the presence of multiple flaws in the inspection region, and the practicality of manufacturing several large qualification specimens. Computer simulation may have a significant role in reducing the experimental burden associated with qualifying GUW techniques for nuclear power plant examinations.

  8. Efficacy of a sensory deterrent and pipe modifications in decreasing entrainment of juvenile green sturgeon (Acipenser medirostris) at unscreened water diversions

    PubMed Central

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Mussen, Timothy D.; Ercan, Ali; Bandeh, Hossein; Levent Kavvas, M.; Cech, Joseph J.; Fangue, Nann A.

    2014-01-01

    Water projects designed to extract fresh water for local urban, industrial and agricultural use throughout rivers and estuaries worldwide have contributed to the fragmentation and degradation of suitable habitat for native fishes. The number of water diversions located throughout the Sacramento–San Joaquin watershed in California's Central Valley exceeds 3300, and the majority of these are unscreened. Many anadromous fish species are susceptible to entrainment into these diversions, potentially impacting population numbers. In the laboratory, juvenile green sturgeon (Acipenser medirostris) have been shown to have high entrainment rates into unscreened diversions compared with those of other native California fish species, which may act as a significant source of mortality for this already-threatened species. Therefore, we tested the efficacy of a sensory deterrent (strobe light) and two structural pipe modifications (terminal pipe plate and upturned pipe configuration) in decreasing the entrainment of juvenile green sturgeon (mean mass ± SEM = 162.9 ± 4.0 g; mean fork length = 39.4 ± 0.3 cm) in a large (>500 kl) outdoor flume fitted with a water-diversion pipe 0.46 m in diameter. While the presence of the strobe light did not affect fish entrainment rates, the terminal pipe plate and upturned pipe modifications significantly decreased the proportion of fish entrained out of the total number tested relative to control conditions (0.13 ± 0.02 and 0.03 ± 0.02 vs. 0.44 ± 0.04, respectively). These data suggest that sensory deterrents using visual stimuli are not an effective means to reduce diversion pipe interactions for green sturgeon, but that structural alterations to diversions can successfully reduce entrainment for this species. Our results are informative for the development of effective management strategies to mitigate the impacts of water diversions on sturgeon populations and suggest that effective restoration

  9. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  10. Comparison of microbial quality of irrigation water delivered in aluminum and PVC pipes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial quality of irrigation water attracts substantial attention due to the increased incidence of gastrointestinal illness caused by contaminated produce. Little is known about the changes in microbial quality of water during its delivery to crops. Studies were conducted to compare the biofilm ...

  11. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...

  12. THE OCCURRENCE OF CONTAMINANT ACCUMULATION IN LEAD PIPE SCALES FROM DOMESTIC DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Previous work has shown that contaminants, such as Al, As and Ra, can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could result in elevated levels at consumers’ taps, and current monitoring practices d...

  13. Image processing analysis on the air-water slug two-phase flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Dinaryanto, Okto; Widyatama, Arif; Majid, Akmal Irfan; Deendarlianto, Indarto

    2016-06-01

    Slug flow is a part of intermittent flow which is avoided in industrial application because of its irregularity and high pressure fluctuation. Those characteristics cause some problems such as internal corrosion and the damage of the pipeline construction. In order to understand the slug characteristics, some of the measurement techniques can be applied such as wire-mesh sensors, CECM, and high speed camera. The present study was aimed to determine slug characteristics by using image processing techniques. Experiment has been carried out in 26 mm i.d. acrylic horizontal pipe with 9 m long. Air-water flow was recorded 5 m from the air-water mixer using high speed video camera. Each of image sequence was processed using MATLAB. There are some steps including image complement, background subtraction, and image filtering that used in this algorithm to produce binary images. Special treatments also were applied to reduce the disturbance effect of dispersed bubble around the bubble. Furthermore, binary images were used to describe bubble contour and calculate slug parameter such as gas slug length, gas slug velocity, and slug frequency. As a result the effect of superficial gas velocity and superficial liquid velocity on the fundamental parameters can be understood. After comparing the results to the previous experimental results, the image processing techniques is a useful and potential technique to explain the slug characteristics.

  14. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report

    SciTech Connect

    Valent, P.J.; Riggins, M.

    1989-04-01

    This report provides an overview of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high-quality sediment samples for laboratory dynamic testing, and to perform deep-penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor-resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35/degree/ and in water depths to 1300 m. 74 refs., 19 figs., 6 tabs.

  15. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Burtseva, Olga

    2007-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler. Reduction of pipe diameter after dynamic loading and explosive welding was ˜2%.

  16. The Politics of Pipes: The Persistence of Small Water Networks in Post-Privatization Manila

    NASA Astrophysics Data System (ADS)

    Cheng, Deborah

    This project examines the politics of water provision in low-income areas of large, developing cities. In the last two decades, water privatization has become a global paradigm, emerging as a potential means for addressing the urban water crisis. In Manila, the site of the world's largest water privatization project, service to low-income areas has improved significantly in the post-privatization era. But whereas expansion of a water utility typically involves the replacement of informal providers, the experience in Manila demonstrates that the rapid connection of low-income areas actually hinges, in part, on the selective inclusion and exclusion of these smaller actors. Based on an ethnography of the private utilities and community-based providers, I use the persistence of small water networks as a lens for exploring the limits of water privatization in Manila. I focus on what I call micro-networks---community-built infrastructure that extends the formal, private utilities into low-income neighborhoods that the utilities do not wish to serve directly. In such a setup, the utility provides water only as far as the community boundary; beyond that, the micro-network operator constructs internal infrastructure, monitors for leakage and theft, and collects bills. But while these communities may gain access to safer water, they are also subject to higher costs and heightened disciplinary measures. By tracing the ways in which the utilities selectively use micro-networks to manage sub-populations, I show how the utilities make low-income spaces more governable. Delegating localized water management to micro-network operators depoliticizes the utilities' roles, shifting the sociopolitical difficulties of water provision to community organizations, while allowing the utilities to claim that these areas are served. This research leads to three related arguments. First, the persistence of small water networks highlights lingering inequities in access to water, for micro

  17. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  18. Joint use of long water pipe tiltmeters and sea level gauges for monitoring ground deformation at Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Scarpa, Roberto; Capuano, Paolo; Tammaro, Umberto; Bilham, Roger

    2014-05-01

    The Campi Flegrei caldera, located in the Campanian Plain, Southern Italy, 15 km west of the city of Naples, is a nested, resurgent, and restless structure in the densely inhabited Neapolitan area. The main caldera at Campi Flegrei is 12 - 15 km across and its rim is thought to have been formed during the catastrophic eruption, occurred 39 ky ago ca., which produced a deposit referred to as the Campanian Ignimbrite. The volcanic hazards posed by this caldera and the related risk are extremely high, because of its explosive character and the about 1.5 million people living within the caldera. Campi Flegrei area periodically experiences significant unrest episodes which include ground deformations, the so-called 'bradisismo'. Following the last eruption (Monte Nuovo, 1538) a general subsidence has been interrupted by episodes of uplift, the most recent of which occurred in 1970-72 and 1982-84. Since 1950 the caldera is showing signs of unrest with ground uplift, seismicity, and composition variation of fumarole fluids. In particular, subsidence has been replaced by intermittent episodes of inflation with short time duration and various maximum amplitude. They occurred in 1989, 1994, 2000, 2005-06, 2008-09 and 2011-2014 with duration of few months and maximum amplitude ranging between 3 and 18 cm., approximately. In the last years an array of water-pipe tiltmeters with lengths between 28 m and 278 m in tunnels on the flanks of the region of maximum inflation has been installed to avoid problems common to the traditional tiltmeters. The tiltmeters record inflation episodes upon which are superimposed local load tides and the effects of the seiches in the Bay of Naples and in the Tyrrhenian sea. We use data recorded by three tide gauges in the Bay of Pozzuoli (Pozzuoli, Miseno, Nisida) to compare water pipe data with sea level to extract astronomical tidal components (diurnal and semidiurnal) and seiches periods (particularly between 20 minutes and 56 minutes) that

  19. Semi-analytical prediction of hydraulic resistance and heat transfer for pipe and channel flows of water at supercritical pressure

    SciTech Connect

    Laurien, E.

    2012-07-01

    Within the Generation IV International Forum the Supercritical Water Reactor is investigated. For its core design and safety analysis the efficient prediction of flow and heat transfer parameters such as the wall-shear stress and the heat-transfer coefficient for pipe and channel flows is needed. For circular pipe flows a numerical model based on the one-dimensional conservation equations of mass, momentum end energy in the radial direction is presented, referred to as a 'semi-analytical' method. An accurate, high-order numerical method is employed to evaluate previously derived analytical solutions of the governing equations. Flow turbulence is modeled using the algebraic approach of Prandtl/van-Karman, including a model for the buffer layer. The influence of wall roughness is taken into account by a new modified numerical damping function of the turbulence model. The thermo-hydraulic properties of water are implemented according to the international standard of 1997. This method has the potential to be used within a sub-channel analysis code and as wall-functions for CFD codes to predict the wall shear stress and the wall temperature. The present study presents a validation of the method with comparison of model results with experiments and multi-dimensional computational (CFD) studies in a wide range of flow parameters. The focus is laid on forced convection flows related to reactor design and near-design conditions. It is found, that the method can accurately predict the wall temperature even under deterioration conditions as they occur in the selected experiments (Yamagata el al. 1972 at 24.5 MPa, Ornatski et al. 1971 at 25.5 and Swenson et al. 1963 at 22.75 MPa). Comparison of the friction coefficient under high heat flux conditions including significant viscosity and density reductions near the wall with various correlations for the hydraulic resistance will be presented; the best agreement is achieve with the correlation of Pioro et al. 2004. It is

  20. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  1. Pipe connector

    DOEpatents

    Sullivan, Thomas E.; Pardini, John A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  2. Laboratory Measurements on Heterogeneous Nucleation and Growth of Water Vapor on Meteor Smoke Particle Analogues under Conditions of the Mesopause

    NASA Astrophysics Data System (ADS)

    Duft, D.; Nachbar, M.; Wilms, H.; Rapp, M.; Leisner, T.

    2014-12-01

    Heterogeneous nucleation of water vapor on charged nanometer sized (radius< 2nm) meteor smoke particles (MSP) is believed to be the dominating nucleation process in the mesopause region leading to the formation of polar mesospheric clouds (PMC). However, application of classical nucleation theory to the cold conditions of the polar summer mesopause comprises large uncertainties giving rise to strongly variant model predictions of PMC formation. To reduce these uncertainties laboratory measurements of nucleation and growth rates are required. We use an electrodynamic trap to investigate the nucleation and growth of water vapor on singly charged sub-3nm MSP analogues in the laboratory under mesospheric conditions typical during PMC growth initiation. The particles are created in a microwave plasma particle source and stored in a quadrupole ion trap under mesospheric pressure and temperature, where they are subjected to the high supersaturation necessary for nucleation and growth on nanometer sized particles. The particle mass and mass change by water accretion is monitored with a time-of-flight mass spectrometer as a function of residence time under supersaturated conditions. In this contribution we present for the first time measurements of nucleation and growth rates of water vapor on MSP analogues with an initial radius between 1.5nm and 3 nm. Contact parameter, sticking coefficient as well as charge effects on vapor pressure of small particles at mesospheric conditions are presented. These parameters are essential for the microphysical understanding and further global model calculations of PMC formation.

  3. Mycobacterium avium complex in day care hot water systems, and persistence of live cells and DNA in hot water pipes.

    PubMed

    Bukh, Annette S; Roslev, Peter

    2014-04-01

    The Mycobacterium avium complex (MAC) is a group of opportunistic human pathogens that may thrive in engineered water systems. MAC has been shown to occur in drinking water supplies based on surface water, but less is known about the occurrence and persistence of live cells and DNA in public hot water systems based on groundwater. In this study, we examined the occurrence of MAC in hot water systems of public day care centers and determined the persistence of live and dead M. avium cells and naked DNA in model systems with the modern plumbing material cross-linked polyethylene (PEX). The occurrence of MAC and co-occurrence of Legionella spp. and Legionella pneumophila were determined using cultivation and qPCR. Co-occurrences of MAC and Legionella were detected in water and/or biofilms in all hot water systems at temperatures between 40 and 54 °C. Moderate correlations were observed between abundance of culturable MAC and that of MAC genome copies, and between MAC and total eubacterial genome copies. No quantitative relationship was observed between occurrence of Legionella and that of MAC. Persistence in hot water of live and dead M. avium cells and naked DNA was studied using PEX laboratory model systems at 44 °C. Naked DNA and DNA in dead M. avium cells persisted for weeks. Live M. avium increased tenfold in water and biofilms on PEX. The results suggest that water and biofilms in groundwater-based hot water systems can constitute reservoirs of MAC, and that amplifiable naked DNA is relatively short-lived, whereas PEX plumbing material supports persistence and proliferation of M. avium. PMID:24272032

  4. Feasibility of using portable, noninvasive pipe flowmeters and time totalizers for determining water use

    USGS Publications Warehouse

    Arvin, D.V.

