Science.gov

Sample records for water vapor experiment

  1. Water vapor permeabilities through polymers: diffusivities from experiments and simulations

    NASA Astrophysics Data System (ADS)

    Seethamraju, Sindhu; Chandrashekarapura Ramamurthy, Praveen; Madras, Giridhar

    2014-09-01

    This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes.

  2. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    ERIC Educational Resources Information Center

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  3. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    NASA Technical Reports Server (NTRS)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  4. Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

    1995-01-01

    The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

  5. Comparison of Stratospheric Aerosol and Gas Experiment II and balloon-borne stratospheric water vapor measurements

    NASA Technical Reports Server (NTRS)

    Pruvost, P.; Ovarlez, J.; Lenoble, J.; Chu, W. P.

    1993-01-01

    The Stratospheric Aerosol and Gas Experiment II has one channel at 940 nm related to water vapor. Two inversion procedures were developed independently in order to obtain the water vapor profile: the Chahine method by the Langley Research Center, and the Mill method by the Laboratoire d'Optique Atmospherique. Comparisons were made between these two algorithms and some results are presented at midlatitudes (about 45 deg N) and tropical latitudes (12-25 deg S). They are compared with in situ frost point hygrometer data provided by balloon experiments from the Laboratoire de Meteorologie Dynamique. At +/- 0.5 ppmv, agreement between the inversion results and the experimental results was obtained in the altitude range from 18-19 to 26-27 km. Below 18-19 km and above 26-27 km the error is larger (sometimes 1 ppmv and more).

  6. Comparison of Stratospheric Aerosol and Gas Experiment II and balloon-borne stratospheric water vapor measurements

    SciTech Connect

    Pruvost, P.; Lenoble, J. ); Ovarlez, J. ); Chu, W.P. )

    1993-03-20

    The Stratospheric Aerosol and Gas Experiment II has one channel at 940 nm related to water vapor. Two inversion procedures were developed independently in order to obtain the water vapor profile: the Chahine method by the Langley Research Center, and the Mill method by the Laboratoire d'Optique Atmospherique. Comparisons were made between these two algorithms and some results are presented at mid-latitudes ([approximately]45[degrees]N) and tropical latitudes (12[degrees]S-25[degrees]S). They are compared with in situ frost point hygrometer data provided by balloon experiments from the Laboratoire de Meteorologie Dynamique. At [plus minus]0.5 ppmv, agreement between the inversion results and the experimental results was obtained in the altitude range from 18-19 to 26-27 km. Below 18-19 km and above 26-27 km the error is larger (sometimes 1 ppmv and more). 17 refs., 4 figs.

  7. Comparison of Stratospheric Aerosol and Gas Experiment II and balloon-borne stratospheric water vapor measurements

    NASA Astrophysics Data System (ADS)

    Pruvost, P.; Ovarlez, J.; Lenoble, J.; Chu, W. P.

    1993-03-01

    The Stratospheric Aerosol and Gas Experiment II has one channel at 940 nm related to water vapor. Two inversion procedures were developed independently in order to obtain the water vapor profile: the Chahine method by the Langley Research center, and the Mill method by the Laboratoire d'Optique Atmosphérique. Comparisons were made between these two algorithms and some results are presented at mid-latitudes (~45°N) and tropical latitudes (12°S-25°S). They are compared with in situ frost point hygrometer data provided by balloon experiments from the Laboratoire de Météorologie Dynamique. At +/-0.5 ppmv, agreement between the inversion results and the experimental results was obtained in the altitude range from 18-19 to 26-27 km. Below 18-19 km and above 26-27 km the error is larger (sometimes 1 ppmv and more).

  8. GPS Water Vapor Tomography: Description and First Results of The Escompte Field Experiment

    NASA Astrophysics Data System (ADS)

    Bock, O.; Doerflinger, E.; Masson, F.; Walpersdorf, A.; van-Baelen, J.; Tarniewicz, J.; Troller, M.; Somieski, A.; Geiger, A.; Bürki, B.

    A dense network of 16 dual frequency GPS receivers has been operated for two weeks during June 2001 within a 20 km x 20 km area around Marseille, France, as part of the ESCOMPTE field campaign (http://medias.obs-mip.fr/escompte). The goal of the GPS experiment was to provide GPS data allowing for tomographic inversions and their validation within a well-documented observing period (the ESCOMPTE cam- paign). Tomographic inversion will be achieved with the AWATOS software of the GGL group of ETHZ. Simultaneous water vapor radiometer, solar spectrometer, Ra- man lidar and radiosonde data will be used for comparison and validation. Data from research aircrafts and atmospheric models are also expected. With this data set, key issues in GPS tomography can be investigated such as the impact of additional con- straints provided, e.g., by Raman lidar, on the vertical resolution of retrieved water vapor fields. In this poster we will mainly highlight the motivation and issues and de- scribe the field experiment. Some first results of water vapor retrievals from GPS and the other sensing techniques will also be presented.

  9. LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.

    1982-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.

  10. Overview of the Stratospheric Aerosol and Gas Experiment II water vapor observations - Method, validation, and data characteristics

    NASA Technical Reports Server (NTRS)

    Rind, D.; Chiou, E.-W.; Chu, W.; Oltmans, S.; Lerner, J.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1993-01-01

    Results are presented of water vapor observations in the troposphere and stratosphere performed by the Stratospheric Aerosol and Gas Experiment II solar occultation instrument, and the analysis procedure, the instrument errors, and data characteristics are discussed. The results are compared with correlative in situ measurements and other satellite data. The features of the data set collected between 1985 and 1989 include an increase in middle- and upper-tropospheric water vapor during northern hemisphere summer and autumn; minimum water vapor values of 2.5-3 ppmv in the tropical lower stratosphere; slowly increasing water vapor values with altitude in the stratosphere, reaching 5-6 ppmv or greater near the stratopause; extratropical values with minimum profile amounts occurring above the conventionally defined tropopause; and higher extratropical than tropical water vapor values throughout the stratosphere except in locations of possible polar stratospheric clouds.

  11. A comparison of the Stratospheric Aerosol and Gas Experiment II tropospheric water vapor to radiosonde measurements

    NASA Astrophysics Data System (ADS)

    Larsen, J. C.; Chiou, E. W.; Chu, W. P.; McCormick, M. P.; McMaster, L. R.; Oltmans, S.; Rind, D.

    1993-03-01

    Upper tropospheric Stratospheric Aerosol and Gas Experiment II (SAGE II) water vapor observations are compared to correlative radiosonde observations and radiosonde based climatologies. The SAGE II 1987 monthly zonal mean water vapor climatology is compared to both the Global Atmospheric Circulation Statistics (1963-1973) climatology and to the 1987 radiosonde climatology. The clear sky SAGE II climatology is found to be approximately half the level of both the clear/cloudy sky radiosonde climatologies. To determine whether this is realistic for these two different climatologies or includes additional observational and instrumental biases, we took the 1987 radiosonde data set and identified approximately 800 correlative profile pairs. The observational biases inherent to SAGE II and the radiosondes produce a set of profile pairs characteristic of clear sky, land conditions. A critical review of the radiosonde measurement capability was carried out to establish the operating range and accuracy in the upper troposphere. We show that even with tight coincidence criterion, the quality of the profile pair comparisons varies considerably because of strong water vapor variability occurring on small time and space scales. Annual zonal means calculated from the set of profile pairs again finds SAGE II significantly drier in many latitude bands. Resolving the radiosonde data base by hygrometer type shows this to be true for all hygrometers except for the thin film capacitive type (Vaisala Humicap). For this hygrometer, between 4.5 and 6.5 km SAGE II is drier by approximately 25.%, and from 8.5 to 11.5 km they are nearly equivalent when global annual means are compared. The good agreement with the Vaisala Humicap, currently the most accurate and responsive hygrometer in operational use, suggests existing radiosonde climatologies contain a significant moist bias in the upper troposphere.

  12. A comparison of the Stratospheric Aerosol and Gas Experiment II tropospheric water vapor to radiosonde measurements

    SciTech Connect

    Larsen, J.C.; Chiou, E.W. ); Chu, W.P.; McCormick, M.P.; McMaster, L.R. ); Oltmans, S. ); Rind, D. )

    1993-03-20

    Upper tropospheric Stratospheric Aerosol and Gas Experiment II (SAGE II) water vapor observations are compared to correlative radiosonde observations and radiosonde based climatologies. The SAGE II 1987 monthly zonal mean water vapor climatology is compared to both the Global Atmospheric Circulation Statistics (1963-1973) climatology and to the 1987 radiosonde climatology. The clear sky SAGE II climatology is found to be approximately half the level of both the clear/cloudy sky radiosonde climatologies. To determine whether this is realistic for these two different climatologies or includes additional observational and instrumental biases, the authors took the 1987 radiosonde data set and identified approximately 800 correlative profile pairs. The observational biases inherent to SAGE II and the radiosondes produce a set of profile pairs characteristic of clear sky, land conditions. A critical review of the radiosonde measurement capability was carried out to establish the operating range and accuracy in the upper troposphere. The authors show that even with tight coincidence criterion, the quality of the profile pair comparisons varies considerably because of strong water vapor variability occurring on small time and space scales. Annual zonal means calculated from the set of profile pairs again finds SAGE II significantly drier in many latitude bands. Resolving the radiosonde data base by hygrometer type shows this to be true for all hygrometers except for the thin film capacitive type (Vaisala Humicap). For this hygrometer, between 4.5 and 6.5 km SAGE II is drier by approximately 25.%, and from 8.5 to 11.5 km they are nearly equivalent when global annual means are compared. The good agreement with the Vaisala Humicap, currently the most accurate and responsive hygrometer in operational use, suggests existing radiosonde climatologies contain a significant moist bias in the upper troposphere. 31 refs., 16 figs., 6 tabs.

  13. LASE measurements of water vapor and aerosol profiles during the Plains Elevated Convection at Night (PECAN) field experiment

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.

    2015-12-01

    The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.

  14. Water vapor pressure calculation.

    PubMed

    Hall, J R; Brouillard, R G

    1985-06-01

    Accurate calculation of water vapor pressure for systems saturated with water vapor can be performed using the Goff-Gratch equation. A form of the equation that can be adapted for computer programming and for use in electronic databases is provided. PMID:4008425

  15. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  16. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  17. Transient desorption of water vapor - A potential source of error in upper atmosphere rocket experiments

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.; Weeks, J. O.

    1974-01-01

    Results of measurements of the outgassing rates of samples of materials and surface finishes used on the outer skins of rocket-borne experiment packages in simulated rocket ascents. The results showed outgassing rates for anodized aluminum in the second minute of flight which are two to three orders of magnitude higher than those given in typical tables of outgassing rates. The measured rates for aluminum with chromate conversion surface coatings were also abnormally high. These abnormally high initial rates fell quickly after about five to ten minutes to values comparable with those in the published literature. It is concluded that anodized and chromate conversion coatings on the aluminum outer surfaces of a sounding rocket experiment package will cause gross distortion of the true water vapor environment.

  18. A comparison of the Stratospheric Aerosol and Gas Experiment II tropospheric water vapor to radiosonde measurements

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.; Chiou, E. W.; Chu, W. P.; Mccormick, M. P.; Mcmaster, L. R.; Oltmans, S.; Rind, D.

    1993-01-01

    Results are presented of a comparison beteen observations of the upper-tropospheric water vapor data obtained from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument and radiosonde observations for 1987 and radiosonde-based climatologies. Colocated SAGE II-radiosonde measurement pairs are compared individually and in a zonal mean sense. A straight comparison of monthly zonal means between SAGE II and radiosondes for 1987 and Global Atmospheric Statistics (1963-1973) indicates that the clear-sky SAGE II climatology is approximately half the level of clear/cloudy sky of both radiosonde climatologies. Annual zonal means calculated from the set of profile pairs again showed SAGE II to be significantly drier in many altitude bands.

  19. LASE validation experiment: preliminary processing of relative humidity from LASE derived water vapor in the middle to upper troposphere

    NASA Technical Reports Server (NTRS)

    Brackett, Vincent G.; Ismail, Syed; Browell, Edward V.; Kooi, Susan A.; Clayton, Marian B.; Ferrare, Richard A.; Minnis, Patrick; Getzewich, Brian J.; Staszel, Jennifer

    1998-01-01

    Lidar Atmospheric Sensing Experiment (LASE) is the first fully engineered, autonomous airborne DIAL (Differentials Absorption Lidar) system to measure water vapor, aerosols, and clouds throughout the troposphere. This system uses a double-pulsed Ti:sapphire laser, which is pumped by a frequency-doubled flashlamp-pumped Nd: YAG laser, to transmit light in the 815 mn absorption band of water vapor. LASE operates by locking to a strong water vapor line and electronically tuning to any spectral position on the absorption line to choose the suitable absorption cross-section for optimum measurements over a range of concentrations in the atmosphere. During the LASE Validation Experiment, which was conducted over Wallops Island during September, 1995, LASE operated on either the strong water line for measurements in middle to upper troposphere, or on the weak water line for measurements made in the middle to lower troposphere including the boundary layer. Comparisons with water vapor measurements made by airborne dew point and frost point hygrometers, NASA/GSFC (Goddard Space Flight Center) Raman Lidar, and radiosondes showed the LASE water vapor mixing ratio measurements to have an accuracy of better than 6% or 0.01 g/kg, whichever is larger, throughout the troposphere. In addition to measuring water vapor mixing ratio profiles, LASE simultaneously measures aerosol backscattering profiles at the off-line wavelength near 815 nm from which atmospheric scattering ratio (ASR) profiles are calculated. ASR is defined as the ratio of total (aerosol + molecular) atmospheric scattering to molecular scattering. Assuming a region with very low aerosol loading can be identified, such as that typically found just below the tropopause, then the ASR can be determined. The ASR profiles are calculated by normalizing the scattering in the region containing enhanced aerosols to the expected scattering by the "clean" atmosphere at that altitude. Images of the total ASR clearly depict cloud

  20. Intercomparison of stratospheric water vapor observed by satellite experiments - Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chiou, E. W.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.

    1993-01-01

    A comparison is made of the stratospheric water vapor measurements made by the satellite sensors of the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus-7 LIMS, and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. It was found that, despite differences in the measurement techniques, sampling bias, and observational periods, the three experiments have disclosed a generally consistent pattern of stratospheric water vapor distribution. The only significant difference occurs at high southern altitudes in May below 18 km, where LIMS measurements were 2-3 ppmv greater than those of SAGE II and ATMOS.

  1. Stratospheric water vapor results from the limb infrared monitor of the stratosphere /LIMS/ experiment on Nimbus 7

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III; Remsberg, E. E.; Gordley, L. L.; Gille, J. C.; Bailey, P.

    1981-01-01

    Stratospheric water vapor results taken from the limb infrared monitor of the stratosphere experiment on Nimbus 7 are presented with emphasis on validation studies. Basic radiance data, the indicated orbital precision of the experiment and comparisons made with data collected in simultaneous balloon underflights are described. A plot of pressure versus H2O channel radiance shows the radiance variability as a function of pressure and latitude. Measured precision is in good agreement with calculated values using simulations.

  2. Vapor Compression Distillation Flight Experiment

    NASA Technical Reports Server (NTRS)

    Hutchens, Cindy F.

    2002-01-01

    One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.

  3. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  4. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  5. Water vaporization on Ceres

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Feldman, Paul D.

    1992-01-01

    A search is presently conducted for OH generated by the photodissociation of atmospheric water vapor in long-exposure IUE spectra of the region around Ceres. A statistically significant detection of OH is noted in an exposure off the northern limb of Ceres after perihelion. The amount of OH is consistent with a polar cap that might be replenished during winter by subsurface percolation, but which dissipates in summer.

  6. Analysis and forecast experiments incorporating satellite soundings and cloud and water vapor drift wind information

    NASA Technical Reports Server (NTRS)

    Goodman, Brian M.; Diak, George R.; Mills, Graham A.

    1986-01-01

    A system for assimilating conventional meteorological data and satellite-derived data in order to produce four-dimensional gridded data sets of the primary atmospheric variables used for updating limited area forecast models is described. The basic principles of a data assimilation scheme as proposed by Lorenc (1984) are discussed. The design of the system and its incremental assimilation cycles are schematically presented. The assimilation system was tested using radiosonde, buoy, VAS temperature, dew point, gradient wind data, cloud drift, and water vapor motion data. The rms vector errors for the data are analyzed.

  7. Implications of the stratospheric water vapor distribution as determined from the Nimbus 7 LIMS experiment. [Limb Infrared Monitor of Stratosphere

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Russell, J. M., III; Gordley, L. L.; Gille, J. C.; Bailey, P. L.

    1984-01-01

    The LIMS experiment on Nimbus 7 has provided new results on the stratospheric water vapor distribution. The data show (1) a latitudinal gradient with mixing ratios that increase by a factor of 2 from equator to + or - 60 degrees at 50 mb, (2) most of the time there is a fairly uniform mixing ratio of 5 ppmv at high latitudes, but more variation exists during winter, (3) a well-developed hygropause at low to midlatitudes of the lower stratosphere, (4) a source region of water vapor in the upper stratospehere to lower mesosphere that is consistent with methane oxidation chemistry, at least within the uncertainties of the data, (5) an apparent zonal mean H2O distribution that is consistent with the circulation proposed by Brewer in 1949, and (6) a zonal mean distribution in the lower stratosphere that is consistent with the idea of quasi-isentropic transport by eddies in the meridional direction. Limits to the use of the data in the refinement of our understanding of the stratospheric water vapor budget are noted.

  8. The Zugspitze radiative closure experiment: quantification of the near-infrared water vapor continuum from atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Reichert, Andreas; Sussmann, Ralf; Rettinger, Markus

    2016-04-01

    Inaccuracies in the description of atmospheric radiative processes are among the major shortcomings of current climate models. Especially the contribution by water vapor, the primary greenhouse gas in the Earth's atmosphere, currently still lacks sufficiently accurate quantification. The main focus of our study is on the so-called water vapor continuum absorption in the near-infrared spectral range, which is of crucial importance for atmospheric radiative processes. To date, the quantification of this contribution originates exclusively from laboratory experiments which show contradictory results and whose findings are not unambiguously transferable to atmospheric conditions. The aim of the Zugspitze radiative closure study is therefore to obtain, to our knowledge for the first time, an exact characterization of the near-infrared water vapor continuum absorption using atmospheric measurements. This enables validation and, if necessary, improvements of the radiative transfer codes used in current climate models. The closure experiment comprises near-infrared spectral radiance measurements using a solar absorption FTIR spectrometer. These measurements are then compared to synthetic radiance spectra computed by means of a high-resolution radiative transfer model. The spectral residuals, i.e. the difference between measured and calculated spectral radiances can then be used to quantify errors in the description of water vapor absorption. Due to the extensive permanent instrumentation available at the Zugspitze observatory, the atmospheric state used as an input to the model calculations can be constrained with high accuracy. Additionally, we employ a novel radiometric calibration strategy for the solar FTIR spectral radiance measurements based on a combination of the Langley method and measurements of a medium-temperature blackbody source. These prerequisites enable accurate quantification of the water vapor continuum in the near-infrared spectral region, where

  9. Observations of TTL water vapor and cirrus properties from the NASA Global Hawk during the Airborne Tropical TRopopause EXperiment

    NASA Astrophysics Data System (ADS)

    Thornberry, Troy; Rollins, Andrew; Gao, Ru-Shan; Woods, Sarah; Lawson, Paul; Bui, Thaopaul; Pfister, Leonhard; Fahey, David

    2015-04-01

    Despite its very low mixing ratios relative to the troposphere, water vapor in the lower stratosphere (LS) plays a significant role in Earth's radiative balance and climate system and is an important constituent in stratospheric chemistry. The low H2O content of air entering the LS is established to first order by dehydration processes controlled by the cold temperatures of the tropical tropopause layer (TTL), especially over the western Pacific. Cirrus clouds occur with high frequency and large spatial extent in the TTL, and those occurring near the thermal tropopause facilitate the final dehydration of stratosphere-bound air parcels. Uncertainties in aspects of the nucleation and growth of cirrus cloud particles and the sparseness of in situ water vapor and cirrus cloud observations with sufficient spatial resolution limit our ability to fully describe the final stages of the dehydration process before air enters the LS in the tropics. The NASA Airborne Tropical TRopopause EXperiment (ATTREX) measurement campaign has yielded more than 140 hours of sampling from the Global Hawk UAS in the Pacific TTL during deployments in winter 2013 and 2014, including more than 30 hours sampling TTL cirrus. Cirrus clouds were encountered throughout the TTL, up to the tropopause (17-18 km), with ice water contents (IWC) down to the detection limit of 3 μg m-3 and water vapor mixing ratios as low as 1.5 ppm. Most TTL cirrus sampled had particle number concentrations of less than 100 L-1, but some had concentrations ranging up to more than 1000 L-1. The mean value for relative humidity with respect to ice within cirrus was near 100%, but encompassed a range from < 50% to higher than 150%. The high spatial and temporal resolution in situ measurements of water vapor and cirrus cloud properties made during ATTREX provide an outstanding dataset by which to characterize the Pacific TTL environment and evaluate our current understanding of the dynamical and microphysical processes that

  10. Tropospheric water vapor and climate sensitivity

    SciTech Connect

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S.

