Science.gov

Sample records for wave attenuation measurements

  1. Effects of 3D Attenuation on Seismic Wave Amplitude and Phase Measurements

    E-print Network

    Komatitsch, Dimitri

    Effects of 3D Attenuation on Seismic Wave Amplitude and Phase Measurements by Brian Savage, Dimitri-element method for seismic wave propagation. This advancement accommodates lateral variations in anelasticity waves. Seismic studies utilizing amplitude data must therefore consider elastic and anelastic

  2. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    NASA Astrophysics Data System (ADS)

    Wei, Xiaolong; Xu, Haojun; Li, Jianhai; Lin, Min; Su; Chen

    2015-05-01

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density ( N e ) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N e achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N e of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10-50 Pa, power in 300-700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4-5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  3. Laboratory measurements of wave attenuation through model and live vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surge and waves generated by hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation a...

  4. Measurements and mechanisms investigation of seismic wave attenuation for frequencies between 1 and 100 Hz

    NASA Astrophysics Data System (ADS)

    Tisato, N.; Madonna, C.; Saenger, E. H.

    2012-04-01

    Seismic wave attenuation at low frequencies in the earth crust has been explained by partial saturation as well as permeability models. We present results obtained by the Broad Band Attenuation Vessel (BBAV) which measures seismic wave attenuation using the sub-resonance method in the frequency range 0.01 - 100 Hz. The apparatus also allows the investigation of attenuation mechanisms related to fluid flow by means of five pore pressure sensors placed in the specimen. This allows continuous local measurements of pore pressure changes generated by stress field changes. Measurements were performed on 76 mm diameter, 250 mm long, 20% porosity, and ~500 mD permeability Berea sandstone samples. The confining pressure was varied between 0 and 20 MPa, and the specimens were saturated with water between 0% and 90%. Attenuation measurements show dependence with saturation. For instance, when samples are at dry conditions they exhibit attenuation values around 0.01, the same sample saturated with 90% water shows attenuation values between 0.018 and 0.028 across the entire frequency range. Attenuation is also confining pressure dependent. For instance, variations of confining pressure ranging between 0 and 8 MPa lead to quality factors between 40 and 10 at 60 Hz and 60% water saturation. Best fits on these measurements reveal that the corner frequency of the attenuation mechanism decreases from ~800 to ~200 Hz with increasing confining pressure. Using calibration measurements with Aluminum the possibility of apparatus resonances can be ruled out. Local pore pressure measurements corroborate this observation showing pore pressure evolution as a function of saturation. The results are discussed and interpreted in light of known attenuation mechanisms for partially saturated rocks (patchy saturation and squirt flow). We rule out the possibility of patchy saturation occurrence, but squirt flow would offer an explanation. The confining pressure dependence could be the result of crack closure which produces the corner frequency shift. Crack closure in similar samples and conditions (i.e. Berea sandstone at confining pressure less than 20 MPa) was also observed using ultrasonic tests.

  5. Water wave attenuation due to opposing wind

    NASA Astrophysics Data System (ADS)

    Peirson, William L.; Garcia, Andrew W.; Pells, Steven E.

    2003-07-01

    A laboratory investigation of the attenuation of mechanically generated waves by an opposing wind has been completed. Wave attenuation was quantified by measurements of the decline in surface variance. These measurements show higher effective levels of monochromatic wave attenuation than predicted by air-side measurements: approximately an order of magnitude higher than measurements by Young & Sobey (1985) and, a factor of 3 higher than those of Donelan (1999) for waves in a JONSWAP spectrum. Furthermore, they show that theoretical estimates currently underestimate the attenuation rates by a factor of at least 3. This study has shown that the magnitude of wave attenuation rates due to opposing winds is approximately 2.5 times greater than the magnitude of wave growth rates for comparable wind forcing. At high wave steepnesses, detailed analysis suggests that air-side processes alone are not sufficient to induce the observed levels of attenuation. Rather, it appears that energy fluxes from the wave field due to the interaction between the wave-induced currents and other subsurface motions play a significant role once the mean wave steepness exceeds a critical value. A systematic relationship between the energy flux from the wave field and mean wave steepness was observed. The combination of opposing wind and wind-induced water-side motions is far more effective in attenuating waves than has previously been envisaged.

  6. Diffraction, attenuation, and source corrections for nonlinear Rayleigh wave ultrasonic measurements.

    PubMed

    Torello, David; Thiele, Sebastian; Matlack, Kathryn H; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J

    2015-02-01

    This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter ?11 is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a ?11(7075)/?11(2024) measure of 1.363 agrees well with previous literature and earlier work. The proposed work is also applied to a set of 2205 duplex stainless steel specimens that underwent various degrees of heat-treatment over 24h, and the results improve upon conclusions drawn from previous analysis. PMID:25287976

  7. Measurement of alkali-silica reaction progression by ultrasonic waves attenuation

    SciTech Connect

    Saint-Pierre, Francois; Rivard, Patrice . E-mail: Patrice.Rivard@Usherbrooke.ca; Ballivy, Gerard

    2007-06-15

    Development of non-destructive methods, developed specifically for assessing the damage induced by alkali-silica reaction (ASR) in concrete structures, is needed in order to carry out a systematic evaluation of the concrete condition. The aim of this study is to monitor the evolution of the ASR-damage in laboratory with concrete samples with ultrasonic pulse velocity and attenuation of ultrasonic waves methods. For this study, results of both methods were compared with expansion and mass variation. One reactive concrete mixture was made with reactive aggregate, and one other mixture, incorporating non-reactive aggregate, was made as a control. Specimens were kept at 38 deg. C in a 1 mol l{sup -1} NaOH solution to accelerate the reaction. Attenuation of transmitted ultrasonic waves appeared to be more appropriate for the evaluation of ASR-damage compared with pulse velocity. The attenuation of accelerated reactive concrete cylinders increased by 90% after 1 year while it increased by 40% for the non-reactive concrete used as a control. Major part of the attenuation increase in the non-reactive concrete is due to liquid absorption. This work suggests that in-situ non-destructive techniques based on ultrasonic wave attenuation, like ultrasonic attenuation tomography, should be developed in order to evaluate the development of ASR in concrete structures. Petrographic examination confirmed that damage to concrete is associated with ASR.

  8. Measurements of frequency dependent shear wave attenuation in sedimentary basins using induced earthquakes

    NASA Astrophysics Data System (ADS)

    Richter, Tom; Wegler, Ulrich

    2015-04-01

    Modeling of peak ground velocity caused by induced earthquakes requires detailed knowledge about seismic attenuation properties of the subsurface. Especially shear wave attenuation is important, because shear waves usually show the largest amplitude in high frequency seismograms. We report intrinsic and scattering attenuation coefficients of shear waves near three geothermal reservoirs in Germany for frequencies between 2 Hz and 50 Hz. The geothermal plants are located in the sedimentary basins of the upper Rhine graben (Insheim and Landau) and the Molasse basin (Unterhaching). The method optimizes the fit between Green's functions for the acoustic, isotropic radiative transfer theory and observed energy densities of induced earthquakes. The inversion allows the determination of scattering and intrinsic attenuation, site corrections, and spectral source energies for the investigated frequency bands. We performed the inversion at the three sites for events with a magnitude between 0.7 and 2. We determined a transport mean free path of 70 km for Unterhaching. For Landau and Insheim the transport mean free path depends on frequency. It ranges from 2 km (at 2 Hz) to 30 km (at 40 Hz) for Landau and from 9 km to 50 km for Insheim. The quality factor for intrinsic attenuation is constant for frequencies smaller than 10 Hz at all three sites. It is around 100 for Unterhaching and 200 for Landau and Insheim with higher values above 10 Hz.

  9. A continuous wave method for simultaneous sound velocity and attenuation measurements

    SciTech Connect

    Jin, C.

    1996-01-01

    We describe a cw method for simultaneous ultrasonic phase velocity and attenuation measurements. This method uses a phase locked loop technique to lock the carrier frequency of a frequency modulated drive to the center of the mechanical resonance of the composite oscillator consisting of the sample and the transducers. At the same time, by measuring the rf amplitude modulation index at {ital twice} the modulation frequency, the change in the resonator {ital Q} factor, and therefore the attenuation, can also be measured. We have applied this method to measure the sound velocity and attenuation of a heavy fermion superconductor UPt{sub 3} down to 5 mK. With only 5 nW of rf excitation, we could detect changes in the phase velocity as small as {Delta}{ital v}/{ital v}{approximately}5{times}10{sup {minus}9}. {copyright} {ital 1996 American Institute of Physics.}

  10. Compressional head waves in attenuative formations

    SciTech Connect

    Liu, Q.H.; Chang, C.

    1994-12-31

    The attenuation of compressional head waves in a fluid-filled borehole is studied with the branch-cut integration method. The borehole fluid and solid formation are both assumed lossy with quality factors Q{sub f}({omega}) for the fluid, and Q{sub c}({omega}) and Q{sub s}({omega}) for the compressional and shear waves in the solid, respectively. The branch-cut integration method used in this work is an extension of that for a lossless medium. With this branch-cut integration method, the authors can isolate the groups of individual arrivals such as the compressional head waves and shear head waves, and study the attenuation of those particular wavefields in lossy media. This study, coupled with experimental work to be performed, may result in an effective way of measuring compressional head wave attenuation in the field.

  11. Teleseismic Body Wave Attenuation and Diffraction

    NASA Astrophysics Data System (ADS)

    Hwang, Yong Keun

    Using available digital seismic stations deployed since the 1980's, the largest data set based on broadband waveforms among studies on body-wave attenuation (t*) and quality factor (Q) are used in this thesis. The use of nearly 300,000 measurements of body-wave spectral ratio from globally distributed stations renders better constraints of t* and Q variations with higher spatial and depth resolutions in the mantle than have been previously available. The maps of body-wave t* correlate well with the variations of t* computed from the most recent surface-wave Q model QRFSI12 indicating that body-wave and surface-wave t* reflect the same intrinsic attenuation even though these waves sample the upper mantle entirely differently. The high correlation between body-wave t* maps and the t* inferred from a thermal interpretation of shear-wave velocity tomography S20RTS suggests that temperature controls both variations in attenuation and velocity in the upper mantle. The distance variations of P- and S-wave t* (t*P and t*S) are inverted for a radial profile of the quality factor Qmu in the lower mantle. On average, t* P and t*S increase by about 0.2 s and 0.7 s, respectively, between epicentral distances of 30° and 97°. The body-wave spectra are explained best if Qmu, increases in the lower mantle with the rate of 0.1/km. The relatively strong increase of t*S compare to t*P (t*S ? 4 t*P) suggests that intrinsic attenuation is the cause of the overall trend in our data. The ratio of P- and S-wave quality factor determined in this thesis (QP/Qmu = 2.27) confirms that intrinsic attenuation occurs mostly in shear and that bulk attenuation is negligible in the mantle. Finally, the delay of seismic waves which traversed numerical mantle plumes are calculated in this thesis for the first time. High-resolution numerical simulations of mantle plume are used to investigate the effects of numerical plumes on waveforms. The measurements of wave front delay demonstrate that the delay of shear-waves by plume tails at depths larger than 1000 km are immeasurably small (< 0.2 s) at seismic periods commonly used in waveform analysis.

  12. The measurement of A0 and S0 lamb wave attenuation to determine the normal and shear stiffnesses of a compressively loaded interface.

    PubMed

    Drinkwater, Bruce W; Castaings, Michel; Hosten, Bernard

    2003-06-01

    Guided waves in an elastic plate surrounded by air propagate with very low attenuation. This paper describes the effect on this propagation of compressively loading an elastomer with high internal damping against one surface of the elastic plate. The propagation of both A0 and S0 Lamb modes is considered. The principal effect is shown to be increased attenuation of the guided waves. This attenuation is caused by leakage of energy from the plate into the elastomer, where it is dissipated due to high viscoelastic damping. It is shown that the increase in attenuation is strongly dependent on the compressive load applied across the solid-solid interface. This interface is represented as a spring layer in a continuum model of the system. Both normal and shear stiffnesses of the interface are quantified from the attenuation of A0 and S0 Lamb waves measured at each step of the compressive loading. The normal stiffness is also measured independently by normal incidence, bulk longitudinal wave ultrasound. The resulting predictions of wave propagation behavior, such as attenuation, obtained by the model are in excellent agreement with those measured experimentally. PMID:12822788

  13. The measurement of A0 and S0 Lamb wave attenuation to determine the normal and shear stiffnesses of a compressively loaded interface

    NASA Astrophysics Data System (ADS)

    Drinkwater, Bruce W.; Castaings, Michel; Hosten, Bernard

    2003-06-01

    Guided waves in an elastic plate surrounded by air propagate with very low attenuation. This paper describes the effect on this propagation of compressively loading an elastomer with high internal damping against one surface of the elastic plate. The propagation of both A0 and S0 Lamb modes is considered. The principal effect is shown to be increased attenuation of the guided waves. This attenuation is caused by leakage of energy from the plate into the elastomer, where it is dissipated due to high viscoelastic damping. It is shown that the increase in attenuation is strongly dependent on the compressive load applied across the solid-solid interface. This interface is represented as a spring layer in a continuum model of the system. Both normal and shear stiffnesses of the interface are quantified from the attenuation of A0 and S0 Lamb waves measured at each step of the compressive loading. The normal stiffness is also measured independently by normal incidence, bulk longitudinal wave ultrasound. The resulting predictions of wave propagation behavior, such as attenuation, obtained by the model are in excellent agreement with those measured experimentally.

  14. Measurement and parameterization of wave attenuation and scattering in the Marginal Ice Zone using Sentinel-1 SAR data

    NASA Astrophysics Data System (ADS)

    Collard, F.; Ardhuin, F.; Guitton, G.; Dumont, D.; Nicot, P.; Accenti, M.; Girard-Ardhuin, F.

    2014-12-01

    Sentinel-1A launched by the European Space Agency in April 2014 will complete its full calibration and validation phase including Level2 products early in 2015 but image quality is already good enought for scientific exploitation of observed wave modulations. The larger frequency bandwidth and new acquisition modes are providing a much improved capability for imaging ocean waves in the open water and in the ice compared to Envisat. Here we estimate wave spectra in the Arctic assuming a spatially uniform modulation transfer function where the backscatter over ice is homogeneous, matching the wave heights in open ocean and ice at the ice edge. These wave properties are used to estimate attenuation scales for wavelength longer than twice the radar image resolution. These estimated attenuations are compared to model results based on WAVEWATCH III, where attenuation and scattering uses a combination of friction below the ice and scattering adapted from Dumont et al. (2011) and Williams et al. (2013).

  15. Boundary attenuation angles for inhomogeneous plane waves

    E-print Network

    Cerveny, Vlastislav

    Boundary attenuation angles for inhomogeneous plane waves in anisotropic dissipative media@ig.cas.cz. Summary Attenuation angles of inhomogeneous plane waves propagating in isotropic or aniso- tropic and on the properties of the plane wave under consideration, mainly on the direction of propagation of the wave

  16. Attenuation of sound waves in drill strings

    SciTech Connect

    Drumheller, D.S. )

    1993-10-01

    During drilling of deep wells, digital data are often transmitted from sensors located near the drill bit to the surface. Development of a new communication system with increased data capacity is of paramount importance to the drilling industry. Since steel drill strings are used, transmission of these data by elastic carrier waves traveling within the drill pipe is possible, but the potential communication range is uncertain. The problem is complicated by the presence of heavy-threaded tool joints every 10 m, which form a periodic structure and produce classical patterns of passbands and stop bands in the wave spectra. In this article, field measurements of the attenuation characteristics of a drill string in the Long Valley Scientific Well in Mammoth Lakes, California are presented. Wave propagation distances approach 2 km. A theoretical model is discussed which predicts the location, width, and attenuation of the passbands. Mode conversion between extensional and bending waves, and spurious reflections due to deviations in the periodic spacings of the tool joints are believed to be the sources of this attenuation. It is estimated that attenuation levels can be dramatically reduced by rearranging the individual pipes in the drill string according to length. 7 refs., 20 figs., 4 tabs.

  17. Surface wave attenuation characteristics at the APS site

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1992-05-01

    During operation of the Advanced Photon Source (APS) Facility, there will be many potential sources of vibration that may be transmitted through the ground to the storage ring basement and experimental hall. These sources include chillers, pumps, blowers and fans. Some may produce amplitudes of sufficient magnitude to adversely affect the stability of the closed orbit of the beam. Where possible, these vibration sources will be monitored as they become operational, to determine their vibrational characteristics, such as amplitude and frequency, and duty cycle. Vibrations travel through the ground as body [compression (P) and shear (S)] waves and Rayleigh (R) waves, which are surface waves. The amplitudes of these waves decrease with distance from their source as a result of both geometric and material damping. Because the storage ring basement is {open_quotes}on grade{close_quotes}, the authors are primarily interested in waves on the surface. The R-waves, being surface waves, attenuate with distance more slowly than the body waves; for an R-wave, attenuation is proportional to 1/{radical}r, whereas for a body wave at the surface, attenuation is proportional to 1/r{sup 2}, where r is the distance from the source. Because R-waves attenuate more slowly, they are of primary interest relative to the isolation of vibration-sensitive facilities such as the APS. Measurement of surface wave attenuation requires a vibration source that is capable of producing a ground displacement level considerably greater than that of the ambient background. A pile driver that was used to drive steel pilings at the APS vehicle tunnel provided such a source. This study provides a measure of the attenuation of surface waves in the ground by the combination of geometric and material damping. An average coefficient of attenuation of 0.003 was derived from measured responses to vibrations provided by a pile driver.

  18. Gravitons to photons — Attenuation of gravitational waves

    NASA Astrophysics Data System (ADS)

    Jones, Preston; Singleton, Douglas

    2015-11-01

    In this essay, we examine the response of an Unruh-DeWitt (UD) detector (a quantum two-level system) to a gravitational wave background. The spectrum of the UD detector is of the same form as some scattering processes or three body decays such as muon-electron scattering or muon decay. Based on this similarity, we propose that the UD detector response implies a “decay” or attenuation of gravitons, G, into photons, ?, via G + G ? ? + ? or G ? ? + ? + G. Over large distances such a decay/attenuation may have consequences in regard to the detection of gravitational waves.

  19. Guided wave attenuation in pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael JS

    2015-03-01

    Long-range ultrasonic guided wave testing of pipelines is used routinely for detection of corrosion defects in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipelines that are buried in soil, test ranges tend to be significantly compromised compared to those achieved for pipelines above ground because of the attenuation of the guided wave, due to energy leaking into the embedding soil. The attenuation characteristics of guided wave propagation in a pipe buried in sand are investigated using a full scale experimental rig. The apparatus consists of an 8"-diameter, 6-meters long steel pipe embedded over 3 meters in a rectangular container filled with sand and fitted with an air-bladder for the application of overburden pressure. Measurements of the attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, water saturated and drained, are presented. Attenuation values are found to be in the range of 1-5.5 dB/m. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. The attenuation decreases in the fully water-saturated sand, while it increases in drained sand to values comparable with those obtained for the compacted sand. The attenuation behavior of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.

  20. Laboratory experiments on ultrasonic wave attenuation in partially frozen brines

    NASA Astrophysics Data System (ADS)

    Matsushima, J.; Suzuki, M.; Kato, Y.; Rokugawa, S.

    2006-12-01

    In order to estimate the amount of methane hydrates (MHs) which form in marine sediments at water depths greater than a few hundred meters, using not only velocity information but also attenuation information can provide much more information about MH-bearing sediments. While the presence of MH increases seismic velocity in the host sediment, recent works on sonic logging data show that sonic waveforms are also significantly affected by the presence of MH. However, the increase of attenuation with increasing velocity is somewhat unintuitive. Thus, it is important to validate these phenomena by experimental study and elucidate the rock physical mechanism responsible for these phenomena. In this study, we conducted laboratory measurements to explain partially the reason for the physically unrealizable phenomenon. The ice generated from brine was assumed to be methane hydrate, namely, partially frozen brine was considered to be as an analogue for a mixture of methane hydrate and water present in the pore space of hydrate bearing sediments. We observed the variations of a transmitted wave with frequency content of 150-1000 kHz through a liquid system to a solid-liquid coexistence system, changing its temperature from 20 to -15 C. The centroid frequency shift technique is adapted to the determination of P-wave attenuation. As a result, P-wave velocity increases up to about 3500 m/s with changing in a solid-liquid coexistence system from a liquid system, while P-wave attenuation increases with changing in a solid-liquid coexistence system from a liquid. Especially in a solid-liquid coexistence system, P-wave attenuation decreases with decreasing unfrozen brine. Our observations indicate that the interaction in a micro scale of the solid and liquid causes the dissipation of transmitted wave energy.

  1. Attenuation of ultrasonic interface waves on metal-polymer-metal boundaries

    NASA Technical Reports Server (NTRS)

    Claus, R. O.

    1981-01-01

    The measured sensitivity of interface wave attenuation to defects near the bondline and to variations in the viscosity of the adhesive layer was compared with theoretical changes predicted by the Rokhin model. Differential interferometric optical measurements of interface wave attenuation due to defects near glass polymer metal boundaries are discussed. Pitch catch and pulse echo methods which use variable angle wedge transducers to generate and receive modified interface waves and to measure large bondline defects and adhesive viscosity are described.

  2. Bubbles attenuate elastic waves at seismic frequencies: First experimental evidence

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Quintal, Beatriz; Chapman, Samuel; Podladchikov, Yury; Burg, Jean-Pierre

    2015-05-01

    The migration of gases from deep to shallow reservoirs can cause damageable events. For instance, some gases can pollute the biosphere or trigger explosions and eruptions. Seismic tomography may be employed to map the accumulation of subsurface bubble-bearing fluids to help mitigating such hazards. Nevertheless, how gas bubbles modify seismic waves is still unclear. We show that saturated rocks strongly attenuate seismic waves when gas bubbles occupy part of the pore space. Laboratory measurements of elastic wave attenuation at frequencies <100 Hz are modeled with a dynamic gas dissolution theory demonstrating that the observed frequency-dependent attenuation is caused by wave-induced-gas-exsolution-dissolution (WIGED). This result is incorporated into a numerical model simulating the propagation of seismic waves in a subsurface domain containing CO2-gas bubbles. This simulation shows that WIGED can significantly modify the wavefield and illustrates how accounting for this physical mechanism can potentially improve the monitoring and surveying of gas bubble-bearing fluids in the subsurface.

  3. 5. SOUND ATTENUATION 5.1 NATURE OF SOUND WAVE

    E-print Network

    Cambridge, University of

    5. SOUND ATTENUATION 5.1 NATURE OF SOUND WAVE Historically, acoustic is the scientific study of sound. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles the sound wave, the particles of the medium through which the sound moves is vibrating in a back and forth

  4. Experimental study on attenuation of random waves under ice sheet

    SciTech Connect

    Sakai, Shigeki; Sasamoto, Makoto; Liu, Xiodong; Katayama, Junnosuke; Kanada, Shigeo; Izumiyama, Koh

    1996-12-01

    In cold seas, wave-induced motion of ice is a dominant factor causing many problems; e.g, damages to structures by ice impact, or beach erosion by ice drift. Experiments are performed to examine the random wave attenuation under ice sheet. Random waves in the present experiments have JONSWAP Type spectrum. The power spectrum density attenuates exponentially with the increase of distance from the ice edge. Attenuation rate of each frequency component depends on the ice thickness and its frequency and is almost similar to that of regular wave with the same frequency. This agreement indicates that the attenuation of random wave can be expressed by a linear summation of frequency component attenuation which is analyzed as a regular wave.

  5. Extensional wave attenuation and velocity in partially-saturated sand in the sonic frequency range

    SciTech Connect

    Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.

    2002-06-17

    Extensional wave attenuation and velocity measurements on a high permeability Monterey sand were performed over a range of gas saturations for imbibition and degassing conditions. These measurements were conducted using extensional wave pulse propagation and resonance over a 1 - 9 kHz frequency range for a hydrostatic confining pressure of 8.3 MPa. Analysis of the extensional wave data and the corresponding X-ray CT images of the gas saturation show strong attenuation resulting from the presence of the gas (QE dropped from 300 for the dry sand to 30 for the partially-saturated sand), with larger attenuation at a given saturation resulting from heterogeneous gas distributions. The extensional wave velocities are in agreement with Gassmann theory for the test with near-homogeneous gas saturation and with a patchy saturation model for the test with heterogeneous gas saturation. These results show that partially-saturated sands under moderate confining pressure can produce strong intrinsic attenuation for extensional waves.

  6. Wave Dispersion and Attenuation on Human Femur Tissue

    PubMed Central

    Strantza, Maria; Louis, Olivia; Polyzos, Demosthenes; Boulpaep, Frans; van Hemelrijck, Danny; Aggelis, Dimitrios G.

    2014-01-01

    Cortical bone is a highly heterogeneous material at the microscale and has one of the most complex structures among materials. Application of elastic wave techniques to this material is thus very challenging. In such media the initial excitation energy goes into the formation of elastic waves of different modes. Due to “dispersion”, these modes tend to separate according to the velocities of the frequency components. This work demonstrates elastic wave measurements on human femur specimens. The aim of the study is to measure parameters like wave velocity, dispersion and attenuation by using broadband acoustic emission sensors. First, four sensors were placed at small intervals on the surface of the bone to record the response after pencil lead break excitations. Next, the results were compared to measurements on a bulk steel block which does not exhibit heterogeneity at the same wave lengths. It can be concluded that the microstructure of the tissue imposes a dispersive behavior for frequencies below 1 MHz and care should be taken for interpretation of the signals. Of particular interest are waveform parameters like the duration, rise time and average frequency, since in the next stage of research the bone specimens will be fractured with concurrent monitoring of acoustic emission. PMID:25196011

  7. Attenuation of Seismic Waves by Grain Boundary Relaxation

    PubMed Central

    Jackson, David D.

    1971-01-01

    Experimental observations of the attenuation of elastic waves in polycrystalline ceramics and rocks reveal an attenuation mechanism, called grain boundary relaxation, which is likely to be predominant cause of seismic attenuation in the earth's mantle. For this mechanism, the internal friction (the reciprocal of the “intrinsic Q” of the material) depends strongly upon frequency and is in good agreement with Walsh's theory of attenuation (J. Geophys. Res., 74, 4333, 1969) in partially melted rock. When Walsh's theory is extended to provide a model of the anelasticity of the earth, using the experimental values of physical parameters reported here, the results are in excellent agreement with seismic observations. PMID:16591937

  8. Investigation of guided wave propagation and attenuation in pipe buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2015-07-01

    Long-range guided wave testing is a well-established method for detection of corrosion defects in pipelines. The method is currently used routinely for above ground pipelines in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised and unpredictable due to attenuation of the guided wave resulting from energy leakage into the embedding soil. The attenuation characteristics of guided wave propagation in an 8 in. pipe buried in sand are investigated using a laboratory full-scale experimental rig and model predictions. We report measurements of attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, mechanically compacted, water saturated and drained. Attenuation values are found to be in the range of 1.65-5.5 dB/m and 0.98-3.2 dB/m for the torsional and longitudinal modes, respectively, over the frequency of 11-34 kHz. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. Mechanical compaction of the sand yields similar attenuation values to those obtained with applied overburden pressure. The attenuation decreases in the fully water-saturated sand, and increases in drained sand to values comparable with those obtained for compacted sand. Attenuation measurements are compared with Disperse software model predictions and confirm that the attenuation phenomenon in buried pipes is essentially governed by the bulk shear velocity in the sand. The attenuation behaviour of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.

  9. Seismic attenuation due to wave-induced flow

    SciTech Connect

    Pride, S.R.; Berryman, J.G.; Harris, J.M.

    2003-10-09

    Analytical expressions for three P-wave attenuation mechanisms in sedimentary rocks are given a unified theoretical framework. Two of the models concern wave-induced flow due to heterogeneity in the elastic moduli at mesoscopic scales (scales greater than grain sizes but smaller than wavelengths). In the first model, the heterogeneity is due to lithological variations (e.g., mixtures of sands and clays) with a single fluid saturating all the pores. In the second model, a single uniform lithology is saturated in mesoscopic ''patches'' by two immiscible fluids (e.g., air and water). In the third model, the heterogeneity is at ''microscopic'' grain scales (broken grain contacts and/or micro-cracks in the grains) and the associated fluid response corresponds to ''squirt flow''. The model of squirt flow derived here reduces to proper limits as any of the fluid bulk modulus, crack porosity, and/or frequency is reduced to zero. It is shown that squirt flow is incapable of explaining the measured level of loss (10{sup -2} < Q{sup -1} < 10{sup -1}) within the seismic band of frequencies (1 to 10{sup 4} Hz); however, either of the two mesoscopic scale models easily produce enough attenuation to explain the field data.

  10. Teleseismic Body-Wave Attenuation beneath the Western and Central United States

    NASA Astrophysics Data System (ADS)

    Yang, B.; Reed, C. A.; Liu, K. H.; Gao, S. S.

    2014-12-01

    Attenuation of seismic waves is the consequence of anelasticity of the Earth's layers along the path of propagation. Joint analyses of seismic velocity with attenuation anomalies can significantly reduce the non-uniqueness in the interpretation of velocity images and result in a better understanding of the Earth's interior structure, composition, and dynamics. Employing a Bayesian approach with a common spectrum simultaneous inversion for attenuation factors (Gao, 1997), we have processed over 14,000 teleseismic body-wave seismograms recorded by all publicly available broadband seismic stations in the western and central United States. Preliminary results show extensive low-attenuation areas beneath the central United States probably related to fragments of the ancient Farallon slab, while less pronounced regions of likely cold material underlie the Colorado Plateau. High-attenuation anomalies are discovered in association with the Snake River Plain and the Rio Grande Rift. We apply station-averaged parameters and P-S attenuation ratios and compare our findings with published shear-wave splitting results to examine the presence of partial melt and asthenospheric upwelling. Additionally, we examine the azimuthal variation of attenuation measurements to constrain the possible existence of attenuation anisotropy and attempt to constrain the source depth of anisotropy through tomographic methods.

  11. Anisotropic changes in P-wave velocity and attenuation during deformation and fluid infiltration of granite

    USGS Publications Warehouse

    Stanchits, S.A.; Lockner, D.A.; Ponomarev, A.V.

    2003-01-01

    Fluid infiltration and pore fluid pressure changes are known to have a significant effect on the occurrence of earthquakes. Yet, for most damaging earthquakes, with nucleation zones below a few kilometers depth, direct measurements of fluid pressure variations are not available. Instead, pore fluid pressures are inferred primarily from seismic-wave propagation characteristics such as Vp/Vs ratio, attenuation, and reflectivity contacts. We present laboratory measurements of changes in P-wave velocity and attenuation during the injection of water into a granite sample as it was loaded to failure. A cylindrical sample of Westerly granite was deformed at constant confining and pore pressures of 50 and 1 MPa, respectively. Axial load was increased in discrete steps by controlling axial displacement. Anisotropic P-wave velocity and attenuation fields were determined during the experiment using an array of 13 piezoelectric transducers. At the final loading steps (86% and 95% of peak stress), both spatial and temporal changes in P-wave velocity and peak-to-peak amplitudes of P and S waves were observed. P-wave velocity anisotropy reached a maximum of 26%. Transient increases in attenuation of up to 483 dB/m were also observed and were associated with diffusion of water into the sample. We show that velocity and attenuation of P waves are sensitive to the process of opening of microcracks and the subsequent resaturation of these cracks as water diffuses in from the surrounding region. Symmetry of the orientation of newly formed microcracks results in anisotropic velocity and attenuation fields that systematically evolve in response to changes in stress and influx of water. With proper scaling, these measurements provide constraints on the magnitude and duration of velocity and attenuation transients that can be expected to accompany the nucleation of earthquakes in the Earth's crust.

  12. Seismic attenuation due to wave-induced flow S. R. Pride

    E-print Network

    Santos, Juan

    Seismic attenuation due to wave-induced flow S. R. Pride Earth Sciences Division, Lawrence Berkeley: Permeability and porosity; 5144 Physical Properties of Rocks: Wave attenuation; KEYWORDS: seismic attenuation; published 14 January 2004. [1] Three P wave attenuation models for sedimentary rocks are given a unified

  13. Attenuation character of seismic waves in Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Hazarika, Pinki; Kumar, M. Ravi; Kumar, Dinesh

    2013-10-01

    In this study, we investigate the seismic wave attenuation beneath Sikkim Himalaya using P, S and coda waves from 68 local earthquakes registered by eight broad-band stations of the SIKKIM network. The attenuation quality factor (Q) depends on frequency as well as lapse time and depth. The value of Q varies from (i) 141 to 639 for P waves, (ii) 143 to 1108 for S waves and (iii) 274 to 1678 for coda waves, at central frequencies of 1.5 Hz and 9 Hz, respectively. The relations that govern the attenuation versus frequency dependence are Q? = (96 ± 0.9) f (0.94 ± 0.01), Q? = (100 ± 1.4) f (1.16 ± 0.01) and Qc = (189 ± 1.5) f (1.2 ± 0.01) for P, S and coda waves, respectively. The ratio between Q? and Q? is larger than unity, implying larger attenuation of P compared to S waves. Also, the values of Qc are higher than Q?. Estimation of the relative contribution of intrinsic (Qi) and scattering (Qs) attenuation reveals that the former mechanism is dominant in Sikkim Himalaya. We note that the estimates of Qc lie in between Qi and Qs and are very close to Qi at lower frequencies. This is in agreement with the theoretical and laboratory experiments. The strong frequency and depth dependence of the attenuation quality factor suggests a highly heterogeneous crust in the Sikkim Himalaya. Also, the high Q values estimated for this region compared to the other segments of Himalaya can be reconciled in terms of moderate seismic activity, unlike rest of the Himalaya, which is seismically more active.

  14. GPR measurements of attenuation in concrete

    SciTech Connect

    Eisenmann, David Margetan, Frank J. Pavel, Brittney

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  15. Experimental Studies on Attenuation of Pressure Waves Induced by Thermal Shocks

    SciTech Connect

    Kim, S.H.

    2001-02-13

    High magnitude pressure waves are expected in the mercury-filled Spallation Neutron Source target system. An appropriate measure is needed to protect the target system from such high pressure waves. It has been known that inclusion of devices like scattering centers in the pressure field will attenuate pressure waves by scattering waves between scattering centers. A series of experiments have been conducted to test such a concept. After verifying the concept by performing simple scoping experiments, fives series of experiments were conducted with various configuration to measure changes in sound speed and pressure amplitude with inclusion of various scattering centers. Results indicate that for the conditions of our test, no significant change in sound speed was observed; however, substantial attenuation of pressure waves was detected with scattering centers in mercury.

  16. Radiation and attenuation of waves in a random medium

    NASA Technical Reports Server (NTRS)

    Wenzel, A. R.

    1982-01-01

    The physical mechanisms of excess attenuation are analyzed on the basis of a one-dimensional time-independent model of propagation in a random medium. Attenuation is regarded as the rate of decrease in the mean intensity and the mean energy flux within a propagation range. A source function is assumed to be determinate, appropriate statistical properties are chosen for the sound speed, and specified statistical properties are found for the wave functions, i.e., the mean intensity and the mean energy flux. The medium is considered to be weakly homogeneous, and expansions are developed for the intensity and mean energy flux, along with an attenuation coefficient in two parts, the second of which defines the excess attenuation. The mean radiated power is defined, and backscattering by the random inhomogeneities in the medium is modeled as redistributing the mean intensity and energy flux, with a resultant decay which occurs more quickly than with randomness.

  17. Seismic attenuation due to wave-induced flow

    E-print Network

    2004-01-03

    cross-well tomography, sonic logs), the total attenuation inferred from ... Techniques have been developed that attempt to separate the ... seismic reflection experiments, backscattered energy from ... a stratified sequence of water-saturated sandstones, siltstones .... present study also seeks to model the wave-induced flow.

  18. Attenuation of groundwater pressure due to surface waves.

    NASA Astrophysics Data System (ADS)

    Przyborska, Anna

    2010-05-01

    For tideless seas, the groundwater flow in shallow water is governed entirely by the surface wave dynamics on the beach. As waves propagate towards the shore, they become steeper owing to the decreasing water depth and at some depth, the waves lose their stability and start to break. When waves break, waves energy is dissipated and the spatial changes of the radiation stress give rise to changes in the mean sea level, known as the set_up. Longuet-Higgins demonstrated that the mean on-shore pressure gradient due to wave set_up driver a groundwater circulation within the beach zone. Water infiltrates into the coastal aquifer on the upper part of the beach near the maximum run_up, and exfiltration occurs on the lower part of the beach face near the breaking point. The velocity of the flow as well as the amount of water circulation within the permeable beach is important for the biological status of the organisms inhabiting the beach sand, transporting organic matter and dissolved oxygen to beach body , influence on sediment transport at shallow waters and stability of engineering structures. The paper is organized in two main parts. The first part of the paper is dedicated to the formulation of the mathematical model for attenuation of pore pressure in shallow water zone when wave breaking is present. Solution of system of nonlinear equations for wave propagation on permeable beach is compared with experimental data. The main purpose of the experimental part of the paper is dealing with the analysis of sets of good quality data on pore pressure data which will serve for comparison with theoretical results. In particular, two set of data are discussed, namely data obtained during measurements in the shallow water at the Coastal Station Lubiatowo (Poland) in Southern Baltic Sea and data from the large scale laboratory experiments in the Grossen Wallenkanal in Hannover (Germany). In the first case, the set of transmittance functions between the surface waves and pore pressure in the soil at various levels and transmittance functions between the pressures recorded at different levels are compared with the developed theory. During the laboratory experiment in Hannover two components of pore pressure were clearly distinguished i.e. in the zone of non-breaking waves only so called phase resolving component induced by surface waves is observed and in the surf zone two types of pore pressure are present : phase resolving and so called phase averaged , induced by set-up phenomena (mean water level rising). The total pressure recorded by the pressure gauges is a summation of the phase-averaged and the phase-resolving components. The pore pressure gradients provide also valuable information on the kinematics of groundwater flow in the beach body. In the experiment we are not able to measure the flow velocity in a straightforward manner, but the flow velocity can be estimated from the recorded pressure gradients using the formulas resulting from the theoretical solution.

  19. Extensional wave attenuation and velocity in partially saturated sand in the sonic frequency range

    SciTech Connect

    Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.

    2001-08-10

    Extensional wave attenuation and velocity measurements on a high permeability Monterey sand were performed over a range of gas saturations for imbibition and degassing conditions. These measurements were conducted using extensional wave pulse propagation and resonance over a 1-9 kHz frequency range for a hydrostatic confining pressure of 8.3 MPa. Analysis of the extensional wave data and the corresponding X-ray CT images of the gas saturation show strong attenuation resulting from the presence of the gas (Q{sub E} dropped from 300 for the dry sand to 30 for the partially-saturated sand), with larger attenuation at a given saturation resulting from heterogeneous gas distributions. The extensional wave velocities are in agreement with Gassmann theory for the test with near-homogeneous gas saturation and with a patchy saturation model for the test with heterogeneous gas saturation. These results show that partially-saturated sands under moderate confining pressure can produce strong intrinsic attenuation for extensional waves.

  20. Oceanic wave measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T. (inventors)

    1980-01-01

    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.

  1. Attenuation of seismic waves obtained by coda waves analysis in the West Bohemia earthquake swarm region

    NASA Astrophysics Data System (ADS)

    Bachura, Martin; Fischer, Tomas

    2014-05-01

    Seismic waves are attenuated by number of factors, including geometrical spreading, scattering on heterogeneities and intrinsic loss due the anelasticity of medium. Contribution of the latter two processes can be derived from the tail part of the seismogram - coda (strictly speaking S-wave coda), as these factors influence the shape and amplitudes of coda. Numerous methods have been developed for estimation of attenuation properties from the decay rate of coda amplitudes. Most of them work with the S-wave coda, some are designed for the P-wave coda (only on teleseismic distances) or for the whole waveforms. We used methods to estimate the 1/Qc - attenuation of coda waves, methods to separate scattering and intrinsic loss - 1/Qsc, Qi and methods to estimate attenuation of direct P and S wave - 1/Qp, 1/Qs. In this study, we analyzed the S-wave coda of local earthquake data recorded in the West Bohemia/Vogtland area. This region is well known thanks to the repeated occurrence of earthquake swarms. We worked with data from the 2011 earthquake swarm, which started late August and lasted with decreasing intensity for another 4 months. During the first week of swarm thousands of events were detected with maximum magnitudes ML = 3.6. Amount of high quality data (including continuous datasets and catalogues with an abundance of well-located events) is available due to installation of WEBNET seismic network (13 permanent and 9 temporary stations) monitoring seismic activity in the area. Results of the single-scattering model show seismic attenuations decreasing with frequency, what is in agreement with observations worldwide. We also found decrease of attenuation with increasing hypocentral distance and increasing lapse time, which was interpreted as a decrease of attenuation with depth (coda waves on later lapse times are generated in bigger depths - in our case in upper lithosphere, where attenuations are small). We also noticed a decrease of frequency dependence of 1/Qc with depth, where 1/Qc seems to be frequency independent in depth range of upper lithosphere. Lateral changes of 1/Qc were also reported - it decreases in the south-west direction from the Novy Kostel focal zone, where the attenuation is the highest. Results from more advanced methods that allow for separation of scattering and intrinsic loss show that intrinsic loss is a dominant factor for attenuating of seismic waves in the region. Determination of attenuation due to scattering appears ambiguous due to small hypocentral distances available for the analysis, where the effects of scattering in frequency range from 1 to 24 Hz are not significant.

  2. Study of transmission line attenuation in broad band millimeter wave frequency range

    SciTech Connect

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  3. Attenuation of shock waves in copper and stainless steel

    SciTech Connect

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  4. Ultrasound attenuation measurement the presence scatterer variation

    E-print Network

    Drummond, Tom

    still. instance, sound attenuation simply a function depth, and this leads to shadowing and enhancement structures. One such group artefacts due the varying attenuation of sound in medium. typically only display of sound. However, is a#ected attenuation properties the tissue above well as backscatter (reflection

  5. Amplitude-frequency dependencies of wave attenuation in single-crystal quartz: Experimental study

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2008-11-01

    The experiments have been conducted to investigate the effect of strain amplitude and frequency on the compressional and shear wave attenuation in quartz samples of three types: the intact quartz, fractured quartz, and smoky quartz. The measurements were performed using the reflection method on a pulse frequency of 1 MHz with changing strain in the range 0.3 ? ? ? 2.0 ?strain under a confining pressure of 10 MPa and at ambient temperature. The essential difference in amplitude-frequency characteristics of wave attenuation in three quartz types has been detected. The intact quartz shows the more "simple" behavior in comparison with the fractured and smoky quartz. The attenuation (the inverse quality factor Q) depends on strain amplitude as Q-1(?) ˜ ?-n, where n ? 0.005-0.085, with the greatest decrease in the smoky and fractured quartz reaching of about 15%. Relaxation spectra of attenuation are presented in the frequency range from 0.4 to 1.4 MHz. The dependence Qp-1(f) ˜ f-1.2 characterizes the intact and fractured quartz, whereas the smoky quartz has the relaxation peak. The dependence Qs-1(f) ˜ f-0.84 presents S wave relaxation spectrum in the intact quartz; in the fractured and smoky quartz, the attenuation peaks take place. The strain amplitude variation exerts influence on the relaxation strength, the peak frequency, and the width of the relaxation peak. Such behavior of attenuation can be explained by a joint action of viscoelastic and microplastic mechanisms. These results can be considered as a contribution for providing the experimental background to the theory of attenuation in rocks. They can also be used in solving applied problems in material science, seismic prospecting, etc.

  6. Seismic Attenuation Technology for the Advanced Virgo Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Beker, M. G.; Blom, M.; van den Brand, J. F. J.; Bulten, H. J.; Hennes, E.; Rabeling, D. S.

    The current interferometric gravitational wave detectors are being upgraded to what are termed 'second generation' devices. Sensitivities will be increased by an order of magnitude and these new instruments are expected to uncover the field of gravitational astronomy. A main challenge in this endeavor is the mitigation of noise induced by seismic motion. Detailed studies with Virgo show that seismic noise can be reinjected into the dark fringe signal. For example, laser beam jitter and backscattered light limit the sensitivity of the interferometer. Here, we focus on seismic attenuators based on compact inverted pendulums in combination with geometric anti-prings to obtain 40 dB of attenuation above 4 Hz in six degrees of freedom. Low frequency resonances (< 0.5 Hz) are damped by using a control system based on input from LVDTs and geophones. Such systems are under development for the seismic attenuation of optical benches operated both in air and vacuum. The design and realization of the seismic attenuation system for the Virgo external injection bench, including its control scheme, will be discussed and stand-alone performance presented.

  7. The attenuation of Love waves and toroidal oscillations of the earth.

    NASA Technical Reports Server (NTRS)

    Jackson, D. D.

    1971-01-01

    An attempt has been made to invert a large set of attenuation data for Love waves and toroidal oscillations in the earth, using a recent method by Backus and Gilbert. The difficulty in finding an acceptable model of internal friction which explains the data, under the assumption that the internal friction is independent of frequency, casts doubt on the validity of this assumption. A frequency-dependent model of internal friction is presented which is in good agreement with the seismic data and with recent experimental measurements of attenuation in rocks.

  8. Evaluation of coastal wave attenuation due to viscous fluid sediment at Jefferson County, Texas 

    E-print Network

    Tuttle, Meghan I

    2000-01-01

    . The paper also investigates a natural 'fluid mud' phenomenon. A viscous seabed exists at the eastern survey area, causing water wave attenuation. The interdependent effects of seafloor mud on progressive surface waves are discussed. The reduction in wave...

  9. Attenuation at low seismic frequencies in partially saturated rocks: Measurements and description of a new apparatus

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Madonna, Claudio

    2012-11-01

    Wave attenuation at low seismic frequencies (0.1-100 Hz) in the earth crust has been explained by stress-induced fluid flow in partially saturated porous media. We present the pressure vessel called Broad Band Attenuation Vessel (BBAV) and two series of attenuation (QE- 1) measurements conducted on Berea sandstone. The BBAV employs the sub-resonance method to measure seismic wave attenuation in the frequency range from 0.01 to 100 Hz, under confining pressure up to 25 MPa and generating a bulk strain around 10- 6 in a cylindrical sample with maximum size of 76 mm in diameter and 250 mm in length. The BBAV has been successfully designed, built and tested. The calibrations obtained with aluminum (EN AW-6082) and Polymethyl-methacrylate (PMMA or Plexiglas) agree with literature values. Two 20% porosity and 1.97 × 10- 13 - 9.87 × 10- 13 m2 permeability Berea sandstone samples were tested. The stress conditions were: i) unconfined, ii) confined at 2 MPa and iii) confined at 15 MPa. Dry samples exhibited always attenuation around 0.01, while saturated samples exhibited attenuation between 0.01 and 0.04. Attenuation values in ? 60% water saturated samples were frequency-dependent only for confining pressures ? 2 MPa. One explanation to this observation, which requires more experiments to be established, is that for confining pressures > 10 MPa the microcracks in the sample would be closed, impeding attenuation related to squirt flow.

  10. Influence of reef geometry on wave attenuation on a Brazilian coral reef

    NASA Astrophysics Data System (ADS)

    Costa, Mirella B. S. F.; Araújo, Moacyr; Araújo, Tereza C. M.; Siegle, Eduardo

    2016-01-01

    This study presents data from field experiments that focus on the influence of coral reef geometry on wave transformation in the Metropolitan Area of Recife (MAR) on the northeast coast of Brazil. First, a detailed bathymetric survey was conducted, revealing a submerged reef bank, measuring 18 km long by 1 km wide, parallel to the coastline with a quasi-horizontal top that varies from 0.5 m to 4 m in depth at low tide. Cluster similarity between 180 reef profiles indicates that in 75% of the area, the reef geometry has a configuration similar to a platform reef, whereas in 25% of the area it resembles a fringing reef. Measurements of wave pressure fluctuations were made at two stations (experiments E1 and E2) across the reef profile. The results indicate that wave height was tidally modulated at both experimental sites. Up to 67% (E1) and 99.9% (E2) of the incident wave height is attenuated by the reef top at low tide. This tidal modulation is most apparent at E2 due to reef geometry. At this location, the reef top is only approximately 0.5 m deep during mean low spring water, and almost all incident waves break on the outer reef edge. At E1, the reef top depth is 4 m, and waves with height ratios smaller than the critical breaking limit are free to pass onto the reef and are primarily attenuated by bottom friction. These results highlight the importance of reef geometry in controlling wave characteristics of the MAR beaches and demonstrate its effect on the morphology of the adjacent coast. Implications of differences in wave attenuation and the level of protection provided by the reefs to the adjacent shoreline are discussed.

  11. Temporal change in coda wave attenuation observed during an eruption of Mount St. Helens

    SciTech Connect

    Fehler, M.; Roberts, P.; Fairbanks, T.

    1988-05-10

    During the past few years there have been numerous reports of changes in coda wave attenuation occurring before major earthquakes. These observations are important because they may provide insight into stress-related structural changes taking place in the focal region prior to the occurrence of large earthquakes. The results of these studies led us to suspect that temporal changes in coda wave attenuation might also accompany volcanic eruptions. By measuring power decay envelopes for earthquakes at Mount St. Helens recorded before, during, and after an eruption that took place during September 3--6, 1981, we found that coda Q/sup -1/ for frequencies between 6 and 30 Hz was 20--30% higher before the eruption than after. The change is attributed to an increase in the density of open microcracks in the rock associated with inflation of the volcano prior to the eruption. Q/sup -1/ was found to be only weakly dependent on frequency and displayed a slight peak near 10 Hz. The weak frequency dependence is attributed to the dominance of intrinsic attenuation over scattering attenuation, since it is generally accepted that intrinsic attenuation is constant with frequency, whereas scattering attenuation decreases strongly at higher frequencies. The weak frequency dependence of Q/sup -1/ at Mount St. Helens contrasts with results reported for studies in nonvolcanic regions. The peak in Q/sup -1/ near 10 Hz at Mount St. Helens is attributed to the scale length of heterogeneity responsible for generating backscattered waves. Results for nonvolcanic regions have shown this peak to occur near 0.5 Hz. Thus a smaller scale length of heterogeneity is required to explain the 10-Hz peak at Mount St. Helens. copyright American Geophysical Union 1988

  12. Seismic-wave attenuation associated with crustal faults in the New Madrid seismic zone

    USGS Publications Warehouse

    Hamilton, R.M.; Mooney, W.D.

    1990-01-01

    The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/ or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.

  13. Attenuation of High-Frequency Seismic Waves in Eastern Iran

    NASA Astrophysics Data System (ADS)

    Mahood, M.

    2014-09-01

    We investigated the frequency-dependent attenuation of the crust in Eastern Iran by analysis data from 132 local earthquakes having focal depths in the range of 5-25 km. We estimated the quality factor of coda waves ( Q c) and body waves ( Q p and Q s) in the frequency band of 1.5-24 Hz by applying the single backscattering theory of S-coda envelopes and the extended coda-normalization method, respectively. Considering records from recent earthquakes (Rigan M w 6.5, 2010/12/20, Goharan M w 6.2, 2013/5/11 and Sirch M w 5.5, 2013/1/21), the estimated values of Q c, Q p and Q s vary from 151 ± 49, 63 ± 6, and 93 ± 14 at 1.5 Hz to 1,994 ± 124, 945 ± 84 and 1,520 ± 123 at 24 Hz, respectively. The average frequency-dependent relationships ( Q = Q o f n ) estimated for the region are Q c = (108 ± 10) f (0.96±0.01), Q p = (50 ± 5) f (1.01±0.04), and Q s = (75 ± 6) f (1.03±0.06). These results evidenced a frequency dependence of the quality factors Q c, Q p, and Q s, as commonly observed in tectonically active zones characterized by a high degree of heterogeneity, and the low value of Q indicated an attenuative crust beneath the entire region.

  14. The propagation and attenuation of complex acoustic waves in treated circular and annular ducts

    NASA Technical Reports Server (NTRS)

    Reethof, G.

    1976-01-01

    The propagation of plane waves and higher order acoustic modes in a circular multisectioned duct was studied. A unique source array consisting of two concentric rings of sources, providing phase and amplitude control in the radial, as well as circumferential direction, was developed to generate plane waves and both spinning and nonspinning higher order modes. Measurements of attenuation and radial mode shapes were taken with finite length liners between the hard wall sections of an anechoically terminated duct. Materials tested as liners included a glass fiber material and both sintered fiber metals and perforated sheet metals with a honeycomb backing. The fundamental acoustic properties of these materials were studied with emphasis on the attenuation of sound by the liners and the determination of local versus extended reaction behavior for the boundary condition. The experimental results were compared with a mathematical model for the multisectioned duct.

  15. Wave Velocity Attenuation and Sediment Retention among Different Vegetation Types in a Pacific Northwest Estuary

    NASA Astrophysics Data System (ADS)

    Lemein, T.; Cox, D. T.; Albert, D.; Blackmar, P.

    2012-12-01

    Feedbacks between vegetation, wave climate, and sedimentation create stable ecosystem states within estuaries that provide ecosystem services such as wildlife habitat, erosion control, and pollution filtration. Flume and field studies conducted with cordgrass (Spartina spp.) and sea grasses (Zostera spp., Halodule spp.) have demonstrated that the presence of vegetation reduces wave energy and increases sediment retention. Since the spatial distribution of plant species and the presence of unique plant species differ between estuaries, there is a need to understand how individual plant species, or groups of species with similar morphology, influence wave characteristics and sedimentation. Within Tillamook Bay, Oregon, three species of emergent vascular vegetation species (Carex lyngbyei, Eleocharis sp., Schoenoplectus pungens) and one species of submergent vascular vegetation species (Zostera marina) are present in the high wave energy portion of the estuary at the border of open water and the start of vegetation. These species represent three distinct growth forms (emergent reeds, emergent grasses, submergent grasses) and occur at varying densities relative to each other, as well as within the estuary. Using paired acoustic Doppler velocimeters (ADVs), we quantify the relative attenuation of wave velocity between vegetation types and densities within the estuary and compare these results with published attenuation rates from flume and field studies in different environments. The effect of decreased wave velocity on sediment retention is measured using permanent sediment markers within and outside of vegetation stands and paired with ADV data. Sediment retention is predicted to vary seasonally with seasonal vegetation composition changes and remain constant in unvegetated areas. From this experiment we expect to identify like groups of plant species whose attenuation characteristics are the same, allowing for models of wave-vegetation-sediment interaction to be created with multiple vegetation types.

  16. ATTENUATION OF REFLECTED WAVES IN MAN DURING RETROGRADE PROPAGATION FROM FEMORAL ARTERY TO PROXIMAL AORTA

    PubMed Central

    Baksi, A John; Davies, Justin E; Hadjiloizou, Nearchos; Baruah, Resham; Unsworth, Beth; Foale, Rodney A; Korolkova, Olga; Siggers, Jennifer H; Francis, Darrel P; Mayet, Jamil; Parker, Kim H; Hughes, Alun D

    2015-01-01

    Background Wave reflection may be an important influence on blood pressure, but the extent to which reflections undergo attenuation during retrograde propagation has not been studied. We quantified retrograde transmission of a reflected wave created by occlusion of the left femoral artery in man. Methods 20 subjects (age 31-83 y; 14 male) underwent invasive measurement of pressure and flow velocity with a sensor-tipped intra-arterial wire at multiple locations distal to the proximal aorta before, during and following occlusion of the left femoral artery by thigh cuff inflation. A numerical model of the circulation was also used to predict reflected wave transmission. Wave reflection was measured as the ratio of backward to forward wave energy (WRI) and the ratio of peak backward to forward pressure (Pb/Pf). Results Cuff inflation caused a marked reflection which was largest 5-10cm from the cuff (change (?) in WRI = 0.50 (95% CI 0.38, 0.62); p<0.001, ?Pb/Pf = 0.23 (0.18 - 0.29); p<0.001). The magnitude of the cuff-induced reflection decreased progressively at more proximal locations and was barely discernible at sites >40cm from the cuff including in the proximal aorta. Numerical modelling gave similar predictions to those observed experimentally. Conclusions Reflections due to femoral artery occlusion are markedly attenuated by the time they reach the proximal aorta. This is due to impedance mismatches of bifurcations traversed in the backward direction. This degree of attenuation is inconsistent with the idea of a large discrete reflected wave arising from the lower limb and propagating back into the aorta. PMID:26436672

  17. Seismic?wave attenuation determined from tectonic tremor in multiple subduction zones

    USGS Publications Warehouse

    Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.

    2014-01-01

    Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground?motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ?3–8 are used to develop ground?motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground?motion prediction (i.e., ?2–8??Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore?fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.

  18. Lg waves attenuation studies over the Iranian Plateau and Zagros

    NASA Astrophysics Data System (ADS)

    Kaviani, A.; Sandvol, E. A.; Rumpker, G.; Ku, W.; Gok, R.

    2012-12-01

    Waveforms from regional events collected over the last 15 years by the permanent seismological networks and temporary deployments deployed within the Iranian plateau provide a unique and unprecedented opportunity to investigate the crustal and mantle attenuation characteristics by analysis of the regional phases including Lg and Pg waves. We have investigated the crustal attenuation using Lg waveforms available from 305 stations consisting of 101 permanent and 204 temporary stations. This study is performed within the framework of a larger project aimed at developing high-resolution seismic attenuation models for the Iranian plateau and the Zagros mountains using different data and approaches. We have combined the Iranian data set with data from numerous networks across Turkey, Georgia, Azerbaijan, Syria, Jordan, and Saudi Arabia. This combination provides us with waveforms from over 550 stations spanning most of the Northern Middle East. Simultaneous inversion of the Lg Q values calculated using two-station paths gives us a model of Lg Q that extends from the western Anatolian plate to the eastern edge of the Iranian plateau. Prior studies have suggested strong complexity in the crustal and uppermost mantle attenuation structure beneath much of the Iranian plateau and the surrounding regions. Lg waves propagating over different paths in this region show strong variations in amplitude and frequency content due to this very complex structure. We have created a frequency dependent Lg Q model that covers most of the Iranian plateau using instrument corrected two station method that eliminates the contributions from the source. Our model maps Lg Q around 200 for most part of the central Iranian plateau and Alborz mountains whereas it is lower than 150 for the western Anatolian plateau. Relatively high Q values (>300) are observed in the Zagros belt that abruptly changes across the Zagros suture. We have also found unexpected results, including a high Q zone that surrounds the Caspian Sea. We argue that it originates from energy that is bending around the south Caspian Sea oceanic crust as well as efficient Lg propagation through the Alborz mountain crust.