    1992-01-01

    The feasibility of using time totalizers for determining water use was investigated by observing seven vibration time totalizers (VTT's) mounted at five sites. None of the units exhibited adverse effects from the heat, precipitation, or humidity associated with Indiana summers. One VTT was mounted at a public water-supply site where inductive time-totalizer measurements were available for comparison. The VTT agreed within 8 hours of the inductive time totalizer after 2,340 hours of pump operation. There were no mechanical prpblems with the VTT units used in this study.

  5. Effect of Pipe Size on the Leak-Before-Break Recommended Safety Margins in a Typical Pressurized Water Reactor

    SciTech Connect

    Bhowmick, D.C.; Swamy, S.A.; Udyawar, A.

    2006-07-01

    NRC regulations require that nuclear power plants be designed and built to shut down safely in the event of a sudden pipe break. The leak-before-break (LBB) methodology is accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine break (DEGB) in high energy piping systems. This is the result of extensive research, development, and rigorous evaluations by the NRC and the commercial nuclear power industry since the early 1970's. The DEGB postulation is responsible for the hundreds of pipe whip restraints and jet shields found in commercial nuclear plants. These restraints and jet shields not only cost many millions of dollars to design and construct, but also cause plant congestion leading to reduced reliability in in-service inspection and increased man-rem exposure. The LBB applications gathered momentum since the latter part of the 80's. The benefits of LBB are multi-fold with the maximum benefits derived based on the extent of LBB applications. While the LBB has been applied to many large diameter piping systems, it is highly desirable to extend the applications to other smaller diameter high energy piping systems. However, it is intuitively obvious that demonstration of all the recommended LBB safety margins becomes increasingly difficult as the pipe size under consideration is reduced. In this paper an attempt is made to quantify the pipe size effect on the safety margins investigating the level of difficulty. (authors)

  6. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  7. Field Demonstration of Emerging Pipe Wall Integrity Assessment Technologies for Large Cast Iron Water Mains - Paper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast-iron water main in Louisville, KY from July through Se...

  8. EVALUATION OF OPPORTUNITIES TO IMPROVE STRUCTURAL INSPECTION CAPABILITIES FOR WATER MAINS: LARGE DIAMETER CAST IRON PIPE

    EPA Science Inventory

    The U.S. EPA and other organizations have projected that a large portion of the United States’ aging water conveyance infrastructure will reach the end of its service life in the next several decades. EPA has identified asset management as a critical factor in efficiently addre...

  9. Mineralogical and Molecular Microbial Characterization of a Lead Pipe Removed from a Drinking Water Distribution System

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (US EPA) Lead and Copper Rule established an action level for lead of 0.0 15 mg/L in a 1 liter first draw sample at the consumer's tap. Lead corrosion and solubility in drinking water distribution systems are largely controlled by the fo...

  10. Speciation And Distribution Of Vanadium In Drinking Water Iron Pipe Corrosion By-Products

    EPA Science Inventory

    Vanadium (V) when ingested from drinking water in high concentrations (> 15 µg L-1) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb5(V5+

  11. The Effect of Water Chemistry on the Release of Iron from Pipe Walls

    EPA Science Inventory

    Colored water problems originating from distribution system materials may be reduced by controlling corrosion, iron released from corrosion scales, and better understanding of the form and properties of the iron particles. The objective of this research was to evaluate the effect...

  12. CHARACTERIZATION OF LOCALIZED CORROSION OF COPPER PIPES USED IN DRINKING WATER

    EPA Science Inventory

    Localized corrosion of copper, or "copper pitting" in water distribution tubing is a large problem at many utilities. Pitting can lead to pinhole leaks less than a year. Tubing affected by copper pitting will often fail in ultiple locations, resulting in a frustrating situation ...

  13. The Adsorption of Arsenic on Iron Pipes in Water Distribution Systems

    EPA Science Inventory

    In order to remain compliant with the U.S. EPA’s Lead and Copper rule, it is pivotal to understand the relationship between factors affecting lead release in drinking water distribution systems. Lead solids were synthesized in cell experiments using a pH range of 6-11 with both 1...

  14. Studies of Interfacial Perturbations in Two Phase Oil-Water Pipe Flows Induced by a Transverse Cylinder

    NASA Astrophysics Data System (ADS)

    Chinaud, Maxime; Park, Kyeong; Percival, James; Matar, Omar; Pain, Christopher; Angeli, Panagiota

    2014-11-01

    Droplet detachment from interfacial waves has been the subject of many studies. To observe this phenomenon experimentally it is necessary to spatially localize the drop formation and enable quantitative measurements. In this study, a novel approach is followed where a transverse cylinder is introduced close to the mixing point of the two phases in oil-water flows which induces waves. The introduction of the cylinder induces interfacial waves that lead to drop detachment. High speed visualization has been used to generate flow pattern maps with this new system. The dispersed patterns induced by the cylinder will be linked to pressure drop measurements. The interface downstream the cylinder is affected by three different contributions: the vortices shed by the cylinder, the wall effects due to the pipe itself and the interface fluctuations due to the mixing of the two phases. These contributions will be quantified through a numerical study. A mesh adaptive multiphase finite element Navier Stokes solver, Fluidity, will be used to obtain flow pattern maps for 2D channel flow. The numerical findings will be compared against the experimental results. This work is undertaken as part of the UK Engineering and Physical Sciences Research Council Programme Grant MEMPHIS.

  15. Assessment of US shipbuilding current capability to build a commercial OTEC platform and a cold water pipe

    SciTech Connect

    Komelasky, M. C.

    1980-03-01

    Lowry and Hoffman Associates Inc. (LHA) performed for ORI an analysis of the shipbuilding requirements for constructing an OTEC plant, and the available shipyard assets which could fulfill these requirements. In addition, several shipyards were queried concerning their attitudes towards OTEC. In assessing the shipbuilding requirements for an OTEC plant, four different platform configurations were studied and four different designs of the cold water pipe (CWP) were examined. The platforms were: a concrete ship design proposed by Lockheed; concrete spar designs with internal heat exchangers (IHE) (Rosenblatt) and external heat exchangers (XHE) (Lockheed); and a steel ship design proposed by Gibbs and Cox. The types of materials examined for CWP construction were: steel, fiber reinforced plastic (FPR), elastomer, and concrete. The report is organized io three major discussion areas. All the construction requirements are synthesized for the four platforms and CWPs, and general comments are made concerning their availability in the US. Specific shipbuilders facilities are reviewed for their applicability to building an OTEC plant, an assessment of the shipyards general interest in the OTEC program is presented providing an insight into their nearterm commercial outlook. The method of determining this interest will depend largely on a risk analysis of the OTEC system. Also included are factors which may comprise this analysis, and a methodology to ascertain the risk. In the appendices, various shipyard specifications are presented, shipyard assessment matrices are given, graphs of various shipyard economic outlooks are provided, and definitions of the risk factors are listed. (WHK)

  16. Heat transfer mechanism of miniature loop heat pipe with water-copper nanofluid: thermodynamics model and experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-wu; Wan, Zhen-ping; Tang, Yong

    2013-07-01

    In order to ensure the normal work of electronic product, the thermal management is of key importance. Miniature loop heat pipe (mLHP) is a promising device of heat transfer for electronic products. Cu-water nanofluid with different concentration is used as working material in mLHP. Experiments are conducted to investigate its heat transfer performance. The heat flux owing to thermal diffusion is calculated. It is found that this heat flux and the boiling temperature are non-monotonic function of concentration of nanoparticle. Turning concentration appears at about 1.5 wt%. Differential equation of thermal diffusion produced by micro movement of nanoparticle is established in this paper. Average speed formula for nanoparticles is derived and slope of the curve of phase equilibrium is obtained. Based on the theoretical research in this paper, enhanced heat transfer mechanism of nanofluid is analyzed. The facts that heat flux owing to thermal diffusion and boiling temperature are all associated with nanoparticle concentration are also well explained with the aid of the derived theory in this paper.

  17. Turbine-Driven Pipe-Cleaning Brush

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J.; Rowell, David E.

    1994-01-01

    Simple pipe-cleaning device includes small turbine wheel axially connected, by standoff, to circular brush. Turbine wheel turns on hub bearing attached to end of upstream cable. Turbine-and-brush assembly inserted in pipe with cable trailing upstream and brush facing downstream. Water or cleaning solution pumped through pipe. Cable held at upstream end, so it holds turbine and brush in pipe at location to be cleaned. Flow in pipe turns turbine, which turns wheel, producing desired cleaning action. In addition to brushing action, device provides even mixing of cleaning solution in pipe.

  18. Secondhand Smoke

    MedlinePlus

    ... or car Making sure people looking after your children (e.g., nannies, babysitters, day care) do not smoke Choosing smokefree restaurants Avoiding indoor public places that allow smoking Teaching ...

  19. INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE CASTING MACHINE (EITHER NO. 2 OR NO. 3) FOR PRODUCTION OF AN 8 INCH FASTTITE PIPE USED FOR GAS AND WATER TRANSMISSION. THIS FRENCH-MADE CASTING MACHINE MAKES 4, 6, 8, 10, AND 12 INCH PIPE. THE MACHINE CAN MAKE 48 EIGHT INCH PIPE AN HOUR AND UP TO 60 FOUR INCH PIPE PER HOUR. - American Cast Iron Pipe Company, Mixer Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL

  20. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Dong, Feng

    2014-04-01

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  1. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  2. Flow rate and slip length measurements of water in single micrometer pipes

    NASA Astrophysics Data System (ADS)

    Taborek, Peter; Kannan, Anerudh; Mallin, David; Velasco, Angel

    2014-11-01

    Measurements of pressure driven water flows in hydrophobic and hydrophilic fused quartz capillaries of 1.8 um diameter are compared. Typical flow rates of 1 picoliter/s and pressure drops up to 25 Atm were used. Water exited the capillaries into an oil reservoir where the volume of the pendant drop could be monitored using time lapse photography. The typical growth rate for the drop diameter was ~300 μm per day. The drop size saturates due to diffusion at the interface. For the untreated quartz capillary the results are consistent with a slip of zero. The hydrophilic capillaries are chemically treated with octadecyltrichlorosilane (OTS) to form hydrophobic surfaces. Successful surface preparation is confirmed with the absence of capillary rise. Our technique can detect slip lengths above 20 nm.

  3. [Youth Smoking.

    ERIC Educational Resources Information Center

    Stare, Russell K., Ed.

    1994-01-01

    This issue of the newsletter "Prevention Forum" focuses on smoking among adolescents. The articles are as follows: (1) "Where There's Smoke--Will Prevention Put Out the Fire?" (Joanne Burgess), an overview of the Surgeon General's report "Preventing Tobacco Use among Young People," including interviews with prevention and anti-smoking activists;…

  4. Piping Flexibility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A NASA computer program aids Hudson Engineering Corporation, Houston, Texas, in the design and construction of huge petrochemical processing plants like the one shown, which is located at Ju'aymah, Saudi Arabia. The pipes handling the flow of chemicals are subject to a variety of stresses, such as weight and variations in pressure and temperature. Hudson Engineering uses a COSMIC piping flexibility analysis computer program to analyze stresses and unsure the necessary strength and flexibility of the pipes. This program helps the company realize substantial savings in reduced engineering time.

  5. Piping Analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Burns & McDonnell provide architectural and engineering services in planning, design and construction of a wide range of projects all over the world. In design analysis, company regularly uses COSMIC computer programs. In computer testing piping design of a power plant, company uses Pipe Flexibility Analysis Program (MEL-21) to analyze stresses due to weight, temperature, and pressure found in proposed piping systems. Individual flow rates are put into the computer, then computer calculates the pressure drop existing across each component; if needed, design corrections or adjustments can be made and rechecked.

  6. Applying Ultrasonic Phased Array Technology to Examine Austenitic Coarse-Grained Structures for Light Water Reactor Piping

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2003-12-18

    Pacific Northwest Laboratory is evaluating the capabilities and limitations of phased array (PA) technology to detect service-type flaws in coarse-grained austenitic piping structures. The work is being sponsored by the U.S. Nuclear Regulatory Commission, Office of Research. This paper presents initial work involving the use of PA technology to determine the effectiveness of detecting and accurately characterizing flaws on the far-side of austenitic piping welds.

  7. Fatal nosocomial Legionnaires' disease: relevance of contamination of hospital water supply by temperature-dependent buoyancy-driven flow from spur pipes.

    PubMed Central

    Patterson, W. J.; Seal, D. V.; Curran, E.; Sinclair, T. M.; McLuckie, J. C.

    1994-01-01

    The investigation, epidemiology, and effectiveness of control procedures during an outbreak of Legionnaires' disease involving three immunosuppressed patients are described. The source of infection appeared to be a network of fire hydrant spurs connected directly to the incoming hospital mains water supply. Removal of these hydrants considerably reduced, but failed to eliminate, contamination of water storage facilities. As an emergency control procedure the incoming mains water was chlorinated continuously. Additional modifications to improve temperature regulation and reduce stagnation also failed to eliminate the legionellae. A perspex test-rig was constructed to model the pre-existing hospital water supply and storage system. This showed that through the hydraulic mechanism known as 'temperature buoyancy', contaminated water could be efficiently and quickly exchanged between a stagnant spur pipe and its mains supply. Contamination of hospital storage tanks from such sources has not previously been considered a risk factor for Legionnaires' disease. We recommend that hospital water storage tanks are supplied by a dedicated mains pipe without spurs. PMID:8005217

  8. Stop smoking support programs

    MedlinePlus

    Smokeless tobacco - stop smoking programs; Stop smoking techniques; Smoking cessation programs; Smoking cessation techniques ... It is hard to quit smoking if you are acting alone. Smokers may have a ... of quitting with a support program. Stop smoking programs ...