    1999-06-01

    Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO{sub 2}) using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO{sub 2} is found as the difference between the equilibrium responses for control and doubled CO{sub 2} cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO{sub 2} from water vapor above 750 mb is about 2.6 times as large as that from water vapor below 750 mb. The feedback on global mean surface temperature due to water vapor in the extratropical free troposphere is about 50% larger than the feedback due to the lower-latitude free troposphere water vapor. Several important sources of nonlinearity of the radiative heating rates were identified in the process of constructing the specified cloud and water vapor fields. These are (1) the interaction of clouds and solar radiation, which produces much more reflection of solar radiation for time mean clouds than for the instantaneous clouds; (2) the correlation of clouds and water vapor, which produces less downward longwave radiation at the ground for correlated clouds and water vapor than when these fields are independent; and (3) the interaction of water vapor with long wave radiation, which produces less downward longwave radiation at the ground of the average over instantaneous water vapor distributions than of

  11. SOFIA Water Vapor Monitor Design

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Roellig, T. L.; Yuen, L.; Shiroyama, B.; Meyer, A.; Devincenzi, D. (Technical Monitor)

    2002-01-01

    The SOFIA Water Vapor Monitor (WVM) is a heterodyne radiometer designed to determine the integrated amount of water vapor along the telescope line of sight and directly to the zenith. The basic technique that was chosen for the WVM uses radiometric measurements of the center and wings of the 183.3 GHz rotational line of water to measure the water vapor. The WVM reports its measured water vapor levels to the aircraft Mission Controls and Communication System (MCCS) while the SOFIA observatory is in normal operation at flight altitude. The water vapor measurements are also available to other scientific instruments aboard the observatory. The electrical, mechanical and software design of the WVM are discussed.

  12. Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    SciTech Connect

    Chiou, E.W.; Larsen, J.C. ); McCormick, M.P.; McMaster, L.R.; Chu, W.P. ); Rind, D. ); Oltmans, S. )

    1993-03-20

    This paper presents a comparison of the stratospheric water vapor measurements made by the satellite-borne sensors the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS), and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. LIMS obtained data for 7 months between November 1978 and May 1979; ATMOS was carried on Shuttle and observed eight profiles from April 30 to May 6, 1985 at approximately 30[degrees]N and 50[degrees]S; and, SAGE II continues to make measurements since its launch in October 1984. For both 30[degrees]N and 50[degrees]S in May, the comparisons between SAGE II and ATMOS show agreement within the estimated combined uncertainty of the two experiments. Several important features identified by LIMS observations have been confirmed by SAGE II: a well-developed hygropause in the lower stratosphere at low- to mid-latitudes, a poleward latitudinal gradient, increasing water vapor mixing ratios with altitude in the tropics, and the transport of dry lower stratospheric water vapor upward and southward in May, and upward and northward in November. A detailed comparative study also indicates that the two previously suggested corrections for LIMS, a correction in tropical lower stratosphere due to a positive temperature bias and the correction above 28 km based on improved emissivities will bring LIMS measurements much closer to those of SAGE II. The only significant difference occurs at high southern latitudes in May below 18 km, where LIMS measurements are 2-3 ppmv greater. It should be noted that LIMS observations are from 16 to 50 km, ATMOS from 14 to 86 km, and SAGE II from mid-troposphere to 40 km. With multiyear coverage, SAGE II observations should be useful for studying tropospheric-stratospheric exchange, for stratospheric transport, and for preparing water vapor climatologies for the stratosphere and the upper troposphere. 32 refs., 14 figs., 2 tabs.

  13. Water vapor, whence comest thou.

    NASA Technical Reports Server (NTRS)

    Freeman, J. W., Jr.; Hills, H. K.; Vondrak, R. R.

    1972-01-01

    During a 14-hour period on Mar. 7, 1971, the Apollo 14 ALSEP suprathermal ion detector experiment (SIDE) observed an intense, prolonged series of bursts of 48.6-eV ions at the lunar surface. The SIDE mass analyzer showed the mass per unit charge of these ions to be characteristic of water vapor if singly ionized. The event was also observed by the SIDE total ion detectors (TIDs) at the Apollo 14 site and at Apollo 12 (located 183 km to the west). The TID data from SIDE 14 indicate that the energy spectrum was narrower than the 20-eV interval between energy channels. Ion spectra due to the LM exhaust gases are shown to be readily identified by the SIDE and are distinctly different in character from the spectra obtained on March 7. Detailed consideration of other possible sources of water, including the Apollo 14 CSM, leads to the conclusion that the water vapor did not come from a man-made source. Also, it is estimated that the event may have involved a quantity of water much greater than that which has been artificially introduced into the lunar environment. Consequently, it appears to be of lunar origin.

  14. An evaluation of water vapor radiometer data for calibration of the wet path delay in very long baseline interferometry experiments

    NASA Technical Reports Server (NTRS)

    Kuehn, C. E.; Himwich, W. E.; Clark, T. A.; Ma, C.

    1991-01-01

    The internal consistency of the baseline-length measurements derived from analysis of several independent VLBI experiments is an estimate of the measurement precision. The paper investigates whether the inclusion of water vapor radiometer (WVR) data as an absolute calibration of the propagation delay due to water vapor improves the precision of VLBI baseline-length measurements. The paper analyzes 28 International Radio Interferometric Surveying runs between June 1988 and January 1989; WVR measurements were made during each session. The addition of WVR data decreased the scatter of the length measurements of the baselines by 5-10 percent. The observed reduction in the scatter of the baseline lengths is less than what is expected from the behavior of the formal errors, which suggest that the baseline-length measurement precision should improve 10-20 percent if WVR data are included in the analysis. The discrepancy between the formal errors and the baseline-length results can be explained as the consequence of systematic errors in the dry-mapping function parameters, instrumental biases in the WVR and the barometer, or both.

  15. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for

  16. A stratospheric water vapor feedback

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-12-01

    Variations in stratospheric water vapor play a role in the evolution of our climate. We show here that variations in water vapor since 2004 can be traced to tropical tropopause layer (TTL) temperature perturbations from at least three processes: the quasi-biennial oscillation, the strength of the Brewer-Dobson circulation, and the temperature of the troposphere. The connection between stratospheric water vapor and the temperature of the troposphere implies the existence of a stratospheric water vapor feedback. We estimate the feedback in a chemistry-climate model to have a magnitude of +0.3 W/m2/K, which could be a significant contributor to the overall climate sensitivity. About two-thirds of the feedback comes from the extratropical stratosphere below ~16 km (the lowermost stratosphere), with the rest coming from the stratosphere above ~16 km (the overworld).

  17. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  18. Adsorption of water vapor on reservoir rocks

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  19. The seasonal and global behavior of water vapor in the Mars atmosphere - Complete global results of the Viking atmospheric water detector experiment

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Farmer, C. B.

    1982-01-01

    A key question regarding the evolution of Mars is related to the behavior of its volatiles. The present investigation is concerned with the global and seasonal abundances of water vapor in the Mars atmosphere as mapped by the Viking Mars Atmospheric Water Detector (MAWD) instrument for almost 1-1/2 Martian years from June 1976 to April 1979. Attention is given to the implications of the observed variations for determining the relative importance of those processes which may be controlling the vapor cycle on a seasonal basis. The processes considered include buffering of the atmosphere water by a surface or subsurface reservior of ground ice, physically adsorbed water, or chemically bound water. Other processes are related to the supply of water from the residual or seasonal north polar ice cap, the redistribution of the vapor resulting from atmospheric circulation, and control of the vapor holding capacity of the atmosphere by the local atmospheric temperatures.

  20. Validation of water vapor results measured by the Limb Infrared Monitor of the Stratosphere experiment on Nimbus 7

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III; Remsberg, E. E.; Gille, J. C.; Bailey, P. L.; Gordley, L. L.; Fischer, H.; Girard, A.; Drayson, S. R.; Evans, W. F. J.; Harries, J. E.

    1984-01-01

    In the LIMS experiment using thermal IR limb scanning to sound the composition and structure of the upper atmosphere, one of the LIMS channels was spectrally centered at 6.9 micrometers to measure the vertical profile and global distribution of stratospheric water vapor. This channel's characteristics, the data from it, and the steps taken to validate results are described. The mean difference between the LIMS measurements and data from 13 balloon underflights is about 0.6 ppmv with LIMS mixing ratios biased high; this difference is of about the same order as estimated LIMS accuracy and less than the sum of the errors for LIMS and the balloon techniques. In-orbit precision is 0.2-0.3 ppmv and accuracy is estimated at 20-30 percent from 50 mbar to the stratopause. An unexplained diurnal variation exists in the vertical profile data which is largest at the 1-mbar level and virtually nonexistent at 10 mbar; day values are higher than night. More confidence is placed in zonal mean distributions averaged over several days than in single profiles. A zonal mean pressure-latitude cross section is described for January 5-9, 1979.

  1. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1976-01-01

    A total of 18 different membranes were procured, characterized, and tested in a modified bench-scale vapor diffusion water reclamation unit. Four membranes were selected for further studies involving membrane fouling. Emphasis was placed on the problem of flux decline due to membrane fouling. This is discussed in greater details under "Summary and Discussion on Membrane Fouling Studies" presented in pages 47-51. The system was also investigated for low temperature application on wash-water where the permeated water is not recovered but vented into space vacuum.

  2. Water Vapor Feedbacks to Climate Change

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    The response of water vapor to climate change is investigated through a series of model studies with varying latitudinal temperature gradients, mean temperatures, and ultimately, actual climate change configurations. Questions to be addressed include: what role does varying convection have in water vapor feedback; do Hadley Circulation differences result in differences in water vapor in the upper troposphere; and, does increased eddy energy result in greater eddy vertical transport of water vapor in varying climate regimes?

  3. Remote sensing of water vapor features

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1991-01-01

    The three major objectives of the project are outlined: (1) to describe atmospheric water vapor features as functions of space and time; (2) to evaluate remotely sensed measurements of water vapor content; and (3) to study relations between fine-scale water vapor fields and convective activity. Data from several remote sensors were used. The studies used the GOES/VAS, HIS, and MAMS instruments have provided a progressively finer scale view of water vapor features.

  4. Near real-time water vapor tomography using ground-based GPS and meteorological data: long-term experiment in Hong Kong

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Ye, S. R.; Liu, Y. Y.; Zhang, J. J.; Xia, P. F.

    2014-08-01

    Water vapor tomography is a promising technique for reconstructing the 4-D moisture field, which is important to the weather forecasting and nowcasting as well as to the numerical weather prediction. A near real-time 4-D water vapor tomographic system is developed in this study. GPS slant water vapor (SWV) observations are derived by a sliding time window strategy using double-difference model and predicted orbits. Besides GPS SWV, surface water vapor measurements are also assimilated as real time observations into the tomographic system in order to improve the distribution of observations in the lowest layers of tomographic grid. A 1-year term experiment in Hong Kong was carried out. The feasibility of the GPS data processing strategy is demonstrated by the good agreement between the time series of GPS-derived Precipitable Water Vapor (PWV) and radio-sounding-derived PWV with a bias of 0.04 mm and a root-mean-square error (RMSE) of 1.75 mm. Using surface humidity observations in the tomographic system, the bias and RMSE between tomography and radiosonde data are decreased by half in the ground level, but such improved effects weaken gradually with the rise of altitude until becoming adverse above 4000 m. The overall bias is decreased from 0.17 to 0.13 g m-3 and RMSE is reduced from 1.43 to 1.28 g m-3. By taking the correlation coefficient and RMSE between tomography and radiosonde individual profile as the statistical measures, quality of individual profile is also improved as the success rate of tomographic solution is increased from 44.44 to 63.82% while the failure rate is reduced from 55.56 to 36.18%.

  5. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  6. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  7. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  8. Profiling atmospheric water vapor by microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.; King, J. L.

    1983-01-01

    High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended kalman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.

  9. Seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment

    SciTech Connect

    Jakosky, B.M.; Farmer, C.B.

    1982-04-10

    The water vapor content of the Mars atmosphere was measured from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) for a period of more than 1 Martian year, from June 1976 through April 1979. Results are presented in the form of global maps of column abundance for 24 periods throughout each Mars year. The data reduction incorporates spatial and seasonal variations in surface pressure and supplements earlier published versions of less complete data.

  10. Saturn's Stratospheric Water Vapor Distribution

    NASA Astrophysics Data System (ADS)

    Hesman, Brigette E.; Bjoraker, Gordon L.; Achterberg, Richard K.; Romani, Paul N.; Irwin, Patrick G. J.

    2015-11-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn’s atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn’s main rings (via neutral infall and/or ions transported along magnetic field lines - “Ring Rain”), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn’s stratospheric water.Cassini’s Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn’s equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether “Ring Rain” also contributes to the inventory of water in Saturn’s upper atmosphere.

  11. Saturn's Stratospheric Water Vapor Distribution

    NASA Astrophysics Data System (ADS)

    Hesman, B. E.

    2015-12-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn's atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn's main rings (via neutral infall and/or ions transported along magnetic field lines - "Ring Rain"), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn's stratospheric water. Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor between 2004-2009 will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn's equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether "Ring Rain" also contributes to the inventory of water in Saturn's upper atmosphere.

  12. High altitude aircraft water vapor measurements.

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1973-01-01

    A hygrometer for water vapor measurements from an aircraft was developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on the NASA Convair 990 and on a USAF B-57 aircraft. Water vapor measurements from the Convair 990 were conducted up to 40,000 ft with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 ft.

  13. Airborne LIDAR Measurements of Water Vapor, Ozone, Clouds, and Aerosols in the Tropics Near Central America During the TC4 Experiment

    NASA Technical Reports Server (NTRS)

    Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven

    2008-01-01

    Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.

  14. Broad band airborne water vapor radiometry

    NASA Astrophysics Data System (ADS)

    Kuhn, Peter M.

    An infrared radiometer with a pass band of 280 to 520 cm-1 (35.7 to 19.2 µm) is employed on the NASA Ames Research Center U-2 and C-141A aircraft in the measurement of water vapor burden in the upper troposphere and stratosphere. Coincidentally with altitude changes the water vapor mass mixing ratio is also inferred by observing the change in optical depth over a known vertical distance. Data from the December 1980 U-2 Water Vapor Exchange Experiment over the Panama Canal Zone adds to the concept that overshooting cumulonimbus towers “moisten” the lower stratosphere. The average mass mixing ratio in close proximity to or above such towers ranges from 3.5 to 5.0 parts per million above 18 km while the average background mass mixing ratio is only 2.9 parts per million. Generally the lowest background mixing ratios, averaging 2.6 parts per million occurred in the 18 to 21 km layer. For the same levels background Panama mass mixing ratios averaged from 1.0 to 3.0 parts per million higher than in middle latitudes.

  15. Eyeing the Sky's Water Vapor

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, and many like it, are one way NASA's Phoenix Mars Lander is measuring trace amounts of water vapor in the atmosphere over far-northern Mars. Phoenix's Surface Stereo Imager (SSI) uses solar filters, or filters designed to image the sun, to make these images. The camera is aimed at the sky for long exposures.

    SSI took this image as a test on June 9, 2008, which was the Phoenix mission's 15th Martian day, or sol, since landing, at 5:20 p.m. local solar time. The camera was pointed about 38 degrees above the horizon. The white dots in the sky are detector dark current that will be removed during image processing and analysis.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space

  16. The effect of forced ventilation through snow on the stable water isotope content of the vapor and the snow - an experiment

    NASA Astrophysics Data System (ADS)

    Berben, Sarah; Steen-Larsen, Hans Christian; Johnsen, Sigfus

    2010-05-01

    The stable water isotope signal throughout an ice core is a well known and often used proxy for past temperature reconstructions and is important in our understanding of the climate system. The knowledge about the post depositional processes influencing the isotope signal within the snowpack is therefore important. As wind blow across the snow surface micro high and low pressure areas arise because of sastrugies. These pressure differences create forced ventilation through the snowpack which then affect the interstitial mass exchange between water vapor and snow crystals and therefore the climatic signal stored in the snow. In order of understanding the physics behind this ongoing exchange, a combination of modeling and a controlled experiment has been set up. The process of forced ventilation -as it is believed to occur on Greenland and Antarctica- has then been simulated. The snow within this experiment is collected in Greenland during the new deep drilling project in NW Greenland (NEEM). Within this experiment, air with a known amount of moisture is pulled through a snow sample of different thicknesses. This sample has a known isotopic content and is kept at different sub-zero temperatures. The flow rate of the air has been controlled between 0,01 and 0,5 cm/s. After the interaction between the water vapor and the ice crystals the changes in both humidity and isotope signal are been studied. New in this research are the measurements of the isotope content with a Picarro WS-CRDS analyzer of the water vapour before and after the snow sample. Eventually, to estimate the magnitude of the effect of ventilation through snow on the stable isotope content of the water vapor, the results of the experiment are compared with the output from the computer model. This research will quantify the effect of forced ventilation on the mean isotope signal in the snow and its implications for the derived temperature signal from the water isotope ratio of the ice core as well as

  17. X-ray-induced water vaporization

    SciTech Connect

    Weon, B. M.; Lee, J. S.; Je, J. H.; Fezzaa, K.

    2011-09-15

    We present quantitative evidence for x-ray-induced water vaporization: water is vaporized at a rate of 5.5 pL/s with the 1-A-wavelength x-ray irradiation of {approx}0.1 photons per A{sup 2}; moreover, water vapor is reversibly condensed during pauses in irradiation. This result fundamentally suggests that photoionization induces vaporization. This phenomenon is attributed to surface-tension reduction by ionization and would be universally important in radiological and electrohydrodynamic situations.

  18. Simple Chemical Vapor Deposition Experiment

    ERIC Educational Resources Information Center

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  19. Tower Water-Vapor Mixing Ratio

    SciTech Connect

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  20. Mars water vapor, near-surface

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.; Sharman, R. D.; Lucich, R. D.

    1982-01-01

    In a previous paper we concluded that the temperature sensors aboard the Viking landers (VL-1 and VL-2) were detecting the water vapor frost point. Analysis of one Mars year of data at both lander sites substantiates this conclusion. At VL-1 it is found that the water vapor mixing ratio is constant with height through the bulk of the atmosphere, most of the time. Exceptions are during the onset phases of the two major dust storms when temporary enhancement of near-surface vapor occurs (the same phenomenon is observed at VL-2), and some depletion of near-surface vapor during the decay phase of the first storm, possibly the second storm as well. The former suggests near-surface, northward transport of water vapor with the storms. The latter suggests adsorption of vapor on dust particles followed by surface deposition. At VL-2, severe near-surface depletion of water vapor occurs during northern autumn and winter. The residual vapor is in equilibrium with the surface condensate observed at the site during this period, indicating that the source region for the condensate must be aloft with downward transport by dust fall-out. Since the near-surface water vapor mixing ratio and concentration at VL-1 generally parallels the column abundance over VL-1 obtained by the orbiters, this suggests that VL-1 can be used to give a measure of column abundance for as long as the temperature sensors remain operational.

  1. Water vapor retrieval over many surface types

    SciTech Connect

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  2. Water vapor distribution in protoplanetary disks

    SciTech Connect

    Du, Fujun; Bergin, Edwin A.

    2014-09-01

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.

  3. CO2 DIAL measurements of water vapor

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Margolis, Jack S.; Brothers, Alan M.; Tratt, David M.

    1987-01-01

    CO2 lidars have heretofore been used to measure water vapor concentrations primarily using the 10R(20) line at 10.247 microns, which has a strong overlap with a water vapor absorption line. This paper discusses the use of that line as well as other CO2 laser lines for which the absorption coefficients are weaker. The literature on measurement of water vapor absorption coefficients using CO2 lasers is reviewed, and the results from four laboratories are shown to be generally consistent with each other after they are normalized to the same partial pressure, temperature, and ethylene absorption coefficent for the 10P(14) CO2 laser line; however, the agreement with the Air Force Geophysics Laboratory's HITRAN and FASCOD 2 spectral data tapes is not good either for the water vapor absorption lines or for the water vapor continuum. Demonstration measurements of atmospheric water vapor have been conducted using the Mobile Atmospheric Pollutant Mapping System, a dual CO2 lidar system using heterodyne detection. Results are discussed for measurements using three sets of laser line pairs covering a wide range of water vapor partial pressures.

  4. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  5. Impact vaporization: Late time phenomena from experiments

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1987-01-01

    While simple airflow produced by the outward movement of the ejecta curtain can be scaled to large dimensions, the interaction between an impact-vaporized component and the ejecta curtain is more complicated. The goal of these experiments was to examine such interaction in a real system involving crater growth, ejection of material, two phased mixtures of gas and dust, and strong pressure gradients. The results will be complemented by theoretical studies at laboratory scales in order to separate the various parameters for planetary scale processes. These experiments prompt, however, the following conclusions that may have relevance at broader scales. First, under near vacuum or low atmospheric pressures, an expanding vapor cloud scours the surrounding surface in advance of arriving ejecta. Second, the effect of early-time vaporization is relatively unimportant at late-times. Third, the overpressure created within the crater cavity by significant vaporization results in increased cratering efficiency and larger aspect ratios.

