Science.gov

Sample records for wave energy power

  1. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy� technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  2. Power inversion design for ocean wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Talebani, Anwar N.

    The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.

  3. Wind, Wave, and Tidal Energy Without Power Conditioning

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  4. Power from Ocean Waves.

    ERIC Educational Resources Information Center

    Newman, J. N.

    1979-01-01

    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  5. Dielectric elastomer energy harvesting: maximal converted energy, viscoelastic dissipation and a wave power generator

    NASA Astrophysics Data System (ADS)

    Lv, Xiongfei; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2015-11-01

    Dielectric elastomer (DE) is a smart soft material. It is able to produce large deformation under mechanical force and electric field, so that it can achieve mutual conversion between mechanical energy and electrical energy. Based on this property, dielectric elastomer can be used in energy harvesting field. In this paper, firstly, we analyzed the constitutive relation under different hyperelastic models (Gent and neo-Hookean model) based on both theoretical and experimental study. Secondly, we depicted the allowable areas in force-displacement and voltage-charge plane according to different failure modes, and then calculated the maximal energy density in one energy harvesting period. Thirdly, we studied the viscoelastic energy dissipation which can lose the input mechanical energy in the energy harvesting process. Finally, we designed and fabricated a wave power generator, and tested its performance. This paper is of deep significance to the future applications of DE generators.

  6. Energy Flux in the Cochlea: Evidence Against Power Amplification of the Traveling Wave.

    PubMed

    van der Heijden, Marcel; Versteegh, Corstiaen P C

    2015-10-01

    Traveling waves in the inner ear exhibit an amplitude peak that shifts with frequency. The peaking is commonly believed to rely on motile processes that amplify the wave by inserting energy. We recorded the vibrations at adjacent positions on the basilar membrane in sensitive gerbil cochleae and tested the putative power amplification in two ways. First, we determined the energy flux of the traveling wave at its peak and compared it to the acoustic power entering the ear, thereby obtaining the net cochlear power gain. For soft sounds, the energy flux at the peak was 1 ± 0.6 dB less than the middle ear input power. For more intense sounds, increasingly smaller fractions of the acoustic power actually reached the peak region. Thus, we found no net power amplification of soft sounds and a strong net attenuation of intense sounds. Second, we analyzed local wave propagation on the basilar membrane. We found that the waves slowed down abruptly when approaching their peak, causing an energy densification that quantitatively matched the amplitude peaking, similar to the growth of sea waves approaching the beach. Thus, we found no local power amplification of soft sounds and strong local attenuation of intense sounds. The most parsimonious interpretation of these findings is that cochlear sensitivity is not realized by amplifying acoustic energy, but by spatially focusing it, and that dynamic compression is realized by adjusting the amount of dissipation to sound intensity. PMID:26148491

  7. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device design projects to scale up the current Ocean Power Technology PowerBuoy from 150kW to 500kW.

  8. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    SciTech Connect

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  9. Cycloidal Wave Energy Converter

    SciTech Connect

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

  10. Stability analysis of the Gyroscopic Power Take-Off wave energy point absorber

    NASA Astrophysics Data System (ADS)

    Nielsen, Søren R. K.; Zhang, Zili; Kramer, Morten M.; Olsen, Jan

    2015-10-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber consists of a float rigidly connected to a lever. The operational principle is somewhat similar to that of the so-called gyroscopic hand wrist exercisers, where the rotation of the float is brought forward by the rotational particle motion of the waves. At first, the equations of motion of the system are derived based on analytical rigid body dynamics. Next, assuming monochromatic waves simplified equations are derived, valid under synchronisation of the ring of the gyro to the angular frequency of the excitation. Especially, it is demonstrated that the dynamics of the ring can be described as an autonomous nonlinear single-degree-of-freedom system, affected by three different types of point attractors. One where the ring vibrations are attracted to a static equilibrium point indicating unstable synchronisation and two types of attractors where the ring is synchronised to the wave angular frequency, either rotating in one or the opposite direction. Finally, the stability conditions and the basins of attraction to the point attractors defining the synchronised motion are determined.

  11. Irregular Wave Energy Extraction Analysis for a Slider Crank WEC Power Take-Off System

    SciTech Connect

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard

    2015-09-02

    Slider crank Wave Energy Converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this WEC has been done under regular sinusoidal wave conditions, and a suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and the control methodology is modified to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but still a reasonable amount of energy can be extracted.

  12. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  13. Wave action power plant

    SciTech Connect

    Lucia, L.V.

    1982-03-16

    A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.

  14. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy� to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  15. Ocean wave energy device

    SciTech Connect

    LaStella, J.P.; Tornabene, M.G.