  9. Environmental design criteria for the 1/3 scale OTEC (Ocean Thermal Energy Conversion) cold water pipe At-Sea Test Site off Honolulu, Hawaii

    SciTech Connect

    Not Available

    1982-01-01

    A fully instrumented At-Sea Test of a 1/3 scale OTEC cold water pipe (CWP) will be carried out. The future prototype for this 1/3 scale model is envisioned to be the OTEC Pilot Plant design in the 10 to 40 megawatt-electric size range with an estimated CWP diameter of about 30 ft and an overall vertical length of about 3000 ft. Thus the 1/3 scale CWP consists of a pipe about 10 ft in diameter and 1000 ft long. The selected At-Sea Test site is located at 21/sup 0/15.5'N latitude and 157/sup 0/54.6'W longitude off Honolulu, Hawaii. In order to expedite development of the design of the 1/3 scale At-Sea Test CWP/Platform/Mooring System the report provides environmental design criteria data at the proposed At-Sea Test site evaluated from available historic data.

  10. Heat transfer in pipes

    NASA Technical Reports Server (NTRS)

    Burbach, T.

    1985-01-01

    The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

  11. Hydrogeologic setting and hydrologic data of the Smoke Creek Desert basin, Washoe County, Nevada, and Lassen County, California, water years 1988-90

    USGS Publications Warehouse

    Maurer, D.K.

    1993-01-01

    Smoke Creek Desert is a potential source of water for urban development in Washoe County, Nevada. Hydrogeologic data were collected from 1988 to 1990 to learn more about surface- and ground-water flow in the basin. Impermeable rocks form a boundary to ground-water flow on the east side of the basin and at unknown depths at the base of the flow system. Permeable volcanic rocks on the west and north sides of the basin represent a previously unrecognized aquifer and provide potential avenues for interbasin flow. Geophysical data indicate that basin-fill sediments are about 2,000 feet thick near the center of the basin. The geometry of the aquifers, however, remains largely unknown. Measurements of water levels, pressure head, flow rate, water temperature, and specific conductance at 19 wells show little change from 1988 to 1990. Chemically, ground water begins as a dilute sodium and calcium bicarbonate water in the mountain blocks, changes to a slightly saline sodium bicarbonate solution beneath the alluvial fans, and becomes a briny sodium chloride water near the playa. Concentrations of several inorganic constituents in the briny water near the playa commonly exceed Nevada drinking-water standards. Ground water in the Honey Lake basin and Smoke Creek Desert basin has similar stable-isotope composition, except near Sand Pass. If interbasin flow takes place, it likely occurs at depths greater than 400-600 feet beneath Sand Pass or through volcanic rocks to the north of Sand Pass. Measure- ments of streamflow indicate that about 2,800 acre-feet/year discharged from volcanic rocks to streamflow and a minimum of 7.300 acre-feet/year infiltrated and recharged unconsolidated sediments near Smoke, Buffalo, and Squaw Creeks during the period of study. Also about 1,500 acre-feet per year was lost to evapotranspiration along the channel of Smoke Creek, and about 1,680 acre-feet per year of runoff from Smoke, Buffalo, and Squaw Creeks was probably lost to evaporation from the

  12. Towards an in-situ measurement of wave velocity in buried plastic water distribution pipes for the purposes of leak location

    NASA Astrophysics Data System (ADS)

    Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Dray, Simon; Whitfield, Stuart; Paschoalini, Amarildo T.

    2015-12-01

    Water companies are under constant pressure to ensure that water leakage is kept to a minimum. Leak noise correlators are often used to help find and locate leaks. These devices correlate acoustic or vibration signals from sensors which are placed either side the location of a suspected leak. The peak in the cross-correlation function of the measured signals gives the time difference between the arrival times of the leak noise at the sensors. To convert the time delay into a distance, the speed at which the leak noise propagates along the pipe (wave-speed) needs to be known. Often, this is estimated from historical wave-speed data measured on other pipes obtained at various times and under various conditions, or it is estimated from tables which are calculated using simple formula. Usually, the wave-speed is not measured directly at the time of the correlation measurement and is therefore potentially a source of significant error in the localisation of the leak. In this paper, a new method of measuring the wave-speed in-situ in the presence of a leak, that is robust and simple, is explored. Experiments were conducted on a bespoke large scale buried pipe test-rig, in which a leak was also induced in the pipe between the measurement positions to simulate a condition that is likely to occur in practice. It is shown that even in conditions where the signal to noise ratio is very poor, the wave-speed estimate calculated using the new method is less than 5% different from the best estimate of 387 m s-1.

  13. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  14. ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK SIMULANT IN REMOVING RESIDUES ON THERMOWELL PIPES

    SciTech Connect

    Fondeur, F.; White, T.; Oji, L.; Martino, C.; Wilmarth, B.

    2011-10-20

    A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. Video inspection of the tank showed that a film of solid material adhered to the tank internal walls and structures between 69 inch and 150 inch levels. From the video inspection, the solid film thickness was estimated to be 1mm, which corresponds to {approx}33 kg of TPB salts (as 20 wt% insoluble solids) (1). This film material is expected to be easily removed by single-rinse, slurry pump operation during Tank 48H TPB disposition via aggregation processing. A similar success was achieved for Tank 49H TPB dispositioning, with slurry pumps operating almost continuously for approximately 6 months, after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids - Na{sub 3}H(CO{sub 3}){sub 2} (Hydrated Sodium Carbonate, aka: Trona), Al(OH){sub 3} (Aluminum Hydroxide, aka: Gibbsite), NaTPB (Sodium Tetraphenylborate), NaNO{sub 3} (Sodium Nitrate) and NaNO{sub 2} (Sodium Nitrite) (2). Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. There is a risk that material on the internal surfaces of Tank 48H could not be easily removed. As a risk mitigation activity, the chemical composition and leachability of the Tank 48H film are being evaluated prior to initiating tank aggregation. This task investigated the dissolution characteristics of Tank 48H solid film deposits in inhibited water and DWPF recycle. To this end, SRNL received four separate 23-inch long thermowell-conductivity pipe samples which were removed from the tank 48H D2 risers in order to determine: (1) the thickness of the solid film deposit, (2) the chemical composition of the film deposits, and (3) the leaching behavior of the solid film deposit in

  15. [Smoking cessation].

    PubMed

    Mori, Masahide; Maekura, Ryoji

    2011-10-01

    Smoking has been determined as a cause of chronic obstructive pulmonary disease (COPD) in most patients. Smoking cessation should be stressed above everything else for COPD patients under all conditions. A smoking habit is determined not as a preference but as a dependency on tobacco; therefore, smoking cessation is difficult solely based on one's motivation. Smoking cessation therapy is employed with cessation aids. Now, we can use nicotine-containing gum, patches, and the nicotine-receptor partial agonist varenicline. First, nicotine from tobacco is replaced with a nicotin patch, or a nicotine-free condition is induced by varenicline. Subsequently, the drugs are gradually reduced. In Japan, smoking cessation therapy is covered by public health insurance as definite requirements. PMID:22073582

  16. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  17. Correlation of cadmium and aluminum in blood samples of kidney disorder patients with drinking water and tobacco smoking: related health risk.

    PubMed

    Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Salma Aslam; Arain, Mariam Shahzadi; Brahaman, Kapil Dev; Naeemullah; Arain, Sadaf Sadia

    2016-02-01

    The combined exposure to aluminum (Al) and cadmium (Cd) causes more pronounced adverse health effects on humans. The kidneys are the main organs affected by internal exposure to Cd and Al via food and non-food items. The objective of present study was to measure the Al and Cd concentrations in cigarettes tobacco (branded and non-branded) and drinking water (domestic treated, ground and lake water) samples in southern part of Pakistan, to assess the risk due to ingestion of water and inhalation of cigarettes smoke containing high concentrations of both elements. The study population (kidney disorder and healthy) divided into two group based on consuming lake and ground water, while smoking non-branded cigarette as exposed, while drinking domestic treated water and smoking branded cigarette as non-exposed. Electrothermal atomic absorption spectrometry was used to determined Cd and Al concentrations in tobacco, drinking water and blood samples. The resulted data indicated that the levels of Al and Cd in lake and underground water were higher than the permissible limit in drinking water recommended by the World Health Organization. The biochemical parameters of exposed and referent patients, especially urinary N-acetyl-h-glucosaminidase, were used as a biomarkers of kidney disorder. Exposed kidney disorder patients have higher levels of Cd and Al than the exposed referents subjects, while difference was significant when compared to resulted data of non-exposed patients and referents (p = 0.01-0.001). The pearson correlation showed positive correlation between both toxic element concentrations in water, cigarettes versus blood samples of exposed subjects (r = 0.20-0.67 and 0.71-0.82), while lower values were observed for non-exposed subjects (r = 0.123-0.423 and 0.331-0.425), respectively. PMID:26003113

  18. Effect of using acetone and distilled water on the performance of open loop pulsating heat pipe (OLPHP) with different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Afrose, Tonima; Tahmina, Halima Khatun; Rinky, Rumana Parvin; Ali, Mohammad

    2016-07-01

    Pulsating heat pipe (PHP) is a new innovation in the modern era of miniaturizes thermal management system for its higher heating and cooling capacity. The objective of this experiment is to observe the performance of open loop pulsating heat pipe using two fluids at different filling ratios. This OLPHP is a copper capillary tube of 2.5mm outer diameter and 2mm inner diameter. It consists of 8 loops where the evaporative section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is conducted with distilled water and acetone at 40%, 50%, 60%, and 70% filling ratios where 0° (vertical) is considered as definite angle of inclination. Distilled water and acetone are selected as working fluids considering their different latent heat of vaporization and surface tension. It is found that acetone shows lower thermal resistance than water at all heat inputs. Best performance of acetone is attained at 70% filling ratio. Water displays better heat transfer capability at 50% filling ratio.

  19. Experimental investigation on thermal performance of a closed loop pulsating heat pipe (CLPHP) using methanol and distilled water at different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Swarna, Anindita Dhar; Ahmed, Syed Nasif Uddin; Perven, Sanjida; Ali, Mohammad

    2016-07-01

    Pulsating Heat Pipes, the new two-phase heat transfer devices, with no counter current flow between liquid and vapor have become a modern topic for research in the field of thermal management. This paper focuses on the performance of methanol and distilled water as working fluid in a closed loop pulsating heat pipe (CLPHP). This performances are compared in terms of thermal resistance, heat transfer co-efficient, and evaporator and condenser wall temperature with variable heat inputs. Methanol and Distilled water are selected for their lower surface tension, dynamic viscosity and sensible heat. A closed loop PHP made of copper with 2mm ID and 2.5mm OD having total 8 loops are supplied with power input varied from 10W to 60W. During the experiment the PHP is kept vertical, while the filling ratio (FR) is increased gradually from 40% to 70% with 10% increment. The optimum filling ratio for a minimum thermal resistance is found to be 60% and 40% for distilled water and methanol respectively and methanol is found to be the better working fluid compared to distilled water in terms of its lower thermal resistance and higher heat transfer coefficient.

  20. Measurement of the oil holdup for a two-phase oil-water flow through a sudden contraction in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Colombo, L. P. M.; Guilizzoni, M.; Sotgia, G. M.; Bortolotti, S.; Pavan, L.

    2014-04-01

    Oil-water two-phase flow experiments were conducted in a horizontal duct made of Plexiglas® to determine the holdup of oil by means of the quick closing valves technique, using mineral oil (viscosity: 0.838 Pa s at 20 °C density: 890 kg m-3) and tap water. The duct presents a sudden contraction, with contraction ratio of 0.64. About 200 tests were performed by varying the flow rates of the phases. Flow patterns were investigated for both the up- and downstream pipe. Due to the relatively high value of the contraction ratio, it was not observed any relevant variation of the flow patterns across the sudden contraction. Data were then compared with predictions of a specific correlation for oil-water flow and some correlations for gas-water flow. A drift-flux model was also applied to determine the distribution parameter. The results agree quite well with flow pattern visualization.

  1. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  2. Pipe gripper

    DOEpatents

    Moyers, S.M.

    1975-12-16

    A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.

  3. Piping Connector

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A complex of high pressure piping at Stennis Space Center carries rocket propellants and other fluids/gases through the Center's Component Test Facility. Conventional clamped connectors tend to leak when propellant lines are chilled to extremely low temperatures. Reflange, Inc. customized an existing piping connector to include a secondary seal more tolerant of severe thermal gradients for Stennis. The T-Con connector solved the problem, and the company is now marketing a commercial version that permits testing, monitoring or collecting any emissions that may escape the primary seal during severe thermal transition.

  4. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  5. Location of agricultural drainage pipes and assessment of agricultural drainage pipe conditions using ground penetrating radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  6. Explosive welding of pipes

    NASA Astrophysics Data System (ADS)

    Drennov, O.; Burtseva, O.; Kitin, A.