  19. Imaging the attenuation structure beneath the northwestern margin of Colorado Plateau: Integrating seismic body-wave observations and forward modeling

    NASA Astrophysics Data System (ADS)

    Bellis, C.; Lin, P.; Holtzman, B. K.; Gaherty, J. B.; Roy, M.

    2013-12-01

    The upper mantle beneath the Colorado Plateau (CP) is characterized by high seismic velocities in the plateau interior and lower seismic velocities beneath the plateau margins, below the Basin and Range to the west and the Rio Grande Rift to the east. The seismic velocity contrast across the margins has been interpreted as a thermal- mechanical modification of the sub-CP lithospheric keel, by various mechanisms. Using teleseismic P- and S-wave spectra from the La Ristra 1.5 Array and EarthScope USArray Transportable Array (TA), we measure t*, the seismic parameter representing integrated attenuation along a ray path, across the western margin of the CP. For wave fields from two sets of earthquakes to the Northwest and Southeast of the CP, we measured the spectra of P- and S-waves at each station, relative to the spectra of the reference stations and extracted the differential attenuation factor (dt*) across the frequency band 0.2-4 Hz for P waves and 0.1-1.5 Hz for S waves for each event-station pair. To first order, both tp* and ts* varies from higher in the Basin and Range to lower on the CP, which suggests that coherent variations in attenuation are present across the Northwestern margin of the CP. However, the gradients of dt* for the two sets of NW and SE wave fields are significantly different, with a sharper gradient observed for the NW set. One of our primary questions concerns the origin of these variations: to what extent do they reflect the spatial distribution of intrinsic attenuation structure or wave propagation effects such as focusing and defocusing. To address these questions, our approach is to first build 1- and 2-D models for hypothetical spatial variations in state and compositional variables (T, water and melt content), and then calculate attenuation structures based on experimentally derived power-law frequency-dependent anelastic models. These structures are transferred into our anelastic finite difference wave propagation code, from which we measure t*. From 1D forward models of viscoelastic wave propagation, we show that teleseismic t* measurements are very sensitive to intrinsic attenuation structure at the lithosphere scale (upper 400 km) beneath the array. From 2D models that represent hypothetical structures of the western margin of the CP, wave propagation effects can also be explored. Comparison of 1D and 2D models will help us understand trade-offs between wave propagation effects and intrinsic attenuation on the measured t* variations across the CP.

  20. The Self Attenuation Correction for Holdup Measurements, a Historical Perspective

    SciTech Connect

    Oberer, R. B.; Gunn, C. A.; Chiang, L. G.

    2006-07-11

    Self attenuation has historically caused both conceptual as well as measurement problems. The purpose of this paper is to eliminate some of the historical confusion by reviewing the mathematical basis and by comparing several methods of correcting for self attenuation focusing on transmission as a central concept.

  1. Nonlinear attenuation of S-waves and Love waves within ambient rock

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.; Erickson, Brittany A.

    2014-04-01

    obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.

  2. Attenuation and velocity structure from diffuse coda waves: Constraints from underground array data

    NASA Astrophysics Data System (ADS)

    Galluzzo, Danilo; La Rocca, Mario; Margerin, Ludovic; Del Pezzo, Edoardo; Scarpa, Roberto

    2015-03-01

    An analysis of coda waves excited in the 0.2-20 Hz frequency band and recorded by the underground array Underseis (central Italy) has been performed to constrain both seismic attenuation at regional scale and velocity structure in the Mount Gran Sasso area. Attenuation was estimated with the MLTWA method, and shows a predominance of scattering phenomena over intrinsic absorption. The values of Qi and Qs are compatible with other estimates obtained in similar tectonic environments. Array methods allowed for a detailed study of the propagation characteristics, demonstrating that earthquake coda at frequencies greater than about 6 Hz is composed of only body waves. Coherence and spectral characteristics of seismic waves measured along the coda of local and regional earthquakes indicate that the wavefield becomes fully diffuse only in the late coda. The frequency-dependent energy partitioning between horizontal and vertical components has been also estimated and compared with synthetic values computed in a layered half-space under the diffuse field assumption. This comparison confirms that, for frequencies higher than 6 Hz, the coda appears as a sum of body waves coming from all directions while, in the low frequency range (0.2-2 Hz), the observations can be well explained by a coda wavefield composed of an equipartition mixture of surface and body waves traveling in a multiple-layered medium. A Monte-Carlo inversion has been performed to obtain a set of acceptable velocity models of the upper crust. The present results show that a broadband coda wavefield recorded in an underground environment is useful to constrain both the regional attenuation and the velocity structure of the target area, thereby complementing the results of classical array analysis of the wavefield.

  3. Toward improving global attenuation models: Interpreting surface-wave amplitudes with approximate theories

    NASA Astrophysics Data System (ADS)

    Dalton, C. A.; Hjorleifsdottir, V.; Ekstrom, G.

    2011-12-01

    Surface-wave amplitudes provide the primary constraint on upper-mantle anelastic structure and are also sensitive to small-scale elastic structure through focusing effects. However, the use of amplitudes for seismic imaging presents several challenges. One, amplitudes are affected not only by propagation through anelastic and elastic heterogeneity but also by uncertainty in the source excitation, local receiver structure, and instrument response. Two, accounting for focusing and defocusing effects, which is important if amplitudes are to be used to study anelasticity, depends considerably on the chosen theoretical treatment. Three, multiple scattering of seismic energy by elastic heterogeneity can be mapped into attenuation, especially at high frequencies. With the objective of improving our ability to image mantle seismic attenuation using real amplitude observations, we investigate how approximations in the theoretical treatment of wave excitation and propagation influence the interpretation of amplitudes. We use a spectral-element wave-propagation solver (SPECFEM3D_GLOBE) to generate accurate seismograms for global Earth models containing one-dimensional attenuation structure and three-dimensional variations in seismic velocity. The seismograms are calculated for 42 realistically distributed earthquakes. Fundamental-mode Rayleigh wave amplitudes in the period range 50--200 seconds are measured using the approach of Ekström et al. (1997), for which PREM is the assumed Earth model. We show that using the appropriate local seismic structure at the source and receiver instead of PREM has a non-negligible effect on the amplitudes and improves their interpretation. The amplitudes due to focusing and defocusing effects are predicted for great-circle ray theory, exact ray theory (JWKB theory), and finite-frequency theory. We assess the ability of each theory to predict amplitudes that agree with those measured from the SPECFEM synthetics for an Earth model that contains short-wavelength velocity structure and one that does not. We also evaluate to what extent unmodeled focusing and scattering effects can be mapped into anelastic heterogeneity.

  4. A direct measurement of skull attenuation for quantitative SPECT

    SciTech Connect

    Turkington, T.G.; Gilland, D.R.; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E. . Dept. of Radiology); Smith, M.F. . Dept. of Biomedical Engineering)

    1993-08-01

    The attenuation of 140 keV photons was measured in three empty skulls by placing a [sup 99m]Tc line source inside each one and acquiring projection data. These projections were compared to projections of the line source alone to determine the transmission through each point in the skull surrounding the line source. The effective skull thickness was calculated for each point using an assumed dense bone attenuation coefficient. The relative attenuation for this thickness of bone was compared to that of an equivalent amount of soft tissue to evaluate the increased attenuation of photons in brain SPECT relative to a uniform soft tissue approximation. For the skull regions surrounding most of the brain, the effective bone thickness varied considerably, but was generally less than 6 mm, resulting in a relative attenuation increases of less than 6%.

  5. Attenuation characteristics of coda waves in Mainland Gujarat (India)

    NASA Astrophysics Data System (ADS)

    Gupta, Arun K.; Sutar, Anup K.; Chopra, Sumer; Kumar, Santosh; Rastogi, B. K.

    2012-03-01

    The attenuation characteristics based on coda waves of Mainland Gujarat (India) have been investigated in the present study. The broadband waveforms of 53 local earthquakes (Mw 1.1-3.3) having focal depths in the 6.0-33.6 km range recorded at five stations of Mainland Gujarat region has been used for the analysis. The frequency-dependent relationships (Q = Q0fn) for coda-Q (Qc) and dependency of coda-Q on lapse time windows have been determined for the said region. The average lapse time dependent coda-Q relations estimated for the region are: Qc = (87 ± 13)f(1.01 ± 0.06) (lapse time: 30 s), Qc = (112 ± 20)f(0.94 ± 0.08) (lapse time: 40 s) and Qc = (120 ± 22)f(0.76 ± 0.07) (lapse time: 50 s). The increase in Qc values with lapse time shows the depth dependence of Qc as longer lapse time windows will sample larger area. The observed quality factor is strongly dependent on frequency and lapse time, which indicates that the upper lithosphere, is more heterogeneous and seismotectonically active, while the lower lithosphere is homogeneous and relatively less active. A comparison of the coda-Q estimated for Mainland Gujarat region with those of nearby Kachchh and Saurashtra regions shows that Mainland Gujarat region is more heterogeneous. The rate of decay of attenuation (Q-1) with frequency for the relations obtained here is found to be comparable with those of other regions of the world though the absolute values differ. The obtained relations are expected to be useful for the estimation of source parameters of the earthquakes in the Mainland Gujarat region where no such relations were available earlier. These relations are also important for the simulation of earthquake strong ground motions in the region.

  6. Attenuation of Coda Waves in the Saurashtra Region, Gujarat (India)

    NASA Astrophysics Data System (ADS)

    Sharma, Babita; Kumar, Dinesh; Teotia, S. S.; Rastogi, B. K.; Gupta, Arun K.; Prajapati, Srichand

    2012-01-01

    The attenuation characteristics based on coda waves of two areas—Jamnagar and Junagarh of Saurashtra, Gujarat (India)—have been investigated in the present study. The frequency dependent relationships have been developed for both the areas using single back scattering model. The broadband waveforms of the vertical components of 33 earthquakes (Mw 1.5-3.5) recorded at six stations of the Jamnagar area, and broadband waveforms of 68 earthquakes (Mw 1.6-5) recorded at five stations of the Junagarh area have been used for the analysis. The estimated relations for the Junagarh area are: Q c = (158 ± 5)f(0.99±0.04) (lapse time : 20 s), Q c = (170 ± 4.4)f(0.97±0.02) (lapse time : 30 s) and Q c = (229 ± 6.6)f(0.94±0.03) (lapse time : 40 s) and for the Jamnagar area are: Q c = (178 ± 3)f(0.95±0.05) (lapse time : 20 s), Q c = (224 ± 6)f(0.98±0.06) (lapse time : 30 s) and Q c = (282 ± 7)f(0.91±0.03) (lapse time : 40 s). These are the first estimates for the areas under consideration. The Junagarh area appears to be more attenuative as compared to the Jamnagar area. The increase in Q c values with lapse time found here for both the areas show the depth dependence of Q c as longer lapse time windows will sample larger area. The rate of decay of attenuation ( Q -1) with frequency for the relations obtained here is found to be comparable with those of other regions of the world though the absolute values differ. A comparison of the coda-Q estimated for the Saurashtra region with those of the nearby Kachchh region shows that the Saurashtra region is less heterogeneous. The obtained relations are expected to be useful for the estimation of source parameters of the earthquakes in the Saurashtra region of Gujarat where no such relations were available earlier. These relations are also important for the simulation of earthquake strong ground motions in the region.

  7. Attenuation of intense sinusoidal waves in air-saturated, bulk porous materials

    NASA Technical Reports Server (NTRS)

    Kuntz, Herbert L.; Blackstock, David T.

    1987-01-01

    As intense, initially sinusoidal waves propagate in fluids, shocks form and excess attenuation of the wave occurs. Data are presented indicating that shock formation is not necessary for the occurrence of excess attenuation in nonlinear, lossy media, i.e., air-saturated, porous materials. An empirical equation is used to describe the excess attenuation of intense sinusoids in porous materials. The acoustic nonlinearity of and the excess attenuation in porous materials may be predicted directly from dc flow resistivity data. An empirical relationship is used to relate an acoustic nonlinearity parameter to the fundamental frequency and relative dc nonlinearity of two structurally different materials.

  8. Stress wave attenuation in thin structures by ultrasonic through-transmission

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Williams, J. H., Jr.

    1980-01-01

    The steady state amplitude of the output of an ultrasonic through transmission measurement is analyzed and the result is given in closed form. Provided that the product of the input and output transduction ratios; the specimen-transducer reflection coefficient; the specimen-transducer phase shift parameter; and the material phase velocity are known, this analysis gives a means for determining the through-thickness attenuation of an individual thin sample. Multiple stress wave reflections are taken into account and so signal echoes do not represent a difficulty. An example is presented for a graphite fiber epoxy composite (Hercules AS/3501-6). A direct method for continuous or intermittent monitoring of through thickness attenuation of plate structures which may be subject to service structural degradation is provided.

  9. Attenuation Measurements of Cell Pellets Using Through Transmission

    NASA Astrophysics Data System (ADS)

    Vadas, Justin; Greene, Claudia; Grygotis, Emma; Kuhn, Stephen; Mahlalela, Sanele; Newland, Tinisha; Ovutmen, Idil; Herd, Maria-Teresa

    2011-10-01

    A better understanding of differences in ultrasound tissue characteristics (such as speed of sound, attenuation, and backscatter coefficients) of benign compared to malignant cells could lead to improved cancer detection and diagnosis. A narrow band technique for measuring ultrasonic speed of sound and attenuation of small biological materials was developed and tested. Several mechanical improvements were made to the system to drastically improve alignment, allowing for accurate measurements of small cell pellets. Narrow band attenuation measurements were made first with tissue-mimicking phantoms and then with three different types of cell pellets: Chinese hamster ovary cells, healthy human prostate cells, and cancerous human prostate cells. Attenuation and speed of sound results for all three cell types, as well as the culture medium and tissue mimicking phantoms, are presented for a frequency range of 5 to 25 MHz.

  10. ORNL system for measurement of telephone-line attenuation

    SciTech Connect

    Rochelle, R.W.; Williams, I.E.

    1988-06-01

    The purpose of modifying the TS-100 Automated Tempest Test System software was to use the equipment for making radio-frequency attenuation measurements between an input port and an output port of a telephone network. One set of tests was performed to simulate the electromagnetic radiation from a secure computer terminal and its coupling to telephone lines within a building. Another set of tests was conducted to determine the procedures for measuring attenuation on telephone lines between buildings that are all within the secure zone. The measurements indicate that attenuation between the terminal and the telephone is a function of many variables; however, attenuation in the cable between the buildings is proportional to the length of the cable between the buildings. 1 ref., 2 figs.

  11. Ultrasonic attenuation of surface acoustic waves in a thin film of superconducting Nb 3Sn

    NASA Astrophysics Data System (ADS)

    Fredricksen, H. P.; Salvo, H. L.; Levy, M.; Hammond, R. H.; Geballe, T. H.

    1980-02-01

    The attenuation of 660 MHz surface acoustic waves propagating in a thin film of Nb 3Sn 5000 Å thick has been measured as a function of temperature from 4.2 K to 16 K. The A 15 Nb 3Sn, electron-beam codeposited on YZ lithium niobate and annealed at 700°C, was studied using 5.1 ?m wavelength interdigital electrodes. The film revealed a transition temperature of 14.2 ± 0.1 K and using the BCS theory, an energy gap 2 ?(0) = 3.5 kBTc.

  12. Measurements of earth-space attenuation at 230 GHz

    NASA Technical Reports Server (NTRS)

    Wrixon, G. T.; Mcmillan, R. W.

    1978-01-01

    Measurements of attenuation at 230 GHz through the total atmosphere due to the presence of oxygen and water vapor molecules, clouds, and rain are presented. The measurements were carried out using a specially designed superheterodyne receiver mounted on a sun tracker. Simultaneous measurements were also carried out at 13 GHz. For a measuring site close to sea level at Holmdel, NJ, the 'clear-sky' zenith attenuation was found as a function of the measured ground water vapor density. When the ground temperature was below about 7 C, most cloud and overcast gave less than 0.5-dB attenuation, whereas with a ground temperature greater than 13 C, cloud attenuation was 8-10 times greater. Calculations of zenith attenuation in the 230-GHz atmospheric window were also made using the Gross analytic line shape, Schulze-Tolbert empirical line shape, and an empirically modified Gross line shape. These calculations were based on determinations of water vapor density and temperature made at the measurement site, and on radiosonde measurements made at a distance of 80 km away.

  13. Non-destructive Inspection of Chloride Ion in Concrete Structures Using Attenuated Total Reflection of Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Tripathi, Saroj R.; Inoue, Hiroo; Hasegawa, Tsuyoshi; Kawase, Kodo

    2013-02-01

    The chloride induced corrosion of reinforcing steel bar is one of the major causes of deterioration of concrete structures. Therefore, it is essential to periodically monitor the level of chloride ion (Cl-) concentration in concrete structures. In this work, we developed millimeter wave attenuated total reflection measurement setup in order to determine the Cl- concentration in concrete structures. We prepared concrete samples with different compositions and varying Cl- concentrations and we measured their attenuated total reflectance at 65 GHz. We observed that the reflectance decreases almost linearly with the increase in Cl- concentration indicating that this technique could be used to inspect the Cl- concentration in concrete structures nondestructively.

  14. Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Lin, Min; Xu, Haojun; Wei, Xiaolong; Liang, Hua; Song, Huimin; Sun, Quan; Zhang, Yanhua

    2015-10-01

    The attenuation of electromagnetic (EM) waves in unmagnetized plasma generated by an inductively coupled plasma (ICP) actuator has been investigated both theoretically and experimentally. A numerical study is conducted to investigate the propagation of EM waves in multilayer plasma structures which cover a square flat plate. Experimentally, an ICP actuator with dimensions of 20 cm×20 cm×4 cm is designed to produce a steady plasma slab. The attenuation of EM waves in the plasma generated by the ICP actuator is measured by a reflectivity arch test method at incident waves of 2.3 GHz and 10.1 GHz, respectively. A contrastive analysis of calculated and measured results of these incident wave frequencies is presented, which suggests that the experiment accords well with our theory. As expected, the plasma slab generated by the ICP actuator can effectively attenuate the EM waves, which may have great potential application prospects in aircraft stealth. supported by National Natural Science Foundation of China (Nos. 51276197, 11472306 and 11402301)

  15. Wave attenuation and sediment transport over an intertidal sand flat on the Fraser River Delta (Invited)

    NASA Astrophysics Data System (ADS)

    Houser, C.; Hill, P. R.

    2010-12-01

    This paper describes the results of two instrument field studies to examine sediment transport processes and wave attenuation across Roberts Bank, a sandy intertidal bank on the Fraser River Delta. The field work was completed as part of a three-year study of the sensitivity of Roberts Bank to sea level rise and changing storminess. It was hypothesized that the response of the mudflats and salt marshes along the landward margin of the delta were dependent on the ability of the fronting sand flat to attenuate wave height and energy. The attenuation of wave height and energy was monitored at four stations along a shore-normal transect between December 23, 2003 and February 10, 2004. The attenuation varied with the relative wave height ratio (Hs h-1) along the seaward margin, with dissipation increasing as water depths decrease and/or incident wave heights increase. Under the most dissipative conditions observed (Hs h-1 ? 0.25), the exponential decay coefficient reached 0.00045. This decay coefficient is an order of magnitude smaller than predicted by a simple wave transformation model due to the relatively large wind fetch over the sand flat. Despite the maintenance of wave energy, the range of wave heights remains constrained in the landward direction, with the frequency of waves capable of entraining sediment on the sand flat decreasing from 11% at the outer flat to 2% at the inner stations. In response, bed elevation change and depth of sediment activation are greatest at the seaward margin and decrease exponentially landward. It is argued that the sand flat provides a natural barrier that defines the extent of mudflat development by limiting the potential for sediment resuspension and morphological change on the mudflat. The ability of the sand flat to provide continued protection to the mudflats and salt marshes depends on how it will respond to change in sea level and storminess. A comparison of the dimensionless, current-induced skin friction with the critical skin friction for the initiation of sediment motion suggests that the currents are only capable of entraining sediment briefly with the ebbing tide or when enhanced by the wind. Since these wind-generated currents are associated with storm waves, which typically exceed the critical skin friction, they have a disproportionately large impact on the direction of the sediment transport. An energetics-based model, driven by locally measured near-bottom currents, is used to characterize the rate and direction of bedload and suspended load transport. The largest transport rates were predicted in response to storm waves and were initially directed onshore with weak oscillatory transport and alongshore by wind-generated currents that turned offshore as the ebbing currents strengthened. The integrated transport (over the duration of the study) was predicted to be weakly offshore, but this is ascribed to the coincidental occurrence of storm activity with the ebbing tide. It is argued that if storm waves were equally distributed between the flood and ebb phases of the tide, the wind-generated currents and oscillatory transport would lead to a partly onshore-directed net transport during storms, which may contribute to sand flat accretion and maintenance of form as it migrates landward in response to sea level rise.

  16. Estimation of shear-wave interval attenuation from mode-converted data Bharath Shekar1

    E-print Network

    Tsvankin, Ilya

    characterization and lithology discrimi- nation. We extend the attenuation layer-stripping method of Behura-independent layer stripping to the constructed SS reflections yields the interval S-wave attenuation coefficient) combine the velocity- independent layer stripping (VILS) method of Dewangan and Tsvankin (2006

  17. Body-wave Attenuation Imaging Across the Northwestern Margin of the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Lin, P. P.; Gaherty, J. B.; Holtzman, B. K.; Bellis, C.; Roy, M.

    2012-12-01

    The upper mantle beneath the Colorado Plateau (CP) is characterized by high seismic velocities in the plateau interior and lower seismic velocities beneath the plateau margins. The seismic velocity contrast across the margins has been interpreted as indicating the lateral migration of the inclined boundary between lithosphere and asthenosphere (referred to as the marginal LAB). Recent studies from field and laboratory data suggest that the LAB can undergo substantial modification by two mechanisms. One is dominantly a thermomechanical process driven by convective instability that causes lithosphere removal (e.g., physical delamination of dense lithospheric drips). Recent seismic observations at the CP margins have been interpreted as indicative of this delamination. Alternatively, in dominantly a thermochemical process, the lithosphere may be rejuvenated via partial melting. In this study, we analyze data from the Rio Grande Rift Seismic Transect (La RISTRA) experiment and adjacent USArray stations to image body-wave attenuation across the northwestern margin of the CP. The La RISTRA 1.5 experiment consisted of a deployment of 18 broadband seismometers extending NW along a line from the center of the CP into the Basin and Range (BR) province, deployed from June 2004 to May 2006. The array geometry provides high-resolution constraints across the CP-BR transition with about 20 km station spacing. We measured the spectra of teleseismic P and S body waves at each station and extracted the seismic parameter t*, known as the attenuation operator. Preliminary analyses indicates that t* varies from high to low along a SE direction across the transition, which suggests that coherent variations in attenuation are present across the northwestern margin of the CP. These measurements are then inverted for spatial variations in attenuation of P and S waves, Q-1p and Q-1s respectively, in the cross section along the array. We compare and combine our results with other studies, including Vp and Vs tomography, electrical conductivity, and shear-wave splitting direction and intensity across the transition. Finally, we perform forward modeling of physical properties to find the suite of thermodynamic variables including melt distributions that can best match the combined set of observations.

  18. Investigation of the Attenuation of Plane Shock Waves Moving over very Rough Surfaces

    NASA Technical Reports Server (NTRS)

    Huber, Paul W.; McFarland, Donald R.; Levine, Philip

    1953-01-01

    Experimental measurements of the attenuation of plane shock waves moving over rough walls have been made in a shock tube. Measurements of the boundary-layer characteristics, including thickness and velocity distribution behind the shock, have also been made with the aid of new cal techniques which provide direct information on the local boundary-layer conditions at the rough walls. Measurements of shock speed and shock pressure ratio are presented for both smooth-wall and rough-wall flow over lengths of machined-smooth and rough strips which lined all four walls of the shock tube. A simplified theory based on Von Karman's expression for skin-friction coefficient for flow over rough walls, along with a wave-model concept and extensions to include time effects, is presented. In this theory, the shock-tube flow is assumed to be one-dimensional at all times and the wave-model concept is used to relate the local layer growth to decreases in shock strength. This concept assumes that local boundary-layer growths act as local mass-flow sinks, which give rise to expansion waves which, in turn, overtake the shock and lower its mass flow accordingly.

  19. The Velocity and Attenuation of Acoustic Emission Waves in SiC/SiC Composites Loaded in Tension

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Gyekenyesi, Andrew L.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The behavior of acoustic waves produced by microfracture events and from pencil lead breaks was studied for two different silicon carbide fiber-reinforced silicon carbide matrix composites. The two composite systems both consisted of Hi-Nicalon (trademark) fibers and carbon interfaces but had different matrix compositions that led to considerable differences in damage accumulation and acoustic response. This behavior was primarily due to an order of magnitude difference in the interfacial shear stress for the two composite systems. Load/unload/reload tensile tests were performed and measurements were made over the entire stress range in order to determine the stress-dependence of acoustic activity for increasing damage states. It was found that using the extensional wave velocities from acoustic emission (AE) events produced from pencil lead breaks performed outside of the transducers enabled accurate measurements of the stiffness of the composite. The extensional wave velocities changed as a function of the damage state and the stress where the measurement was taken. Attenuation for AE waveforms from the pencil lead breaks occurred only for the composite possessing the lower interfacial shear stress and only at significantly high stresses. At zero stress after unloading from a peak stress, no attenuation occurred for this composite because of crack closure. For the high interfacial stress composite no attenuation was discernable at peak or zero stress over the entire stress-range of the composite. From these observations, it is believed that attenuation of AE waveforms is dependent on the magnitude of matrix crack opening.

  20. Measurement and Modeling of Ultrasonic Attenuation in Aluminum Rolled Plate

    NASA Astrophysics Data System (ADS)

    Li, Anxiang; Kim, Hak-Joon; Margetan, Frank; Thompson, R. B.

    2006-03-01

    When fabricating a new set of calibration blocks for Aluminum 7075 plate inspections, it is advantageous that the new blocks have similar ultrasonic attenuation to existing block sets. This allows the new set to qualify under the same ASTM procedures used for older sets. In the course of surveying candidate materials for possible use as calibration blocks, some interesting attenuation results were observed. When a candidate block was cut from a thick section of rolled plate, measured back-wall attenuation values in the rolling or transverse direction were quite sensitive to position in the plate-normal direction. Such variations are presumably tied to microstructural variations within the plate, as revealed by metallography. Some measured attenuation values were found to be in good agreement with predictions of the Stanke-Kino model, while others were not. The measurements and modeling work are reviewed, and additional experiments conducted to clarify certain issues are discussed. Those additional experiments suggest that beam distortion effects, due to microstructure variations within the beam cross-section, are primarily responsible for differences between measured and predicted attenuation values.

  1. Optimized ultrasonic attenuation measures for non-homogeneous materials.

    PubMed

    Genovés, V; Gosálbez, J; Carrión, A; Miralles, R; Payá, J

    2016-02-01

    In this paper the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous materials is addressed. To determine the attenuation accurately over a wide frequency range, it is necessary to have suitable excitation techniques. Three kinds of transmitted signals have been analysed, grouped according to their bandwidth: narrowband and broadband signals. The mathematical formulation has revealed the relation between the distribution of energy in their spectra and their immunity to noise. Sinusoidal and burst signals have higher signal-to-noise ratios (SNRs) but need many measurements to cover their frequency range. However, linear swept-frequency signals (chirp) improve the effective bandwidth covering a wide frequency range with a single measurement and equivalent accuracy, at the expense of a lower SNR. In the case of highly attenuating materials, it is proposed to use different configurations of chirp signals, enabling injecting more energy, and therefore, improving the sensitivity of the technique without a high time cost. Thus, if the attenuation of the material and the sensitivity of the measuring equipment allows the use of broadband signals, the combination of this kind of signal and suitable signal processing results in an optimal estimate of frequency-dependent attenuation with a minimum measurement time. PMID:26432190

  2. Wave attenuation and mode dispersion in a waveguide coated with lossy dielectric material

    NASA Technical Reports Server (NTRS)

    Lee, C. S.; Chuang, S. L.; Lee, S. W.; Lo, Y. T.

    1984-01-01

    The modal attenuation constants in a cylindrical waveguide coated with a lossy dielectric material are studied as functions of frequency, dielectric constant, and thickness of the dielectric layer. A dielectric material best suited for a large attenuation is suggested. Using Kirchhoff's approximation, the field attenuation in a coated waveguide which is illuminated by a normally incident plane wave is also studied. For a circular guide which has a diameter of two wavelengths and is coated with a thin lossy dielectric layer (omega sub r = 9.1 - j2.3, thickness = 3% of the radius), a 3 dB attenuation is achieved within 16 diameters.

  3. Differential shear wave attenuation and its lateral variation in the North Atlantic region

    NASA Technical Reports Server (NTRS)

    Sheehan, Anne F.; Solomon, Sean C.

    1992-01-01

    A digital data base of over 150 seismograms and a spectral radio technique are used to measure SS-S differential attenuation in the North Atlantic region. Differential attenuation is positively correlated with SS-S travel time residual, and both differential attentuation and travel time residual decrease with increasing seafloor age. Models are developed for seismic Q in which lateral variations include contributions from the asthenospheric low-Q zone as well as from lithospheric cooling. The Q models obtained under this assumption are in good agreement with those obtained from surface wave studies and are therefore preferred over those models with lateral variations confined to the upper 125 km. Systematic long-wavelength (1000-7000 km) variations in differential attenuation, corrected for seafloor age, are evident along the axis of the Mid-Atlantic Ridge. These variations can be qualitatively correlated with long-wavelength variations in SS-S differential travel time residuals and are attributed to along-axis differences in upper mantle temperature.

  4. Phonon attenuation and quasiparticlephonon energy transfer in d-wave superconductors M. F. Smith and M. B. Walker

    E-print Network

    Walker, Michael B.

    that extend through the crossover frequency at which sound attenuation deviates from an 2 frequency depen describing the attenuation of sound waves in the cuprate superconductors such as YBa2Cu3O6 x , and makes usePhonon attenuation and quasiparticle­phonon energy transfer in d-wave superconductors M. F. Smith

  5. Laboratory measurements of seismic attenuation in partially saturated rocks

    NASA Astrophysics Data System (ADS)

    Chapman, Samuel; Tisato, Nicola; Quintal, Beatriz; Holliger, Klaus

    2014-05-01

    Laboratory measurements of seismic attenuation and transient pore fluid pressure are performed on partially saturated Berea sandstone and synthetic borosilicate samples. Various degrees of water (liquid) and nitrogen (gas) saturation are considered. These measurements are carried out at room temperature and under confining pressures varying from ambient conditions up to 25 MPa. The cylindrical samples are 25 cm long and have a diameter of 7.6 cm. In the context of the experimental setup, the solid frames of both the Berea sandstone and the borosilicate samples can be considered homogenous, which in turn allows for isolating and exploring the effects of partial saturation on seismic attenuation. We employ the sub-resonance method, which is based on the application of a time-harmonic vertical stress to the top of the sample and the measurement of the thus resulting strain. For any given frequency, the attenuation is then inferred as the tangent of the phase shift between the applied stress and the observed strain. Using five equally spaced sensors along the central axis of the cylindrical sample, we measure the transient fluid pressure induced by the application of a step-function-type vertical stress to the top of the sample. Both the sensors and the sample are sealed off with the regard to the confining environment. Together with the numerical results from corresponding compressibility tests based on the quasi-static poroelastic equations, these transient fluid pressure measurements are then used to assist the interpretation of the seismic attenuation measurements.

  6. Attenuation of high-frequency body waves in the crust of the Central External Dinarides

    NASA Astrophysics Data System (ADS)

    Dasovi?, Iva; Ruš?i?, Marija; Herak, Davorka; Herak, Marijan

    2015-10-01

    The Central External Dinarides are known as a tectonically complex region of moderate seismicity where several strong earthquakes occurred in the last century. In order to gain insight into the attenuation of seismic waves in the area, the extended coda normalization method was applied to band-pass-filtered seismograms of local earthquakes recorded at seven seismological broadband stations. Obtained results indicate strong attenuation of direct body waves: Q 0,P = Q P(1 Hz) is found between 21 and 120 and Q 0,S = Q S(1 Hz) is between 46 and 113, whereas the exponent n in the power law of frequency dependence of the quality factor is found in the range of 0.63-1.52 and 0.65-0.97 for n P and n S, respectively. P-waves are, on the average, attenuated more than S-waves. The three island stations (Dugi Otok (DUGI), Žirje (ZIRJ), Hvar (HVAR)) are distinguished by the strong low-frequency P-wave attenuation and more pronounced frequency dependence of the Q P factor ( Q 0,S/ Q 0,P > 1.7, Q 0,P < 60, n P > n S). The remaining four inland stations (Udbina (UDBI), Mori?i (MORI), Kijevo (KIJV), ?a?vina (CACV)) all exhibit similar qualitative attenuation properties for P- and S-waves ( n P ? n S ? 1 and Q 0,S ? Q 0,P), although individual values of the Q-factors vary notably within this group. Low-frequency attenuation of direct S-waves in the crust is stronger than mean attenuation of scattered coda waves in the lithosphere, especially for long coda lapse times. The results are also qualitatively in agreement with the thermal regime in the area.

  7. Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic regionn, California ( USA).

    USGS Publications Warehouse

    Sanders, C.; Ho-Liu, P.; Rinn, D.; Hiroo, Kanamori

    1988-01-01

    We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of E California. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the area. 3-D images of the relative S wave attenuation structure are obtained from forward modeling and a back projection inversion of the amplitude data. The results indicate regions within a 20 by 30 by 10 km volume of the shallow crust (one shallower than 5 km) that severely attenuate SV waves passing through them. These anomalies lie beneath the Indian Wells Valley, 30 km S of the Coso volcanic field, and are coincident with the epicentral locations of recent earthquake swarms. No anomalous attenuation is seen beneath the Coso volcanic field above about 5 km depth. Geologic relations and the coincidence of anomalously slow P wave velocities suggest that the attenuation anomalies may be related to magmatism along the E Sierra front.-from Authors

  8. Seismic tomography of compressional wave attenuation structure for K?¯lauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing; Shearer, Peter M.; Amelung, Falk; Okubo, Paul G.

    2015-04-01

    We present a frequency-independent three-dimensional (3-D) compressional wave attenuation model (indicated by the reciprocal of quality factor Qp) for K?¯lauea Volcano in Hawai`i. We apply the simul2000 tomographic algorithm to the attenuation operator t* values for the inversion of Qp perturbations through a recent 3-D seismic velocity model and earthquake location catalog. The t* values are measured from amplitude spectra of 26708 P wave arrivals of 1036 events recorded by 61 seismic stations at the Hawaiian Volcanology Observatory. The 3-D Qp model has a uniform horizontal grid spacing of 3 km, and the vertical node intervals range between 2 and 10 km down to 35 km depth. In general, the resolved Qp values increase with depth, and there is a correlation between seismic activity and low-Qp values. The area beneath the summit caldera is dominated by low-Qp anomalies throughout the entire resolved depth range. The Southwest Rift Zone and the East Rift Zone exhibit very high Qp values at about 9 km depth, whereas the shallow depths are characterized with low-Qp anomalies comparable with those in the summit area. The seismic zones and fault systems generally display relatively high Qp values relative to the summit. The newly developed Qp model provides an important complement to the existing velocity models for exploring the magmatic system and evaluating and interpreting intrinsic physical properties of the rocks in the study area.

  9. Ultrasonic attenuation - Q measurements on 70215,29. [lunar rock

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Stephens, J.

    1974-01-01

    Ultrasonic attenuation measurements have been made on an aluminum alloy, obsidian, and rock samples including lunar sample 70215,29. The measurement technique is based on a combination of the pulse transmission method and the forced resonance method. The technique is designed to explore the problem of defining experimentally, the Q of a medium or sample in which mode conversion may occur. If modes are coupled, the measured attenuation is strongly dependent on individual modes of vibration, and a range of Q-factors may be measured over various resonances or from various portions of a transient signal. On 70215,29, measurements were made over a period of a month while the sample outgassed in hard varuum. During this period, the highest measured Q of this sample increased from a few hundred into the range of 1000-1300.

  10. Two-dimensional global Rayleigh wave attenuation model by accounting for finite-frequency focusing and defocusing effect

    NASA Astrophysics Data System (ADS)

    Ma, Zhitu; Masters, Guy; Mancinelli, Nicholas

    2016-01-01

    In this study, we obtain a set of 2-D global phase velocity and attenuation maps for Rayleigh waves between 5 and 25 mHz. Correcting the effect of focusing-defocusing is crucial in order to obtain reliable attenuation structure. Great circle linearized ray theory, which has been used to date, can give useful predictions of this effect if careful attention is paid to how the phase velocity model is smoothed. In contrast, predictions based on the 2-D finite-frequency kernels are quite robust in this frequency range and suggest that they are better suited as a basis for inversion. We use a large data set of Rayleigh wave phase and amplitude measurements to invert for the phase velocity, attenuation, source and receiver terms simultaneously. Our models provide 60-70 per cent variance reduction to the raw data though the source terms are the biggest contribution to the fit of the data. The attenuation maps show structures that correlate well with surface tectonics and the age progression trend of the attenuation is clearly seen in the ocean basins. We have also identified problematic stations and earthquake sources as a by-product of our data selection process.

  11. Acoustic Measurement of Suspended Fine Particle Concentrations by Attenuation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of sediment concentration is important in the study of streams and rivers. The work presented explores the appropriate frequency and transducer spacing for acoustic measurement of suspended particles in the range of 0.1 – 64 microns. High frequency (20 MHz) acoustic signal attenuation wa...

  12. Crosswell seismic studies in gas hydrate-bearing sediments: P wave velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Haberland, Ch.; Pratt, R. G.; Ryberg, T.; Weber, M. H.; Mallik Working Group

    2003-04-01

    We present crosswell seismic data from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. The crosswell seismic measurements were carried out by making use of two 1160 m deep observation wells (Mallik 3L-38 and 4L-38) both 45 m from and co-planar with the 1188 m deep production research well (5L-38). A high power piezo-ceramic source was used to generate sweeped signals with frequencies between 100 and 2000 Hz recorded with arrays of 8 hydrophones per depth level. A depth range between 800 and 1150 m was covered, with shot and receiver spacings of 0.75 m. High quality data could be collected during the survey which allow for application of a wide range of crosswell seismic methods. The initial data analysis included suppression of tube wave energy and picking of first arrivals. A damped least-squares algorithm was used to derive P-wave velocities from the travel time data. Next, t* values were derived from the decay of the amplitude spectra, which served as input parameters for a damped least-squares attenuation tomography. The initial results of the P-wave velocity and attenuation tomography reveal significant features reflecting the stratigraphic environment and allow for detection and eventually quantification of gas hydrate bearing sediments. A prominent correlation between P velocity and attenuation was found for the gas hydrate layers. This contradicts to the apparently more meaningful inverse correlation as it was determined for the gas hydrates at the Blake Ridge but supports the results from the Mallik 2L-38 sonic log data. The P velocities and attenuation values, if combined with other information can be important for the quantitative evaluation of the gas hydrate saturation, and may further constrain petrophysical models of the hydrate bearing sediment formation.

  13. Measurement of acoustic attenuation in South Pole ice

    NASA Astrophysics Data System (ADS)

    IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Gustafsson, L.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Tur?an, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2011-01-01

    Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient ? = 3.20 ± 0.57 km-1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for ? ? 1/? of ˜300 m with 20% uncertainty. No significant depth or frequency dependence has been found.

  14. The attenuation mechanism of S-waves in the source zone of the 1999 Chamoli earthquake

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Kumar, A.; Garg, A.; Del-Pezzo, E.; Kayal, J. R.

    2014-01-01

    In the present study the attenuation mechanism of seismic wave energy in and around the source area of the Chamoli earthquake of 29th March 1999 is estimated using the aftershock data. Most of the analyzed events are from the vicinity of the Main Central Thrust (MCT), which is a well-defined tectonic discontinuity in the Himalayas. Separation of intrinsic (Qi-1) and scattering (Qs-1) attenuation coefficient is done over the frequencies 1, 2, 4, 8 and 16 Hz using Multiple Lapse Time Window Analysis (MLTWA) method. It is observed that S-waves and their coda are primarily attenuated due to scattering attenuation and seismic albedo is very high at all the frequencies. A comparison of attenuation characteristics obtained using these aftershock data with those obtained using data of general seismicity of this region reveal that at lower frequencies both intrinsic and scattering attenuation for Chamoli was much higher compared to those for Garwhal-Kumaun region using general seismicity data. At higher frequencies intrinsic attenuation for Chamoli is lower than and scattering attenuation is comparable to those obtained using general seismicity data of Garwhal-Kumaun region.

  15. Measurement by reflection analysis of optical attenuation through windows

    NASA Astrophysics Data System (ADS)

    Eisenberg, Eric C.; Adams, Jeff C.; Cornish, Carrie S.

    2001-11-01

    Free space optical communication systems deployed in office buildings are subject to transmission loss through windows. Window attenuation varies between 0.4 and more than 15 dB. Window attenuation values are required to calculate communications link power budget and availability. But direct measurement of window attenuation in high-rise buildings is difficult since it requires access to both sides of the window. In this paper, we present a method of measuring optical attenuation from the interior side of a window. This method is based on measuring back reflections of a laser beam propagating through a semi-transparent dielectric medium, thus eliminating the need for access to the exterior of a building. In this system, a laser beam is launched at 45 degree(s) to normal incidence in order for the user to discriminate between the various reflections from the dielectric interfaces within the medium. A photodetector is then moved through the plane of incidence and the intensities of reflections from interfaces within the medium are measured. A simple formula is used to calculate total transmission of the optical system based on the relative intensities of the incident light beam and all resulting reflections. In this approach, it is assumed that the reflectivities of the first and final interfaces are identical. The index of refraction for glass from one commercial fabricator varies little; hence the reflectivity of uncoated air-glass interfaces in a particular window is the same. The intensity of the reflection from the final interface is attenuated by the entire medium twice. By comparison of the incident, first, and final reflected intensity a transmitted intensity can be determined. The same equation is used for a medium with any number of dielectric interfaces. A measurement of optical loss through a window without access to both sides of the medium is now possible. This method has been demonstrated to be accurate (+/- 1dB) through various windows with optical losses of up to 12dB.

  16. Measurment and Interpretation of Seismic Attenuation for Hydrocarbon Exploration

    SciTech Connect

    Michael Batzle; Luca Duranti; James Rector; Steve Pride

    2007-12-31

    This research project is the combined effort of several leading research groups. Advanced theoretical work is being conducted at the Lawrence Berkeley National Laboratory. Here, the fundamental controls on loss mechanisms are being examined, primarily by use of numerical models of heterogeneous porous media. At the University of California, Berkeley, forward modeling is combined with direct measurement of attenuation. This forward modeling provides an estimate of the influence of 1/Q on the observed seismic signature. Direct measures of losses in Vertical Seismic Profiles (VSPs) indicate mechanisms to separate scattering versus intrinsic losses. At the Colorado School of Mines, low frequency attenuation measurements are combined with geologic models of deep water sands. ChevronTexaco is our corporate cosponsor and research partner. This corporation is providing field data over the Genesis Field, Gulf of Mexico. In addition, ChevronTexaco has rebuilt and improved their low frequency measurement system. Soft samples representative of the Genesis Field can now be measured for velocities and attenuations under reservoir conditions. Throughout this project we have: Assessed the contribution of mechanical compaction on time-lapse monitoring; Developed and tested finite difference code to model dispersion and attenuation; Heterogeneous porous materials were modeled and 1/Q calculated vs. frequency; 'Self-affine' heterogeneous materials with differing Hurst exponent modeled; Laboratory confirmation was made of meso-scale fluid motion influence on 1/Q; Confirmed theory and magnitude of layer-based scattering attenuation at Genesis and at a shallow site in California; Scattering Q's of between 40 and 80 were obtained; Measured very low intrinsic Q's (2-20) in a partially saturated vadose zone VSP; First field study to separate scattering and intrinsic attenuation in real data set; Revitalized low frequency device at ChevronTexaco's Richmond lab completed; First complete frequency dependent measurements on Berea sandstones from dry to various saturations (brine and decane); Frequency dependent forward modeling code is running, and tested on a couple of Cases--derives frequency dependent reflectivity from porosity based logs; Genesis seismic data obtained but is on hold until forward modeling is complete; Boundary and end effects modeled for soft material measurements at CSM; and Numerous papers published or submitted and presentations made.

  17. Comparison of viscoelastic-type models for ocean wave attenuation in ice-covered seas

    NASA Astrophysics Data System (ADS)

    Mosig, Johannes E. M.; Montiel, Fabien; Squire, Vernon A.

    2015-09-01

    Continuum-based models that describe the propagation of ocean waves in ice-infested seas are considered, where the surface ocean layer (including ice floes, brash ice, etc.) is modeled by a homogeneous viscoelastic material which causes waves to attenuate as they travel through the medium. Three ice layer models are compared, namely a viscoelastic fluid layer model currently being trialed in the spectral wave model WAVEWATCH III® and two simpler viscoelastic thin beam models. All three models are two dimensional. A comparative analysis shows that one of the beam models provides similar predictions for wave attenuation and wavelength to the viscoelastic fluid model. The three models are calibrated using wave attenuation data recently collected in the Antarctic marginal ice zone as an example. Although agreement with the data is obtained with all three models, several important issues related to the viscoelastic fluid model are identified that raise questions about its suitability to characterize wave attenuation in ice-covered seas. Viscoelastic beam models appear to provide a more robust parameterization of the phenomenon being modeled, but still remain questionable as a valid characterization of wave-ice interactions generally.

  18. Upper mantle and crustal P-wave attenuation beneath the North Korea region

    NASA Astrophysics Data System (ADS)

    Cleveland, M.; Randall, G. E.; Patton, H. J.; Phillips, W. S.

    2014-12-01

    Accurate estimation of the magnitude of crustal seismic sources is dependent upon a strong understanding of the anelastic P-wave attenuation in the crust and upper mantle. In this study, we estimate the crustal/upper mantle average attenuation (t*) for the region around North Korea by expanding upon methods described by Ichinose et al. [2013]. We estimate t* by modeling the observed spectra and spectral ratio of regional and teleseismic P- and pP-phases of large, deep (> 500 km) earthquakes rupturing beneath the North Korea region. We use seismograms, acquired from the IRIS data archive, from operational stations at the time of each earthquake. Because of a trade-off between the variables, we use multi-variable optimization to estimate the best-fitting corner frequency (fc) and t* for each spectrum. In addition to using a more quantitative and global approach than earlier studies, we introduce new measurement approaches enabling a better understanding of the uncertainty in the measured t* value and its trade-off with fc.

  19. The large-scale influence of the Great Barrier Reef matrix on wave attenuation

    NASA Astrophysics Data System (ADS)

    Gallop, Shari L.; Young, Ian R.; Ranasinghe, Roshanka; Durrant, Tom H.; Haigh, Ivan D.

    2014-12-01

    Offshore reef systems consist of individual reefs, with spaces in between, which together constitute the reef matrix. This is the first comprehensive, large-scale study, of the influence of an offshore reef system on wave climate and wave transmission. The focus was on the Great Barrier Reef (GBR), Australia, utilizing a 16-yr record of wave height from seven satellite altimeters. Within the GBR matrix, the wave climate is not strongly dependent on reef matrix submergence. This suggests that after initial wave breaking at the seaward edge of the reef matrix, wave energy that penetrates the matrix has little depth modulation. There is no clear evidence to suggest that as reef matrix porosity (ratio of spaces between individual reefs to reef area) decreases, wave attenuation increases. This is because individual reefs cast a wave shadow much larger than the reef itself; thus, a matrix of isolated reefs is remarkably effective at attenuating wave energy. This weak dependence of transmitted wave energy on depth of reef submergence, and reef matrix porosity, is also evident in the lee of the GBR matrix. Here, wave conditions appear to be dependent largely on local wind speed, rather than wave conditions either seaward, or within the reef matrix. This is because the GBR matrix is a very effective wave absorber, irrespective of water depth and reef matrix porosity.

  20. Scattering and Attenuation of Seismic Waves in the Lithosphere / 1 ch11Text.doc 12/30/99 6:41 PM

    E-print Network

    Scattering and Attenuation of Seismic Waves in the Lithosphere / 1 ch11Text.doc 12/30/99 6:41 PM Running title: Scattering and Attenuation Chapter 11. Scattering and Attenuation of Seismic Waves in observational and theoretical studies on scattering and attenuation of high-frequency seismic waves in the earth

  1. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  2. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    E-print Network

    Neumeier, A; Himpsl, A; Hofmann, M; Oberauer, L; Potzel, W; Schönert, S; Ulrich, A

    2015-01-01

    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  3. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    NASA Astrophysics Data System (ADS)

    Neumeier, A.; Dandl, T.; Himpsl, A.; Hofmann, M.; Oberauer, L.; Potzel, W.; Schönert, S.; Ulrich, A.

    2015-11-01

    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  4. The Effect of Methane Hydrate Formation on Seismic Wave Attenuation in Sand

    NASA Astrophysics Data System (ADS)

    Best, A. I.; Priest, J.; Clayton, C. R.; Rees, E. V.

    2012-12-01

    Knowledge of seismic wave attenuation in hydrate-bearing sediments can potentially improve the geophysical quantification of seafloor methane hydrates with applications to climate change, geohazards and economic resource studies. With this aim, we conducted a series of small strain (< 10-6), seismic frequency (50 - 550 Hz), laboratory resonant column experiments on synthetic methane hydrate-bearing sands, created under excess-gas and excess-water conditions, at an effective pressure of 500 kPa, for controlled hydrate saturations Sh between 0 - 0.43. The excess-gas method resulted in predominantly methane saturated, hydrate-bearing sand (water saturation Sw = 0.01), while the excess-water method produced a water saturated (Sw = 1.0), hydrate-bearing sand. Previously reported velocity results for P- and S-waves can be explained by grain coating hydrate for excess-gas formation, and by pore-filling hydrate for excess-water formation, based on theoretical velocity models. Both hydrate formation methods gave elevated P- and S-wave attenuations (here denoted as inverse quality factor Qp-1 and Qs-1 respectively) up to, for excess-gas 0.036 (Qp-1) and 0.025 (Qs-1), and for excess-water 0.1 (Qp-1) and 0.03 (Qs-1.). These values are always greater than those for sand without any hydrate, either water or partially water saturated; excess-water attenuation is always higher than excess-gas attenuation values above Sh = 0.1 (note that data were collected at discrete hydrate saturations between Sh = 0 - 0.43 only). Despite experimental errors of ± 10%, the attenuations show significant variations with hydrate saturation, and evidence for attenuation peaks at Sh = 0.05 for excess-gas, and at Sh = 0.13, 0.32 for excess-water, formation. Theoretical attenuation modelling with grain coating hydrate cement or load-bearing hydrate or pore-filling hydrate, based on extant velocity models, suggests that load-bearing hydrate is an important cause of heightened attenuation for both P- and S-waves in gas and water saturated sand, while pore-filling hydrate also contributes significantly to P-wave attenuation in water saturated sand. A poro-viscoelastic attenuation mechanism related to microporous hydrate and the formation of low aspect ratio pores adjacent to sand grains is thought to be responsible for the heightened levels of attenuation, whether in gas or water saturated sand. The model can be extended to clay-rich sediments.

  5. P- and S-wave seismic attenuation for deep natural gas exploration and development

    SciTech Connect

    Walls, Joel; Uden, Richard; Singleton, Scott; Shu, Rone; Mavko, Gary

    2005-04-12

    Using current methods, oil and gas in the subsurface cannot be reliably predicted from seismic data. This causes domestic oil and gas fields to go undiscovered and unexploited, thereby increasing the need to import energy.The general objective of this study was to demonstrate a simple and effective methodology for estimating reservoir properties (gas saturation in particular, but also including lithology, net to gross ratios, and porosity) from seismic attenuation and other attributes using P- and S-waves. Phase I specific technical objectives: Develop Empirical or Theoretical Rock Physics Relations for Qp and Qs; Create P-wave and S-wave Synthetic Seismic Modeling Algorithms with Q; and, Compute P-wave and S-wave Q Attributes from Multi-component Seismic Data. All objectives defined in the Phase I proposal were accomplished. During the course of this project, a new class of seismic analysis was developed based on compressional and shear wave inelastic rock properties (attenuation). This method provides a better link between seismic data and the presence of hydrocarbons. The technique employs both P and S-wave data to better discriminate between attenuation due to hydrocarbons versus energy loss due to other factors such as scattering and geometric spreading. It was demonstrated that P and S attenuation can be computed from well log data and used to generate synthetic seismograms. Rock physics models for P and S attenuation were tested on a well from the Gulf of Mexico. The P- and S-wave Q attributes were computed on multi-component 2D seismic data intersecting this well. These methods generated reasonable results, and most importantly, the Q attributes indicated gas saturation.

  6. Body-wave Attenuation in the South-Central Region of the Gulf of California, México

    NASA Astrophysics Data System (ADS)

    Castro, R. R.; Vidales-Basurto, C. A.; Huerta, C. I.; Sumy, D. F.; Gaherty, J. B.; Collins, J. A.

    2014-12-01

    We present results from a recent study of seismic attenuation of body waves in the south-central region of the Gulf of California (GoC) obtained using records from the Network of Autonomously Recording Seismographs of Baja California (NARS-Baja), from the CICESE's Broadband Seismological Network of the GoC (RESBAN), and from the Ocean Bottom Seismographs (OBS) deployed as part of the Sea of Cortez Ocean Bottom Array experiment (SCOOBA). We examine 27 well-located earthquakes that occurred from October 2005 to October 2006 with magnitudes (Mw) between 3.5 and 4.8. We estimated S-wave site effects by calculating horizontal to vertical spectral ratios and determined attenuation functions with a nonparametric model by inverting the observed spectral amplitudes of 21 frequencies between 0.13 and 12.59 Hz for the SCOOBA (OBS) stations and 19 frequencies between 0.16 and 7.94 Hz for NARS-Baja and RESBAN stations. We calculated the geometrical spreading and the attenuation (1/Q) factors for two distance intervals (10-120 km and 120-220 km, respectively) for each frequency considered. The estimates of Q obtained with the SCOOBA (OBS) records for the interval 10-120 km indicate that the P waves attenuate more than S waves (QP=34 f 0.82, QS=59 f 0.90) for frequencies between 0.6 and 12.6 Hz; while for the 120-220 km interval, where ray-paths travel deeper, S waves attenuate more than P waves (QP=117 f 0.44, QS=51 f 1.12). The estimates of Q obtained using NARS-Baja and RESBAN records, within 10-120 km, indicate that P waves attenuate more than S waves (QP=69 f 0.87, QS=176 f 0.61) at frequencies between 0.3 and 6.3 Hz; while at the 120-220 km distance interval S waves attenuate slightly more than P waves (QP=39 f 0.64, QS=48 f 0.37) at high frequencies (f > 3 Hz). These results, based on a unique OBS dataset, provide an indirect mean to constrain future models of the thermal structure beneth the GoC.

  7. 40 CFR 211.206 - Methods for measurement of sound attenuation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measurement of sound attenuation. ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Methods for measurement of sound attenuation. 211.206 Section 211.206 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  8. 40 CFR 211.206 - Methods for measurement of sound attenuation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measurement of sound attenuation. ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Methods for measurement of sound attenuation. 211.206 Section 211.206 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  9. 40 CFR 211.206 - Methods for measurement of sound attenuation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Methods for measurement of sound attenuation. 211.206 Section 211.206 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... measurement of sound attenuation....

  10. 40 CFR 211.206 - Methods for measurement of sound attenuation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Methods for measurement of sound attenuation. 211.206 Section 211.206 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... measurement of sound attenuation....

  11. An evaluation of two millimeter wave propagation models for horizontal atmospheric attenuation at 70-115 GHZ

    NASA Astrophysics Data System (ADS)

    Vogel, Gerard N.

    1988-02-01

    An evaluation is performed for two millimeter wave propagation models: the LIEBE model, developed at the Institute for Telecommunications, Boulder, CO, under the guidance of Dr. H. Liebe; and the EOSAEL model, developed at the U. S. Army Atmospheric Laboratory at White Sands Missile Range, NM. This evaluation is conducted for horizontal attenuation due to both clear atmosphere and hydrometer effects under typical surface meteorological conditions, and within the frequency range 70-115 GHz. Intercomparisons of model theories and predictions show slight differences for molecular oxygen and fog attenuations, but significant differences for water vapor and rain attenuations. Results indicate that, while the qualitative agreement between either the EOSAEL or LIEBE model predictions, and measurements, for horizontal attenuation due to oxygen, water vapor, fog and rain is certainly satisfactory, there is a definite need for improvement. Overall, no clear preference for either the EOSAEL or LIEBE model for operational use is ascertained. Data comparisons suggest that, for several attenuation types, model preference is dependent on either the frequency or meteorological conditions.

  12. Experimental investigation of wave attenuation through model and live vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation are not fully understood. K...

  13. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    SciTech Connect

    Erlangga, Mokhammad Puput

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the ?-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  14. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    NASA Astrophysics Data System (ADS)

    Erlangga, Mokhammad Puput

    2015-04-01

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the ?-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  15. Sensitivity of seismic measurements to frequency-dependent attenuation and upper mantle structure: An initial approach

    NASA Astrophysics Data System (ADS)

    Bellis, C.; Holtzman, B.