  6. MMIC Receiver For Water-Vapor Radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, Lin M.; Cooley, Thomas W.; Janssen, Michael A.; Parks, Gary S.

    1993-01-01

    MMIC receiver puts out signal, frequency of which proportioned to brightness temperature of sky at input frequency of 31 GHz. Miniaturization enhances thermal stability and stability of calibration of water-vapor radiometer. Potential for mass production at relatively low cost. Facilitating widespread use of MMIC water vapor radiometers in meteorology and aviation, deployed at several global sites to improve capability of general circulation models and at airports to monitor icing conditions by measuring supercooled liquid water in clouds.

  7. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  8. Gravity sensitivity of a resistojet water vaporizer

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl

    1993-01-01

    A laboratory model of a water vaporizer for resistojet applications was designed, fabricated, and steady and transient characteristics were measured. Vaporizer operation was not impacted by rotation about a horizontal axis normal to its own. The vaporizer was operated under low and high accelerations aboard a jet aircraft for periods up to 25 s at flow rates ranging from 159(10)(exp -6) to 230(10)(exp -6) kg/s. Slight changes in inlet and outlet pressures and some heat exchanger temperatures were observed during the low-gravity tests. However, the results of these tests indicated probable compatibility of the vaporizer design tested with a low-gravity environment.

  9. Remote sensing of water vapor features

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1993-01-01

    Water vapor plays a critical role in the atmosphere. It is an important medium of energy exchange between air, land, and water; it is a major greenhouse gas, providing a crucial radiative role in the global climate system; and it is intimately involved in many regional scale atmospheric processes. Our research has been aimed at improving satellite remote sensing of water vapor and better understanding its role in meteorological processes. Our early studies evaluated the current GOES VAS system for measuring water vapor and have used VAS-derived water vapor data to examine pre-thunderstorm environments. Much of that research was described at the 1991 Research Review. A second research component has considered three proposed sensors--the High resolution Interferometer Sounder (HIS), the Multispectral Atmospheric Mapping Sensor (MAMS), and the Advanced Microwave Sounding Unit (AMSU). We have focused on MAMS and AMSU research during the past year and the accomplishments made in this effort are presented.

  10. Solar-induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: Drivers of polar mesospheric cloud variability

    NASA Astrophysics Data System (ADS)

    Thomas, Gary E.; Thurairajah, Brentha; Hervig, Mark E.; von Savigny, Christian; Snow, Martin

    2015-11-01

    Polar Mesospheric Clouds (PMCs) are known to be influenced by changes in water vapor and temperature in the cold summertime mesopause. Solar variability of these constituents has been held responsible for 11-year and 27-day variability of PMC activity, although the detailed mechanisms are not yet understood. It is also known that the solar influence on PMC variability is a minor contributor to the overall day-to-day variability, which is dominated by effects of gravity waves, planetary waves, and inter-hemispheric coupling. To address this issue, we have analyzed 15 seasons of data taken from the Solar Occultation for Ice Experiment (SOFIE) on the Aeronomy of Ice in the Mesosphere (AIM) satellite. The SOFIE data contain precise measurements of water vapor, temperature and ice water content (among other quantities). These high-latitude measurements are made during the PMC season at the terminator, and therefore directly relate to the simultaneous measurements of mesospheric ice. Using a composite data set of Lyman-α irradiance, we correlated the time variation of the atmospheric variables with the 27-day variability of solar ultraviolet irradiance. We used a combination of time-lagged linear regression and Superposed Epoch Analysis to extract the solar contribution as sensitivity values (response/forcing) vs. height. We compare these results to previously published results, and show that the temperature sensitivity is somewhat higher, whereas the water sensitivity is nearly the same as published values. The time lags are shorter than that expected from direct solar heating and photodissociation, suggesting that the responses are due to 27-day variations of vertical winds. An analytic solution for temperature changes forced by solar irradiance variations suggests that if the response is due purely to Lyman-α heating and Newtonian cooling, the response should vary throughout the summertime season and depend primarily upon the height-dependent column density of

  11. Spacelab 3 vapor crystal growth experiment

    NASA Technical Reports Server (NTRS)

    Schnepple, W.; Vandenberg, L.; Skinner, N.; Ortale, C.

    1987-01-01

    The Space Shuttle Challenger, with Spacelab 3 as its payload, was launched into orbit April 29, 1985. The mission, number 51-B, emphasized materials processing in space, although a wide variety of experiments in other disciplines were also carried onboard. One of the materials processing experiments on this flight is described, specifically the growth of single crystals of mercuric iodide by physical vapor transport.

  12. AVIRIS Spectrometer Maps Total Water Vapor Column

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

  13. Water vapor recovery from plant growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Newbold, D. D.; Colton, R. H.; Mccray, S. B.

    1991-01-01

    NASA is investigating the use of plant growth chambers (PGCs) for space missions and for bases on the moon and Mars. Key to successful development of PGCs is a system to recover and reuse the water vapor that is transpired from the leaves of the plants. A design is presented for a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in PGCs. The system is based on two membrane technologies: (1) dehumidification membrane modules to remove water vapor from the air, and (2) membrane contactors to return water vapor to the PGC (and, in doing so, to control the humidity and temperature within the PGC). The membrane-based system promises to provide an ideal, stable growth environment for a variety of plants, through a design that minimizes energy usage, volume, and mass, while maximizing simplicity and reliability.

  14. Anthropogenic water vapor emissions in Tokyo

    NASA Astrophysics Data System (ADS)

    Moriwaki, Ryo; Kanda, Manabu; Senoo, Hiroshi; Hagishima, Aya; Kinouchi, Tsuyoshi

    2008-11-01

    Temporal and spatial variations in anthropogenic water vapor (AWV) emissions and anthropogenic heat (AH) in Tokyo were estimated using data from a geographic information system (GIS) and an energy-consumption database. The maximum value of AWV exceeded 500 W m-2 in summer in central Tokyo. Estimations of AWV were validated with field-measured data. The estimated and measured data agreed well, indicating that anthropogenic sources such as district cooling systems release large amounts of water vapor into the atmosphere.

  15. Optical monitor for water vapor concentration

    SciTech Connect

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  16. Optical monitor for water vapor concentration

    SciTech Connect

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  17. Vapor burn analysis for the Coyote series LNG spill experiments

    SciTech Connect

    Rodean, H.C.; Hogan, W.J.; Urtiew, P.A.; Goldwire, H.C. Jr.; McRae, T.G.; Morgan, D.L. Jr.

    1984-04-01

    A major purpose of the Coyote series of field experiments at China Lake, California, in 1981 was to study the burning of vapor clouds from spills of liquefied natural gas (LNG) on water. Extensive arrays of instrumentation were deployed to obtain micrometeorological, gas concentration, and fire-related data. The instrumentation included in situ sensors of various types, high-speed motion picture cameras, and infrared (IR) imagers. Five of the total of ten Coyote spill experiments investigated vapor burns. The first vapor-burn experiment, Coyote 2, was done with a small spill of LNG to assess instrument capability and survivability in vapor cloud fires. The emphasis in this report is on the other four vapor-burn experiments: Coyotes 3, 5, 6, and 7. The data are analyzed to determine fire spread, flame propagation, and heat flux - quantities that are related to the determination of the damage zone for vapor burns. The results of the analyses are given here. 20 references, 57 figures, 7 tables.

  18. Proposed reference model for middle atmosphere water vapor

    NASA Astrophysics Data System (ADS)

    Chiou, E. W.; Remsberg, E. E.; Rodgers, C. D.; Munro, R.; Bevilacqua, R. M.; McCormick, M. P.; Russell, J. M.

    Several new and significant satellite data sets on middle atmosphere water vapor have been produced recently. They include data from the Stratospheric Aerosol and Gas Experiment II (SAGE II) and the Nimbus-7 Stratospheric and Mesospheric Sounder (SAMS) experiment. The SAGE II data provide an estimate of interannual variability of water vapor in the stratosphere. The SAMS data are appropriate for the upper stratosphere and lower mesosphere. We combine these two data sets with those from the Nimbus-7 Limb Infrared Monitor of the Stratosphere (LIMS) experiment to update the COSPAR interim reference model for water vapor. Water vapor profiles from the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment, ground-based microwave, and in situ balloon and aircraft measurements have been used to check the quality of the satellite data sets. The updated reference model is given as a function of latitude and pressure altitude and now covers all four seasons. Tabulations are included for these seasonal water vapor mixing ratios (in ppmv) and their estimated errors (in percent).

  19. Detection and Measurement of Charge in Water Vapor

    NASA Astrophysics Data System (ADS)

    Feng, C. L.

    2015-12-01

    Abstract: Positive charge is found in newly formed water vapor. Two detection and two measurement experiments are presented. The detection experiments are simple; their purpose is only to show the existence of charge in water vapor. The first of these experiments places one exposed end of an insulated wire in the vapor space of a flask, which holds boiling water. The other end of this wire is connected to the input high of an electrometer. The input low, in all of the presented experiments, is grounded. The second experiment detects charge by capacitive induction. It uses a beaker with gold leaves gilded on its outside surface. When water boils inside the beaker, the vapor charge is detected by the gold layer without contacting the water or vapor. The two measurement experiments have sensors made of conducting fabric. The fabric is used to cover the opening of a flask, which holds boiling water, to collect the charge in the escaping vapor. These two experiments differ by the number of fabric layers --- four in one and six in the other. The results obtained from these two experiments are essentially the same, within the margin of error, 0.734 & 0.733 nC per gram of vapor. Since the added two layers of the six-layer sensor do not collect more charge than the four-layer sensor, the four-layer sensor must have collected all available charge. The escaping vapor exits into a chamber, which has only a small area opening connecting to the atmosphere. This chamber prevents direct contact between the sensor and the ambient air, which is necessary because air is found to affect the readings from the sensor. Readings taken in the surrounding area in all four experiments show no accumulation of negative charge. These experiments identify a source for the atmospheric electricity in a laboratory environment other than that has been discussed in the literature. However, they also raise the question about the missing negative charge that would be predicted by charge balance or the

  20. Numerical and Experimental Quantification of coupled water and water vapor fluxes in very dry soils.

    NASA Astrophysics Data System (ADS)

    Madi, Raneem; de Rooij, Gerrit

    2015-04-01

    In arid and semi-arid regions with deep groundwater and very dry soils, vapor movement in the vadose zone may be a major component in the total water flux. Therefore, the coupled movement of liquid water, water vapor and heat transport in the unsaturated zone should be explicitly considered to quantify subsurface water fluxes in such regions. Only few studies focused on the importance of vapor water diffusion in dry soils and in many water flow studies in soil it was neglected. We are interested in the importance of water vapor diffusion and condensation in very dry sand. A version of Hydrus-1D capable of solving the coupled water vapor and heat transport equations will be used to do the numerical modeling. The soil hydraulic properties will be experimentally determined. A soil column experiment was developed with negligible liquid flow in order to isolate vapor flux for testing. We have used different values of initial water contents trying to generate different scenarios to assess the role of the water vapor transport in arid and semi-arid soils and how it changes the soil water content using different soil hydraulic parametrization functions. In the session a preliminary experimental and modelling results of vapor and water fluxes will be presented.

  1. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  2. Profiling of Atmospheric Water Vapor with MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesly, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.

  3. DISTRIBUTION OF WATER VAPOR IN MOLECULAR CLOUDS

    SciTech Connect

    Melnick, Gary J.; Tolls, Volker; Snell, Ronald L.; Bergin, Edwin A.; Hollenbach, David J.; Kaufman, Michael J.; Li Di; Neufeld, David A. E-mail: vtolls@cfa.harvard.edu E-mail: ebergin@umich.edu E-mail: mkaufman@email.sjsu.edu E-mail: neufeld@pha.jhu.edu

    2011-01-20

    We report the results of a large-area study of water vapor along the Orion Molecular Cloud ridge, the purpose of which was to determine the depth-dependent distribution of gas-phase water in dense molecular clouds. We find that the water vapor measured toward 77 spatial positions along the face-on Orion ridge, excluding positions surrounding the outflow associated with BN/KL and IRc2, display integrated intensities that correlate strongly with known cloud surface tracers such as CN, C{sub 2}H, {sup 13}CO J = 5-4, and HCN, and less well with the volume tracer N{sub 2}H{sup +}. Moreover, at total column densities corresponding to A{sub V}< 15 mag, the ratio of H{sub 2}O to C{sup 18}O integrated intensities shows a clear rise approaching the cloud surface. We show that this behavior cannot be accounted for by either optical depth or excitation effects, but suggests that gas-phase water abundances fall at large A{sub V}. These results are important as they affect measures of the true water-vapor abundance in molecular clouds by highlighting the limitations of comparing measured water-vapor column densities with such traditional cloud tracers as {sup 13}CO or C{sup 18}O. These results also support cloud models that incorporate freeze out of molecules as a critical component in determining the depth-dependent abundance of water vapor.

  4. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  5. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in...

  6. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in...

  7. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in...

  8. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in...

  9. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in...

  10. The Apollo lunar surface water vapor event revisited

    NASA Technical Reports Server (NTRS)

    Freeman, J. W., Jr.; Hills, H. K.

    1991-01-01

    On March 7, 1971, the first sunrise following the Apollo 14 mission, the Suprathermal Ion Detector Experiment (SIDE) deployed at the Apollo 14 site reported an intense flux of ions whose mass per charge was consistent with water vapor. The amount of water is examined, and the various acceleration processes, responsible for accelerating ions into the SIDE, are discussed. It is concluded that during most of the event the observed water vapor ions were accelerated by the negative lunar surface electric potential and, secondly, that this event was probably the result of mission associated water vapor, either from the LM ascent and descent stage rockets or from residual water in the descent stage tanks.

  11. Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands

    NASA Astrophysics Data System (ADS)

    Kindel, B. C.; Pilewskie, P.; Schmidt, K. S.; Thornberry, T.; Rollins, A.; Bui, T.

    2015-03-01

    Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near-infrared spectra acquired with the Solar Spectral Flux Radiometer (SSFR) during the first science phase of the NASA Airborne Tropical TRopopause EXperiment (ATTREX). From the 1400 and 1900 nm absorption bands we infer water vapor amounts in the tropical tropopause layer and adjacent regions between altitudes of 14 and 18 km. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004). Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 × 10-4 to 4.59 × 10-4 g cm-2. A 0.002 difference in absorptance at 1367 nm results in a 3.35 × 10-5 g cm-2 change of integrated water vapor amounts; 0.004 absorptance change at 1870 nm results in 5.50 × 10-5 g cm-2 of water vapor. These are 27% (1367 nm) and 44% (1870 nm) differences at the lowest measured value of water vapor (1.26 × 10-4 g cm-2) and 7% (1367 nm) and 12% (1870 nm) differences at the highest measured value of water vapor (4.59 × 10-4 g cm-2). A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere is discussed.

  12. Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands

    NASA Astrophysics Data System (ADS)

    Kindel, B. C.; Pilewskie, P.; Schmidt, K. S.; Thornberry, T.; Rollins, A.; Bui, T.

    2014-10-01

    Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near infrared spectra acquired with the Solar Spectral Flux Radiometer during the first science phase of the NASA Airborne Tropical Tropopause EXperiment. From the 1400 and 1900 nm absorption bands, we infer water vapor amounts in the tropical tropopause layer and adjacent regions between 14 and 18 km altitude. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004). Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 × 10-4 to 4.59 × 10-4 g cm-2. A 0.002 difference in absorptance at 1367 nm results in a 3.35 × 10-5 g cm-2 change of integrated water vapor amount, 0.004 absorptance change at 1870 nm results in 5.5 × 10-5 g cm-2 of water vapor. These are 27% (1367 nm) and 44% (1870 nm) differences at the lowest measured value of water vapor (1.26 × 10-4 g cm-2) and 7% (1367 nm) and 12% (1870 nm) differences at the highest measured value of water vapor (4.59 × 10-4 g cm-2). A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere (TOA) is discussed.

  13. Refraction of microwave signals by water vapor

    NASA Technical Reports Server (NTRS)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  14. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  15. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  16. Detection of water vapor on Jupiter

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  17. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  18. 27-day solar forcing of mesospheric temperature, water vapor and polar mesospheric clouds from the AIM SOFIE and CIPS satellite experiments

    NASA Astrophysics Data System (ADS)

    Thomas, Gary; Thurairajah, Brentha; von Savigny, Christian; Hervig, Mark; Snow, Martin

    2016-04-01

    Solar cycle variations of ultraviolet radiation have been implicated in the 11-year and 27-day variations of Polar Mesospheric Cloud (PMC) properties. Both of these variations have been attributed to variable solar ultraviolet heating and photolysis, but no definitive studies of the mechanisms are available. The solar forcing issue is critical toward answering the broader question of whether PMC's have undergone long-term changes, and if so, what is the nature of the responsible long-term climate forcings? One of the principal goals of the Aeronomy of Ice in the Mesosphere satellite mission was to answer the question: "How does changing solar irradiance affect PMCs and the environment in which they form?" We describe an eight-year data set from the AIM Solar Occultation for Ice Experiment (SOFIE) and the AIM Cloud Imaging and Particle Size (CIPS) experiment. Together, these instruments provide high-precision measurements of high-latitude summertime temperature (T), water vapor (H2O), and PMC ice properties for the period 2007-present. The complete temporal coverage of the summertime polar cap region for both the primary atmospheric forcings of PMC (T and H2O), together with a continually updated time series of Lyman-alpha solar irradiance, allows an in-depth study of the causes and effects of 27-day PMC variability. The small responses of these variables, relative to larger day-to-day changes from gravity waves, tides, inter-hemispheric coupling, etc. require a careful statistical analysis to isolate the solar influence. We present results for the 27-day responses of T, H2O and PMC for a total of 15 PMC seasons, (30 days before summer solstice to 60 days afterward, for both hemispheres). We find that the amplitudes and phase relationships are not consistent with the expected mechanisms of solar UV heating and photolysis - instead we postulate a primarily dynamical response, in which a periodic vertical wind heats/cools the upper mesosphere, and modulates PMC

  19. Retrieval and validation of carbon dioxide, methane and water vapor for the Canary Islands IR-laser occultation experiment

    NASA Astrophysics Data System (ADS)

    Proschek, V.; Kirchengast, G.; Schweitzer, S.; Brooke, J. S. A.; Bernath, P. F.; Thomas, C. B.; Wang, J.-G.; Tereszchuk, K. A.; González Abad, G.; Hargreaves, R. J.; Beale, C. A.; Harrison, J. J.; Martin, P. A.; Kasyutich, V. L.; Gerbig, C.; Loescher, A.

    2015-08-01

    The first ground-based experiment to prove the concept of a novel space-based observation technique for microwave and infrared-laser occultation between low-Earth-orbit satellites was performed in the Canary Islands between La Palma and Tenerife. For two nights from 21 to 22 July 2011 the experiment delivered the infrared-laser differential transmission principle for the measurement of greenhouse gases (GHGs) in the free atmosphere. Such global and long-term stable measurements of GHGs, accompanied also by measurements of thermodynamic parameters and line-of-sight wind in a self-calibrating way, have become very important for climate change monitoring. The experiment delivered promising initial data for demonstrating the new observation concept by retrieving volume mixing ratios of GHGs along a ~144 km signal path at altitudes of ~2.4 km. Here, we present a detailed analysis of the measurements, following a recent publication that introduced the experiment's technical setup and first results for an example retrieval of CO2. We present the observational and validation data sets, the latter simultaneously measured at the transmitter and receiver sites; the measurement data handling; and the differential transmission retrieval procedure. We also determine the individual and combined uncertainties influencing the results and present the retrieval results for 12CO2, 13CO2, C18OO, H2O and CH4. The new method is found to have a reliable basis for monitoring of greenhouse gases such as CO2, CH4, and H2O in the free atmosphere.

  20. Raman Lidar Water Vapor Measurements at the DOE SGP CART Site

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Smith, David E. (Technical Monitor)

    2001-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Department of Energy's (DOE) Cloud and Radiation Testbed site in northern Oklahoma September - December, 2000 for two DOE sponsored field campaigns: 1) the Water Vapor Intensive Operations Experiment 2000 and 2) the Atmospheric Radiations Measurement First International Satellite Cloud Climatology Experiment Experiment (AFWEX). WvIOP2000 focussed on water vapor measurements in the lower troposphere while AFWEX focussed on upper tropospheric water vapor. For the first time ever, four water vapor lidars were operated simultaneously: one airborne and three ground-based systems. Intercomparisons of these measurements and others will be presented at the meeting.

  1. 5 THE RADIATIVE FORCING DUE TO CLOUDS AND WATER VAPOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter utilizes results from the spaceborne Earth Radiation Budget Experiment (ERBE), launched in 1984 aboard the NOAA-9 (National Oceanic and Atmospheric Agency) satellite, to summarize our understanding of the radiative forcing due to water vapor and clouds. The effect of clouds on the rad...