    2006-08-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  7. Premenstrual symptoms and smoking-related expectancies.

    PubMed

    Pang, Raina D; Bello, Mariel S; Stone, Matthew D; Kirkpatrick, Matthew G; Huh, Jimi; Monterosso, John; Haselton, Martie G; Fales, Melissa R; Leventhal, Adam M

    2016-06-01

    Given that prior research implicates smoking abstinence in increased premenstrual symptoms, tobacco withdrawal, and smoking behaviors, it is possible that women with more severe premenstrual symptoms have stronger expectancies about the effects of smoking and abstaining from smoking on mood and withdrawal. However, such relations have not been previously explored. This study examined relations between premenstrual symptoms experienced in the last month and expectancies that abstaining from smoking results in withdrawal (i.e., smoking abstinence withdrawal expectancies), that smoking is pleasurable (i.e., positive reinforcement smoking expectancies), and smoking relieves negative mood (i.e., negative reinforcement smoking expectancies). In a cross-sectional design, 97 non-treatment seeking women daily smokers completed self-report measures of smoking reinforcement expectancies, smoking abstinence withdrawal expectancies, premenstrual symptoms, mood symptoms, and nicotine dependence. Affect premenstrual symptoms were associated with increased negative reinforcement smoking expectancies, but not over and above covariates. Affect and pain premenstrual symptoms were associated with increased positive reinforcement smoking expectancies, but only affect premenstrual symptoms remained significant in adjusted models. Affect, pain, and water retention premenstrual symptoms were associated with increased smoking abstinence withdrawal expectancies, but only affect premenstrual symptoms remained significant in adjusted models. Findings from this study suggest that addressing concerns about withdrawal and alternatives to smoking may be particularly important in women who experience more severe premenstrual symptoms, especially affect-related changes. PMID:26869196

  8. Impact of elevated Ca(2+)/Mg(2+) concentrations of reverse osmosis membrane desalinated seawater on the stability of water pipe materials.

    PubMed

    Liang, Juan; Deng, Anqi; Xie, Rongjing; Gomez, Mylene; Hu, Jiangyong; Zhang, Jufang; Ong, Choon Nam; Adin, Avner

    2014-03-01

    Hardness and alkalinity are known factors influencing the chemical stability of desalinated water. This study was carried out to investigate the effect of Ca(2+) and Mg(2+) on corrosion and/or scale formation on the surface of different water distribution pipe materials under tropical conditions. The corrosion rates of ductile iron, cast iron and cement-lined ductile iron coupons were examined in reverse osmosis (RO) membrane desalinated seawater which was remineralised using different concentrations of Ca(2+) and Mg(2+). The changes in water characteristics and the coupon corrosion rates were studied before and after the post-treatment. The corrosion mechanisms and corrosion products were examined using scanning electron microscope and X-ray diffraction, respectively. We found that the combination of Ca(2+) and Mg(2+) (60/40 mg/L as CaCO3) resulted in lower corrosion rates than all other treatments for the three types of pipe materials, suggesting that Ca(2+)/Mg(2+) combination improves the chemical stability of desalinated seawater rather than Ca(2+) only. PMID:24642429

  9. Environmental tobacco smoke exposure assessment

    SciTech Connect

    Guerin, M.R.

    1993-06-01

    Environmental tobacco smoke (ETS) is the material released into the environment as tobacco products are smoked. Cigarettes, pipes, and cigars all produce ETS but the term has become all but synonymous with indoor air contamination by cigarette smoking. This is because cigarettes are by far the most commonly consumed tobacco product and because the principal human exposure occurs indoors. Exposure to ETS is variously termed as passive smoking, involuntary smoking, and as exposure to second-hand smoke. Considerable progress has been made toward a better understanding of ETS exposure. Strengths and limitations of various measures of exposure are better understood and much data has been generated on the quantities of many ETS-constituents in many indoor environments. The properties of ETS, methods for its measurement in indoor air, and many results of field studies have recently been reviewed by the author. The recent EPA report includes a major treatment of exposure estimation including air concentrations, questionnaires, and biomarkers. This paper discusses approaches to exposure assessment and summarizes data on indoor air concentrations of ETS-constituents.

  10. Environmental tobacco smoke exposure assessment

    SciTech Connect

    Guerin, M.R.

    1993-01-01

    Environmental tobacco smoke (ETS) is the material released into the environment as tobacco products are smoked. Cigarettes, pipes, and cigars all produce ETS but the term has become all but synonymous with indoor air contamination by cigarette smoking. This is because cigarettes are by far the most commonly consumed tobacco product and because the principal human exposure occurs indoors. Exposure to ETS is variously termed as passive smoking, involuntary smoking, and as exposure to second-hand smoke. Considerable progress has been made toward a better understanding of ETS exposure. Strengths and limitations of various measures of exposure are better understood and much data has been generated on the quantities of many ETS-constituents in many indoor environments. The properties of ETS, methods for its measurement in indoor air, and many results of field studies have recently been reviewed by the author. The recent EPA report includes a major treatment of exposure estimation including air concentrations, questionnaires, and biomarkers. This paper discusses approaches to exposure assessment and summarizes data on indoor air concentrations of ETS-constituents.

  11. REDUCED COST SEWER PIPE RELINING USING ULTRASONIC TAPE LAMINATION - PHASE I

    EPA Science Inventory

    Water and sewerage pipe rehabilitation represents a critical and expensive infrastructure issue. Although systems currently are available for relining existing pipes and constructing new lined pipes, the proposed advanced technology will improve the quality while substantia...

  12. Use of a GIS-based hybrid artificial neural network to prioritize the order of pipe replacement in a water distribution network.

    PubMed

    Ho, Cheng-I; Lin, Min-Der; Lo, Shang-Lien

    2010-07-01

    A methodology based on the integration of a seismic-based artificial neural network (ANN) model and a geographic information system (GIS) to assess water leakage and to prioritize pipeline replacement is developed in this work. Qualified pipeline break-event data derived from the Taiwan Water Corporation Pipeline Leakage Repair Management System were analyzed. "Pipe diameter," "pipe material," and "the number of magnitude-3( + ) earthquakes" were employed as the input factors of ANN, while "the number of monthly breaks" was used for the prediction output. This study is the first attempt to manipulate earthquake data in the break-event ANN prediction model. Spatial distribution of the pipeline break-event data was analyzed and visualized by GIS. Through this, the users can swiftly figure out the hotspots of the leakage areas. A northeastern township in Taiwan, frequently affected by earthquakes, is chosen as the case study. Compared to the traditional processes for determining the priorities of pipeline replacement, the methodology developed is more effective and efficient. Likewise, the methodology can overcome the difficulty of prioritizing pipeline replacement even in situations where the break-event records are unavailable. PMID:19468847

  13. Japan Smoke

    Atmospheric Science Data Center

    2013-04-16

    article title:  Smoke Plume from Industrial Fires in Miyagi Prefecture, Japan     ... 2011, and its subsequent tsunami, several oil refineries and industrial complexes caught fire, including facilities in the Port of Sendai ...

  14. Quitting Smoking

    MedlinePlus Videos and Cool Tools

    ... cases requires a person get help from a health care provider. So I don't want to make ... a medication for smoking cessation should see their health care provider, just to find out if there are ...

  15. Quit Smoking

    MedlinePlus

    ... Take Action: Stress and Cravings Deal with stress. Manage stress by creating peaceful times in your daily schedule. ... also check out these tips for dealing with stress as you quit . Manage cravings. When you quit smoking, the urge to ...

  16. Comparison of end tidal carbon monoxide (eCO) levels in shisha (water pipe) and cigarette smokers

    PubMed Central

    2014-01-01

    Background Measuring eCo is rapid, non-invasive and inexpensive tool and correlate correctly with carboxyhemoglobin levels in blood. The aim of this study was to evaluate and compare the increase in end tidal carbon monoxide (eCO) levels in exhaled breath of passive smokers and healthy smokers after cigarette and shisha smoking. Findings In a cross sectional study eCO levels were measured in 70 subjects (24 cigarette smokers, 20 shisha smoker, 26 passive smokers) by use of portable device. Smokers were asked to smoke shisha for 30 mins in shisha cafe or to smoke 5 cigarettes in 30 mins in a restaurant. eCo levels were measured at baseline (30 mins), 35 mins, 60 mins and 90 mins in all groups after entry to the venue. The baseline mean eCO level among cigarette smokers was 3.5 +/- 0.6 ppm (part per million), passive cigarette smokers 3.7+/-1.0 ppm, shisha smokers 27.7+/-4.9 ppm and passive shisha smokers 18.3+/-8.4 ppm .The mean increase in eCO after 90 min among smokers was 9.4+/-4.6 (p < 0.005), passive cigarette smokers 3.5+/-2.5 (p < 0.05), shisha smokers 57.9+/-27.4 (p <0.005) and passive shisha smokers 13.3+/-4.6 (p = 0.03). Conclusion Exposure to shisha smoke is a cause of elevated eCO in smokers and passive smokers and due to in-door pollution, sitting in shisha bar causes significant increase in eCO levels. PMID:25206319

  17. 46 CFR 154.1125 - Pipes, fittings, and valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipes, fittings, and valves. 154.1125 Section 154.1125... Firefighting § 154.1125 Pipes, fittings, and valves. (a) Each pipe, fitting, and valve for each water spray...-connection from the water spray system to the fire main must be outside of the cargo area. (d) Each...

  18. Heat pipe technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe technology to provide a summary of research projects conducted on heat pipes is presented. The subjects duscussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design and fabrication, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  19. Performance map of a heat pipe charged with ammonia

    NASA Technical Reports Server (NTRS)

    Schwartz, J.

    1970-01-01

    Test results are presented which describe dryout in type-304 stainless steel heat pipes when ammonia is the working fluid. Graph compares heat transfer capabilities of both ammonia and water. Heat pipe apparatus and performance are described.

  20. Association between Parkinson’s Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis

    PubMed Central

    Breckenridge, Charles B.; Berry, Colin; Chang, Ellen T.; Sielken, Robert L.; Mandel, Jack S.

    2016-01-01

    Objective Bradford Hill’s viewpoints were used to conduct a weight-of-the-evidence assessment of the association between Parkinson’s disease (PD) and rural living, farming and pesticide use. The results were compared with an assessment based upon meta-analysis. For comparison, we also evaluated the association between PD and cigarette smoking as a “positive control” because a strong inverse association has been described consistently in the literature. Methods PubMed was searched systematically to identify all published epidemiological studies that evaluated associations between Parkinson’s disease (PD) and cigarette smoking, rural living, well-water consumption, farming and the use of pesticides, herbicides, insecticides, fungicides or paraquat. Studies were categorized into two study quality groups (Tier 1 or Tier 2); data were abstracted and a forest plot of relative risks (RRs) was developed for each risk factor. In addition, when available, RRs were tabulated for more highly exposed individuals compared with the unexposed. Summary RRs for each risk factor were calculated by meta-analysis of Tier 1, Tier 2 and all studies combined, with sensitivity analyses stratified by other study characteristics. Indices of between-study heterogeneity and evidence of reporting bias were assessed. Bradford Hill’s viewpoints were used to determine if a causal relationship between PD and each risk factor was supported by the weight of the evidence. Findings There was a consistent inverse (negative) association between current cigarette smoking and PD risk. In contrast, associations between PD and rural living, well-water consumption, farming and the use of pesticides, herbicides, insecticides, fungicides or paraquat were less consistent when assessed quantitatively or qualitatively. Conclusion The weight of the evidence and meta-analysis support the conclusion that there is a causal relationship between PD risk and cigarette smoking, or some unknown factor

  1. System for Testing Thermal Insulation of Pipes

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stanislaw D.; Nagy, Zoltan F.

    2003-01-01

    An apparatus and method have been developed for measuring the rates of leakage of heat into pipes carrying liquids, the purpose of the measurements being to quantify the thermal performance of the insulation system. The apparatus is designed primarily for testing pipes used to carry cryogenic liquids, but can also be used for measuring the thermal performance of other insulated pipes or piping systems. The basic measurement principle is straightforward: The outer surface of the pipe insulation is maintained at a fixed warmer temperature. The interior of the pipe is maintained in a narrow fixed lower-temperature range by means of a regular liquid (e.g., water) that is pumped through the pipe at a known flow rate or a cryogenic liquid (e.g., nitrogen) that is saturated at atmospheric pressure and replenished until steady-state conditions are achieved. In the case of water or another liquid pumped through, the inlet and outlet temperatures are measured and heat-leak power is calculated as the mass flow rate of the liquid multiplied by the specific heat of the liquid multiplied by the inlet-to-outlet temperature rise of the liquid. In the case of liquid nitrogen or another low-temperature boiling liquid, the heat-leak power is calculated as the rate of boil-off multiplied by the latent heat of vaporization of the liquid. Then the thermal-insulation performance of the pipe system can be calculated as a function of the measured heat-leak power, the inner and outer boundary temperatures, and the dimensions of the pipe. The apparatus can test as many as three pipes simultaneously. The pipes can have inner diameters up to .15 cm and outer diameters up to .20 cm. The lengths of the pipes may vary; typical lengths are of the order of 18 m. Two thermal guard boxes . one for each end of the pipe(s) under test . are used to make the inlet and outlet fluid connections to the pipe(s) (see figure). The connections include bellows that accommodate thermal expansion and contraction

  2. Smoke detection

    DOEpatents

    Warmack, Robert J. Bruce; Wolf, Dennis A.; Frank, Steven Shane

    2015-10-27

    Various apparatus and methods for smoke detection are disclosed. In one embodiment, a method of training a classifier for a smoke detector comprises inputting sensor data from a plurality of tests into a processor. The sensor data is processed to generate derived signal data corresponding to the test data for respective tests. The derived signal data is assigned into categories comprising at least one fire group and at least one non-fire group. Linear discriminant analysis (LDA) training is performed by the processor. The derived signal data and the assigned categories for the derived signal data are inputs to the LDA training. The output of the LDA training is stored in a computer readable medium, such as in a smoke detector that uses LDA to determine, based on the training, whether present conditions indicate the existence of a fire.