    2014-07-01

    This study addresses the sensitivity of seismic attenuation measurements to dissipative mechanisms and structure in the Earth's upper mantle. The Andrade anelastic model fits experimental attenuation data with a mild power law frequency dependence and can be scaled from laboratory to Earth conditions. We incorporate this anelastic model into 400km 1-D thermal profiles of the upper mantle. These continuous-spectrum models are approximated by multiple relaxation mechanisms that are implemented within a finite-difference scheme to perform wave propagation simulations in 1-D domains. In two sets of numerical experiments, we evaluate the measurable signature of the intrinsic attenuation structure. The two sets are defined by thermal profiles with added step functions of temperature, varying in (i) amplitude and depth or (ii) amplitude and sharpness. The corresponding synthetic data are processed using both the conventional t* approach, i.e., a linear regression of the displacement frequency spectrum, and an alternative nonlinear fit to identify the integrated value of attenuation and its frequency dependence. The measured sensitivity patterns are analyzed to assess the effects of the anelastic model and its spatial distribution on seismic data (in the absence of scattering effects). We have two straightforward results: (1) the frequency dependence power law is recoverable from the measurements; (2) t* is sensitive to both the depth and the amplitude of the step, and it is insensitive to the sharpness of the step, in the 0.25 to 2 Hz band. There is much potential for gaining information about the upper mantle thermodynamic state from careful interpretation of attenuation.

  16. Q c and Q S wave attenuation of South African earthquakes

    NASA Astrophysics Data System (ADS)

    Brandt, Martin B. C.

    2015-11-01

    Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6 ? M L ? 4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and ? were determined for the attenuation relation Q c(f) = Q 0 f ? . The result was Q 0 = 396 ± 29 and ? = 0.72 ± 0.04 for a lapse time of 1.9*(t s - t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0 = 391 ± 130 and ? = 0.60 ± 0.16, which agrees well with the coda Q c result.

  17. Study of wind speed attenuation at Kavaratti Island using land-based, offshore, and satellite measurements

    NASA Astrophysics Data System (ADS)

    Joseph, Antony; Rivonkar, Pradhan; Balakrishnan Nair, T. M.

    2012-06-01

    The role of dense coconut palms in attenuating the wind speed at Kavaratti Island, which is located in the southeastern Arabian Sea, is examined based on land-based and offshore wind measurements (U10) using anchored-buoy-mounted and satellite-borne sensors (QuikSCAT scatterometer and TMI microwave imager) during an 8-year period (2000-2007). It is found that round the year monthly-mean wind speed measurements from the Port Control Tower (PCT) located within the coconut palm farm at the Kavaratti Island are weaker by 15-61% relative to those made from the nearby offshore region. Whereas wind speed attenuation at the island is ~15-40% in the mid-June to mid-October south-west monsoon period, it is ~41-61% during the rest of the year. Wind direction measurements from all the devices overlapped, except in March-April during which the buoy measurements deviated from the other measurements by ~20°. U10 wind speed measurements from PCT during the November 2009 tropical cyclone "Phyan" indicated approximately 50-80% attenuation relative to those from the seaward boundary of the island's lagoon (and therefore least influenced by the coconut palms). The observed wind speed attenuation can be understood through the theory of free turbulent flow jets embodied in the boundary-layer fluid dynamics, according to which both the axial and transverse components of the efflux of flows discharged through the inter-leaves porosity (orifice) undergo increasing attenuation in the downstream direction with increasing distance from the orifice. Thus, the observed wind speed attenuation at Kavaratti Island is attributable to the decline in wind energy transmission from the seaward boundary of the coconut palm farm with distance into the farm. Just like mangrove forests function as bio-shields against forces from oceanic waves and stormsurges through their large above-ground aerial root systems and standing crop, and thereby playing a distinctive role in ameliorating the effects of catastrophies such as hurricanes, tidal bores, cyclones, and tsunamis, the present study provides an indication that densely populated coconut palms and other tall tree vegetation would function as bio-shields against the damaging effects of storms through attenuation of wind speed.

  18. Attenuation of sonic waves in water-saturated alluvial sediments due to wave-induced fluid flow at microscopic, mesoscopic and macroscopic scales

    NASA Astrophysics Data System (ADS)

    Milani, Marco; Rubino, J. Germán; Baron, Ludovic; Sidler, Rolf; Holliger, Klaus

    2015-10-01

    The attenuation and velocity dispersion of sonic waves contain valuable information on the mechanical and hydraulic properties of the probed medium. An inherent complication arising in the interpretation of corresponding measurements is, however, that there are multiple physical mechanisms contributing to the energy dissipation and that the relative importance of the various contributions is difficult to unravel. To address this problem for the practically relevant case of terrestrial alluvial sediments, we analyse the attenuation and velocity dispersion characteristics of broad-band multifrequency sonic logs with dominant source frequencies ranging between 1 and 30 kHz. To adequately compensate for the effects of geometrical spreading, which is critical for reliable attenuation estimates, we simulate our experimental setup using a correspondingly targeted numerical solution of the poroelastic equations. After having applied the thus inferred corrections, the broad-band sonic log data set, in conjunction with a comprehensive suite of complementary logging data, allows for assessing the relative importance of a range of pertinent attenuation mechanisms. In doing so, we focus on the effects of wave-induced fluid flow over a wide range of scales. Our results indicate that the levels of attenuation due to the presence of mesoscopic heterogeneities in unconsolidated clastic sediments fully saturated with water are expected to be largely negligible. Conversely, Monte-Carlo-type inversions indicate that Biot's classical model permits to explain most of the considered data. Refinements with regard to the fitting of the observed attenuation and velocity dispersion characteristics are locally provided by accounting for energy dissipation at the microscopic scale, although the nature of the underlying physical mechanism remains speculative.

  19. Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media.

    PubMed

    Norton, Guy V; Novarini, Jorge C

    2003-06-01

    When sound propagates in a lossy fluid, causality dictates that in most cases the presence of attenuation is accompanied by dispersion. The ability to incorporate attenuation and its causal companion, dispersion, directly in the time domain has received little attention. Szabo [J. Acoust. Soc. Am. 96, 491-500 (1994)] showed that attenuation and dispersion in a linear medium can be accounted for in the linear wave equation by the inclusion of a causal convolutional propagation operator that includes both phenomena. Szabo's work was restricted to media with a power-law attenuation. Waters et al. [J. Acoust. Soc. Am. 108, 2114-2119 (2000)] showed that Szabo's approach could be used in a broader class of media. Direct application of Szabo's formalism is still lacking. To evaluate the concept of the causal convolutional propagation operator as introduced by Szabo, the operator is applied to pulse propagation in an isotropic lossy medium directly in the time domain. The generalized linear wave equation containing the operator is solved via a finite-difference-time-domain scheme. Two functional forms for the attenuation often encountered in acoustics are examined. It is shown that the presence of the operator correctly incorporates both, attenuation and dispersion. PMID:12822773

  20. Dynamic aspects of apparent attenuation and wave localization in layered media

    USGS Publications Warehouse

    Haney, M.M.; Van Wijk, K.

    2008-01-01

    We present a theory for multiply-scattered waves in layered media which takes into account wave interference. The inclusion of interference in the theory leads to a new description of the phenomenon of wave localization and its impact on the apparent attenuation of seismic waves. We use the theory to estimate the localization length at a CO2 sequestration site in New Mexico at sonic frequencies (2 kHz) by performing numerical simulations with a model taken from well logs. Near this frequency, we find a localization length of roughly 180 m, leading to a localization-induced quality factor Q of 360.

  1. Method for computing the attenuation coefficient of electromagnetic waves in anisotropic plasma columns

    SciTech Connect

    Ghanashev, I.; Zhelyazkov, I. )

    1994-12-01

    A new and efficient method for calculating the attenuation coefficient of weakly damped electromagnetic waves traveling along wave-guiding structures partially or entirely filled by a lossy anisotropic dielectric, in particular cold axially magnetized plasma, is proposed. The structure cross-section geometry can be arbitrary and any nonradiating mode can be considered. In the case of plasma columns, they might be transversely inhomogeneous. Having obtained the attenuation coefficient, it is straightforward to find out the axial structure of plasma columns sustained by the waves themselves. The method is applied to azimuthally symmetric and dipolar waves in cylindrical plasma columns and it is found to reproduce all known theoretical results within its applicability.

  2. Journal of Sound and Vibration (1996) 196(1), 107127 ATTENUATION OF WAVES IN PLATES AND BARS

    E-print Network

    Norris, Andrew

    1996-01-01

    Journal of Sound and Vibration (1996) 196(1), 107­127 ATTENUATION OF WAVES IN PLATES AND BARS USING of energy in a 10 thick steel plate is achieved for frequencies from 2­10 kHz, using this approach 1996) A new method is proposed for attenuating structural wave reflections at the edges of plates

  3. Saturation of attenuation length of spin waves in thick permalloy films

    NASA Astrophysics Data System (ADS)

    Ota, Masaki; Yamanoi, Kazuto; Kasai, Shinya; Mitani, Seiji; Manago, Takashi

    2015-11-01

    The permalloy (Py) thickness dependence of the magnetostatic spin wave (MSSW) propagation was investigated. Large-group velocity is realized for thick Py films and the MSSW can propagate more than 150 µm. However, attenuation length hardly changes for samples with a Py thickness of more than 100 nm, despite the increasing group velocity with increasing thickness. The eddy current effect decreases the wave channel thickness and it could cause the damping enhancement due to intralayer spin pumping in thick Py films.

  4. Attenuation of acoustic waves in glacial ice and salt domes P. B. Price

    E-print Network

    Price, P. Buford

    Cl (rock salt) with grain size 0.75 cm, scattering lengths are calculated to be 120 and 1.4 km at 10 and 30Attenuation of acoustic waves in glacial ice and salt domes P. B. Price Physics Department and salt domes, are under consideration as media in which to deploy instruments for detection of neutrinos

  5. Shock-Wave Attenuation and Energy-Dissipation Potential of Granular Materials

    E-print Network

    Grujicic, Mica

    Shock-Wave Attenuation and Energy-Dissipation Potential of Granular Materials Mica Grujicic, B shocks in granular materials is analyzed using a conventional shock-physics approach. Within discontinuities. In addition, the granular material is considered as being a continuum (i.e., no mesoscale

  6. Absolute Ultrasound Attenuation Measurements in Superfluid 3He in 98% Aerogel by Direct Transmission

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Choi, H. C.; Masuhara, N.; Moon, B. H.; Bhupathi, P.; Meisel, M. W.; Mulders, N.

    2007-09-01

    Systematic investigations on the effect of static disorder on p-wave superfluid 3He have been made possible by utilizing the unique structure of high porosity silica aerogel. For the past 10 years, a burst of experimental efforts revealed that three distinct superfluid phases exists. We have performed longitudinal ultrasound (9.5 MHz) attenuation measurements in the B-phase of the superfluid 3He in 98% aerogel. The absolute attenuation was determined by direct propagation of sound pulses through the medium in a wide range of temperatures, down to 200 ?K, for sample pressures of 10 and 29 bars. Our results provide direct information on the zero-energy density of states of the superfluid phase in aerogel originating from impurity scattering.

  7. 2-D Coda and Direct Wave Attenuation Tomography in Northern Italy

    SciTech Connect

    Morasca, P; Mayeda, K; Gok, R; Phillips, W S; Malagnini, L

    2007-10-17

    A 1-D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and Sto-coda transfer function effects. Recently this methodology was applied to micro earthquake data sets from three sub-regions of northern Italy (i.e., western Alps, northern Apennines and eastern Alps). Since the study regions were small, ranging between local-to-near-regional distances, the simple 1-D path assumptions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2-D path correction might provide even better results if the datasets were combined, especially when paths traverse larger distances and complicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2-D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions such as isotropic source radiation which is generally true for coda waves. Our results are compared against direct Swave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) which tested the same tomographic methodology applied in this study to invert for 1/Q. We find that 2-D coda path corrections for this region significantly improve upon the 1-D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral variations in Q for northern Italy relative to California.

  8. Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle

    USGS Publications Warehouse

    Artemieva, I.M.; Billien, M.; Leveque, J.-J.; Mooney, W.D.

    2004-01-01

    Seismic velocity and attenuation anomalies in the mantle are commonly interpreted in terms of temperature variations on the basis of laboratory studies of elastic and anelastic properties of rocks. In order to evaluate the relative contributions of thermal and non-thermal effects on anomalies of attenuation of seismic shear waves, QS-1, and seismic velocity, VS, we compare global maps of the thermal structure of the continental upper mantle with global QS-1 and Vs maps as determined from Rayleigh waves at periods between 40 and 150 S. We limit the comparison to three continental mantle depths (50, 100 and 150 km), where model resolution is relatively high. The available data set does not indicate that, at a global scale, seismic anomalies in the upper mantle are controlled solely by temperature variations. Continental maps have correlation coefficients of <0.56 between VS and T and of <0.47 between QS and T at any depth. Such low correlation coefficients can partially be attributed to modelling arrefacts; however, they also suggest that not all of the VS and QS anomalies in the continental upper mantle can be explained by T variations. Global maps show that, by the sign of the anomaly, VS and QS usually inversely correlate with lithospheric temperatures: most cratonic regions show high VS and QS and low T, while most active regions have seismic and thermal anomalies of the opposite sign. The strongest inverse correlation is found at a depth of 100 km, where the attenuation model is best resolved. Significantly, at this depth, the contours of near-zero QS anomalies approximately correspond to the 1000 ??C isotherm, in agreement with laboratory measurements that show a pronounced increase in seismic attenuation in upper mantle rocks at 1000-1100 ??C. East-west profiles of VS, QS and T where continental data coverage is best (50??N latitude for North America and 60??N latitude for Eurasia) further demonstrate that temperature plays a dominant, but non-unique, role in determining the value of lithospheric VS and QS. At 100 km depth, where the resolution of seismic models is the highest, we compare observed seismic VS and QS with theoretical VST and QST values, respectively, that are calculated solely from temperature anomalies and constrained by experimental data on temperature dependencies of velocity and attenuation. This comparison shows that temperature variations alone are sufficient to explain seismic VS and QS in ca 50 per cent of continental regions. We hypothesize that compositional anomalies resulting from Fe depletion can explain the misfit between seismic and theoretical VS in cratonic lithosphere. In regions of active tectonics, temperature effects alone cannot explain seismic VS and QS in the lithosphere. It is likely that partial melts and/or fluids may affect seismic parameters in these regions. This study demonstrates that lithospheric temperature plays the dominant role in controlling VS and QS anomalies, but other physical parameters, such as compositional variations, fluids, partial melting and scattering, may also play a significant role in determining VS and QS variations in the continental mantle. ?? 2004 RAS.

  9. A technique for measuring velocity and attenuation of ultrasound in liquid foams J. Pierre a,

    E-print Network

    Elias, Florence - Laboratoire Matière et Systèmes Complexes, Université Paris 7

    the effective attenuation and velocity of sound in the med- ium, over a broad range of frequencies (typically 1A technique for measuring velocity and attenuation of ultrasound in liquid foams J. Pierre a, , F properties of the foam (density, phase velocity and attenuation) from the transmission measurements

  10. Characteristics of vibrational wave propagation and attenuation in submarine fluid-filled pipelines

    NASA Astrophysics Data System (ADS)

    Yan, Jin; Zhang, Juan

    2015-04-01

    As an important part of lifeline engineering in the development and utilization of marine resources, the submarine fluid-filled pipeline is a complex coupling system which is subjected to both internal and external flow fields. By utilizing Kennard's shell equations and combining with Helmholtz equations of flow field, the coupling equations of submarine fluid-filled pipeline for n=0 axisymmetrical wave motion are set up. Analytical expressions of wave speed are obtained for both s=1 and s=2 waves, which correspond to a fluid-dominated wave and an axial shell wave, respectively. The numerical results for wave speed and wave attenuation are obtained and discussed subsequently. It shows that the frequency depends on phase velocity, and the attenuation of this mode depends strongly on material parameters of the pipe and the internal and the external fluid fields. The characteristics of PVC pipe are studied for a comparison. The effects of shell thickness/radius ratio and density of the contained fluid on the model are also discussed. The study provides a theoretical basis and helps to accurately predict the situation of submarine pipelines, which also has practical application prospect in the field of pipeline leakage detection.

  11. Attenuation of Non-Physical Oscillations in Supernova Shock Waves

    NASA Astrophysics Data System (ADS)

    Duarte, S. B.; Rodrigues, H.; Portes, D.

    Artificial viscosity is widely used in numerical calculations of stellar core collapse. The failure or success of the prompt mechanism explosion of type-II supernovae is strongly dependent on the numerical code, and the study of a suitable and efficient method of capturing the shock front is a current problem. We present a novel one-term artificial viscosity which is dependent on the velocity field along the shock front. We show that this form of artificial viscosity is able to capture the profile of a plane shock wave, removing the non-physical oscillations originated by the artificial viscosity of von Neumann and Richtmyer type.

  12. Point-to-point measurement of radio frequency attenuation in South Polar ice

    NASA Astrophysics Data System (ADS)

    Richman, Michael; Hoffman, Kara

    2011-04-01

    For ultra high energy (UHE) electromagnetic showers in a dense medium, radio frequency Cherenkov emission is enhanced due to the Askaryan effect. Present and future detectors such as RICE, ANITA, ARIANNA and the Askaryan Radio Array (ARA) exploit this effect to detect UHE neutrinos interacting with Antarctic ice. The radio frequency electromagnetic wave attenuation length (the distance over which signal amplitude diminishes by a factor of 1 / e due to absorption or scattering) is of tantamount importance as it determines the size scale and effective volume of these detectors. Previous attenuation measurements rely on reflections off the bedrock of signals from a surface-mounted transmitter. Using RICE in-ice transmitters and IceCube Radio Extension in-ice receivers, we are conducting a point-to-point attenuation measurement in the upper 1500 meters of South Polar ice, the region of interest for planned near-surface detectors such as ARA. We will present the analysis method as well as preliminary results.

  13. Anomalous attenuation effect on reflectivity of an ultrasonic wave from a thin layer between dissimilar materials

    SciTech Connect

    Lavrentyev, A.I.; Rokhlin, S.I.

    1997-06-01

    Distinctive features of ultrasonic spectroscopy of adhesive joints of dissimilar materials (including anisotropic) are addressed both in theory and experiment. It is found that for dissimilar joining materials the depth of the reflection spectrum minimum depends nonmonotonically on attenuation in the layer and differs for measurements from opposite sides of the joint. It depends on both the attenuation in the adhesive and on adhesive/substrate impedance mismatches, resulting sometimes in zero reflectivity at nonzero attenuation in the adhesive. The effect is observed at normal and oblique incidence. A technique for measurement of the layer attenuation from amplitude and phase spectra is proposed. Experimental results show good agreement with theoretical predictions. {copyright} {ital 1997 Acoustical Society of America.}

  14. Complex contact-based dynamics of microsphere monolayers revealed by resonant attenuation of surface acoustic waves

    E-print Network

    Morgan Hiraiwa; Maroun Abi Ghanem; Samuel P. Wallen; Amey Khanolkar; Alexei A. Maznev; Nicholas Boechler

    2015-10-20

    Contact-based vibrations play a critical role in the dynamics of granular materials. Significant insights into vibrational granular dynamics have been obtained with reduced-dimensional systems containing macroscale particles. We study contact-based vibrations of a two-dimensional monolayer of micron-sized spheres on a solid substrate. Measurements of the resonant attenuation of laser-generated surface acoustic waves reveal three collective vibrational modes involving both displacements and rotations of the microspheres. To identify the modes, we tune the interparticle stiffness, which shifts the frequency of the horizontal-rotational resonances while leaving the vertical resonance unaffected. From the measured contact resonance frequencies we determine both particle-substrate and interparticle contact stiffnesses and find that the former is an order of magnitude larger than the latter. This study paves the way for investigating complex contact-based dynamics of microgranular media, demonstrates a novel acoustic metamaterial, and yields a new approach to studying micro- to nanoscale contact mechanics in multiparticle networks.

  15. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  16. Mantle Attenuation Estimated from Regional and Teleseismic P-waves of Deep Earthquakes and Surface Explosions

    NASA Astrophysics Data System (ADS)

    Ichinose, G.; Woods, M.; Dwyer, J.

    2014-03-01

    We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580-600 km) earthquakes (4.8 < M w < 5.5) in the Jilin-Heilongjiang, China region that borders with Russia and North Korea. These earthquakes are 200-300 km from the NKTS, within 200 km of the Global Seismic Network seismic station in Mudanjiang, China (MDJ) and the International Monitoring System primary arrays at Ussuriysk, Russia (USRK) and Wonju, Republic of Korea (KSRS). With the deep earthquakes, we split the t*(total) ray path into two segments: a t*(u), that represents the attenuation of the up-going ray from the deep hypocenters to the local-regional receivers, and t*(d), that represents the attenuation along the down-going ray to teleseismic receivers. The sum of t*(u) and t*(d) should be equal to t*(total), because they both share coincident ray paths. We estimated the upper-mantle attenuation t*(u) of 0.1 s at stations MDJ, USRK, and KSRS from individual and stacks of normalized P-wave spectra. We then estimated the average lower-mantle attenuation t*(d) of 0.4 s using stacked teleseismic P-wave spectra. We finally estimated a network average t*(total) of 0.5 s from the stacked teleseismic P-wave spectra from the 2009 nuclear test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ?2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5-2 Hz range.

  17. Ultrasound attenuation measurement in the presence of scatterer variation

    E-print Network

    Drummond, Tom

    visu- alisations harder still. For instance, sound attenuation is not simply a function of depth is due to the varying attenuation of sound in the medium. We typically only display the magnitude of sound. However, this is affected by the attenuation properties of the tissue above as well

  18. Measurement of ultrasonic scattering attenuation in austenitic stainless steel welds: realistic input data for NDT numerical modeling.

    PubMed

    Ploix, Marie-Aude; Guy, Philippe; Chassignole, Bertrand; Moysan, Joseph; Corneloup, Gilles; El Guerjouma, Rachid

    2014-09-01

    Multipass welds made of 316L stainless steel are specific welds of the primary circuit of pressurized water reactors in nuclear power plants. Because of their strong heterogeneous and anisotropic nature due to grain growth during solidification, ultrasonic waves may be greatly deviated, split and attenuated. Thus, ultrasonic assessment of the structural integrity of such welds is quite complicated. Numerical codes exist that simulate ultrasonic propagation through such structures, but they require precise and realistic input data, as attenuation coefficients. This paper presents rigorous measurements of attenuation in austenitic weld as a function of grain orientation. In fact attenuation is here mainly caused by grain scattering. Measurements are based on the decomposition of experimental beams into plane-wave angular spectra and on the modeling of the ultrasonic propagation through the material. For this, the transmission coefficients are calculated for any incident plane wave on an anisotropic plate. Two different hypotheses on the welded material are tested: first it is considered as monoclinic, and then as triclinic. Results are analyzed, and validated through comparison to theoretical predictions of related literature. They underline the great importance of well-describing the anisotropic structure of austenitic welds for UT modeling issues. PMID:24759567

  19. Tracking accelerated aging of composites with ultrasonic attenuation measurements

    SciTech Connect

    Chinn, D.J.; Durbin, P.F.; Thomas, G.H.; Groves, S.E.

    1996-10-01

    Composite materials are steadily replacing traditional materials in many industries. For many carbon composite materials, particularly in aerospace applications, durability is a critical design parameter which must be accurately characterized. Lawrence Livermore National Laboratory (LLNL) and Boeing Commercial Airplane Group have established a cooperative research and development agreement (CRADA) to assist in the high speed research program at Boeing. LLNL`s expertise in fiber composites, computer modeling, mechanical testing, chemical analysis and nondestructive evaluation (ND) will contribute to the study of advanced composite materials in commercial aerospace applications. Through thermo-mechanical experiments with periodic chemical analysis and nondestructive evaluation, the aging mechanisms in several continuous fiber polymer composites will be studied. Several measurement techniques are being studied for their correlation with aging. This paper describes through-transmission ultrasonic attenuation measurements of isothermally aged composite materials and their use as a tracking parameter for accelerated aging.

  20. Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks

    PubMed Central

    Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  1. Attenuation of coda waves in the Garhwal Lesser Himalaya, India

    NASA Astrophysics Data System (ADS)

    Jain, S. K.; Gupta, S. C.; Kumar, Ashwani

    2015-04-01

    Qc estimates for the Uttarkashi and the Chamoli regions of the Garhwal Lesser Himalaya have been obtained by analyzing the coda waves of 159 local earthquakes recorded during 2008 and 2009 employing a 12-station seismological network. Earthquakes around the Uttarkashi region are located in the epicentral distance range of 5.0 to 93.9 km, focal depth range of 1.63 to 42.13 km, and coda magnitude range of 0.2 to 2.9, whereas earthquakes around Chamoli region are located in the epicentral distance range of 19.8-109.2 km, focal depth range of 1.36 to 40.72 km, and coda magnitude range of 1.0 to 3.0. The coda waves of 30 s duration, recorded on 982 seismograms, have been analyzed in seven frequencies range centered at 1.5, 3.0, 6.0, 9.0, 12.0, 18.0, and 24.0 Hz for four to five lapse time windows (LTW) using the single backscattering model given by Aki and Chouet (J Geophys Res 80:3322-3342, 1975). Mean value of Qc estimates vary from 76 at 1.5 Hz to 2201 at 24.0 Hz for LTW range of 10-40 s and from 216 at 1.5 Hz to 3243 at 24.0 Hz for LTW range of 50-80 s (for the Uttarkashi region) and from 147 at 1.5 Hz to 2273 at 24.0 Hz for LTW range of 20-50 s and from 188 at 1.5 Hz to 2826 at 24.0 Hz for LTW range of 50-80 s (for Chamoli region). The Qc values thus obtained showed a clear dependence on frequency and LTW and frequency dependence Qc relationships, Qc = Q0f?, for LTWs that have been obtained as Qc = 57f1.20 (10-40 s), Qc = 97f1.07 (20-50 s), Qc = 116f1.03 (30-60 s), Qc = 130f1.03 (40-70 s), and Qc = 162f0.95 (50-80 s) for Uttarkashi region and Qc = 107f0.95 (20-50 s), Qc = 115f0.96 (30-60 s), Qc = 128f0.95 (40-70 s), and Qc = 145f0.95 (50-80 s) for Chamoli region.

  2. Dislocation damping and anisotropic seismic wave attenuation in Earth's upper mantle.

    PubMed

    Farla, Robert J M; Jackson, Ian; Fitz Gerald, John D; Faul, Ulrich H; Zimmerman, Mark E

    2012-04-20

    Crystal defects form during tectonic deformation and are reactivated by the shear stress associated with passing seismic waves. Although these defects, known as dislocations, potentially contribute to the attenuation of seismic waves in Earth's upper mantle, evidence for dislocation damping from laboratory studies has been circumstantial. We experimentally determined the shear modulus and associated strain-energy dissipation in pre-deformed synthetic olivine aggregates under high pressures and temperatures. Enhanced high-temperature background dissipation occurred in specimens pre-deformed by dislocation creep in either compression or torsion, the enhancement being greater for prior deformation in torsion. These observations suggest the possibility of anisotropic attenuation in relatively coarse-grained rocks where olivine is or was deformed at relatively high stress by dislocation creep in Earth's upper mantle. PMID:22517856

  3. Attenuation and localization of bending waves in a periodic/disordered fourfold composite beam

    NASA Astrophysics Data System (ADS)

    Yan, Zhi-Zhong; Zhang, Chuanzeng; Wang, Yue-Sheng

    2009-10-01

    By using the transfer matrix method this paper presents a study of the complex band structure, attenuation spectra and localization of bending waves in a periodic/disordered fourfold composite beam constructed by inserting thin piezoelectric or soft rubber layer at each interface of original elastic composite structures. Numerical examples are presented and the accuracy is validated by the wavelet method. The results show that the piezoelectricity can adjust the band gaps and the soft rubber can enlarge the degree of the localization and the frequency ranges of the complex band gaps. The localization factor resembles the shape of the attenuation curve in the complex band gaps. Subtle differences between the random disorder and the deterministic disorder are observed, except at lower frequencies. The behavior of the wave propagation and localization in random disordered beams can be altered by tuning different inserting position. The existence of piezoelectricity and/or soft rubber layers lends new insight into the vibration control of composite beams.

  4. Measurements of seismic attenuation and transient fluid pressure in partially saturated Berea sandstone: evidence of fluid flow on the mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Quintal, Beatriz

    2013-10-01

    A novel laboratory technique is proposed to investigate wave-induced fluid flow on the mesoscopic scale as a mechanism for seismic attenuation in partially saturated rocks. This technique combines measurements of seismic attenuation in the frequency range from 1 to 100 Hz with measurements of transient fluid pressure as a response of a step stress applied on top of the sample. We used a Berea sandstone sample partially saturated with water. The laboratory results suggest that wave-induced fluid flow on the mesoscopic scale is dominant in partially saturated samples. A 3-D numerical model representing the sample was used to verify the experimental results. Biot's equations of consolidation were solved with the finite-element method. Wave-induced fluid flow on the mesoscopic scale was the only attenuation mechanism accounted for in the numerical solution. The numerically calculated transient fluid pressure reproduced the laboratory data. Moreover, the numerically calculated attenuation, superposed to the frequency-independent matrix anelasticity, reproduced the attenuation measured in the laboratory in the partially saturated sample. This experimental-numerical fit demonstrates that wave-induced fluid flow on the mesoscopic scale and matrix anelasticity are the dominant mechanisms for seismic attenuation in partially saturated Berea sandstone.

  5. Laboratory Measurement of Guided Wave (Krauklis Wave) Propagation Within a Fluid-Saturated Fracture

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Korneev, V. A.

    2013-12-01

    A fluid-saturated flat channel between two solid half-spaces (i.e. a fracture) is known to support a guided wave called the Krauklis wave. In the field, this wave can potentially be used to examine the size and connectivity of natural and hydraulically induced fractures from a borehole. Krauklis waves propagate primarily within the fluid part of a fracture, can have very low velocity and large attenuation, and are very dispersive at low frequencies. We conducted laboratory measurements of the velocity of Krauklis waves using analogue fracture models at frequencies below 1 kHz. The models consisted of (1) two concentric aluminum cylinders with a water-filled gap and (2) a pair of rectangular aluminum plates containing a thin water-filled gap (tri-layer mode). In the latter, the water was contained by an o-ring along the edge of the plates. The velocity of the waves propagating within the models was determined both from waveforms in the time domain measured along the wave path and from acoustic resonances in the system. The results indicated that the waves measured from the cylindrical model were not dispersive at frequencies below 400 Hz, with a phase velocity of ~250 m/s. In contrast, the tri-layer model exhibited strongly dispersive velocity at measured frequencies of 7.5 Hz-500 Hz, with the lowest phase velocity being ~14 m/s at 7.5 Hz. These measurements agree well with our theoretical model predictions.

  6. Measurement of Neutral Beam Attenuation from Beam Emission

    NASA Astrophysics Data System (ADS)

    McDermott, R. M.; Yuh, H.; Rowan, W. L.; Scott, S. D.

    2004-11-01

    CXRS measurements of impurities in fusion plasmas are dependent upon local neutral beam densities. These local values can be found from complex penetration codes that depend upon plasma parameters, but they can also be derived directly from beam emission data from the multi-channel MSE diagnostic. Deriving beam densities in this fashion also provides the opportunity to benchmark the penetration codes. Before beam density can be derived from MSE data a channel-to-channel calibration of the MSE system is needed. This can be achieved by analysis of MSE data taken from beam-into-gas shots at a variety of pressures. The pressure variation allows in-situ measurement of the cross-section for beam attenuation, which is then used to acquire the channel-to-channel calibration constants. We will compare these empirical cross-sections with previous measurements. In some cases the atomic beam stopping cross-sections derived with these calibration constants show good agreement with predictions.( Janev, Boley, Post, D.E. (1989) NUCLEAR FUSION, 29 )12, 2125-39

  7. Radiometric observations of atmospheric attenuation at 20.6 and 31.65 GHz: The Wave Propagation Laboratory data base

    NASA Technical Reports Server (NTRS)

    Jacobson, Mark D.; Snider, J. B.; Westwater, E. R.

    1993-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Wave Propagation Laboratory (WPL) presently operates five dual-channel microwave radiometers, one triple-channel microwave radiometer, and one six-channel microwave radiometer. The dual-channel radiometers operate at frequencies of 20.6 or 23.87 GHz and 31.4 or 31.65 GHz. The triple-channel radiometer operates at 20.6, 31.65, and 90.0 GHz. The six-channel radiometer operates at frequencies of 20.6, 31.65, 52.85, 53.85, 55.45, and 58.8 GHz. Recent brightness temperature measurements and attenuation values from some of the above radiometers are presented. These radiometric measurements, taken in different locations throughout the world, have given WPL a diverse set of measurements under a variety of atmospheric conditions. We propose to do a more complete attenuation analysis on these measurements in the future. In addition, a new spinning reflector was installed recently for the dual-channel radiometer at the Platteville, Colorado site. This reflector will extend our measurement capabilities during precipating conditions. Locating the three-channel and portable dual-channel radiometers at or near Greeley, Colorado to support the Advanced Communications Technology Satellite (ACTS) program is discussed.

  8. The Use of Ultrasonic Seismic Wave Attenuation (Q) for Better Subsurface Imaging, Energy Exploration, and Tracking of Sequestrated Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Delaney, D.; Purcell, C. C.; Mur, A. J.; Haljasmaa, I.; Soong, Y.; Harbert, W.

    2012-12-01

    Parameters related to seismic and ultrasonic elastic waves traveling through a porous rock material with compliant pores, cracks and isometric pores are subject to variations which are dependent on the physical properties of the rock such as density, porosity, permeability, frame work moduli, fluid moduli, micro structural variation, and effective pressure. Our goal is to understand these variations through experiments completed using Berea sandstone, rhyolites, coal, and carbonate samples. Understanding these lithologies are relevant to enhanced oil recovery, enhanced geothermal, and CO2 storage activities. Working in the COREFLOW laboratory at the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) we performed several experiments on these rock types with various different pore filling fluids, effective pressures, and temperatures. We measured P, S1 and S2 ultrasonic velocities using an New England Research (NER) Autolab 1500 device and calculated the lame parameters (Bulk modulus (K), Young's modulus (E), Lamè's first parameter (?), Shear modulus (G), Poisson's ratio ( ), P-wave modulus (M)). Using an aluminum reference core and the P, S1, and S2 ultrasonic waveform data collected, we employed the spectral ratio method to estimate Q. This method uses the ratio of the amplitude-frequency spectrum (obtained via fast Fourier Transform and processed using Matlab) of the rock core compared with the amplitude-frequency spectrum of the aluminum reference core to calculate the quality factor (Q). The quality factor is a dimensionless value that represents the attenuation of a seismic wave as it travels through a rock. Seismic attenuation is dependent on wave velocity, the path length or time the wave is in the rock, and of course the physical properties of the rock through which the wave travels. Effective pressures used in our experiments varied between 0.01 MPa and 50 MPa and temperatures varied between 21 C to 80 C which allowed us to more accurately represent subsurface conditions. Pore filling fluids consisted of deionized water, oil, gas, and supercritical CO2. We have found that Q for the P, S1, and S2 seismic waves is strongly dependent on and proportional to the effective pressure of the rock. Also our experiments indicate that the presence of different pore filling fluids such as water, oil, and CO2 alter the value of Q. Carbonate samples were tested dry (atmospheric gas as pore fluid) and with deionized water, oil, and CO2. With the substitution of each of these fluids into the dry rock core sample, we see the value of Q shift as much as 20% lower for the P, S1, and S2 seismic waves. Our experiments indicate that the presence of oil, water, or CO2 lowers the value of Q of a rock. For all effective pressures we see this shift in the value of Q, it would seem that with the introduction of these pore-filling fluids the quality factor value is typically lowered, however at higher effective pressures (about 40 MPa) the shift in Q is less. By understanding how seismic waves attenuate we can better understand what collected seismic signals traveled through. This knowledge and understanding of seismic wave attenuation could prove to be a powerful tool for better subsurface imaging, tracking of sequestrated CO2, and energy exploration.

  9. Comparison of OLYMPUS beacon and radiometric attenuation measurements at Blacksburg, Virginia

    NASA Technical Reports Server (NTRS)

    Snider, J. B.; Jacobson, M. D.; Beeler, R. H.; Hazen, D. A.

    1991-01-01

    Measurements of attenuation of the 20 and 30 GHz beacons onboard the OLYMPUS satellite are compared to simultaneous observations of atmospheric attenuation by a multichannel microwave radiometer along the same path. Departures from high correlation between the two measurements are believed to be related to differences in antenna beamwidths. Mean equivalent zenith attenuations derived from the slant path data are compared to zenith observations made at previous locations.

  10. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin

    2015-04-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. As deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. This evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.

  11. Estimation of the intrinsic absorption and scattering attenuation in Northeastern Venezuela (Southeastern Caribbean) using coda waves

    USGS Publications Warehouse

    Ugalde, A.; Pujades, L.G.; Canas, J.A.; Villasenor, A.

    1998-01-01

    Northeastern Venezuela has been studied in terms of coda wave attenuation using seismograms from local earthquakes recorded by a temporary short-period seismic network. The studied area has been separated into two subregions in order to investigate lateral variations in the attenuation parameters. Coda-Q-1 (Q(c)-1) has been obtained using the single-scattering theory. The contribution of the intrinsic absorption (Q(i)-1) and scattering (Q(s)-1) to total attenuation (Q(t)-1) has been estimated by means of a multiple lapse time window method, based on the hypothesis of multiple isotropic scattering with uniform distribution of scatterers. Results show significant spatial variations of attenuation: the estimates for intermediate depth events and for shallow events present major differences. This fact may be related to different tectonic characteristics that may be due to the presence of the Lesser Antilles subduction zone, because the intermediate depth seismic zone may be coincident with the southern continuation of the subducting slab under the arc.

  12. Wave-speed dispersion associated with an attenuation obeying a frequency power law.

    PubMed

    Buckingham, Michael J

    2015-11-01

    An attenuation scaling as a power of frequency, |?|(?), over an infinite bandwidth is neither analytic nor square-integrable, thus calling into question the application of the Kramers-Krönig dispersion relations for determining the frequency dependence of the associated phase speed. In this paper, three different approaches are developed, all of which return the dispersion formula for the wavenumber, K(?). The first analysis relies on the properties of generalized functions and the causality requirement that the impulse response, k(t), the inverse Fourier transform of -iK(?), must vanish for t?wave equation is introduced that yields the phase-speed dispersion associated with a frequency-power-law attenuation. Finally, it is shown that, with minor modification, the Kramers-Krönig dispersion relations with no subtractions (the Plemelj formulas) do in fact hold for an attenuation scaling as |?|(?), yielding the same dispersion formula as the other two derivations. From this dispersion formula, admissible values of the exponent ? are established. Physically, the inadmissible values of ?, which include all the integers, correspond to attenuation-dispersion pairs whose Fourier components cannot combine in such a way as to make the impulse response, k(t), vanish for t?

  13. Characteristics of the near-bottom suspended sediment field over the continental shelf off northern California based on optical attenuation measurements during STRESS and SMILE

    USGS Publications Warehouse

    Trowbridge, J.H.; Butman, B.; Limeburner, R.

    1994-01-01

    Time-series measurements of current velocity, optical attenuation and surface wave intensity obtained during the Sediment Transport Events on Shelves and Slopes (STRESS) experiments, combined with shipboard measurements of conductivity, temperature and optical attenuation obtained during the Shelf Mixed Layer Experiment (SMILE), provide a description of the sediment concentration field over the central and outer shelf off northern California. The questions addressed are: (1) existence and characteristics of bottom nepheloid layers and their relationship to bottom mixed layers; (2) characteristics of temporal fluctuations in sediment concentration and their relationship to waves and currents; (3) spatial scales over which suspended sediment concentrations vary horizontally; and (4) vertical distribution of suspended sediment. ?? 1994.

  14. Analysis of dispersion and attenuation of surface waves in poroelastic media in the exploration-seismic frequency band

    USGS Publications Warehouse

    Zhang, Y.; Xu, Y.; Xia, J.

    2011-01-01

    We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) < 0) at low frequencies. For R2 waves, velocities are slightly lower than the bulk slow P2 waves. At low frequencies, both velocity and attenuation are diffusive of f1/2 frequency dependence, as P2 waves. It is found that for partially permeable surfaces, the attenuation displays -f1 frequency dependence as frequency increasing. High surface permeability, low-coupling damping coefficients, low Poisson's ratios, and low tortuosities increase the slope of the -f1 dependence. When the attenuation coefficients reach 0, R2 waves for partially permeable surface begin to radiate as non-physical waves. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  15. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  16. Ground-based radiometric measurements of slant-path attenuation in the V/W bands

    NASA Astrophysics Data System (ADS)

    Brost, George; Magde, Kevin

    2014-12-01

    Ground-based radiometric techniques were applied to measure the slant-path attenuation cumulative distribution function to over 20 dB of attenuation and to less than 1% exceedance probability at the V and W band frequencies of 72.5 and 82.5 GHz. These are the first such measurements in these frequency bands. Brightness temperature measurements were collected at an elevation angle of 36° in Rome, NY, using a four-channel radiometer that included 23.8 and 31.4 GHz receivers. A model-based approach was used to invert brightness temperature to attenuation. An atmospheric model relevant to the geographic location and statistically representative of the attenuating conditions was developed for this purpose. The main assumption of the atmospheric model was that the sources of attenuation for exceedance probabilities of concern were dominated by stratiform rain. Monte Carlo solutions to the radiative transfer equation for the precipitating atmosphere were used to generate the attenuation retrieval algorithm. Sensitivity analysis showed that the attenuation retrieval algorithm was robust to uncertainties in the model parameters. Slant-path attenuation was also measured with the radiometer using the Sun as a source of radiation. Over 30 dB of attenuation dynamic range was possible with this technique. Sun-beacon measurements were used to test model predictions.

  17. A Split of Direction of Propagation and Attenuation of P Waves in the Po Valley

    NASA Astrophysics Data System (ADS)

    Daminelli, R.; Tento, A.; Marcellini, A.

    2013-12-01

    On July 17, 2011 a ML 4.8 earthquake occurred in the PO valley at a 48 km epicentral distance from a seismic station located at Palazzo Te (Mantova). The station is situated on deep quaternary sediments: the uppermost layers are mainly composed of clay and silty clay with interbedded sands; the Robertson index is 1.4wave particle motion, that appears rather difficult to explain if we assume the homogeneity of the P waves (that means attenuation is scalar). Note that the degree of nonlinearity is very low given that the maximum strain can be roughly estimated as 10-5 on the basis of maximum ground velocity of the P wave train considered and the Vp. On the contrary we show that P wave particle motion can be fully (and easily) described by a Homogeneous Isotropic Linear Viscoelastic model (HILV). HILV, as in the 2009 Borcherdt formulation adopted here, allows two different directions of propagation and attenuation; in other words attenuation becomes a vector that is not necessarily parallel to the propagation vector. The results evidence that the incidence angle and the inhomogeneity angle (it is the angle between propagation and attenuation vectors and it is closely related to Q factor) are in good agreement with the geological conditions of the site. Finally, we observed that these results are very similar to the ones obtained when we analyzed two explosions recorded by a seismic station in Milano, also situated in the Po valley at some 140 km from Mantova (Marcellini & Tento, 2011). Borcherdt, R.D. (2009) 'Viscoelastic Waves in Layered Media', Cambridge University Press, Cambridge, United Kingdom, 305 pp. Marcellini, A. and A. Tento (2011) ' Explosive Sources Prove the Validity of Homogeneous Isotropic Linear Viscoelastic Models', BSSA, Vol. 101, No. 4, pp. 1576-1583.

  18. Measurement of x-ray attenuation coefficients of aqueous solutions of indocyanine green and glycated chitosan

    E-print Network

    Jiang, Hangyi

    Measurement of x-ray attenuation coefficients of aqueous solutions of indocyanine green report our experimental results of measurements of x-ray attenuation coefficients of aqueous solutions of metastatic tumors in rats using a novel laser immunotherapy these solutions were administered in situ. The x-ray

  19. Sound velocity and attenuation in bubbly gels measured by transmission experiments

    E-print Network

    Page, John

    Sound velocity and attenuation in bubbly gels measured by transmission experiments Valentin Leroy 2008 Measurements of the phase velocity and attenuation of sound in concentrated samples of bubbly gels the velocity of sound at low frequencies to roughly 0.2 mm/ s, a value which is even lower than the velocity

  20. Experimental measurements of seismic attenuation in microfracture sedimentary rock

    SciTech Connect

    Peacock, S.; McCann, C.; Sothcott, J.; Astin, T.R. . Research Inst. for Sedimentology)

    1994-09-01

    In a previous paper (Peacock et al., 1994), the authors related ultrasonic velocities in water-saturated Carrara Marble to crack densities in polished sections to verify Hudson's (1980, 1981, 1986) theory for velocities in cracked rock. They describe the empirical relationships between attenuation and crack density that they established during these experiments in the hope of clarifying the mechanism of attenuation in rocks with fluid-filled cracks. Relating seismic velocity and attenuation to crack density is important in predicting the productivity of fractured petroleum reservoirs such as the North Sea Brent Field. It also allows cracks to be used as stress indicators throughout the shallow crust (Crampin and Lovell, 1991).

  1. Lapse time dependence of coda wave attenuation in Central West Turkey

    NASA Astrophysics Data System (ADS)

    Akyol, Nihal

    2015-09-01

    The attenuation of coda waves has been inferred for Central West Turkey, which is characterized by a very complex tectonic evolution. The selected dataset is composed of 440 waveforms from 228 local earthquakes with a magnitude range of 2.9-4.9. The coda quality factor (Qc) was estimated for five central frequencies (fc = 1.5, 3, 5, 7, 10 Hz) and eight lapse times (tL, ranging from 25 to 60 s), based on the assumption of single isotropic scattering model. Estimated Qc values were strongly dependent on frequency and lapse time. The frequency dependence of Qc values for each lapse time was inferred from Qc(f) = Q0fn relationships. Q0 values change between 32.7 and 82.1, while n values changes between 0.91 and 0.79 for the lapse times of 25 and 60 s, respectively. The obtained low Q0 values show that the Central West Turkey region is characterized by a high seismic attenuation, in general. The whole region was divided into four subregions to examine spatial differences of attenuation characteristics. Obtained 1/Q0 and n values versus the lapse time for each subregion implies the tectonic complexity of the region. Lapse time dependencies of attenuation and n values were also examined for subdatasets from two different ranges of event depth (h < 10 km and h ? 10 km) and distance (r < 40 km and r ? 40 km). High attenuation and its high frequency dependence for long distances manifest the elevation of isotherms and increasing heterogeneity with depth. This could be associated with the extensional intra-continental plate setting, forming regional tectonics in the back-arc area.

  2. Systematic scanner variability of patient CT attenuation measurements

    NASA Astrophysics Data System (ADS)

    Judy, Philip F.; Nawfel, Richard D.; Silverman, Stuart G.

    2009-02-01

    CT numbers of the spleen, liver, and trachea air were measured from non-contrast images obtained from 4-channel and 64-channel scanners from the same vendor. Image sections of 1 mm and 5 mm were reconstructed using smooth and sharp kernels. For spleen and liver, no significant differences associated with the variations in kernels or slice thickness could be demonstrated. The increase of the number of channels from 4 to 64 lowered the spleen CT numbers from 53 HU to 43 HU (p <0.00001). The 4-channel spleen CT numbers slightly increased as function of patient size, while the 64-channel CT numbers decreased as function of patient size. Linear regressions predicted for 40-cm patients the spleen 64-channel CT values were 23 HU lower than 4-channel CT numbers. The smooth kernel, 4-channel trachea air CT numbers had mean of -1004 +/-4.8 HU and the 64-channel trachea air CT numbers had a mean of -989+/-4.5 HU. The patient-size dependencies suggest that the CT attenuation variation is associated with increased scatter in 64-channel MSCT. Using CT number to distinguish solid lesions from cysts or quantitative evaluation of COPD disease using CT images may be complicated by inconsistencies between CT scanners.

  3. Assessing the P-wave attenuation and phase velocity characteristics of fractured media based on creep and relaxation tests

    NASA Astrophysics Data System (ADS)

    Milani, Marco; Germán Rubino, J.; Müller, Tobias M.; Quintal, Beatriz; Holliger, Klaus

    2014-05-01

    Fractures are present in most geological formations and they tend to dominate not only their mechanical but also, and in particular, their hydraulic properties. For these reasons, the detection and characterization of fractures are of great interest in several fields of Earth sciences. Seismic attenuation has been recognized as a key attribute for this purpose, as both laboratory and field experiments indicate that the presence of fractures typically produces significant energy dissipation and that this attribute tends to increase with increasing fracture density. This energy loss is generally considered to be primarily due to wave-induced pressure diffusion between the fractures and the embedding porous matrix. That is, due to the strong compressibility contrast between these two domains, the propagation of seismic waves can generate a strong fluid pressure gradient and associated pressure diffusion, which leads to fluid flow and in turn results in frictional energy dissipation. Numerical simulations based on Biot's poroelastic wave equations are computationally very expensive. Alternative approaches consist in performing numerical relaxation or creep tests on representative elementary volumes (REV) of the considered medium. These tests are typically based on Biot's consolidation equations. Assuming that the heterogeneous poroelastic medium can be replaced by an effective, homogeneous viscoelastic solid, these numerical creep and relaxation tests allow for computing the equivalent seismic P-wave attenuation and phase velocity. From a practical point of view, an REV is typically characterized by the smallest volume for which rock physical properties are statistically stationary and representative of the probed medium in its entirety. A more general definition in the context of wavefield attributes is to consider an REV as the smallest volume over which the P-wave attenuation and phase velocity dispersion are independent of the applied boundary conditions. That is, the corresponding results obtained from creep and relaxation tests must be equivalent. For most analyses of media characterized by patchy saturation or double-porosity-type structures these two definitions are equivalent. It is, however, not clear whether this equivalence remains true in the presence of strong material contrasts as those prevailing in fractured rocks. In this work, we explore this question for periodically fractured media. To this end, we build a medium composed of infinite replicas of a unit volume containing one fracture. This unit volume coincides with the smallest possible volume that is statistically representative of the whole. Then, we perform several creep and relaxation tests on samples composed of an increasing number of these unit volumes. We find that the wave field signatures determined from relaxation tests are independent from the number of unit volumes. Conversely, the P-wave attenuation and phase velocity characteristics inferred from creep tests are different and vary with the number of unit volumes considered. Quite interestingly, the creep test results converge with those of the relaxation tests as the number of unit volumes increases. These findings are expected to have direct implications for corresponding laboratory measurements as well as for our understanding of seismic wave propagation in fractured media.

  4. Slant path attenuation and cross-polarization prediction. [radar measurements

    NASA Technical Reports Server (NTRS)

    Pratt, T.; Marshall, R. E.; Ozbay, C.

    1983-01-01

    The accuracy with which slant-path attenuation and cross-polarization are predicted using differential reflectivity (ZDR) radar data is discussed. Consideration is given to the use of generalized relationships between radar reflectivity (Z), ZDR, and rainfall rate (R); and between R, attenuation, and cross-polarization (XPD) on a slant path. The forward-scatter matrix which is used to calculate the slant path attenuation and XPD is described. It is shown that the use of a double exponential drop size distribution and forward-scatter matrices improves the accuracy of the prediction of slant-path attenuation and XPD. Data obtained with the VPI & SU S-band radar, using slow switching between orthorzonal polarizations is presented. The results are illustrated in graphs.

  5. Flow velocity measurement with the nonlinear acoustic wave scattering

    NASA Astrophysics Data System (ADS)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  6. Measurements and Linear Wave Theory Based Simulations of Vegetated Wave Hydrodynamics for Practical Applications 

    E-print Network

    Anderson, Mary Elizabeth

    2011-10-21

    Wave attenuation by vegetation is a highly dynamic process and its quantification is important for accurately understanding and predicting coastal hydrodynamics. However, the influence of vegetation on wave dissipation is not yet fully established...

  7. Oceanic-wave-measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T.

    1980-01-01

    Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.

  8. ULTRASONIC MEASUREMENT MODELS FOR SURFACE WAVE AND PLATE WAVE INSPECTIONS

    SciTech Connect

    Schmerr, Lester W. Jr.; Sedov, Alexander

    2010-02-22

    A complete ultrasonic measurement model for surface and plate wave inspections is obtained, where all the electrical, electromechanical, and acoustic/elastic elements are explicitly described. Reciprocity principles are used to describe the acoustic/elastic elements specifically in terms of an integral of the incident and scattered wave fields over the surface of the flaw. As with the case of bulk waves, if one assumes the incident surface waves or plate waves are locally planar at the flaw surface, the overall measurement model reduces to a very modular form where the far-field scattering amplitude of the flaw appears explicitly.

  9. High frequency P wave attenuation and degradation of detection capability by large earthquakes

    NASA Astrophysics Data System (ADS)

    Bache, T. C.; Bratt, S. R.

    1985-09-01

    This report describes two distinct seismological studies. The first is High Frequency P Wave Attenuation Along Five Teleseismic Paths from Central Asia. P Wave spectra from E. Kazakhstan explosions recorded at five arrays are computed for all five paths using an absorption band model. The Q exhibits strong frequency dependence in the band from 0.5 to 3 Hz, and is nearly the same for all five paths. The second study is, An Investigation of the Degradation of Teleseismic Detection Capability Caused by Large Earthquakes. A ten year global seismicity bulletin is searched to determine the extent to which large earthquakes inhibit the detection of small earthquakes occurring a short time thereafter. Significant degradation of the detection capability of the 115 station global network contributing to the bulletin is seen for periods up to an hour for earthquakes of M sub b 5.8 and larger.

  10. Effects of heterogeneities on the propagation, scattering and attenuation of seismic waves and the characterization of seismic source. Final report, 1 December 1982-30 November 1985

    SciTech Connect

    Aki, K.; Cormier, V.F.; Toksoz, M.N.

    1985-01-01

    During this reporting period, work was completed on testing alternative measures of body-wave magnitude. It was found that alternative measures of body waves magnitude often exhibit as much scatter as classical measures of magnitude, although coda magnitudes usually have slightly less scatter than spectral and classical magnitudes. In the cases investigated, these differences were usually not statistically significant. Another completed task was an investigation of the intrinsic attenuation of the Earth's mantle selected paths from the Sea of Okhotsk to Regional Seismic Test Network (RSTN) and Global Digital Seismic Network (GDSN) Stations in North America. It was concluded that the intrinsic attenuation in the mantle beneath eastern North America is both depth and frequency dependent and that spectral and time domain studies of attenuation can be reconciled in the frequency band up to 2 Hz. The focus of the project was then divided between source problems related to scattering and seismic wave propagation in three-dimensional, heterogeneous media. A significant result was that short period and broadband waveforms can improve the depth-resolution-determined earthquakes and underground nuclear explosions, forming a powerful discriminant. Scattering was studied theoretically and observationally. The significant result of that work is that the Earth's lithosphere must possess multiple scales of heterogeneity in order to explain both the amplitude and phase fluctuations at large arrays as well as the shapes of local S coda.

  11. Correlation Attenuation Due to Measurement Error: A New Approach Using the Bootstrap Procedure

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Veprinsky, Anna

    2012-01-01

    Issues with correlation attenuation due to measurement error are well documented. More than a century ago, Spearman proposed a correction for attenuation. However, this correction has seen very little use since it can potentially inflate the true correlation beyond one. In addition, very little confidence interval (CI) research has been done for…

  12. Attenuation Characteristics of Body-Waves for the Bilaspur Region of Himachal Lesser Himalaya

    NASA Astrophysics Data System (ADS)

    Vandana; Kumar, Ashwani; Gupta, S. C.

    2015-06-01

    The attenuation characteristics around Bilaspur region of the Himachal Lesser Himalaya have been estimated adopting extended-coda-normalization method, and using a data set of 41 local events (0.5 < M L ? 2.9) that occurred in the region from May 2013 to March 2014. The frequency-dependent relations governing the quality factors of P-waves (Q ? ) and S-waves (Q ? ) in the frequency range from 1.5 to 24 Hz are: (Q ? ) = (43 ± 4) f 1.30±0.04 and Q ? = (79 ± 6) f 1.25±0.02. The average estimates of (Q ? ) and (Q ? ) are found to vary from 71 and 125 at 1.5 Hz to 2901 and 4243 at 24 Hz, respectively. The (Q ? ) and (Q ? ) estimates are compared to the similar estimates obtained for the other seismically active regions of the Himalaya. It is found that for the various Himalayan regions, the (Q ? ) estimates at 1 Hz vary between 22 (for the Kumaon Himalaya) and 97 (for the northwest Himalaya), whereas (Q ? ) estimates range between 63 (for the Garhwal Himalaya) and 127 (for the northwest Himalaya). For the Bilaspur region, the (Q ? )/(Q ? ) ratio is greater than unity and varies between 1.84 and 1.45 in the frequency range from 1 to 24 Hz. The region-specific attenuation relations can be adopted for estimating earthquake source parameters, simulating strong ground motion and assessing seismic hazard for the Bilaspur region of Himachal Lesser Himalaya.

  13. Lg Wave Attenuation in the Isparta Angle and Anatolian Plateau (Turkey)

    NASA Astrophysics Data System (ADS)

    Sahin, Sakir; Bao, Xueyang; Turkelli, Niyazi; Sandvol, Eric; Teoman, Ugur; Kahraman, Metin

    2013-03-01

    We estimate Lg wave attenuation using local and regional seismic phases in the Isparta Angle and the Anatolian Plateau (Turkey). The Isparta Angle (IA) is a tectonically active zone forming the boundary between the African Plate and the Anatolian Plateau, and is currently undergoing N-S extensional deformation. The Anatolian Plateau contains many intra-continental faults including the North Anatolian Fault Zone and the East Anatolian Fault Zone as well as the Menderes Massif. A large waveform data set was compiled from a variety of local and regional seismic networks including 121 digital seismic stations (broad-band and short period) between 1999 and 2008 spanning the IA, the Anatolian Plateau and Azerbaijan. The data set was used to determine the nature of Lg wave propagation and characterize the nature of seismic attenuation within the crust of these regions. Lg waveforms were used to calculate the frequency-dependent Lg- Q o and Lg- ? . A wide range of Lg- Q o values was obtained between ~52 ± 6 and 524 ± 227. Low Lg- Q o values (~90-155) are calculated towards the north of IA, Iskenderun Gulf and its vicinity, Bingöl-Karl?ova, Izmit and its vicinity. Lg- Q o values are especially low (<90) along the Menderes Massif and the Aksehir-Simav Fault Zones. This may be due to intrinsic attenuation of Lg associated with the partially molten crust and young volcanism. The high Lg- Q o values (~350) are probably caused by the crust not being subject to large amounts of extensional deformation like the Antalya Gulf and apparently being thick enough to support Lg propagation. Relatively higher values along the border of this subduction zone and plate boundary might be related to the Taurus Mountain belts and Bitlis-Zagros Suture Zone. The lateral frequency dependency Lg- ? is also consistent with high tectonic activity in this region.