  2. Heterogeneous Nucleation of Naphthalene Vapor on Water Surface

    PubMed

    Smolík; Schwarz

    1997-01-15

    The evaporation of a water drop into a ternary gaseous mixture of air, steam, and naphthalene vapor was investigated. The experimental results were compared with a theoretical prediction based on a numerical solution of coupled boundary layer equations for heat and mass transfer from a drop moving in ternary gas. In the experiments the naphthalene vapor condensed on the water drop as a supercooled liquid even at temperatures far below the melting point of naphthalene. The condensation on drop surface is discussed in terms of classical theory of heterogeneous nucleation on smooth surfaces. PMID:9028892

  3. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  4. Persistent disparities in stratospheric water vapor measurements drive large uncertainties in the radiative forcing by lower stratospheric water vapor

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Rosenlof, K. H.; Portmann, R. W.; Voemel, H.; Schiller, C.; Smith, J. B.; Thornberry, T. D.; Rollins, A. W.; Hall, E.; Jordan, A.; Oltmans, S. J.

    2011-12-01

    Lower stratospheric water vapor is a powerful attenuator of outgoing long wave radiation, hence its strong influence on the Earth's radiation budget. The radiative forcing by lower stratospheric water vapor is, however, quite uncertain because of significant disparities in lower stratospheric water vapor measurements by different instruments. Specifically, measurement discrepancies of 0.5 to 2 ppmv H2O (15 to 60%) between several well-established aircraft- and balloon-borne instruments have now persisted for almost two decades. The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) in April 2011 provided not only a fresh opportunity to reexamine and reevaluate these persistent measurement discrepancies, but also to compare water vapor measurements by additional aircraft-based instrumentation. Here we compare the in situ measurements of lower stratospheric water vapor by five different instruments during MACPEX. Three of these instruments (Harvard water, FISH, and NOAA CIMS) were aboard the NASA WB-57 aircraft, while two (CFH and NOAA FPH) were launched on balloons. Substantial efforts were made to coordinate aircraft and balloon measurements in space and time, such that the aircraft would reach maximum altitude en route to the balloon rendezvous point, then both aircraft and balloon would descend together. Lower stratospheric water vapor measurements during MACPEX generally fall into two groups: CFH, NOAA FPH and FISH are in good agreement, while Harvard water and NOAA CIMS agree with each other but are significantly different than the other group. Differences between the two groups range from 0.5 to 1.0 ppmv (15 to 30%), with Harvard and NOAA CIMS mixing ratios consistently higher. Though these differences seem relatively large, they are smaller than some previously observed differences between the FPH/CFH and Harvard water. For example, Harvard stratospheric water vapor measurements during the 1993 CEPEX and 2006 CR-AVE campaigns were 1.5 and 2 ppmv

  5. Water Vapor in an Unexpected Location

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    The protoplanetary disk around DoAr 44 is fairly ordinary in most ways. But a recent study has found that this disk contains water vapor in its inner regions the first such discovery for a disk of its type.Drying Out DisksDoAr 44 is a transitional disk: a type of protoplanetary disk that has been at least partially cleared of small dust grains in the inner regions of the disk. This process is thought to happen as a result of dynamical interactions with a protoplanet embedded in the disk; the planet clears out a gap as it orbits.A schematic of the differences between a full protoplanetary disk, a pre-transitional disk, and a transitional disk. [Catherine Espaillat] Classical protoplanetary disks surrounding young, low-mass stars often contain water vapor, but transitional disks are typically dry no water vapor is detected from the disk inner regions. This is probably because water vapor is easily dissociated by far-UV radiation from the young, hot star. Once the dust is cleared out from the inner regions of the disk, the water vapor is no longer shielded from the UV radiation, so the disk dries out.Enter the exception: DoAr 44. The disk in this system doesnt have a fully cleared inner region, which labels it pre-transitional. Its composed of an inner ring out to 2 AU, a cleared gap between 2 and 36 AU, and then the outer disk. What makes DoAr 44 unusual, however, is that its the only disk with a large inner gap known to harbor detectable quantities of water vapor. The authors of this study ask a key question: where is this water vapor located?Unusual SystemLed by Colette Salyk (NOAO and Vassar College), the authors examined the system using the Texas Echelon Cross Echelle Spectrograph, a visiting instrument on the Gemini North telescope. They discovered that the water vapor emission originates from about 0.3 AU the inner disk region, where terrestrial-type planets may well be forming.Both dust-shielding and water self-shielding seem to have protected this water

  6. A FGGE water vapor wind data set

    NASA Technical Reports Server (NTRS)

    Stewart, Tod R.; Hayden, Christopher M.

    1985-01-01

    It has been recognized for some time that water vapor structure visible in infrared imagery offers a potential for obtaining motion vectors when several images are considered in sequence (Fischer et al., 1981). A study evaluating water vapor winds obtained from the VISSR atmospheric sounder (Stewart et al., 1985) has confirmed the viability of the approach. More recently, 20 data sets have been produced from METEOSAT water vapor imagery for the FGGE period of 10-25 November 1979. Where possible, two data sets were prepared for each day at 0000 and 1200 GMT and compared with rawinsondes over Europe, Africa, and aircraft observations over the oceans. Procedures for obtaining winds were, in general, similar to the earlier study. Motions were detected both by a single pixel tracking and a cross correlation method by using three images individually separated by one hour. A height assignment was determined by matching the measured brightness temperature to the temperature structure represented by the FGGE-IIIB analyses. Results show that the METEOSAT water vapor winds provide uniform horizontal coverage of mid-level flow over the globe with good accuracy.

  7. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.

    2000-01-01

    Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.

  8. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  9. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)

    2001-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.

  10. Characterization of Upper Troposphere Water Vapor Measurements during AFWEX using LASE

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Browell, E. V.; Ismail, S.; Kooi, S.; Brasseur, L. H.; Brackett, V. G.; Clayton, M.; Barrick, J.; Linne, H.; Lammert, A.

    2002-01-01

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. We show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived from the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UTWV measurements.

  11. Supersaturation in the spontaneous formation of nuclei in water vapor

    NASA Technical Reports Server (NTRS)

    Sander, Adolf; Damkohler, Gerhard

    1953-01-01

    According to experience, a certain supersaturation is required for condensation of water vapor in the homogeneous phase; that is, for inception of the condensation, at a prescribed temperature, the water vapor partial pressure must lie above the saturation pressure. The condensation starts on so-called condensation nuclei. Solid or liquid suspended particles may serve as nuclei; these particles may either a priori be present in the gas phase (dust, soot), or may spontaneously be formed from the vapor molecules to be condensed themselves. Only the second case will be considered. Gas ions which facilitate the spontaneous formation of nuclei may be present or absent. The supersaturations necessary for spontaneous nucleus formation are in general considerable higher than those in the presence of suspended particles.

  12. Tunable lasers for water vapor measurements and other lidar applications

    NASA Technical Reports Server (NTRS)

    Gammon, R. W.; Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    A tunable dye laser suitable for differential absorption (DIAL) measurements of water vapor in the troposphere was constructed. A multi-pass absorption cell for calibration was also constructed for use in atmospheric DIAL measurements of water vapor.

  13. Visualization of Atmospheric Water Vapor Data for SAGE

    NASA Technical Reports Server (NTRS)

    Kung, Mou-Liang; Chu, W. P. (Technical Monitor)

    2000-01-01

    The goal of this project was to develop visualization tools to study the water vapor dynamics using the Stratospheric Aerosol and Gas Experiment 11 (SAGE 11) water vapor data. During the past years, we completed the development of a visualization tool called EZSAGE, and various Gridded Water Vapor plots, tools deployed on the web to provide users with new insight into the water vapor dynamics. Results and experiences from this project, including papers, tutorials and reviews were published on the main Web page. Additional publishing effort has been initiated to package EZSAGE software for CD production and distribution. There have been some major personnel changes since Fall, 1998. Dr. Mou-Liang Kung, a Professor of Computer Science assumed the PI position vacated by Dr. Waldo Rodriguez who was on leave. However, former PI, Dr. Rodriguez continued to serve as a research adviser to this project to assure smooth transition and project completion. Typically in each semester, five student research assistants were hired and trained. Weekly group meetings were held to discuss problems, progress, new research direction, and activity planning. Other small group meetings were also held regularly for different objectives of this project. All student research assistants were required to submit reports for conference submission.

  14. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product

    SciTech Connect

    Koontz, A; Cadeddu, M

    2012-12-05

    The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

  15. Water vapor diffusion in Mars subsurface environments

    NASA Astrophysics Data System (ADS)

    Hudson, Troy L.; Aharonson, Oded; Schorghofer, Norbert; Farmer, Crofton B.; Hecht, Michael H.; Bridges, Nathan T.

    2007-05-01

    The diffusion coefficient of water vapor in unconsolidated porous media is measured for various soil simulants at Mars-like pressures and subzero temperatures. An experimental chamber which simultaneously reproduces a low-pressure, low-temperature, and low-humidity environment is used to monitor water flux from an ice source through a porous diffusion barrier. Experiments are performed on four types of simulants: 40-70 μm glass beads, sintered glass filter disks, 1-3 μm dust (both loose and packed), and JSC Mars-1. A theoretical framework is presented that applies to environments that are not necessarily isothermal or isobaric. For most of our samples, we find diffusion coefficients in the range of 2.8 to 5.4 cm2 s-1 at 600 Pascal and 260 K. This range becomes 1.9-4.7 cm2 s-1 when extrapolated to a Mars-like temperature of 200 K. Our preferred value for JSC Mars-1 at 600 Pa and 200 K is 3.7 +/- 0.5 cm2 s-1. The tortuosities of the glass beads is about 1.8. Packed dust displays a lower mean diffusion coefficient of 0.38 +/- 0.26 cm2 s-1, which can be attributed to transition to the Knudsen regime where molecular collisions with the pore walls dominate. Values for the diffusion coefficient and the variation of the diffusion coefficient with pressure are well matched by existing models. The survival of shallow subsurface ice on Mars and the providence of diffusion barriers are considered in light of these measurements.

  16. Seasonal variability of mesospheric water vapor

    NASA Technical Reports Server (NTRS)

    Schwartz, P. R.; Bevilacqua, R. M.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.

    1985-01-01

    Ground-based spectral line measurements of the 22.2 GHz atmospheric water vapor line in emission were made at the JPL in order to obtain data in a dry climate, and to confirm similar measurements made at the Haystack Observatory. The results obtained from March 1984 to July 1984 and from December 1984 to May 1985, were based on data recorded by a HP9816 microcomputer. The instrument spectrometer was a 64 channel, 62.5 kHz resolution filter bank. Data indicates the existence of a seasonal variation in the abundance of water vapor in the upper mesosphere, with mixing ratios higher in summer than in spring. This is consistent with recent theoretical and observational results. In the area of semiannual oscillation, Haystack data are more consistent than those of JPL, indicating an annual cycle with abundances at maximum in summer and minimum in winter.

  17. The effect of water vapor on the release of fission gas from the fuel elements of high temperature, gas-cooled reactors: A preliminary assessment of experiments HRB-17, HFR-B1, HFR-K6 and KORA

    SciTech Connect

    Myers, B.F.

    1995-09-01

    The effect of water vapor on the release of fission gas from the fuel elements of high temperature, gas-cooled reactors has been measured in different laboratories under both irradiation and post irradiation conditions. The data from experiments HRB-17, HFR-B1, HFR-K6, and in the KORA facility are compared to assess their consistency and complimentarily. The experiments are consistent under comparable experimental conditions and reveal two general mechanisms involving exposed fuel kernels embedded in carbonaceous materials. One is manifest as a strong dependence of fission gas release on the partial pressure of water vapor below 1 kPa and the other, as a weak dependence above 1 kPa.

  18. Quality and Control of Water Vapor Winds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  19. Improved cell for water-vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  20. Effect of higher water vapor content on TBC performance

    SciTech Connect

    Pint, Bruce A; Haynes, James A

    2012-01-01

    Coal gasification, or IGCC (integrated gasification combined cycle), is one pathway toward cleaner use of coal for power generation with lower emissions. However, when coal-derived synthesis gas (i.e., syngas) is burned in turbines designed for natural gas, turbine manufacturers recommend 'derating,' or lowering the maximum temperature, which lowers the efficiency of the turbine, making electricity from IGCC more expensive. One possible reason for the derating is the higher water vapor contents in the exhaust gas. Water vapor has a detrimental effect on many oxidation-resistant high-temperature materials. In a turbine hot section, Ni-base superalloys are coated with a thermal barrier coating (TBC) allowing the gas temperature to be higher than the superalloy solidus temperature. TBCs have a low thermal conductivity ceramic top coating (typically Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}, or YSZ) and an oxidation-resistant metallic bond coating. For land-based gas turbines, the industry standard is air plasma sprayed (APS) YSZ and high velocity oxygen fuel (HVOF) sprayed NiCoCrAlY bond coatings. To investigate the role of higher water vapor content on TBC performance and possible mitigation strategies, furnace cycling experiments were conducted in dry O{sub 2} and air with 10% (typical with natural gas or jet fuel) or 50 vol% water vapor. Cycle frequency and temperature were accelerated to one hour at 1100 C (with 10 minute cooling to {approx}30 C between each thermal cycle) to induce early failures in coatings that are expected to operate for several years with a metal temperature of {approx}900 C. Coupons (16 mm diameter x 2 mm thick) of commercial second-generation single crystal superalloy CMSX4 were HVOF coated on both sides with {approx}125 {micro}m of Ni-22wt%Co-17Cr-12Al either with 0.7Y or 0.7Y-0.3Hf-0.4Si. One side was then coated with 190-240 {micro}m of APS YSZ. Coatings were cycled until the YSZ top coating spalled. Figure 2 shows the results of the

  1. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  2. Inferring water vapor amounts with solar spectral irradiance: Measurements, modeling, and comparisons with in situ water vapor profiles in the upper troposphere lower stratosphere from ATTREX

    NASA Astrophysics Data System (ADS)

    Kindel, B. C.; Pilewskie, P.; Schmidt, S.; Thornberry, T. D.; Rollins, D. W.; LeBlanc, S. E.; Bui, T. V.

    2013-12-01

    The Airborne Tropical TRopopause Experiment (ATTREX) flew six science missions on the NASA Global Hawk aircraft from NASA Dryden, California to the Pacific tropics to sample the upper troposphere, lower stratosphere (UTLS) during February and March of 2013. After transit to the tropics, the aircraft performed a series of vertical profiles from the cruising altitude of about 18 km down to 14 km sampling the tropical tropopause layer (TTL). A science focus of ATTREX is to examine water vapor and its transport through the TTL. The extremely cold temperatures found in the TTL act to limit the transport of water vapor from the troposphere to stratosphere, making this region critical to the water vapor budget of the stratosphere. Here we investigate the use of the strong water bands centered at 1400 and 1900 nm in the telluric solar spectrum to infer the small water vapor amounts through the TTL. Measurements of spectral irradiance from the Solar Spectral Flux Radiometer (SSFR) at the top and bottom of the aircraft profiles are used to produce transmission spectra. These are compared with atmospheric radiative transfer calculations of transmission through the layer. The measured water vapor profile from the NOAA water vapor instrument, as well as temperature and pressure, were used in the modeling, providing a rare opportunity to compare water vapor amount inferred from solar transmittance to in situ measurements. Prospects for the use of these bands for determining the total column water vapor amount from the UTLS to the top of the atmosphere from aircraft are also discussed.

  3. Water vapor differential absorption lidar development and evaluation.

    PubMed

    Browell, E V; Wilkerson, T D; McIlrath, T J

    1979-10-15

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements. PMID:20216627

  4. Water vapor differential absorption lidar development and evaluation

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Wilkerson, T. D.; Mcllrath, T. J.

    1979-01-01

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements

  5. Effect of Acids on Water Vapor Uptake by Pyrogenic Silica

    PubMed

    Bogdan; Kulmala

    1997-07-01

    Effect of gaseous HCl and HNO3 on the water vapor uptake by pyrogenic silica was studied at different relative humidities (RH) for pure water and different compositions of binary and ternary vapor mixtures. Experiments showed that the ability of silica to uptake water strongly depends on RH and on the type of acids and their concentration in the vapor mixtures. At low acid concentration in the binary mixtures the influence of acids is probably small. Water uptake by silica does not change monotonically with acid concentration: at first it decreases and then starts to grow. However, the presence of acids promotes water uptake, and the effect is very significant at low RH. HCl seems to be more effective acid to enhance water uptake than HNO3 . In the case of ternary mixtures the adsorbed weight of water is a bit larger than that adsorbed from the binary mixtures. Acids are accumulated by silica surface, and the accumulation is larger for nitric acid. PMID:9241208

  6. Use of the selected overlap LIDAR experiment (SOLEX) system with the 248 nm krypton fluoride and the 355 nm neodymium:yttrium aluminum garnet lasers for the calibration of LIDAR systems for water vapor determination

    NASA Astrophysics Data System (ADS)

    Mensah, Francis Emmanuel Tofodji

    Water vapor is one of the most important atmospheric variables that play a key role in air quality, global warming, climate change and hurricane formation. In this dissertation, use was made of two laser systems, the 248-nm KrF laser and the 355 nm Nd-YAG laser, with the use of Raman scattering to measure water vapor in the atmosphere. These two systems have been calibrated more accurately, using the LIDAR approach named SOLEX (Selected Overlap LIDAR Experiment). All the experiments were carried out at the Howard University Beltsville campus located on a 107 acre research site, at Beltsville, MD, 15 miles from downtown Washington DC, near the National Agricultural Research Center (NARC), and the NASA Goddard Space Flight Center (GSFC). The geographical coordinates are: 39°04.01'N latitude, and 76°52.31'W longitude. The receiver system used during these experiments is a 30" (76.2 cm), f/ 9 Cassegranian telescope, while the detector system uses a prism spectrometer (Beckman), with a 2-meter, double-fold optical path and a variable slit width is placed at the image plane of the telescope. With the use of the SOLEX system, this dissertation provides an accurate calibration of the two LIDAR Systems for water vapor measurement in the troposphere at the following ranges: 83.7 ft, 600 ft, 800 ft, 1000 ft and 1080 ft. Data analysis shows a pretty high sensitivity of the LIDAR system for water vapor measurement and the efficiency of the SOLEX method.

  7. Water vapor sources associated with the early summer precipitation over China

    NASA Astrophysics Data System (ADS)

    Chow, K. C.; Tong, Hang-Wai; Chan, Johnny C. L.

    2008-04-01

    This study investigates the water vapor sources for the early summer precipitation over China in association with the Asian summer monsoon, based on the sensitivity experiments performed by a regional climate model for the year 1998. It is found that the northern South China Sea (NSCS) is an important region for the early summer precipitation over China, particularly the south China region. The evaporative water vapor flux or sea surface temperature over the NSCS could significantly affect the southwesterly water vapor transport towards the NSCS. This in turn may significantly change the water vapor transport from the NSCS to China and so changes the precipitation there. The results of the experiments also show that the precipitation over China does not particularly depend on the water vapor transports from some distant sources by the large-scale flows. Most of the required water vapor could be obtained from the ocean within the monsoon region. The results suggest that the water vapor transport over China is basically a combination of the southeasterly water vapor transport associated with the north Western Pacific subtropical high and the southwesterly water vapor transport associated with the Indian summer monsoon. Without the latter, the early summer precipitation over China could be reduced by up to half of the original amount.

  8. Transient water vapor at Europa's south pole.

    PubMed

    Roth, Lorenz; Saur, Joachim; Retherford, Kurt D; Strobel, Darrell F; Feldman, Paul D; McGrath, Melissa A; Nimmo, Francis

    2014-01-10

    In November and December 2012, the Hubble Space Telescope (HST) imaged Europa's ultraviolet emissions in the search for vapor plume activity. We report statistically significant coincident surpluses of hydrogen Lyman-α and oxygen OI 130.4-nanometer emissions above the southern hemisphere in December 2012. These emissions were persistently found in the same area over the 7 hours of the observation, suggesting atmospheric inhomogeneity; they are consistent with two 200-km-high plumes of water vapor with line-of-sight column densities of about 10(20) per square meter. Nondetection in November 2012 and in previous HST images from 1999 suggests varying plume activity that might depend on changing surface stresses based on Europa's orbital phases. The plume was present when Europa was near apocenter and was not detected close to its pericenter, in agreement with tidal modeling predictions. PMID:24336567

  9. Water Vapor Effects on Silica-Forming Ceramics

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  10. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    NASA Technical Reports Server (NTRS)

    Kelly, K. K.; Proffitt, M. H.; Chan, K. R.; Loewenstein, M.; Podolske, J. R.; Strahan, E.; Wilson, J. C.; Kley, D.

    1993-01-01

    Measurements of stratospheric and upper tropospheric cloud water plus water vapor (total water) and water vapor were made with two Lyman alpha hygrometers as part of the STEP tropical experiment. The in situ measurements were made in the Darwin, Australia, area in January and February of 1987 on an ER-2 aircraft. Average stratospheric water vapor at a potential temperature of 375 K (the average value of Theta at the tropopause) was 2.4 parts per million by volume (ppmv). This water mixing ratio is below the 3.0 to 4.0 ppmv necessary to be consistent with the observed upper stratospheric dryness. Saturation with respect to ice and the potential for dehydration was observed up to Theta = 402 K.

  11. Surface potential of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.

    1988-01-01

    An analysis of an extended molecular dynamics calculation of the surface potential (SP) of the water liquid-vapor interface is presented. The SP predicted by the TIP4P model is -(130 + or - 50) mV. This value is of reasonable magnitude but of opposite sign to the expectations based on laboratory experiments. The electrostatic potential shows a nonmonotonic variation with depth into the liquid.