  3. Smoke detection

    DOEpatents

    Warmack, Robert J. Bruce; Wolf, Dennis A.; Frank, Steven Shane

    2016-09-06

    Various apparatus and methods for smoke detection are disclosed. In one embodiment, a method of training a classifier for a smoke detector comprises inputting sensor data from a plurality of tests into a processor. The sensor data is processed to generate derived signal data corresponding to the test data for respective tests. The derived signal data is assigned into categories comprising at least one fire group and at least one non-fire group. Linear discriminant analysis (LDA) training is performed by the processor. The derived signal data and the assigned categories for the derived signal data are inputs to the LDA training. The output of the LDA training is stored in a computer readable medium, such as in a smoke detector that uses LDA to determine, based on the training, whether present conditions indicate the existence of a fire.

  4. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  5. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  6. Smoke Mask

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Smoke inhalation injury from the noxious products of fire combustion accounts for as much as 80 percent of fire-related deaths in the United States. Many of these deaths are preventable. Smoke Mask, Inc. (SMI), of Myrtle Beach, South Carolina, is working to decrease these casualties with its line of life safety devices. The SMI personal escape hood and the Guardian Filtration System provide respiratory protection that enables people to escape from hazardous and unsafe conditions. The breathing filter technology utilized in the products is specifically designed to supply breathable air for 20 minutes. In emergencies, 20 minutes can mean the difference between life and death.

  7. Solar greenhouse and warm room with a spiral piping system for hot water and a low-cost building-construction method. Final report

    SciTech Connect

    Peckworth, R.H.

    1983-01-01

    This project involved the construction of two small buildings, each mounted on skids, so that, if desired, they could be moved to various sites to demonstrate the following energy proposals: the use of a combination greenhouse and warm room as an addition to an older house for an economical heating solution; the use of PB (polybutylene) black flexible pipe as a solar water heating collector housed in the above solar area; and the use of COST FREE BUILDING BLOCKS made from readily available recycled waste material, namely empty steel and tin cans, repacked in used corrugated cartons. These blocks, laid up into a wall, using glue instead of mortar, make an excellent core wall that can later be covered with protective surfacing, perhaps a rigid foam plastic surface.

  8. Stop smoking support programs

    MedlinePlus

    Smokeless tobacco - stop smoking programs; Stop smoking techniques; Smoking cessation programs; Smoking cessation techniques ... also provide ongoing support for staying away from tobacco. Be wary of programs that: Are short and ...

  9. Smoking and HIV

    MedlinePlus

    ... 28, 2014 Select a Language: Fact Sheet 803 Smoking and HIV WHY IS SMOKING MORE DANGEROUS FOR ... It can also worsen liver problems like hepatitis. Smoking and Side Effects People with HIV who smoke ...

  10. Smoke and mirrors: a fiber optic smoke sensor

    NASA Astrophysics Data System (ADS)

    Whitesel, Henry K.; Overby, John K.; Ransford, Michael J.; Tatem, Patricia A.

    1994-11-01

    Smoke detectors in general, are usually threshold devices that frequently experience false alarms. Optical smoke detectors usually depend on the measurement of optical power absorption and scattering across an air gap and are usually threshold devices. Fiber optic sensor technology offers potential improvements for existing smoke detector technology. We have developed a new smoke sensor design based on wavelength selective absorption and scattering that generates a continuous measurement of smoke density. This technique provides first order compensation for water and dirt coatings on the optical surfaces and for optical power and ambient light changes. The sensor has a 2 inch sensing region and utilizes multimode technology with an 850 nanometer LED source. Experimental models of the fiber optic smoke sensors were tested successfully in our laboratory and on the ex-USS SHADWELL. Operational performance advantages of the fiber optic smoke sensor are expected in the areas of monitoring visibility, reducing false alarms, improving reliability, and continuous measurement of smoke density; this will improve fire detection capability and will assist in developing fire fighting strategy. Application of the sensors are planned for the shipboard environment to provide sensor input to new damage control management systems.

  11. Ocean Thermal Energy Conversion Cold Water Pipe At-Sea Test Program. Volume II. F. Environmental design criteria

    SciTech Connect

    Not Available

    1982-07-01

    The future prototype for one-third scale model is envisioned to be the OTEC Pilot Plant design in the 10/40 MWe size range with an estimated CWP diameter of about 30 feet and an overall vertical length of about 3000 feet. Thus the one-third scale CWP consists of pipe about 10 feet in diameter and 1000 feet long. A site selection evaluation was initiated to establish a site which would meet both the logistic requirement for construction and operation, provide adequate wave and wind climate required for the test validation and finally exhibit bottom slope and sediment layer characteristics adequate for the mooring system, as confirmed by previous geophysical surveys.

  12. 33 CFR 127.1101 - Piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meet 49 CFR 195.248. (c) The transfer manifold of each liquid transfer line and of each vapor return... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Piping systems. 127.1101 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping...

  13. Performance characteristic of thermosyphon heat pipe at radiant heat source

    NASA Astrophysics Data System (ADS)

    Hrabovský, Peter; Papučík, Štefan; Kaduchová, Katarína

    2016-06-01

    This article discusses about device, which is called heat pipe. This device is with heat source with radiant heat source. Heat pipe is device with high efficiency of heat transfer. The heat pipe, which is describe in this article is termosyphon heat pipe. The experiment with termosyphon heat pipe get a result. On the base of result, it will be in future to create mathematical model in Ansys. Thermosyphon heat pipe is made of copper and distilled water is working fluid. The significance of this experiment consists in getting of the heat transfer and performance characteristic. On the basis of measured and calculated data can be constructed the plots.

  14. Effect of tobacco smoking on renal function.

    PubMed

    Cooper, Ross G

    2006-09-01

    Nicotine is one of many substances that may be acquired through active and passive smoking of tobacco. In man, nicotine is commonly consumed via smoking cigarettes, cigars or pipes. The addictive liability and pharmacological effects of smoking are primarily mediated by the major tobacco alkaloid nicotine. High stress jobs favour repeated smoking and further reinforce addictive behaviours. There are elevated serum cadmium and lead levels in smokers resulting in glomerular dysfunction. Nephropathies are accelerated by nicotine with an increased incidence of microalbuminuria progressing to proteinuria, followed by type-1 diabetes mellitus induced renal failure. Cigarette smoke-induced renal damage is due, at least in part, to activation of the sympathetic nervous system resulting in an elevation in blood pressure. Ethanol, nicotine, or concurrent intake significantly increases lipid peroxidation in liver, and decreased superoxide dismutase activity and increased catalase activity in the kidney. This review describes the effects of nicotine, smoking, smoke extracts and other tobacco constituents on renal and cardiovascular functions, and associated effects on the nervous system. Both active and passive smoking is toxic to renal function. PMID:17085829

  15. Secondhand Smoke

    MedlinePlus

    ... about exposure to secondhand smoke (SHS) in these places: At work The workplace is a major source of SHS ... the only way to prevent SHS exposure at work. Separating smokers from non-smokers, cleaning ... public places Everyone can be exposed to SHS in public ...

  16. Radiological hazards of Narghile (hookah, shisha, goza) smoking: activity concentrations and dose assessment.

    PubMed

    Khater, Ashraf E M; Abd El-Aziz, Nawal S; Al-Sewaidan, Hamed A; Chaouachi, Kamal

    2008-12-01

    Narghile (hookah, shisha, goza, "water-pipe") smoking has become fashionable worldwide. Its tobacco pastes, known as moassel and jurak, are not standardized and generally contain about 30-50% (sometimes more) tobacco, molasses/juice of sugarcane, various spices and dried fruits (particularly in jurak) and, in the case of moassel, glycerol and flavoring essences. Tobacco contains minute amounts of radiotoxic elements such as (210)Pb, (210)Po and uranium, which are inhaled via smoking. Only very few data have been published on the concentrations of natural radionuclides in narghile tobacco mixtures. Consequently, the aim of this study was to draw first conclusions on the potential hazards of radioactivity in moassel tobacco in relation to narghile smoking. The results indicate the existence of a wide range in the radioactivity contents where the average (range) activity concentrations of (238)U, (234)Th (226)Ra, (210)Pb, (210)Po, (232)Th and (40)K, in Bq/kg dry weight were 55 (19-93), 11 (3-23), 3 (1.2-8), 14 (3-29), 13 (7-32), 7 (4-10) and 719 (437-1044)Bq/kg dry weight, respectively. The average concentrations of natural radionuclides in moassel tobacco pastes are comparable to their concentration in Greek cigarettes and tobacco leaves, and lower than that of Brazilian tobacco leaves. The distribution pattern of these radionuclides after smoking, between smoke, ash and filter, is unknown, except for (210)Po during cigarette smoking and from one existing study during moassel smoking. Radiological dose assessment due to intake of natural radionuclides was calculated and the possible radio-toxicity of the measured radionuclides is briefly discussed. PMID:18768240

  17. Smoking motivators are different among cigarette and waterpipe smokers: The results of ITUPP.

    PubMed

    Roohafza, Hamidreza; Heidari, Kamal; Alinia, Tahereh; Omidi, Razieh; Sadeghi, Masoumeh; Andalib, Elham; Ajami, Ali; Sarrafzadegan, Nizal

    2015-09-01

    The present study explores different drivers of cigarette and water pipe smoking among middle and high school students in Isfahan province. A questionnaire-based cross-sectional study was conducted. Trained staff collected questionnaires and saliva samples for response accuracy evaluation. Prevalence by demographic, parental and educational factors was calculated. Logistic regression was applied to compare behavior drivers of those who purely smoked cigarettes or a waterpipe. Waterpipe smokers were considered as the reference category. This study reported ORs along 95% confidence intervals; 5408 questionnaires were returned. The sample age was 15.37±01.70 on average. The self-reported prevalence of cigarette and waterpipe experimentation was 11.60% (n=624) and 20.70% (n=1,109), respectively; and 5.08% (n=311), 11.06% (n=619) for smokers, and 13.30% (n=711) for the whole sample. Psychological factors were the most important driver for cigarette smoking; bad event happening with odds of 2.38 (95% CI: 1.29-4.39); angriness 2.58 times (95% CI: 1.51-4.43); and distress by 2.49 times (95% CI: 1.42-4.40). Habitual situations were strong predictors of cigarette smoking, but not a predictor of waterpipe smoking, such as smoking after a meal (OR=3.11, 95% CI: 1.67-5.77); and smoking after waking up (OR=2.56, 95% CI: 1.42-4.40). Comprehensive and multifaceted preventive programs must tailor identified factors and increase family's awareness. PMID:26231400

  18. Intergranular stress corrosion cracking: A rationalization of apparent differences among stress corrosion cracking tendencies for sensitized regions in the process water piping and in the tanks of SRS reactors

    SciTech Connect

    Louthan, M.R.

    1990-09-28

    The frequency of stress corrosion cracking in the near weld regions of the SRS reactor tank walls is apparently lower than the cracking frequency near the pipe-to-pipe welds in the primary cooling water system. The difference in cracking tendency can be attributed to differences in the welding processes, fabrication schedules, near weld residual stresses, exposure conditions and other system variables. This memorandum discusses the technical issues that may account the differences in cracking tendencies based on a review of the fabrication and operating histories of the reactor systems and the accepted understanding of factors that control stress corrosion cracking in austenitic stainless steels.

  19. NOAA OTEC CWP (National Oceanic and Atmospheric Administration Ocean Thermal Energy Conversion Cold Water Pipe) at-sea test. Volume 3: Additional tabulation of the power spectra, part 2

    NASA Astrophysics Data System (ADS)

    1983-12-01

    Data collected during the Ocean Thermal Energy Conversion (OTEC) Cold Water Pipe At Sea Test are analyzed. Also included are the following ittems: (1) sensor factors and offsets, and the data processing algorithms used to convert the recorded sensor measurements from electrical to engineering units; (2) plots of the power spectra estimates obtained from a fast fourier transform (FFT) analysis of selected channels; (3) plots of selected sensor measurements as a function of time; and (4) plots of bending strain along the pipe using statistics and values presented.