  14. Predicting Wave Glider Speed from Environmental Measurements

    E-print Network

    Smith, Ryan N.

    Predicting Wave Glider Speed from Environmental Measurements Ryan N. Smith, Jnaneshwar Das, Graham heading and set of environmental parameters. Given the significant wave height, ocean surface- comotion. This vehicle provides an interesting path planning problem since it is under

  15. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.

    PubMed

    Louisnard, O

    2012-01-01

    The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dissipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid. Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equations describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conveniently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation, where the imaginary part of the squared wave number is directly correlated with the energy lost by a single bubble. For low acoustic driving, linear theory is recovered, but for larger drivings, namely above the Blake threshold, the attenuation coefficient is found to be more than 3 orders of magnitude larger then the linear prediction. A huge attenuation of the wave is thus expected in regions where inertial bubbles are present, which is confirmed by numerical simulations of the nonlinear Helmholtz equation in a 1D standing wave configuration. The expected strong attenuation is not only observed but furthermore, the examination of the phase between the pressure field and its gradient clearly demonstrates that a traveling wave appears in the medium. PMID:21764348

  16. Broadband attenuation of Lamb waves through a periodic array of thin rectangular junctions

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Pennec, Yan; Marchal, Rémi; Bonello, Bernard; Djafari-Rouhani, Bahram

    2014-10-01

    We study theoretically subwavelength physical phenomena, such as resonant transmission and broadband sound shielding for Lamb waves propagating in an acoustic metamaterial made of a thin plate drilled with one or two row(s) of rectangular holes. The resonances and antiresonances of periodically arranged rectangular junctions separated by holes are investigated as a function of the geometrical parameters of the junctions. With one and two row(s) of holes, high frequency specific features in the transmission coefficient are explained in terms of a coupling of incident waves with both Fabry-Perot oscillations inside the junctions and induced surface acoustic waves between the homogeneous part of the plate and the row of holes. With two rows of holes, low frequency peaks and dips appear in the transmission spectrum. The choice of the distance between the two rows of holes allows the realization of a broadband low frequency acoustic shielding with attenuation over 99% for symmetric waves in a wide low frequency range and over 90% for antisymmetric ones. The origin of the transmission gap is discussed in terms of localized modes of the "H" element made by the junctions, connecting the two homogeneous parts of the plate.

  17. An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland

    E-print Network

    J. Avva; J. M. Kovac; C. Miki; D. Saltzberg; A. G. Vieregg

    2015-12-02

    We report an in situ measurement of the electric field attenuation length at radio frequencies for the bulk ice at Summit Station, Greenland, made by broadcasting radio-frequency signals vertically through the ice and measuring the relative power in the return ground bounce signal. We find the depth-averaged field attenuation length to be 947 +92/-85 meters at 75 MHz. While this measurement has clear radioglaciological applications, the radio clarity of the ice also has implications for the detection of ultra-high energy (UHE) astrophysical particles via their radio emission in dielectric media such as ice. Assuming a reliable extrapolation to higher frequencies, the measured attenuation length at Summit Station is comparable to previously measured radio-frequency attenuation lengths at candidate particle detector sites around the world, and strengthens the case for Summit Station as a promising northern site for UHE neutrino detection.

  18. Study of sound attenuation in sediments. Final technical report

    SciTech Connect

    Addison, S.R.; Bass, H.E.

    1984-12-01

    This dissertation describes an experimental method by which the low-frequency attenuation of compressional waves in a sediment may be measured in the laboratory. The Biot and Hamilton models of sound propagation through sediments are reviewed. Measurements of attenuation in one laboratory sediment are presented, and the measured attenuation is compared to the predictions of the Biot and Hamilton models. The functional dependence of the attenuation measurements is of the form predicted by the Biot model, although the actual magnitude of the measured attenuation is higher than expected. The excess attenuation may be explained by the incomplete de-gasification of the sediment.

  19. Measurement of elastic wave dispersion on human femur tissue

    NASA Astrophysics Data System (ADS)

    Strantza, M.; Louis, O.; Polyzos, D.; Boulpaep, F.; Van Hemelrijck, D.; Aggelis, D. G.

    2014-03-01

    Cortical bone is one of the most complex heterogeneous media exhibiting strong wave dispersion. In such media when a burst of energy goes into the formation of elastic waves the different modes tend to separate according to the velocities of the frequency components as usually occurs in waveguides. In this study human femur specimens were subjected to elastic wave measurements. The main objective of the study is using broadband acoustic emission sensors to measure parameters like wave velocity dispersion and attenuation. Additionally, waveform parameters like the duration, rise time and average frequency, are also examined relatively to the propagation distance as a preparation for acoustic emission monitoring during fracture. To do so, four sensors were placed at adjacent positions on the surface of the cortical bone in order to record the transient response after pencil lead break excitation. The results are compared to similar measurements on a bulk metal piece which does not exhibit heterogeneity at the scale of the propagating wave lengths. It is shown that the microstructure of the tissue imposes a dispersive behavior for frequencies below 1 MHz and care should be taken for interpretation of the signals.

  20. Summary of oceanographic measurements for characterizing light attenuation and sediment resuspension in the Barnegat Bay-Little Egg Harbor Estuary, New Jersey, 2013

    USGS Publications Warehouse

    Dickhudt, Patrick J.; Ganju, Neil K.; Montgomery, Ellyn T.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, measured suspended-sediment concentrations, currents, waves, light attenuation, and a variety of other water-quality parameters in the summer of 2013 in Barnegat Bay-Little Egg Harbor, New Jersey. These measurements quantified light attenuation and sediment resuspension in three seagrass meadows. Data were acquired sequentially at three paired channel-shoal sites, as the equipment was moved from south to north in the estuary. Data were collected for approximately 3 weeks at each site.

  1. The Attenuation of a Detonation Wave by an Aircraft Engine Axial Turbine Stage

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane; Turner, Mark G.

    2007-01-01

    A Constant Volume Combustion Cycle Engine concept consisting of a Pulse Detonation Combustor (PDC) followed by a conventional axial turbine was simulated numerically to determine the attenuation and reflection of a notional PDC pulse by the turbine. The multi-stage, time-accurate, turbomachinery solver TURBO was used to perform the calculation. The solution domain consisted of one notional detonation tube coupled to 5 vane passages and 8 rotor passages representing 1/8th of the annulus. The detonation tube was implemented as an initial value problem with the thermodynamic state of the tube contents, when the detonation wave is about to exit, provided by a 1D code. Pressure time history data from the numerical simulation was compared to experimental data from a similar configuration to verify that the simulation is giving reasonable results. Analysis of the pressure data showed a spectrally averaged attenuation of about 15 dB across the turbine stage. An evaluation of turbine performance is also presented.

  2. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Marie Tabaru,; Takashi Azuma,; Kunio Hashiba,

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young’s moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young’s modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  3. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  4. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation

    E-print Network

    van Vliet, Lucas J.

    attenuation L. Demia) and K. W. A. van Dongen Laboratory of Acoustical Imaging and Sound Control, Faculty that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation

  5. Polarimetric X-band weather radar measurements in the tropics: radome and rain attenuation correction

    NASA Astrophysics Data System (ADS)

    Schneebeli, M.; Sakuragi, J.; Biscaro, T.; Angelis, C. F.; Carvalho da Costa, I.; Morales, C.; Baldini, L.; Machado, L. A. T.

    2012-09-01

    A polarimetric X-band radar has been deployed during one month (April 2011) for a field campaign in Fortaleza, Brazil, together with three additional laser disdrometers. The disdrometers are capable of measuring the raindrop size distributions (DSDs), hence making it possible to forward-model theoretical polarimetric X-band radar observables at the point where the instruments are located. This set-up allows to thoroughly test the accuracy of the X-band radar measurements as well as the algorithms that are used to correct the radar data for radome and rain attenuation. For the campaign in Fortaleza it was found that radome attenuation dominantly affects the measurements. With an algorithm that is based on the self-consistency of the polarimetric observables, the radome induced reflectivity offset was estimated. Offset corrected measurements were then further corrected for rain attenuation with two different schemes. The performance of the post-processing steps was analyzed by comparing the data with disdrometer-inferred polarimetric variables that were measured at a distance of 20 km from the radar. Radome attenuation reached values up to 14 dB which was found to be consistent with an empirical radome attenuation vs. rain intensity relation that was previously developed for the same radar type. In contrast to previous work, our results suggest that radome attenuation should be estimated individually for every view direction of the radar in order to obtain homogenous reflectivity fields.

  6. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations.

    PubMed

    Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus

    2013-12-01

    Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data. PMID:25669286

  7. A Simultaneous Multi-phase Approach to Determine P-wave and S-wave Attenuation of the Crust and Upper Mantle

    SciTech Connect

    Pasyanos, M E; Walter, W R; Matzel, E M

    2009-02-26

    We have generalized the methodology of our regional amplitude tomography from the Lg phase to the four primary regional phases (Pn, Pg, Sn, Lg). Differences in the geometrical spreading, source term, site term, and travel paths are accounted for, while event source parameters such as seismic moment are consistent among phases. In the process, we have developed the first regional attenuation model that uses the amplitudes of four regional phases to determine a comprehensive P-wave and S-wave attenuation model of the crust and upper mantle. When applied to an area encompassing the Middle East, eastern Europe, western Asia, south Asia, and northeast Africa for the 1-2 Hz passband, we find large differences in the attenuation of the lithosphere across the region. The tectonic Tethys collision zone has high attenuation, while stable outlying regions have low attenuation. While crust and mantle Q variations are often consistent, we do find several notable areas where they differ considerably, but are appropriate given the region's tectonic history. Lastly, the relative values of Qp and Qs indicate that scattering Q is likely the dominant source of attenuation in the crust at these frequencies.

  8. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments: Eel River shelf, California

    USGS Publications Warehouse

    Gorgas, T.J.; Wilkens, R.H.; Fu, S.S.; Neil, Frazer L.; Richardson, M.D.; Briggs, K.B.; Lee, H.

    2002-01-01

    We compared in situ and laboratory velocity and attenuation values measured in seafloor sediments from the shallow water delta of the Eel River, California. This region receives a substantial volume of fluvial sediment that is discharged annually onto the shelf. Additionally, a high input of fluvial sediments during storms generates flood deposits that are characterized by thin beds of variable grain-sizes between the 40- and 90-m isobaths. The main objectives of this study were (1) to investigate signatures of seafloor processes on geoacoustic and physical properties, and (2) to evaluate differences between geoacoustic parameters measured in situ at acoustic (7.5 kHz) and in the laboratory at ultrasonic (400 kHz) frequencies. The in situ acoustic measurements were conducted between 60 and 100 m of water depth. Wet-bulk density and porosity profiles were obtained to 1.15 m below seafloor (m bsf) using gravity cores of the mostly cohesive fine-grained sediments across- and along-shelf. Physical and geoacoustic properties from six selected sites obtained on the Eel margin revealed the following. (1) Sound speed and wet-bulk density strongly correlated in most cases. (2) Sediment compaction with depth generally led to increased sound speed and density, while porosity and in situ attenuation values decreased. (3) Sound speed was higher in coarser- than in finer-grained sediments, on a maximum average by 80 m s-1. (4) In coarse-grained sediments sound speed was higher in the laboratory (1560 m s-1) than in situ (1520 m s-1). In contrast, average ultrasonic and in situ sound speed in fine-grained sediments showed only little differences (both approximately 1480 m s-1). (5) Greater attenuation was commonly measured in the laboratory (0.4 and 0.8 dB m-1 kHz-1) than in situ (0.02 and 0.65 dB m-1 kHz-1), and remained almost constant below 0.4 m bsf. We attributed discrepancies between laboratory ultrasonic and in situ acoustic measurements to a frequency dependence of velocity and attenuation. In addition, laboratory attenuation was most likely enhanced due to scattering of sound waves at heterogeneities that were on the scale of ultrasonic wavelengths. In contrast, high in situ attenuation values were linked to stratigraphic scattering at thin-bed layers that form along with flood deposits. ?? 2002 Published by Elsevier Science B.V.

  9. Attenuation of stress waves in single and multi-layered structures. [mitigation of elastic and plastic stress waves during spacecraft landing

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Tsui, C. Y.

    1972-01-01

    Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.

  10. Viscoacoustic wave form inversion of transmission data for velocity and attenuation

    SciTech Connect

    Watanabe, Toshiki; Nihei, Kurt T.; Nakagawa, Seiji; Myer, Larry R.

    2003-12-01

    This study investigates the performance of a frequency domain viscoacoustic full wave form nonlinear inversion to obtain high resolution images of velocity and attenuation. An efficient frequency domain implementation is applied that consists of performing a series of single frequency inversions sweeping from low to high frequency. A cascaded inversion was adopted in which the real part of the velocity is first imaged using the phase information, then the quality factor (Q) is imaged using the amplitude information. Tests with synthetic data indicate that our approach yielded better images than the simultaneous determination of the real and imaginary parts of the complex velocity. The method is applied to laboratory data obtained in a water tank with suspended acrylic bars. Broadband 200 kHz data are obtained for a crosshole configuration with a computer-controlled scanning system and piezofilm source and detector. The velocity image produced by the full wave form inversion is compared to a curved ray travel time tomography velocity image, and was observed to possess higher resolution and more precise locations of the acrylic bars. The Q image shows a lower resolution than the velocity image, but recovers the correct Q for acrylic. This method can be applied for geophysical applications targeted to soil, unconsolidated rocks, and marine sediments and also nondestructive evaluation and medical applications.

  11. Quantum nondemolition measurements. [by gravitational wave antennas

    NASA Technical Reports Server (NTRS)

    Braginskii, V. B.; Vorontsov, Iu. I.; Thorne, K. S.

    1980-01-01

    The article describes new electronic techniques required for quantum nondemolition measurements and the theory underlying them. Consideration is given to resonant-bar gravitational-wave antennas. Position measurements are discussed along with energy measurements and back-action-evading measurements. Thermal noise in oscillators and amplifiers is outlined. Prospects for stroboscopic measurements are emphasized.

  12. Wave propagation through a random array of pinned dislocations: Velocity change and attenuation in a generalized Granato and Luecke theory

    SciTech Connect

    Maurel, Agnes; Pagneux, Vincent; Barra, Felipe; Lund, Fernando

    2005-11-01

    A quantitative theory of the elastic wave damping and velocity change due to interaction with dislocations is presented. It provides a firm theoretical basis and a generalization of the Granato and Luecke model [J. Appl. Phys. 27, 583 (1956)]. This is done considering the interaction of transverse (T) and longitudinal (L) elastic waves with an ensemble of dislocation segments randomly placed and randomly oriented in an elastic solid. In order to characterize the coherent wave propagation using multiple scattering theory, a perturbation approach is used, which is based on a wave equation that takes into account the dislocation motion when forced by an external stress. In our calculations, the effective velocities of the coherent waves appear at first order in perturbation theory while the attenuations have a part at first order due to the internal viscosity and a part at second order due to the energy that is taken away from the incident direction. This leads to a frequency dependence law for longitudinal and transverse attenuations that is a combination of quadratic and quartic terms instead of the usual quadratic term alone. Comparison with resonant ultrasound spectroscopy (RUS) and electromagnetic acoustic resonance (EMAR) experiments is proposed. The present theory explains the difference experimentally observed between longitudinal and transverse attenuations [Ledbetter, J. Mater. Res. 10, 1352 (1995)].

  13. Vibration and wave propagation attenuation for metamaterials by periodic piezoelectric arrays with high-order resonant circuit shunts

    NASA Astrophysics Data System (ADS)

    Zhou, Wanlu; Wu, You; Zuo, Lei

    2015-06-01

    Beam or plate metamaterials with periodic piezoelectric arrays have attracted more and more attention in recent years for wave propagation attenuation and the corresponding vibration reduction. Conventional designs use resistive shunt (R-shunt) and resistor-inductor shunt (RL-shunt). An innovative metamaterial with a high-order resonant shunt circuit is proposed and investigated for vibration and wave propagation attenuation in this paper. The proposed high-order resonant shunt circuit can introduce two local resonances in series around the tuning frequency to broaden the attenuation bandwidth, or can create two separate resonances to achieve two separate bandgaps. Finite element modeling of the beam metamaterial with wave propagation and vibration in the transverse direction is established. Simulations have been conducted to compare the vibration attenuation performances among R-shunt, RL-shunt, and the proposed high-order shunt. An impedance-based method has been presented for the parameter design of electrical components in the proposed high-order shunt for bandgaps at two desired frequencies.

  14. Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficents by OCT

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek J.; Perree, Jop; Faber, Dirk J.; Baraznji Sassoon, David M.; Aalders, Maurice C. G.; van Leeuwen, Ton G.

    2005-04-01

    Imaging of human autopsy samples was performed from the luminal side with a high (3.5 ?m axial and 7 ?m lateral) resolution OCT system (around 800 nm) or a regular (15-20 ?m axial and 20 ?m lateral resolution) OCT system (around 1300 nm). For each sample, dimensions were measured by histomorphometry and OCT and the optical attenuation was measured. Quantitative analysis showed a strong and significant correlation between OCT and histology cap thickness measurements for both OCT systems. For both systems, the measured attenuation coefficients of diffuse intimal thickening and lipid-rich regions differed significantly from media and calcifications. Both the high and regular resolution OCT systems can precisely image the atherosclerotic plaques. Quantitative analysis of the OCT signals allowed in situ determination of the intrinsic optical attenuation coefficient of atherosclerotic tissue components within regions of interest, which can further help to discriminate the plaque and arterial wall components.

  15. Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek J.; Perree, Jop; Faber, Dirk J.; Baraznji Bassoon, David M.; Aalders, Maurice C. G.; van Leeuwen, Ton G.

    2005-04-01

    Imaging of human autopsy samples was performed from the luminal side with a high (3.5 ?m axial and 7 ?m lateral) resolution OCT system (around 800 nm) or a regular (15-20 ?m axial and 20 ?m lateral resolution) OCT system (around 1300 nm). For each sample, dimensions were measured by histomorphometry and OCT and the optical attenuation was measured. Quantitative analysis showed a strong and significant correlation between OCT and histology cap thickness measurements for both OCT systems. For both systems, the measured attenuation coefficients of diffuse intimal thickening and lipid-rich regions differed significantly from media and calcifications. Both the high and regular resolution OCT systems can precisely image the atherosclerotic plaques. Quantitative analysis of the OCT signals allowed in situ determination of the intrinsic optical attenuation coefficient of atherosclerotic tissue components within regions of interest, which can further help to discriminate the plaque and arterial wall components.

  16. Decoherence measure by gravitational wave interferometers

    E-print Network

    Yasushi Mino

    2008-08-14

    We consider the possibility to measure the quantum decoherence using gravitational wave interferometers. Gravitational wave interferometers create the superposition state of photons and measure the interference of the photon state. If the decoherence occurs, the interference of the photon state vanishes and it can be measured by the interferometers. As examples of decoherence mechanisms, we consider 1) decoherence by spontaneous localization, 2) gravitational decoherence and 3) decoherence by extra-dimensional gravity.

  17. 40 CFR 211.206 - Methods for measurement of sound attenuation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Methods for measurement of sound attenuation. 211.206 Section 211.206 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING Hearing Protective Devices § 211.206 Methods for measurement of sound...

  18. On the excess attenuation of sound in the atmosphere

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1975-01-01

    The attenuation suffered by an acoustic plane wave propagating from an elevated source to the ground, in excess of absorption losses, was studied. Reported discrepancies between attenuation measurements made in the field and theories which only account for absorption losses are discussed. It was concluded that the scattering of sound by turbulence results in a nonnegligible contribution to the total attenuation.

  19. Effect of Viscous Cross Coupling between two Immiscible Fluids on Elastic Wave Propagation and Attenuation in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Lo, WeiCheng; Lee, JheWei; Lee, ChengHaw

    2015-04-01

    A central issue in the theoretical treatment of a multiphase system is the proper mathematical description of momentum transfer across fluid-solid and fluid-fluid interfaces. Although recent studies have advanced our knowledge on modeling the coupling behavior between a porous framework and the fluids permeating it, the effect of viscous resistance caused by two-fluid flow on elastic wave behavior in unsaturated porous media still remains unaddressed. In the present study, we generalize the theory of dynamic poroelasticity to incorporate viscous cross coupling arising from the velocity difference between two adjacent fluids for examining the dynamic behavior of fluid flow in deformable porous media related to harmonic wave perturbation. The corresponding dispersion relations that characterize three compressional waves and one shear wave are precisely formulated, with the coefficients featuring all elasticity, inertial coupling, and viscous coupling parameters, for describing how wave number changes as excitation frequency is stipulated. To evaluate quantitatively this as-yet unknown effect, numerical simulations are implemented to solve the dispersion relations for Columbia fine sandy loam bearing an oil-water mixture with respect to three representative wave excitation frequencies. Our results show that the phase speed and attenuation coefficient of the third compressional wave which has the smallest speed is strongly sensitive to the presence of viscous cross coupling, as expected for this wave being attributed primarily to the out-of-phase motion of the two pore fluids. Viscous cross coupling also exerts an impact on the attenuation coefficient of the shear wave and the first compressional wave whose speed is greatest, which exhibits two opposite trends at different ranges of low and high water contents. A sensitivity analysis is further conducted to provide information on the importance of the coupling parameter, revealing that the effect becomes more significant as the coupling is stronger.

  20. Analysis of the Attenuation Characteristics of an Elastic Wave Due to the Wave-Induced Fluid Flow in Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Wang, Ding; Wang, Li-Ji; Zhang, Mei-Gen

    2014-04-01

    A theoretical model is presented to describe the elastic wave propagation characteristics in porous media of periodically arranged fractures. The effects of fracture geometric parameters on a compressional wave (p-wave) are considered through analysis of the wave induced fluid flow (WIFF) process between the fractures and the background media. The diffusion equation in porous media is used to reveal how the entire diffusion process affects the wave propagation. When the thickness proportion of fractures tends to 0 and 1, the WIFF does not take place almost between fractures and background matrix porosity, and therefore the media elasticity modulus is perfectly elastic. When the fracture thickness fraction achieves a certain value, the peak of the attenuation curve reaches the maximum value at a particular frequency, which is controlled by the fluid mass conservation and stress continuity conditions on each fracture boundary. That is, the inter-coupling of fluid diffusion between the adjacent layers is important for waves attenuation. Physically speaking, the dissipation of a wave is associated with the fluid flux essentially.

  1. Beamwidth measurement of individual lithotripter shock waves.

    PubMed

    Kreider, Wayne; Bailey, Michael R; Ketterling, Jeffrey A

    2009-02-01

    New lithotripters with narrower foci and higher peak pressures than the original Dornier HM3 electrohydraulic lithotripter have proven to be less effective and less safe. Hence, accurate measurements of the focal characteristics of lithotripter shock waves are important. The current technique for measuring beamwidth requires a collection of single-point measurements over multiple shock waves, thereby introducing error as a result of any shock-to-shock variability. This work reports on the construction of a hydrophone array sensor and on array measurements of individual lithotripter shock waves. Beamwidths for an electrohydraulic lithotripter with a broad-focus HM3-style reflector and a narrow-focus modified reflector were measured using both new and worn electrodes as well as two different electrical charging potentials. The array measured the waveform, beamwidth, and focal location of individual shock waves. The HM3-style reflector produced repeatable focal waveforms and beam profiles at an 18 kV charging potential with new and worn electrodes. Corresponding measurements suggest a narrower beamwidth than reported previously from averaged point measurements acquired under the same conditions. In addition, a lack of consistency in the measured beam profiles at 23 kV underscores the value of measuring individual shock waves. PMID:19206897

  2. Weak measurement and Bohmian conditional wave functions

    SciTech Connect

    Norsen, Travis; Struyve, Ward

    2014-11-15

    It was recently pointed out and demonstrated experimentally by Lundeen et al. that the wave function of a particle (more precisely, the wave function possessed by each member of an ensemble of identically-prepared particles) can be “directly measured” using weak measurement. Here it is shown that if this same technique is applied, with appropriate post-selection, to one particle from a perhaps entangled multi-particle system, the result is precisely the so-called “conditional wave function” of Bohmian mechanics. Thus, a plausibly operationalist method for defining the wave function of a quantum mechanical sub-system corresponds to the natural definition of a sub-system wave function which Bohmian mechanics uniquely makes possible. Similarly, a weak-measurement-based procedure for directly measuring a sub-system’s density matrix should yield, under appropriate circumstances, the Bohmian “conditional density matrix” as opposed to the standard reduced density matrix. Experimental arrangements to demonstrate this behavior–and also thereby reveal the non-local dependence of sub-system state functions on distant interventions–are suggested and discussed. - Highlights: • We study a “direct measurement” protocol for wave functions and density matrices. • Weakly measured states of entangled particles correspond to Bohmian conditional states. • Novel method of observing quantum non-locality is proposed.

  3. Attenuation statistics derived from emission measurements by a network of ground-based microwave radiometers

    NASA Technical Reports Server (NTRS)

    Westwater, E. R.; Snider, J. B.; Falls, M. J.; Fionda, E.

    1990-01-01

    Two seasons of thermal emission measurements, running from December 1987 through February 1988 and from June through August 1988 of thermal emission measurements, taken by a multi-channel, ground-based microwave radiometer, are used to derive single-station zenith attenuation statistics at 20.6 and 31.65 GHz. For the summer period, statistics are also derived for 52.85 GHz. In addition, data from two dual-channel radiometers, separated from Denver by baseline distances of 49 and 168 km, are used to derive two-station attenuation diversity statistics at 20.6 and 31.65 GHz. The multi-channel radiometer is operated at Denver, Colorado; the dual-channel devices are operated at Platteville and Flagler, Colorado. The diversity statistics are presented by cumulative distributions of maximum and minimum attenuation.

  4. Systematic Evaluation of the Relationship between Physical and Psychoacoustical Measurements of Hearing Protectors' Attenuation.

    PubMed

    Nélisse, Hugues; Le Cocq, Cécile; Boutin, Jérôme; Laville, Frédéric; Voix, Jérémie

    2015-12-01

    The most commonly used methods to measure hearing protectors attenuation can be divided into two categories: psychoacoustical (subjective) and physical (objective) methods. In order to better understand the relationship between these methods, this article presents various factors relating attenuation values obtained with these methods through a series of tests. Experiments on human subjects were carried out where the subjects were instrumented on both ears with miniature microphones outside and underneath the protector. The subjects were then asked to go through a series of hearing threshold measurements (psychoacoustical method) followed by microphone sound recordings using high-level diffuse field broadband noises (physical method). The proposed test protocol allowed obtaining various factors relating the test methods as well as attenuation values and ratings for different protection conditions (open ear, earmuffs, earplugs, and dual protection). Results are presented for three models of passive earmuffs, three models of earplugs and all their combinations as dual hearing protectors. The validity and the relative importance of various terms used to correct the physical attenuation values when comparing with psychoacoustical attenuation values are examined. PMID:26023884

  5. Nonlinear attenuation from the interaction between different types of seismic waves and interaction of seismic waves with shallow ambient tectonic stress

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.; Nakata, Nori

    2015-07-01

    Strong seismic waves bring rock into frictional failure at the uppermost few hundred meters. Numerous small fractures slip with the cumulative effect of anelastic strain and nonlinear attenuation; these fractures should not distinguish between remote sources of stress. Still, frictional failure criteria are not evident especially when seismic waves change the normal traction on fractures. We identify three earthquakes as examples where consideration of interaction among dynamic stresses from different wave types and ambient tectonic stress provides theoretical predictions of nonlinear attenuation that are potentially testable with single station seismograms. For example, because Rayleigh waves produce shallow horizontal dynamic tension and compression, frictional failure should preferentially occur on the tensile half-cycle if no shallow tectonic stress is present and on the compressional half-cycle if the tectonic stress is already near thrust-faulting failure. We observed neither effect on records from the 2011 Mw 9.0 Great Tohoku earthquake. However, Rayleigh waves from this event appear to have brought rock beneath MYGH05 station into frictional failure at ˜10 m depth and thus suppressed high-frequency S waves. The tensile half-cycle of high-frequency P waves reduced normal traction on horizontal planes beneath station IWTH25 during the 2008 Mw 6.9 Iwate-Miyagi earthquake, weakening the rock in shear and suppressing high-frequency S waves. The near-field velocity pulse from the 1992 Mw 7.3 Landers earthquake brought the uppermost few hundred meters of granite beneath Lucerne station into frictional failure, suppressing high-frequency S waves. These moderately positive examples support the reality of nonlinear wave interaction, warranting study future strong ground motions.

  6. Improved estimation of P-wave velocity, S-wave velocity, and attenuation factor by iterative structural joint inversion of crosswell seismic data

    NASA Astrophysics Data System (ADS)

    Zhu, Tieyuan; Harris, Jerry M.

    2015-12-01

    We present an iterative joint inversion approach for improving the consistence of estimated P-wave velocity, S-wave velocity and attenuation factor models. This type of inversion scheme links two or more independent inversions using a joint constraint, which is constructed by the cross-gradient function in this paper. The primary advantages of this joint inversion strategy are: avoiding weighting for different datasets in conventional simultaneous joint inversion, flexible for incorporating prior information, and relatively easy to code. We demonstrate the algorithm with two synthetic examples and two field datasets. The inversions for P- and S-wave velocity are based on ray traveltime tomography. The results of the first synthetic example show that the iterative joint inversion take advantages of both P- and S-wave sensitivity to resolve their ambiguities as well as improve structural similarity between P- and S-wave velocity models. In the second synthetic and field examples, joint inversion of P- and S-wave traveltimes results in an improved Vs velocity model that shows better structural correlation with the Vp model. More importantly, the resultant VP/VS ratio map has fewer artifacts and is better correlated for use in geological interpretation than the independent inversions. The second field example illustrates that the flexible joint inversion algorithm using frequency-shift data gives a structurally improved attenuation factor map constrained by a prior VP tomogram.

  7. Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe

    NASA Astrophysics Data System (ADS)

    Kino, Saiko; Tanaka, Yuki; Matsuura, Yuji

    2014-05-01

    A noninvasive glucose monitoring system based on mid-infrared, attenuated total reflection spectroscopy using a hollow optical fiber probe is developed. Owing to the flexible fiber probe, measurement of oral mucosa, where blood capillaries are near the skin surface, is possible. Blood glucose levels are measured by detecting the peak intensity of glucose absorption bands, and the experimental results showed that the reproducibility of the measurement is high enough for monitoring blood glucose.

  8. Measurement of filter attenuation in the 10-?m region

    NASA Astrophysics Data System (ADS)

    Kent, Malcolm J.

    1999-12-01

    IR imaging sensors are generally designed to be as sensitive as possible. This makes them vulnerable to dazzle and damage by attack from in-band lasers. An obvious method of protecting these sensors is to include rejection filters in the optical system. The required rejection ratio may be many orders of magnitude. Of particular interest is the possible application of rejection filters to protect thermal imagers. Some difficulties have been experienced in the laboratory measurement of the rejection ratio of such filters. These problems are explained and methods to overcome them are discussed so leading to a reliable method of measurement.

  9. Wideband measurements of ice sheet attenuation and basal scattering

    E-print Network

    Allen, Christopher Thomas; Gogineni, Sivaprasad; Paden, J. D.; Jezek, K. C.; Dahl-Jensen, D.; Larsen, L. B.

    2005-04-01

    -analyzer-based system during the 2003 field season at the North Greenland Ice Core Project camp (75.1 N and 42.3 W). From the measurements, we determine the ice sheet complex transfer function over the frequency range from 110-500 MHz by deconvolving out the system...

  10. The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions

    NASA Astrophysics Data System (ADS)

    Best, Angus I.; Priest, Jeffrey A.; Clayton, Christopher R. I.; Rees, Emily V. L.

    2013-04-01

    A better understanding of seismic wave attenuation in hydrate-bearing sediments is needed for the improved geophysical quantification of seafloor methane hydrates, important for climate change, geohazard and economic resource assessment. Hence, we conducted a series of small strain (<10-6), seismic frequency (50-550 Hz), laboratory resonant column experiments on synthetic methane hydrate-bearing sands under excess-water seafloor conditions. The results show a complex dependence of P- and S-wave attenuation on hydrate saturation and morphology. P- and S-wave attenuation in excess-water hydrate-bearing sand is much higher than in excess-gas hydrate-bearing sand and increases with hydrate saturation between 0 and 0.44 (the experimental range). Theoretical modelling suggests that load-bearing hydrate is an important cause of heightened attenuation for both P- and S-waves in gas and water saturated sands, while pore-filling hydrate also contributes significantly to P-wave attenuation in water saturated sands. A squirt flow attenuation mechanism, related to microporous hydrate and low aspect ratio pores at the interface between sand grains and hydrate, is thought to be responsible for the heightened levels of attenuation in hydrate-bearing sands at low hydrate saturations (<0.44).

  11. Investigation of the tone-burst tube for duct lining attenuation measurement

    NASA Technical Reports Server (NTRS)

    Soffel, A. R.; Morrow, P. F.

    1972-01-01

    The tone burst technique makes practical the laboratory evaluation of potential inlet and discharge duct treatments. Tone burst apparatus requires only simple machined parts and standard components. Small, simply made, lining samples are quickly and easily installed in the system. Two small electromagnetric loudspeaker drivers produce peak sound pressure level of over 166 db in the 3-square-inch sample duct. Air pump available in most laboratories can produce air flows of over plus and minus Mach 0.3 in the sample duct. The technique uses short shaped pulses of sound propagated down a progressive wave tube containing the sample duct. The peak pressure level output of the treated duct is compared with the peak pressure level output of a substituted reference duct. The difference between the levels is the attenuation or insertion loss of the treated duct. Evaluations of resonant absorber linings by the tone burst technique check attenuation values predicted by empirical formulas based on full scale ducts.

  12. New method to measure the attenuation of hadrons in extensive air showers

    SciTech Connect

    Apel, W. D.; Badea, F.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.; Oehlschlaeger, J.

    2009-07-15

    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth's atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 10{sup 6} to 3x10{sup 7} GeV the attenuation length obtained increases from 170 to 210 g/cm{sup 2}. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.

  13. Using Kinect to Measure Wave Spectrum

    NASA Astrophysics Data System (ADS)

    Fong, J.; Loose, B.; Lovely, A.

    2012-12-01

    Gas exchange at the air-sea interface is enhanced by aqueous turbulence generated by capillary-gravity waves, affecting the absorption of atmospheric carbon dioxide by the ocean. The mean squared wave slope of these waves correlates strongly with the gas transfer velocity. To measure the energy in capillary-gravity waves, this project aims to use the Microsoft Xbox Kinect to measure the short period wave spectrum. Kinect is an input device for the Xbox 360 with an infrared laser and camera that can be used to map objects at high frequency and spatial resolution, similar to a LiDAR sensor. For air-sea gas exchange, we are interested in the short period gravity waves with a wavenumber of 40 to 100 radians per meter. We have successfully recorded data from Kinect at a sample rate of 30 Hz with 640x480 pixel resolution, consistent with the manufacturer specifications for its scanning capabilities. At 0.5 m distance from the surface, this yields a nominal resolution of approximately 0.7 mm with a theoretical vertical precision of 0.24 mm and a practical 1 ? noise level of 0.91 mm. We have found that Kinect has some limitations in its ability to detect the air-water interface. Clean water proved to be a weaker reflector for the Kinect IR source, whereas a relatively strong signal can be received for liquids with a high concentration of suspended solids. Colloids such as milk and Ca(OH)2 in water proved more suitable media from which height and wave spectra were detectable. Moreover, we will show results from monochromatic as well as wind-wave laboratory studies. With the wave field measurements from Kinect, gas transfer velocities at the air-sea interface can be determined.

  14. Frequency dispersion of ultrasonic velocity and attenuation of longitudinal waves propagating in 0.68Pb,,Mg1/3Nb2/3...O30.32PbTiO3 single crystals

    E-print Network

    Cao, Wenwu

    Frequency dispersion of ultrasonic velocity and attenuation of longitudinal waves propagating in 0 ultrasonic spectroscopy, the frequency dispersion of ultrasonic velocity and attenuation in the frequency coefficient and higher attenuation of ultrasonic waves in multiple-domain 1-x Pb Mg1/3Nb2/3 O3­xPbTiO3 single

  15. Direct Measurements of Reconnection Rate Attenuation by Plasmasphere Plumes

    NASA Astrophysics Data System (ADS)

    Sanchez, E. R.; Takahashi, K.

    2013-12-01

    It is widely hypothesized that mass loading of the magnetosphere (the process whereby the average mass density of the magnetosphere increases from its nominal value) significantly impacts solar wind-magnetosphere coupling and circulation within the magnetosphere. One important way in which mass loading can affect the magnetosphere occurs when enhanced convection after a lull in geomagnetic activity brings super-dense plasma from the plasmasphere (the so-called plasmsphere plume) into the dayside reconnection site. We measured the magnetic flux across the dayside polar cap boundary (a proxy of the dayside magnetic field reconnection rate) and tracked the sunward migration of the plasma plume for three storms that occurred after long intervals of quiet conditions. Significant intermittent reduction in the dayside reconnection potential (approximately 66% in the most pronounced case) was observed in the hours following the onset of negative IMF Bz condition, in agreement with the hypothesis that super-dense magnetospheric plasma convected into the dayside magnetopause inhibits reconnection.

  16. Attenuation length measurements of liquid scintillator with LabVIEW and reliability evaluation of the device

    E-print Network

    Gao, L; Ding, YY; Zhou, L; Wen, LJ; Xie, YG; Wang, ZG; Cai, X; Sun, XL; Fang, J; Xue, Z; Zhang, AW; LÜ, QW; Sun, LJ; Ge, YS; Liu, YB; Niu, SL; Hu, T; Cao, J; LÜ, JG

    2013-01-01

    The attenuation length measuring device was constructed by using oscilloscope and LabVIEW for signal acquisition and processing. The performance of the device has been tested with a variety of ways, the test results show that the set-up has a good stability and high precision (sigma/mean reached 0.4 percent). Besides, the accuracy of the measurement system will decrease by about 17 percent if a filter is used. The attenuation length of gadolinium-loaded liquid scintillator (Gd-LS) was measured as 15.10 plus or minus 0.35 m where Gd-LS was heavily used in Daya Bay Neutrino Experiment. In addition, one method based on the Beer-Lambert law was proposed to investigate the reliability of the measurement device, the R-square reached 0.9995. Moreover, three purification methods for Linear Alkyl Benzene (LAB) production were compared in the experiment.

  17. Surface wave attenuation from ambient noise correlation: methods and applications to 1D and 2D arrays

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhou, L.; Song, X.; Weaver, R. L.

    2014-12-01

    It can be shown that the field-field correlation function of an imperfectly diffuse wave field is equal to the (time derivative of) Green's function times the specific intensity of the noise (Weaver, 2013). The theoretical understanding permits the interpretation of correlation amplitudes and promises to facilitate the retrieval of attenuation, site amplification factors, and scattering strengths from the noise correlation. In order to develop methods for extracting attenuation from ambient noise and apply to real data (particularly in Tibetan Plateau), we propose approaches with detailed formulations for a linear array and a more general 2D station network. A particular problem in retrieving amplitudes from noise is that seismic ambient noise source is not uniform and changes with time. We tested numerical simulations with azimuthally and temporally varying noise source, and have started to add internal scattering in the simulations. Our simulations validate that amplitudes and attenuations can indeed be extracted from noise correlations for a linear array or for a more general 2D array. We propose a temporal flattening procedure, which is effective in speeding up convergence while preserving relative amplitudes. For real data, we propose an "asynchronous" temporal flattening procedure that does not require all stations to have the data at the same time. Tests on real data suggest attenuations extracted are comparable with those from earthquakes.

  18. Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection

    NASA Astrophysics Data System (ADS)

    Grognot, Marianne; Gallot, Guilhem

    2015-09-01

    Using Attenuated Total Reflection imaging technique in the terahertz domain, we demonstrate non-invasive, non-staining real time measurements of cytoplasm leakage during permeabilization of epithelial cells by saponin. The terahertz signal is mostly sensitive to the intracellular protein concentration in the cells, in a very good agreement with standard bicinchoninic acid protein measurements. It opens the way to in situ real time dynamics of protein content and permeabilization in live cells.

  19. Weak Measurement and (Bohmian) Conditional Wave Functions

    E-print Network

    Travis Norsen; Ward Struyve

    2013-10-07

    It was recently pointed out (and demonstrated experimentally) by Lundeen et al. that the wave function of a particle (more precisely, the wave function possessed by each member of an ensemble of identically-prepared particles) can be "directly measured" using weak measurement. Here it is shown that if this same technique is applied, with appropriate post-selection, to one particle from a (perhaps entangled) multi-particle system, the result is precisely the so-called "conditional wave function" of Bohmian mechanics. Thus, a plausibly operationalist method for defining the wave function of a quantum mechanical sub-system corresponds to the natural definition of a sub-system wave function which Bohmian mechanics (uniquely) makes possible. Similarly, a weak-measurement-based procedure for directly measuring a sub-system's density matrix should yield, under appropriate circumstances, the Bohmian "conditional density matrix" as opposed to the standard reduced density matrix. Experimental arrangements to demonstrate this behavior -- and also thereby reveal the non-local dependence of sub-system state functions on distant interventions -- are suggested and discussed.

  20. Roadside tree attenuation measurements at UHF for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1987-01-01

    Tree attenuation results at 870 MHz are described for experiments conducted in October 1985 and March 1986 in Central Maryland. These experiments employed a helicopter as a source platform and a van with receiver and data acquisition instrumentation. Tree attenuation results were obtained for the cases in which the van was stationary and in motion. The experiments were performed for the purpose of providing the designers of planned land mobile satellite systems with important elements in the determination of link parameter requirements; namely, the expected fading statistics due to roadside trees for both mobile and stationary vehicles. Single tree attenuation results gave worst case median fades as high as 15 dB although roadside tree values were noted to produce fades in excess of 20 dB for small percentages of time. The cumulative fade distributions and their relative contributions as a function of path elevation angle, right side versus left side driving, and different road types are derived from the field measurements. Upon comparing the attenuations from bare deciduous trees (March 1986) with those due to trees in full foliage (October 1985), the increase in dB attenuations were, in general, less than 25 percent for the dynamic cases, and less than 40 percent for the worst case static configuration. This result demonstrates that the dominant fading is caused by the wooded tree branches as opposed to the leaves on these branches. The tail end of the observed fade distributions was observed to follow lognormal distributions with respect to dB attenuation.

  1. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation

    E-print Network

    Louisnard, Olivier

    2013-01-01

    The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dissipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid. Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equations describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conveniently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation, where the imaginary part of the squared wave number is directly correlated with the energy lost by a single bubble. For low acoustic driving, linear theory is recovered, but for larger ...

  2. Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation

    SciTech Connect

    Osterhuber, R.; Fehrke, F.; Condreva, K.

    1998-05-01

    Incoming, background cosmic radiation constantly fluxes through the earth`s atmosphere. The high energy gamma portion of this radiation penetrates many terrestrial objects, including the winter snowpack. The attenuation of this radiation is exponentially related to the mass of the medium through which it penetrates. For the past three winters, a device measuring cosmic gamma radiation--and its attenuation through snow--has been installed at the Central Sierra Snow Laboratory, near Donner Pass, California. This gamma sensor, measuring energy levels between 5 and 15 MeV, has proved to be an accurate, reliable, non-invasive, non-mechanical instrument with which to measure the total snow water equivalent of a snowpack. This paper analyzes three winters` worth of data and discusses the physics and practical application of the sensor for the collection of snow water equivalent data from a remote location.

  3. Determination of rain rate from a spaceborne radar using measurements of total attenuation

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Eckerman, J.; Atlas, D.

    1981-01-01

    Studies shows that path-integrated rain rates can be determined by means of a direct measurement of attenuation. For ground based radars this is done by measuring the backscattering cross section of a fixed target in the presence and absence of rain along the radar beam. A ratio of the two measurements yields a factor proportional to the attenuation from which the average rain rate is deduced. The technique is extended to spaceborne radars by choosing the ground as reference target. The technique is also generalized so that both the average and range-profiled rain rates are determined. The accuracies of the resulting estimates are evaluated for a narrow beam radar located on a low earth orbiting satellite.

  4. The contribution of activated processes to Q. [stress corrosion cracking in seismic wave attenuation

    NASA Technical Reports Server (NTRS)

    Spetzler, H. A.; Getting, I. C.; Swanson, P. L.

    1980-01-01

    The possible role of activated processes in seismic attenuation is investigated. In this study, a solid is modeled by a parallel and series configuration of dashpots and springs. The contribution of stress and temperature activated processes to the long term dissipative behavior of this system is analyzed. Data from brittle rock deformation experiments suggest that one such process, stress corrosion cracking, may make a significant contribution to the attenuation factor, Q, especially for long period oscillations under significant tectonic stress.

  5. Internal reflection beneath capillary water waves: a method for measuring wave slope

    E-print Network

    Saylor, John R.

    Internal reflection beneath capillary water waves: a method for measuring wave slope J. R. Saylor of America Key words: Wave slope measurement, internal reflection, capillary waves. 1. Introduction The waves Ray-tracing simulations were performed to explore total internal reflection of light rays beneath

  6. Prediction of attenuation of the 28 GHz COMSTAR beacon signal using radar and measured rain drop spectra

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1977-01-01

    Disdrometer measurements and radar reflectivity measurements were injected into a computer program to estimate the path attenuation of the signal. Predicted attenuations when compared with the directly measured ones showed generally good correlation on a case by case basis and very good agreement statistically. The utility of using radar in conjunction with disdrometer measurements for predicting fade events and long term fade distributions associated with earth-satellite telecommunications is demonstrated.

  7. Measurement of Attenuation and Speed of Sound in Soils Michael L. Oelze, William D. O'Brien, Jr., and Robert G. Darmody*

    E-print Network

    Illinois at Urbana-Champaign, University of

    Measurement of Attenuation and Speed of Sound in Soils Michael L. Oelze, William D. O'Brien, Jr- facts, it is vital to know speed and attenuation of sound in the particular tic attenuation coefficient and char-determined the acoustic attenuation coefficient and the propagation acterize living tissues

  8. A tunable coherent CO2 lidar for measurements of atmospheric aerosol backscatter and attenuation

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1983-01-01

    A coherent laser radar system using a grating-tunable, injection-locked TEA-CO2 transmitter is being used to measure the altitude dependence of atmospheric aerosol backscatter and attenuation at a variety of CO2 laser wavelengths in the 9-11 micron region. Injection control of the TEA-CO2 laser allows one to obtain Single-Longitudinal-Mode (SLM) pulses which will follow the frequency of the injected radiation if the TEA laser cavity length is adjusted so that a cavity resonance is in proximity with the injected signal frequency, and if various additional conditions are satisfied. Requirements for generation of SLM pulses in this manner from a TEA CO2 laser with an unstable resonator cavity will be discussed. Procedures used for quantitative range-gated measurements of aerosol backscatter and attenuation will also be discussed.

  9. Measurement of breast-tissue x-ray attenuation by spectral mammography: first results on cyst fluid.

    PubMed

    Fredenberg, Erik; Dance, David R; Willsher, Paula; Moa, Elin; von Tiedemann, Miriam; Young, Kenneth C; Wallis, Matthew G

    2013-12-21

    Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to better characterize cysts at mammography screening would be highly desirable to reduce recalls, but the development is hampered by the lack of attenuation data for cysts. We have developed a method to measure x-ray attenuation of tissue samples using a prototype photon-counting spectral mammography unit. The method was applied to measure the attenuation of 50 samples of breast cyst fluid and 50 samples of water. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The attenuation of cyst fluid was found to be significantly different from water. There was a relatively large natural spread between different samples of cyst fluid, whereas the homogeneity of each individual sample was found to be good; the variation within samples did not reach above the quantum noise floor. The spectral method proved stable between several measurements on the same sample. Further, chemical analysis and elemental attenuation calculation were used to validate the spectral measurement on a subset of the samples. The two methods agreed within the precision of the elemental attenuation calculation over the mammographic energy range. PMID:24254377

  10. Development of far infrared attenuation to measure electron densities in cw pin discharge lasers

    NASA Technical Reports Server (NTRS)

    Babcock, R. V.

    1977-01-01

    A two beam attenuation technique was devised to measure electron densities 10 to the 9th power to 10 to the 11th power cm/3 resolved to 1 cm, in a near atmospheric COFFEE laser discharge, using 496 micrometer and 1,220 micrometer radiations from CH3F, optically pumped by a CO2 laser. A far infrared generator was developed which was suitable except for a periodic intensity variation in FIR output deriving from frequency variation of the pump radiation.

  11. Attenuation and Shock Waves in Linear Hereditary Viscoelastic Media; Strick-Mainardi, Jeffreys-Lomnitz-Strick and Andrade Creep Compliances

    NASA Astrophysics Data System (ADS)

    Hanyga, Andrzej

    2014-09-01

    Dispersion, attenuation and wavefronts in a class of linear viscoelastic media proposed by Strick and Mainardi (Geophys J R Astr Soc 69:415-429, 1982) and a related class of models due to Lomnitz, Jeffreys and Strick are studied by a new method due to the author. Unlike the previously studied explicit models of relaxation modulus or creep compliance, these two classes support propagation of discontinuities. Due to an extension made by Strick, either of these two classes of models comprise both viscoelastic solids and fluids. We also discuss the Andrade viscoelastic media. The Andrade media do not support discontinuity waves and exhibit the pedestal effect.

  12. Measurement of light attenuation extends the application of suspended sediment monitoring in rivers

    NASA Astrophysics Data System (ADS)

    Hughes, A. O.; Davies-Colley, R. J.; Elliott, A. H.

    2015-03-01

    Turbidity is often monitored continuously as a proxy for suspended sediment in catchment sediment load studies, but is less often applied to measuring optical `loads' as they affect water quality in downstream waters. We added measurements of visual clarity, from which light (beam) attenuation can be estimated, to auto-sampler monitoring over storm events in tributary rivers of the Kaipara Harbour, a large barrier enclosed estuary complex in northern New Zealand. This paper presents, for the first time, evidence of the mutual relationships between turbidity, total suspended sediment (TSS), and visual clarity, from water samples collected under event flow conditions. The mutual relationships between turbidity, TSS and visual clarity for our monitoring sites were fairly close over about three orders of magnitude (TSS ranging from about 1-1000 mg L-1). Our results show that visual clarity (and hence light attenuation) can be predicted from turbidity, at least as precisely as more traditional predictions of TSS from turbidity. The estimation of light attenuation and corresponding load estimates from visual clarity measurements, for relatively little marginal extra effort, extends the environmental relevance and application of suspended sediment monitoring.

  13. Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization

    SciTech Connect

    Gu, Renliang; Dogandži?, Aleksandar

    2014-02-18

    We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer’s law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ?{sub 1}-norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented.

  14. Seismic velocities and attenuation from borehole measurements near the Parkfield prediction zone, Central California

    USGS Publications Warehouse

    Gibbs, James F.; Roth, Edward F.

    1989-01-01

    Shear (S)- and compressional (P)- wave velocities were measured to a depth of 195 m in a borehole near the San Andreas fault where a recurrence of a moderate Parkfield earthquake is predicted. S-wave velocities determined from orthogonal directions of the S-wave source show velocity differences of approximately 20 percent. An average shear-wave Q of 4 was determined in relatively unconsolidated sands and gravels of the Paso Robles Formation in the depth interval 57.5-102.5 m.

  15. Measurement of the ultrasound attenuation and dispersion in whole human blood and its components from 0-70 MHz.

    PubMed

    Treeby, Bradley E; Zhang, Edward Z; Thomas, Alison S; Cox, Ben T

    2011-02-01

    The ultrasound attenuation coefficient and dispersion from 0-70 MHz in whole human blood and its components (red blood cells and plasma) at 37°C is reported. The measurements are made using a fixed path substitution technique that exploits optical mechanisms for the generation and detection of ultrasound. This allows the measurements to cover a broad frequency range with a single source and receiver. The measured attenuation coefficient and dispersion in solutions of red blood cells and physiological saline for total haemoglobin concentrations of 10, 15 and 20 g/dL are presented. The attenuation coefficient and dispersion in whole human blood taken from four healthy volunteers by venipuncture is also reported. The power law dependence of the attenuation coefficient is shown to vary across the measured frequency range. This is due to the varying frequency dependence of the different mechanisms responsible for the attenuation. The attenuation coefficient measured at high frequencies is found to be significantly higher than that predicted by historical power law parameters. A review of the attenuation mechanisms in blood along with previously reported experimental measurements is given. Values for the sound speed and density in the tested samples are also presented. PMID:21208728

  16. Shallow S wave attenuation and actively degassing magma beneath Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Lacson, Rudy; Maeda, Yuta; Figueroa, Melquiades S.; Yamashina, Tadashi

    2014-10-01

    Taal Volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A real-time broadband seismic network was recently deployed and has detected volcano-tectonic events beneath Taal. Our source location analysis of these volcano-tectonic events, using onset arrival times and high-frequency seismic amplitudes, points to the existence of a region of strong attenuation near the ground surface beneath the east flank of Volcano Island in Taal Lake. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. These features strongly suggest that the high-attenuation region represents an actively degassing magma body near the surface that has existed for more than 20 years.

  17. Centimeter and millimeter wave attenuation and brightness temperature due to atmospheric oxygen and water vapor

    NASA Technical Reports Server (NTRS)

    Smith, E. K.

    1982-01-01

    Calculations are presented for atmospheric absorption and radiation emission for several atmospheric conditions and elevation angles. The calculations are for frequencies in the 1 to 340 GHz frequency range. The calculations are compared to those from other models. Agreement is found to within 15% for absorption coefficient (7.5 g/m/cubed water vapor at 290 K) and approximately the same for total zenithal attenuation. The attenuation and gaseous emission noise curves defined by the International Radio Consultative Committee are found to have minor inconsistencies.

  18. Method of determining ultrasonic attenuation of tissue using reflective tomographic reconstruction

    SciTech Connect

    Flax, S. W.; Glover, G. H.

    1984-10-09

    Ultrasonic wave attenuation is determined for a plurality of limited volumes of tissue comprising a body under examination by directing ultrasonic waves through each limited volume along a plurality of vectors, determining a measure of attenuation of the limited volume by detecting the frequency shift of reflections of the ultrasonic wave along each vector, and averaging the attenuation of each limited volume from each vector intersecting the limited volume.

  19. Spinal axis irradiation with electrons: Measurements of attenuation by the spinal processes

    SciTech Connect

    Muller-Runkel, R.; Vijayakumar, S.

    1986-07-01

    Electrons may be used beneficially for spinal axis irradiation in medulloblastoma children to avoid some of the long-term sequelae induced by megavoltage photons. However, the attenuation by the intervening bone ought to be considered. Three-dimensional computer treatment planning with inhomogeneity correction for electron beams is not yet generally available, and alternate methods are needed to evaluate the attenuation by the complex bony structure of the spine. Here, we present our experimental data showing the alteration in the electron isodoses due to the intervening spinous processes. Film dosimetric measurements were made in the vertebral columns obtained from autopsies of a goat, a dog, and a child. Our results show that electron beam therapy for the spinal axis is a viable option.

  20. Full wave modeling of therapeutic ultrasound: efficient time-domain implementation of the frequency power-law attenuation.

    PubMed

    Liebler, Marko; Ginter, Siegfried; Dreyer, Thomas; Riedlinger, Rainer E

    2004-11-01

    For the simulation of therapeutic ultrasound applications, a method including frequency-dependent attenuation effects directly in the time domain is highly desirable. This paper describes an efficient numerical time-domain implementation of the power-law attenuation model presented by Szabo [Szabo, J. Acoust. Soc. Am. 96, 491-500 (1994)]. Simulations of therapeutic ultrasound applications are feasible in conjunction with a previously presented finite differences time-domain (FDTD) algorithm for nonlinear ultrasound propagation [Ginter et al., J. Acoust. Soc. Am. 111, 2049-2059 (2002)]. Szabo implemented the empirical frequency power-law attenuation using a causal convolutional operator directly in the time-domain equation. Though a variety of time-domain models has been published in recent years, no efficient numerical implementation has been presented so far for frequency power-law attenuation models. Solving a convolutional integral with standard time-domain techniques requires enormous computational effort and therefore often limits the application of such models to 1D problems. In contrast, the presented method is based on a recursive algorithm and requires only three time levels and a few auxiliary data to approximate the convolutional integral with high accuracy. The simulation results are validated by comparison with analytical solutions and measurements. PMID:15603120

  1. An Empirical Assessment of Exposure Measurement Error and Effect Attenuation in Bipollutant Epidemiologic Models

    PubMed Central

    Baxter, Lisa K.; Chang, Howard H.