  12. Daytime Raman lidar measurements of water vapor during the ARM 1997 water vapor intensive observation period

    SciTech Connect

    Turner, D.D.; Goldsmith, J.E.M.

    1998-04-01

    Because of the importance of water vapor, the ARM program initiated a series of three intensive operating periods (IOPs) at its CART (Cloud And Radiation Testbed) site. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. These IOPs provided an excellent opportunity to compare measurements from other systems with those made by the CART Raman lidar. This paper addresses primarily the daytime water vapor measurements made by the lidar system during the second of these IOPs.

  13. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    NASA Technical Reports Server (NTRS)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  14. Radiometric remote sensing of mesospheric and stratospheric water vapor

    NASA Technical Reports Server (NTRS)

    Croskey, Charles L.; Olivero, John J.; Martone, Joseph P.

    1991-01-01

    The remote sensing of stratospheric and mesospheric water vapor by microwave and millimeter radiometry is described. The received radiation is emitted by and interacts with all levels of the atmosphere. The pressure dependence of the linewidth for the absorption cross section of water vapor permits retrieval of vapor mixing ratios. The 183.31-GHz line of water vapor can also be used for remote sensing of the water vapor concentration in the upper atmosphere, but due to the much stronger absorption cross section for this line, ground-based observations are difficult. To date all measurements at 183 GHz have been made from platforms above the troposphere.

  15. Trapping of water vapor from an atmosphere by condensed silicate matter formed by high-temperature pulse vaporization

    NASA Technical Reports Server (NTRS)

    Gerasimov, M. V.; Dikov, Yu. P.; Yakovlev, O. I.; Wlotzka, F.

    1993-01-01

    The origin of planetary atmospheres is thought to be the result of bombardment of a growing planet by massive planetesimals. According to some models, the accumulation of released water vapor and/or carbon dioxide can result in the formation of a dense and hot primordial atmosphere. Among source and sink processes of atmospheric water vapor the formation of hydroxides was considered mainly as rehydration of dehydrated minerals (foresterite and enstatite). From our point of view, the formation of hydroxides is not limited to rehydration. Condensation of small silicate particles in a spreading vapor cloud and their interaction with a wet atmosphere can also result in the origin of hydrated phases which have no genetic connections with initial water bearing minerals. We present results of two experiments of a simulated interaction of condensed silicate matter which originated during vaporization of dry clinopyroxene in a wet helium atmosphere.

  16. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  17. Water vapor pressure should be addressed in Potomac study

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.

    In Bruce Doe's article, “A Potomac Perspective on the Growing Global Greenhouse” (Eos, January 5,1999), a statement is made in the next to last paragraph that “other climatic parameters such as precipitation can correlate better than temperature among the five sites.” It would be expected that precipitation, and in particular the partial pressure of water vapor, should correlate with the carbon dioxide greenhouse effect. It was pointed out by W. G. Egan and coworkers in 1991 that there is an inverse relationship between carbon dioxide and water vapor partial pressure, seen both in laboratory experiments and at all worldwide Global Monitoring for Climate Change monitoring stations. Specific examples were presented for Cold Bay, Alaska and Palmer Station, Antarctica monthly and annually

  18. Water vapor measurements by Raman lidar during the ARM 1997 water vapor intensive observation period

    SciTech Connect

    Turner, D.D.; Whiteman, D.N.; Schwemmer, G.K.; Evans, K.D. |; Melfi, S.H.; Goldsmith, J.E.

    1998-04-01

    Water vapor is the most important greenhouse gas in the atmosphere, as it is the most active infrared absorber and emitter of radiation, and it also plays an important role in energy transport and cloud formation. Accurate, high resolution measurements of this variable are critical in order to improve the understanding of these processes and thus their ability to model them. Because of the importance of water vapor, the Department of Energy`s Atmospheric Radiation Measurement (ARM) program initiated a series of three intensive operating periods (IOPs) at its Cloud and Radiation Testbed (CART) site in northern Oklahoma. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. The ARM CART site is the home of several different water vapor measurement systems. These systems include a Raman lidar, a microwave radiometer, a radiosonde launch site, and an instrumented tower. During these IOPs, additional instrumentation was brought to the site to augment the normal measurements in the attempt to characterize the CART instruments and to address the need to improve water vapor measurement capabilities. Some of the instruments brought to the CART site include a scanning Raman lidar system from NASA/GSFC, additional microwave radiometers from NOAA/ETL, a chilled mirror that was flown on a tethersonde and kite system, and dewpoint hygrometer instruments flow on the North Dakota Citation. This paper will focus on the Raman lidar intercomparisons from the second IOP.

  19. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  20. An approach to evaluate the absolute accuracy of WVR water vapor measurements inferred from multiple water vapor techniques

    NASA Astrophysics Data System (ADS)

    Liu, Zhizhao; Li, Min; Zhong, Weikun; Wong, Man Sing

    2013-12-01

    This paper uses three different types of water vapor observation instruments, radiosonde, AERONET sunphotometer and GPS, to infer the regression coefficients of one WVR (model: WVR-1100) in Hong Kong - a coastal city with high humidity. The regression using the three types of reference water vapor data is performed on a monthly basis for 6 months from January to June 2012. In order to evaluate the WVR regression accuracies, a water vapor-assisted (WV-assisted) GPS Precise Point Positioning (PPP) method is proposed. The inferred water vapor data are directly injected into PPP computation to correct the water vapor wet tropospheric delay in GPS signals. In principle, water vapor of better accuracy will produce GPS PPP solutions of higher accuracy. Our analysis results show that the radiosonde, AERONET and GPS data all can be used to regress WVR and produce accurate WVR water vapor if the regressed instruments have good data quality. We find that the WVR water vapor inferred from GPS water vapor regression has the most reliable regression results. The vertical component of PPP solutions is very stable, with consistent biases (bias varying by 0.38 cm) and standard deviations (bias variation by 0.59 cm) over a 6-month period in 2012. When sufficient AEROENT water vapor data are available for WVR regression, the WVR water vapor accuracy will become compatible with that inferred from GPS water vapor regression. However AERONET water vapor measurements are seriously affected by weather condition and can be obtained only in sunny and clear conditions. Compared with the bias variation of 0.38 cm using GPS water vapor to regress WVR, the WVR water vapor data regressed by radiosonde result in a bias variation of 3.95 cm in the PPP vertical component during the 6-month period. All of the regressed WVR contain a bias, which possibly results from the fact that the WVR, GPS, AERONET and radiosonde stations are all horizontally and vertically separated. Overall, the WVR water vapor

  1. Aircraft water vapor measurements utilizing an aluminum oxide hygrometer

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1973-01-01

    A hygrometer for water vapor measurements from an aircraft has been developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on NASA and USAF aircraft. Water vapor measurements were conducted up to 40,000 feet with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 feet.

  2. Aircraft water vapor measurements utilizing an aluminum oxide hygrometer

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1974-01-01

    A hygrometer for water vapor measurements from an aircraft was developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on the NASA Convair 990 and on a USAF B-57 aircraft. Water vapor measurements from the Convair 990 were conducted up to 40,000 ft with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 ft.

  3. The relationship between clear sky water vapor and SST anomalies

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas C.; Vonder Haar, Thomas H.

    1992-01-01

    The relationship between clear sky water vapor anomalies and the SST anomalies (SSTAs) was investigated with the purpose of providing data for evaluating the clear sky greenhouse effect predicted in many global warming scenarios, by statistically analyzing anomaly data sets of SST and the water vapor anomaly data (obtained by subtracting the mean value of the six years of data for a given month from the observed values). Results show that clear sky water vapor anomalies increase in association with increases in SSTAs. The clear sky water vapor anomalies high in the troposphere were also found to increase with increasing SSTA.

  4. Advanced Water Vapor Lidar Detection System

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1998-01-01

    In the present water vapor lidar system, the detected signal is sent over long cables to a waveform digitizer in a CAMAC crate. This has the disadvantage of transmitting analog signals for a relatively long distance, which is subjected to pickup noise, leading to a decrease in the signal to noise ratio. Generally, errors in the measurement of water vapor with the DIAL method arise from both random and systematic sources. Systematic errors in DIAL measurements are caused by both atmospheric and instrumentation effects. The selection of the on-line alexandrite laser with a narrow linewidth, suitable intensity and high spectral purity, and its operation at the center of the water vapor lines, ensures minimum influence in the DIAL measurement that are caused by the laser spectral distribution and avoid system overloads. Random errors are caused by noise in the detected signal. Variability of the photon statistics in the lidar return signal, noise resulting from detector dark current, and noise in the background signal are the main sources of random error. This type of error can be minimized by maximizing the signal to noise ratio. The increase in the signal to noise ratio can be achieved by several ways. One way is to increase the laser pulse energy, by increasing its amplitude or the pulse repetition rate. Another way, is to use a detector system with higher quantum efficiency and lower noise, on the other hand, the selection of a narrow band optical filter that rejects most of the day background light and retains high optical efficiency is an important issue. Following acquisition of the lidar data, we minimize random errors in the DIAL measurement by averaging the data, but this will result in the reduction of the vertical and horizontal resolutions. Thus, a trade off is necessary to achieve a balance between the spatial resolution and the measurement precision. Therefore, the main goal of this research effort is to increase the signal to noise ratio by a factor of

  5. Support for the Harvard University Water Vapor and Total Water Instruments for the 2004 NASA WB57 Middle Latitude Cirrus Experiment

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    2005-01-01

    In order to improve our understanding of the role clouds play in the climate system, NASA is investing considerable effort in characterizing clouds with instruments ranging from passive remote sensors on board the EOS platforms, to the forthcoming active remote sensors on Cloudsat and Calipso. These missions, when taken together, have the capacity to advance our understanding of the coupling between various components of the hydrologic cycle and the atmospheric circulation, and hold the additional potential of leading to significant improvements in the characterization of cloud feedbacks in global models. This is especially true considering that several of these platforms will be flown in an identical orbit within several minutes of one another-a constellation of satellites known as the A-Train. The algorithms that are being implemented and developed to convert these new data streams from radiance and reflectivity measurements into geophysical parameters invariably rely on some set of simplifymg assumptions and empirical constants. Uncertainties in these relationships lead to poorly understood random and systematic errors in the retrieved properties. This lack of understanding introduces ambiguity in interpreting the data and in using the global data sets for their intended purposes. In light of this, a series of flights with the W57F was proposed to address certain specific issues related to the basic properties of mid latitude cirrus clouds: the NASA WE357 Middle Latitude Cirrus Experiment ("MidCiX"). The science questions addressed are: 1) Can cloud property retrieval algorithms developed for A-Train active and passive remote sensing measurements accurately characterize the microphysical properties of synoptic and convectively generated cirrus cloud systems? 2) What are the relationships between the cirrus particle mass, projected area, and particle size spectrum in various genre of cirrus clouds? 3) Does the present compliment of state of the art in situ cloud

  6. Holographic studies of the vapor explosion of vaporizing water-in-fuel emulsion droplets

    NASA Technical Reports Server (NTRS)

    Sheffield, S. A.; Hess, C. F.; Trolinger, J. D.

    1982-01-01

    Holographic studies were performed which examined the fragmentation process during vapor explosion of a water-in-fuel (hexadecane/water) emulsion droplet. Holograms were taken at 700 to 1000 microseconds after the vapor explosion. Photographs of the reconstructed holograms reveal a wide range of fragment droplet sizes created during the explosion process. Fragment droplet diameters range from below 10 microns to over 100 microns. It is estimated that between ten thousand and a million fragment droplets can result from this extremely violent vapor explosion process. This enhanced atomization is thus expected to have a pronounced effect on vaporization processes which are present during combustion of emulsified fuels.

  7. Combustion of a single magnesium particle in water vapor

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ya; Xia, Zhi-Xun; Zhang, Wei-Hua; Huang, Xu; Hu, Jian-Xin

    2015-09-01

    The combustion of magnesium particles in water vapor is of interest for underwater propulsion and hydrogen production. In this work, the combustion process of a single magnesium particle in water vapor is studied both experimentally and theoretically. Combustion experiments are conducted in a combustor filled with motionless water vapor. Condensation of gas-phase magnesia on the particle surface is confirmed and gas-phase combustion flame characteristics are observed. With the help of an optical filter and a neutral optical attenuator, flame structures are captured and determined. Flame temperature profiles are measured by an infrared thermometer. Combustion residue is a porous oxide shell of disordered magnesia crystal, which may impose a certain influence on the diffusivity of gas phases. A simplified one-dimensional, spherically symmetric, quasi-steady combustion model is then developed. In this model, the condensation of gas-phase magnesia on the particle surface and its influence on the combustion process are included, and the Stefan problem on the particle surface is also taken into consideration. With the combustion model, the parameters of flame temperature, flame diameter, and the burning time of the particle are solved analytically under the experimental conditions. A reasonable agreement between the experimental and modeling results is demonstrated, and several features to improve the model are identified. Project supported by the National Natural Science Foundation of China (Grant No. 51406231).

  8. Water Vapor, Cloud and Aerosol Properties on the Tibetan Plateau Using Multi-Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Dai, Guangyao; Wang, Dongxiang; Zhai, Xiaochun; Song, Xiaoquan

    2016-06-01

    The 3rd Tibetan Plateau atmospheric expedition experiment campaign were operated in the Tibetan Plateau during July and August 2014 by utilizing the Water vapor, Cloud and Aerosol Lidar (WVCAL), Coherent Doppler Wind Lidar and ceilometer VAISALA CL31. The observation was carried out in Nagqu area (31.5°N, 92.05°E), which is 4508 meters above the mean sea level. Water vapor mixing ratio, cloud height, vertical wind speed and vertical water vapor flux was measured by these lidars. The inversion methods of data products of lidars are described in details in this paper. Furthermore, the clouds heights measured by lidar and ceilometer were compared to verify the performance of the lidar. Finally, the case studies of water vapor mixing ratio, water vapor flux and cloud height and statistics were provided.

  9. First lidar measurements of water vapor and aerosols from a high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed

    1995-01-01

    Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

  10. Effect of Increased Water Vapor Levels on TBC Lifetime

    SciTech Connect

    Pint, Bruce A; Garner, George Walter; Lowe, Tracie M; Haynes, James A; Zhang, Ying

    2011-01-01

    To investigate the effect of increased water vapor levels on thermal barrier coating (TBC) lifetime, furnace cycle tests were performed at 1150 C in air with 10 vol.% water vapor (similar to natural gas combustion) and 90 vol.%. Either Pt diffusion or Pt-modified aluminide bond coatings were applied to specimens from the same batch of a commercial second-generation single-crystal superalloy and commercial vapor-deposited yttria-stabilized zirconia (YSZ) top coats were applied. Three coatings of each type were furnace cycled to failure to compare the average lifetimes obtained in dry O{sub 2}, using the same superalloy batch and coating types. Average lifetimes with Pt diffusion coatings were unaffected by the addition of water vapor. In contrast, the average lifetime of Pt-modified aluminide coatings was reduced by more than 50% with 10% water vapor but only slightly reduced by 90% water vapor. Based on roughness measurements from similar specimens without a YSZ coating, the addition of 10% water vapor increased the rate of coating roughening more than 90% water vapor. Qualitatively, the amount of {beta}-phase depletion in the coatings exposed in 10% water vapor did not appear to be accelerated.

  11. Preliminary characterization of a water vaporizer for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl

    1992-01-01

    A series of tests was conducted to explore the characteristics of a water vaporizer intended for application to resistojet propulsion systems. The objectives of these tests were to (1) observe the effect of orientation with respect to gravity on vaporizer stability, (2) characterize vaporizer efficiency and outlet conditions over a range of flow rates, and (3) measure the thrust performance of a vaporizer/resistojet thruster assembly. A laboratory model of a forced-flow, once-through water vaporizer employing a porous heat exchange medium was built and characterized over a range of flow rates and power levels of interest for application to water resistojets. In a test during which the vaporizer was rotated about a horizontal axis normal to its own axis, the outlet temperature and mass flow rate through the vaporizer remained steady. Throttlability to 30 percent of the maximum flow rate tested was demonstrated. The measured thermal efficiency of the vaporizer was near 0.9 for all tests. The water vaporizer was integrated with an engineering model multipropellant resistojet. Performance of the vaporizer/thruster assembly was measured over a narrow range of operating conditions. The maximum specific impulse measured was 234 s at a mass flow rate and specific power level (vaporizer and thruster combined) of 154 x 10(exp-6)kg/s and 6.8 MJ/kg, respectively.

  12. Water vapor sorption hysteresis of ceramic bricks

    NASA Astrophysics Data System (ADS)

    Koronthalyova, Olga

    2016-07-01

    A quantification of the hysteretic effects and their thorough analysis was carried out for three types of ceramic bricks. Water vapor adsorption/desorption isotherms were measured by the standard desiccator method. The desorption measurements were carried out from capillary moisture content as well as from equilibrium moisture content corresponding to the relative humidity of 98 %. For all three tested types of bricks the hysteretic effects were present but their significance differed depending on the particular type of brick. Significant differences were noticed also in desorption curves determined from capillary moisture content and from equilibrium moisture content corresponding to the relative humidity of 98 %. Based on the measured data a possible correlation between pore structure parameters and noticed hysteretic effects as well as relevance of the open pore model are discussed. The obtained adsorption/desorption curves were approximated by an analytical relation.

  13. Electron transport analysis in water vapor

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoru; Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori

    2016-07-01

    A reliable set of electron collision cross sections for water vapor, including elastic, rotational, vibrational, and electronic excitation, electron attachment, and ionization cross sections, is estimated by the electron swarm method. In addition, anisotropic electron scattering for elastic and rotational excitation collisions is considered in the cross section set. Electron transport coefficients such as electron drift velocity, longitudinal diffusion coefficient, and effective ionization coefficient are calculated from the cross section set by Monte Carlo simulation in a wide range of E/N values, where E and N are the applied electric field and the number density of H2O molecules, respectively. The calculated transport coefficients are in good agreement with those measured. The obtained results confirm that the anisotropic electron scattering is important for the calculation at low E/N values. Furthermore, the cross section set assuming the isotropic electron scattering is proposed for practical use.

  14. Water recovery by catalytic treatment of urine vapor

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  15. Operating a radio-frequency plasma source on water vapor.

    PubMed

    Nguyen, Sonca V T; Foster, John E; Gallimore, Alec D

    2009-08-01

    A magnetically enhanced radio-frequency (rf) plasma source operating on water vapor has an extensive list of potential applications. In this work, the use of a rf plasma source to dissociate water vapor for hydrogen production is investigated. This paper describes a rf plasma source operated on water vapor and characterizes its plasma properties using a Langmuir probe, a residual gas analyzer, and a spectrometer. The plasma source operated first on argon and then on water vapor at operating pressures just over 300 mtorr. Argon and water vapor plasma number densities differ significantly. In the electropositive argon plasma, quasineutrality requires n(i) approximately = n(e), where n(i) is the positive ion density. But in the electronegative water plasma, quasineutrality requires n(i+) = n(i-) + n(e). The positive ion density and electron density of the water vapor plasma are approximately one and two orders of magnitude lower, respectively, than those of argon plasma. These results suggest that attachment and dissociative attachment are present in electronegative water vapor plasma. The electron temperature for this water vapor plasma source is between 1.5 and 4 eV. Without an applied axial magnetic field, hydrogen production increases linearly with rf power. With an axial magnetic field, hydrogen production jumps to a maximum value at 500 W and then saturates with rf power. The presence of the applied axial magnetic field is therefore shown to enhance hydrogen production. PMID:19725651

  16. Extratropical Influence of Upper Tropospheric Water Vapor on Greenhouse Warming

    NASA Technical Reports Server (NTRS)

    Hu, H.; Liu, W.

    1998-01-01

    The purpose of this paper is to re-examine the impact of upper tropospheric water vapor on greenhouse warming in midlatitudes by analyzing the recent observations of the upper tropospheric water vapor from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), in conjuction with other space-based measurement and model simulation products.

  17. Detection of Thermal Water Vapor Emission from W Hydrae

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Chen, Wesley; Melnick, Gary J.; DeGraauw, Thijs; Feuchtgruber, Helmut; Harwitt, Martin

    1997-01-01

    We have detected four far-infrared emission lines of water vapor toward the evolved star W Hydrae, using the Short Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO). This is the first detection of thermal water vapor emission from a circumstellar outflow.