  20. NOAA OTEC CWP (National Oceanic and Atmospheric Administration Ocean Thermal Energy Conversion Cold Water Pipe) at-sea test. Volume 3, part 1: Tabulation of the power spectra for selected channels

    NASA Astrophysics Data System (ADS)

    1983-11-01

    Data collected during the Ocean Thermal Energy Conversion (OTEC) Cold Water Pipe At-Sea Test was analyzed. Data presented included: (1)sensor factors and off sets and the data processing algorithms used to convert the recorded sensor measurements from electrical units to engineering units; (2) plots of the power spectra estimates obtained from a fast Fourier transform (FFT) analysis of selected channels; (3) plots of selected sensor measurements as a function of time; and (4) plots of bending strain along the pipe. The mean, root-mean-square (RMS) maximum, and minimum values at each depth are shown in each plot.

  1. Ultrasonic pipe assessment

    SciTech Connect

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  2. Shield For Flexible Pipe

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  3. Short cracks in piping and piping welds

    SciTech Connect

    Wilkowski, G.M.; Brust, F.; Francini, R.; Ghadiali, N.; Kilinski, T.; Krishnaswamy, P.; Landow, M.; Marschall, C.W.; Rahman, S.; Scott, P. )

    1992-04-01

    This is the second semiannual report of the US Nuclear Regulatory Commission's Short Cracks in Piping and Piping Welds research program. The program began in March 1990 and will extend for 4 years. The intent of this program is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break analyses or in-service flaw evaluations. Only quasi-static loading rates are evaluated since the NRC's International Piping Integrity Research Group (IPIRG) program is evaluating the effects of seismic loading rates on cracked piping systems. Progress for through-wall-cracked pipe involved (1) conducting a 28-inch diameter stainless steel SAW and 4-inch diameter French TP316 experiments, (2) conducting a matrix of FEM analyses to determine GE/EPRI functions for short TWC pipe, (3) comparison of uncracked pipe maximum moments to various analyses and FEM solutions, (4) development of a J-estimation scheme that includes the strength of both the weld and base metals. Progress for surface-cracked pipe involved (1) conducting two experiments on 6-inch diameter pipe with d/t = 0.5 and {Theta}/{pi} = 0.25 cracks, (2) comparisons of the pipe experiments to Net-Section-Collapse predictions, and (3) modification of the SC.TNP and SC.TKP J-estimation schemes to include external surface cracks.

  4. Modeling and testing of reactive contaminant transport in drinking water pipes: Chlorine response and implications for online contaminant detection

    EPA Science Inventory

    Reactive contaminants introduced to chlorinated drinking water can cause water quality change directly related to their reactivity and other physiochemical properties. This general principle is further developed and utilized in a proposed real-time event adaptive detection, iden...

  5. 46 CFR 56.50-85 - Tank-vent piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of the tanks to vent pipes. (2) Tanks having a comparatively small surface, such as fuel oil settling... closure device shall be situated so as not to damage these screens. (10) The diameter of each vent pipe... for water ballast tanks, and 21/2 inches nominal pipe size for fuel oil tanks, except that...

  6. COPPER-INDUCED CORROSION OF GALVANIZED STEEL PIPE

    EPA Science Inventory

    An investigation was conducted to determine the cause(s) of rapid pitting failure of galvanized steel pipe used in consumer plumbing systems. The presence of copper in water and the character of the galvanized steel pipe were factors examined in detail. Pipe manufactured in Korea...

  7. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used...

  8. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used...

  9. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used...

  10. 46 CFR 154.1125 - Pipes, fittings, and valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pipes, fittings, and valves. 154.1125 Section 154.1125... Firefighting § 154.1125 Pipes, fittings, and valves. (a) Each pipe, fitting, and valve for each water spray... listed in § 154.1110 must have at least one isolation valve at each branch connection and at least...

  11. 46 CFR 154.1125 - Pipes, fittings, and valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pipes, fittings, and valves. 154.1125 Section 154.1125... Firefighting § 154.1125 Pipes, fittings, and valves. (a) Each pipe, fitting, and valve for each water spray... listed in § 154.1110 must have at least one isolation valve at each branch connection and at least...

  12. 46 CFR 154.1125 - Pipes, fittings, and valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pipes, fittings, and valves. 154.1125 Section 154.1125... Firefighting § 154.1125 Pipes, fittings, and valves. (a) Each pipe, fitting, and valve for each water spray... listed in § 154.1110 must have at least one isolation valve at each branch connection and at least...

  13. 46 CFR 154.1125 - Pipes, fittings, and valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pipes, fittings, and valves. 154.1125 Section 154.1125... Firefighting § 154.1125 Pipes, fittings, and valves. (a) Each pipe, fitting, and valve for each water spray... listed in § 154.1110 must have at least one isolation valve at each branch connection and at least...

  14. INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE CASTING MACHINE (EITHER NO. 2 OR NO. 3) FOR PRODUCTION OF AN 8 INCH FASTTITE PIPE USED FOR GAS AND WATER TRANSMISSION. - American Cast Iron Pipe Company, Mixer Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL

  15. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used...

  16. THE EFFECT OF CHLORIDE, SULFATE, BICARBONATE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM PIPE

    EPA Science Inventory

    “Colored water” describes the appearance of drinking water that contains suspended particulate iron where the actual suspension color may range from light yellow to red due to water chemistry and particle properties. This iron can originate from the source water and f...

  17. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such as...

  18. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    "Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such a...

  19. Vapor spill pipe monitor

    NASA Astrophysics Data System (ADS)

    Bianchini, G. M.; McRae, T. G.

    1983-06-01

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote IR gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote IR sensor which measures the gas composition.

  20. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  1. 33 CFR 127.613 - Smoking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Smoking. 127.613 Section 127.613 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT... Facilities Handling Liquefied Natural Gas Firefighting § 127.613 Smoking. In the marine transfer area for...

  2. 33 CFR 127.613 - Smoking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Smoking. 127.613 Section 127.613 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT... Facilities Handling Liquefied Natural Gas Firefighting § 127.613 Smoking. In the marine transfer area for...

  3. 33 CFR 127.613 - Smoking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Smoking. 127.613 Section 127.613 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT... Facilities Handling Liquefied Natural Gas Firefighting § 127.613 Smoking. In the marine transfer area for...

  4. 33 CFR 127.613 - Smoking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Smoking. 127.613 Section 127.613 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT... Facilities Handling Liquefied Natural Gas Firefighting § 127.613 Smoking. In the marine transfer area for...

  5. 33 CFR 127.613 - Smoking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Smoking. 127.613 Section 127.613 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT... Facilities Handling Liquefied Natural Gas Firefighting § 127.613 Smoking. In the marine transfer area for...

  6. Pipe Leak Detection Technology Development

    EPA Science Inventory

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  7. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    PubMed

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management. PMID:25500472

  8. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-02-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.

  9. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-01-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427

  10. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe

    PubMed Central

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-01-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427

  11. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  12. Analysis of Distribution System and Domestic Service Line Pipe Deposits to Understand Water Treatment/Metal Release Relationships

    EPA Science Inventory

    This project puts the U.S. Environmental Protection Agency (EPA) into a unique position of being able to bring analytical tools to bear to solve or anticipate future drinking water infrastructure water quality and metallic or cement material performance problems, for which little...

  13. The Occurrence of Contaminant Accumulation in Lead Pipe Scales from Domestic Drinking Water Distribution Systems-ABSTRACT

    EPA Science Inventory

    Previous work has shown that contaminants such as Al, As and Ra, can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could conceivably result in elevated levels at consumers’ taps. The current regulatory...

  14. Demonstration and evaluation of an innovative water main rehabilitation technology: Cured-in-Place Pipe (CIPP) lining

    EPA Science Inventory

    As many water utilities are seeking new and innovative rehabilitation technologies to extend the life of their water distribution systems, information on the capabilities and applicability of new technologies is not always readily available from an independent source. The U.S. E...

  15. Multivariate weighted recurrence network inference for uncovering oil-water transitional flow behavior in a vertical pipe

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Cai, Qing; Zhang, Shan-Shan; Jin, Ning-De

    2016-06-01

    Exploring the dynamical behaviors of high water cut and low velocity oil-water flows remains a contemporary and challenging problem of significant importance. This challenge stimulates us to design a high-speed cycle motivation conductance sensor to capture spatial local flow information. We systematically carry out experiments and acquire the multi-channel measurements from different oil-water flow patterns. Then we develop a novel multivariate weighted recurrence network for uncovering the flow behaviors from multi-channel measurements. In particular, we exploit graph energy and weighted clustering coefficient in combination with multivariate time-frequency analysis to characterize the derived complex networks. The results indicate that the network measures are very sensitive to the flow transitions and allow uncovering local dynamical behaviors associated with water cut and flow velocity. These properties render our method particularly useful for quantitatively characterizing dynamical behaviors governing the transition and evolution of different oil-water flow patterns.

  16. Multivariate weighted recurrence network inference for uncovering oil-water transitional flow behavior in a vertical pipe.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Cai, Qing; Zhang, Shan-Shan; Jin, Ning-De

    2016-06-01

    Exploring the dynamical behaviors of high water cut and low velocity oil-water flows remains a contemporary and challenging problem of significant importance. This challenge stimulates us to design a high-speed cycle motivation conductance sensor to capture spatial local flow information. We systematically carry out experiments and acquire the multi-channel measurements from different oil-water flow patterns. Then we develop a novel multivariate weighted recurrence network for uncovering the flow behaviors from multi-channel measurements. In particular, we exploit graph energy and weighted clustering coefficient in combination with multivariate time-frequency analysis to characterize the derived complex networks. The results indicate that the network measures are very sensitive to the flow transitions and allow uncovering local dynamical behaviors associated with water cut and flow velocity. These properties render our method particularly useful for quantitatively characterizing dynamical behaviors governing the transition and evolution of different oil-water flow patterns. PMID:27368782

  17. Upgrading a Piped Water Supply from Intermittent to Continuous Delivery and Association with Waterborne Illness: A Matched Cohort Study in Urban India

    PubMed Central

    Ercumen, Ayse; Arnold, Benjamin F.; Kumpel, Emily; Burt, Zachary; Ray, Isha; Nelson, Kara; Colford, John M.

    2015-01-01

    Background Intermittent delivery of piped water can lead to waterborne illness through contamination in the pipelines or during household storage, use of unsafe water sources during intermittencies, and limited water availability for hygiene. We assessed the association between continuous versus intermittent water supply and waterborne diseases, child mortality, and weight for age in Hubli-Dharwad, India. Methods and Findings We conducted a matched cohort study with multivariate matching to identify intermittent and continuous supply areas with comparable characteristics in Hubli-Dharwad. We followed 3,922 households in 16 neighborhoods with children <5 y old, with four longitudinal visits over 15 mo (Nov 2010–Feb 2012) to record caregiver-reported health outcomes (diarrhea, highly credible gastrointestinal illness, bloody diarrhea, typhoid fever, cholera, hepatitis, and deaths of children <2 y old) and, at the final visit, to measure weight for age for children <5 y old. We also collected caregiver-reported data on negative control outcomes (cough/cold and scrapes/bruises) to assess potential bias from residual confounding or differential measurement error. Continuous supply had no significant overall association with diarrhea (prevalence ratio [PR] = 0.93, 95% confidence interval [CI]: 0.83–1.04, p = 0.19), bloody diarrhea (PR = 0.78, 95% CI: 0.60–1.01, p = 0.06), or weight-for-age z-scores (Δz = 0.01, 95% CI: −0.07–0.09, p = 0.79) in children <5 y old. In prespecified subgroup analyses by socioeconomic status, children <5 y old in lower-income continuous supply households had 37% lower prevalence of bloody diarrhea (PR = 0.63, 95% CI: 0.46–0.87, p-value for interaction = 0.03) than lower-income intermittent supply households; in higher-income households, there was no significant association between continuous versus intermittent supply and child diarrheal illnesses. Continuous supply areas also had 42% fewer households with ≥1 reported case of

  18. Reusable pipe flange covers

    DOEpatents

    Holden, James Elliott; Perez, Julieta

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  19. Smoking Programs for Youth.

    ERIC Educational Resources Information Center

    Ellis, Bernard H., Jr., Ed.; And Others

    The youth smoking problem is discussed and assistance is provided for teachers in developing smoking prevention and cessation programs. Four chapters serve as guides to understanding and working with the youth smoking problem. "Teenage Smoking in America" reviews trends in teenage smoking behavior and the factors that influence the initiation of…

  20. 21. Overflow pipe in filtration bed. Located at each corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Overflow pipe in filtration bed. Located at each corner of the bed, the pipes drain off any excess water and maintain a limit on water depth. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  1. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. PMID:25150521

  2. Glass heat pipe evacuated tube solar collector

    DOEpatents

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  3. Glass heat pipe evacuated tube solar collector

    SciTech Connect

    McConnell, R.D.; Vansant, J.H.

    1984-10-02

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  4. Acute Effect of Hookah Smoking on the Human Coronary Microcirculation.