    2014-01-01

    Background: Using multipollutant models to understand combined health effects of exposure to multiple pollutants is becoming more common. However, complex relationships between pollutants and differing degrees of exposure error across pollutants can make health effect estimates from multipollutant models difficult to interpret. Objectives: We aimed to quantify relationships between multiple pollutants and their associated exposure errors across metrics of exposure and to use empirical values to evaluate potential attenuation of coefficients in epidemiologic models. Methods: We used three daily exposure metrics (central-site measurements, air quality model estimates, and population exposure model estimates) for 193 ZIP codes in the Atlanta, Georgia, metropolitan area from 1999 through 2002 for PM2.5 and its components (EC and SO4), as well as O3, CO, and NOx, to construct three types of exposure error: ?spatial (comparing air quality model estimates to central-site measurements), ?population (comparing population exposure model estimates to air quality model estimates), and ?total (comparing population exposure model estimates to central-site measurements). We compared exposure metrics and exposure errors within and across pollutants and derived attenuation factors (ratio of observed to true coefficient for pollutant of interest) for single- and bipollutant model coefficients. Results: Pollutant concentrations and their exposure errors were moderately to highly correlated (typically, > 0.5), especially for CO, NOx, and EC (i.e., “local” pollutants); correlations differed across exposure metrics and types of exposure error. Spatial variability was evident, with variance of exposure error for local pollutants ranging from 0.25 to 0.83 for ?spatial and ?total. The attenuation of model coefficients in single- and bipollutant epidemiologic models relative to the true value differed across types of exposure error, pollutants, and space. Conclusions: Under a classical exposure-error framework, attenuation may be substantial for local pollutants as a result of ?spatial and ?total with true coefficients reduced by a factor typically < 0.6 (results varied for ?population and regional pollutants). Citation: Dionisio KL, Baxter LK, Chang HH. 2014. An empirical assessment of exposure measurement error and effect attenuation in bipollutant epidemiologic models. Environ Health Perspect 122:1216–1224;?http://dx.doi.org/10.1289/ehp.1307772 PMID:25003573

  2. Setting Time Measurement Using Ultrasonic Wave Reflection

    SciTech Connect

    Chung, Chul-Woo; Suraneni, Prannoy; Popovics, John S.; Struble, Leslie J.

    2012-01-09

    Ultrasonic shear wave reflection was used to investigate setting times of cement pastes by measuring the reflection coefficient at the interface between hydrating cement pastes of varying water-to-cement ratio and an ultrasonic buffer material. Several different buffer materials were employed, and the choice of buffer was seen to strongly affect measurement sensitivity; high impact polystyrene showed the highest sensitivity to setting processes because it had the lowest acoustic impedance value. The results show that ultrasonic shear-wave reflection can be used successfully to monitor early setting processes of cement paste with good sensitivity when such a very low impedance buffer is employed. Criteria are proposed to define set times, and the resulting initial and final set times agreed broadly with those determined using the standard penetration resistance test.

  3. Wavelength dependent measurements of optical fiber transit time, material dispersion, and attenuation

    SciTech Connect

    COCHRANE,KYLE ROBERT; BAILEY,JAMES E.; LAKE,PATRICK WAYNE; CARLSON,ALAN L.

    2000-04-18

    A new method for measuring the wavelength dependence of the transit time, material dispersion, and attenuation of an optical fiber is described. The authors inject light from a 4-ns risetime pulsed broad-band flashlamp into various length fibers and record the transmitted signals with a time-resolved spectrograph. Segments of data spanning an approximately 3,000 {angstrom} range are recorded from a single flashlamp pulse. Comparison of data acquired with short and long fibers enables the determination of the transit time and the material dispersion as functions of wavelength dependence for the entire recorded spectrum simultaneously. The wavelength dependent attenuation is also determined from the signal intensities. The method is demonstrated with experiments using a step index 200-{micro}m-diameter SiO{sub 2} fiber. The results agree with the transit time determined from the bulk glass refractive index to within {+-} 0.035% for the visible (4,000--7,200 {angstrom}) spectrum and 0.12% for the ultraviolet (2,650--4,000 {angstrom}) spectrum, and with the attenuation specified by the fiber manufacturer to within {+-} 10%.

  4. Extracting the Green's function of attenuating heterogeneous acoustic media from uncorrelated waves

    E-print Network

    Snieder, Roel

    ­8 The extraction of the Green's function using random wave fields has been applied to ultrasound,9­12 in seismic of this field of research. Phrases that include passive imaging, correlation of ambient noise, extraction the wave field that is excited by random sources and is recorded at two locations. Here the generalization

  5. Microwave radar measurements of ocean wave propagation - Initial results

    SciTech Connect

    Poulter, E.M.; Smith, M.J.; McGregor, J.A.

    1990-11-01

    A microwave radar has been developed to measure the surface orbital velocities of ocean waves, and hence estimate the wave height spectra. The Doppler radar exploits the frequency modulated continuous wave (FMCW) technique to provide good spatial resolution (much less than the ocean wavelengths of interest) making it suitable for ocean wave propagation studies. The authors present initial data demonstrating the radar's capabilities to deduce near-shore ocean wave properties. The spatial and temporal variations of the orbital velocities reveal the wave propagation, and the deduced wave height spectra show wave growth as they approach the shore.

  6. Comparison of Instantaneous Frequency Scaling from Rain Attenuation and Optical Disdrometer Measurements at K/Q bands

    NASA Technical Reports Server (NTRS)

    Nessel, James; Zemba, Michael; Luini, Lorenzo; Riva, Carlo

    2015-01-01

    Rain attenuation is strongly dependent on the rain rate, but also on the rain drop size distribution (DSD). Typically, models utilize an average drop size distribution, such as those developed by Laws and Parsons, or Marshall and Palmer. However, individual rain events may possess drop size distributions which could be significantly different from the average and will impact, for example, fade mitigation techniques which utilize channel performance estimates from a signal at a different frequency. Therefore, a good understanding of the characteristics and variability of the raindrop size distribution is extremely important in predicting rain attenuation and instantaneous frequency scaling parameters on an event-toevent basis. Since June 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have measured the attenuation due to rain in Milan, Italy, on the 20/40 GHz beacon signal broadcast from the Alphasat TDP#5 Aldo Paraboni Q/V-band Payload. Concomitant with these measurements are the measurements of drop size distribution and rain rate utilizing a Thies Clima laser precipitation monitor (disdrometer). In this paper, we discuss the comparison of the predicted rain attenuation at 20 and 40 GHz derived from the drop size distribution data with the measured rain attenuation. The results are compared on statistical and real-time bases. We will investigate the performance of the rain attenuation model, instantaneous frequency scaling, and the distribution of the scaling factor. Further, seasonal rain characteristics will be analysed.

  7. Laboratory experiments and numerical modeling of wave attenuation through artificial vegetation 

    E-print Network

    Augustin, Lauren Nicole

    2009-05-15

    It is commonly known that coastal vegetation dissipates energy and aids in shoreline protection by damping incoming waves and depositing sediment in vegetated regions. However, this critical role of vegetation to dampen ...

  8. S-wave attenuation in northeastern Sonora, Mexico, near the faults that ruptured during the earthquake of 3 May 1887 Mw 7.5.

    PubMed

    Villalobos-Escobar, Gina P; Castro, Raúl R

    2014-01-01

    We used a new data set of relocated earthquakes recorded by the Seismic Network of Northeastern Sonora, Mexico (RESNES) to characterize the attenuation of S-waves in the fault zone of the 1887 Sonora earthquake (M w 7.5). We determined spectral attenuation functions for hypocentral distances (r) between 10 and 140 km using a nonparametric approach and found that in this fault zone the spectral amplitudes decay slower with distance at low frequencies (f?attenuation functions obtained for 23 frequencies (0.4???f???63.1 Hz) permit us estimating the average quality factor Q S ?=?(141 ± 1.1 )f ((0.74 ± 0.04)) and a geometrical spreading term G(r) =?1/r (0.21). The values of Q estimated for S-wave paths traveling along the fault system that rupture during the 1887 event, in the north-south direction, are considerably lower than the average Q estimated using source-station paths from multiple stations and directions. These results indicate that near the fault zone S waves attenuate considerably more than at regional scale, particularly at low frequencies. This may be the result of strong scattering near the faults due to the fractured upper crust and higher intrinsic attenuation due to stress concentration near the faults. PMID:25674476

  9. Attenuation measurements of passive linear and nonlinear hearing protectors for impulse noise

    NASA Astrophysics Data System (ADS)

    Murphy, William J.; Kardous, Chucri A.

    2003-04-01

    As a part of a NIOSH Health Hazard Evaluation of law-enforcement personnel, the attenuation of several types of earplugs were measured in response to impulse noise produced by small-arms gunfire. The earplugs were primarily flanged premolded plugs produced by EAR/Aearo and Bilsom/Baccou-Dalloz. Measurements for the North Sonic Ear Valve, EAR Classic earplugs, and EAR Ultra 9000 passive nonlinear ear muff were conducted. The EAR premolded earplugs were the Combat Arms passive linear and nonlinear, HiFi and Ultratech earplugs. The Bilsom devices were the 555, 655 NST, and 655 ISL earplugs. The Combat Arms and 655 ISL earplugs both utilize a cartridge developed by the French German Research Institute de Saint Louis that provides nonlinear attenuation. The peak reduction of these devices ranged between 10 and 28 dB. The slope of peak reduction with peak level for the Ultra9000 device was about 0.5 dB/dB, while the slopes for most earplugs were about 0.1 to 0.3 dB/dB for weapons impulses between 159- and 170-dB peak level. The peak reductions ranged from 6 dB for the North Ear valve to 30 dB for the EAR Classic foam earplug.

  10. Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Torello, David; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J.

    2015-03-01

    This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter ?11 is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a ?117075/?112024 measure of 1.363 agrees well with previous literature and earlier work.

  11. Global Love wave overtone measurements K. Visser,1

    E-print Network

    Utrecht, Universiteit

    Global Love wave overtone measurements K. Visser,1 S. Lebedev,1 J. Trampert,1 and B. L. N. Kennett2. [1] Love wave phase velocities for fundamental and higher modes are difficult to measure because forty thousand Love wave seismograms from the GDSN and GEOSCOPE global networks from 1994 ­ 2004. Our

  12. First measurements of plasma waves near Mars

    NASA Technical Reports Server (NTRS)

    Grard, R.; Pedersen, A.; Klimov, S.; Savin, S.; Skalskii, A.

    1989-01-01

    Preliminary results from electric field measurements in the environment of Mars using the plasma-wave system on board Phobos 2 are reported. Electron-plasma oscillations observed upstream of the bow shock correspond to a solar-wind density of 2/cu cm. The shock-foot boundary was crossed up to three times on each orbit. The shock ramp was detected at altitudes between 0.45 and 0.75 Mars radii R(M) above the planetary surface. The density increased by about a factor of two at the ramp. The shock position, although variable, seems to be consistent with previous measurements. The downstream magnetosheath contained broadband electric-field noise below the plasma frequency. The boundary of th obstacle, or plasmapause, was crossed at altitudes of the order of 0.28 R(M); the cold plasma density was highly variable within the planetopause and reached the unexpected value of 700/cu cm on the third orbit, at 0.25 R(M) altitude. Bursts of waves with frequencies below the electron cyclotron frequency occur within the planetopause.

  13. Torsional ultrasonic wave based level measurement system

    DOEpatents

    Holcomb, David E. (Oak Ridge, TN); Kisner, Roger A. (Knoxville, TN)

    2012-07-10

    A level measurement system suitable for use in a high temperature and pressure environment to measure the level of coolant fluid within the environment, the system including a volume of coolant fluid located in a coolant region of the high temperature and pressure environment and having a level therein; an ultrasonic waveguide blade that is positioned within the desired coolant region of the high temperature and pressure environment; a magnetostrictive electrical assembly located within the high temperature and pressure environment and configured to operate in the environment and cooperate with the waveguide blade to launch and receive ultrasonic waves; and an external signal processing system located outside of the high temperature and pressure environment and configured for communicating with the electrical assembly located within the high temperature and pressure environment.

  14. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  15. Equations of state and impact-induced shock-wave attenuation on the moon

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Okeefe, J. D.

    1977-01-01

    Equation of state formulations are considered in a framework that permits comparison with one-dimensional impedance match solutions. The problem considered is the peak pressures attained along the impact symmetry axis when a sphere impacts with a half-space. The regimes of melting and vaporization - in particular, incipiently melted, completely melted, incipiently vaporized, and completely vaporized states - are examined, and the pressures at which critical isentropes intersect the Hugoniots of iron and gabbroic anorthosite are considered. A means of representing the spatial attenuation of shock pressure along the impact axis by two regimes is introduced, and results for the near-field and far-field regime are presented. It is thought that the treatment can be used to obtain quantitative bounds on the impact velocity of the meteorite.

  16. Comparison of Predicted and Measured Attenuation of Turbine Noise from a Static Engine Test

    NASA Technical Reports Server (NTRS)

    Chien, Eugene W.; Ruiz, Marta; Yu, Jia; Morin, Bruce L.; Cicon, Dennis; Schwieger, Paul S.; Nark, Douglas M.

    2007-01-01

    Aircraft noise has become an increasing concern for commercial airlines. Worldwide demand for quieter aircraft is increasing, making the prediction of engine noise suppression one of the most important fields of research. The Low-Pressure Turbine (LPT) can be an important noise source during the approach condition for commercial aircraft. The National Aeronautics and Space Administration (NASA), Pratt & Whitney (P&W), and Goodrich Aerostructures (Goodrich) conducted a joint program to validate a method for predicting turbine noise attenuation. The method includes noise-source estimation, acoustic treatment impedance prediction, and in-duct noise propagation analysis. Two noise propagation prediction codes, Eversman Finite Element Method (FEM) code [1] and the CDUCT-LaRC [2] code, were used in this study to compare the predicted and the measured turbine noise attenuation from a static engine test. In this paper, the test setup, test configurations and test results are detailed in Section II. A description of the input parameters, including estimated noise modal content (in terms of acoustic potential), and acoustic treatment impedance values are provided in Section III. The prediction-to-test correlation study results are illustrated and discussed in Section IV and V for the FEM and the CDUCT-LaRC codes, respectively, and a summary of the results is presented in Section VI.

  17. Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids

    NASA Astrophysics Data System (ADS)

    Kore, Prashant S.; Pawar, Pravina P.

    2014-05-01

    The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.

  18. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  19. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  20. Water wave measurement from stereo images of specular reflections

    NASA Astrophysics Data System (ADS)

    Kiefhaber, Daniel; Caulliez, Guillemette; Zappa, Christopher J.; Schaper, Julia; Jähne, Bernd

    2015-11-01

    A new optical instrument for the study of ocean waves, the Reflective Stereo Slope Gauge, has been developed. Its purpose is to measure ocean wave field parameters that are crucial to the air-sea exchange of momentum, heat and gases. The instrument combines a statistical wave slope measurement method similar to Cox and Munk’s sun glitter technique with a dedicated stereo camera and associated illumination setup for direct wave height measurements. The instrument output was validated under controlled conditions in a wind-wave facility.

  1. Synergistic measurements of ocean winds and waves from SAR

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Li, Xiaofeng; Perrie, William; He, Yijun

    2015-09-01

    In this study we present a synergistic method to retrieve both ocean surface wave and wind fields from spaceborne quad-polarization (QP) synthetic aperture radar (SAR) imaging mode data. This algorithm integrates QP-SAR wind vector retrieval model and the wave retrieval model, with consideration to the nonlinear mapping relationship between ocean wave spectra and SAR image spectra, in order to synergistically retrieve wind fields and wave directional spectra. The method does not require a priori information on the sea state. It combines the observed VV-polarized SAR image spectra with the retrieved wind vectors from the VH-polarized SAR image, to estimate the wind-generated wave directional spectra. The differences between the observed SAR spectra and optimal SAR image spectra associated with the wind waves are interpreted as the contributions from the swell waves. The retrieved ocean wave spectra are used to estimate the integrated spectral wave parameters such as significant wave heights, wavelengths, wave directions and wave periods. The wind and wave parameters retrieved by QP-SAR are validated against those measured by the National Data Buoy Center (NDBC) directional wave buoys under different sea states. The validation results show that the QP-SAR SAR has potential to simultaneously measure the ocean surface waves and wind fields from space.

  2. Defects and dislocations in the upper mantle /asthenosphere/ and attenuation of shear waves

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Bhattacharya, D.

    A model is presented to account for the damping of elastic waves at the low-velocity zone in which an assumption is made that the ferromagnesian silicates present there contain lattice defects, including both point defects and dislocations, which control the rheology of the material in a significant way. A crystalline solid is considered to be a mechanical system having quantized vibrational properties, and impurity atoms are considered to be segregated along dislocation lines and to lie in point-defect dislocation equilibrium. It is found that the low-velocity zone has a greater Lamb-Moessbauer factor for Co-57 to Fe-57 present in the silicate system, and this increases exponentially with the damping constant. Under periodic stress acoustic phonons could be created and destroyed with the emission of gamma rays, which could couple with the existing Moessbauer gamma source and bring about more damping of stress waves.

  3. Deep-Ocean Measurements of Tsunami Waves

    NASA Astrophysics Data System (ADS)

    Rabinovich, Alexander B.; Eblé, Marie C.

    2015-03-01

    Deep-ocean tsunami measurements play a major role in understanding the physics of tsunami wave generation and propagation, and in improving the effectiveness of tsunami warning systems. This paper provides an overview of the history of tsunami recording in the open ocean from the earliest days, approximately 50 years ago, to the present day. Modern tsunami monitoring systems such as the self-contained Deep-ocean Assessment and Reporting of Tsunamis and innovative cabled sensing networks, including, but not limited to, the Japanese bottom cable projects and the NEPTUNE-Canada geophysical bottom observatory, are highlighted. The specific peculiarities of seafloor longwave observations in the deep ocean are discussed and compared with observations recorded in coastal regions. Tsunami detection in bottom pressure observations is exemplified through analysis of distant (22,000 km from the source) records of the 2004 Sumatra tsunami in the northeastern Pacific.

  4. Attenuation of the S+Lg+Surface Wave Group out to 600 km in Northeastern North America: A Baseline Study?

    NASA Astrophysics Data System (ADS)

    Boatwright, J.; Seekins, L. C.

    2009-12-01

    We analyze the S+Lg+surface wave groups radiated out to 600 km by four moderate (4 ? M ? 5) earthquakes in Quebec, New York, and Maine: the 1997 Cap Rouge, 2002 Ausable Forks, 2005 Rivière du Loup, and 2006 Bar Harbor earthquakes. The raypaths predominately sample the Appalacian Province, and the crustal velocity structure is roughly homogeneous across the study area. We compute spectra using 20-60 s windows of the horizontal broadband components. We restrict our analysis to hard-rock (Vs > 1500 m/s) and soft-rock (Vs > 700 m/s) sites, avoiding resonant sedimentary sites; we model site amplification using average 1D impedance functions (Boore and Joyner, 1997). We use ro = 50 km instead of ro = 100 km for the crossover distance in the Street et al. (1975) function for geometrical spreading: this distance adjusts the corrected spectra at 10 s to the moment tensor estimates. This simple correction scheme allows us to regress for Q directly as a function of frequency: the source spectral shape is entirely unconstrained. Fitting a Qo f q function to the Q estimates from 0.2 to 25 Hz yields Q = 410 f 0.5 for a group velocity of 3.5 km/s. This attenuation is stronger than the Lg attenuation of 650 f 0.36 obtained by Erickson et al. (2004). The Q estimates are consistent for individual events. For f > 20 Hz, the Q estimates increase more rapidly than f 0.5: this deviation from the Qo f q form appears characteristic. To gauge how these Q estimates depend on the distance limit, we will rerun the analysis using broadband data out to 1000 km, adding 30% more recordings to the dataset.

  5. Dispersion and attenuation on the Brillouin sound waves of a lubricant: Di(2-ethylhexyl) sebacate under high pressures

    NASA Astrophysics Data System (ADS)

    Fujita, Yoshitaka; Kobayashi, Hiroshi

    2011-08-01

    The Brillouin spectra of di(2-ethylhexyl) sebacate, which is a liquid lubricant known as DOS, were measured at up to 5 GPa at 25 °C and up to 2.5 GPa at 80 °C. At 25 °C, the Brillouin frequency linewidth (acoustic attenuation) has a large maximum at 0.1 MPa, and at 80 °C, it has a large broad maximum at 0.8 GPa. The Brillouin frequency shift (sound velocity) and linewidth obtained indicate that the large dispersion of the sound velocities of DOS occurs from 0.1 MPa at 25 °C and from 0.8 GPa at 80 °C. The origins of this attenuation and dispersion are discussed on the basis of the theory for a viscoelastic liquid. It is proposed that the large acoustic attenuation and dispersion of DOS are due to the production of higher-rank structures with nano-order domains in a polymeric liquid by pressurization. The results show that DOS is strongly viscoelastic above 0.8 GPa at 80 °C, but it is not viscous below 0.8 GPa at 80 °C, with the disappearance of the frequency dispersion. The result obtained is used to explain a limiting shear stress observed in a traction oil. Above a given sliding speed, the oil reaches the region of temperature and pressure in which its viscosity decreases with increasing shear rate and conveys a constant torque above some high shear rate. Then, the oil flows as a plastic solid at a limiting shear stress. These findings regarding the dynamical properties of DOS under high pressures are very useful for the production and analysis of lubricants and traction oils.

  6. Measurement of the Expansion Rate of the Universe from ?-Ray Attenuation

    NASA Astrophysics Data System (ADS)

    Domínguez, Alberto; Prada, Francisco

    2013-07-01

    A measurement of the expansion rate of the universe (that is, the Hubble constant, H 0) is derived here using the ?-ray attenuation observed in the spectra of ?-ray sources produced by the interaction of extragalactic ?-ray photons with the photons of the extragalactic background light (EBL). The Hubble constant determined with our technique, for a ?CDM cosmology, is H_{0}=71.8_{-5.6}^{+4.6}(stat)_{-13.8}^{+7.2}(syst) km s-1 Mpc-1. This value is compatible with present-day measurements using well-established methods such as local distance ladders and cosmological probes. The recent detection of the cosmic ?-ray horizon (CGRH) from multiwavelength observations of blazars, together with the advances in the knowledge of the EBL, allow us to measure the expansion rate of the universe. This estimate of the Hubble constant shows that ?-ray astronomy has reached a mature enough state to provide cosmological measurements, which may become more competitive in the future with the construction of the Cherenkov Telescope Array. We find that the maximum dependence of the CGRH on the Hubble constant is approximately between redshifts 0.04 and 0.1, thus this is a smoking gun for planning future observational efforts. Other cosmological parameters, such as the total dark matter density ? m and the dark energy equation of state w, are explored as well.

  7. Influence of bubble size and thermal dissipation on compressive wave attenuation in liquid foams

    NASA Astrophysics Data System (ADS)

    Monloubou, M.; Saint-Jalmes, A.; Dollet, B.; Cantat, I.

    2015-11-01

    Acoustic or blast wave absorption by liquid foams is especially efficient and bubble size or liquid fraction optimization is an important challenge in this context. A resonant behavior of foams has recently been observed, but the main local dissipative process is still unknown. In this paper, we evidence the thermal origin of the dissipation, with an optimal bubble size close to the thermal boundary layer thickness. Using a shock tube, we produce typical pressure variation at time scales of the order of the millisecond, which propagates in the foam in linear and slightly nonlinear regimes.

  8. Measurements of shoaling internal waves and turbulence in an estuary

    E-print Network

    Kelley, Dan

    Measurements of shoaling internal waves and turbulence in an estuary Clark Richards,1 Daniel internal waves may represent an important source of mixing and transport in estuaries and coastal seas of the turbulent energetics, and two main features were studied. First, during a period of shoaling internal waves

  9. Measurements of shoaling internal waves and turbulence in an estuary

    E-print Network

    Measurements of shoaling internal waves and turbulence in an estuary Clark Richards,1 Daniel 2012; accepted 30 October 2012. [1] The shoaling of horizontally propagating internal waves may energetics, and two main features were studied. First, during a period of shoaling internal waves, turbulence

  10. Extracellular Space Attenuates the Effect of Gap Junctional Remodeling on Wave Propagation: A Computational Study

    PubMed Central

    Cabo, Candido; Boyden, Penelope A.

    2009-01-01

    Abstract Ionic channels and gap junctions are remodeled in cells from the 5-day epicardial border zone (EBZ) of the healing canine infarct. The main objective of the study was to determine the effect of gap junctional conductance (Gj) remodeling and Cx43 redistribution to the lateral membrane on conduction velocity (?) and anisotropic ratio, and how gap junctional remodeling is modulated by the extracellular space. We first implemented subcellular monodomain and two-domain computer models of normal epicardium (NZ) to understand how extracellular space modulates the relationship between Gj and ? in NZ. We found that the extracellular space flattens the Gj-? relationship, thus ? becomes less sensitive to changes in Gj. We then investigated the functional consequences of Gj remodeling and Cx43 distribution in subcellular computer models of cells of the outer pathway (IZo) and central pathway (IZc) of reentrant circuits. In IZo cells, side-to-side (transverse) Gj is 10% the value in NZ cells. Such Gj remodeling causes a 45% decrease in transverse ? (?T). Inclusion of an extracellular space reduces the decrease in ?T to 31%. In IZc cells, Cx43 redistribution along the lateral membrane results in a 29% increase in ?T. That increase in ?T is a consequence of the decrease in access resistance to the Cx43 plaques that occur with the Cx43 redistribution. Extracellular space reduces the increase in ?T to 10%. In conclusion: 1), The extracellular space included in normal epicardial simulations flattens the Gj-? relationship with ? becoming less sensitive to changes in Gj. 2), The extracellular space attenuates the effects of gap junction epicardial border zone remodeling (i.e., Gj reduction and Cx43 lateralization) on ?T. PMID:19383455

  11. Directional measurement of short ocean waves with stereophotography

    NASA Technical Reports Server (NTRS)

    Shemdin, Omar H.; Tran, H. Minh; Wu, S. C.

    1988-01-01

    Stereophotographs of the sea surface, acquired during the Tower Ocean Wave and Radar Dependence experiment are analyzed to yield directional wave height spectra of short surface waves in the 6-80-cm range. The omnidirectional wave height spectra are found to deviate from the k exp -4 distribution, where k is the wave number. The stereo data processing errors are found to be within + or - 5 percent. The omnidirectional spectra yield 514 deg of freedom for 30-cm-long waves. The directional distribution of short waves is processed with a directional resolution of 30 deg, so as to yield 72 deg of freedom for 30-cm-long waves. The directional distributions show peaks that are aligned with the wind and swell directions. It is found that dynamically relevant measurements can be obtained with stereophotography, after removal of the mean surface associated with long waves.

  12. Measuring the speed of cosmological gravitational waves

    NASA Astrophysics Data System (ADS)

    Raveri, Marco; Baccigalupi, Carlo; Silvestri, Alessandra; Zhou, Shuang-Yong

    2015-03-01

    In general relativity gravitational waves propagate at the speed of light; however, in alternative theories of gravity that might not be the case. We investigate the effects of a modified speed of gravity, cT2, on the B modes of the cosmic microwave background (CMB) anisotropy in polarization. We find that a departure from the light speed value would leave a characteristic imprint on the BB spectrum part induced by tensors, manifesting as a shift in the angular scale of its peaks which allows us to constrain cT without any significant degeneracy with other cosmological parameters. We derive constraints from current data and forecast the accuracy with which cT will be measured by the next generation CMB satellites. In the former case, using the available Planck and BICEP2 data sets, we obtain cT2=1.30 ±0.79 and cT2<2.85 at 95% C.L. by assuming a power law primordial tensor power spectrum and cT2<2.33 at 95% C.L. if the running of the spectral index is allowed. More interestingly, in the latter case we find future CMB satellites capable of constraining cT2 at percent level, comparable with bounds from binary pulsar measurements, largely due to the absence of degeneracy with other cosmological parameters.

  13. Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications

    ERIC Educational Resources Information Center

    Meath, Sian E.; Aye, Lu; Haritos, Nicholas

    2008-01-01

    This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and…

  14. Hydrometeor Size Distribution Measurements by Imaging the Attenuation of a Laser Spot

    NASA Technical Reports Server (NTRS)

    Lane, John

    2013-01-01

    The optical extinction of a laser due to scattering of particles is a well-known phenomenon. In a laboratory environment, this physical principle is known as the Beer-Lambert law, and is often used to measure the concentration of scattering particles in a fluid or gas. This method has been experimentally shown to be a usable means to measure the dust density from a rocket plume interaction with the lunar surface. Using the same principles and experimental arrangement, this technique can be applied to hydrometeor size distributions, and for launch-pad operations, specifically as a passive hail detection and measurement system. Calibration of a hail monitoring system is a difficult process. In the past, it has required comparison to another means of measuring hydrometeor size and density. Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through hail (or dust in the rocket case) yields an estimate of the second moment of the particle cloud, and hydrometeor size distribution in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rain and hail fall make indirect measurements of the drop-size distribution. Instruments that scatter microwaves off of hydrometeors, such as the WSR-88D (Weather Surveillance Radar 88 Doppler), vertical wind profilers, and microwave disdrometers, measure the sixth moment of the drop size distribution (DSD). By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain and hail yield a measurement of the DSD's second moment by way of the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required. Depending on the intensity of the hail fall rate for moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in optical extinction using a digital camera. For hail fall only, the laser path may be shorter because of greater scattering due to the properties of hailstones versus raindrops. A photodetector may replace the camera in automated installations. Laser-based rain and hail measurement systems are available, but they are based on measuring the interruption of a thin laser beam, thus counting individual hydrometeors. These systems are true disdrometers since they also measure size and velocity. The method reported here is a simple method, requiring far less processing, but it is not a disdrometer.

  15. Measurement of semi-rigid coaxial cables at cryogenic temperature -thermal conductance and attenuation-

    NASA Astrophysics Data System (ADS)

    Kasai, Soichi; Kushino, Akihiro

    2013-03-01

    We are developing semi-rigid coaxial cables for low temperature experiments which require fast readout with low noise. Coaxial cables used at low temperature are made of low thermal conductivity materials, such as stainless-steel, cupro-nickel and polytetrafluoroethylene to suppress heat penetration through cables. As the thermal conductivity of such alloys is affected by the thermal and mechanical treatment in forming process, we have to measure thermal property of coaxial cables after forming. The low thermal conductance of 5.5 cm specimen was measured by the steady-state heat-flow method with 1m long and thin niobium-titanium wiring for thermometers and heaters. Signal attenuation of coaxial cables was measured at 3K stage of an adiabatic demagnetization refrigerator. In order to cool center electrical conductor, the cables with 1m long length were coiled, and surrounded by copper blocks then attached to 3K stage. We successfully observed superconducting transition of center conductor of superconducting niobium-titanium coaxial cables with this method.

  16. A Nonlinear Theory for Predicting the Effects of Unsteady Laminar, Turbulent, or Transitional Boundary Layers on the Attenuation of Shock Waves in a Shock Tube with Experimental Comparison

    NASA Technical Reports Server (NTRS)

    Trimpi, Robert L.; Cohen, Nathaniel B.

    1961-01-01

    The linearized attenuation theory of NACA Technical Note 3375 is modified in the following manner: (a) an unsteady compressible local skin-friction coefficient is employed rather than the equivalent steady-flow incompressible coefficient; (b) a nonlinear approach is used to permit application of the theory to large attenuations; and (c) transition effects are considered. Curves are presented for predicting attenuation for a shock pressure ratio up to 20 and a range of shock-tube Reynolds numbers. Comparison of theory and experimental data for shock-wave strengths between 1.5 and 10 over a wide range of Reynolds numbers shows good agreement with the nonlinear theory evaluated for a transition Reynolds number of 2.5 X 10(exp 5).

  17. Correlation techniques and measurements of wave-height statistics

    NASA Technical Reports Server (NTRS)

    Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.

    1972-01-01

    Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.

  18. Attenuation of copper in runoff from copper roofing materials by two stormwater control measures.

    PubMed

    LaBarre, William J; Ownby, David R; Lev, Steven M; Rader, Kevin J; Casey, Ryan E

    2016-01-01

    Concerns have been raised over diffuse and non-point sources of metals including releases from copper (Cu) roofs during storm events. A picnic shelter with a partitioned Cu roof was constructed with two types of stormwater control measures (SCMs), bioretention planter boxes and biofiltration swales, to evaluate the ability of the SCMs to attenuate Cu in stormwater runoff from the roof. Cu was measured as it entered the SCMs from the roof as influent as well as after it left the SCMs as effluent. Samples from twenty-six storms were collected with flow-weighted composite sampling. Samples from seven storms were collected with discrete sampling. Total Cu in composite samples of the influent waters ranged from 306 to 2863 ?g L(-1) and had a median concentration of 1087 ?g L(-1). Total Cu in the effluent from the planter boxes ranged from 28 to 141 ?g L(-1), with a median of 66 ?g L(-1). Total Cu in effluent from the swales ranged from 7 to 51 ?g L(-1) with a median of 28 ?g L(-1). Attenuation in the planter boxes ranged from 85 to 99% with a median of 94% by concentration and in the swales ranged from 93 to 99% with a median of 99%. As the roof aged, discrete storm events showed a pronounced first-flush effect of Cu in SCM influent but this was less pronounced in the planter outlets. Stormwater retention time in the media varied with antecedent conditions, stormwater intensity and volume with median values from 6.6 to 73.5 min. Based on local conditions, a previously-published Cu weathering model gave a predicted Cu runoff rate of 2.02 g m(-2) yr(-1). The measured rate based on stormwater sampling was 2.16 g m(-2) yr(-1). Overall, both SCMs were highly successful at retaining and preventing offsite transport of Cu from Cu roof runoff. PMID:26497938

  19. Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goulart, Viviane P.; dos Santos, Moisés O.; Latrive, Anne; Freitas, Anderson Z.; Correa, Luciana; Zezell, Denise M.

    2015-05-01

    Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive response to treatment. The attenuation coefficient was found to be 1.4 higher in skin lesions than in healthy tissue and it decreased after therapy. This study shows that the OAC is a potential tool to noninvasively assess the evolution of skin neoplastic lesions with time after treatment.

  20. Long-Term Change of Sound Wave Propagation Attenuation Due to the Effects of Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Gotoh, S.; Tsuchiya, T.; Hiyoshi, Y.

    2014-12-01

    In recent years, the concentration of carbon dioxide in the atmosphere is increasing due to global warming. And, the ocean acidification advances because this melts into seawater, pH decrease in seawater are concerned. The sound wave to propagate seawater, pH is known to affect absorption loss (?) by chemical buffer effects of the seawater. However, conventionally, ? has not been investigated much in the calculation of pH. Therefore, when calculating the propagation distance in the sonar equation, pH =8~8.1 (Weak alkaline) are used empirically. Therefore we used an actual value of pH of 30 years from 1984 in the sea near the Japan, and investigated change over the years of absorption loss (?) at some frequency. As a result, we found that ? value decreases gradually in the past 30 years, as high-latitude decreases. Further, the future, assuming that ocean acidification is more advanced, and to simulate a change of the absorption loss and propagation loss in end of this century using the pH value reported from the "Intergovernmental Panel on Climate Change" (IPCC). As a result, it was just suggested that ? decreased more in the end of this century and affected the submarine detection. In addition, in recent years, we examined the effects of noise that offshore wind power construction proceeds in each country emits gives to the underwater sound. As a result, in the end of this century, an underwater noise increases about 17%, and underwater sound environmental degradation of the sea is concerned.

  1. MEASUREMENT OF THE EXPANSION RATE OF THE UNIVERSE FROM {gamma}-RAY ATTENUATION

    SciTech Connect

    Dominguez, Alberto; Prada, Francisco

    2013-07-10

    A measurement of the expansion rate of the universe (that is, the Hubble constant, H{sub 0}) is derived here using the {gamma}-ray attenuation observed in the spectra of {gamma}-ray sources produced by the interaction of extragalactic {gamma}-ray photons with the photons of the extragalactic background light (EBL). The Hubble constant determined with our technique, for a {Lambda}CDM cosmology, is H{sub 0}=71.8{sub -5.6}{sup +4.6}(stat){sub -13.8}{sup +7.2}(syst) km s{sup -1} Mpc{sup -1}. This value is compatible with present-day measurements using well-established methods such as local distance ladders and cosmological probes. The recent detection of the cosmic {gamma}-ray horizon (CGRH) from multiwavelength observations of blazars, together with the advances in the knowledge of the EBL, allow us to measure the expansion rate of the universe. This estimate of the Hubble constant shows that {gamma}-ray astronomy has reached a mature enough state to provide cosmological measurements, which may become more competitive in the future with the construction of the Cherenkov Telescope Array. We find that the maximum dependence of the CGRH on the Hubble constant is approximately between redshifts 0.04 and 0.1, thus this is a smoking gun for planning future observational efforts. Other cosmological parameters, such as the total dark matter density {Omega}{sub m} and the dark energy equation of state w, are explored as well.

  2. High frequency measurement of P- and S-wave velocities on crystalline rock massif surface - methodology of measurement

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Slavík, Lubomír

    2014-05-01

    For the purpose of non-destructive monitoring of rock properties in the underground excavation it is possible to perform repeated high-accuracy P- and S-wave velocity measurements. This contribution deals with preliminary results gained during the preparation of micro-seismic long-term monitoring system. The field velocity measurements were made by pulse-transmission technique directly on the rock outcrop (granite) in Bedrichov gallery (northern Bohemia). The gallery at the experimental site was excavated using TBM (Tunnel Boring Machine) and it is used for drinking water supply, which is conveyed in a pipe. The stable measuring system and its automatic operation lead to the use of piezoceramic transducers both as a seismic source and as a receiver. The length of measuring base at gallery wall was from 0.5 to 3 meters. Different transducer coupling possibilities were tested namely with regard of repeatability of velocity determination. The arrangement of measuring system on the surface of the rock massif causes better sensitivity of S-transducers for P-wave measurement compared with the P-transducers. Similarly P-transducers were found more suitable for S-wave velocity determination then P-transducers. The frequency dependent attenuation of fresh rock massif results in limited frequency content of registered seismic signals. It was found that at the distance between the seismic source and receiver from 0.5 m the frequency components above 40 kHz are significantly attenuated. Therefore for the excitation of seismic wave 100 kHz transducers are most suitable. The limited frequency range should be also taken into account for the shape of electric impulse used for exciting of piezoceramic transducer. The spike pulse generates broad-band seismic signal, short in the time domain. However its energy after low-pass filtration in the rock is significantly lower than the energy of seismic signal generated by square wave pulse. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  3. Dual shear wave induced laser speckle contrast signal and the improvement in shear wave speed measurement.

    PubMed

    Li, Sinan; Cheng, Yi; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing

    2015-06-01

    Shear wave speed is quantitatively related to tissue viscoelasticity. Previously we reported shear wave tracking at centimetre depths in a turbid optical medium using laser speckle contrast detection. Shear wave progression modulates displacement of optical scatterers and therefore modulates photon phase and changes the laser speckle patterns. Time-resolved charge-coupled device (CCD)-based speckle contrast analysis was used to track shear waves and measure the time-of-flight of shear waves for speed measurement. In this manuscript, we report a new observation of the laser speckle contrast difference signal for dual shear waves. A modulation of CCD speckle contrast difference was observed and simulation reproduces the modulation pattern, suggesting its origin. Both experimental and simulation results show that the dual shear wave approach generates an improved definition of temporal features in the time-of-flight optical signal and an improved signal to noise ratio with a standard deviation less than 50% that of individual shear waves. Results also show that dual shear waves can correct the bias of shear wave speed measurement caused by shear wave reflections from elastic boundaries. PMID:26114021

  4. Dual shear wave induced laser speckle contrast signal and the improvement in shear wave speed measurement

    PubMed Central

    Li, Sinan; Cheng, Yi; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing

    2015-01-01

    Shear wave speed is quantitatively related to tissue viscoelasticity. Previously we reported shear wave tracking at centimetre depths in a turbid optical medium using laser speckle contrast detection. Shear wave progression modulates displacement of optical scatterers and therefore modulates photon phase and changes the laser speckle patterns. Time-resolved charge-coupled device (CCD)-based speckle contrast analysis was used to track shear waves and measure the time-of-flight of shear waves for speed measurement. In this manuscript, we report a new observation of the laser speckle contrast difference signal for dual shear waves. A modulation of CCD speckle contrast difference was observed and simulation reproduces the modulation pattern, suggesting its origin. Both experimental and simulation results show that the dual shear wave approach generates an improved definition of temporal features in the time-of-flight optical signal and an improved signal to noise ratio with a standard deviation less than 50% that of individual shear waves. Results also show that dual shear waves can correct the bias of shear wave speed measurement caused by shear wave reflections from elastic boundaries. PMID:26114021

  5. Attenuation length measurements of a liquid scintillator with LabVIEW and reliability evaluation of the device

    NASA Astrophysics Data System (ADS)

    Gao, Long; Yu, Bo-Xiang; Ding, Ya-Yun; Zhou, Li; Wen, Liang-Jian; Xie, Yu-Guang; Wang, Zhi-Gang; Cai, Xiao; Sun, Xi-Lei; Fang, Jian; Xue, Zhen; Zhang, Ai-Wu; Lü, Qi-Wen; Sun, Li-Jun; Ge, Yong-Shuai; Liu, Ying-Biao; Niu, Shun-Li; Hu, Tao; Cao, Jun; Lü, Jun-Guang

    2013-07-01

    An attenuation length measurement device was constructed using an oscilloscope and LabVIEW for signal acquisition and processing. The performance of the device has been tested in a variety of ways. The test results show that the set-up has a good stability and high precision (sigma/mean reached 0.4 percent). Besides, the accuracy of the measurement system will decrease by about 17 percent if a filter is used. The attenuation length of a gadolinium-loaded liquid scintillator (Gd-LS) was measured as 15.10±0.35 m where Gd-LS was heavily used in the Daya Bay Neutrino Experiment. In addition, one method based on the Beer-Lambert law was proposed to investigate the reliability of the measurement device, the R-square reached 0.9995. Moreover, three purification methods for Linear Alkyl Benzene (LAB) production were compared in the experiment.

  6. Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy.

    PubMed Central

    Picard, F; Buffeteau, T; Desbat, B; Auger, M; Pézolet, M

    1999-01-01

    Quantitative orientation measurements by attenuated total reflectance (ATR) infrared spectroscopy require the accurate knowledge of the dichroic ratio and of the mean-square electric fields along the three axes of the ATR crystal. In this paper, polarized ATR spectra of single supported bilayers of the phospholipid dimyristoylphosphatidic acid covered by either air or water have been recorded and the dichroic ratio of the bands due to the methylene stretching vibrations has been calculated. The mean-square electric field amplitudes were calculated using three formalisms, namely the Harrick thin film approximation, the two-phase approximation, and the thickness- and absorption-dependent one. The results show that for dry bilayers, the acyl chain tilt angle varies with the formalism used, while no significant variations are observed for the hydrated bilayers. To test the validity of the different formalisms, s- and p-polarized ATR spectra of a 40-A lipid layer were simulated for different acyl chain tilt angles. The results show that the thickness- and absorption-dependent formalism using the mean values of the electric fields over the film thickness gives the most accurate values of acyl chain tilt angle in dry lipid films. However, for lipid monolayers or bilayers, the tilt angle can be determined with an acceptable accuracy using the Harrick thin film approximation. Finally, this study shows clearly that the uncertainty on the determination of the tilt angle comes mostly from the experimental error on the dichroic ratio and from the knowledge of the refractive index. PMID:9876167

  7. Chemical amplification--cavity attenuated phase shift spectroscopy measurements of atmospheric peroxy radicals.

    PubMed

    Wood, Ezra C; Charest, John R

    2014-10-21

    We describe a new instrument for the quantification of atmospheric peroxy radicals (HO2, CH3O2, C2H5O2, etc.) using the chemical amplification method. Peroxy radicals are mixed with high concentrations of NO and CO, causing a chain reaction that produces a measurable increase in NO2 which is quantified by cavity attenuated phase shift (CAPS) spectroscopy, a highly sensitive spectroscopic detection technique. The instrument utilizes two identical reaction chambers, each with a dedicated CAPS NO2 sensor. Similar to all dual-channel chemical amplifiers, one reaction chamber operates in amplification or "ROx" mode and the other in background or "Ox" mode. The peroxy radical mixing ratio is determined by the difference between the two channels' NO2 readings divided by a laboratory-determined chain length. Each reaction chamber alternates between ROx and Ox mode on an anti-synchronized schedule, eliminating the effect of CAPS baseline offsets on the calculated peroxy radical concentrations. The chain length is determined by a new calibration method: peroxyacetyl and methyl peroxy radicals are produced by the photolysis of acetone and quantified as NO2 following reaction with excess NO. We demonstrate the performance of the instrument with results from ambient sampling in Amherst and several diagnostics of its precision. The detection limit while sampling ambient air at a relative humidity (RH) of 40% is 0.6 ppt (1 min average, signal-to-noise ratio =2), with an estimated accuracy of 25% (2?). PMID:25260158

  8. Measurements of Turbulence Attenuation by a Dilute Dispersion of Solid Particles in Homogeneous Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Eaton, John; Hwang, Wontae; Cabral, Patrick

    2002-01-01

    This research addresses turbulent gas flows laden with fine solid particles at sufficiently large mass loading that strong two-way coupling occurs. By two-way coupling we mean that the particle motion is governed largely by the flow, while the particles affect the gas-phase mean flow and the turbulence properties. Our main interest is in understanding how the particles affect the turbulence. Computational techniques have been developed which can accurately predict flows carrying particles that are much smaller than the smallest scales of turbulence. Also, advanced computational techniques and burgeoning computer resources make it feasible to fully resolve very large particles moving through turbulent flows. However, flows with particle diameters of the same order as the Kolmogorov scale of the turbulence are notoriously difficult to predict. Some simple flows show strong turbulence attenuation with reductions in the turbulent kinetic energy by up to a factor of five. On the other hand, some seemingly similar flows show almost no modification. No model has been proposed that allows prediction of when the strong attenuation will occur. Unfortunately, many technological and natural two-phase flows fall into this regime, so there is a strong need for new physical understanding and modeling capability. Our objective is to study the simplest possible turbulent particle-laden flow, namely homogeneous, isotropic turbulence with a uniform dispersion of monodisperse particles. We chose such a simple flow for two reasons. First, the simplicity allows us to probe the interaction in more detail and offers analytical simplicity in interpreting the results. Secondly, this flow can be addressed by numerical simulation, and many research groups are already working on calculating the flow. Our detailed data can help guide some of these efforts. By using microgravity, we can further simplify the flow to the case of no mean velocity for either the turbulence or the particles. In fact the addition of gravity as a variable parameter may help us to better understand the physics of turbulence attenuation. The experiments are conducted in a turbulence chamber capable of producing stationary or decaying isotropic turbulence with nearly zero mean flow and Taylor microscale Reynolds numbers up to nearly 500. The chamber is a 410 mm cubic box with the corners cut off to make it approximately spherical. Synthetic jet turbulence generators are mounted in each of the eight corners of the box. Each generator consists of a loudspeaker forcing a plenum and producing a pulsed jet through a 20 mm diameter orifice. These synthetic jets are directed into ejector tubes pointing towards the chamber center. The ejector tubes increase the jet mass flow and decrease the velocity. The jets then pass through a turbulence grid. Each of the eight loudspeakers is forced with a random phase and frequency. The resulting turbulence is highly Isotropic and matches typical behavior of grid turbulence. Measurements of both phases are acquired using particle image velocimetry (PIV). The gas is seeded with approximately 1 micron diameter seeding particles while the solid phase is typically 150 micron diameter spherical glass particles. A double-pulsed YAG laser and a Kodak ES-1.0 10-bit PIV camera provide the PIV images. Custom software is used to separate the images into individual images containing either gas-phase tracers or large particles. Modern high-resolution PIV algorithms are then used to calculate the velocity field. A large set of image pairs are acquired for each case, then the results are averaged both spatially and over the ensemble of acquired images. The entire apparatus is mounted in two racks which are carried aboard NASA's KC-135 Flying Microgravity Laboratory. The rack containing the turbulence chamber, the laser head, and the camera floats freely in the airplane cabin (constrained by competent NASA personnel) to minimize g-jitter.

  9. Measurement of skeletal muscle radiation attenuation and basis of its biological variation

    PubMed Central

    Aubrey, J; Esfandiari, N; Baracos, V E; Buteau, F A; Frenette, J; Putman, C T; Mazurak, V C

    2014-01-01

    Skeletal muscle contains intramyocellular lipid droplets within the cytoplasm of myocytes as well as intermuscular adipocytes. These depots exhibit physiological and pathological variation which has been revealed with the advent of diagnostic imaging approaches: magnetic resonance (MR) imaging, MR spectroscopy and computed tomography (CT). CT uses computer-processed X-rays and is now being applied in muscle physiology research. The purpose of this review is to present CT methodologies and summarize factors that influence muscle radiation attenuation, a parameter which is inversely related to muscle fat content. Pre-defined radiation attenuation ranges are used to demarcate intermuscular adipose tissue [from ?190 to ?30 Hounsfield units (HU)] and muscle (?29 HU to +150 HU). Within the latter range, the mean muscle radiation attenuation [muscle (radio) density] is reported. Inconsistent criteria for the upper and lower HU cut-offs used to characterize muscle attenuation limit comparisons between investigations. This area of research would benefit from standardized criteria for reporting muscle attenuation. Available evidence suggests that muscle attenuation is plastic with physiological variation induced by the process of ageing, as well as by aerobic training, which probably reflects accumulation of lipids to fuel aerobic work. Pathological variation in muscle attenuation reflects excess fat deposition in the tissue and is observed in people with obesity, diabetes type II, myositis, osteoarthritis, spinal stenosis and cancer. A poor prognosis and different types of morbidity are predicted by the presence of reduced mean muscle attenuation values in patients with these conditions; however, the biological features of muscle with these characteristics require further investigation. PMID:24393306

  10. Terahertz reflection response measurement using a phonon polariton wave

    NASA Astrophysics Data System (ADS)

    Inoue, Hayato; Katayama, Kenji; Shen, Qing; Toyoda, Taro; Nelson, Keith A.

    2009-03-01

    We developed a new technique for the measurement of terahertz reflection responses utilizing a propagating phonon polariton wave. Frequency tunable phonon polariton waves were generated by the recently developed continuously variable spatial frequency transient grating method [K. Katayama, H. Inoue, H. Sugiya, Q. Shen, T. Taro, and K. A. Nelson, Appl. Phys. Lett. 92, 031906 (2008)]. The phonon polariton wave traveled in a ferroelectric crystal in an in-plane direction with an inclined angle of 26°, and the wave reflected at the crystal edge where a sample was positioned. The reflected polariton wave was detected by the same method as that used for the generation of the polariton waves. By comparing the reflection intensities in the presence and absence of the sample, reflectivity of the polariton wave was calculated, and the refractive index and absorption in the terahertz region were obtained.

  11. Study of Dual-Wavelength PIA Estimates: Ratio of Ka- and Ku-band Attenuations Obtained from Measured DSD Data

    NASA Astrophysics Data System (ADS)

    Liao, L.; Meneghini, R.; Tokay, A.

    2014-12-01

    Accurate attenuation corrections to the measurements of the Ku- and Ka-band dual-wavelength precipitation radar (DPR) aboard the Global Precipitation Measurement (GPM) satellite is crucial for estimates of precipitation rate and microphysical properties of hydrometeors. Surface reference technique (SRT) provides a means to infer path-integrated attenuation (PIA) by comparing differences of normalized surface cross sections (?0) between rain and rain-free areas. Although single-wavelength SRT has been widely used in attenuation correction for airborne/spaceborne radar applications, its accuracy relies on the variance of ?0 in rain-free region. Dual-wavelength surface reference technique (DSRT) has shown promising ways to improve accuracy in PIA estimates over single-wavelength as a result of that the variance of the difference of PIA between two wavelengths (?PIA) is much smaller than the variance of ?0 at single wavelength arising from high correlation of ?0 between Ku- and Ka-bands. However, derivation of PIA at either wavelength from DSRT requires an assumption of the ratio of Ka- and Ku-band PIAs (p). Inappropriate assumption of this ratio will lead to the bias of PIA estimates. In this study the ratio p will be investigated through measured DSD data. The attenuation coefficients at Ku and Ka bands are first computed directly from measured DSD spectra, and then regression analysis is performed to the data points (Ku- and Ka-band attenuation coefficients) in obtaining p values for rain. Taking an advantage of large collection of the DSD measurements from various GPM Ground Validation (GPM GV) programs, the results of the ratio p will be examined from different climatological regimes. Because PIA is affected by all types of hydrometeors contained in the columns of radar measurements, the synthetic profiles composed of different types of hydrometeors are constructed using measured DSD to look into impacts of different phase hydrometeors on the p values. To generate these profiles fully-, partially- and un-correlated DSD data are employed in an attempt to describe wide dynamic range of microphysical structures of hydrometeors. Bright-band model is employed to take into account of mixed-phase region, and additional attenuations due to cloud water are also included in the profiles.

  12. IWA : an analysis program for isentropic wave measurements.

    SciTech Connect

    Ao, Tommy

    2009-02-01

    IWA (Isentropic Wave Analysis) is a program for analyzing velocity profiles of isentropic compression experiments. IWA applies incremental impedance matching correction to measured velocity profiles to obtain in-situ particle velocity profiles for Lagrangian wave analysis. From the in-situ velocity profiles, material properties such as wave velocities, stress, strain, strain rate, and strength are calculated. The program can be run in any current version of MATLAB (2008a or later) or as a Windows XP executable.

  13. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Chung; Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S.; Shung, K. Kirk

    2009-10-01

    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 ± 0.02 to 0.520 ± 0.06 dB mm-1 MHz-1 corresponding to an increase in Young's modulus from 6 ± 0.4 to 96 ± 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.

  14. Measurement and characterization of the wave-induced components of winds over waves

    NASA Astrophysics Data System (ADS)

    Grare, L.; Lenain, L.; Melville, W. K.

    2012-12-01

    Current wind-wave numerical models are largely based on a statistical description of the surface waves and the marine atmospheric boundary layer (MABL) and do not resolve the phase of the waves nor the modulation of the wind by the waves. However, the new generation of LES models provides wave-resolved dynamics, kinematics and the associated wave-coherent air-flow. Thus, it is important to provide experimental descriptions of the wave field and the structure of the MABL to test the validity of the numerical simulations. We present an analysis of coherent measurements of winds and waves from data collected during the ONR HiReS program from R/P FLIP off the coast of northern California in June 2010. A suite of wind and wave measuring systems were deployed allowing the resolution of the modulation of the MABL by the waves. Spectral analysis of the data gave the wave-induced components of the wind velocity for various wind and wave conditions over a large range of frequencies. The power spectral density, phase shift and transfer functions (relative to the waves) of these wave-induced components are computed and bin-averaged over normalized wave age c/U, or c/u*, and over the normalized height kz, where c and k are the phase speed and wavenumber, U is the mean wind speed, u* is the friction velocity in the air, and z is the height above the mean surface. Results are consistent with the critical layer theory of Miles (1957, 1959) for wave ages c/U up to 2 but show a different pattern for larger wave ages. Measurements of the phase shift between vertical and along-wave components of the wind with the waves show a jump at the critical height zc defined as U(zc)=c. The distribution of the coherent structures associated with the waves as function of the wave-age c/U shows a bi-modal distribution centered at c/U=1, or c/u*=20-30. This result is a consequence of the drop-off of the amplitude of the wave-induced velocity at the critical height. The normalized vertical profiles of the along wave and vertical wave-induced components of the wind do not follow an expected exponential trend. Indeed, for fast waves (c/U > 2), these wave-induced fluctuations reach a maximum around kz=1. Furthermore, these fast ("old") waves produce a positive vertical wave-induced momentum flux. These results are in agreement with the numerical study of Sullivan et al. (2008), for old waves or swell, that showed a coherent pattern of accelerated wind speed (with a maximum close to kz=1) over the troughs associated with decelerated wind speed over the crests.

  15. Retardation Measurements of Infrared PVA Wave plate

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Z, H.; W, D.; D, Y.; Z, Z.; S, J.

    The wave plate made of Polyvinyl Alcohol PVA plastic film has several advantages such as its lower cost and insensitivity to temperature and incidence angle so it has been used in the Solar Multi-Channel Telescope SMCT in China But the important parameter retardations of PVA wave plates in the near infrared wavelength have never been provided In this paper a convenient and high precise instrument to get the retardations of discrete wavelengths or a continuous function of wavelength in near infrared is developed In this method the retardations of wave plates have been determined through calculating the maximum and minimum of light intensity The instrument error has been shown Additionally we can get the continuous direction of wavelength retardations in the ultraviolet visible or infrared spectral in another way

  16. Volumetric measurements of a spatially growing dust acoustic wave

    SciTech Connect

    Williams, Jeremiah D.

    2012-11-15

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  17. Precipitation-attenuation studies based on measurements of ATS-6 20/30-GHz beacon signals at Clarksburg, Maryland

    NASA Technical Reports Server (NTRS)

    Fang, D. J.; Harris, J. M.

    1976-01-01

    Radiometric sky temperature and minute precipitation measurements were intended to broaden the data base required to advance the understanding of the propagation characteristics of the earth-satellite path at frequencies over 10 GHz. Analyses of the data collected from the measurement program have established a detailed correlation between the satellite signal and the signals from auxiliary ground-based measurements. The indirectly derived statistics agreed reasonably well (or can be reconciled) with the earlier published results. The correlations may therefore be used for indirectly estimating long term cumulative attenuation statistics in the absence of direct satellite signal measurements.

  18. Modified cavity attenuated phase shift (CAPS) method for airborne aerosol light extinction measurement

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Freedman, Andrew; Petzold, Andreas

    2015-04-01

    Monitoring the direct impact of aerosol particles on climate requires the consideration of at least two major factors: the aerosol single-scattering albedo, defined as the relation between the amount of energy scattered and extinguished by an ensemble of aerosol particles; and the aerosol optical depth, calculated from the integral of the particle extinction coefficient over the thickness of the measured aerosol layer. Remote sensing networks for measuring these aerosol parameters on a regular basis are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. In particular, the CAPS PMex particle optical extinction monitor has demonstrated sensitivity of less than 2 Mm-1 in 1 second sampling period; with a 60 s averaging time, a detection limit of less than 0.3 Mm-1 can be achieved. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. Here, we report on the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, and subsequent laboratory tests for evaluating the modified instrument prototype: (1) In a first set of tests, the robustness of the method was demonstrated down to pressure levels below 200 hPa, using air and CO2 as test gases. Rayleigh scattering cross-section values for both gases deviated by less than 5 % from literature data for all investigated pressure levels.(2) The measurement of aerosol particles at lower pressure levels required the modification of the air flow handling. A new flow scheme using mass flow controllers and a revised vacuum pump set-up was developed and successfully tested. The overall reduction of the instrument noise level to values less than 0.15 Mm-1 was achieved. (3) Polydisperse laboratory-generated ammonium sulphate particles and monodisperse polystyrene latex spheres where used to evaluate the instrument operation for the pressure range from 1000 hPa to less than 200 hPa against an optical particle counter. Reference aerosol extinction coefficients were calculated from measured size distributions, using Mie theory. We found less than 10 % deviation between the CAPS PMex instrument response and calcuated extinction coefficients over the investigated pressure range.