  18. Warm Water Vapor around Sagittarius B2

    NASA Astrophysics Data System (ADS)

    Cernicharo, José; Goicoechea, Javier R.; Pardo, Juan R.; Asensio-Ramos, Andrés

    2006-05-01

    Several condensations heated externally by nearby hot stars are present in the Sgr B2 region for which H2O far-IR lines are expected to probe only an external low-density and high temperature section. Millimeter-wave lines can penetrate deeper into them (higher densities and lower Tk). We have conducted a study combining H2O lines in both spectral regions using the ISO (far-IR lines) and the IRAM 30 m telescope (183 GHz line). The far-IR H2O lines, seen in absorption, are optically thick. They form in the outermost gas in front of the far-IR continuum sources, probing a maximum visual extinction of ~5-10 mag. IR photons from the dust play a dominant role in their excitation. We conclude, based on observations of the CO J=7-6 line at 806.65 GHz, and the lack of emission from the far-IR CO lines, that the gas density has to be below ~104 cm-3. Using the gas kinetic temperature and density derived from OH, CO, and other molecular species, we derive a water column density of (9+/-3)×1016 cm-2 in the absorbing gas, implying an abundance of ~=(1-2)×10-5 in this region. The resulting relatively low H2O/OH abundance ratio, ~=2-4, is a signature of UV photon-dominated surface layers traced by far-IR observations. As a consequence, the temperature of the absorbing gas is high, Tk~=300-500 K, which allows very efficient neutral-neutral reactions producing H2O and OH. Finally, the 183.31 GHz data allow one to trace the inner, denser (n(H2)>=105-106 cm-3), and colder (Tk~40 K) gas. The emission is very strong toward the cores with an estimated water vapor abundance of a few × 10-7. There is also moderate extended emission around Sgr B2 main condensations, in agreement with the water vapor abundance derived from far-IR H2O lines. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with participation of ISAS and NASA.

  19. Detection of water vapor in Halley's comet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Weaver, H. A.; Larson, H. P.; Williams, M.; Davis, D. S.

    1986-01-01

    Gaseous, neutral H2O was detected in the coma of comet Halley on 22.1 and 24.1 December 1985 Universal Time. Nine spectral lines of the nus band (2.65 micrometers) were found by means of a Fourier transform spectrometer on the NASA-Kuiper Airborne Observatory. The water production rate was about 6 x 10 to the 28th molecules per second on 22.1 December and 1.7 x 10 to the 29th molecules per second on 24.1 December UT. The numbers of spectral lines and their intensities are in accord with nonthermal-equilibrium cometary models. Rotational populations are derived from the observed spectral line intensities and excitation conditions are discussed. The ortho-para ratio was found to be 2.66 + or - 0.13, corresponding to a nuclear-spin temperature of 32 K (+5 K, -2 K), possibly indicating that the observed water vapor originated from a low-temperature ice.

  20. Characterization and mitigation of water vapor effects in the measurement of ozone by chemiluminescence with nitric oxide

    NASA Astrophysics Data System (ADS)

    Boylan, P.; Helmig, D.; Park, J.-H.

    2013-10-01

    Laboratory experiments were conducted to investigate the effects of water vapor on the reaction of nitric oxide with ozone in a chemiluminescence instrument used for fast response and high sensitivity detection of atmospheric ozone. Water vapor was introduced into a constant level ozone standard and both ozone and water vapor signals were recorded at 10 Hz. The presence of water vapor was found to reduce, i.e. quench the ozone signal. A correction factor was determined to be 4.15 ± 0.14 × 10-3, which corresponds to a 4.15% increase in the measured ozone signal per 10 mmol mol-1 co-sampled water vapor. An ozone-inert water vapor permeable membrane (Nafion dryer) was installed in the sampling line and was shown to remove the bulk of the water vapor mole fraction in the sample air. At water vapor mole fractions above 25 mmol mol-1, the Nafion dryer removed over 75% of the water vapor in the sample. This reduced the ozone signal correction from over 11% to less than 2.5%. The Nafion dryer was highly effective at reducing the fast fluctuations of the water vapor signal (more than 97%) while leaving the ozone signal unaffected, which is a crucial improvement for minimizing the interference of water vapor fluxes on the ozone flux determination by the eddy covariance technique.

  1. Characterization and mitigation of water vapor effects in the measurement of ozone by chemiluminescence with nitric oxide

    NASA Astrophysics Data System (ADS)

    Boylan, P.; Helmig, D.; Park, J.-H.

    2014-05-01

    Laboratory experiments were conducted to investigate the effects of water vapor on the reaction of nitric oxide with ozone in a gas-phase chemiluminescence instrument used for fast response and high sensitivity detection of atmospheric ozone. Water vapor was introduced into a constant level ozone standard and both ozone and water vapor signals were recorded at 10 Hz. The presence of water vapor was found to reduce, i.e. quench, the ozone signal. A dimensionless correction factor was determined to be 4.15 ± 0.14 × 10-3, which corresponds to a 4.15% increase in the corrected ozone signal per 10 mmol mol-1 of co-sampled water vapor. An ozone-inert water vapor permeable membrane (a Nafion dryer with a counterflow of dry air from a compressed gas cylinder) was installed in the sampling line and was shown to remove the bulk of the water vapor in the sample air. At water vapor mole fractions above 25 mmol mol-1, the Nafion dryer removed over 75% of the water vapor in the sample. This reduced the required ozone signal correction from over 11% to less than 2.5%. The Nafion dryer was highly effective at reducing the fast fluctuations of the water vapor signal (more than 97%) while leaving the ozone signal unaffected, which is a crucial improvement for minimizing the quenching interference of water vapor fluxes and required density correction in the determination of ozone fluxes by the eddy covariance technique.

  2. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (<5 pr-micrometer) is observed at middle and high latitudes in the fall and winter of both hemispheres. There are large differences in the hemispheric (north versus south) and seasonal (perihelion versus aphelion) behavior of water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.

  3. Roles of Oxygen and Water Vapor in the Oxidation of Halogen Terminated Ge(111) Surfaces

    SciTech Connect

    Sun, Shiyu; Sun, Yun; Liu, Zhi; Lee, Dong-Ick; Pianette, Piero; /SLAC, SSRL

    2006-12-18

    The initial stage of the oxidation of Cl and Br terminated Ge(111) surfaces is studied using photoelectron spectroscopy. The authors perform controlled experiments to differentiate the effects of different factors in oxidation, and find that water vapor and oxygen play different roles. Water vapor effectively replaces the halogen termination layers with the hydroxyl group, but does not oxidize the surfaces further. In contrast, little oxidation is observed for Cl and Br terminated surfaces with dry oxygen alone. However, with the help of water vapor, oxygen oxidizes the surface by breaking the Ge-Ge back bonds instead of changing the termination layer.

  4. Development of Field-deployable Diode-laser-based Water Vapor Dial

    NASA Astrophysics Data System (ADS)

    Pham Le Hoai, Phong; Abo, Makoto; Sakai, Tetsu

    2016-06-01

    In this paper, a field-deployable diode-laser-based differential absorption lidar (DIAL) has been developed for lower-tropospheric water vapor observation in Tokyo, Japan. A photoacoustic cell is used for spectroscopy experiment around absorption peaks of 829.022 nm and 829.054 nm. The water vapor density extracted from the observational data agrees with the referenced radiosonde data. Furthermore, we applied modulated pulse technique for DIAL transmitter. It enables DIAL to measure water vapor profile for both low and high altitude regions.

  5. Influence of liquid water and water vapor on antimisting kerosene (AMK)

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Sarolouki, M.; Sarohia, V.

    1983-01-01

    Experiments have been performed to evaluate the compatibility of liquid water and water vapor with antimisting kerosenes (AMK) containing polymer additive FM-9 developed by Imperial Chemical Industries. This effort consists of the determination of water solubility in AMK, influence of water on restoration (degradation) of AMK, and effect of water on standard AMK quality control methods. The principal conclusions of this investigation are: (1) the uptake of water in AMK critically depends upon the degree of agitation and can be as high as 1300 ppm at 20 C, (2) more than 250 to 300 ppm of water in AMK causes an insoluble second phase to form. The amount of this second phase depends on fuel temperature, agitation, degree of restoration (degradation) and the water content of the fuel, (3) laboratory scale experiments indicate precipitate formation when water vapor comes in contact with cold fuel surfaces at a much lower level of water (125 to 150 ppm), (4) precipitate formation is very pronounced in these experiments where humid air is percolated through a cold fuel (-20 C), (5) laboratory tests further indicate that water droplet settling time is markedly reduced in AMK as compared to jet A, (6) limited low temperature testing down to -30 C under laboratory conditions indicates the formation of stable, transparent gels.

  6. ACA phase calibration scheme with the ALMA water vapor radiometers

    NASA Astrophysics Data System (ADS)

    Asaki, Yoshiharu; Matsushita, Satoki; Morita, Koh-Ichiro; Nikolic, Bojan

    2012-09-01

    In Atacama Large Millimeter/submillimeter Array (ALMA) commissioning and science verification we have conducted a series of experiments of a novel phase calibration scheme for Atacama Compact Array (ACA). In this scheme water vapor radiometers (WVRs) devoted to measurements of tropospheric water vapor content are attached to ACA’s four total-power array (TP Array) antennas surrounding the 7 m dish interferometer array (7 m Array). The excess path length (EPL) due to the water vapor variations aloft is fitted to a simple two-dimensional slope using WVR measurements. Interferometric phase fluctuations for each baseline of the 7 m Array are obtained from differences of EPL inferred from the two-dimensional slope and subtracted from the interferometric phases. In the experiments we used nine ALMA 12-m antennas. Eight of them were closely located in a 70-m square region, forming a compact array like ACA. We supposed the most four outsiders to be the TP Array while the inner 4 antennas were supposed to be the 7 m Array, so that this phase correction scheme (planar-fit) was tested and compared with the WVR phase correction. We estimated residual root-mean-square (RMS) phases for 17- to 41-m baselines after the planar-fit phase correction, and found that this scheme reduces the RMS phase to a 70 - 90 % level. The planar-fit phase correction was proved to be promising for ACA, and how high or low PWV this scheme effectively works in ACA is an important item to be clarified.

  7. Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.

    SciTech Connect

    Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

    2009-07-01

    Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

  8. [Removal of SO2 from flue gas by water vapor DC corona discharge].

    PubMed

    Sun, Ming; Wu, Yan

    2006-07-01

    The influence of several factors on removal rate of SO2 from flue gas in unsaturated water vapor DC corona discharge was researched. Furthermore, the experiments of the removal rate of SO2 in pulsed discharge increased by water vapor DC corona discharge plasma were conducted. The experiment system is supplied with multi-nozzle-plate electrodes and the flow of simulated flue gas is under 70 m3/h. The results show that removal rate of SO2 can be improved by increasing the concentration of water vapor, intensity of electric field or decreasing flow of simulated flue gas. In unsaturated water vapor DC corona discharge, removal rate of SO2 can be improved by 10%, when NH3 is added as NH3 and SO2 is in a mole ratio of two to one, it can reach 60%. The removal rate of SO2 can be increased by 5% in pulsed corona discharge and reach above 90%. PMID:16881295

  9. Space Experiment Facility (SEF) Vapor Crystal Growth

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The objective of this facility is to investigate the potential of space grown semiconductor materials by the vapor transport technique and develop powdered metal and ceramic sintering techniques in microgravity. The materials processed or developed in the SEF have potential application for improving infrared detectors, nuclear particle detectors, photovoltaic cells, bearing cutting tools, electrical brushes and catalysts for chemical production. Flown on STS-60 Commercial Center: Consortium for Materials Development in Space - University of Alabama Huntsville (UAH)

  10. Catalytic combustion of styrene over copper based catalyst: inhibitory effect of water vapor.

    PubMed

    Pan, Hongyan; Xu, Mingyao; Li, Zhong; Huang, Sisi; He, Chun

    2009-07-01

    The effects of water vapor on the activity of the copper based catalysts with different supports such as CuO/gamma-Al2O3, CuO/SiO2 and CuO/TiO2 for styrene combustion were investigated. The catalytic activity of the catalysts was tested in the absence of and presence of water vapor and the catalysts were characterized. Temperature programmed desorption (TPD) experiments and diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) measurements were conducted in order to estimate and explain the water effects. Results showed that the existence of water vapor had a significant negative effect on the catalytic activity of these copper based catalysts due to the competition adsorption of water molecule. DRIFTS studies showed that the catalyst CuO/gamma-Al2O3 had the strongest adsorption of water, while the catalyst CuO/TiO2 had the weakest adsorption of water. H2O-TPD studies also indicated that the order of desorption activation energies of water vapor on the catalysts or the strength of interactions of water molecules with the surfaces of the catalysts was CuO/gamma-Al2O3>CuO/SiO2>CuO/TiO2. As a consequence of that, the CuO/TiO2 exhibited the better durability to water vapor, while CuO/gamma-Al2O3 had the poorest durability to water vapor among these three catalysts. PMID:19427660

  11. DSMC simulation of Europa water vapor plumes

    NASA Astrophysics Data System (ADS)

    Berg, J. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2016-10-01

    A computational investigation of the physics of water vapor plumes on Europa was performed with a focus on characteristics relevant to observation and spacecraft mission operations. The direct simulation Monte Carlo (DSMC) method was used to model the plume expansion assuming a supersonic vent source. The structure of the plume was determined, including the number density, temperature, and velocity fields. The possibility of ice grain growth above the vent was considered and deemed probable for large (diameter > ∼20 m) vents at certain Mach numbers. Additionally, preexisting grains of three diameters (0.1, 1, 50 μm) were included and their trajectories examined. A preliminary study of photodissociation of H2O into OH and H was performed to demonstrate the behavior of daughter species. A set of vent parameters was evaluated including Mach number (Mach 2, 3, 5), reduced temperature as a proxy for flow energy loss to the region surrounding the vent, and mass flow rate. Plume behavior was relatively insensitive to these factors, with the notable exception of mass flow rate. With an assumed mass flow rate of ∼1000 kg/s, a canopy shock occurred and a maximum integrated line of sight column density of ∼1020 H2O molecules/m2 was calculated, comparing favorably with observation (Roth et al., 2014a).

  12. Factors Controlling Upper-Troposphere Water Vapor

    NASA Technical Reports Server (NTRS)

    Zhu, Yong; Newell, Reginald E.; Read, William G.

    2000-01-01

    The seasonal changes of the upper-tropospheric humidity are studied with the water vapor data from the Microwave Limb Sounder on the National Aeronautics and Space Administration's Upper Atmosphere Research Satellite and the winds and vertical velocity data obtained from the European Centre for Medium-Range Weather Forecasts. Using the same algorithm for vertical transport as that used for horizontal transport (by Zhu and Newell), the authors find that the moisture in the tropical upper troposphere may be increased mainly by intensified local convection in a small portion, less than 10%, of the whole area between 40 degrees S and 40 degrees N. The contribution of large-scale background circulations and divergence of horizontal transport is relatively small in these regions. These dynamic processes cannot be revealed by the traditional analyses of moisture fluxes. The negative response suggested by Lindzen, with enhanced convection in the Tropics being accompanied by subsidence drying in the subtropics, also exists, but the latter does not apparently dominate in the moisture budget.

  13. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  14. Condensation of water vapor in rarefaction waves. I - Homogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.

    1976-01-01

    A detailed theoretical investigation has been made of the condensation of water vapor/carrier gas mixtures in the nonstationary rarefaction wave generated in a shock tube. It is assumed that condensation takes place by homogeneous nucleation. The equations of motion together with the nucleation rate and the droplet growth equations were solved numerically by the method of characteristics and Lax's method of implicit artificial viscosity. It is found that, for the case considered, the condensation wave formed by the collapse of the metastable nonequilibrium state is followed by a shock wave generated by the intersection of characteristics of the same family. The expansion is practically isentropic up to the onset of condensation. The condensation front accelerates in the x,t plane. The results of the computations for a chosen case of water vapor/nitrogen mixture are presented by plotting variations of pressure, nucleation rate, number density of critical clusters, and condensate mass-fraction along three particle paths. Some consideration is given to homogeneous condensation experiments conducted in a shock tube. Although a direct comparison of the present theoretical work and these experiments is not possible, several worthwhile interpretative features have resulted nevertheless.

  15. Climate and Ozone Response to Increased Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2001-01-01

    Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.

  16. Adsorption and Desorption of Nitrogen and Water Vapor by clay

    NASA Astrophysics Data System (ADS)

    Cui, Deshan; Chen, Qiong; Xiang, Wei; Huang, Wei

    2015-04-01

    Adsorption and desorption of nitrogen and water vapor by clay has a significant impact on unsaturated soil physical and mechanical properties. In order to study the adsorption and desorption characteristics of nitrogen and water vapor by montmorillonite, kaolin and sliding zone soils, the Autosorb-iQ specific surface area and pore size analyzer instrument of United State was taken to carry out the analysis test. The adsorption and desorption of nitrogen at 77K and water vapor at 293K on clay sample were conducted. The theories of BET, FHH and hydration energy were taken to calculate the specific surface, surface fractal dimension and adsorption energy. The results show that the calculated specific surface of water vapor by clay is bigger than nitrogen adsorption test because clay can adsorb more water vapor molecule than nitrogen. Smaller and polar water vapor molecule can access the micropore and then adsorb on the mineral surface and mineral intralayer, which make the mineral surface cations hydrate and the mineral surface smoother. Bigger and nonpolar nitrogen molecule can not enter into the micropore as water vapor molecule and has weak interaction with clay surface.

  17. Regolith water vapor sources on Mars: A historical bibliography

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.; Huguenin, R. L.

    1988-01-01

    The regolith as a potential source and sink of atmospheric water is examined bibliographically. The controversy surrounding Solis Lacus, a region on Mars first identified by R. Huguenin as a possible regolith source of atmospheric water vapor, is reviewed. The publications listed describe the initial debate over the existence of a regolith source of atmospheric water vapor in Solis Lacus. The debate over Solis Lacus has motivated a rigorous examination of several important data sets, and helped define the limits of their interpretation.

  18. Observations of vaporizing water-in-fuel emulsion droplets

    SciTech Connect

    Sheffield, S.A.; Baer, M.R.; Denison, G.J.

    1980-01-01

    These observations in a Leidenfrost-type experiment allowed one to distinguish between different mechanisms in the emulsion combustion process. Three events were observed: disruptions, heterogeneously nucleated vapor explosions, and homogeneously nucleated vapor explosions. The last event greatly enhances combustion. The cenospheres, carbospheres or oil-coke particles formed will be reduced or eliminated by the vapor explosions, and any small solid fragments are likely to be consumed in the enhanced combustion processes. (DLC)

  19. Electron deposition in water vapor, with atmospheric applications.

    NASA Technical Reports Server (NTRS)

    Olivero, J. J.; Stagat, R. W.; Green, A. E. S.

    1972-01-01

    Examination of the consequences of electron impact on water vapor in terms of the microscopic details of excitation, dissociation, ionization, and combinations of these processes. Basic electron-impact cross-section data are assembled in many forms and are incorporated into semianalytic functions suitable for analysis with digital computers. Energy deposition in water vapor is discussed, and the energy loss function is presented, along with the 'electron volts per ion pair' and the efficiencies of energy loss in various processes. Several applications of electron and water-vapor interactions in the atmospheric sciences are considered, in particular, H2O comets, aurora and airglow, and lightning.

  20. Water-Assisted Vapor Deposition of PEDOT Thin Film.

    PubMed

    Goktas, Hilal; Wang, Xiaoxue; Ugur, Asli; Gleason, Karen K

    2015-07-01

    The synthesis and characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) using water-assisted vapor phase polymerization (VPP) and oxidative chemical vapor deposition (oCVD) are reported. For the VPP PEDOT, the oxidant, FeCl3 , is sublimated onto the substrate from a heated crucible in the reactor chamber and subsequently exposed to 3,4-ethylenedioxythiophene (EDOT) monomer and water vapor in the same reactor. The oCVD PEDOT was produced by introducing the oxidant, EDOT monomer, and water vapor simultaneously to the reactor. The enhancement of doping and crystallinity is observed in the water-assisted oCVD thin films. The high doping level observed at UV-vis-NIR spectra for the oCVD PEDOT, suggests that water acts as a solubilizing agent for oxidant and its byproducts. Although the VPP produced PEDOT thin films are fully amorphous, their conductivities are comparable with that of the oCVD produced ones. PMID:25882241

  1. Chemical reaction between water vapor and stressed glass

    NASA Technical Reports Server (NTRS)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  2. Absorption of Water Vapor into Aqueous Solutions of Lithium Bromide

    NASA Astrophysics Data System (ADS)

    Takahara, Tsutomu; Hayashida, Atsushi; Yabase, Hajime; Hihara, Eiji; Saito, Takamoto

    Heat and mass transfer processes are experimentally investigated for the case of water absorption into aqueous solutions of lithium bromide flowing over a flat plate. Variables considered are inlet solution flow rate,concentration of an additive,and inclination angle of the plate. The use of 2-ethyl-1-hexanol as an additive results in about a four to five fold improvement in absorption rate. The occurrence of surface distrbances dose not has a direct connection with the solubility limit of the additive. The cause of the surface disturbances in the presence of additives is investigated through experiments for pool absorption By regulating the flow of water vapor,the form of the Marangoni convection can be controlled. A qualitative discussion of addictives in the role of inducing surface disturbances is presented.