    PubMed

    Nelson, Michael D; Rezk-Hanna, Mary; Rader, Florian; Mason, O'Neil R; Tang, Xiu; Shidban, Sarah; Rosenberry, Ryan; Benowitz, Neal L; Tashkin, Donald P; Elashoff, Robert M; Lindner, Jonathan R; Victor, Ronald G

    2016-06-01

    Hookah (water pipe) smoking is a major new understudied epidemic affecting youth. Because burning charcoal is used to heat the tobacco product, hookah smoke delivers not only nicotine but also large amounts of charcoal combustion products, including carbon-rich nanoparticles that constitute putative coronary vasoconstrictor stimuli and carbon monoxide, a known coronary vasodilator. We used myocardial contrast echocardiography perfusion imaging with intravenous lipid shelled microbubbles in young adult hookah smokers to determine the net effect of smoking hookah on myocardial blood flow. In 9 hookah smokers (age 27 ± 5 years, mean ± SD), we measured myocardial blood flow velocity (β), myocardial blood volume (A), myocardial blood flow (A × β) as well as myocardial oxygen consumption (MVO2) before and immediately after 30 minutes of ad lib hookah smoking. Myocardial blood flow did not decrease with hookah smoking but rather increased acutely (88 ± 10 to 120 ± 19 a.u./s, mean ± SE, p = 0.02), matching a mild increase in MVO2 (6.5 ± 0.3 to 7.6 ± 0.4 ml·minute(-1), p <0.001). This was manifested primarily by increased myocardial blood flow velocity (0.7 ± 0.1 to 0.9 ± 0.1 second(-1), p = 0.01) with unchanged myocardial blood volume (133 ± 7 to 137 ± 7 a.u., p = ns), the same pattern of coronary microvascular response seen with a low-dose β-adrenergic agonist. Indeed, with hookah, the increased MVO2 was accompanied by decreased heart rate variability, an indirect index of adrenergic overactivity, and eliminated by β-adrenergic blockade (i.v. propranolol). In conclusion, nanoparticle-enriched hookah smoke either is not an acute coronary vasoconstrictor stimulus or its vasoconstrictor effect is too weak to overcome the physiologic dilation of coronary microvessels matching mild cardiac β-adrenergic stimulation. PMID:27067622

  5. Smoking and Infertility

    MedlinePlus

    ... the American Society for Reproductive Medicine Smoking and infertility Can smoking affect my ability to have a ... smoke do not conceive as efficiently as nonsmokers. Infertility rates in both male and female smokers are ...

  6. Smoking and asthma

    MedlinePlus

    ... your allergies or asthma worse are called triggers. Smoking is a trigger for many people who have ... do not have to be a smoker for smoking to cause harm. Exposure to someone else's smoking ( ...

  7. Cigar Smoking and Cancer

    MedlinePlus

    ... there harmful chemicals in cigar smoke? Do cigars cause cancer and other diseases? What if I don’t ... to yourself and others, stop smoking. Do cigars cause cancer and other diseases? Yes. Cigar smoking causes cancer ...

  8. Smoking and Youth

    MedlinePlus

    Smoking cigarettes has many health risks for everyone. However, the younger you are when you start smoking, the more problems it can cause. People who start smoking before the age of 21 have the hardest ...

  9. Smoking and surgery

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000437.htm Smoking and surgery To use the sharing features on ... you succeed. There Are Many Reasons to Quit Smoking Tar, nicotine, and other chemicals from smoking can ...

  10. Rotating optical geometry sensor for inner pipe-surface reconstruction

    NASA Astrophysics Data System (ADS)

    Ritter, Moritz; Frey, Christan W.

    2010-01-01

    The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.

  11. Field Demonstration of Innovative Leak Detection/Location in Conjunction with Pipe Wall Thickness Testing for Water Mains

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Se...

  12. Arsenic Accumulation and Release Studies Using a Cast Iron Pipe Section from a Drinking Water Distribution System

    EPA Science Inventory

    The tendency of iron solid surfaces to adsorb arsenic and other ions is well known and has become the basis for several drinking water treatment approaches that remove these contaminants. It is reasonable to assume that iron-based solids, such as corrosion deposits present in dri...

  13. Slumping and related turbidity currents along proposed OTEC cold-water-pipe route resulting from hurricane Iwa

    SciTech Connect

    Dengler, A.T.; Noda, E.K.; Normark, W.R.; Wilde, P.

    1984-05-01

    An array of current/temperature/depth sensors off the west coast of Oahu, Hawaii recorded strong downslope water flow and resulting downslope displacement of the sensors during the passage of Hurricane Iwa. These real-time records give valuable insights for ocean engineering design off steep-sided volcanic islands for events that are generally only inferred from geologic evidence.

  14. Heat pipe flight experiments

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1973-01-01

    OAO 3 heat pipe flight experiments to check out weightlessness behavior are reported. Tested were a hollow channel screen system with helical grooves, a heat pipe with a wicking system of horizontal grooves, and a spiral artery pipe with multichannel fluid return to the evaporator. Flight experiment data proved that all heat pipe geometries containing wicking systems provided uninterrupted fluid return to the condensators during weightlessness and sufficient cooling for isothermalizing optical instruments onboard OAO.

  15. On the shape of stress corrosion cracks in sensitized Type 304 SS in Boiling Water Reactor primary coolant piping at 288 °C

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Kwon; Kramer, Daniel; Macdonald, Digby D.

    2014-11-01

    Evolution of the shape of surface cracks in sensitized Type 304 SS in Boiling Water Reactor primary coolant circuit piping at the reactor operating temperature of 288 °C is explored as a function of various environmental variables, such as electrochemical potential (ECP), solution conductivity, flow velocity, and multiplier for the oxygen reduction reaction (ORR) standard exchange current density (SECD), using the coupled environment fracture model (CEFM). For this work, the CEFM was upgraded by incorporating Shoji's model for calculating the crack tip strain rate and more advanced expressions were used for estimating the stress intensity factor for semi-elliptical surface cracks. This revised CEFM accurately predicts the dependence of the crack growth rate on stress intensity factor and offers an alternative explanation for the development of semi-elliptical cracks than that provided by fracture mechanics alone. The evolution of surface crack semi-elliptical shape depends strongly upon various environmental variables identified above, and the CEFM predicts that the minor axis of the ellipse should be oriented perpendicular to the surface, in agreement with observation. The development of the observed semi-elliptical cracks with the minor axis perpendicular to the surface is therefore attributed to the dependence of the crack growth rate on the electrochemical crack length.

  16. Heat pipes. [technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.

  17. Smoking control and cessation.

    PubMed

    Campbell, I A

    Over the last 30 years the prevalence of cigarette smoking in adults in the UK has fallen to around 30%. Smoking will still kill 100,000 people each year well into the next century. Smoking in children is related to whether their parents smoke. Moves to reduce smoking in adults will therefore reduce smoking in children. The Government should be urged to raise taxes on cigarettes and ban advertising. Smoking should be banned from all health care premises. Hospitals should be encouraged to appoint smoking cessation counsellors to work with both staff and patients. PMID:8348004

  18. Quality assurance of glass fiber reinforced piping systems

    SciTech Connect

    Ende, C.A.M. van den; Bruijn, J.C.M. de

    1997-12-01

    Resin based glass fiber reinforced plastic piping systems have been in use for over 30 years in a variety of industrial purposes, e.g. cooling and potable water, crude oil, gas, etc. Glass fiber reinforced piping systems have considerable advantages over alternative materials for piping systems. This is mainly due to their high corrosion resistance. The use of GRP pipes is limited due to the lack of quality assurance. As with other piping systems the joint is the weakest point. The paper describes the effort made towards a better quality control and understanding of the failure through determination of acceptance criteria and development of nondestructive testing methods for adhesively bounded joints.

  19. 30. DETAIL OF PIPE FEED SYSTEM TO CLASSIFIER, LOOKING EAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. DETAIL OF PIPE FEED SYSTEM TO CLASSIFIER, LOOKING EAST. THIS PIPE WAS MOUNTED ALONG THE JOISTS AT TOP, ALIGNING WITH THE TWO SMALLER PIPES PROTRUDING DOWNWARD FROM THE JOISTS. THESE PIPES CONVEYED PULP MATERIAL FROM THE STAMP APRONS ON THE UPPER FLOOR TO THE CLASSIFIER, SEEN IN THE DISTANCE AT CENTER. THE STRUCTURAL SUPPORTS AT CENTER LEFT WREE ADDED AS PART OF THE MILL STABILIZATION BY THE PARK SERVICE IN 1993-4. THIS WOUND AND RIVITED PIPE IS IDENTICAL TO THE 23-MILE PIPELINE THAT CONVEYED WATER TO THE MILL FROM TELESCOPE PEAK. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  20. Structure fires, smoke production, and smoke alarms.

    PubMed

    Peck, Michael D

    2011-01-01

    Smoke inhalation injury causes severe morbidity and death. In the United States, the majority of fatalities from fire and burns occur because of inhalation of smoke. Medical treatment is only supportive; there is no known antidote to the damaging effects of smoke toxicants on pulmonary tissue. Without question, minimization of the morbidity and mortality that are caused by smoke inhalation is best accomplished by prevention of the injury. Effective prevention programs depend on a thorough and detailed understanding of the mechanism of damage caused by smoke, as well as of the available options for efficacious prevention. This summary presents details of smoke production from structure fires, the effects of smoke on physiology, and the devices currently in use to prevent damage and death from smoke. PMID:21785363

  1. Experimental verification of the four-sensor probe model for flow diagnosis in air water flow in vertical pipe

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Mishra, R.

    2012-05-01

    Measuring the volumetric flow rate of each of the flowing components is required to be monitored in production logging applications. Hence it is necessary to measure the flow rates of gas, oil and water in vertical and inclined oil wells. An increasing level of interest has been shown by the researchers in developing system for the flow rate measurement in multiphase flows. This paper describes the experimental methodology using a miniature, local four-sensor probe for the measurement of dispersed flow parameters in bubbly two-phase flow for spherical bubbles. To establish interdependent among different parameters corresponding to dispersed flow, the available model has been used to experimentally obtain different parameters such as volume fraction, velocity and bubble shape of the dispersed phase in the bubbly air-water flow.

  2. Assessment of the microbial integrity, sensu G.S. Wilson, of piped and bottled drinking water in the condition as ingested.

    PubMed

    Mossel, David A A; Struijk, Corry B

    2004-05-01

    The second half of the 20th century witnessed substantial progress in the assurance and verification of microbiological integrity, i.e., safety and sensory quality, of drinking water. Enteropathogenic agents, such as particular viruses and protozoa, not previously identified as transmitted by industrially provided water supplies, were demonstrated to cause disease outbreaks, when ingested with piped water. The potential harm posed by carry-over of orally toxic metabolites of organisms, producing 'algal' (cyanophytic) blooms, was considered. In addition, earlier observations on the colonization of attenuated drinking water bodies by a variety of oligotrophic Gram-negative bacteria were confirmed and extended. This new evidence called for updating both water purification technologies and analytical methodology, serving to verify that goals had been attained. For the former purpose, the hazard analysis empowering control of critical practices (HACCP) strategy, introduced about 1960 in industrial food processing, was successfully adopted. Elimination, devitalization or barrier technologies for the more recently identified water-borne pathogens were elaborated, taking account of the hazard of production of chlorinated compounds with alleged adverse health effects. Biofilm formation throughout water distribution networks was brought under control by strict limitation of concentrations of compounds, assimilable by oligotrophic bacteria. Upon acknowledging that direct detection tests for pathogens were futile, because of their most sporadic and erratic distribution, Schardinger's marker organism concept was anew embraced, rigorously revised and substantially enlarged. Misleading designations, like searches for 'faecal coliforms' were replaced by boundary testing for Escherichia coli and appropriate Enterococcus spp. In addition, though still to be perfected, detection protocols for relevant bacteriophages or index viruses and, to a certain extent, also for spores of

  3. Smoking Awareness and Practices of Urban Pre-School and First Grade Children.

    ERIC Educational Resources Information Center

    Shute, Robert E.; And Others

    1981-01-01

    A study was done to determine and describe the level of preschoolers' and first-graders' awareness, attitudes, and practices regarding cigarettes, pipes, and cigars. Data strongly reflected the fact that parents and older siblings are very influential in the eventual choices of young children to smoke or not to smoke. (JN)

  4. Peach bottom recirculation piping replacement ALARA program

    SciTech Connect

    Englesson, G.A.; Hilsmeier, A.E.; Mann, B.J.

    1986-01-01

    In late 1983, Philadelphia Electric Company (PECo) began detailed planning to replace the recirculation, residual heat removal, and part of the reactor water cleanup piping of the Peach Bottom Unit 2 reactor. Included in this work was an estimate of the collective exposure expected during piping replacement. That initial estimate, 1945 man-rem, is compared with the actual collective dose incurred during the piping replacement program. Also included are the exposures incurred during two additional tasks (safe end replacement and recirculation pump disassembly and decontamination) not considered in the initial estimate.

  5. Seismic fragility analysis of buried steel piping at P, L, and K reactors

    SciTech Connect

    Wingo, H.E.

    1989-10-01

    Analysis of seismic strength of buried cooling water piping in reactor areas is necessary to evaluate the risk of reactor operation because seismic events could damage these buried pipes and cause loss of coolant accidents. This report documents analysis of the ability of this piping to withstand the combined effects of the propagation of seismic waves, the possibility that the piping may not behave in a completely ductile fashion, and the distortions caused by relative displacements of structures connected to the piping.

  6. Predictive complexation models of the impact of natural organic matter and cations on scaling in cooling water pipes: A case study of power generation plants in South Africa

    NASA Astrophysics Data System (ADS)

    Bosire, G. O.; Ngila, J. C.; Mbugua, J. M.