  19. Measurement of Oblique Impact-generated Shear Waves

    NASA Technical Reports Server (NTRS)

    Dahl, J. M.; Schultz, P. H.

    2001-01-01

    Experimental strain measurements reveal that oblique impacts can generate shear waves with displacements as large as those in the P-wave. Large oblique impacts may thus be more efficient sources of surface disruption than vertical impacts. Additional information is contained in the original extended abstract.

  20. Multifrequency measurements of core-diffracted P waves (Pdiff) for global waveform tomography

    NASA Astrophysics Data System (ADS)

    Hosseini, Kasra; Sigloch, Karin

    2015-10-01

    The lower third of the mantle is sampled extensively by body waves that diffract around the earth's core (Pdiff and Sdiff phases), which could deliver highly resolved tomographic images of this poorly understood region. But core-diffracted waves-especially Pdiff waves-are not often used in tomography because they are difficult to model adequately. Our aim is to make core-diffracted body waves usable for global waveform tomography, across their entire frequency range. Here we present the data processing part of this effort. A method is demonstrated that routinely calculates finite-frequency traveltimes of Pdiff waves by cross-correlating large quantities of waveform data with synthetic seismograms, in frequency passbands ranging from 30.0 to 2.7 s dominant period. Green's functions for 1857 earthquakes, typically comprising thousands of seismograms, are calculated by theoretically exact wave propagation through a spherically symmetric earth model, up to 1 Hz dominant period. Out of 418 226 candidates, 165 651 (39.6 per cent) source-receiver pairs yielded at least one successful passband measurement of a Pdiff traveltime anomaly, for a total of 479 559 traveltimes in the eight passbands considered. Measurements of teleseismic P waves yielded 448 178 usable source-receiver paths from 613 057 candidates (73.1 per cent success rate), for a total of 2 306 755 usable teleseismic dT in eight passbands. Observed and predicted characteristics of Pdiff traveltimes are discussed and compared to teleseismic P for this very large data set. Pdiff measurements are noise-limited due to severe wave attenuation with epicentral distance and frequency. Measurement success drops from 40-60 per cent at 80° distance, to 5-10 per cent at 140°. Frequency has a 2-3 times stronger influence on measurement success for Pdiff than for P. The fewest usable dT measurements are obtained in the microseismic noise band, whereas the fewest usable teleseismic P measurements occur at the highest frequencies. dT anomalies are larger for Pdiff than for P, and frequency dependence of dT due to 3-D heterogeneity (rather than just diffraction) is larger for Pdiff as well. Projecting the Pdiff traveltime anomalies on their core-grazing segments, we retrieve well-known, large-scale structural heterogeneities of the lowermost mantle, such as the two Large Low Shear Velocity Provinces, an Ultra-Low Velocity Zone west of Hawaii, and subducted slab accumulations under East Asia and Central America.

  1. Photoacoustic Imaging Taking into Account Attenuation

    E-print Network

    Richard Kowar; Otmar Scherzer

    2010-09-22

    First, we review existing attenuation models and discuss their causality properties, which we believe to be essential for algorithms for inversion with attenuated data. Then, we survey causality properties of common attenuation models. We also derive integro-differential equations which the attenuated waves are satisfying. In addition we discuss the ill--conditionness of the inverse problem for calculating the unattenuated wave from the attenuated one.

  2. Photoacoustic Imaging Taking into Account Attenuation

    E-print Network

    Kowar, Richard

    2010-01-01

    First, we review existing attenuation models and discuss their causality properties, which we believe to be essential for algorithms for inversion with attenuated data. Then, we survey causality properties of common attenuation models. We also derive integro-differential equations which the attenuated waves are satisfying. In addition we discuss the ill--conditionness of the inverse problem for calculating the unattenuated wave from the attenuated one.

  3. Measurement of ocean wave spectra using polarimetric AIRSAR data

    NASA Technical Reports Server (NTRS)

    Schuler, D. L.

    1993-01-01

    A polarimetric technique for improving the visibility of waves, whose propagation direction has an azimuthal component, in RAR (real aperture radar) or SAR (synthetic aperture radar) images has been investigated. The technique shows promise as a means of producing more accurate 2-D polarimetric RAR ocean wave spectra. For SAR applications domination by velocity-bunching effects may limit its usefulness to long ocean swell. A modification of this technique involving measurement of polarization signature modulations in the image is useful for detecting waves in SAR images and, potentially, estimating RMS wave slopes.

  4. Reprinted from WAVES'97: Proceedings of the Third International Symposium on Ocean Wave Measurement

    E-print Network

    Haller, Merrick

    Reprinted from WAVES'97: Proceedings of the Third International Symposium on Ocean Wave Measurement bathymetry 1all at: Center for Applied Coastal Research, Ocean Engineering Lab, University of Delaware of molded 2 #12;plastic was attached directly onto the beach slope. The crest of the bar is 6 cm above

  5. Direct Measurement of Wave Kernels in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.

    2006-01-01

    Solar f-mode waves are surface-gravity waves which propagate horizontally in a thin layer near the photosphere with a dispersion relation approximately that of deep water waves. At the power maximum near 3 mHz, the wavelength of 5 Mm is large enough for various wave scattering properties to be observable. Gizon and Birch (2002,ApJ,571,966)h ave calculated kernels, in the Born approximation, for the sensitivity of wave travel times to local changes in damping rate and source strength. In this work, using isolated small magnetic features as approximate point-sourc'e scatterers, such a kernel has been measured. The observed kernel contains similar features to a theoretical damping kernel but not for a source kernel. A full understanding of the effect of small magnetic features on the waves will require more detailed modeling.

  6. An inexpensive instrument for measuring wave exposure and water velocity

    USGS Publications Warehouse

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  7. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses

    NASA Astrophysics Data System (ADS)

    Techavipoo, U.; Varghese, T.; Chen, Q.; Stiles, T. A.; Zagzebski, J. A.; Frank, G. R.

    2004-06-01

    Previous reported data from our laboratory demonstrated the temperature dependence of propagation speed and attenuation of canine tissue in vitro at discrete temperatures ranging from 25 to 95 °C. However, concerns were raised regarding heating the same tissue specimen over the entire temperature range, a process that may introduce irreversible and, presumably, cumulative tissue degradation. In this paper propagation speed and attenuation vs temperature are measured using multiple groups of samples, each group heated to a different temperature. Sample thicknesses are measured directly using a technique that uses both transmitted and reflected ultrasound pulses. Results obtained using 3 and 5 MHz center frequencies demonstrate a propagation speed elevation of around 20 m/s in the 22-60 °C range, and a decrease of 15 m/s in the 60-90 °C range, in agreement with previous results where the same specimens were subjected to the entire temperature range. However, sound speed results reported here are slightly higher than those reported previously, probably due to more accurate measurements of sample thickness in the present experiments. Results also demonstrate that while the propagation speed varies with temperature, it is not a function of tissue coagulation. In contrast, the attenuation coefficient depends on both tissue coagulation effects and temperature elevation.

  8. Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: practical implications for hydrological studies.

    PubMed

    Cassidy, Nigel J

    2007-10-30

    Groundwater and sub-surface contamination by Light Non-Aqueous Phase Liquids (LNAPLs) is one of the industrial world's most pressing environmental issues and a thorough understanding of the hydrological, physical and bio-chemical properties of the sub-surface is key to determining the spatial and temporal development of any particular contamination event. Non-invasive geophysical techniques (such as electrical resistivity, electromagnetic conductivity, Ground-Penetrating Radar, etc.) have proved to be successful sub-surface investigation and characterisation tools with Ground-Penetrating Radar (GPR) being particularly popular. Recent studies have shown that the spatial/temporal variation in GPR signal attenuation can provide important information on the electrical properties of the sub-surface materials that, in turn, can be used to assess the physical and hydrological nature of the pore fluids and associated contaminants. Unfortunately, a high percentage of current LNAPL-related GPR studies focus on contaminant mapping only, with little emphasis being placed on characterising the hydrological properties (e.g., determining contaminant saturation index, etc.). By comparing laboratory-based, dielectric measurements of LNAPL contaminated materials with the GPR signal attenuation observed in both contaminated and 'clean' areas of an LNAPL contaminated site, new insights have been gained into the nature of contaminant distribution/saturation and the likely signal attenuation mechanisms. The results show that, despite some practical limitations of the analysis technique, meaningful hydrological interpretations can be obtained on the contaminant properties, saturation index and bio-degradation processes. A generalised attenuation/saturation model has been developed that describes the physical and attenuation enhancement characteristics of the contaminated areas and reveals that the most significant attenuation is related to smeared zone surrounding the seasonally changing water table interface. It is envisaged that the model will provide a basis for the interpretation of GPR data from analogous LNAPL contaminated sites and provide investigators with an appreciation of the merits and limitations of GPR-based, attenuation analysis techniques for hydrological applications. PMID:17601633

  9. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement

    PubMed Central

    Wang, Junjie; He, Xiufeng; Ferreira, Vagner G.

    2015-01-01

    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method. PMID:26262620

  10. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement.

    PubMed

    Wang, Junjie; He, Xiufeng; Ferreira, Vagner G

    2015-01-01

    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method. PMID:26262620

  11. Measurements of the Gravity Waves Velocity

    NASA Astrophysics Data System (ADS)

    Dubrovskiy, Vladimir A.

    We suppose the gravity waves excite microseismic background. Peaks of the background spectrum can be observed if the wave length l is comparable with distance L between Earth and some cosmic gravity object. Such resonance peaks where observed using laser interferometer and spectranalyser SK4-72 that enlarges periodical signal component relative chaotic one. They are around 2.3 1.0 0.9 0.6 0.4 0.2 Hz. And there exist massive gravity objects at 1.3 2.7 3.5 5.0 8.0 and 11.0 parsecs distances (nearest and brightest stars). This all distances correspond to all peaks in accordance with f=C/l (l/2~L due to resonance) only if the gravity velocity C should be nearly nine order more then light velocity. If this conclusion is not casual it is possible to observe resonance peaks corresponding to the gravity waves exchange of the Earth with Moon (~240MHz) Sun (~0.6MHz) Venus (0.3-2.2MHz) Jupiter (100-150kHz) Saturn (58-72kHz). Moreover peak corresponding to Venus Jupiter or Saturn should change its frequency position during orbital motion. Such correlation will support decisively the presented result elastic model of the physical vacuum and Laplace's result concerning to the lower limit of the gravity velocity.

  12. Measurement of elastic waves induced by the reflection of light.

    PubMed

    Požar, Tomaž; Možina, Janez

    2013-11-01

    The reflection of light from the surface of an elastic solid gives rise to various types of elastic waves that propagate inside the solid. The weakest waves are generally those that are generated by the radiation pressure acting during the reflection of the light. Here, we present the first quantitative measurement of such light-pressure-induced elastic waves inside an ultrahigh-reflectivity mirror. Amplitudes of a few picometers were observed at the rear side of the mirror with a displacement-measuring conical piezoelectric sensor when laser pulses with a fluence of 1 J/cm(2) were reflected from the front side of the mirror. PMID:24237537

  13. Using Ultrasonic Lamb Waves To Measure Moduli Of Composites

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1995-01-01

    Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.

  14. Properties of material in the submillimeter wave region (instrumentation and measurement of index of refraction)

    NASA Technical Reports Server (NTRS)

    Lally, J.; Meister, R.

    1983-01-01

    The Properties of Materials in the Submillimeter Wave Region study was initiated to instrument a system and to make measurements of the complex index of refraction in the wavelength region between 0.1 to 1.0 millimeters. While refractive index data is available for a number of solids and liquids there still exists a need for an additional systematic study of dielectric properties to add to the existing data, to consider the accuracy of the existing data, and to extend measurements in this wavelength region for other selected mateials. The materials chosen for consideration would be those with useful thermal, mechanical, and electrical characteristics. The data is necessary for development of optical components which, for example, include beamsplitters, attenuators, lenses, grids, all useful for development of instrumentation in this relatively unexploited portion of the spectrum.

  15. Laser probe for measuring 2-D wave slope spectra of ocean capillary waves

    NASA Technical Reports Server (NTRS)

    Palm, C. S.; Anderson, R. C.; Reece, A. M.

    1977-01-01

    A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.

  16. Measurements of Inertial Limit Alfven Wave Dispersion for Finite Perpendicular Wave Number

    SciTech Connect

    Kletzing, C. A.; Thuecks, D. J.; Skiff, F.; Bounds, S. R.; Vincena, S.

    2010-03-05

    Measurements of the dispersion relation for shear Alfven waves as a function of perpendicular wave number are reported for the inertial regime for which V{sub A}>V{sub Te}. The parallel phase velocity and damping are determined as k{sub perpendicular} varies and the measurements are compared to theoretical predictions. The comparison shows that the best agreement between theory and experiment is achieved for a fully complex plasma dispersion relation which includes the effects of electron collisions.

  17. Measurements of inertial limit Alfvén wave dispersion for finite perpendicular wave number.

    PubMed

    Kletzing, C A; Thuecks, D J; Skiff, F; Bounds, S R; Vincena, S

    2010-03-01

    Measurements of the dispersion relation for shear Alfvén waves as a function of perpendicular wave number are reported for the inertial regime for which V{A}>V{Te}. The parallel phase velocity and damping are determined as k{ perpendicular} varies and the measurements are compared to theoretical predictions. The comparison shows that the best agreement between theory and experiment is achieved for a fully complex plasma dispersion relation which includes the effects of electron collisions. PMID:20366989

  18. Adaptive Controller Design and Disturbance Attenuation for Sequentially Interconnected SISO Linear Systems under Noisy Output Measurements

    E-print Network

    Fernandez, Emmanuel

    Adaptive Controller Design and Disturbance Attenuation for Sequentially Interconnected SISO Linear robust adaptive controller design for a special class of linear system, which is composed of two SISO with additional feedback. We formulate the robust adaptive control problem as a nonlinear H-optimal control

  19. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements

    EPA Science Inventory

    Diffuse attenuation of solar light (Kd, m?1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...

  20. Study of EMIC wave excitation using direct ion measurements

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Bonnell, John W.; Breneman, Aaron W.; Denton, Richard E.; Funsten, Herbert O.; Jahn, Jöerg-Micha; Kletzing, Craig A.; Kurth, William S.; Larsen, Brian A.; Reeves, Geoffrey D.; Spence, Harlan E.; Wygant, John R.

    2015-04-01

    With data from Van Allen Probes, we investigate electromagnetic ion cyclotron (EMIC) wave excitation using simultaneously observed ion distributions. Strong He band waves occurred while the spacecraft was moving through an enhanced density region. We extract from helium, oxygen, proton, and electron mass spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ˜2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He band waves but enhances the O band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one.

  1. The success of extracorporeal shock-wave lithotripsy based on the stone-attenuation value from non-contrast computed tomography

    PubMed Central

    Massoud, Amr M.; Abdelbary, Ahmed M.; Al-Dessoukey, Ahmad A.; Moussa, Ayman S.; Zayed, Ahmed S.; Mahmmoud, Osama

    2014-01-01

    Objective To determine the utility of the urinary stone-attenuation value (SAV, in Hounsfield units, HU) from non-contrast computed tomography (NCCT) for predicting the success of extracorporeal shock-wave lithotripsy (ESWL). Patients and methods The study included 305 patients with renal calculi of ?30 mm and upper ureteric calculi of ?20 mm. The SAV was measured using NCCT. Numerical variables were compared using a one-way analysis of variance with posthoc multiple two-group comparisons. Univariate and multivariate regression analysis models were used to test the preferential effect of the independent variable(s) on the success of ESWL. Results Patients were grouped according to the SAV as group 1 (?500 HU, 81 patients), group 2 (501–1000 HU, 141 patients) and group 3 (>1000 HU, 83 patients). ESWL was successful in 253 patients (83%). The rate of stone clearance was 100% in group 1, 95.7% (135/141) in group 2 and 44.6% (37/83) in group 3 (P = 0.001). Conclusions The SAV value is an independent predictor of the success of ESWL and a useful tool for planning stone treatment. Patients with a SAV ?956 HU are not ideal candidates for ESWL. The inclusion criteria for ESWL of stones with a SAV <500 HU can be expanded with regard to stone size, site, age, renal function and coagulation profile. In patients with a SAV of 500–1000 HU, factors like a body mass index of >30 kg/m2 and a lower calyceal location make them less ideal for ESWL. PMID:26019941

  2. Stiffness measurement using terahertz and acoustic waves for biological samples.

    PubMed

    Yoon, Jong-Hyun; Yang, Young-Joong; Park, Jinho; Son, Heyjin; Park, Hochong; Park, Gun-Sik; Ahn, Chang-Beom

    2015-12-14

    A method is proposed to measure sample stiffness using terahertz wave and acoustic stimulation. The stiffness-dependent vibration is measured using terahertz wave (T-ray) during an acoustic stimulation. To quantify the vibration, time of the peak amplitude of the reflected T-ray is measured. In our experiment, the T-ray is asynchronously applied during the period of the acoustic stimulation, and multiple measurements are taken to use the standard deviation and the maximum difference in the peak times to estimate the amplitude of the vibration. Some preliminary results are shown using biological samples. PMID:26699056

  3. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.

    1988-01-01

    An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.

  5. Enhanced ultrasonic attenuation of Tl-Ca-Ba-Cu-O at the superconducting transition

    NASA Technical Reports Server (NTRS)

    Sun, K. J.; Winfree, W. P.; Xu, M.-F.; Levy, M.; Sarma, Bimal K.

    1990-01-01

    Temperature-dependent ultrasonic attenuation measurements have been performed on polycrystalline samples of Tl-Ca-Ba-Cu-O at various frequencies. An attenuation anomaly was observed close to the superconducting transition temperature T(c) (103 K) whose temperature position was frequency-independent. The attenuation decreased exponentially with temperature in the superconducting state for both transverse and longitudinal waves. It was also found that the temperature-dependent sound velocity showed a slope change around T(c).

  6. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz

    2014-12-01

    The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of variably saturated soil. Unfrozen water content is independent of total water content and affected only by temperature when the freezing point is reached.

  7. Mechanical Loss Measurements of Coated Substrates for Gravitational Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Newport, Jonathan; Belyea, David; Robie, Raymond; Harry, Gregg

    2013-03-01

    Gravitational waves from sources such as binary star systems, supernovae explosions and stochastic background radiation have yet to be directly detected by experimental observations. Alongside international collaborators, the Laser Interferometer Gravitational-Wave Observatory (LIGO) is designed to realize direct detection of gravitational waves using interferometric techniques. The second generation of gravitational wave observatories, known as Advanced LIGO, are currently undergoing installation and commissioning at sites in Hanford, Washington and Livingston, Louisiana. The ultimate sensitivity of Advanced LIGO within select spectral bands is limited by thermal noise in the high-reflective coatings of the interferometer optics. The LIGO lab at American University is measuring the mechanical loss of coated substrates to predict thermal noise within these spectral bands. These predictions are used to ensure the ultimate design sensitivity of Advanced LIGO and to study coating and substrate materials for future gravitational wave detectors. National Science Foundation

  8. Mechanical Loss Measurements of Coated Substrates for Gravitational Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Baringer, Thaddeus; Harry, Gregory; Newport, Jonathan; Fair, Hannah; France, Alexandra; LIGO Collaboration

    2014-03-01

    Gravitational waves from sources such as binary star systems, supernovae explosions and stochastic background radiation have yet to be directly detected by experimental observations. Alongside international collaborators, the Laser Interferometer Gravitational-Wave Observatory (LIGO) is designed to realize direct detection of gravitational waves using interferometric techniques. The second generation of gravitational wave observatories, known as Advanced LIGO, are currently undergoing installation and commissioning at sites in Hanford, Washington and Livingston, Louisiana. The ultimate sensitivity of Advanced LIGO within select spectral bands is limited by thermal noise in both the high-reflective coatings and epoxies of the interferometer optics. The LIGO lab at American University is measuring the mechanical loss of coated substrates to predict thermal noise within these spectral bands. These predictions are used to ensure the ultimate design sensitivity of Advanced LIGO and to study coating and substrate materials for future gravitational wave detectors.

  9. Physical measurements of breaking wave impact on a floating wave energy converter

    NASA Astrophysics Data System (ADS)

    Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison

    2013-04-01

    Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.

  10. Measurement of X-ray mass attenuation coefficients in biological and geological samples in the energy range of 7-12keV.

    PubMed

    Trunova, Valentina; Sidorina, Anna; Kriventsov, Vladimir

    2014-10-17

    Information about X-ray mass attenuation coefficients in different materials is necessary for accurate X-ray fluorescent analysis. The X-ray mass attenuation coefficients for energy of 7-12keV were measured in biological (Mussel and Oyster tissues, blood, hair, liver, and Cabbage leaves) and geological (Baikal sludge, soil, and Alaskite granite) samples. The measurements were carried out at the EXAFS Station of Siberian Synchrotron Radiation Center (VEPP-3). Obtained experimental mass attenuation coefficients were compared with theoretical values calculated for some samples. PMID:25464176

  11. Laser Interferometric Measurements of Air-Coupled Lamb Waves

    NASA Astrophysics Data System (ADS)

    Garcia-Rodriguez, M.; Yañez, Y.; Garcia-Hernandez, M. J.; Salazar, J.; Turo, A.; Chavez, J. A.

    2010-05-01

    In this paper, experimental measurements of the vibration pattern that results when an air-coupled A0 Lamb wave mode propagates in a plate are presented. Lamb waves are generated using an air-coupled piezoelectric transducer array. The measurements were performed in 304 stainless steel using laser interferometry. Air coupled piezoelectric ultrasonic array transducers are a novel tool that could lead to interesting advances in the area of non-contact laminar material testing using Lamb wave's propagation techniques, and it is interesting to know the vibration pattern in the plate. Using this system, some snapshots of the interaction of the A0 Lamb wave mode with a crack-defect in the plate are also presented.

  12. Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data

    NASA Astrophysics Data System (ADS)

    Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.

    2012-03-01

    We demonstrate significantly different scattering coefficients of the retinal nerve fiber layer (RNFL) between normal and glaucoma subjects. In clinical care, SD-OCT is routinely used to assess the RNFL thickness for glaucoma management. In this way, the full OCT data set is conveniently reduced to an easy to interpret output, matching results from older (non- OCT) instruments. However, OCT provides more data, such as the signal strength itself, which is due to backscattering in the retinal layers. For quantitative analysis, this signal should be normalized to adjust for local differences in the intensity of the beam that reaches the retina. In this paper, we introduce a model that relates the OCT signal to the attenuation coefficient of the tissue. The average RNFL signal (within an A-line) was then normalized based on the observed RPE signal, resulting in normalized RNFL attenuation coefficient maps. These maps showed local defects matching those found in thickness data. The average (normalized) RNFL attenuation coefficient of a fixed band around the optic nerve head was significantly lower in glaucomatous eyes than in normal eyes (3.0mm-1 vs. 4.9mm-1, P<0.01, Mann-Whitney test).

  13. 18.7 GHz tropospheric scintillation and simultaneous rain attenuation measured at Spino d'Adda and Darmstadt with Italsat

    NASA Astrophysics Data System (ADS)

    Matricciani, Emilio; Riva, Carlo

    2008-02-01

    We present experimental results on the relationship between rain attenuation and simultaneous scintillation, obtained with measurements of attenuation time series at 18.7 GHz, collected in two slant paths to Italsat (13.2° E): at Spino d'Adda (Italy, a 37.7° slant path, times series of 50 samples/s and 1 sample/s) and Darmstadt (Germany, a 32.7° slant path, 1 sample/s). We have found that the average rain attenuation A (dB) and the average standard deviation ?m (dB) in 1-min intervals (calculated from the 1 sample/s time series), of the scintillation standard deviation ? (dB), are linked by a power law ?m = C3aA?, or by the more refined model ?m = C3bA?, that can be due to an effective thin layer of turbulence aloft. The constants C3a,3b can be estimated by applying the ITU-R formula for scintillation predictions. For conservative design, a best fit model of the conditional standard deviation of ? is also provided, as a function of A, as ?s = CsAd (dB), where Cs and d are constants.

  14. Measurement of the normalized broadband ultrasound attenuation in trabecular bone by using a bidirectional transverse transmission technique

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2015-01-01

    A new method for measuring the normalized broadband ultrasound attenuation (nBUA) in trabecular bone by using a bidirectional transverse transmission technique was proposed and validated with measurements obtained by using the conventional transverse transmission technique. There was no significant difference between the nBUA measurements obtained for 14 bovine femoral trabecular bone samples by using the bidirectional and the conventional transverse transmission techniques. The nBUA measured by using the two transverse transmission techniques showed strong positive correlations of r = 0.87 to 0.88 with the apparent bone density, consistent with the behavior in human trabecular bone invitro. We expect that the new method can be usefully applied for improved accuracy and precision in clinical measurements.

  15. Velocity and Attenuation Structure of the Tibetan Lithosphere using Seismic Attributes of P-waves from Regional Earthquakes Recorded by the Hi-CLIMB Array

    NASA Astrophysics Data System (ADS)

    Nowack, R. L.; Bakir, A. C.; Griffin, J.; Chen, W.; Tseng, T.

    2010-12-01

    Using data from regional earthquakes recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes from crustal and Pn arrivals to constrain the velocity and attenuation structure in the crust and the upper mantle in central and western Tibet. The seismic attributes considered include arrival times, Hilbert envelope amplitudes, and instantaneous as well as spectral frequencies. We have constructed more than 30 high-quality regional seismic profiles, and of these, 10 events have been selected with excellent crustal and Pn arrivals for further analysis. Travel-times recorded by the Hi-CLIMB array are used to estimate the large-scale velocity structure in the region, with four near regional events to the array used to constrain the crustal structure. The travel times from the far regional events indicate that the Moho beneath the southern Lhasa terrane is up to 75 km thick, with Pn velocities greater than 8 km/s. In contrast, the data sampling the Qiangtang terrane north of the Bangong-Nujiang (BNS) suture shows thinner crust with Pn velocities less than 8 km/s. Seismic amplitude and frequency attributes have been extracted from the crustal and Pn wave trains, and these data are compared with numerical results for models with upper-mantle velocity gradients and attenuation, which can strongly affect Pn amplitudes and pulse frequencies. The numerical modeling is performed using the complete spectral element method (SEM), where the results from the SEM method are in good agreement with analytical and reflectivity results for different models with upper-mantle velocity gradients. The results for the attenuation modeling in Tibet imply lower upper mantle Q values in the Qiangtang terrane to the north of the BNS compared to the less attenuative upper mantle beneath the Lhasa terrane to the south of the BNS.

  16. Electric field vector measurements in a surface ionization wave discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Böhm, Patrick S.; Czarnetzki, Uwe; Adamovich, Igor V.; Lempert, Walter R.

    2015-10-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ~100, 600, and 1100 ?m (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1?mm ns-1. The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (~100 ?m). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ~1?mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ?3?kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85-95 Td, consistent with dc breakdown field estimated from the Paschen curve for hydrogen. The present set of data on electric field distribution in a surface ionization wave discharge provides an experimental reference for validation of kinetic models and assessing their predictive capability.

  17. Microwave Interferometer for Shock Wave Induced Displacement Measurement

    NASA Astrophysics Data System (ADS)

    Choi, J.; Youssef, G.; Breugnot, S.; Gupta, V.; Itoh, T.

    2011-06-01

    A K-band microwave interferometer for detecting shock wave induced displacement is demonstrated. Target displacement by laser induced shock wave has been widely used for material characterization and adhesive bond testing. In optical interferometers, the surface displacement related to the interface stress is measured by counting the number of fringes which requires additional postprocessing steps. The longer wavelength of a microwave interferometer allows direct reading of the surface displacement. Detection of the shock wave induced displacement on a plastic target is measured using a microwave interferometer then the measured results are compared to the standard optical interferometer results. The advantage of using a microwave-based system is discussed and possible application is demonstrated.

  18. Measurements of radiated elastic wave energy from dynamic tensile cracks

    NASA Technical Reports Server (NTRS)

    Boler, Frances M.

    1990-01-01

    The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.

  19. Wave Packet under Continuous Measurement via Bohmian Mechanics

    E-print Network

    Antonio B. Nassar

    2010-01-25

    A new quantum mechanical description of the dynamics of wave packet under continuous measurement is formulated via Bohmian mechanics. The solution to this equation is found through a wave packet approach which establishes a direct correlation between a classical variable with a quantum variable describing the dynamics of the center of mass and the width of the wave packet. The approach presented in this paper gives a comparatively clearer picture than approaches using restrited path integrals and master equation approaches. This work shows how the extremely irregular character of classical chaos can be reconciled with the smooth and wavelike nature of phenomena on the atomic scale. It is demonstrated that a wave packet under continuous quantum measurement displays both chaotic and non-chaotic features. The Lyapunov characteristic exponents for the trajectories of classical particle and the quantum wave packet center of mass are calculated and their chaoticities are demonstrated to be about the same. Nonetheless, the width of the wave packet exhibits a non-chaotic behavior and allows for the possibility to beat the standard quantum limit by means of transient, contractive states.

  20. Evaluation of multilayered pavement structures from measurements of surface waves

    USGS Publications Warehouse

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  1. Continuous wave lidar measurement of atmospheric visibility

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.; Iyer, R. S.

    1978-01-01

    The technique of measurement of phase shift with a modulated CW lidar system for the purpose of atmospheric visibility assessment was evaluated both theoretically and experimentally. A closed form solution for prediction of phase shift as a function of visibility and modulation frequency was developed. Data obtained with a bistatic CW lidar configuration were compared with predictions. Results indicate the expected trends with equipment parameters and call for more extensive experiments.

  2. Feasibility of hydromagnetic wave measurements on space shuttle

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1974-01-01

    The feasibility of using a hydromagnetic wave sensor on the space shuttles was investigated. It was found that although existing sensors are inadequate in terms of resolution, dynamic range, and frequency range, they can be modified to make the necessary measurements. It is shown that since the sensor cannot be mounted on the shuttle itself because of high levels of magnetic noise, a free subsatellite that can be positioned and stabilized may be used for locating the hydromagnetic wave sensor. Other results show that studies of long period waves would require either an array of sensors in shuttle orbit or a long-term mapping of the crustal anomalies, and that effective wave studies would require at least two variably spaced sensors in shuttle orbit and one ground station.

  3. Spatio-Temporal Measurements of Short Wind Water Waves

    NASA Astrophysics Data System (ADS)

    Rocholz, Roland; Jähne, Bernd

    2010-05-01

    Spatio-temporal measurements of wind-driven short-gravity capillary waves are reported for a wide range of experimental conditions, including wind, rain and surface slicks. The experiments were conducted in the Hamburg linear wind/wave flume in cooperation with the Institute of Oceanography at the University of Hamburg, Germany. Both components of the slope field were measured optically at a fetch of 14.4 m using a color imaging slope gauge (CISG) with a footprint of 223 x 104 mm and a resolution of 0.7 mm. The instrument was improved versus earlier versions (Jähne and Riemer (1990), Klinke (1992)) to achieve a sampling rate of 312.5 Hz, which now allows for the computation of 3D wavenumber-frequency spectra (see Rocholz (2008)). This made it possible to distinguish waves traveling in and against wind direction, which proved useful to distinguish wind waves from ring waves caused by rain drop impacts. Using a new calibration method it was possible to correct for the intrinsic nonlinearities of the instrument in the slope range up to ±1. In addition, the Modulation Transfer Function (MTF) was measured and employed for the restoration of the spectral amplitudes for wavenumbers in the range from 60 to 2300 rad/m. The spectra for pure wind conditions are generally consistent with previous measurements. But, the shape of the saturation spectra in the vicinity of k~1000 rad/m (i.e. pure capillary waves) stands in contradiction to former investigations where a sharp spectral cutoff (k^(-2) or k^(-3)) is commonly reported (e.g. Jähne and Riemer (1990)). This cutoff is reproduced by almost all semi-empirical models of the energy flux in the capillary range (e.g. Kudryavtsev et al. (1999), Apel (1994)). However, the new MTF corrected spectra show only a gentle decrease (between k^(-0.5) and k^(-1)) for k > 1000 rad/m. Therefore the question for the relative importance of different dissipation mechanisms might need a new assessment. References: J. R. Apel. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res., 99:16269-16292, Aug. 1994. B. Jähne and K. Riemer. Two-dimensional wave number spectra of small-scale water surface waves. Geophys.Res., 95(C7):11531-11646, 1990 J. Klinke. 2D wave number spectra of short wind waves - results from wind wave facilities and extrapolation to the ocean. Optics of the Air-Sea Interface: Theory and Measurement, Proc. SPIE - Int. Soc. Opt. Eng., 1749:1-13, July 1992 V. N. Kudryavtsev, V. K. Makin, and B. Chapron. Coupled sea surface atmosphere model. 2. Spectrum of short wind waves. J. Geophys. Res., 104:7625-7640, 1999. R. Rocholz, Spatio-Temporal Measurement of Short Wind-Driven Water Wave, Dissertation, University of Heidelberg, 2008, http://hci.iwr.uni-heidelberg.de/publications/dip/2008/Rocholz_2008_Diss.pdf

  4. Spatiotemporal measurement of surfactant distribution on gravity-capillary waves

    E-print Network

    Strickland, Stephen L; Daniels, Karen E

    2015-01-01

    Materials adsorbed to the surface of a fluid -- for instance, crude oil, biogenic slicks, or industrial/medical surfactants -- will move in response to surface waves. Due to the difficulty of non-invasive measurement of the spatial distribution of a molecular monolayer, little is known about the dynamics that couple the surface waves and the evolving density field. Here, we report measurements of the spatiotemporal dynamics of the density field of an insoluble surfactant driven by gravity-capillary waves in a shallow cylindrical container. Standing Faraday waves and traveling waves generated by the meniscus are superimposed to create a non-trivial surfactant density field. We measure both the height field of the surface using moir\\'e-imaging, and the density field of the surfactant via the fluorescence of NBD-tagged phosphatidylcholine, a lipid. Through phase-averaging stroboscopically-acquired images of the density field, we determine that the surfactant accumulates on the leading edge of the traveling menis...

  5. Measurements of parallel electron velocity distributions using whistler wave absorption.

    PubMed

    Thuecks, D J; Skiff, F; Kletzing, C A

    2012-08-01

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense (?(pe) > ?(ce)). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency ?(ce). As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation ? - k([parallel])v([parallel]) = ?(ce). The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow. PMID:22938290

  6. Measurements of parallel electron velocity distributions using whistler wave absorption

    SciTech Connect

    Thuecks, D. J.; Skiff, F.; Kletzing, C. A.

    2012-08-15

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense ({omega}{sub pe} > {omega}{sub ce}). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency {omega}{sub ce}. As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation {omega}-k{sub ||v||} = {omega}{sub ce}. The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.

  7. Measurements of wave height statistics and radar, cross-section in a wind wave tank

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Cross, A. E.

    1976-01-01

    There is currently wide interest among oceanographers and meteorologists in remote sensing of ocean surface characteristics. A wind wave tank developed at Langley Research Center is used to evaluate various remote sensing techniques based on electromagnetic scattering phenomena, and in the development and evaluation of theoretical scattering models. The wave tank is described, the statistics of the rough water surface are documented, and microwave radar cross-section measurement results are presented. The water surface statistics are similar in key respects to the open ocean, and the microwave scattering measurements show, qualitatively, theoretically predicted large and small scale scattering effects.

  8. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine Y.

    1994-01-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  9. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Astrophysics Data System (ADS)

    Andrawis, Madeleine Y.

    1994-12-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  10. Excimer laser drilling of bone: shock wave and profile measurements

    NASA Astrophysics Data System (ADS)

    Sviridov, Alexander P.; Dmitriev, A. K.; Karoutis, Athanase D.; Christodoulou, P. N.; Helidonis, Emmanuel S.

    1995-01-01

    The shock wave generation in stapes models during laser ear surgery is experimentally investigated. The intensity absolute measurements of shock waves generated by excimer laser in the treated bone are performed. It is shown that the roughness of the crater bottom profile depends on the laser beam fluence. It is revealed that in the pulse repetition regime of bone drilling there exists an optimal laser beam fluence, which provides as high a rate of drilling as the smooth bottom of the crater. For ArF and KrF excimer lasers the optimal fluence is equal to about 0.4 - 0.5 J/cm2 at the repetition rate 5 Hz. The amplitude of shock wave induced at these parameters of laser beam in the back side of the bone sample of 1.1 mm thickness was measured to be about 25 bar and the corresponding pressure gradient 0.35 bar/micrometers .

  11. Q0 tomography of S wave attenuation and velocity structure of uppermost mantle from Pn tomography in Northeast China

    NASA Astrophysics Data System (ADS)

    Sun, Lian; Wu, Qingju

    2014-05-01

    The Northeast China is an important region of the occurrence of deep earthquakes. In our work we have selected lots of ML amplitudes and travel times of Pn arrivals as reported in the Annual Bulletin of Chinese Earthquakes and regional seismic network of Northeast China. A two-dimensional tomography method is employed to find regional variation of crustal attenuation, Pn velocity and anisotropy in the uppermost mantle in Northeast China and its adjacent regions. Regions with the highest attenuation are beneath Bohai Basin, and Songliao Plain and Hailaer Basin also have low Q0 values, as these areas have thick sedimentary and strong tectonic activity. The entire Northeast region shows distribution of alternating high and low attenuation. And Pn velocity structure is close to the regional tectonic structure and shows distribution of alternating high and low Pn velocity in the direction of NE-NNE. Quantitative analysis result indicates that Pn velocity is positively correlated with crust thickness and negatively correlated with Earth's heatflow. The Pn velocities in the Changbai volcano and Jingpohu volcano activities are obviously low. In addition, the overall performance of Pn anisotropy is weak. This study was supported by the international cooperation project of the Ministry of Science and Technology of China (NO.2011DFB20210) and NSFC (Grant No.41004034).

  12. Measurement of carbon nanotube microstructure relative density by optical attenuation and observation of size-dependent variations.

    PubMed

    Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John

    2013-07-21

    Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity. PMID:23748864

  13. Survey of Temperature Measurement Techniques For Studying Underwater Shock Waves

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Alderfer, David W.

    2004-01-01

    Several optical methods for measuring temperature near underwater shock waves are reviewed and compared. The relative merits of the different techniques are compared, considering accuracy, precision, ease of use, applicable temperature range, maturity, spatial resolution, and whether or not special additives are required.

  14. RESEARCH ARTICLE Complexity measures of brain wave dynamics

    E-print Network

    Gao, Jianbo

    RESEARCH ARTICLE Complexity measures of brain wave dynamics Jianbo Gao · Jing Hu · Wen-wen Tung February 2011 Ó Springer Science+Business Media B.V. 2011 Abstract To understand the nature of brain dynamics as well as to develop novel methods for the diagnosis of brain pathologies, recently, a number

  15. Inter-laboratory comparison of wave velocity measures.

    USGS Publications Warehouse

    Waite, William F.; Santamarina, J.C.; Rydzy, M.; Chong, S.H.; Grozic, J.L.H.; Hester, K.; Howard, J.; Kneafsey, T.J.; Lee, J.Y.; Nakagawa, S.; Priest, J.; Reese, E.; Koh, H.; Sloan, E.D.; Sultaniya, A.

    2011-01-01

     This paper presents an eight-laboratory comparison of compressional and shear wave velocities measured in F110 Ottawa sand. The study was run to quantify the physical property variations one should expect in heterogeneous, multiphase porous materials by separately quantifying the variability inherent in the measurement techniques themselves. Comparative tests were run in which the sand was dry, water-saturated, partially water-saturated, partially ice-saturated and partially hydrate-saturated. Each test illustrates a collection of effects that can be classified as inducing either specimen-based or measurement-based variability. The most significant variability is due to void ratio variations between samples. Heterogeneous pore-fill distributions and differences in measurement techniques also contribute to the observed variability, underscoring the need to provide detailed sample preparation and system calibration information when reporting wave velocities in porous media. 

  16. Dual frequency scatterometer measurement of ocean wave height

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Swift, C. T.; Grantham, W. L.; Weissman, D. E.

    1975-01-01

    A technique for remotely measuring wave height averaged over an area of the sea surface was developed and verified with a series of aircraft flight experiments. The measurement concept involves the cross correlation of the amplitude fluctuations of two monochromatic reflected signals with variable frequency separation. The signal reflected by the randomly distributed specular points on the surface is observed in the backscatter direction at nadir incidence angle. The measured correlation coefficient is equal to the square of the magnitude of the characteristic function of the specular point height from which RMS wave height can be determined. The flight scatterometer operates at 13.9 GHz and 13.9 - delta f GHz with a maximum delta f of 40 MHz. Measurements were conducted for low and moderate sea states at altitudes of 2, 5, and 10 thousand feet. The experimental results agree with the predicted decorrelation with frequency separation and with off-nadir incidence angle.

  17. Measurement of the x-ray mass attenuation coefficients of gold in the 38?50-keV energy range

    SciTech Connect

    Islam, M.T.; Rae, N.A.; Glover, J.L.; Barnea, Z.; de Jonge, M.D.; Tran, C.Q.; Wang, J.; Chantler, C.T.

    2010-11-12

    We used synchrotron x rays to measure the x-ray mass attenuation coefficients of gold at nine energies from 38 to 50 keV with accuracies of 0.1%. Our results are much more accurate than previous measurements in this energy range. A comparison of our measurements with calculated mass attenuation coefficients shows that our measurements fall almost exactly midway between the XCOM and FFAST calculated theoretical values, which differ from one another in this energy region by about 4%, even though the range includes no absorption edge. The consistency and accuracy of these measurements open the way to investigations of the x-ray attenuation in the region of the L absorption edge of gold.

  18. Measured backscatter and attenuation properties, including polarization effects, of various dispersions at 0.9 micron

    NASA Technical Reports Server (NTRS)

    Kohl, R. H.; Flaherty, M. I.; Partin, R. L.

    1977-01-01

    The optical properties of a wide variety of atmospheric dispersions were studied using a 0.9-micron lidar system which included a GaAs laser stack transmitter emitting a horizontally polarized beam of 4 milliradians vertical divergence and 1.5 milliradians horizontal divergence. A principal means for assessing optical properties was the polarization ratio, that is, the backscattered radiation power perpendicular to the transmitter beam divided by the backscattered radiation power parallel to the beam polarization. The ratio of the backscattered fraction to the attenuation coefficient was also determined. Data on the dispersion properties of black carbon smoke, road dust, fog, fair-weather cumulus clouds, snow and rain were obtained; the adverse effects of sunlight-induced background noise on the readings is also discussed.

  19. Ultrasonic Attenuation in Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Gómez, M. P.; Banchik, A. D.; López Pumarega, M. I.; Ruzzante, J. E.

    2005-04-01

    In this work the relationship between Zircaloy-4 grain size and ultrasonic attenuation behavior was studied for longitudinal waves in the frequency range of 10-90 MHz. The attenuation was analyzed as a function of frequency for samples with different mechanical and heat treatments having recrystallized and Widmanstatten structures with different grain size. The attenuation behavior was analyzed by different scattering models, depending on grain size, wavelength and frequency.

  20. Ultrasonic Attenuation in Zircaloy-4

    SciTech Connect

    Gomez, M.P.; Banchik, A.D.; Lopez Pumarega, M.I.; Ruzzante, J.E.

    2005-04-09

    In this work the relationship between Zircaloy-4 grain size and ultrasonic attenuation behavior was studied for longitudinal waves in the frequency range of 10-90 MHz. The attenuation was analyzed as a function of frequency for samples with different mechanical and heat treatments having recrystallized and Widmanstatten structures with different grain size. The attenuation behavior was analyzed by different scattering models, depending on grain size, wavelength and frequency.

  1. The upper mantle structure of the central Rio Grande rift region from teleseismic P and S wave travel time delays and attenuation

    USGS Publications Warehouse

    Slack, P.D.; Davis, P.M.; Baldridge, W.S.; Olsen, K.H.; Glahn, A.; Achauer, U.; Spence, W.

    1996-01-01

    The lithosphere beneath a continental rift should be significantly modified due to extension. To image the lithosphere beneath the Rio Grande rift (RGR), we analyzed teleseismic travel time delays of both P and S wave arrivals and solved for the attenuation of P and S waves for four seismic experiments spanning the Rio Grande rift. Two tomographic inversions of the P wave travel time data are given: an Aki-Christofferson-Husebye (ACH) block model inversion and a downward projection inversion. The tomographic inversions reveal a NE-SW to NNE-SSW trending feature at depths of 35 to 145 km with a velocity reduction of 7 to 8% relative to mantle velocities beneath the Great Plains. This region correlates with the transition zone between the Colorado Plateau and the Rio Grande rift and is bounded on the NW by the Jemez lineament, a N52??E trending zone of late Miocene to Holocene volcanism. S wave delays plotted against P wave delays are fit with a straight line giving a slope of 3.0??0.4. This correlation and the absolute velocity reduction imply that temperatures in the lithosphere are close to the solidus, consistent with, but not requiring, the presence of partial melt in the mantle beneath the Rio Grande rift. The attenuation data could imply the presence of partial melt. We compare our results with other geophysical and geologic data. We propose that any north-south trending thermal (velocity) anomaly that may have existed in the upper mantle during earlier (Oligocene to late Miocene) phases of rifting and that may have correlated with the axis of the rift has diminished with time and has been overprinted with more recent structure. The anomalously low-velocity body presently underlying the transition zone between the core of the Colorado Plateau and the rift may reflect processes resulting from the modern (Pliocene to present) regional stress field (oriented WNW-ESE), possibly heralding future extension across the Jemez lineament and transition zone.

  2. IEEE TRANSACTIONSON SONICS ANDULTRASONICS, VOL. SU-32,NO. 2, MARCH 1985 259 Attenuation Coefficient Measurement Technique at

    E-print Network

    Illinois at Urbana-Champaign, University of

    is the ultrasonic attenuation coefficient, which is the de- crease in energy of the sound wavewhenit propagatesIEEE TRANSACTIONSON SONICS ANDULTRASONICS, VOL. SU-32,NO. 2, MARCH 1985 259 Attenuation Coefficient of an attenuation coefficient for biological tissues at 100 MHz with the scanning laser acoustic microscope (SLAM

  3. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    SciTech Connect

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  4. Laboratory measurements of compressional and shear wave speeds through methane hydrate

    USGS Publications Warehouse

    Waite, W.F.; Helgerud, M.B.; Nur, A.; Pinkston, J.C.; Stern, L.A.; Kirby, S.H.; Durham, W.B.

    2000-01-01

    Simultaneous measurements of compressional and shear wave speeds through polycrystalline methane hydrate have been made. Methane hydrate, grown directly in a wave speed measurement chamber, was uniaxially compacted to a final porosity below 2%. At 277 K, the compacted material had a compressional wave speed of 3650 ?? 50 m/s. The shear wave speed, measured simultaneously, was 1890 ?? 30 m/s. From these wave speed measurements, we derive V(p)/V(s), Poisson's ratio, bulk, shear, and Young's moduli.

  5. Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples.

    PubMed

    Nakagawa, Seiji

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver-the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 [ordinal indicator, masculine]C, and concurrently with x-ray CT imaging. The described split Hopkinson resonant bar test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples, and a natural rock sample. PMID:21529029

  6. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    SciTech Connect

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  7. Direct measurement of nonlinear dispersion relation for water surface waves

    NASA Astrophysics Data System (ADS)

    Magnus Arnesen Taklo, Tore; Trulsen, Karsten; Elias Krogstad, Harald; Gramstad, Odin; Nieto Borge, José Carlos; Jensen, Atle

    2013-04-01

    The linear dispersion relation for water surface waves is often taken for granted for the interpretation of wave measurements. High-resolution spatiotemporal measurements suitable for direct validation of the linear dispersion relation are on the other hand rarely available. While the imaging of the ocean surface with nautical radar does provide the desired spatiotemporal coverage, the interpretation of the radar images currently depends on the linear dispersion relation as a prerequisite, (Nieto Borge et al., 2004). Krogstad & Trulsen (2010) carried out numerical simulations with the nonlinear Schrödinger equation and its generalizations demonstrating that the nonlinear evolution of wave fields may render the linear dispersion relation inadequate for proper interpretation of observations, the reason being that the necessary domain of simultaneous coverage in space and time would allow significant nonlinear evolution. They found that components above the spectral peak can have larger phase and group velocities than anticipated by linear theory, and that the spectrum does not maintain a thin dispersion surface. We have run laboratory experiments and accurate numerical simulations designed to have sufficient resolution in space and time to deduce the dispersion relation directly. For a JONSWAP spectrum we find that the linear dispersion relation can be appropriate for the interpretation of spatiotemporal measurements. For a Gaussian spectrum with narrower bandwidth we find that the dynamic nonlinear evolution in space and time causes the directly measured dispersion relation to deviate from the linear dispersion surface in good agreement with our previous numerical predictions. This work has been supported by RCN grant 214556/F20. Krogstad, H. E. & Trulsen, K. (2010) Interpretations and observations of ocean wave spectra. Ocean Dynamics 60:973-991. Nieto Borge, J. C., Rodríguez, G., Hessner, K., Izquierdo, P. (2004) Inversion of marine radar images for surface wave analysis. J. Atmos. Ocean. Tech. 21:1291-1300.

  8. Pressure measurements of a three wave journal air bearing

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Addy, Harold E., Jr.

    1994-01-01

    In order to validate theoretical predictions of a wave journal bearing concept, a bench test rig was assembled at NASA Lewis Research Center to measure the steady-state performance of a journal air bearing. The tester can run up to 30,000 RPM and the spindle has a run out of less than 1 micron. A three wave journal bearing (50 mm diameter and 58 mm length) has been machined at NASA Lewis. The pressures at 16 ports along the bearing circumference at the middle of the bearing length were measured and compared to the theoretical prediction. The bearing ran at speeds up to 15,000 RPM and certain loads. Good agreement was found between the measured and calculated pressures.

  9. Planetary waves in the equatorial mesosphere and ionosphere measurements

    NASA Astrophysics Data System (ADS)

    Lima, L. M.; Araujo, L. R.; Takahashi, H.; Batista, P. P.; Batista, I. S.; Silva, M. F.

    2013-05-01

    Mesosphere-ionosphere coupling through signature of planetary waves is investigated from equatorial meteor wind, obtained at São João do Cariri-PB (7.4°S, 36.5°W), from four magnetometer data and from evening F region vertical plasma drift measurements, obtained by digital ionospheric sounder (DPS-4) at Fortaleza (3.9°S, 38.4°W). To examine the temporal variations in meteor winds, magnetometer data and in vertical plasma drifts we used the S-transform method. The spectral analysis shows distinct power spectrum with peaks with low-frequency oscillations, which are associated with planetary waves, mainly those with period near 2 days and 6-7 days. The presence of these periodic variations, in these three different types of data, suggests that ionosphere has been modulated by mesospheric oscillations with period of planetary waves.

  10. High-speed measurement of firearm primer blast waves

    E-print Network

    Courtney, Michael; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

  11. Electric Field Measurements of Directly Converted Lower Hybrid Waves at a Density Striation

    E-print Network

    Carter, Troy

    1 Electric Field Measurements of Directly Converted Lower Hybrid Waves at a Density Striation S that whistler waves incident on a field-aligned density striation will produce lower hybrid waves via a linear the whistler and lower hybrid wave electric fields. The lower hybrid wave electric field amplitude is 0.8 times

  12. Speed of sound and acoustic attenuation of compounds affected during optoacoustic monitoring of thermal therapies measured in the temperature range from 5°C to 60°C

    NASA Astrophysics Data System (ADS)

    Oruganti, Tanmayi; Petrova, Elena; Oraevsky, Alexander A.; Ermilov, Sergey A.

    2015-03-01

    Optoacoustic (photoacoustic) imaging is being adopted for monitoring tissue temperature during hypothermic and hyperthermic cancer treatments. The technique's accuracy benefits from the knowledge of speed of sound (SoS) and acoustic coefficient of attenuation (AcA) as they change with temperature in biological tissues, blood, and acoustic lens of an ultrasound probe. In these studies we measured SoS and AcA of different ex vivo tissues and blood components (plasma and erythrocyte concentrates) in the temperature range from 5°C to 60°C. We used the technique based on measurements of time-delay and spectral amplitude of pressure pulses generated by wideband planar acoustic waves propagating through the interrogated medium. Water was used as a reference medium with known acoustic properties. In order to validate our experimental technique, we measured the temperature dependence of SoS and AcA for aqueous NaCl solution of known concentration and obtained the results in agreement with published data. Similar to NaCl solution and pure water, SoS in blood and plasma was monotonously increasing with temperature. However, SoS of erythrocyte concentrates displayed abnormalities at temperatures above 45°C, suggesting potential effects from hemoglobin denaturation and/or hemolysis of erythrocytes. On the contrary to aqueous solutions, the SoS in polyvinyl-chloride (plastisol) - a material frequently used for mimicking optical and acoustic properties of tissues - decreased with temperature. We also measured SoS and AcA in silicon material of an acoustic lens and did not observe temperature-related changes of SoS.

  13. Long-Term Changes in Light Scattering in Chesapeake Bay Inferred from Secchi Depth, Light Attenuation, and Remote Sensing Measurements

    NASA Technical Reports Server (NTRS)

    Gallegos, Charles L.; Werdell, P. Jeremy; McClain, Charles R.

    2011-01-01

    The relationship between the Secchi depth (Z(sub SD)) and the diffuse attenuation coefficient for photosynthetically active radiation (K(sub d)(PAR)), and in particular the product of the two, Z(sub SD) X K(sub d)(PAR), is governed primarily by the ratio of light scattering to absorption. We analyzed measurements of Z(sub SD) and K(sub d)(PAR) at main stem stations in Chesapeake Bay and found that the Z(sub SD) X K(sub d)(PAR) product has declined at rates varying from 0.020 to 0.033 /yr over the 17 to 25 years of measurement, implying that there has been a long -term increase in the scattering-to-absorption ratio. Remote sensing reflectance at the green wavelength most relevant to Z(sub SD) and K(sub d)(PAR) in these waters, R(sub rs)(555), did not exhibit an increasing trend over the 10 years of available measurements. To reconcile the observations we constructed a bio-optical model to calculate Z(sub SD), K(sub d)(PAR), Z(sub SD) X K(sub d)(PAR), and R(sub rs)(555) as a function of light attenuating substances and their mass-specific absorption and scattering coefficients. When simulations were based exclusively on changes in concentrations of light attenuating substances, a declining trend in Z(sub SD) E K(sub d) entailed an increasing trend in R(sub rs)(555), contrary to observations. To simulate both decreasing Z(sub SD) X K(sub d)(PAR) and stationary R(sub rs)(555), it was necessary to allow for a declining trend in the ratio of backscattering to total scattering. Within our simulations, this was accomplished by increasing the relative proportion of organic detritus with high mass-specific scattering and low backscattering ratio. An alternative explanation not explicitly modeled is an increasing tendency for the particulate matter to occur in large aggregates. Data to discriminate between these alternatives are not available.

  14. Towards a quantitative, measurement-based estimate of the uncertainty in photon mass attenuation coefficients at radiation therapy energies.

    PubMed

    Ali, E S M; Spencer, B; McEwen, M R; Rogers, D W O

    2015-02-21

    In this study, a quantitative estimate is derived for the uncertainty in the XCOM photon mass attenuation coefficients in the energy range of interest to external beam radiation therapy-i.e. 100 keV (orthovoltage) to 25 MeV-using direct comparisons of experimental data against Monte Carlo models and theoretical XCOM data. Two independent datasets are used. The first dataset is from our recent transmission measurements and the corresponding EGSnrc calculations (Ali et al 2012 Med. Phys. 39 5990-6003) for 10-30 MV photon beams from the research linac at the National Research Council Canada. The attenuators are graphite and lead, with a total of 140 data points and an experimental uncertainty of ?0.5% (k = 1). An optimum energy-independent cross section scaling factor that minimizes the discrepancies between measurements and calculations is used to deduce cross section uncertainty. The second dataset is from the aggregate of cross section measurements in the literature for graphite and lead (49 experiments, 288 data points). The dataset is compared to the sum of the XCOM data plus the IAEA photonuclear data. Again, an optimum energy-independent cross section scaling factor is used to deduce the cross section uncertainty. Using the average result from the two datasets, the energy-independent cross section uncertainty estimate is 0.5% (68% confidence) and 0.7% (95% confidence). The potential for energy-dependent errors is discussed. Photon cross section uncertainty is shown to be smaller than the current qualitative 'envelope of uncertainty' of the order of 1-2%, as given by Hubbell (1999 Phys. Med. Biol 44 R1-22). PMID:25622289

  15. Measurement of cylindrical Rayleigh surface waves using line-focused PVDF transducers and defocusing measurement method.

    PubMed

    Lin, Chun-I; Lee, Yung-Chun

    2014-08-01

    Line-focused PVDF transducers and defocusing measurement method are applied in this work to determine the dispersion curve of the Rayleigh-like surface waves propagating along the circumferential direction of a solid cylinder. Conventional waveform processing method has been modified to cope with the non-linear relationship between phase angle of wave interference and defocusing distance induced by a cylindrically curved surface. A cross correlation method is proposed to accurately extract the cylindrical Rayleigh wave velocity from measured data. Experiments have been carried out on one stainless steel and one glass cylinders. The experimentally obtained dispersion curves are in very good agreement with their theoretical counterparts. Variation of cylindrical Rayleigh wave velocity due to the cylindrical curvature is quantitatively verified using this new method. Other potential applications of this measurement method for cylindrical samples will be addressed. PMID:24796246

  16. Rapid miniature fiber optic pressure sensors for blast wave measurements

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-01

    Traumatic brain injury (TBI) is a serious potential threat to soldiers who are exposed to explosions. Since the pathophysiology of TBI associated with a blast wave is not clearly defined, it is crucial to have a sensing system to accurately quantify the blast wave dynamics. This paper presents an ultra-fast fiber optic pressure sensor based on Fabry-Perot (FP) interferometric principle that is capable of measuring the rapid pressure changes in a blast event. The blast event in the experiment was generated by a starter pistol blank firing at close range, which produced a more realistic wave profile compared to using compressed air driven shock tubes. To the authors' knowledge, it is also the first study to utilize fiber optic pressure sensors to measure the ballistics shock wave of a pistol firing. The results illustrated that the fiber optic pressure sensor has a rise time of 200 ns which demonstrated that the sensor has ability to capture the dynamic pressure transient during a blast event. Moreover, the resonant frequency of the sensor was determined to be 4.11 MHz, which agrees well with the specific designed value.