  3. Induced Potential in Porous Carbon Films through Water Vapor Absorption.

    PubMed

    Liu, Kang; Yang, Peihua; Li, Song; Li, Jia; Ding, Tianpeng; Xue, Guobin; Chen, Qian; Feng, Guang; Zhou, Jun

    2016-07-01

    Sustainable electrical potential of tens of millivolts can be induced by water vapor adsorption on a piece of porous carbon film that has two sides with different functional group contents. Integrated experiments, and Monte Carlo and ab initio molecular dynamics simulations reveal that the induced potential originates from the nonhomogeneous distribution of functional groups along the film, especially carboxy groups. Sufficient adsorbed water molecules in porous carbon facilitate the release of protons from the carboxy groups, resulting in a potential drop across the carbon film because of the concentration difference of the released free protons on the two sides. The potential utilization of such a phenomenon is also demonstrated by a self-powered humidity sensor. PMID:27159427

  4. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    NASA Technical Reports Server (NTRS)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  5. Comparison of Upper Tropospheric Water Vapor from AIRS and Cryogenic Frostpoint Hygrometers

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Vomel, Holger

    2004-01-01

    Upper tropospheric water vapor (UTWV) from the Atmospheric Infrared Sounder (AIRS) experiment on NASA's Aqua spacecraft has the potential of addressing several important climate questions. The specified AIRS system measurement uncertainty for water vapor is 20 percent absolute averaged over 2 km layers. Cryogenic frostpoint hygrometers (CFH) are balloon-borne water vapor sensors responsive from the surface into the lower stratosphere. Several dozen coincident, collocated CFH profiles have been obtained for AlRS validation. The combination of CFH sensitivity and sample size offers a statistically compelling picture of AIRS UTWV measurement capability. We present a comparison between CFH observations and AlRS retrievals. We focus on the altitude range from the middle troposphere up to heights at the limits of AlRS sensitivity to water vapor, believed to be around 100-1 50 hPa.

  6. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.

    2013-01-01

    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.

  7. Active Raman sounding of the earth's water vapor field

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Whiteman, David N.; Demoz, Belay B.; Farley, Robert W.; Wessel, John E.

    2005-01-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed.

  8. Active Raman sounding of the earth's water vapor field.

    PubMed

    Tratt, David M; Whiteman, David N; Demoz, Belay B; Farley, Robert W; Wessel, John E

    2005-08-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed. PMID:16029854

  9. Stratospheric water vapor in the NCAR CCM2

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.; Holton, James R.

    1992-01-01

    Results are presented of the water vapor distribution in a 3D GCM with good vertical resolution, a state-of-the-art transport scheme, and a realistic water vapor source in the middle atmosphere. In addition to water vapor, the model transported methane and an idealized clock tracer, which provides transport times to and within the middle atmosphere. The water vapor and methane distributions are compared with Nimbus 7 SAMS and LIMS data and with in situ measurements. It is argued that the hygropause in the model is maintained not by 'freeze-drying' at the tops of tropical cumulonimbus, but by a balance between two sources and one sink. Since the southern winter dehydration is unrealistically intense, this balance most likely does not resemble the balance in the real atmosphere.

  10. Weather and climate analyses using improved global water vapor observations

    NASA Astrophysics Data System (ADS)

    Vonder Haar, Thomas H.; Bytheway, Janice L.; Forsythe, John M.

    2012-08-01

    The NASA Water Vapor Project (NVAP) dataset is a global (land and ocean) water vapor dataset created by merging multiple sources of atmospheric water vapor to form a global data base of total and layered precipitable water vapor. Under the NASA Making Earth Science Data Records for Research Environments (MEaSUREs) program, NVAP is being reprocessed and extended, increasing its 14-year coverage to include 22 years of data. The NVAP-MEaSUREs (NVAP-M) dataset is geared towards varied user needs, and biases in the original dataset caused by algorithm and input changes were removed. This is accomplished by relying on peer reviewed algorithms and producing the data in multiple “streams” to create products geared towards studies of both climate and weather. We briefly discuss the need for reprocessing and extension, steps taken to improve the product, and provide some early science results highlighting the improvements and potential scientific uses of NVAP-M.

  11. Condensation of water vapor in the gravitational field

    SciTech Connect

    Gorshkov, V. G.; Makarieva, A. M.; Nefiodov, A. V.

    2012-10-15

    Physical peculiarities of water vapor condensation under conditions of hydrostatic equilibrium are considered. The power of stationary dynamic air fluxes and the vertical temperature distribution caused by condensation on large horizontal scales are estimated.

  12. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  13. Performance Modeling of an Airborne Raman Water Vapor Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G.

    2000-01-01

    A sophisticated Raman lidar numerical model had been developed. The model has been used to simulate the performance of two ground-based Raman water vapor lidar systems. After tuning the model using these ground-based measurements, the model is used to simulate the water vapor measurement capability of an airborne Raman lidar under both day-and night-time conditions for a wide range of water vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable resolution to an existing airborne differential absorption water vapor lidar while the nighttime measurement have higher resolution. In addition, a Raman lidar is capable of measurements not possible using a differential absorption system.

  14. Venus: new microwave measurements show no atmospheric water vapor.

    PubMed

    Janssen, M A; Hills, R E; Thornton, D D; Welch, W J

    1973-03-01

    Two sets of passive radio observations of Venus-measurements of the spectrum of the disk temperature near the 1-centimeter wavelength, and interferometric measurements of the planetary limb darkening at the 1.35-centimeter water vapor resonance-show no evidence of water vapor in the lower atmosphere of Venus. The upper limit of 2 x 10(-3) for the mixing ratio of water vapor is substantially less than the amounts derived from the Venera space probes (0.5 x 10(-2) to 2.5 x 10(-2)). This amount of water vapor cannot produce dense clouds, and it is doubtful that it may contribute significantly to a greenhouse effect. PMID:17842164

  15. Retrieval of water vapor profiles from atmospheric radio-occultations

    NASA Technical Reports Server (NTRS)

    Juarez, M. de la Torre; Nilsson, P. M.

    2002-01-01

    We illustrate a novel method to extract water vapor with high vertical resolution, using the refractivity profiles without ancillary data. We also discuss the estimated accuracies and sources of error.

  16. The Reaction Kinetics of LiD with Water Vapor

    SciTech Connect

    Balooch, M; Dinh, L N; Calef, D F

    2003-04-01

    The interaction of LiD with water vapor in the partial pressure range of 10{sup -7} Torr to 20 Torr has been investigated. The reaction probability of water with pure LiD cleaved in an ultra high vacuum environment was obtained using the modulated molecular beam technique. This probability was 0.11 and independent of LiD surface temperature suggesting a negligible activation energy for the reaction in agreement with quantum chemical calculations. The value gradually reduced, however, to .007 as the surface concentration of oxygen containing product (LiOH), which was monitored in-situ by Auger electron spectroscopy on the reaction zone, approached full coverage. As the hydroxide film grew beyond a monolayer, the phase lag of hydrogen product increased from zero to 20 degrees and the reaction probability reduced further until it approached our detection limit ({approx} 10{sup -4}). This phase lag was attributed to a diffusion limited process in this regime. In separate experiments, the film growth has been studied in nitrogen atmosphere with 100% relative humidity using thermogravimetric analysis (TGA) and in air with 50% relative humidity utilizing scanning electron microscopy (SEM). For exposures to environment with high water concentrations and for micrometer thick films, the reaction probability reduced to 4 x 10{sup -7} and was independent of exposure time, The lattice diffusion through the film was no longer controlling the transport of water to the LiD/LiOH interface. Microcracks generated in the film to release stress provided easier pathways to the interface. A modified microscope, capable of both atomic force microscopy (AFM) and nanoindentation, was employed to investigate the surface morphology of LiOH.H{sub 2}O grown on LiOH at high water vapor partial pressures and the kinetics of this growth.

  17. Stratospheric Water Vapor Increases Over the Past Half-Century

    NASA Technical Reports Server (NTRS)

    Rosenlof, K. H.; Oltmans, S. J.; Kley, D.; Russell, J. M., III; Chiou, E.-W.; Chu, W. P.; Johnson, D. G.; Kelly, K. K.; Michelsen, H. A.; Nedoluha, G. E.

    2001-01-01

    Ten data sets covering the period 1954-2000 are analyzed to show a 1% per year increase in stratospheric water vapor. The trend has persisted for at least 45 years, hence is unlikely the result of a single event but rather indicative of long-term climate change. A long-term change in the transport of water vapor into the stratosphere is the most probable cause.

  18. CRISM Observations of Water Vapor and Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd

    2008-01-01

    Near-infrared spectra returned by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, [1]) on-board the Mars Reconnaissance Orbiter (MRO) contain the clear spectral signature of several atmospheric gases including carbon dioxide (CO2), water vapor (H2O), and carbon monoxide (CO). Here we describe the seasonal and spatial mapping of water vapor and carbon dioxide for one full Martian year using CRISM spectra.

  19. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  20. Logarithmic radiative effect of water vapor and spectral kernels

    NASA Astrophysics Data System (ADS)

    Bani Shahabadi, Maziar; Huang, Yi

    2014-05-01

    Radiative kernels have become a useful tool in climate analysis. A set of spectral kernels is calculated using a moderate resolution atmospheric transmission code MODTRAN and implemented in diagnosing spectrally decomposed global outgoing longwave radiation (OLR) changes. It is found that the effect of water vapor on the OLR is in proportion to the logarithm of its concentration. Spectral analysis discloses that this logarithmic dependency mainly results from water vapor absorption bands (0-560 cm-1 and 1250-1850 cm-1), while in the window region (800-1250 cm-1), the effect scales more linearly to its concentration. The logarithmic and linear effects in the respective spectral regions are validated by the calculations of a benchmark line-by-line radiative transfer model LBLRTM. The analysis based on LBLRTM-calculated second-order kernels shows that the nonlinear (logarithmic) effect results from the damping of the OLR sensitivity to layer-wise water vapor perturbation by both intra- and inter-layer effects. Given that different scaling approaches suit different spectral regions, it is advisable to apply the kernels in a hybrid manner in diagnosing the water vapor radiative effect. Applying logarithmic scaling in the water vapor absorption bands where absorption is strong and linear scaling in the window region where absorption is weak can generally constrain the error to within 10% of the overall OLR change for up to eightfold water vapor perturbations.

  1. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    EPA Science Inventory

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  2. Electrochemical vapor deposition - Theory and experiment

    NASA Astrophysics Data System (ADS)

    Kiwiet, N. J.; Schoonman, J.

    The theory for the growth of ionically conducting Zr(Y)O(2-x) and electronically conducting LaCrO3 is discussed. Experimental parameters important to EVD (electrochemical vapor deposition) growth films of stabilized zirconia are presented. It is shown that in the modeling of the EVD growth of Zr(Y)O(2-x) it is important to consider the changes in the mole fractions of electrons and holes with Po2. At high temperatures only electrons need to be considered in EVD growth. At low temperatures the presence of holes at the metal/chloride interface may play an important role in the observed faceted morphology of EVD-grown Zr(Y)O(2-x). For the interconnect LaCrO3, ionic diffusion is rate limiting for EVD film growth and very high temperatures (1600 K) are necessary for moderate growth rates of 3 micron/h. Information on oxygen diffusion in doped LaCro3 is necessary for a more thorough understanding of the EVD growth.

  3. Spectral probing of impact-generated vapor in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.; Eberhardy, Clara A.

    2015-03-01

    High-speed spectra of hypervelocity impacts at the NASA Ames Vertical Gun Range (AVGR) captured the rapidly evolving conditions of impact-generated vapor as a function of impact angle, viewpoint, and time (within the first 50 μs). Impact speeds possible at the AVGR (<7 km/s) are insufficient to induce significant vaporization in silicates, other than the high-temperature (but low-mass) jetting component created at first contact. Consequently, this study used powdered dolomite as a proxy for surveying the evolution and distribution of chemical constituents within much longer lasting vapor. Seven separate telescopes focused on different portions of the impact vapor plume and were connected through quartz fibers to two 0.35 cm monochromaters. Quarter-space experiments reduced the thermal background and opaque phases due to condensing particles and heated projectile fragments while different exposure times isolated components passing through different the fields of view, both above and below the surface within the growing transient cavity. At early times (<5 μs), atomic emission lines dominate the spectra. At later times, molecular emission lines dominate the composition of the vapor plume along a given direction. Layered targets and target mixtures isolated the source and reveal that much of the vaporization comes from the uppermost surface. Collisions by projectile fragments downrange also make significant contributions for impacts below 60° (from the horizontal). Further, impacts into mixtures of silicates with powdered dolomite reveal that frictional heating must play a role in vapor production. Such results have implications for processes controlling vaporization on planetary surfaces including volatile release, atmospheric evolution (formation and erosion), vapor generated by the Deep Impact collision, and the possible consequences of the Chicxulub impact.

  4. Inter- annual variability of water vapor over an equatorial coastal station using Microwave Radiometer observations.

    NASA Astrophysics Data System (ADS)

    Renju, Ramachandran Pillai; Uma, K. N.; Krishna Moorthy, K.; Mathew, Nizy; Raju C, Suresh

    The south-western region of the Indian peninsula is the gateway of Indian summer monsoon. This region experiences continuous monsoon rain for a longer period of about six months from June to November. The amount of water vapor variability is one of the important parameters to study the onset, active and break phases of the monsoon. Keeping this in view, a multi-frequency Microwave Radiometer Profiler (MRP) has been made operational for continuous measurements of water vapor over an equatorial coastal station Thiruvananthapuram (8.5(°) N, 76.9(°) E) since April 2010. The MRP estimated precipitable water vapor (PWV) for different seasons including monsoon periods have been evaluated by comparing with the collocated GPS derived water vapor and radiosonde measurements. The diurnal, seasonal and inter annual variation of water vapor has been studied for the last four years (2010-2013) over this station. The significant diurnal variability of water vapor is found only during the winter and pre-monsoon periods (Dec -April). The vertical distribution of water vapour is studied in order to understand its variability especially during the onset of monsoon. During the building up of south-west monsoon, the specific humidity increases to ˜ 10g/kg in the altitude range of 4-6 km and consistently maintained it throughout the active spells and reduces to below 2g/kg during break spells of monsoon. The instrument details and the results will be presented.

  5. Water Vapor-Mediated Volatilization of High-Temperature Materials

    NASA Astrophysics Data System (ADS)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  6. A WATER VAPOR MONITOR USING DIFFERENTIAL INFRARED ABSORPTION

    EPA Science Inventory

    A water vapor monitor has been developed with adequate sensitivity and versatility for a variety of applications. Two applications for which the instrument has been designed are the continuous monitoring of water in ambient air and the measuring of the mass of water desorbed from...

  7. The threshold of vapor channel formation in water induced by pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2012-12-01

    Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.

  8. Vapor compression distiller and membrane technology for water revitalization.

    PubMed

    Ashida, A; Mitani, K; Ebara, K; Kurokawa, H; Sawada, I; Kashiwagi, H; Tsuji, T; Hayashi, S; Otsubo, K; Nitta, K

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied; one is an absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation able to easily produce condensed water under zero gravity was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water. PMID:11537274

  9. Vapor compression distiller and membrane technology for water revitalization

    NASA Technical Reports Server (NTRS)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  10. Water vapor budget of the Indian monsoon depression

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Ho; Chen, Tsing-Chang

    2005-10-01

    Estimations by previous studies show that a minor amount of the Indian monsoon rainfall is contributed by Indian monsoon depressions (IMDs). In contrast, other studies found that approximately half of the summer monsoon rainfall in the northern Indian subcontinent is generated by IMDs. IMDs occur an average of six times during the summer season and provide a crucial water source to the agricultural activity over this region. The large disparity in the estimation of the IMD contribution to the Indian rainfall by previous studies requires a more accurate water vapor budget analysis of the IMD with quality data. For this reason, a composite analysis of the IMD is performed using the ERA-40 reanalysis and four precipitation data sets (the Global Precipitation Climatology Project, the Tropical Rainfall Measuring Mission, the GEOS precipitation index at the Goddard Space Flight Center and surface station observations) for the period of 1979 2002. Important findings of this study are: (i) about 45 55% of the total Indian rainfall is produced by the IMD; (ii) the rainfall maximum in the west south-west sector of IMDs is largely maintained by convergence of atmospheric water vapor flux. The convergence of water vapor flux is largely coupled with the lower-tropospheric divergent circulation. Thus, the IMD water vapor budget is modulated by the 30 60 and 10 20 d monsoon modes through changes of water vapor convergence/divergence. The magnitude of this modulation on the IMD water vapor budget is close to a quarter of the summer-mean water vapor budget over the Bay of Bengal and north-eastern India.

  11. High temperature oxidation of molybdenum in water vapor environments

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; Sooby, E. S.; Kim, Y.-J.; Cheng, B.; Maloy, S. A.

    2014-05-01

    Molybdenum has recently gained attention as a candidate cladding material for use in light water reactors. Its excellent high temperature mechanical properties and stability under irradiation suggest that it could offer benefits to performance under a wide range of reactor conditions, but little is known about its oxidation behavior in water vapor containing atmospheres. The current study was undertaken to elucidate the oxidation behavior of molybdenum in water vapor environments to 1200 °C in order to provide an initial assessment of its feasibility as a light water reactor cladding. Initial observations indicate that at temperatures below 1000 °C, the kinetics of mass loss in water vapor would not be detrimental to cladding integrity during an off-normal event. Above 1000 °C, degradation is more rapid but remains slower than observed for optimized zirconium cladding alloys. The effect of hydrogen-water vapor and oxygen-water vapor mixtures on material loss was also explored at elevated temperatures. Parts-per-million levels of either hydrogen or oxygen will minimally impact performance, but hydrogen contents in excess of 1000 ppm were observed to limit volatilization at 1000 °C.

  12. Interception of Vapor Flow near Soil Surface for Water Conservation and Drought Alleviation

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Wang, Y.; Gao, Z.; Hishida, K.; Zhang, Y.

    2015-12-01

    Liquid and vapor flow of water in soil and the eventual vaporization of all waters near the soil surface are mechanisms controlling the near-surface evaporation. Interception and prevention of the vapor form of flow is critical for soil water conservation and drought alleviation in the arid and semiarid regions. Researches are conducted to quantify the amount of near-surface vapor flow in the semi-arid Loess Plateau of China and the central California of USA. Quantitative leaf water absorption and desorption functions were derived and tested based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of a plant is characterized by the plant's water retention curves. Field studies are conducted to measure the dynamic water movements from the soil surface to ten meters below the surface in an attempt to quantify the maximum depths of water extraction due to different vegetation types and mulching measures at the surface. Results show that condensation is usually formed on soil surface membranes during the daily hours when the temperature gradients are inverted toward the soil surface. The soil temperature becomes stable at 13 Degree Celsius below the 4-meter depth in the Loess Plateau of China thus vapor flow is not likely deriving from deeper layers. However, the liquid flow may move in and out depending on water potential gradients and hydraulic conductivity of the layers. The near-surface vapor flow can be effectively intercepted by various mulching measures including gravel-and-sand cover, plant residue and plastic membranes. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  13. The vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of kerosene

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Hu; Wang, Su; Zhang, Sheng-Tao; Yue, Lian-Jie; Fan, Bing-Cheng; Zhang, Xin-Yu; Cui, Ji-Ping

    2014-08-01

    In ground tests of hypersonic scramjet, the high-enthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characteristics of fuels between ground tests and real flights. In order to properly assess the influence of the contaminants on ignition characteristics of hydrocarbon fuels, the effect of water vapor and carbon dioxide on the ignition delay times of China RP-3 kerosene was studied behind reflected shock waves in a preheated shock tube. Experiments were conducted over a wider temperature range of 800-1 500K, at a pressure of 0.3 MPa, equivalence ratios of 0.5 and 1, and oxygen concentration of 20%. Ignition delay times were determined from the onset of the excited radical OH emission together with the pressure profile. Ignition delay times were measured for four cases: (1) clean gas, (2) gas vitiated with 10% and 20% water vapor in mole, (3) gas vitiated with 10% carbon dioxide in mole, and (4) gas vitiated with 10% water vapor and 10% carbon dioxide, 20% water vapor and 10% carbon dioxide in mole. The results show that carbon dioxide produces an inhibiting effect at temperatures below 1 300 K when ϕ = 0.5, whereas water vapor appears to accelerate the ignition process below a critical temperature of about 1 000 K when ϕ = 0.5. When both water vapor and carbon dioxide exist together, a minor inhibiting effect is observed at ϕ = 0.5, while no effect is found at ϕ = 1.0. The results are also discussed preliminary by considering both the combustion reaction mechanism and the thermophysics properties of the fuel mixtures. The current measurements demonstrate vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of China RP-3 kerosene at air-like O2 concentration. It is important to account for such effects when data are extrapolated from ground testing to real flight conditions.

  14. Balloon Borne Soundings of Water Vapor, Ozone and Temperature in the Upper Tropospheric and Lower Stratosphere as Part of the Second SAGE III Ozone Loss and Validation Experiment (SOLVE-2)

    NASA Technical Reports Server (NTRS)

    Voemel, Holger

    2004-01-01

    The main goal of our work was to provide in situ water vapor and ozone profiles in the upper troposphere and lower stratosphere as reference measurements for the validation of SAGE III water vapor and ozone retrievals. We used the NOAA/CMDL frost point hygrometer and ECC ozone sondes on small research balloons to provide continuous profiles between the surface and the mid stratosphere. The NOAA/CMDL frost point hygrometer is currently the only lightweight balloon borne instrument capable of measuring water vapor between the lower troposphere and middle stratosphere. The validation measurements were based in the arctic region of Scandinavia for northern hemisphere observations and in New Zealand for southern hemisphere observations and timed to coincide with overpasses of the SAGE III instrument. In addition to SAGE III validation we also tried to coordinate launches with other instruments and studied dehydration and transport processes in the Arctic stratospheric vortex.