    This work discusses simulative models of Ca and Mg complexation with natural organic matter (NOM), in order to control the incidence of scaling in pipes carrying cooling water at the Eskom power generating stations in South Africa. In particular, the paper reports how parameters such as pH and trace element levels influence the distribution of scaling species and their interactions, over and above mineral phase saturation indices. In order to generate modelling inputs, two experimental scenarios were created in the model solutions: Firstly, the trace metals Cu, Pb and Zn were used as markers for Ca and Mg complexation to humic acid and secondly the effect of natural organic matter in cooling water was determined by spiking model solutions. Labile metal ions and total elements in model solutions and water samples were analysed by square wave anodic stripping voltammetry and inductively coupled plasma optical emission spectrometry (ICP-OES), respectively. ICP-OES results revealed high levels of K, Na, S, Mg and Ca and low levels of trace elements (Cd, Se, Pb, Cu, Mn, Mo, Ni, Al and Zn) in the cooling water samples. Using the Tipping and Hurley's database WHAM in PHREEQC format (T_H.DAT), the total elemental concentrations were run as inputs on a PHREEQC code, at pH 6.8 and defined charge as alkalinity (as HCO3-) For model solutions, PHREEQC inputs were based on (i) free metal differences attributed to competitive effect of Ca and the effect of Ca + Mg, respectively; (ii) total Ca and Mg used in the model solutions and (iii) alkalinity described as hydrogen carbonate. Anodic stripping peak heights were used to calculate the concentration of the free/uncomplexed/labile metal ions (used as tracers) in the model solutions. The objective of modelling was to describe scaling in terms of saturation indices of mineral phases. Accordingly, the minerals most likely to generate scale were further simulated (over a range of pH (3-10) to yield results that mimicked changing p

  7. Smoking in Movies and Adolescent Smoking Initiation

    PubMed Central

    Morgenstern, Matthis; Sargent, James D.; Engels, Rutger C.M.E.; Scholte, Ron H.J.; Florek, Ewa; Hunt, Kate; Sweeting, Helen; Mathis, Federica; Faggiano, Fabrizio; Hanewinkel, Reiner

    2013-01-01

    Background Longitudinal studies from the U.S. suggest a causal relationship between exposure to images of smoking in movies and adolescent smoking onset. Purpose This study investigates whether adolescent smoking onset is predicted by the amount of exposure to smoking in movies across six European countries with various cultural and regulatory approaches to tobacco. Methods Longitudinal survey of 9987 adolescent never-smokers recruited in the years 2009–2010 (mean age 13.2 years) in 112 state-funded schools from Germany, Iceland, Italy, The Netherlands, Poland, and the United Kingdom (UK), and followed-up in 2011. Exposure to movie smoking was estimated from 250 top-grossing movies in each country. Multilevel mixed-effects Poisson regressions were performed in 2012 to assess the relationship between exposure at baseline and smoking status at follow-up. Results During the observation period (M=12 months), 17% of the sample initiated smoking. The estimated mean exposure to on-screen tobacco was 1560 occurrences. Overall, and after controlling for age; gender; family affluence; school performance; TVscreen time; personality characteristics; and smoking status of peers, parents, and siblings, exposure to each additional 1000 tobacco occurrences increased the adjusted relative risk for smoking onset by 13% (95% CI=8%, 17%, p<0.001). The crude relationship between movie smoking exposure and smoking initiation was significant in all countries; after covariate adjustment, the relationship remained significant in Germany, Iceland, The Netherlands, Poland, and UK. Conclusions Seeing smoking in movies is a predictor of smoking onset in various cultural contexts. The results confirm that limiting young people’s exposure to movie smoking might be an effective way to decrease adolescent smoking onset. PMID:23498098

  8. Gas chromatographic determination of polycyclic aromatic hydrocarbons in water and smoked rice samples after solid-phase microextraction using multiwalled carbon nanotube loaded hollow fiber.

    PubMed

    Matin, Amir Abbas; Biparva, Pourya; Gheshlaghi, Mohammad

    2014-12-29

    A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs. PMID:25476686

  9. Improved thermoplastic materials for offshore flexible pipes

    SciTech Connect

    Dawans, F.; Jarrin, J.; Hardy, J.

    1988-08-01

    Long-term aging tests representative of field operating conditions have been conducted on various thermoplastic materials proposed for the inner tube of flexible pipes for offshore drilling and production applications. In particular, experimental data are provided about the changes of the mechanical properties of selected thermoplastic materials owing to optimized formulation when the pipes are exposed over time to crude oil in the presence of gas and water.

  10. IMMUNOTOXICITY OF ORGANOTINS USED AS STABILIZERS IN PVC PIPE

    EPA Science Inventory

    Organotins, used as stabilizers in the production of PVC drinking water supply pipe, are known to leach into water, particularly from new pipe. Certain organotins (dibutyl-, dioctyl- and tributyltins) are known to suppress immune function following acute and subchronic exposure o...

  11. 33 CFR 157.11 - Pumping, piping and discharge arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pumping, piping and discharge arrangements. 157.11 Section 157.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.11 Pumping, piping and...

  12. Smoking and Pregnancy

    MedlinePlus

    Smoking and Pregnancy Smoking can cause problems for a woman trying to become pregnant or who is already pregnant, and for her baby ... too early • Pregnancy occurs outside of the womb Smoking causes these health effects. Smoking could cause these ...

  13. Smoking and Eye Health

    MedlinePlus

    ... Eye Health Apr. 14, 2014 Avoiding smoking and second hand smoke — or quitting if you are a smoker — are ... influence your eyes’ health. And tobacco smoke, including second-hand smoke, is an irritant that worsens dry eye , a ...

  14. Working fluid flow visualization in gravity heat pipe

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-03-01

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. The article deal about gravity heat pipe construction and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) and filled with water. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.

  15. Miniature Heat Pipes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  16. Piping inspection instrument carriage

    SciTech Connect

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe inspection instrument carriage for use with a pipe crawler or other locomotion means for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has means mounted distally thereon for axially aligning the inspection instrumentation and means for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has means for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  17. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  18. Impact of working fluids on gravitational heat pipe performance

    NASA Astrophysics Data System (ADS)

    Jobb, Marián; Kosa, Ľuboš; Nosek, Radovan; Malcho, Milan

    2016-06-01

    Performance heat pipes depends on several parameters. This article deals with the performance of heat pipes, depending on the working fluid and operating temperature. There is described the essential function of the heat pipe manufacturing process. Stainless heat pipes were made of material AISI 304 and filled with a distilled water and solution of distilled water with silver nitrate, up to 20% of the heat pipe inner volume. Measurements were carried at an operating temperature of 40 °C to 90 °C. The performance was measured on the experimental device. Presented results show the progress of individual measurements and the effect of operating parameters and working fluid on the performance of heat pipes.

  19. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  20. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  1. External artery heat pipe

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor); Ernst, Donald M. (Inventor); Shaubach, Robert M. (Inventor)

    1989-01-01

    An improved heat pipe with an external artery. The longitudinal slot in the heat pipe wall which interconnects the heat pipe vapor space with the external artery is completely filled with sintered wick material and the wall of the external artery is also covered with sintered wick material. This added wick structure assures that the external artery will continue to feed liquid to the heat pipe evaporator even if a vapor bubble forms within and would otherwise block the liquid transport function of the external artery.

  2. Introduction to Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  3. Internal pipe attachment mechanism

    DOEpatents

    Bast, Richard M.; Chesnut, Dwayne A.; Henning, Carl D.; Lennon, Joseph P.; Pastrnak, John W.; Smith, Joseph A.

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  4. Internal pipe attachment mechanism

    DOEpatents

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  5. Underground radial pipe network

    SciTech Connect

    Peterson, D.L.

    1984-04-24

    The network, useful in conducting fluids to underground sites, is an assembly of flexible pipes or tubes, suspended from and connected to a drill pipe. The flexible pipes, assembled in a bundle, are spring biased to flare outwardly in an arcuate manner when a releasable cap on the distal end of the bundle is removed. The assembled bundle is inserted into and lowered down a bore hole. When the cap is released, the pipes flare radially and outwardly. Fluid, pumped into and through the assembly, can be directed into the underground formation for various purposes.

  6. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1972-01-01

    The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  7. Pipe crawler apparatus

    DOEpatents

    Hovis, Gregory L.; Erickson, Scott A.; Blackmon, Bruce L.

    2002-01-01

    A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

  8. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  9. UNDERSTANDING CHLORINE AND CHLORAMINE DECAY KINETICS IN OLD CAST IRON PIPES, 2. CONVERSION FROM CONVENTIONAL TREATMENT TO MICROFILTRATION IN A SMALL WATER SYSTEM

    EPA Science Inventory

    This insitu pipe loop study was designed to determine the disinfectant kinetics associated with very old unlined cast iron pipelines with both chlorine and chloramination residuals. An abandoned 90-year-old unlined cast iron pipeline about 2000 ft long was acclimated to conduct a...

  10. Young Adult Smoking Behavior

    PubMed Central

    Ling, Pamela M.; Neilands, Torsten B.; Glantz, Stanton A.

    2009-01-01

    Background Young adults have the highest smoking rate of any age group in the U.S., and new strategies to decrease young adult smoking are needed. The objective of the current study was to identify psychographic and demographic factors associated with current smoking and quitting behaviors among young adults. Methods Attitudes, social groups, and self-descriptors, including supporting action against the tobacco industry, advertising receptivity, depression, alcohol use, and other factors associated with smoking were tested for associations with smoking behaviors in a 2005 cross-sectional survey of 1528 young adults (aged 18–25 years) from a web-enabled panel. Analyses were conducted in 2007. Results Being older was associated with current smoking, whereas having some higher education and being African American or Hispanic were negatively associated with smoking. Supporting action against the tobacco industry was negatively associated with smoking (AOR=0.34 [95% CI=0.22, 0.52]). Perceived usefulness of smoking, exposure to smokers, increased perceived smoking prevalence, receptivity to tobacco advertising, binge drinking, and exposure to tobacco advertising in bars and clubs were associated with smoking. Supporting action against the tobacco industry was associated with intentions to quit smoking (AOR= 4.43 [95% CI=2.18, 8.60]). Conclusions Young adults are vulnerable to tobacco-industry advertising. Media campaigns that denormalize the tobacco industry and appeal to young adults appear to be a powerful intervention to decrease young adult smoking. PMID:19269128

  11. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  12. Smart smoke alarm

    DOEpatents

    Warmack, Robert J. Bruce; Wolf, Dennis A; Frank, Steven Shane

    2015-04-28

    Methods and apparatus for smoke detection are disclosed. In one embodiment, a smoke detector uses linear discriminant analysis (LDA) to determine whether observed conditions indicate that an alarm is warranted.

  13. Smoking and Youth

    MedlinePlus

    Smoking cigarettes has many health risks for everyone. However, the younger you are when you start smoking, the more ... and illegal drugs. The problem is not just cigarettes. Spit tobacco, e-cigarettes, and cigars are not ...

  14. Continuous laminar smoke generator

    NASA Technical Reports Server (NTRS)

    Weinstein, L. M. (Inventor)

    1985-01-01

    A smoke generator capable of emitting a very thin, laminar stream of smoke for use in high detail flow visualization was invented. The generator is capable of emitting a larger but less stable rope of smoke. The invention consists of a pressure supply and fluid supply which supply smoke generating fluid to feed. The feed tube is directly heated by electrical resistance from current supplied by power supply and regulated by a constant temperature controller. A smoke exit hole is drilled in the wall of feed tube. Because feed tube is heated both before and past exit hole, no condensation of smoke generating occurs at the smoke exit hole, enabling the production of a very stable smoke filament. The generator is small in size which avoids wind turbulence in front of the test model.

  15. Up in Smoke.

    ERIC Educational Resources Information Center

    Black, Susan

    2002-01-01

    Reviews research on adolescent smoking and nicotine addiction. Finds, for example, that smoking is linked to depression. Describes five stages of nicotine addiction. Offers tips for prevention. (Contains 12 references.) (PKP)

  16. Smoking and Bone Health

    MedlinePlus

    ... direct relationship between tobacco use and decreased bone density. Analyzing the impact of cigarette smoking on bone ... hard to determine whether a decrease in bone density is due to smoking itself or to other ...

  17. Smoking and asthma

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000504.htm Smoking and asthma To use the sharing features on this page, ... enable JavaScript. Things that make your allergies or asthma worse are called triggers. Smoking is a trigger ...

  18. Extendable pipe crawler

    DOEpatents

    Hapstack, Mark

    1991-01-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by "inchworm"-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward.

  19. Extendable pipe crawler

    DOEpatents

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.

  20. Factors Affecting Smoking Tendency and Smoking Intensity

    ERIC Educational Resources Information Center

    David, Nissim Ben; Zion, Uri Ben

    2009-01-01

    Purpose: The purpose of this paper is to measure the relative effect of relevant explanatory variable on smoking tendency and smoking intensity. Design/methodology/approach: Using survey data collected by the Israeli Bureau of Statistics in 2003-2004, a probit procedure is estimated for analyzing factors that affect the probability of being a…