  17. Reduction of the Buildup Contribution in Gamma Ray Attenuation Measurements and a New Way to Study This Experiment in a Student Laboratory

    ERIC Educational Resources Information Center

    Adamides, E.; Kavadjiklis, A.; Koutroubas, S.K.; Moshonas, N.; Tzedakis, A.; Yiasemides, K.

    2014-01-01

    In continuation of our investigation into the buildup phenomenon appearing in gamma ray attenuation measurements in laboratory experiments we study the dependence of the buildup factor on the area of the absorber in an effort to reduce the buildup of photons. Detailed measurements are performed for up to two mean free paths of [superscript 60]Co…

  18. Laser vibrometer measurement of guided wave modes in rail track.

    PubMed

    Loveday, Philip W; Long, Craig S

    2015-03-01

    The ability to measure the individual modes of propagation is very beneficial during the development of guided wave ultrasound based rail monitoring systems. Scanning laser vibrometers can measure the displacement at a number of measurement points on the surface of the rail track. A technique for estimating the amplitude of the individual modes of propagation from these measurements is presented and applied to laboratory and field measurements. The method uses modal data from a semi-analytical finite element model of the rail and has been applied at frequencies where more than twenty propagating modes exist. It was possible to measure individual modes of propagation at a distance of 400 m from an ultrasonic transducer excited at 30 kHz on operational rail track and to identify the modes that are capable of propagating large distances. PMID:25497003

  19. Rapid Response Measurements of Hurricane Waves and Storm Surge

    NASA Astrophysics Data System (ADS)

    Gravois, U.

    2010-12-01

    Andrew (1992), Katrina (2005), and Ike (2008) are recent examples of extensive damage that resulted from direct hurricane landfall. Some of the worst damages from these hurricanes are caused by wind driven waves and storm surge flooding. The potential for more hurricane disasters like these continues to increase as a result of population growth and real estate development in low elevation coastal regions. Observational measurements of hurricane waves and storm surge play an important role in future mitigation efforts, yet permanent wave buoy moorings and tide stations are more sparse than desired. This research has developed a rapid response method using helicopters to install temporary wave and surge gauges ahead of hurricane landfall. These temporary installations, with target depths from 10-15 m and 1-7 km offshore depending on the local shelf slope, increase the density of measurement points where the worst conditions are expected. The method has progressed to an operational state and has successfully responded to storms Ernesto (2006), Noel (2007), Fay (2008), Gustav (2008), Hanna (2008) and Ike (2008). The temporary gauges are pressure data loggers that measure at 1 Hz continuously for 12 days and are post-processed to extract surge and wave information. For the six storms studied, 45 out of 49 sensors were recovered by boat led scuba diver search teams, with 43 providing useful data for an 88 percent success rate. As part of the 20 sensor Hurricane Gustav response, sensors were also deployed in lakes and bays inLouisiana, east of the Mississippi river delta. Gustav was the largest deployment to date. Generally efforts were scaled back for storms that were not anticipated to be highly destructive. For example, the cumulative total of sensors deployed for Ernesto, Noel, Fay and Hanna was only 20. Measurement locations for Gustav spanned over 800 km of exposed coastline from Louisiana to Florida with sensors in close proximity to landfall near Cocodrie, Louisiana. Surge measurements between landfall and the Mississippi delta show 1.5 - 2 m of surge and values exceeding 2 m further from landfall north of the Mississippi delta. These observations demonstrate the importance of coastal geography on storm surge vulnerability. Waves measurements from Gustav show large waves of 5 m at all exposed locations from landfall to western Florida. Some smaller values were also recorded, likely to be due to depth limited breaking or sheltering from the Mississippi delta. Two weeks after Hurricane Gustav, major Hurricane Ike entered the Gulf of Mexico threatening Texas. Unfortunately the sensors already deployed for Gustav reached the 12 day memory limit and did not catch the most extreme conditions of Ike. However, 9 additional sensors were deployed for Ike spanning 360 km of the Texas coast. These measurements show surge east of the Galveston, Texas landfall exceeding 4.5 m and wave heights greater than 5 m. Hurricane Ike was by far the most destructive of the 6 storms measured and has spawned separate work relating the extent of building damage to these measurements.

  20. Effects of optimized and sub-optimum two degree of freedom lining tolerances on modeled inlet acoustic attenuation and Normal incidence impedance measurement at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Burd, David R.

    This work first investigates the effect of manufacturing tolerances on realized attenuation for two degree-of-freedom linings with the use of lining models and finite element duct propagation codes. Acoustic linings were created for two turbofan engines that optimize attenuation at takeoff/sideline and approach conditions. Lining physical and geometric parameters were set, which best meet the optimum impedance requirements at two target frequencies. Similar linings were created to investigate sub-optimum designs. Variations of these parameters representing realistic manufacturing tolerances were used to systematically examine the effect on installed impedance and predicted attenuation. Attenuation at sideline and approach conditions was found to be sensitive to manufacturing tolerances around optimum conditions. The results of the study are case dependent; however the analysis scheme presented provides a method for cost-benefit analysis of manufacturing processes. In a second study, an impedance tube, with an associated data analysis method, was developed and analyzed for temperature uncertainties that allowed the measurement of impedance of acoustic samples at elevated temperatures. This impedance measurement method was validated at room temperature by comparing the results with predicted impedance from empirically based impedance models and with impedance measurements in a standard traversing microphone impedance tube. Impedance for four samples was measured at elevated temperatures, and the results were compared to room temperature measurements. For two of the samples, the impedances measured at elevated temperatures were compared to the results of extensions of room temperature empirical models, confirming the trend of the results of the elevated temperature measurements.

  1. Attenuation studies of booster-rocket propellants and their simulants

    SciTech Connect

    Weirick, L.J.

    1990-08-01

    A series of impact experiments on a composite propellant, an energetic propellant, and their simulants was recently completed using a light-gas gun. Previous experiments were done to obtain Hugoniot data, to investigate the pressure threshold at which a reaction occurs, and to measure spall damage at various impact velocities. The present studies measured the attenuation of shock waves in these materials, completing the shock characterization needed for material modeling. An initial impulse of 2.0 GPa magnitude and {approximately}0.6 {mu}s duration was imposed upon samples of various thicknesses. VISAR was used to measure the free-surface velocity at the back of the samples; these data were used to generate a curve of shock-wave attenuation versus sample thickness for each material. Results showed that all four materials attenuated the shock wave very similarly. Material thicknesses of 3.0, 7.62, 12.7, and 19.0 mm attenuated the shock wave {approximately}16%, 33%, 50%, and 66% respectively. 14 refs., 12 figs., 4 tabs.

  2. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice. PMID:26206527

  3. Quantum Measurement Theory in Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Danilishin, Stefan L.; Khalili, Farid Ya.

    2012-04-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  4. Quantum Measurement Theory in Gravitational-Wave Detectors

    E-print Network

    Stefan L. Danilishin; Farid Ya. Khalili

    2012-05-09

    The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kilometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.

  5. Effects of atmospheric turbulence on microwave and millimeter wave satellite communications systems. [attenuation statistics and antenna design

    NASA Technical Reports Server (NTRS)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1981-01-01

    A model of the microwave and millimeter wave link in the presence of atmospheric turbulence is presented with emphasis on satellite communications systems. The analysis is based on standard methods of statistical theory. The results are directly usable by the design engineer.

  6. Measurements of CARS intensity in hydrogen molecule behind shock waves

    NASA Astrophysics Data System (ADS)

    Matsumoto, Y.; Matsui, H.; Asaba, T.

    1983-11-01

    A simple system of coherent anti-Stokes Raman Spectroscopy (CARS) consisting of a giant pulse ruby laser and a Stokes-Raman cell was used to measure the effects of temperature and pressure of the hydrogen molecule (v=O, J=1) on the intensity of the converted CARS signal. The measurements as performed behind reflected shock waves of H2-Ar mixtures in a shock tube as well as in a static cell at T=77 approximately 2,000 K, at a total pressure, p = 10 to 3rd power approximately 5 x 10 to the 5th power Pa. A semiclassical theory is developed to explain the experimental observations.

  7. Acoustic measurement of suspensions of clay and silt particles using single frequency attenuation and backscatter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of ultrasonic acoustic technology to measure the concentration of fine suspended sediments has the potential to greatly increase the temporal and spatial resolution of sediment measurements while reducing the need for personnel to be present at gauging stations during storm events. The conv...

  8. Extracting Earth's Elastic Wave Response from Noise Measurements

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Larose, Eric

    2013-05-01

    Recent research has shown that noise can be turned from a nuisance into a useful seismic source. In seismology and other fields in science and engineering, the estimation of the system response from noise measurements has proven to be a powerful technique. To convey the essence of the method, we first treat the simplest case of a homogeneous medium to show how noise measurements can be used to estimate waves that propagate between sensors. We provide an overview of physics research—dating back more than 100 years—showing that random field fluctuations contain information about the system response. This principle has found extensive use in surface-wave seismology but can also be applied to the estimation of body waves. Because noise provides continuous illumination of the subsurface, the extracted response is ideally suited for time-lapse monitoring. We present examples of time-lapse monitoring as applied to the softening of soil after the 2011 Tohoku-oki earthquake, the detection of a precursor to a landslide, and temporal changes in the lunar soil.

  9. Measurements of Nonlinear Harmonic Waves at Cracked Interfaces

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Barnard, Dan

    2011-06-01

    Nonlinear harmonic waves generated at cracked interfaces are investigated both experimentally and theoretically. A compact tension specimen is fabricated and the amplitude of transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible a broadband Lithium Niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic (f/2) and the second harmonic (2f) waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior a partially closed crack is modeled by planar half interfaces that can account for crack parameters such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreements with the experimental results.

  10. THE EXTRAGALACTIC BACKGROUND LIGHT FROM THE MEASUREMENTS OF THE ATTENUATION OF HIGH-ENERGY GAMMA-RAY SPECTRUM

    SciTech Connect

    Gong Yan; Cooray, Asantha

    2013-07-20

    The attenuation of high-energy gamma-ray spectrum due to the electron-positron pair production against the extragalactic background light (EBL) provides an indirect method to measure the EBL of the universe. We use the measurements of the absorption features of the gamma-rays from blazars as seen by the Fermi Gamma-ray Space Telescope to explore the EBL flux density and constrain the EBL spectrum, star formation rate density (SFRD), and photon escape fraction from galaxies out to z = 6. Our results are basically consistent with the existing determinations of the quantities. We find a larger photon escape fraction at high redshifts, especially at z = 3, compared to the result from recent Ly{alpha} measurements. Our SFRD result is consistent with the data from both gamma-ray burst and ultraviolet (UV) observations in the 1{sigma} level. However, the average SFRD we obtain at z {approx}> 3 matches the gamma-ray data better than the UV data. Thus our SFRD result at z {approx}> 6 favors the fact that star formation alone is sufficiently high enough to reionize the universe.

  11. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  12. Strong S-wave attenuation and actively degassing magma beneath Taal volcano, Philippines, inferred from source location analysis using high-frequency seismic amplitudes

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.

    2014-12-01

    Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.

  13. Gamma-Ray Attenuation Measurements as a Laboratory Experiment: Some Remarks

    ERIC Educational Resources Information Center

    Adamides, E.; Koutroubas, S. K.; Moshonas, N.; Yiasemides, K.

    2011-01-01

    In this article we make some significant remarks on the experimental study of the absorption of gamma radiation passing through matter. These remarks have to do with the seemingly unexpected trend of the measured intensity of radiation versus the thickness of the absorber, which puzzles students and its explanation eludes many laboratory…

  14. Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements

    E-print Network

    Strathclyde, University of

    Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption received 24 July 2012, in final form 14 December 2012) ABSTRACT The performance of several scattering collected in European shelf seas. Standard scattering correction procedures for absorption measurements

  15. Near-Surface Shear-Wave Velocity Measurements in Unlithified Sediment

    E-print Network

    Rickards, Benjamin Thomas

    2011-05-31

    ¬channel Analysis of Surface Waves (MASW), S-wave tomography, and downhole seismic for measuring S-wave velocities, investigates and identi¬fies the differences among the methods' results, and pri¬oritizes the different methods for S-wave use at the U. S. Army...

  16. Measurements of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: a pilot study.

    PubMed

    Su, Ya; Yao, X Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi

    2015-02-01

    We present detailed measurement results of optical attenuation's thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740

  17. Relating x-ray attenuation measurements to water content and distribution in SB-15D core

    SciTech Connect

    Bonner, B.P.; Roberts, J.J.; Schneberk, D.J

    1996-09-30

    Making improved estimates of the water content of The Geysers reservoir is fundamental to efficient and economic long term production of steam power from the resource. A series of coordinated physical properties measurements form core recovered from the SB-15D, reported in this volume in a series of papers, have been made to better understand water storage and to relate water content and distribution to observable geophysical properties such as electrical conductivity and seismic velocities. A principal objective here is to report new interpretations of x-ray scans made within 72 hours of core recovery from SB-15D, which suggest, taking advantage of preliminary measurements of capillary suction for metagraywacke, that water content was low in much of the preserved core.

  18. Two-dimensional measurement of photon beam attenuation by the treatment couch and immobilization devices using an electronic portal imaging device.

    PubMed

    Vieira, Sandra C; Kaatee, Robert S J P; Dirkx, Maarten L P; Heijmen, Ben J M

    2003-11-01

    In our institution, an individualized dosimetric quality assurance protocol for intensity modulated radiotherapy (IMRT) is being implemented. This protocol includes dosimetric measurements with a fluoroscopic electronic portal imaging device (EPID) for all IMRT fields while the patient is being irradiated. For some of the first patients enrolled in this protocol, significant beam attenuation by (carbon fiber) components of the treatment couch was observed. To study this beam attenuation in two-dimensional, EPID images were also acquired in absence of the patient, both with and without treatment couch and immobilization devices, as positioned during treatment. For treatments of head and neck cancer patients with a 6 MV photon beam, attenuation of up to 15% was detected. These findings led to the development of new tools and procedures for planning and treatment delivery to avoid underdosages in the tumor. PMID:14655945

  19. Gamma Ray Attenuation Coefficient Measurement in Energies 1172 keV and 1332 keV for Neutron Absorbent Saturated Solutions

    SciTech Connect

    Jalali, Majid

    2006-07-01

    The compounds, Na{sub 2}B{sub 4}O{sub 7}, H{sub 3}BO{sub 3}, CdCl{sub 2} and NaCl and their solutions, attenuate gamma rays in addition to neutron absorption. These compounds are widely used in shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to saturated solutions of the above four compounds, in energies 1172 keV and 1332 keV have been measured by NaI detector and agree very well with the results obtained by Xcom code. Experiment and computation show that, H{sub 3}BO{sub 3} has the highest gamma ray attenuation coefficient among the aforementioned compounds. (author)

  20. Biochemical measurement of bilirubin with an evanescent wave optical sensor

    NASA Astrophysics Data System (ADS)

    Poscio, Patrick; Depeursinge, Christian D.; Emery, Y.; Parriaux, Olivier M.; Voirin, Guy

    1991-09-01

    Optical sensing techniques can be considered as powerful information sources on the biochemistry of tissue, blood, and physiological fluids. Various sensing modalities can be considered: spectroscopic determination of the fluorescence or optical absorption of the biological medium itself, or more generally, of a reagent in contact with the biological medium. The principle and realization of the optical sensor developed are based on the use of polished fibers: the cladding of a monomode fiber is removed on a longitudinal section. The device can then be inserted into an hypodermic needle for in-vivo measurements. Using this minute probe, local measurements of the tissue biochemistry or metabolic processes can be obtained. The sensing mechanism is based on the propagation of the evanescent wave in the tissues or reagent: the proximity of the fiber core allows the penetration of the model field tail into the sensed medium, with a uniquely defined field distribution. Single or multi-wavelength analysis of the light collected into the fiber yields the biochemical information. Here an example of this sensing technology is discussed. In-vitro measurement of bilirubin in gastric juice demonstrates that the evanescent wave optical sensor provides a sensitivity which matches the physiological concentrations. A device is proposed for in-vivo monitoring of bilirubin concentration in the gastro-oesophageal tract.

  1. Measurements of spatially growing dust acoustic waves in a dc glow discharge plasma

    SciTech Connect

    Thomas, Edward Jr.

    2006-04-15

    In this paper, an experiment is performed on dust acoustic waves in a dc glow discharge plasma. Stereoscopic particle image velocimetry (stereo-PIV) techniques are used to make measurements of the dust acoustic waves. These stereo-PIV measurements reveal the spatial growth of the waves over three to six wavelengths before reaching a saturated level. Experimental measurements are shown to agree with a simple model for spatially varying waves.

  2. Digital Foucault tester for the measurement of parabolic wave form

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-peng; Zhu, Ri-hong; Wang, Lei

    2009-07-01

    Digital Foucault tester for quantitative estimate the wave form of aspheric surfaces is based on the high precision knife position determination and the image data processing methods. In this paper, we report a set of digital Foucault tester for the measurement of parabolic surface. The movement of the knife-edge is controlled by PC, and the shadow patterns are captured by a CCD in real time and then are fed back to the computer. A new kind of data processing method, which has the advantage of simple arithmetic and high precision, is given in the paper. The method offers a reliable base for Digital Foucault tester.

  3. Simultaneously measuring thickness, density, velocity and attenuation of thin layers using V(z,t) data from time-resolved acoustic microscopy.

    PubMed

    Chen, Jian; Bai, Xiaolong; Yang, Keji; Ju, Bing-Feng

    2015-02-01

    To meet the need of efficient, comprehensive and automatic characterization of the properties of thin layers, a nondestructive method using ultrasonic testing to simultaneously measure thickness, density, sound velocity and attenuation through V(z,t) data, recorded by time-resolved acoustic microscopy is proposed. The theoretical reflection spectrum of the thin layer at normal incidence is established as a function of three dimensionless parameters. The measured reflection spectrum R(?,?) is obtained from V(z,t) data and the measured thickness is derived from the signals when the lens is focused on the front and back surface of the thin layer, which are picked up from the V(z,t) data. The density, sound velocity and attenuation are then determined by the measured thickness and inverse algorithm utilizing least squares method to fit the theoretical and measured reflection spectrum at normal incidence. It has the capability of simultaneously measuring thickness, density, sound velocity and attenuation of thin layer in a single V(z,t) acquisition. An example is given for a thin plate immersed in water and the results are satisfactory. The method greatly simplifies the measurement apparatus and procedures, which improves the efficiency and automation for simultaneous measurement of basic mechanical and geometrical properties of thin layers. PMID:25448428

  4. New Insights into Crustal Attenuation from Deep Borehole Studies

    NASA Astrophysics Data System (ADS)

    Prejean, S. G.; Abercrombie, R. E.; Ellsworth, W. L.; Imanishi, K.; Ito, H.; Stork, A.

    2003-12-01

    Teleseismic and regional attenuation studies commonly find that S-waves are more attenuated than P-waves. Four recent studies that have estimated Q as part of the process of determining local earthquake source parameters using data recorded in deep boreholes (800 m to 2500 m), however, find the opposite result for ray paths that sample the seismogenic crust: P-waves are more strongly attenuated than S-waves. The difference in Qs/Qp between the borehole, regional, and teleseismic studies reflects the depth dependence of attenuation in the crust. In this presentation, we summarize attenuation measurements from the SAFOD Pilot Hole in Parkfield, California, the Long Valley Exploratory Well (LVEW) in eastern California; the Cajon Pass borehole in southern California; and the Ontake borehole in western Nagano, Japan, and we discuss the implications these measurements have for physical properties of the seismogenic crust. The seismometers in all four boreholes were installed well below the water table in competent basement rock and were used to observe nearby earthquakes with focal depths from 2 to 10 km. At all sites S-waves are less attenuated than P-waves (Qs/Qp = 1.2-2). The ratio Qs/Qp does not vary systematically with the overall degree of attenuation; at Cajon Pass Qp ˜900 and at SAFOD Qp ˜250, yet Qs/Qp = 1.2 in both areas. In the case of Ontake, the only site where frequency dependent attenuation was estimated, Qs/Qp also does not vary with frequency. Furthermore, at all sites, neither Qp nor Qs varies systematically with corner frequency, as it would were Q to have a strong frequency dependence. Because these four boreholes are located in widely varying tectonic and lithologic environments, Qs>Qp may be a common property of the Earth's crust in the 1-10 km depth range. The two boreholes in geothermally active provinces that we have studied have higher Qs/Qp ratios than the other sites (LVEW Qs/Qp ˜2 and western Nagano Qs/Qp ˜1.7 versus Cajon Pass and SAFOD Qs/Qp ˜1.2). Theoretical calculations and laboratory rock mechanics experiments suggest that Qs/Qp reaches a maximum of 2-2.5 when pore spaces are 70-90% saturated (see Winkler and Nur, Geophysics, 1995 V. 47, p.1 for summary). Although it is not clear if these rock-physics observations are applicable to the crust at seismogenic depths, they suggest that pore spaces are not fully saturated. Particularly high Qs/Qp in Long Valley Caldera and Ontake might reflect the presence of a steam phase trapped in pore spaces.

  5. Single-shot Zeff dense plasma diagnostic through simultaneous refraction and attenuation measurements with a Talbot–Lau x-ray moiré deflectometer

    DOE PAGESBeta

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2015-03-23

    The Talbot–Lau x-ray moiré deflectometer is a powerful plasma diagnostic capable of delivering simultaneous refraction and attenuation information through the accurate detection of x-ray phase shift and intensity. The diagnostic can provide the index of refraction n = 1 - ? + i? of an object (dense plasma, for example) placed in the x-ray beam by independently measuring both ? and ?, which are directly related to the electron density ne and the attenuation coefficient ?, respectively. Since ? and ? depend on the effective atomic number Zeff, a map can be obtained from the ratio between phase and absorptionmore »images acquired in a single shot. The Talbot–Lau x-ray moiré deflectometer and its corresponding data acquisition and processing are briefly described to illustrate how the above is achieved; Zeff values of test objects within the 4–12 range were obtained experimentally through simultaneous refraction and attenuation measurements. We show that Zeff mapping of objects does not require previous knowledge of sample length or shape. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest to various domains of HED research, such as shocked materials and ICF experiments, as well as material science and NDT.« less

  6. Single-shot Zeff dense plasma diagnostic through simultaneous refraction and attenuation measurements with a Talbot–Lau x-ray moiré deflectometer

    SciTech Connect

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2015-03-23

    The Talbot–Lau x-ray moiré deflectometer is a powerful plasma diagnostic capable of delivering simultaneous refraction and attenuation information through the accurate detection of x-ray phase shift and intensity. The diagnostic can provide the index of refraction n = 1 - ? + i? of an object (dense plasma, for example) placed in the x-ray beam by independently measuring both ? and ?, which are directly related to the electron density ne and the attenuation coefficient ?, respectively. Since ? and ? depend on the effective atomic number Zeff, a map can be obtained from the ratio between phase and absorption images acquired in a single shot. The Talbot–Lau x-ray moiré deflectometer and its corresponding data acquisition and processing are briefly described to illustrate how the above is achieved; Zeff values of test objects within the 4–12 range were obtained experimentally through simultaneous refraction and attenuation measurements. We show that Zeff mapping of objects does not require previous knowledge of sample length or shape. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest to various domains of HED research, such as shocked materials and ICF experiments, as well as material science and NDT.

  7. Single-shot Z(eff) dense plasma diagnostic through simultaneous refraction and attenuation measurements with a Talbot-Lau x-ray moiré deflectometer.

    PubMed

    Valdivia, M P; Stutman, D; Finkenthal, M

    2015-04-01

    The Talbot-Lau x-ray moiré deflectometer is a powerful plasma diagnostic capable of delivering simultaneous refraction and attenuation information through the accurate detection of x-ray phase shift and intensity. The diagnostic can provide the index of refraction n=1-?+i? of an object (dense plasma, for example) placed in the x-ray beam by independently measuring both ? and ?, which are directly related to the electron density n(e) and the attenuation coefficient ?, respectively. Since ? and ? depend on the effective atomic number Z(eff), a map can be obtained from the ratio between phase and absorption images acquired in a single shot. The Talbot-Lau x-ray moiré deflectometer and its corresponding data acquisition and processing are briefly described to illustrate how the above is achieved; Z(eff) values of test objects within the 4-12 range were obtained experimentally through simultaneous refraction and attenuation measurements. We show that Z(eff) mapping of objects does not require previous knowledge of sample length or shape. The determination of Z(eff) from refraction and attenuation measurements with moiré deflectometry could be of high interest to various domains of high energy density research, such as shocked materials and inertial confinement fusion experiments, as well as material science and nondestructive testing. PMID:25967162

  8. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Xia, Jun-Qing; Li, Mingzhe; Li, Hong; Zhang, Xinmin

    2015-12-01

    Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [ ? (n ˆ)] which can be separated into a background isotropic part [ ? bar ] and a small anisotropic part [ ?? (n ˆ)]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the "self-calibration" method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including ?? (n ˆ) in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial gravitational waves accurately.

  9. RESEARCH ARTICLE Schlieren measurements of internal waves in non-Boussinesq

    E-print Network

    Sutherland, Bruce

    RESEARCH ARTICLE Schlieren measurements of internal waves in non-Boussinesq fluids H. A. Clark Æ the generation of internal gravity waves by a monochromatic source have been restricted to small amplitude forcing in Boussinesq stratified fluids. Here we present measurements of internal waves generated

  10. FROM SINGLE POINT GAUGE TO SPATIO-TEMPORAL MEASUREMENT OF OCEAN WAVES PROSPECTS AND PERSPECTIVES

    E-print Network

    of a wave height as the difference between a crest and trough in the open ocean. Efforts to go beyond visualFROM SINGLE POINT GAUGE TO SPATIO-TEMPORAL MEASUREMENT OF OCEAN WAVES ­ PROSPECTS AND PERSPECTIVES With the recent advancement of spatial measurements of ocean waves, we are clearly facing new challenges regarding

  11. Probe impedance measurements for millimeter-wave integrated horn antennas

    NASA Technical Reports Server (NTRS)

    Guo, Yong; Chiao, Jung-Chih; Potter, Kent A.; Rutledge, David B.

    1993-01-01

    In order to achieve an impedance-matched millimeter-wave integrated horn antenna mixer array, the characteristics of the antenna probes inside the horn must be known. This paper describes impedance measurements for various probes in low-frequency model horns of two different types: (1) a 3 x 3 array made of aluminum by electric discharge machining and (2) a half horn made of copper sheet placed on a big copper-clad circuit board that was used as an image plane. The results of measurements indicate that the presence of the horn increases the effective length of the probe element, in agreement with reports of Guo et al. (1991) and theoretical analysis of Eleftheriades et al. (1991). It was also found that the resonant frequencies can be controlled by changing the length of the probes or by loading the probes.

  12. Speech articulator measurements using low power EM-wave sensors

    SciTech Connect

    Holzrichter, J.F.; Burnett, G.C.; Ng, L.C.; Lea, W.A.

    1998-01-01

    Very low power electromagnetic (EM) wave sensors are being used to measure speech articulator motions as speech is produced. Glottal tissue oscillations, jaw, tongue, soft palate, and other organs have been measured. Previously, microwave imaging (e.g., using radar sensors) appears not to have been considered for such monitoring. Glottal tissue movements detected by radar sensors correlate well with those obtained by established laboratory techniques, and have been used to estimate a voiced excitation function for speech processing applications. The noninvasive access, coupled with the small size, low power, and high resolution of these new sensors, permit promising research and development applications in speech production, communication disorders, speech recognition and related topics. {copyright} {ital 1998 Acoustical Society of America.}

  13. SU-F-BRE-10: Methods to Simulate and Measure the Attenuation for Modeling a Couch Top with Rails for FFF Treatment Delivery On the Varian Edge Linac

    SciTech Connect

    Gulam, M; Gardner, S; Zhao, B; Snyder, K; Song, K; Li, H; Gordon, J; Wen, N; Chetty, I; Kearns, W

    2014-06-15

    Purpose: To measure attenuation for modelling of the KVue Couchtop for 6X and 10X FFF SRS/SBRT treatment Methods: Treatment planning simulation studies were done using 6X FFF beams to estimate the dosimetric impact of KVue couchtops (including the Q-Fix IGRT [carbon fiber] and Calypso [nonconductive Kevlar material]) with a structure model obtained from a research workstation (Eclipse, advanced planning interface (API) v13). Prior to installation on the Varian Edge linac, the couchtop along with (Kevlar) rails were CT scanned with the rails at various positions. An additional scan with the couchtop 15cm above the CT table top was obtained with 20cm solid water to facilitate precised/indexed data acquisition. Measurements for attenuation were obtained for field sizes of 2, 4 and 10 cm{sup 2} at 42 gantry angles including 6 pairs of opposing fields and other angles for oblique delivery where the beams traversed the couchtop and or rails. The delivery was fully automated with xml scripts running in developer mode. The results were then used to determine an accurate structure model for AAA (Eclipse v11) planning of IMRT and RapidArc delivery. Results: The planning simulation relative dose attenuation for oblique entry was not significantly different than the Exact IGRT or BrainLab iBeam couch except that the rails added 6% additional attenuation. The relative attenuation measurements for PA, PA (rails: inner position), oblique, oblique (rails: outer position), oblique (rails: inner position) were: ?2.0%, ?2.5%, ?15.6%, ?2.5%, ?5.0% for 6X FFF and ?1.4%, ?1.5%, ?12.2%, ? 2.5%, ?5.0% for 10X FFF with slight decrease in attenuation versus field size. A Couch structure model (with HU values) was developed. Calculation compared to measurement showed good agreement except for oblique (rails: outer position) where differences approached a magnitude of 6%. Conclusion: A model of the couch structures has been developed accounting for attenuation for FFF beams.

  14. Effects of the NOP agonist SCH221510 on producing and attenuating reinforcing effects as measured by drug self-administration in rats.

    PubMed

    Sukhtankar, Devki D; Lagorio, Carla H; Ko, Mei-Chuan

    2014-12-15

    Nociceptin/orphanin FQ peptide (NOP) receptor agonists attenuate morphine-induced conditioned place preference in rodents. However, it is not known whether NOP agonists have reinforcing properties or can inhibit mu opioid receptor (MOP)-mediated reinforcement as measured by drug self-administration in rodents. Further understanding the behavioral effects of NOP agonists could suggest them as having potential in attenuating reinforcing effects of opioids. In the first part of the study, reinforcing properties of selective NOP agonist SCH221510 were determined and compared with the full MOP agonist remifentanil under fixed-ratio 5 (FR5) and progressive-ratio (PR) schedules of drug self-administration. In the second part, effects of systemic and intracisternal pretreatment of SCH221510 were determined and compared with MOP antagonist naltrexone in attenuating reinforcing effects of remifentanil and a non-drug reinforcer (sucrose pellets). Remifentanil self-administration (0.3-10 µg/kg/infusion) generated a biphasic dose-response curve, characteristic of drugs with reinforcing properties. SCH221510 (3-300 µg/kg/infusion) self-administration resulted in flat dose-response curves and early break-points under the PR, indicative of drugs lacking reinforcing value. Intracisternally, but not systemically, administered SCH221510 (0.3-3 µg) attenuated remifentanil self-administration, comparable with systemic naltrexone (0.03-0.3 mg/kg). SCH221510 (1-3 µg), unlike naltrexone (0.03-1 mg/kg), attenuated responding for sucrose pellets. Both effects of SCH221510 were reversed by the NOP antagonist J-113397 (0.3-3 µg). These results suggest that SCH221510 does not function as a reinforcer in rats, and that it can attenuate the reinforcing value of MOP agonists; therefore, the potential utility of NOP agonists for the treatment of drug addiction warrants further evaluation. PMID:25446568

  15. Measurement of the Pion and Photon Light-Cone Wave Functions by Diffractive Dissociation

    E-print Network

    Daniel Ashery

    2005-11-24

    The measurement of the pion light-cone wave function is revisited and results for the Gegenbauer coefficients are presented. Mesurements of the photon electromagnetic and hadronic wave functions are described and results are presented.

  16. Insights into fracture development from microseismic attenuation anisotropy

    NASA Astrophysics Data System (ADS)

    Usher, P. J.; Kendall, J. M.; Kelly, C. M.; Rietbrock, A.

    2013-12-01

    Seismic monitoring is used to investigate hydraulic fracture stimulation and its associated micro-seismicity. Fracture development is expected in the form of fracture sets leading to velocity, permeability and attenuation anisotropy. A temporal variation in these properties is also expected corresponding to the injection of fluids. The velocity anisotropy causes shear wave splitting, creating a fast and a slow S-wave. Here we measure attenuation anisotropy for a dataset from the Cotton Valley formation in east Texas, where a high pressure fluid has been injected at depth to increase the permeability in the formation. The resulting micro-seismicity has been monitored from two borehole arrays of three-component geophones (Rutledge et al., 2004). The log-spectral-ratio method is used to measure attenuation for the fast and the slow S wave. Attenuation is measured as the difference in t* (the accumulated attenuation along a ray path). The events used occur in clusters or multiplets, where the events are co-located in space but not in time. These events show a significant increase in the magnitude of shear wave splitting (Wuestefeld et al., 2011) over a 30 minute time period. An increase in t* is observed for the slow S wave but the fast S wave shows negligible change. This is concurrent with the injection of the high pressure fluid, and the increase in shear wave splitting. It is difficult to explain this observation due to changes in ray path length, or inclination. Using a model of poroelastic flow in fractured media developed by Chapman (2003), we can explain the changes in t* as an increase in fracturing and also a decrease in the aspect ratio of the fractures. Together this work suggests that we have measured temporal changes in attenuation anisotropy and that it is related to the development of fracture networks caused by the hydraulic stimulation. Chapman, M. (2003). Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophysical Prospecting, 51(5), 369-379. Rutledge, J., Phillips, W., & Mayerhofer, M. J. (2004). Faulting induced by forced fluid injection and fluid flow forced by faulting: An interpretation of hydraulic-fracture microseismicity, Carthage Cotton Valley Gas Field, Texas. Bulletin of the Seismological Society of America, 94(5), 1817-1830. Wuestefeld, A., Verdon, J. P., Kendall, J. M., Rutledge, J., Clarke, H., & Wookey, J. (2011). Inferring rock fracture evolution during reservoir stimulation from seismic anisotropy. Geophysics, 76(6), WC157. doi:10.1190/geo2011-0057.1

  17. The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO

    NASA Astrophysics Data System (ADS)

    Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.

    2015-07-01

    Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.

  18. Extracorporeal shock wave effectively attenuates brain infarct volume and improves neurological function in rat after acute ischemic stroke

    PubMed Central

    Yuen, Chun-Man; Chung, Sheng-Ying; Tsai, Tzu-Hsien; Sung, Pei-Hsun; Huang, Tien-Hung; Chen, Yi-Ling; Chen, Yung-Lung; Chai, Han-Tan; Zhen, Yen-Yi; Chang, Meng-Wei; Wang, Ching-Jen; Chang, Hsueh-Wen; Sun, Cheuk-Kwan; Yip, Hon-Kan

    2015-01-01

    Background: To investigate the effect of shock wave (SW) on brain-infarction volume (BIV) and neurological function in acute ischemic stroke (AIS) by left internal carotid artery occlusion in rats. Methods and results: SD rats (n=48) were divided into group 1 [sham-control (SC)], group 2 [SC-ECSW (energy dosage of 0.15 mJ/mm2/300 impulses)], group 3 (AIS), and group 4 (AIS-ECSW) and sacrificed by day 28 after IS induction. In normal rats, caspase-3, Bax and TNF-? biomarkers did not differ between animals with and without ECSW therapy, whereas Hsp70 was activated post-ECSW treatment. By day 21 after AIS, Sensorimotor-functional test identified a higher frequency of turning movement to left in group 3 than that in group 4 (P<0.05). By day 28, brain MRI demonstrated lager BIV in group 3 than that in group 4 (P<0.001). Angiogenesis biomarkers at cellular (CD31, ?-SMA+) and protein (eNOS) levels and number of neuN+ cells were higher in groups 1 and 2 than those in groups 3 and 4, and higher in group 4 than those in group 3, whereas VEGF and Hsp70 levels were progressively increased from groups 1 and 2 to group 4 (all P<0.001). Protein expressions of apoptosis (Bax, caspase 3, PARP), inflammation (MMP-9, TNF-?), oxidative stress (NOX-1, NOX-2, oxidized protein) and DNA-damage marker (?-H2AX), and expressions of ?-H2AX+, GFAP+, AQP-4+ cells showed an opposite pattern compared to that of angiogenesis among the four groups (all P<0.001). Conclusion: ECSW therapy was safe and effective in reducing BIV and improved neurological function. PMID:26279744

  19. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements.

    PubMed

    Cho, Hyoun-Myoung; Yang, Ping; Kattawar, George W; Nasiri, Shaima L; Hu, Yongxiang; Minnis, Patrick; Trepte, Charles; Winker, David

    2008-03-17

    This paper reports on the relationship between lidar backscatter and the corresponding depolarization ratio for nine types of cloud systems. The data used in this study are the lidar returns measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite and the collocated cloud products derived from the observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua satellite. Specifically, the operational MODIS cloud optical thickness and cloud-top pressure products are used to classify cloud types on the basis of the International Satellite Cloud Climatology Project (ISCCP) cloud classification scheme. While the CALIPSO observations provide information for up to 10 cloud layers, in the present study only the uppermost clouds are considered. The layer-averaged attenuated backscatter (gamma') and layer-averaged depolarization ratio (delta) from the CALIPSO measurements show both water- and ice-phase features for global cirrus, cirrostratus, and deep convective cloud classes. Furthermore, we screen both the MODIS and CALIPSO data to eliminate cases in which CALIPSO detected two- or multi-layered clouds. It is shown that low gamma' values corresponding to uppermost thin clouds are largely eliminated in the CALIPSO delta-gamma' relationship for single-layered clouds. For mid-latitude and polar regions corresponding, respectively, to latitude belts 30 degrees -60 degrees and 60 degrees -90 degrees in both the hemispheres, a mixture of water and ice is also observed in the case of the altostratus class. MODIS cloud phase flags are also used to screen ice clouds. The resultant water clouds flagged by the MODIS algorithm show only water phase feature in the delta-gamma' relation observed by CALIOP; however, in the case of the ice clouds flagged by the MODIS algorithm, the co-existence of ice- and water-phase clouds is still observed in the CALIPSO delta-gamma' relationship. PMID:18542490

  20. Anomalous Ultrasonic Attenuation in Aqueous NaCl Solutions

    E-print Network

    Barnana Pal; Srinanda Kundu

    2012-06-14

    The velocity (v) and attenuation constant (a) for ultrasonic waves of frequencies 1MHz and 2MHz propagating through aqueous sodium chloride solution have been measured over the concentration (c) region 0-5.3 mol.L-1 at room temperature (250 C). The velocity (v) shows an overall increase with the increase of c indicating comparatively stronger bonding among the ions and water molecules prevailing in the solution. The attenuation constant, besides showing an overall increase with c, shows significantly high values at some concentrations. Attempt has been made to understand the behaviour from existing theoretical background.

  1. Attenuation of VLF electromagnetic waves in the ionosphere as a result of pre-seismic activity observed by the DEMETER spacecraft

    NASA Astrophysics Data System (ADS)

    Pisa, D.; Nemec, F.; Parrot, M.; Santolik, O.

    2013-05-01

    Although there has been a significant progress in our understanding of seismo-ionospheric coupling in the past few decades, an exact description of mechanisms and effects that could be used as short-time precursors is still missing. We use the electromagnetic wave data measured by the DEMETER satellite at an altitude of about 700 km to check for the presence of statistically significant changes of VLF wave intensity related to the seismic activity. All relevant data acquired by DEMETER during almost 6.5 years of the mission have been analyzed. A robust two-step data processing has been used. It enables us to compare data from the vicinity of more than 9000 earthquakes with an unperturbed background distribution based on data collected during the whole DEMETER mission and to evaluate a statistical significance of the observed effects. We confirm the previously reported results of a statistically significant decrease of the wave intensity at the frequency of about 1.7 kHz using nearly twice larger data set. The effect is observed a few hours before the time of the main shock and it occurs exclusively during the night. Results can be explained by a variations of properties of the Earth-Ionospheric waveguide. This modification of the waveguide can change the propagation of electromagnetic waves generated by lightning discharges, which subsequently penetrate to the altitude of the satellite. The effect is very weak compared to common variation of wave intensity in the ionosphere. This decrease of the wave intensity is observable only on a large dataset and can not be considered as a possible short-time earthquake precursor.

  2. Interplanetary dust fluxes measurements using the Waves instrument on STEREO

    NASA Astrophysics Data System (ADS)

    Zaslavsky, A.; Meyer-Vernet, N.; Mann, I.; Czechowski, A.; Issautier, K.; Le Chat, G.; Maksimovic, M.; Kasper, J. C.

    2010-12-01

    Dust particles provide an important fraction of the matter composing the interplanetary medium, their mass density at 1 A.U. being comparable to the one of the solar wind. The impact of a dust particle on a spacecraft produces a plasma cloud whose associated electric field is detected by the on-board electric antennas. The signal measured by the wave instruments thus reveals the dust properties. We analyse the dust particle impacts on the STEREO spacecraft during the 2007-2010 period. We use the TDS waveform sampler of the STEREO/WAVES instrument, which enables us to deduce considerably more informations than in a previous study based on the LFR spectral analyzer [Meyer-Vernet et al., 2009]. We observe two distinct populations of dust that we infer to be nano and micron sized dust particles and we derive their fluxes at 1 AU and the evolution of these fluxes with time (and solar longitude). The observations are also in accord with the dynamics of nanometer-sized and micrometer-sized dust particles in the interplanetary medium.

  3. Nonlinear amplitude frequency characteristics of attenuation in rock under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2006-12-01

    Laboratory experiments have been carried out to investigate the influence of change in strain amplitude on the frequency dependence of attenuation in samples of sandstone, smoky quartz and duralumin. The measurements were performed using the reflection method on pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. The attenuation in rocks is nonlinearly dependent on frequency and strain amplitude. In sandstone for P-waves and in smoky quartz for P- and S-waves, the dependences Q-1p(f) and Q-1s(f) have the attenuation peak. With increasing amplitude, the peak frequency can shift towards both the lower and the higher frequencies. It depends on the location of the frequency of an incident (input) pulse with respect to the peak frequency on the frequency axis. For sandstone the peak frequency of P-waves shifts towards the higher frequencies. For smoky quartz the shift of peak frequency is absent in P-waves, and S-waves shift towards the lower frequencies. The attenuation at the incident frequency always monotonically decreases with amplitude, and the other frequency components have complex or monotonic characters depending on the location of the incident frequency in the relaxation spectrum. Q-1p(f) in duralumin has monotonic character, i.e. a relaxation peak in the measurement frequency band is absent. Attenuation strongly decreases with increasing frequency and weakly depends on strain amplitude. The curve Q-1s(f) has an attenuation peak, and its character essentially depends on strain amplitude. With increasing amplitude, the peak frequency shifts towards the lower frequencies. The unusual increase of peak frequency of the P-wave spectrum in the bottom reflection in comparison with peak frequency in spectrum of the initial reflection is detected. The unusual behaviour of attenuation is explained by features of the joint action of viscoelastic and microplastic mechanisms. These results can be used for improving methods of geological interpretation of seismic data.

  4. X-ray attenuation measurements in a cavitating mixing layer for instantaneous two-dimensional void ratio determination

    SciTech Connect

    Aeschlimann, Vincent; Barre, Stephane; Legoupil, Samuel

    2011-05-15

    The purpose of this experimental study was to analyze a two-dimensional cavitating shear layer. The global aim of this work was to obtain a better understanding and modeling of cavitation phenomenon in a 2D turbulent sheared flow which can be considered as quite representative of cavitating rocket engine turbopomp inducers. This 2D mixing layer flow provided us a well documented test case which can be used for the characterization of the cavitation effects in sheared flows. The development of a velocity gradient was observed inside a liquid water flow: Kelvin-Helmholtz instabilities developed at the interface. Vaporizations and implosions of cavitating structures inside the vortices were observed. X-ray attenuation measurements were performed to estimate the amount of vapor present inside the mixing area. Instantaneous two-dimensional void ratio fields were acquired. The real spatial resolutions are 0.5 mm with 2000 fps and 1.5 mm with 20 000 fps. The effective time resolution is equal to the camera frame rate up to a 19% void ratio variation between two consecutive images. This seems to be sufficient in the context of the present flow configuration. The two-phase structures present inside the mixing area were analyzed at three different cavitation levels and their behaviors were compared to non-cavitating flow dynamic. Convection velocities and vortices shedding frequencies were estimated. Results show that vapor was transported by the turbulent velocity field. Statistical analysis of the void ratio signal was carried out up to the fourth order moment. This study provided a global understanding of the cavitating structure evolution and of the cavitation effects on turbulent sheared flows.

  5. Dual output acoustic wave sensor for molecular identification

    SciTech Connect

    Frye, G.C.; Martin, S.J.

    1990-10-03

    The invention comprises a method for the identification and quantification of sorbed chemical species onto a coating of a device capable of generating and receiving an acoustic wave, by measuring the changes in the velocity of the acoustic wave resulting from the sorption of the chemical species into the coating as the wave travels through the coating and by measuring the changes in the attenuation of an acoustic wave resulting from the sorption of the chemical species into the coating as the wave travels through the coating. The inventive method further correlates the magnitudes of the changes of velocity with respect to changes of the attenuation of the acoustic wave to identify the sorbed chemical species. The absolute magnitudes of the velocity changes or the absolute magnitude of the attenuation changes are used to determine the concentration of the identified chemical species.

  6. Measurement of mass attenuation coefficients in air by application of detector linearity tests A. G. Peele, C. T. Chantler, D. Paterson, P. J. McMahon, T. H. K. Irving, J. J. A. Lin, and K. A. Nugent

    E-print Network

    Chantler, Christopher T.

    -section by / uA , 1 where u is the atomic mass unit and A is the relative atomic mass of the target elementMeasurement of mass attenuation coefficients in air by application of detector linearity tests A. G knowledge of x-ray mass attenuation coefficients is essential for studies as diverse as atomic physics

  7. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  8. Attenuating Photostress and Glare Disability in Pseudophakic Patients through the Addition of a Short-Wave Absorbing Filter

    PubMed Central

    Hammond, Billy R.

    2015-01-01

    To evaluate the effects of filtering short wavelength light on visual performance under intense light conditions among pseudophakic patients previously implanted with a clear intraocular lens (IOL). This was a patient-masked, randomized crossover study conducted at 6 clinical sites in the United States between September 2013 and January 2014. One hundred fifty-four bilaterally pseudophakic patients were recruited. Photostress recovery time and glare disability thresholds were measured with clip-on blue-light-filtering and placebo (clear; no blue-light filtration) glasses worn over patients' habitual correction. Photostress recovery time was quantified as the time necessary to regain sight of a grating target after intense light exposure. Glare disability threshold was assessed as the intensity of a white-light annulus necessary to obscure a central target. The order of filter used and test eye were randomized across patients. Photostress recovery time and glare disability thresholds were significantly improved (both P < 0.0001) when patients used blue-light-filtering glasses compared with clear, nonfiltering glasses. Compared with a nonfiltering placebo, adding a clip-on blue-absorbing filter to the glasses of pseudophakic patients implanted with clear IOLs significantly increased their ability to cope with glare and to recover normal viewing after an intensive photostress. This result implies that IOL designs with blue-light-filtering characteristics may be beneficial under intense light conditions. PMID:25838942

  9. Measuring high pressure equation of state of polystyrene using laser driven shock wave

    NASA Astrophysics Data System (ADS)

    Shu, Hua; Huang, Xiuguang; Ye, Junjian; Wu, Jiang; Jia, Guo; Fang, Zhiheng; Xie, Zhiyong; Zhou, Huazhen; Fu, Sizu

    2015-11-01

    High precision polystyrene equation of state data were measured using laser-driven shock waves with pressures from 180 GPa to 700 GPa. ? quartz was used as standard material, the shock wave trajectory in quartz and polystyrene was measured using the Velocity Interferometer for Any Reflector (VISAR). Instantaneous shock velocity in quartz and polystyrene was obtained when the shock wave pass the interface. This provided ~1% precision in shock velocity measurements.

  10. Typhoon generated surface gravity waves measured by NOMAD-type buoys

    NASA Astrophysics Data System (ADS)

    Collins, Clarence O., III

    This study examines wind-generated ocean surface waves as measured by NOMAD-type buoys during the ONR-sponsored Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment in 2010. 1-D measurements from two new Extreme Air-Sea Interaction (EASI) NOMAD-type buoys were validated against measurements from established Air-Sea Interaction Spar (ASIS) buoys. Also, during ITOP, 3 drifting Miniature Wave Buoys, a wave measuring marine radar on the R/V Roger Revelle, and several overpasses of JASON-1 (C- and Ku-band) and -2 (Ku-band) satellite altimeters were within 100 km of either EASI buoy. These additional measurements were compared against both EASI buoys. Findings are in line with previous wave parameter inter-comparisons. A corroborated measurement of mean wave direction and direction at the peak of the spectrum from the EASI buoy is presented. Consequently, this study is the first published account of directional wave information which has been successfully gathered from a buoy with a 6 m NOMAD-type hull. This result may be applied to improve operational coverage of wave direction. In addition, details for giving a consistent estimate of sea surface elevation from buoys using strapped down accelerometers are given. This was found to be particularly important for accurate measurement of extreme waves. These technical studies established a high level of confidence in the ITOP wave measurements. Detailed frequency-direction spectra were analyzed. Structures in the wave field were described during the close passages of 4 major tropical cyclones (TC) including: severe tropical storm Dianmu, Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. In addition, significant swell was measured from a distant 5th TC, Typhoon Malakas. Changes in storm direction and intensity are found to have a profound impact on the wave field. Measurements of extreme waves were explored. More extreme waves were measured during TCs which coincided with times of increased wave steepness. The largest extreme waves, which are more impressive than the Draupner (aka Newyears) wave in terms of normalized wave height, were found to occur under circumstances which support the theory of modulation instability. It is suggested that swell and wind sea, as generated by complex TCs winds, may merge and/or couple in such a way to produce sea-states which are unstable. The largest extreme wave, which was over 21 m high, appears to have occurred under such circumstances. However, the development of unstable seas, and the possible connection between the occurrence of extreme waves and unstable seas, has yet to be confirmed.

  11. Satellite-based measurements of gravity wave-induced midlatitude plasma density

    E-print Network

    Vadas, Sharon

    Satellite-based measurements of gravity wave-induced midlatitude plasma density perturbations G. D at midlatitudes in the nighttime ionospheric plasma and neutral density measurements made at altitudes between 250. M. Musumba, and S. L. Vadas (2008), Satellite-based measurements of gravity wave-induced midlatitude

  12. Theoretical and Measured Attenuation of Mufflers at Room Temperature Without Flow, with Comments on Engine-exhaust Muffler Design

    NASA Technical Reports Server (NTRS)

    Davis, Don D , Jr; Stevens, George L , Jr; Moore, Dewey; Stokes, George M

    1953-01-01

    Equations are presented for the attenuation characteristics of several types of mufflers. Experimental curves of attenuation plotted against frequency are presented for 77 different mufflers and the results are compared with theory. The experiments were made at room temperature without flow and the sound source was a loud-speaker. A method is given for including the tail pipe in the calculations. The application of the theory to the design of engine-exhaust mufflers is discussed, and charts have been included for the assistance of the designer.

  13. Seafloor Pressure Measurements of Nonlinear Internal Waves J. N. MOUM AND J. D. NASH

    E-print Network

    Balasubramanian, Ravi

    Seafloor Pressure Measurements of Nonlinear Internal Waves J. N. MOUM AND J. D. NASH College over New Jersey's continental shelf reveal the pressure signature of nonlinear internal waves to a prediction of the form, sign, and magnitude of the pressure signature of nonlinear internal waves

  14. MEASUREMENTS OF SHALLOW WATER BREAKING WAVE ROLLERS Merrick C. Haller and Patricio Cataln

    E-print Network

    Haller, Merrick

    published of individual breaking wave roller geometries in shallow water. A number of investigators haveMEASUREMENTS OF SHALLOW WATER BREAKING WAVE ROLLERS Merrick C. Haller and Patricio Catalán 1 Ocean water and wave roller transformation in the surf zone. The approach is new in the sense

  15. Ionospheric gravity wave measurements with the USU dynasonde

    NASA Technical Reports Server (NTRS)

    Berkey, Frank T.; Deng, Jun Yuan

    1992-01-01

    A method for the measurement of ionospheric Gravity Wave (GW) using the USU Dynasonde is outlined. This method consists of a series of individual procedures, which includes functions for data acquisition, adaptive scaling, polarization discrimination, interpolation and extrapolation, digital filtering, windowing, spectrum analysis, GW detection, and graphics display. Concepts of system theory are applied to treat the ionosphere as a system. An adaptive ionogram scaling method was developed for automatically extracting ionogram echo traces from noisy raw sounding data. The method uses the well known Least Mean Square (LMS) algorithm to form a stochastic optimal estimate of the echo trace which is then used to control a moving window. The window tracks the echo trace, simultaneously eliminating the noise and interference. Experimental results show that the proposed method functions as designed. Case studies which extract GW from ionosonde measurements were carried out using the techniques described. Geophysically significant events were detected and the resultant processed results are illustrated graphically. This method was also developed for real time implementation in mind.

  16. Coupled attenuation and multiscale damage model for composite structures

    NASA Astrophysics Data System (ADS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett; Arnold, Steven M.

    2011-04-01

    Composite materials are widely used in many applications for their high strength, low weight, and tailorability for specific applications. However, the development of robust and reliable methodologies to detect micro level damage in composite structures has been challenging. For composite materials, attenuation of ultrasonic waves propagating through the media can be used to determine damage within the material. Currently available numerical solutions for attenuation induce arbitrary damage, such as fiber-matrix debonding or inclusions, to show variations between healthy and damaged states. This paper addresses this issue by integrating a micromechanics analysis to simulate damage in the form of a fiber-matrix crack and an analytical model for calculating the attenuation of the waves when they pass through the damaged region. The hybrid analysis is validated by comparison with experimental stress-strain curves and piezoelectric sensing results for attenuation measurement. The results showed good agreement between the experimental stress-strain curves and the results from the micromechanics analysis. Wave propagation analysis also showed good correlation between simulation and experiment for the tested frequency range.

  17. Radar attenuation and temperature within the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, S. Prasad; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E

    2015-01-01

    The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.

  18. Ultrasonic attenuation as an indicator of fatigue life of graphite/epoxy fiber composite

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Doll, B.

    1979-01-01

    The narrow band ultrasonic longitudinal wave velocity and attenuation were measured as a function of the transfiber compression-compression fatigue of unidirectional graphite/epoxy composites. No change in velocity was detected at any point in fatigue life. For specimens fatigued at 80% of static strength, there was generally a 5% to 10% increase in attenuation, however, this increase does not appear to be a satisfactory indicator of fatigue life. On the other hand, there appears to be a correlation between initial attenuation (measured prior to cycling) and cycles to fracture. Initial attenuation as measured at 1.5 MHz and 2.0 MHz appears to be a good indicator of relative fatigue life.

  19. Frequency dependent elastic properties and attenuation in heavy-oil sands: comparison between mea-sured and modeled data

    E-print Network

    - sured and modeled data Agnibha Das, and Michael Batzle, Colorado School of Mines SUMMARY We have experimental setup at Colorado School of Mines. Four different modes of intrinsic attenuation, extensional (QE are dominated by thermal tech- niques such as in-situ combustion, THAI (Toe to Heel Air In- jection) and SAGD

  20. Measurements of Ocean Surface Waves Using Airborne GNSS Multistatic Radar

    NASA Astrophysics Data System (ADS)

    Zavorotny, V.; Akos, D.; Muntzing, H.

    2010-12-01

    The characteristics of GNSS reflected signals, such as the shape of the correlation waveform, can be related to the rms of L-band limited surface slopes. For wind-generated waves a connection can be established between the rms of surface slopes and the local wind. This relationship holds only when the local wind is the primary source of sea roughness in the vicinity of the reflection point, and the contribution from incoming swell can be neglected. During the last decade a number of airborne experiments have been performed to prove the feasibility of GNSS scatterometric technique to measure ocean surface winds. With new flying platforms and new GNSS signals becoming available there is a necessity to investigate this technique further. This technique might be attractive when considering high altitude/long endurance (HALE) Unmanned Aircraft Systems (UAS) because of the small size, small weight, and low energy consumption of GPS receivers. Use of high-altitude (~ 20 km) UAS platforms is especially beneficial providing swaths ~100 km wide. A version of software-defined GNSS bistatic radar capable to work with data volumes on the order of 1GB/minute for the GPS L1 civil signal was developed at Colorado University. This system was installed on the NOAA Gulfstream-IV jet aircraft and operated during flights in January, 2010 to test the system at high altitudes, ~13,000 m. The flight track ran across the Northern Pacific Ocean and the GPS reflected signal was recorded from all available satellites. Overall, 26 hours of reflection data were obtained during four flights. Wind speed and direction from dropsondes deployed from the same aircraft were available to assess the capability of this radar to monitor winds or rms of ocean waves. We report comparisons between GPS scatterometric wind retrievals and dropsondes measurements. The effect of swell on those retrievals is discussed. We analyze the effects of the platform high altitude on signal-to-noise ratio and on the sensitivity of reflected waveforms to rms of wave slopes. We also address the issue of Doppler filtering of the reflected waveforms due to a relatively high speed of the G-IV aircraft. For the next phase of the sensor development we expanded capabilities to all three GPS frequencies, including the wider band L5 signal (well suited for the ocean altimetry). This also required a development of the post processing algorithms for the collected data. During mid-late 2010 the new sensor was installed and flown on the NOAA P-3 aircraft. It was able to work with the GPS L1, L2C, and L5 civil bands as well as the signals from the test Galileo satellites. Due to the broadband, higher power, L5 transmission are expected to offer the most benefit for bistatic GNSS measurements, especially for the ocean altimetry. First scatterometric and altimetric results obtained with this GNSS bistatic sensor will be presented.