  15. Improved waste water vapor compression distillation technology. [for Spacelab

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  16. The observed day-to-day variability of Mars water vapor

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Lapointe, Michael R.; Zurek, Richard W.

    1987-01-01

    The diurnal variability of atmospheric water vapor as derived from the Viking MAWD data is discussed. The detection of day to day variability of atmospheric water would be a significant finding since it would place constraints on the nature of surface reservoirs. Unfortunately, the diurnal variability seen by the MAWD experiment is well correlated with the occurrence of dust and/or ice hazes, making it difficult to separate real variations from observational effects. Analysis of the day to day variability of water vapor in the Martian atmosphere suggests that the observations are, at certain locations and seasons, significantly affected by the presence of water-ice hazes. Because such effects are generally limited to specific locations, such as Tharsis, Lunae Planum, and the polar cap edge during the spring, the seasonal and latitudinal trends in water vapor that have been previously reported are not significantly affected.

  17. Visible and infrared spin scan radiometer atmospheric sounder water vapor and wind fields over Amazonia

    SciTech Connect

    Schmit, T.J.; Brueske, K.F.; Smith, W.L. ); Menzel, W.P. )

    1990-09-20

    Both the mass and motion fields for Amazonia have been depicted using almost exclusively geostationary satellite data. Derived parameters include satellite retrievals of atmospheric temperature and dewpoint temperature, total precipitable water vapor, and cloud and water vapor winds. The capabilities of geostationary satellite data have been demonstrated at least four times a day for the period of May 5-8, 1987, during the Global Tropospheric Experiment/Amazon Boundary Layer Experiment. The satellite-derived information is able to resolve synoptic-scale atmospheric trends in space and time.

  18. Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  19. Revisiting Black's experiments on the latent heats of water

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, C.; Fiolhais, M.

    2002-01-01

    Historical experiments may help students to better understand some physical phenomena. We reproduced Black's original experiments on the latent heats of water (fusion and vaporization). To obtain both latent heats with reasonable accuracy we needed concepts, which were not used by Black, such as the water equivalent of a calorimeter and Newton's law of cooling. The melting experiment is adequate to obtain an accurate value for the latent heat with a small uncertainty, but the same is not true for the vaporization experiment.

  20. Sevoflurane Contamination: Water Accumulation in Sevoflurane Vaporizers Can Allow Bacterial Growth in the Vaporizer.

    PubMed

    Wallace, Arthur W

    2016-06-15

    Sevoflurane vaporizers (GE Tec 7) were difficult to fill with "slow flow" and a need to "burp." Evaluation of the bottle of sevoflurane (AbbVie Ultane) demonstrated a contaminant. Four of the facilities' 13 sevoflurane vaporizers had the contaminant. Unopened sevoflurane bottles did not have evidence of contamination. The contaminant was found to be water at pH 6.0 growing Staphylococcus epidermidis. Gas chromatography revealed the production of multiple metabolites of sevoflurane, including primarily urea and 1,3,5-triazine-2,4,6(1H,3H,5H)-trione (83% and 9.6% of volatiles) in addition to multiple other organic molecules. Sevoflurane contains water that can accumulate in vaporizers allowing bacterial growth. PMID:27301057

  1. Measurements of Humidity in the Atmosphere: Validation Experiments (MOHAVE I and MOHAVE II). Results Overview and Implication for the Long-Term Lidar Monitoring of Water Vapor in the UT/LS

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, I. S.; Vomel, H.; Whiteman, D.; Twigg, Larry; McGee, T. G.

    2008-01-01

    1. MOHAVE+MOHAVE II = very successful. 2. MOHAVE -> Fluorescence was found to be inherent to all three participating lidars. 3. MOHAVE II -> Fluorescence was removed and agreement with CFH was extremely good up to 16-18 km altitude. 4. MOHAVE II -> Calibration tests revealed unsuspected shortfalls of widely used techniques, with important implications for their applicability to longterm measurements. 5. A factor of 5 in future lidar signal-to-noise ratio is reasonably achievable. When this level is achieved water vapor Raman lidar will become a key instrument for the long-term monitoring of water vapor in the UT/LS

  2. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  3. Lidar simulation. [measurement of atmospheric water vapor via optical radar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of measuring atmospheric water vapor via orbital lidar is estimated. The calculation starts with laser radar equations representing backscatter with and without molecular line absorption; the magnitudes of off-line backscatter are demonstrated. Extensive prior data on water line strengths are summarized to indicate the available sensitivity to water vapor concentration. Several lidar situations are considered starting with uniform and perturbed atmospheres at 0, 3, 10 and 20 kM (stratosphere) altitudes. These simulations are indicative of results to be obtained in ground truth measurements (ground-based and airborne). An approximate treatment of polar observations is also given. Vertical atmospheric soundings from orbit and from ground stations are calculated. Errors are discussed as regards their propagation through the lidar equation to render the measured water vapor concentration imprecise; conclusions are given as to required laser energy and feasible altitude resolution.

  4. Removal of Sarin Aerosol and Vapor by Water Sprays

    SciTech Connect

    Brockmann, John E.

    1998-09-01

    Falling water drops can collect particles and soluble or reactive vapor from the gas through which they fall. Rain is known to remove particles and vapors by the process of rainout. Water sprays can be used to remove radioactive aerosol from the atmosphere of a nuclear reactor containment building. There is a potential for water sprays to be used as a mitigation technique to remove chemical or bio- logical agents from the air. This paper is a quick-look at water spray removal. It is not definitive but rather provides a reasonable basic model for particle and gas removal and presents an example calcu- lation of sarin removal from a BART station. This work ~ a starting point and the results indicate that further modeling and exploration of additional mechanisms for particle and vapor removal may prove beneficial.

  5. Radiation Damage to Artemia Cysts:Effects of Water Vapor.

    PubMed

    Snipes, W C; Gordy, W

    1963-10-25

    Water vapor altered the form and greatly increased the rate of decay of the electron-spin resonance pattern of long-lived free radicals obtained upon gamma irradiation of Artemia salina cysts ( brine shrimp eggs). These results, combined with data on radiation survival, indicate that the water vapor protects the cysts from radiation damage, or heals the damage. They also indicate that water protects the cysts from the effect of oxygen by neutralizing the radiation-induced free radicals before they can interact with oxygen to produce irreversible damage. PMID:17748168

  6. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  7. Adsorption of radon and water vapor on commercial activated carbons

    SciTech Connect

    Hassan, N.M.; Ghosh, T.K.; Hines, A.L.; Loyalka, S.K.

    1995-02-01

    Equilibrium adsorption isotherms are reported for radon and water vapor on two commercial activated carbons: coconut shell Type PCB and hardwood Type BD. The isotherms of the water vapor were measured gravimetrically at 298 K. The isotherms of radon from dry nitrogen were obtained at 293, 298, and 308 K while the data for the mixture of radon and water vapor were measured at 298 K. The concentrations of radon in the gas and solid phases were measured simultaneously, once the adsorption equilibrium and the radioactive equilibrium between the radon and its daughter products were established. The shape of the isotherms was of Type III for the radon and Type V for the water vapor, according to Brunauer`s classification. The adsorption mechanism was similar for both the radon and the water vapor, being physical adsorption on the macropore surface area in the low pressure region and micropore filling near saturation pressure. The uptake capacity of radon decreased both with increasing temperature and relative humidity. The heat of adsorption data indicated that the PCB- and the BD-activated carbons provided a heterogeneous surface for radon adsorption. The equilibrium data for radon were correlated with a modified Freundlich equation.

  8. What regulates the annual cycle of stratospheric water vapor?

    NASA Astrophysics Data System (ADS)

    Jucker, Martin; Gerber, Edwin

    2015-04-01

    Stratospheric water vapor is a potent greenhouse gas and active chemical tracer. Most of the stratosphere is well below saturation due to freeze drying at the tropical cold point -- the coldest region of the lower stratosphere where most air enters the middle atmosphere. The leading mode of variability of the tropical cold point is an annual cycle, despite the semi-annual cycle of radiative forcing in the tropics. This causes the stratospheric water vapor mixing ratio to follow a similar annual cycle, even remotely from the entry point, the so-called tape recorder. We develop an idealized GCM to investigate the origin of the annual cycle in the tropical cold point, with a particular focus on the interaction between dynamics and radiation. By varying the surface conditions of the model, we first show that planetary scale asymmetries in the midlatitude troposphere drive the annual cycle in the cold point. Both large scale topography and land sea contrast are important, influencing synoptic and planetary scale wave forcing. We then probe the impact of water vapor on the stratospheric circulation by comparing fully interactive integrations of the model to companion integrations where the coupling between the circulation and water vapor is disconnected. Our findings have implications in estimating the impacts of stratospheric water vapor feedbacks on decadal time scales and sensitivities to climate change.

  9. Empirical water vapor continuum models for infrared propagation

    NASA Astrophysics Data System (ADS)

    Thomas, Michael E.

    1995-06-01

    The characterization of the water vapor continuum remains an important problem concerning infrared propagation in the atmosphere. Radiometric imaging within the atmosphere in the 8 to 12 micrometers and 3 - 5 micrometers regions, and eye safe lidar in the 2 micrometers and 1.6 micrometers window regions require accurate knowledge of the water vapor continuum. Although the physical nature of the continuum is a complex problem, the observed frequency, pressure and temperature dependence can be represented reasonably well by simple mathematical functions consistent with far wing theories. This approach is the basis for current models used in LOWTRAN/MODTRAN and for the models listed in the SPIE/ERIM EO/IR Systems Handbook (Volume 2 Chapter 1). However, these models are based solely on a limited, but high quality, data set collected by a spectrometer and White cell. Additional information on oxygen broadening and temperature dependence is available from numerous laser measurements of the water vapor continuum. A survey of relevant experimental data is made to determine the best available measurements of the water vapor continuum in various atmospheric window regions. Then the data are fit to an empirical model over the entire window region. A good fit is obtained for typical atmospheric conditions covering the 8 to 12 micrometers and 3 to 5 micrometers regions. No experimental data, covering atmospheric conditions, exist in the 2 micrometers and 1.6 micrometers regions. However, models can be proposed based on far wing extrapolations of the bordering vibrational water vapor bands.

  10. Accurate predictions for the production of vaporized water

    SciTech Connect

    Morin, E.; Montel, F.

    1995-12-31

    The production of water vaporized in the gas phase is controlled by the local conditions around the wellbore. The pressure gradient applied to the formation creates a sharp increase of the molar water content in the hydrocarbon phase approaching the well; this leads to a drop in the pore water saturation around the wellbore. The extent of the dehydrated zone which is formed is the key controlling the bottom-hole content of vaporized water. The maximum water content in the hydrocarbon phase at a given pressure, temperature and salinity is corrected by capillarity or adsorption phenomena depending on the actual water saturation. Describing the mass transfer of the water between the hydrocarbon phases and the aqueous phase into the tubing gives a clear idea of vaporization effects on the formation of scales. Field example are presented for gas fields with temperatures ranging between 140{degrees}C and 180{degrees}C, where water vaporization effects are significant. Conditions for salt plugging in the tubing are predicted.

  11. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  12. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  13. Analysis of the global ISCCP TOVS water vapor climatology

    NASA Technical Reports Server (NTRS)

    Wittmeyer, Ian L.; Vonder Haar, Thomas H.

    1994-01-01

    A climatological examination of the global water vapor field based on a multiyear period of successfull satellite-based observations is presented. Results from the multiyear global ISCCP TIROS Operational Vertical Sounder (TOVS) water vapor dataset as operationally produced by NESDIS and ISCCP are shown. The methods employed for the retrieval of precipitable water content (PWC) utilize infrared measurements collected by the TOVS instrument package flown aboard the NOAA series of operational polar-orbiting satellites. Strengths of this dataset include the nearly global daily coverage, availability for a multiyear period, operational internal quality checks, and its description of important features in the mean state of the atmosphere. Weaknesses of this PWC dataset include that the infrared sensors are unable to collect data in cloudy regions, the retrievals are strongly biased toward a land-based radiosonde first-guess dataset, and the description of high spatial and temporal variability is inadequate. Primary consequences of these factors are seen in the underestimation of ITCZ water vapor maxima, and underestimation of midlatitude water vapor mean and standard deviation values where transient atmospheric phenomena contribute significantly toward time means. A comparison of TOVS analyses to SSM/I data over ocean for the month of July 1988 shows fair agreement in the magnitude and distribution of the monthly mean values, but the TOVS fields exhibit much less temporal and spatial variability on a daily basis in comparison to the SSM/I analyses. The emphasis of this paper is on the presentation and documentation of an early satellite-based water vapor climatology, and description of factors that prevent a more accurate representation of the global water vapor field.

  14. Validation of Smithsonian Astrophysical Observatory's OMI Water Vapor Product

    NASA Astrophysics Data System (ADS)

    Wang, H.; Gonzalez Abad, G.; Liu, X.; Chance, K.

    2015-12-01

    We perform a comprehensive validation of SAO's OMI water vapor product. The SAO OMI water vapor slant column is retrieved using the 430 - 480 nm wavelength range. In addition to water vapor, the retrieval considers O3, NO2, liquid water, O4, C2H2O2, the Ring effect, water ring, 3rd order polynomial, common mode and under-sampling. The slant column is converted to vertical column using AMF. AMF is calculated using GEOS-Chem water vapor profile shape, OMCLDO2 cloud information and OMLER surface albedo information. We validate our product using NCAR's GPS network data over the world and RSS's gridded microwave data over the ocean. We also compare our product with the total precipitable water derived from the AERONET ground-based sun photometer data, the GlobVapour gridded product, and other datasets. We investigate the influence of sub-grid scale variability and filtering criteria on the comparison. We study the influence of clouds, aerosols and a priori profiles on the retrieval. We also assess the long-term performance and stability of our product and seek ways to improve it.

  15. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    NASA Astrophysics Data System (ADS)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  16. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  17. Water vapor in the lower stratosphere measured from aircraft flight

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Guenther, B.; Dunn, P.

    1977-01-01

    Water vapor in the lower stratosphere was measured in situ by two aluminum oxide hygrometers mounted on the nose of an RB57 aircraft. Data were taken nearly continuously from January to May 1974 from an altitude of approximately 11-19 km as the aircraft flew between 70 deg N and 50 deg S over the land areas in the Western Hemisphere. Pseudomeridional cross sections of water vapor and temperature were derived from the flight data and show mixing ratios predominantly between 2 and 4 microg/g with an extreme range of 1-8 microg/g. Measurement precision was estimated by comparing the simultaneously measured values from the two flight hygrometer systems. Accuracy was estimated to be about + or - 40% at 19 km. A height-averaged latitudinal cross section of water vapor indicates symmetry of wet and dry zones. This cross section is compared with other aircraft measurements and relates to meridional circulation models.

  18. Water vapor in the lower stratosphere measured from aircraft flight

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Guenther, B.; Dunn, P.

    1976-01-01

    Water vapor in the lower stratosphere was measured in situ by two aluminum oxide hygrometers mounted on the nose of an RB57 aircraft. Data were taken nearly continuously from January to May 1974 from an altitude of approximately 11 km to 19 km as the aircraft flew between 70 deg N and 50 deg S over the land areas in the Western Hemisphere. Pseudomeridional cross sections of water vapor and temperature are derived from the flight data and show mixing ratios predominantly between 2 and 4 micron gm/gm with an extreme range of 1 to 8 micron gm/gm. Measurement precision is estimated by comparing the simultaneously measured values from the two flight hygrometer systems. Accuracy is estimated to be about + or - 40 percent at 19 km. A height-averaged latitudinal cross section of water vapor shows symmetry of wet and dry zones.

  19. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    SciTech Connect

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.; Keller, J.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, which is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.

  20. An opacity-sampled treatment of water vapor

    NASA Technical Reports Server (NTRS)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  1. Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.

  2. Water vapor measurements in- and outside cirrus with the novel water vapor mass spectrometer AIMS-H2O

    NASA Astrophysics Data System (ADS)

    Kaufmann, Stefan; Schlage, Romy; Voigt, Christiane; Jurkat, Tina; Krämer, Martina; Rolf, Christian; Zöger, Martin; Schäfler, Andreas; Dörnbrack, Andreas

    2015-04-01

    Water vapor plays a crucial role for the earth's climate both directly via its radiative properties and indirectly due to its ability to form clouds. However, accurate measurements of especially low water vapor concentrations prevalent in the upper troposphere and lower stratosphere are difficult and exhibit large discrepancies between different instruments and methods. In order to address this issue and to provide a comprehensive water vapor data set necessary to gather a complete picture of cloud formation processes, four state-of-the-art hygrometers including the novel water vapor mass spectrometer AIMS-H2O were deployed on the DLR research aircraft HALO during the ML-Cirrus campaign in March/April 2014 over Europe. Here, we present first water vapor measurements of AIMS-H2O on HALO. The instrument performance is validated by intercomparison with the fluorescence hygrometer FISH and the laser hygrometer SHARC, both also mounted in the aircraft. This intercomparison shows good agreement between the instruments from low stratospheric mixing ratios up to higher H2O concentrations at upper tropospheric conditions. Gathering data from over 24 flight hours, no significant offsets between the instruments were found (mean of relative deviation

  3. Investigation of water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Nieman, Steven J.; Wanzong, Steven

    1994-01-01

    Water vapor imagery from geostationary satellites has been available for over a decade. These data are used extensively by operational analysts and forecasters, mainly in a qualitative mode (Weldon and Holmes 1991). In addition to qualitative applications, motions deduced in animated water vapor imagery can be used to infer wind fields in cloudless regimes, thereby augmenting the information provided by cloud-drift wind vectors. Early attempts at quantifying the data by tracking features in water vapor imagery met with modest success (Stewart et al. 1985; Hayden and Stewart 1987). More recently, automated techniques have been developed and refined, and have resulted in upper-level wind observations comparable in quality to current operational cloud-tracked winds (Laurent 1993). In a recent study by Velden et al. (1993) it was demonstrated that wind sets derived from Meteosat-3 (M-3) water vapor imagery can provide important environmental wind information in data void areas surrounding tropical cyclones, and can positively impact objective track forecasts. M-3 was repositioned to 75W by the European Space Agency in 1992 in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the current GOES-7 (G-7) satellite (positioned near 112W), the M-3 water vapor channel contains a superior horizontal resolution (5 km vs. 16 km ). In this paper, we examine wind sets derived using automated procedures from both GOES-7 and Meteosat-3 full disk water vapor imagery in order to assess this data as a potentially important source of large-scale wind information. As part of a product demonstration wind sets were produced twice a day at CIMSS during a six-week period in March and April (1994). These data sets are assessed in terms of geographic coverage, statistical accuracy, and meteorological impact through preliminary results of numerical model forecast studies.

  4. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2013-08-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air due to the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies - both wet and dry - correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as in the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.

  5. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2013-04-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and the Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air as a result of the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies - both wet and dry - correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels that originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.

  6. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  7. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    PubMed

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  8. A novel, optimized approach of voxel division for water vapor tomography

    NASA Astrophysics Data System (ADS)

    Yao, Yibin; Zhao, Qingzhi

    2016-03-01

    Water vapor information with highly spatial and temporal resolution can be acquired using Global Navigation Satellite System (GNSS) water vapor tomography technique. Usually, the targeted tomographic area is discretized into a number of voxels and the water vapor distribution can be reconstructed using a large number of GNSS signals which penetrate the entire tomographic area. Due to the influence of geographic distribution of receivers and geometric location of satellite constellation, many voxels located at the bottom and the side of research area are not crossed by signals, which would undermine the quality of tomographic result. To alleviate this problem, a novel, optimized approach of voxel division is here proposed which increases the number of voxels crossed by signals. On the vertical axis, a 3D water vapor profile is utilized, which is derived from radiosonde data for many years, to identify the maximum height of tomography space. On the horizontal axis, the total number of voxel crossed by signal is enhanced, based on the concept of non-uniform symmetrical division of horizontal voxels. In this study, tomographic experiments are implemented using GPS data from Hong Kong Satellite Positioning Reference Station Network, and tomographic result is compared with water vapor derived from radiosonde and European Center for Medium-Range Weather Forecasting (ECMWF). The result shows that the Integrated Water Vapour (IWV), RMS, and error distribution of the proposed approach are better than that of traditional method.

  9. Assessment of the SAGE sampling strategy in the derivation of tropospheric water vapor distribution in a general circulation model

    SciTech Connect

    Zhang, M.H.

    1995-06-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) II has provided unprecedented information of water vapor distribution in the upper troposphere. For the purpose of comparison with output from climate models, the present study assesses the impact of the SAGE II sampling strategy on the tropospheric water vapor climatology in a general circulation model. Since water vapor is sampled only in {open_quotes}non-cloudy{close_quotes} regions in the SAGE strategy, the sampled water vapor concentration is smaller than the real climatology. This difference is associated with two factors. One is the water-vapor sampling frequency, the other is the humidity variability inside and outside the clouds. It is shown that maximum difference is at around 300 to 500 mb where it reaches up to 40% in the zonal mean humidity. 10 refs., 5 figs.

  10. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    USGS Publications Warehouse

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.