  1. Seismic Attenuation Inversion with t* Using tstarTomog.

    SciTech Connect

    Preston, Leiph

    2014-09-01

    Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

  2. Analysis design and measurement of guided wave optical backplane interconnection

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Ioannis

    Optics has been long regarded as the prominent alternative to electronics, to address the serious interconnects bottleneck in high-speed backplane printed circuit boards. In this thesis, we present our work towards the realization of a robust and cost effective 10 Gb/s optically interconnected backplane aimed at switching and storage applications. In the course of this work, we experimentally analyzed optical waveguides and advanced electromagnetic theories and algorithms to explain light propagation phenomena. We experimentally characterized the insertion loss for dielectric waveguide bends of rectangular cross-section for a range of radii of curvature and waveguide widths and generated useful design rules. We then used the Beam Propagation Method (BPM) to separate insertion loss into its individual loss components and developed a ray-tracing model to gain further insight into propagation in waveguide bends. We developed a novel waveguiding component called the tapered bend, which integrated a tapered waveguide with a bend. We expanded intrinsic mode theory, widely known in the acoustic wave field, to explain adiabatic propagation phenomena in tapered bends before, at and after modal cut-off. The proposed electromagnetic theory has significant implications since it can be used for tapered waveguides in general inhomogeneous media. We experimentally measured the insertion loss of the tapered bend and characterized the coupling efficiency tolerance under source misalignment for a range of radii and taper ratios. We developed a semi-analytic algorithm to calculate the radiation modes of rectangular waveguides, based on a non-liner transformation of the wave equation and a Fourier decomposition method. The proposed method is very powerful and can be used in waveguides of arbitrary shape with some additional computational complexity. We applied the coupled mode theory to the computed radiation modes and we calculated the equilibrium distance, the steady state power distribution, and the propagation loss for multimode rectangular waveguides with sidewall roughness. These are the first reported calculations of this kind for rectangular waveguides, to the best of our knowledge. Finally, we designed a novel optical connector based on the mechanically transferable (MT) technology for accurate passive alignment between arrays of waveguides and active devices. In addition, we built a prototype optical backplane system to demonstrate the operation of our connector, and we monitored its performance by subjecting it to a test cycle of a number of engagements. We experimentally characterized the VCSEL sources used in the prototype and generated contour maps of coupling loss as a function of source misalignments. For the first time reported in literature, we measured cross-talk as a function of VCSEL lateral misalignment.

  3. Measurement of X-ray mass attenuation coefficient of nickel around the K-edge using synchrotron radiation based X-ray absorption study

    NASA Astrophysics Data System (ADS)

    Roy, Bunty Rani; Rajput, Parasmani; Jha, S. N.; Nageswara Rao, A. S.

    2015-09-01

    The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2-8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge.

  4. Attenuation statistics at 20.6, 31.65 and 52.85 GHz derived from emission measurements by ground-based microwave radiometers

    NASA Technical Reports Server (NTRS)

    Fionda, E.; Falls, M. J.; Westwater, E. R.

    1991-01-01

    Two seasons (December 1987 to February 1988 and July 1988 to September 1988) of thermal emission measurements, taken by a multichannel ground-based microwave radiometer, are used to derive single-station zenith attenuation statistics at 20.6 and 31.65 GHz. For the summer period, statistics are also derived at 52.85 GHz. In addition, data from two radiometers located 50 km apart are used to derive two-station attenuation diversity statistics at 20.6 and 31.65 GHz. The multichannel radiometer was operated at Denver, Colorado, U.S. and the dual-channel device was operated at Platteville, Colorado. The diversity statistics are presented by cumulative distributions and by bivariate frequency distributions. The frequency distributions are analyzed when either one or both stations have liquid clouds.

  5. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    SciTech Connect

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  6. Attenuation behavior of solid dense random media at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Nadimi, S. A.; Bredow, J. W.; Fung, A. K.

    1992-01-01

    To better understand scattering from nontenuous dense random media such as sea ice and snow, attenuation measurements have been performed on two different types of random media with ka values ranging from 0.5 to 0.7, and 1.5 to 2.1. Experimental results are presented for wave propagation in plane slabs of finite thickness composed of a random distribution of identical, finite scatterers, and a random distribution of scatterers with narrow size distribution. The observed behavior is described in terms of attenuation versus volume fraction, and the behavior of attenuation versus frequency. Results presented are compared to the behavior reported by some earlier experiments where the medium properties are different.

  7. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  8. Measurements of total atomic attenuation cross sections of Tm, Yb, Lu, Hf, Ta, W, Re and Os Elements at 122keV and 136keV

    SciTech Connect

    Kaya, N.; Tirasoglu, E.; Apaydin, G.; Kobya, A. I.

    2007-04-23

    The aim of this study was to measure the total atomic attenuation cross sections ({sigma}t) in eighth elements (69{<=}Z{<=}76) at 122 keV and 136 keV. The experimental values of the cross sections were determined using the transmission geometry. Measurements have been performed using an annular source (Co-57) and Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values and other available experimental results. Good agreement was observed among the experimental, theoretical and other experimental values.

  9. In-Situ Lattice Polarization Measurement by Atomic Wave Scattering

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Bauer, Michael; Kindermann, Farina; Lausch, Tobias; Mayer, Daniel; Widera, Artur

    2015-05-01

    Optical dipole traps and lattices have become indispensable tools in atomic physics and atom optics. Especially the accurate alignment of the beam polarization is crucial, because a deviation from purely linear polarization will result in state dependent AC-stark vector light shifts, which are proportional to the atoms' magnetic mF substates. Such shifts can be either utilized as a tool for state dependent atomic transport and the creation of artificial gauge fields, or, in contrast, could cause unwanted dephasing in quantum information processing and spectroscopic experiments. Here, we present an in-situ measurement method of an optical lattice's polarization purity by employing the Kapitza-Dirac effect - the scattering of atoms by a standing light wave: We create a Rubidium-87 (Rb) BEC and shine in an optical lattice at 790 nm that is tuned in between the D1 and D2 lines of Rb. At this wavelength, the scalar dipole potentials of both lines counteract and ideally cancel out, yielding a high sensitivity to vector light shifts for different mF states. By analysing the scattering of Rb atoms in the residual potential for different mF states, we can extract the lattice polarization with high accuracy below 10-3.

  10. Multichannel Density Measurements with a Millimeter Wave Interferometer on CTH

    NASA Astrophysics Data System (ADS)

    Archmiller, M. C.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2012-10-01

    A three-channel 1,m wave interferometer has been installed on the Compact Toroidal Hybrid torsatron (CTH). The interferometer design makes novel use of a subharmonic mixer for detection, which simplifies alignment. It employs a single electronically tunable source that is repetitively chirped using a sawtooth waveform of frequency up to 1,Hz. The 15.25,Hz drive oscillator is multiplied in two stages to 122,Hz before a final doubler stage brings it to 244,Hz. Local oscillator (LO) power at 122,Hz is directed through waveguide to the LO input of the subharmonic mixer of each viewing chord, simplifying alignment. Phase detection is performed by directly digitizing the amplified mixer outputs at 50,Hz and processing them with a software algorithm. Measurements made with the central chord of the new interferometer agree with those from the existing 4,m system at low densities. The 1,m system performs well in current-driven discharges reaching densities over 10^19 m-3, whereas the lower frequency interferometer is found to be less reliable due to loss of fringes. This is a critical improvement for experiments studying disruptions in the CTH device. Results from the fully implemented three-channel interferometer will be presented and discussed.

  11. Long wave infrared polarimetric model: theory, measurements and parameters

    NASA Astrophysics Data System (ADS)

    Wellems, David; Ortega, Steve; Bowers, David; Boger, Jim; Fetrow, Matthew

    2006-10-01

    Material parameters, which include the complex index of refraction, (n,k), and surface roughness, are needed to determine passive long wave infrared (LWIR) polarimetric radiance. A single scatter microfacet bi-direction reflectance distribution function (BRDF) is central to the energy conserving (EC) model which determines emitted and reflected polarized surface radiance. Model predictions are compared to LWIR polarimetric data. An ellipsometry approach is described for finding an effective complex index of refraction or (n,k) averaged over the 8.5-9.5 µm wavelength range. The reflected S3/S2 ratios, where S2 and S3 are components of the Stokes (Born and Wolf 1975 Principles of Optics (London: Pergamon) p 30) vector, are used to determine (n,k). An imaging polarimeter with a rotating retarder is utilized to measure the Stokes vector. Effective (n,k) and two EC optical roughness parameters are presented for roughened glass and several unprepared, typical outdoor materials including metals and paints. A two parameter slope distribution function is introduced which is more flexible in modelling the source reflected intensity profiles or BRDF data than one parameter Cauchy or Gaussian distributions (Jordan et al 1996 Appl. Opt. 35 3585-90 Priest and Meier 2002 Opt. Eng. 41 992). The glass results show that the (n,k) needed to model polarimetric emission and scatter differ from that for a smooth surface and that surface roughness reduces the degree of linear polarization.

  12. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  13. Detection of Electromechanical Wave Propagation Using Synchronized Phasor Measurements

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Prakash; Dambhare, Sanjay; Pramanik, Ashutosh

    2014-01-01

    Considering electrical network as a continuum has become popular for electromechanical wave analysis. This paper reviews the concept of electromechanical wave propagation. Analysis of large number of generator ring system will be an easy way to illustrate wave propagation. The property of traveling waves is that the maximum and minimum values do not occur at the same time instants and hence the difference between these time delays can be easily calculated. The homogeneous, isotropic 10 generator ring system is modeled using electromagnetic transient simulation programs. The purpose of this study is to investigate the time delays and wave velocities using Power System Computer Aided Design (PSCAD)/Electromagnetic Transient Program (EMTP). The disturbances considered here are generator disconnections and line trips.

  14. Low Energy Particle Oscillations and Correlations with Hydromagnetic Waves in the Jovian Magnetosphere: Ulysses Measurements

    NASA Technical Reports Server (NTRS)

    Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.

    1996-01-01

    We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.

  15. Global Attenuation Tomography and Implications for Upper-Mantle Thermal Structure

    NASA Astrophysics Data System (ADS)

    Dalton, C. A.; Ekström, G.; Dziewonski, A. M.

    2007-12-01

    Observation of seismic-wave attenuation provides a direct measure of the Earth's anelasticity. The sensitivity of attenuation to temperature, composition, partial melt, and water content is different from that of seismic velocity, and joint interpretation of elastic and anelastic models may be used to improve constraints on these properties throughout the Earth. Historically, the development of attenuation models has lagged behind velocity models. However, the availability of large seismic datasets and improved techniques to treat these data have recently led to better and higher-resolution attenuation models. We have developed a new 3-D global model of shear attenuation in the upper mantle. This new model, QRFSI12, is derived from > 30,000 fundamental-mode Rayleigh wave amplitude measurements at each period (period range 50-250 s). The amplitudes are inverted simultaneously for the coefficients of the 3-D model as well as frequency-dependent amplitude correction factors for each source and receiver. We have found that focusing by elastic heterogeneity can significantly influence surface-wave amplitudes and that this effect can be modeled at long periods using ray-theoretical approximations. We therefore subtract focusing effects from the data prior to inversion by using phase-velocity maps determined from jointly inverting amplitude and phase-delay datasets. In the shallow mantle, QRFSI12 exhibits a strong correlation with tectonic features, and different tectonic provinces are characterized by distinct attenuative properties. At depths > 250 km, the model is dominated by high attenuation beneath the southeastern Pacific and eastern Africa and low attenuation associated with subduction zones in the western Pacific. Comparison of QRFSI12 with global shear-velocity models shows a strong anti-correlation throughout the upper mantle. At 100-km depth, a clear trend of increasing velocity and decreasing attenuation with increasing age of the seafloor is apparent, and tectonically active continental areas are associated with slower velocities and higher attenuation than stable continental interiors. At depths of 150 and 200 km, oceanic regions exhibit a larger decrease in attenuation per fractional increase in velocity than stable continental regions do, suggesting differences in the mechanisms that influence the seismic properties within these two regions. Comparison with recent laboratory measurements (Faul and Jackson, 2005) of attenuation and velocity for olivine helps to quantify the extent to which temperature alone can explain the observed variability. We find that the mineral-physics predictions agree well with the global seismic models for the oceanic regions between 150- and 250-km depth, but that the cratonic areas cannot be fit.

  16. Wave Journal Bearing. Part 2: Experimental Pressure Measurements and Fractional Frequency Whirl Threshold for Wave and Plain Journal Bearings

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Dimofte, Florin; Addy, Harold E., Jr.

    1995-01-01

    A new hydrodynamic bearing concept, the wave journal bearing, is being developed because it has better stability characteristics than plain journal bearings while maintaining similar load capacity. An analysis code to predict the steady state and dynamic performance of the wave journal bearing is also part of the development. To verify numerical predictions and contrast the wave journal bearing's stability characteristics to a plain journal bearing, tests were conducted at NASA Lewis Research Center using an air bearing test rig. Bearing film pressures were measured at 16 ports located around the bearing circumference at the middle of the bearing length. The pressure measurements for both a plain journal bearing and a wave journal bearing compared favorably with numerical predictions. Both bearings were tested with no radial load to determine the speed threshold for self-excited fractional frequency whirl. The plain journal bearing started to whirl immediately upon shaft start-up. The wave journal did not incur self-excited whirl until 800 to 900 rpm as predicted by the analysis. Furthermore, the wave bearing's geometry limited the whirl orbit to less than the bearing's clearance. In contrast, the plain journal bearing did not limit the whirl orbit, causing it to rub.

  17. Wave journal bearing. Part 2: Experimental pressure measurements and fractional frequency whirl threshold for wave and plain journal bearings

    NASA Astrophysics Data System (ADS)

    Walker, James F.; Dimofte, Florin; Addy, Harold E., Jr.

    1995-01-01

    A new hydrodynamic bearing concept, the wave journal bearing, is being developed because it has better stability characteristics than plain journal bearings while maintaining similar load capacity. An analysis code to predict the steady state and dynamic performance of the wave journal bearing is also part of the development. To verify numerical predictions and contrast the wave journal bearing's stability characteristics to a plain journal bearing, tests were conducted at NASA Lewis Research Center using an air bearing test rig. Bearing film pressures were measured at 16 ports located around the bearing circumference at the middle of the bearing length. The pressure measurements for both a plain journal bearing and a wave journal bearing compared favorably with numerical predictions. Both bearings were tested with no radial load to determine the speed threshold for self-excited fractional frequency whirl. The plain journal bearing started to whirl immediately upon shaft start-up. The wave journal did not incur self-excited whirl until 800 to 900 rpm as predicted by the analysis. Furthermore, the wave bearing's geometry limited the whirl orbit to less than the bearing's clearance. In contrast, the plain journal bearing did not limit the whirl orbit, causing it to rub.

  18. Measurements of plasma-wave generation using a short-pulse high-intensity laser beat wave

    NASA Astrophysics Data System (ADS)

    Walton, B.; Najmudin, Z.; Wei, M. S.; Marle, C.; Kingham, R. J.; Krushelnick, K.; Dangor, A. E.; Clarke, R. J.; Poulter, M. J.; Hernandez-Gomez, C.; Hawkes, S.; Neely, D.; Collier, J. L.; Danson, C. N.; Fritzler, S.; Malka, V.

    2006-01-01

    Experiments to examine the generation of relativistic plasma waves via a high-intensity short-pulse beat-wave scheme are described in detail. The pulse stretcher of the Vulcan chirped-pulse amplification (CPA) laser system was modified to produce two frequency, 3ps pulses focusable to intensities up to 1018Wcm-2. Short high-intensity pulses were used to avoid limitations to the plasma-wave amplitude due to the modulational instability. Two experiments were undertaken, at 3 and 10TW, with the generation of plasma waves diagnosed by measuring the sidebands produced in the spectrum of the forward scattered beam. A resonance in the sideband signal was observed for an initial plasma density higher than expected for the given beat frequency. This resonance shift can be attributed to transverse ponderomotive expulsion of plasma electrons from the laser focal region. A monotonically increasing background was also observed, which was due to nonresonant cross-phase modulation.

  19. Calibration of Ocean Wave Measurements by the TOPEX, Jason-1, and Jason-2 Satellites

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Beckley, B. D.

    2012-01-01

    The calibration and validation of ocean wave height measurements by the TOPEX, Jason-1, and Jason-2 satellite altimeters is addressed by comparing the measurements internally among them- selves and against independent wave measurements at moored buoys. The two six-month verification campaigns, when two of the satellites made near-simultaneous measurements along the same ground track, are invaluable for such work and reveal subtle aspects that otherwise might go undetected. The two Jason satellites are remarkably consistent; Topex reports waves generally 1-2% larger. External calibration is complicated by some systematic errors in the buoy data. We confirm a recent report by Durrant et al. that Canadian buoys underestimate significant wave heights by about 10% relative to U.S. buoys. Wave heights from all three altimetric satellites require scaling upwards by 5 6% to be consistent with U.S. buoys.

  20. Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J. (compiler)

    1975-01-01

    The ATS-6 millimeter wave experiment, provided the first direct measurements of 20 and 30 GHz earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques. In addition to direct measurements on the 20 and 30 GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment from the major participating organizations are presented.

  1. Compressional wave character in gassy, near-surface sediments in southern Louisiana determined from variable frequency cross-well, borehole logging, and surface seismic measurements

    SciTech Connect

    Thompson, M.D.; McGinnis, L.D.; Wilkey, P.L.; Fasnacht, T.

    1995-06-01

    Velocity and attenuation data were used to test theoretical equations describing the frequency dependence of compressional wave velocity and attenuation through gas-rich sediments in coastal Louisiana. The cross-well data were augmented with velocities derived from a nearby seismic refraction station using a low-frequency source. Energy at 1 and 3 kHz was successfully transmitted over distances from 3.69 to 30 m; the 5 and 7-kHz data were obtained only at distances up to 20 m. Velocity tomograms were constructed for one borehole pair and covered a depth interval of 10--50 m. Results from the tomographic modeling indicate that gas-induced low velocities are present to depths of greater than 40 m. Analysis of the velocity dispersion suggests that gas-bubble resonance must be greater than 7 kHz, which is above the range of frequencies used in the experiment. Washout of the boreholes at depths above 15 m resulted in a degassed zone containing velocities higher than those indicated in both nearby refraction and reflection surveys. Velocity and attenuation information were obtained for a low-velocity zone centered at a depth of approximately 18 m. Measured attenuations of 1.57, 2.95, and 3.24 dB/m for the 3-, 5-, and 7-kHz signals, respectively, were modeled along with the velocity data using a silt-clay sediment type. Density and porosity data for the model were obtained from the geophysical logs; the bulk and shear moduli were estimated from published relationships. Modeling results indicate that gas bubbles measuring 1 mm in diameter occupy at least 25% to 35% of the pore space.

  2. Lifetime measurements by the Doppler-shift attenuation method in the {sup 115}Sn({alpha},n{gamma}){sup 118}Te reaction

    SciTech Connect

    Mihai, C.; Pasternak, A. A.; Pascu, S.; Filipescu, D.; Ivascu, M.; Bucurescu, D.; Cata-Danil, I.; Deleanu, D.; Ghita, D. G.; Glodariu, T.; Marginean, N.; Marginean, R.; Negret, A.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.; Cata-Danil, G.

    2011-05-15

    {gamma} rays were measured at several angles in both singles and coincidence modes in the {sup 115}Sn({alpha},n{gamma}){sup 118}Te reaction at 15 MeV on a thick target. Multipolarities and mixing ratios were determined from the {gamma}-ray angular distribution analysis. Lifetimes of 11 low- and medium-spin excited states in {sup 118}Te were determined from a Monte Carlo Doppler-shift attenuation method analysis of the Doppler broadened line shapes of {gamma} rays deexciting the levels. The results are discussed in comparison with the predictions of the interacting boson model.

  3. Wave journal bearing. Part 2: Experimental pressure measurements and fractional frequency whirl threshold for wave and plain journal bearings

    SciTech Connect

    Walker, J.F.; Addy, H.E. Jr.; Dimofte, F.

    1995-12-31

    A new hydrodynamic bearing concept, the wave journal bearing, is being developed because it has better stability characteristics than plain journal bearings while maintaining similar load capacity. An analysis code to predict the steady state and dynamic performance of the wave journal bearing is also part of the development. To verify numerical predictions and contrast the wave journal bearing`s stability characteristics to a plain journal bearing, tests were conducted at NASA Lewis Research Center using an air bearing test rig. Bearing film pressures were ed at 16 ports located around the bearing circumference at the middle of the bearing length. The pressure measurements for both a plain journal bearing and a wave journal bearing compared favorably with numerical predictions. Both bearings were tested with no radial load to determine the speed threshold for self-excited fractional frequency whirl. The plain journal bearing started to whirl immediately upon shaft start-up. The wave journal bearing did not incur self-excited whirl until 800 to 900 rpm as predicted by the analysis. Furthermore, the wave bearing`s geometry limited the whirl orbit to less than the bearing`s clearance. In contrast, the plain journal bearing did not limit the whirl orbit, causing it to rub.

  4. Holographic measurement of wave propagation in axi-symmetric shells

    NASA Technical Reports Server (NTRS)

    Evensen, D. A.; Aprahamian, R.; Jacoby, J. L.

    1972-01-01

    The report deals with the use of pulsed, double-exposure holographic interferometry to record the propagation of transverse waves in thin-walled axi-symmetric shells. The report is subdivided into sections dealing with: (1) wave propagation in circular cylindrical shells, (2) wave propagation past cut-outs and stiffeners, and (3) wave propagation in conical shells. Several interferograms are presented herein which show the waves reflecting from the shell boundaries, from cut-outs, and from stiffening rings. The initial response of the shell was nearly axi-symmetric in all cases, but nonsymmetric modes soon appeared in the radial response. This result suggests that the axi-symmetric response of the shell may be dynamically unstable, and thus may preferentially excite certain circumferential harmonics through parametric excitation. Attempts were made throughout to correlate the experimental data with analysis. For the most part, good agreement between theory and experiment was obtained. Occasional differences were attributed primarily to simplifying assumptions used in the analysis. From the standpoint of engineering applications, it is clear that pulsed laser holography can be used to obtain quantitative engineering data. Areas of dynamic stress concentration, stress concentration factors, local anomalies, etc., can be readily determined by holography.

  5. Measurement of a Phase of a Radio Wave Reflected from Rock Salt and Ice Irradiated by an Electron Beam for Detection of Ultra-High-Energy Neutrinos

    E-print Network

    Chiba, Masami; Tanikawa, Takahiro; Yano, Hiroyuki; Yabuki, Fumiaki; Yasuda, Osamu; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Watanabe, Souichirou; Utsumi, Michiaki; Fujii, Masatoshi

    2013-01-01

    We have found a radio-wave-reflection effect in rock salt for the detection of ultra-high energy neutrinos which are expected to be generated in Greisen, Zatsepin, and Kuzmin (GZK) processes in the universe. When an UHE neutrino interacts with rock salt or ice as a detection medium, a shower is generated. That shower is formed by hadronic and electromagnetic avalanche processes. The energy of the UHE neutrino shower converts to thermal energy through ionization processes. Consequently, the temperature rises along the shower produced by the UHE neutrino. The refractive index of the medium rises with temperature. The irregularity of the refractive index in the medium leads to a reflection of radio waves. This reflection effect combined with the long attenuation length of radio waves in rock salt and ice would yield a new method to detect UHE neutrinos. We measured the phase of the reflected radio wave under irradiation with an electron beam on ice and rock salt powder. The measured phase showed excellent consis...

  6. Measurement of viscoelastic properties of in vivo swine myocardium using Lamb Wave Dispersion Ultrasound Vibrometry (LDUV)

    PubMed Central

    Urban, Matthew W.; Pislaru, Cristina; Nenadic, Ivan Z.; Kinnick, Randall R.; Greenleaf, James F.

    2012-01-01

    Viscoelastic properties of the myocardium are important for normal cardiac function and may be altered by disease. Thus, quantification of these properties may aid with evaluation of the health of the heart. Lamb Wave Dispersion Ultrasound Vibrometry (LDUV) is a shear wave-based method that uses wave velocity dispersion to measure the underlying viscoelastic material properties of soft tissue with plate-like geometries. We tested this method in eight pigs in an open-chest preparation. A mechanical actuator was used to create harmonic, propagating mechanical waves in the myocardial wall. The motion was tracked using a high frame rate acquisition sequence, typically 2500 Hz. The velocities of wave propagation were measured over the 50–400 Hz frequency range in 50 Hz increments. Data were acquired over several cardiac cycles. Dispersion curves were fit with a viscoelastic, anti-symmetric Lamb wave model to obtain estimates of the shear elasticity, ?1, and viscosity, ?2 as defined by the Kelvin-Voigt rheological model. The sensitivity of the Lamb wave model was also studied using simulated data. We demonstrated that wave velocity measurements and Lamb wave theory allow one to estimate the variation of viscoelastic moduli of the myocardial walls in vivo throughout the course of the cardiac cycle. PMID:23060325

  7. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV).

    PubMed

    Urban, Matthew W; Pislaru, Cristina; Nenadic, Ivan Z; Kinnick, Randall R; Greenleaf, James F

    2013-02-01

    Viscoelastic properties of the myocardium are important for normal cardiac function and may be altered by disease. Thus, quantification of these properties may aid with evaluation of the health of the heart. Lamb wave dispersion ultrasound vibrometry (LDUV) is a shear wave-based method that uses wave velocity dispersion to measure the underlying viscoelastic material properties of soft tissue with plate-like geometries. We tested this method in eight pigs in an open-chest preparation. A mechanical actuator was used to create harmonic, propagating mechanical waves in the myocardial wall. The motion was tracked using a high frame rate acquisition sequence, typically 2500 Hz. The velocities of wave propagation were measured over the 50-400 Hz frequency range in 50 Hz increments. Data were acquired over several cardiac cycles. Dispersion curves were fit with a viscoelastic, anti-symmetric Lamb wave model to obtain estimates of the shear elasticity, ?(1), and viscosity, ?(2) as defined by the Kelvin-Voigt rheological model. The sensitivity of the Lamb wave model was also studied using simulated data. We demonstrated that wave velocity measurements and Lamb wave theory allow one to estimate the variation of viscoelastic moduli of the myocardial walls in vivo throughout the course of the cardiac cycle. PMID:23060325

  8. Evolution of mud profiles under wave action

    NASA Astrophysics Data System (ADS)

    Soltanpour, M.; Samsami, F.; Haghshenas, S. A.

    2010-05-01

    The present study offers the results of an experimental and numerical investigation of various features of wave-mud interaction on an inclined bed; i.e. wave height attenuation, wave-induced mud mass transport, gravity-driven flow of fluid mud and the reconfiguration of profile shape. A set of laboratory experiments were designed to study mud mass transport and profile change. The experiments were carried out in the hydraulic models laboratory of K. N. Toosi University of Technology. The waves were produced in a wave flume of 0.30 m wide and 0.45 m deep in cross-section and 12.50 m in length by an electrically driven piston machine with a paddle at the beginning of the flume. The operating paddle is able to produce both regular and irregular waves. Two electric capacitance wave gauges were employed to examine the wave height attenuation along the flume. The mud section was 8 cm thick and 1 m long. A false bed was placed in the flume to confine the mud section. The confined mixture of commercial Kaolinite and tap water was placed under the continuous wave action for about 1 hour. Since there is no transport through the beginning and the end of mud section, the bottom profile leads to a stable configuration under the continuous wave action. A set of test runs were performed under regular wave action were performed and the corresponding cross-shore mud profiles were measured. A wave-mud interaction model was used to simulate the wave height attenuation and mud mass transport. The wave energy dissipation term due to mud was introduced in the equation of wave energy conservation to simulate both shoaling and wave attenuation along an inclined bed. Applying the exponential wave height decay over a horizontal mud bed, the relation between energy dissipation rate of mud and wave attenuation rate is derived. The cross-shore mud profile deformation model combines the transport of fluid mud under the wave action; i.e. the Stokes drift and the mean Eulerian velocity, and downward gravity force. The conservation equation of sediment mass is employed to calculate profile changes. Bingham rheological model was adopted for fluid mud behaviour to develop a predictive model for wave-mud interaction. Rheological parameters of the applied fluid mud were obtained from a set of rheological experiments. The results of the numerical model are compared with the laboratory experiments. It is concluded that the developed model is capable to predict the observed phenomena.

  9. Recovering the Water-Wave Profile from Pressure Measurements

    E-print Network

    Oliveras, Katie; Deconinck, Bernard; Henderson, Diane

    2011-01-01

    A new method is proposed to recover the water-wave surface elevation from pressure data obtained at the bottom of the fluid. The new method requires the numerical solution of a nonlocal nonlinear equation relating the pressure and the surface elevation which is obtained from the Euler formulation of the water-wave problem without approximation. From this new equation, a variety of different asymptotic formulas are derived. The nonlocal equation and the asymptotic formulas are compared with both numerical data and physical experiments. The solvability properties of the nonlocal equation are rigorously analyzed using the Implicit Function Theorem.

  10. Airborne lidar measurements of wave energy dissipation in a coral reef lagoon system

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Cheng; Reineman, Benjamin D.; Lenain, Luc; Melville, W. Kendall; Middleton, Jason H.

    2012-03-01

    Quantification of the turbulent kinetic energy dissipation rate in the water column, ?, is very important for assessing nutrient uptake rates of corals and therefore the health of coral reef lagoon systems. However, the availability of such data is limited. Recently, at Lady Elliot Island (LEI), Australia, we showed that there was a strong correlation between in situ measurements of surface-wave energy dissipation and ?. Previously, Reineman et al. (2009), we showed that a small airborne scanning lidar system could measure the surface wavefield remotely. Here we present measurements demonstrating the use of the same airborne lidar to remotely measure surface wave energy fluxes and dissipation and thereby estimate ? in the LEI reef-lagoon system. The wave energy flux and wave dissipation rate across the fore reef and into the lagoon are determined from the airborne measurements of the wavefield. Using these techniques, observed spatial profiles of energy flux and wave energy dissipation rates over the LEI reef-lagoon system are presented. The results show that the high lidar backscatter intensity and point density coming from the high reflectivity of the foam from depth-limited breaking waves coincides with the high wave-energy dissipation rates. Good correlations between the airborne measurements and in situ observations demonstrate that it is feasible to apply airborne lidar systems for large-scale, long-term studies in monitoring important physical processes in coral reef environments. When added to other airborne techniques, the opportunities for efficient monitoring of large reef systems may be expanded significantly.

  11. Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements of gravity waves

    E-print Network

    Vadas, Sharon

    Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements online 3 March 2009 Keywords: Gravity waves Neutral dynamics Modeling Thermosphere Ionosphere a b s t r each constant wave phase line, then extract the neutral, horizontal winds every $10212 min (one

  12. Measurement of the open porosity of agricultural soils with acoustic waves

    NASA Astrophysics Data System (ADS)

    Luong, Jeanne; Mercatoris, Benoit; Destain, Marie-France

    2015-04-01

    The space between agricultural soil aggregates is defined as structural porosity. It plays important roles in soil key functions that an agricultural soil performs in the global ecosystem. Porosity is one of the soil properties that affect plant growth along with soil texture, aggregate size, aeration and water holding capacity (Alaoui et al. 2011). Water supplies regulation of agricultural soil is related to the number of very small pores present in a soil due to the effect of capillarity. Change of porosity also affect the evaporation of the water on the surface (Le Maitre et al. 2014). Furthermore, soil is a habitat for soils organisms, and most living organisms, including plant roots and microorganisms require oxygen. These organisms breathe easier in a less compacted soil with a wide range of pores sizes. Soil compaction by agricultural engine degrades soil porosity. At the same time, fragmentation with tillage tools, creation of cracks due to wetting/drying and freezing/thawing cycles and effects of soil fauna can regenerate soil porosity. Soil compaction increases bulk density since soil grains are rearranged decreasing void space and bringing them into closer contact (Hamza & Anderson 2005). Drainage is reduced, erosion is facilitated and crop production decreases in a compacted soil. Determining soil porosity, giving insight on the soil compaction, with the aim to provide advices to farmers in their soil optimization towards crop production, is thus an important challenge. Acoustic wave velocity has been correlated to the porosity and the acoustic attenuation to the water content (Oelze et al. 2002). Recent studies have shown some correlations between the velocity of acoustic waves, the porosity and the stress state of soil samples (Lu et al. 2004; Lu 2005; Lu & Sabatier 2009), concluding that the ultrasonic waves are a promising tool for the rapid characterisation of unsaturated porous soils. Propagation wave velocity tends to decrease in a high porous soil, since there are more voids filled with air and water, increasing the viscous losses. Fellah et al. (2003) showed that porosity can be determined from phase speed and reflection coefficient. The propagation of acoustic waves in soil is investigated to develop a rapid method for the quantification of the porosity level of agricultural soils. In the present contribution, correlations are determined between the acoustic signatures of agricultural soil in function of its structural properties. In laboratory, compression tests are performed on unsaturated soil samples to reproduce different porosity levels. Ultrasonic pulses are sent through the considered samples. The propagated signals are treated in both time and frequency domains in order to determine the speed of the phase velocity and the reflection. Porosity is then determined and compared with water content measured by gravimetric method. Alaoui, A., Lipiec, J. & Gerke, H.H., 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 115-116, pp.1-15. Fellah Z.E.A., Berger S., Lauriks W., Depollier C., Aristegui C., Chapelon J.Y., 2003. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America 113 (5), pp 2424-2433 Hamza, M.A. & Anderson, W.K., 2005. Soil compaction in cropping systems. Soil and Tillage Research, 82(2), pp.121-145. Lu, Z., 2005. Role of hysteresis in propagating acousitcs waves in soils. Geophysical Research Letter, pp.32:1-4. Lu, Z., Hickey, C.J. & Sabatier, J.M., 2004. Effects of compaction on the acoustic velocity in soils. Soil Science Society of America Journal, 68(1), pp.7-16. Lu, Z. & Sabatier, J.M., 2009. Effects of soil water potential and moisture content on sound speed. Soil Science Society of America Journal, 73(5), pp.1614-1625. Le Maitre, D.C., Kotzee, I.M. & O'Farrell, P.J., 2014. Impacts of land-cover change on the water flow regulation ecosystem service: Invasive alien plants,

  13. Apparatus and method for measuring and imaging traveling waves

    DOEpatents

    Telschow, Kenneth L. (Idaho Falls, ID); Deason, Vance A. (Idaho Falls, ID)

    2001-01-01

    An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.

  14. MEASURING BREAKING WAVE HEIGHTS USING A THESIS SUBMITTED TO

    E-print Network

    Qiu, Bo

    -going application in a high-energy nearshore environment. A 640x480 pixel analog surveillance camera, with a view, and wave refractions are successfully resolved using this technique. A novel feature-detection algorithm....................................5 § 4.3: Detection Algorithm........................6 § 5: Results

  15. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  16. Comparison of hyperspectral measurements of the attenuation and scattering coefficients spectra with modeling results in the north-eastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Sipelgas, Liis; Raudsepp, Urmas

    2015-11-01

    The spectral variations in the attenuation and scattering coefficients measured with a hyperspectral ac-spectra (Wetlabs) instrument were analyzed from a dataset collected in the vicinity of commercial harbors on the Estonian coast of the Gulf of Finland, Baltic Sea. In total, the measured TSM concentration varied from 0.4 to 30 mg L-1 and the concentration of Chl a varied from values below the detection limit (0.05) to 23 mg m-3. The reliability of the power law describing the particle attenuation cp (?) and scattering bp(?) coefficients was evaluated by means of a determination coefficient (R2). The power law described the particle attenuation spectra with high accuracy (R2 > 0.67), giving the dataset an average cp (?) slope of 1.3. In the case of particle scattering coefficients, the power law did not represent the whole dataset. Depending on a particular spectrum, the R2 varied from 0 to 1.0 and the slope varied from 1.15 to -0.56. Decomposition of bp(?) into dominant modes using principal component analyses resulted in the first principal mode accounting for the power law dependence of bp(?), i.e. the "mineral-type" spectrum, and the second and third mode representing the characteristic bp(?) of dominant algal particles, i.e. the "algae-type" spectrum. From our dataset we estimated that if Chl a concentration is above 10 mg m-3 or below 5 mg m-3 then most likely the "algae-type" or the "mineral-type" spectrum is dominant, respectively. There was strong linear relationship (R2 > 0.92) between TSM concentration and cp(555) and bp(555),irrespective of the dominant shape of the particle scattering spectra. The estimated TSM-specific attenuation and scattering coefficients at 555 nm were 0.8 m2 g-1 and 0.68 m2 g-1, respectively. Corresponding values for water samples with a dominant "mineral-type" spectrum were 0.85 m2 g-1 and 0.73 m2 g-1, respectively and for water samples with a dominant "algae-type" spectrum were 0.64 m2 g-1 and 0.52 m2 g-1, respectively.

  17. Anomalous attenuation of ultrasound in ferrofluids under the influence of a magnetic field

    NASA Technical Reports Server (NTRS)

    Isler, W. E.; Chung, D. Y.

    1978-01-01

    Ultrasonic wave propagation has been studied in a water-base ferrofluid by pulse-echo methods. A commercial box-car integrator was used to measure the change in attenuation due to an external magnetic field applied at various angles relative to the ultrasonic propagation vector. Anomalous results were obtained when the attenuation was plotted as a function of the magnetic field strength. As the field increased, the attenuation reached a maximum and then decreased to a flat minimum before it approached saturation at a field of 2 KG. This variation of attenuation with magnetic field cannot be explained from the simple picture derivable from the work of McTague on the viscosity of ferrofluids. In no case was the viscosity seen to decrease with field, nor was the oscillatory behavior observed. The results of this study were compared with the theory developed by Parsons.

  18. Unraveling overtone interferences in Love-wave phase velocity measurements by radon transform

    NASA Astrophysics Data System (ADS)

    Luo, Yinhe; Yang, Yingjie; Zhao, Kaifeng; Xu, Yixian; Xia, Jianghai

    2015-10-01

    Surface waves contain fundamental mode and higher modes, which could interfere with each other. If different modes are not properly separated, the inverted Earth structures using surface waves could be biased. In this study, we apply linear radon transform (LRT) to synthetic seismograms and real seismograms from the USArray to demonstrate the effectiveness of LRT in separating fundamental-mode Love waves from higher modes. Analysis on synthetic seismograms shows that two-station measurements on reconstructed data obtained after mode separation can completely retrieve the fundamental-mode Love-wave phase velocities. Results on USArray data show that higher mode contamination effects reach up to ˜10 per cent for two-station measurements of Love waves, while two-station measurements on mode-separated data obtained by LRT are very close to the predicted values from a global dispersion model of GDM52, demonstrating that the contamination of overtones on fundamental-mode Love-wave phase velocity measurements is effectively mitigated by the LRT method and accurate fundamental-mode Love-wave phase velocities can be measured.

  19. A novel method for measuring polarization-mode dispersion using four-wave mixing

    E-print Network

    Song, S. X.; Allen, Christopher Thomas; Demarest, Kenneth; Hui, Rongqing

    1999-12-01

    A method for measuring polarization-mode dispersion (PMD) on fiber links using Four-wave mixing (FWM) generation is presented. This method uses a probe signal to analyze the signal polarization state via PWM generation, The FWM power transfer...

  20. Measurements and computations of second-mode instability waves in three hypersonic wind tunnels.

    SciTech Connect

    Lewis, Daniel R.; Alba, Christopher R.; Rufer, Shann J.; Beresh, Steven Jay; Casper, Katya M.; Berridge, Dennis C.; Schneider, Steven P.

    2010-06-01

    High-frequency pressure-fluctuation measurements were made in AEDC Tunnel 9 at Mach 10 and the NASA Langley 15-Inch Mach 6 and 31-Inch Mach 10 tunnels. Measurements were made on a 7{sup o}-half-angle cone model. Pitot measurements of freestream pressure fluctuations were also made in Tunnel 9 and the Langley Mach-6 tunnel. For the first time, second-mode waves were measured in all of these tunnels, using 1-MHz-response pressure sensors. In Tunnel 9, second-mode waves could be seen in power spectra computed from records as short as 80 {micro}s. The second-mode wave amplitudes were observed to saturate and then begin to decrease in the Langley tunnels, indicating wave breakdown. Breakdown was estimated to occur near N {approx} 5 in the Langley Mach-10 tunnel. The unit-Reynolds-number variations in the data from Tunnel 9 were too large to see the same processes.

  1. Application of optical remote sensing to the measurment of wave surface kinematics 

    E-print Network

    Riedl, Stephen James

    1994-01-01

    This research study focused on the development and application of a laboratory instrument utilizing real-time video in conjunction with image processing techniques to accurately measure 3-dimensional wave surface kinematics. This thesis presents...

  2. Acoustic attenuation logging using centroid frequency shift and amplitude ratio methods: A numerical study

    SciTech Connect

    Quan, Y.; Harris, J.M.; Chen, X.

    1994-12-31

    The centroid frequency shift method is proposed to estimate seismic attenuation from full waveform acoustic logs. This approach along with the amplitude ratio method is applied to investigate the attenuation properties of the P head wave in fluid-filled boreholes. The generalized reflection and transmission coefficients method is used to perform forward modeling. The authors suggest an empirical formula to describe the frequency-dependent geometrical spreading of the P-wave in a borehole. They simulate a more realistic borehole by including a mudcake and an invaded zone which are modeled by a large number of radially symmetric thin layers. The numerical tests show that this invaded zone exhibits very strong influence on the attenuation measurement.

  3. Sound attenuation in magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, J.; Elvira, L.; Resa, P.; Montero de Espinosa, F.

    2013-02-01

    In this work, the attenuation of ultrasonic elastic waves propagating through magnetorheological (MR) fluids is analysed as a function of the particle volume fraction and the magnetic field intensity. Non-commercial MR fluids made with iron ferromagnetic particles and two different solvents (an olive oil based solution and an Araldite-epoxy) were used. Particle volume fractions of up to 0.25 were analysed. It is shown that the attenuation of sound depends strongly on the solvent used and the volume fraction. The influence of a magnetic field up to 212 mT was studied and it was found that the sound attenuation increases with the magnetic intensity until saturation is reached. A hysteretic effect is evident once the magnetic field is removed.

  4. Measurement and Shaping of Biphoton Spectral Wave Functions

    NASA Astrophysics Data System (ADS)

    Tischler, N.; Büse, A.; Helt, L. G.; Juan, M. L.; Piro, N.; Ghosh, J.; Steel, M. J.; Molina-Terriza, G.

    2015-11-01

    In this work we present a simple method to reconstruct the complex spectral wave function of a biphoton, and hence gain complete information about the spectral and temporal properties of a photon pair. The technique, which relies on quantum interference, is applicable to biphoton states produced with a monochromatic pump when a shift of the pump frequency produces a shift in the relative frequencies contributing to the biphoton. We demonstrate an example of such a situation in type-II parametric down conversion allowing arbitrary paraxial spatial pump and detection modes. Moreover, our test cases demonstrate the possibility to shape the spectral wave function. This is achieved by choosing the spatial mode of the pump and of the detection modes, and takes advantage of spatiotemporal correlations.

  5. Measurement and Shaping of Biphoton Spectral Wave Functions.

    PubMed

    Tischler, N; Büse, A; Helt, L G; Juan, M L; Piro, N; Ghosh, J; Steel, M J; Molina-Terriza, G

    2015-11-01

    In this work we present a simple method to reconstruct the complex spectral wave function of a biphoton, and hence gain complete information about the spectral and temporal properties of a photon pair. The technique, which relies on quantum interference, is applicable to biphoton states produced with a monochromatic pump when a shift of the pump frequency produces a shift in the relative frequencies contributing to the biphoton. We demonstrate an example of such a situation in type-II parametric down conversion allowing arbitrary paraxial spatial pump and detection modes. Moreover, our test cases demonstrate the possibility to shape the spectral wave function. This is achieved by choosing the spatial mode of the pump and of the detection modes, and takes advantage of spatiotemporal correlations. PMID:26588380

  6. Schlieren measurement of axisymmetric internal wave amplitudes K. Onu, M.R. Flynn, B.R. Sutherland

    E-print Network

    Sutherland, Bruce

    Schlieren measurement of axisymmetric internal wave amplitudes K. Onu, M.R. Flynn, B.R. Sutherland wave beams generated from an oscillating cylinder, is adapted to analyze axisymmetric internal waves generated by a sphere oscillating at dif- ferent amplitudes. 1 Introduction Internal waves generated from

  7. In-situ, high-frequency P-Wave velocity measurements within 1 m of the Earth’s surface

    E-print Network

    Baker, Gregory S.; Steeples, Don W.; Schmeissner, Chris M.

    1999-03-01

    Seismic P-wave velocities in near?surface materials can be much slower than the speed of sound waves in air (normally 335 m/s or 1100 ft/s). Difficulties often arise when measuring these low?velocity P-waves because of interference by the air wave...

  8. Compressive Direct Measurement of the Quantum Wave Function

    E-print Network

    Mohammad Mirhosseini; Omar S. Magaña-Loaiza; Seyed Mohammad Hashemi Rafsanjani; Robert W. Boyd

    2014-11-29

    The direct measurement of a complex wavefunction has been recently realized by using weak-values. In this paper, we introduce a method that exploits sparsity for compressive measurement of the transverse spatial wavefunction of photons. The procedure involves a weak measurement in random projection operators in the spatial domain followed by a post-selection in the momentum basis. Using this method, we experimentally measure a 192-dimensional state with a fidelity of $90\\%$ using only $25$ percent of the total required measurements. Furthermore, we demonstrate measurement of a 19200 dimensional state; a task that would require an unfeasibly large acquiring time with the conventional direct measurement technique.

  9. Terahertz wave electro-optic measurements with optical spectral filtering

    SciTech Connect

    Ilyakov, I. E. Shishkin, B. V.; Kitaeva, G. Kh.; Akhmedzhanov, R. A.

    2015-03-23

    We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.

  10. Characteristics of abnormal large waves measured from coastal videos

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Lee, D.-Y.; Ha, T.-M.; Cho, Y.-S.; Woo, S.-B.

    2010-04-01

    Recently, tsunami-like sea-level oscillations occurred in a region of the west coast of Korea (i.e. in the eastern part of the Yellow Sea), during a typical rough spring weather episode on 4 May 2008. The analysis of these tsunami-like abnormal waves focuses solely on the videos recorded by a CCTV surveillance system in the directions of the entrance and inside parts of a local coastal pocket beach. Time-series of the vertical and horizontal sea surface oscillations were extracted from the video recordings through calibrating image distortions, accumulating 1-D intensity arrays along the line transects of interest in time, and identifying the trajectories of the oscillations. Frequency and time-domain analysis of the time-series signals revealed that the maximum height of the tsunami-like waves reached 1.3 m, having a dominant period of 185 s (3.1 min). In addition, the results indicate that the celerity of the maximum height wave approximated 7.3 m/s, which lead to the losses of life of several people who could not escape immediately from the fast tsunami flooding the shore.

  11. Exploitation of SAR data for measurement of ocean currents and wave velocities

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Lyzenga, D. R.; Klooster, A., Jr.

    1981-01-01

    Methods of extracting information on ocean currents and wave orbital velocities from SAR data by an analysis of the Doppler frequency content of the data are discussed. The theory and data analysis methods are discussed, and results are presented for both aircraft and satellite (SEASAT) data sets. A method of measuring the phase velocity of a gravity wave field is also described. This method uses the shift in position of the wave crests on two images generated from the same data set using two separate Doppler bands. Results of the current measurements are pesented for 11 aircraft data sets and 4 SEASAT data sets.

  12. Simulation and Measurements of Small Arms Blast Wave Overpressure in the Process of Designing a Silencer

    NASA Astrophysics Data System (ADS)

    Hristov, Nebojša; Kari, Aleksandar; Jerkovi?, Damir; Savi?, Slobodan; Sirovatka, Radoslav

    2015-02-01

    Simulation and measurements of muzzle blast overpressure and its physical manifestations are studied in this paper. The use of a silencer can have a great influence on the overpressure intensity. A silencer is regarded as an acoustic transducer and a waveguide. Wave equations for an acoustic dotted source of directed effect are used for physical interpretation of overpressure as an acoustic phenomenon. Decomposition approach has proven to be suitable to describe the formation of the output wave of the wave transducer. Electroacoustic analogies are used for simulations. A measurement chain was used to compare the simulation results with the experimental ones.

  13. Modeling of Jupiter's millimeter wave emission utilizing laboratory measurements of ammonia (NH3) opacity

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Steffes, Paul G.

    1991-01-01

    The techniques used to make laboratory measurements of the millimeter wave opacity from gaseous ammonia under simulated Jovian conditions are described. The results are applied to a radiative transfer model, which is used to compute Jupiter's millimeter wavelength emission. The absorptivity of gaseous NH3 is measured to reduce one of the largest uncertainties in modeling Jupiter's millimeter wave emission. Several other millimeter wave opacity sources are examined. New expressions are given for computing the absorptivity of NH3, H2O, cloud condensates, and pressure-induced absorption. Jupiter's reliable millimeter wavelength observations are compared with synthetic emission spectra which utilize these new absorption expressions.

  14. Technical note: Time lag correction of aquatic eddy covariance data measured in the presence of waves

    NASA Astrophysics Data System (ADS)

    Berg, P.; Reimers, C. E.; Rosman, J. H.; Huettel, M.; Delgard, M. L.; Reidenbach, M. A.; Özkan-Haller, H. T.

    2015-11-01

    Extracting benthic oxygen fluxes from eddy covariance time series measured in the presence of surface gravity waves requires careful consideration of the temporal alignment of the vertical velocity and the oxygen concentration. Using a model based on linear wave theory and measured eddy covariance data, we show that a substantial error in flux can arise if these two variables are not aligned correctly in time. We refer to this error in flux as the time lag bias. In one example, produced with the wave model, we found that an offset of 0.25 s between the oxygen and the velocity data produced a 2-fold overestimation of the flux. In another example, relying on nighttime data measured over a seagrass meadow, a similar offset reversed the flux from an uptake of -50 mmol m-2 d-1 to a release of 40 mmol m-2 d-1. The bias is most acute for data measured at shallow-water sites with short-period waves and low current velocities. At moderate or higher current velocities (> 5-10 cm s-1), the bias is usually insignificant. The widely used traditional time shift correction for data measured in unidirectional flows, where the maximum numerical flux is sought, should not be applied in the presence of waves because it tends to maximize the time lag bias or give unrealistic flux estimates. Based on wave model predictions and measured data, we propose a new time lag correction that minimizes the time lag bias. The correction requires that the time series of both vertical velocity and oxygen concentration contain a clear periodic wave signal. Because wave motions are often evident in eddy covariance data measured at shallow-water sites, we encourage more work on identifying new time lag corrections.

  15. Technical Note: Time lag correction of aquatic eddy covariance data measured in the presence of waves

    NASA Astrophysics Data System (ADS)

    Berg, P.; Reimers, C. E.; Rosman, J. H.; Huettel, M.; Delgard, M. L.; Reidenbach, M. A.; Özkan-Haller, T.

    2015-06-01

    Extracting benthic oxygen fluxes from eddy covariance time series measured in the presence of surface gravity waves requires careful consideration of the temporal alignment of the vertical velocity and the oxygen concentration. Using a model based on linear wave theory and measured eddy covariance data, we show that substantial erroneous fluxes can arise if these two variables are not aligned correctly in time. We refer to this error in flux as the time lag bias. In one example, produced with the wave model, we found that an offset of 0.25 s between the oxygen and the velocity data produced a two-fold overestimation of the flux. In another example, relying on nighttime data measured over a seagrass meadow, a similar offset reversed the flux from an uptake of -50 mmol m-2 d-1 to a release of 40 mmol m-2 d-1. The bias is most acute for data measured at shallow-water sites with short-period waves and low current velocities. At moderate or higher current velocities (> 5-10 cm s-1), the bias usually is insignificant. The widely used traditional time shift correction for data measured in unidirectional flows, where the maximum numerical flux is sought, should not be applied in the presence of waves because it tends to maximize the time lag bias. Based on wave model predictions and measured data, we propose a new time lag correction that minimizes the time lag bias. The correction requires that time series of both vertical velocity and oxygen concentration contain a clear periodic wave signal. Because wave motions are often evident in eddy covariance data measured at shallow-water sites, we encourage more work on identifying new time lag corrections. On that premise, we make all raw data used in this study available to interested users.

  16. Assessment of CALIPSO attenuated backscatter and aerosol retrievals with a combined ground-based multi-wavelength lidar and sunphotometer measurement

    NASA Astrophysics Data System (ADS)

    Wu, Yonghua; Cordero, Lina; Gross, Barry; Moshary, Fred; Ahmed, Sam

    2014-02-01

    CALIPSO Level-1 attenuated backscatter and Level-2 aerosol products (Version-3.01) are evaluated with a combined ground-based lidar and AERONET-sunphotometer measurements in the daytime over the New York metropolitan area. To assess the CALIPSO Level-1 product, we combine the co-located ground-lidar and sunphotometer to derive aerosol extinction and backscatter profiles, and then simulate the CALIPSO equivalent attenuated backscatter coefficients. Direct statistical comparisons show a strong correlation (R = 0.92) and modest relative errors. Both dust and smoke plume events are focused to evaluate CALIPSO Level-2 aerosol layer products. The CALIPSO algorithms for cloud-aerosol discrimination and aerosol type classification are shown for the most part to work well, with a few exceptions in cases of aloft plumes with high aerosol loading. Small partitions of dense smoke are misclassified as the clouds or polluted dusts in the CALIPSO product. The aerosol extinction and backscatter coefficients are generally consistent between the CALIPSO and ground-based retrievals, but both geometric thickness and column optical depths of aerosol layers from CALIPSO products are underestimated. In addition, we find that some weakly scattering aerosol layers are clearly displayed by the ground-based lidar, but not identified by the current CALIPSO algorithm due to the detection sensitivity issue.

  17. Short surface waves in the Canadian Arctic in 2007 and 2008

    NASA Astrophysics Data System (ADS)

    Bogucki, D. J.; Drennan, W. M.; Woods, S.; Gremes-Cordero, S.; Long, D. G.; Mitchell, C.

    2013-07-01

    We have collected time series data of short oceanic waves as a part of the International Polar Year (IPY) 2007-2008. Using a shipboard laser wave slope (LAWAS) system operating at 900 nm, we have obtained wave slopes measurements up to 60 rad m-1 wave number. We have compared our in situ wave slopes with collocated and concurrent high-resolution upwind Normalized Radar Cross Sections (NRCS) collected by QuikSCAT. The LAWAS measured wave slope spectra were consistent with local wind speeds and QuikSCAT measured NRCS. Our measured short wave mean slopes indicate their enhancement by long waves (0-1 rad m-1) at small values of long-wave slope. Concurrent with wave slope measurements, the strength of the reflected LAWAS light beam was analyzed in terms of the light attenuation coefficient at 900 nm. We have observed a correlation between surface elevation and light attenuation. The mechanism of wave modulated beam attenuation was found to be related to the instantaneous long wave skewness.

  18. Shear wave measurements in shock-induced, high-pressure phases

    SciTech Connect

    Aidun, J.B.

    1993-01-01

    Structural phase transformations under shock loading are of considerable interest for understanding the response of solids under nonhydrostatic stresses and at high strain-rates. Examining shock-induced transformations from continuum level measurements is fundamentally constrained by the inability to directly identify microscopic processes, and also by the limited number of material properties that can be directly measured. ne latter limitation can be reduced by measuring both shear and compression waves using Lagrangian gauges in combined, compression and shear loading. The shear wave serves as an important, real-time probe of the shocked state and unloading response. Using results from a recent study of CaCO[sub 3], the unique information obtained from the shear wave speed and the detailed structure of the shear wave are shown to be useful for distinguishing the effects of phase transformations from yielding, as well as in characterizing the high-pressure phases and the yielding process under shock loading.

  19. Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements

    NASA Astrophysics Data System (ADS)

    Ehard, B.; Kaifler, B.; Kaifler, N.; Rapp, M.

    2015-11-01

    This study evaluates commonly used methods of extracting gravity-wave-induced temperature perturbations from lidar measurements. The spectral response of these methods is characterized with the help of a synthetic data set with known temperature perturbations added to a realistic background temperature profile. The simulations are carried out with the background temperature being either constant or varying in time to evaluate the sensitivity to temperature perturbations not caused by gravity waves. The different methods are applied to lidar measurements over New Zealand, and the performance of the algorithms is evaluated. We find that the Butterworth filter performs best if gravity waves over a wide range of periods are to be extracted from lidar temperature measurements. The running mean method gives good results if only gravity waves with short periods are to be analyzed.

  20. Shear wave measurements in shock-induced, high-pressure phases

    SciTech Connect

    Aidun, J.B.

    1993-07-01

    Structural phase transformations under shock loading are of considerable interest for understanding the response of solids under nonhydrostatic stresses and at high strain-rates. Examining shock-induced transformations from continuum level measurements is fundamentally constrained by the inability to directly identify microscopic processes, and also by the limited number of material properties that can be directly measured. ne latter limitation can be reduced by measuring both shear and compression waves using Lagrangian gauges in combined, compression and shear loading. The shear wave serves as an important, real-time probe of the shocked state and unloading response. Using results from a recent study of CaCO{sub 3}, the unique information obtained from the shear wave speed and the detailed structure of the shear wave are shown to be useful for distinguishing the effects of phase transformations from yielding, as well as in characterizing the high-pressure phases and the yielding process under shock loading.