    1986-07-15

    This patent describes an ocean wave energy device of a type including a buoy which reciprocates in a substantially vertical direction in response to successive waves of variable frequency passing therebeneath, the buoy being supported upon a substantially vertically oriented shaft and a power take off means including a shaft driven by movement of the vertical shaft. The improvement described consists of: wave frequency detector means for detecting the instantaneous frequency of a wave passing the detector and which will thereafter pass the buoy by monitoring the contour of each wave as such wave passes such wave frequency detector means and measuring the time interval between the crest and the following trough and between the trough and following crest of each such wave and means for imposing an artificial resonance to the buoy whereby the buoy resonance may be substantially conformed to the frequency of the wave at the time at the buoy, the artificial resonance imposing means including brake means for halting vertical movement of the buoy at substantially the uppermost and substantially the lowermost limits of vertical travel of the buoy.

  16. The Promise of Wave Power (Invited)

    NASA Astrophysics Data System (ADS)

    Brekken, T.

    2010-12-01

    The solutions to today's energy challenges need to be explored through alternative, renewable and clean energy sources to enable diverse energy resource plans. An extremely abundant and promising source of energy exists in the world's oceans: it is estimated that if 0.2 % of the oceans' untapped energy could be harnessed, it could provide power sufficient for the entire world. Ocean energy exists in the forms of wave, tidal, marine currents, thermal (temperature gradient) and salinity. Among these forms, significant opportunities and benefits have been identified in the area of ocean wave energy extraction, i.e., harnessing the motion of the ocean waves, and converting that motion into electrical energy. Ocean wave energy refers to the kinetic and potential energy in the heaving motion of ocean waves. Wave energy is essentially concentrated solar energy (as is wind energy). The heating of the earth’s surface by the sun (with other complex processes) drives the wind, which in turn blows across the surface of the ocean to create waves. At each stage of conversion, the power density increases. Ocean wave power offers several attractive qualities, including high power density, low variability, and excellent forecastability. A typical large ocean wave propogates at around 12 m/s with very little attenuation across the ocean. If the waves can be detected several hundred kilometers off shore, there can be 10 hours or more of accurate forecast horizon. In fact, analysis has shown good forecast accuracy up to 48 hours in advance. Off the coast Oregon, the yearly average wave power is approximately 30 kW per meter of crestlength (i.e., unit length transverse to the direction of wave propagation and parallel to the shore.) This compares very favorably with power densities of solar and wind, which typically range in the several hundreds of Watts per square meter. Globally, the wave energy resource is stronger on the west coasts of large landmasses and increases in strength toward the poles. This phenomenon is due to the prevailing west to east global winds known as the "westerlies" found in the Northern and Southern hemispheres between 30 and 60 degrees latitude. Correspondingly, the west coast of the United States, the west coast of Australia, and the coastal regions of Europe have seen the greatest wave energy industrial activity to date. Ocean wave energy has great potential to be a significant contributor of renewable power for many regions in the world. For the West coast of the US alone, the total wave energy resource is estimated at 440 TWh/yr, which is more than the typical total US annual hydroelectric production (270 TWh in 2003). For US west coast states, a fully developed wave energy industry could be a significant contributor to renewable energy portfolio standards. Within the next few years, several utility-scale wave energy converters are planned for grid connection (e.g., Ocean Power Technologies and Columbia Power Technologies in Oregon, USA), with plans for more utility-scale development to follow soon after. This presentation will cover the physical basics of wave energy, examples of commercial technology, challenges opportunities for research, and an update on the wave energy research and developments at leading commercial, industrial, and academic institutions around the world.

  17. Feasibility study on wave energy power plant with oscillating water column system in Bawean Island Seas Indonesia

    NASA Astrophysics Data System (ADS)

    Ali, A. F.; Hadi, S.

    2016-03-01

    As a huge archipelago with 17,480 islands, Indonesia still has difficulties to electrify all of its islands especially on the remote ones (areas) because of a power grid coverage limitation of National Electrical Company (PLN). This research discusses the potential calculation of sea wave power conversion by utilizing Oscillating Water Column (OWC) system in remote islands, especially on Bawean Island Seas. OWC system is chosen because of its advantages compared to other systems and also because of its suitability towards sea and coast areas in Indonesia. Kim Nielsen and David Ross Law were used for the power calculation. The research took data sampling during one month in 2015 with the result of wave height average of 2.09 meters. That obtained data resulted wave energy of within 270.19 and electrical power output of about 52.7 kW by using Oscillating Water Column system. Based on this result, Break Even Point (BEP) for one plant covering 117 houses will become zero in the period of 3 years 8 months.

  18. Wave powered buoy generator

    SciTech Connect

    Rowe, R.A.

    1985-01-08

    The wave powered buoy generator includes a hollow buoy which has inner and outer surfaces. The buoy is preferably spherical in shape. One or more windings are mounted to the buoy parallel to its surfaces with each winding having a pair of ends. A magnetized device which, is preferably a ball, is located within the buoy for rolling back and forth therein. A device is connected to the ends of the windings for rectifying current flow therefrom. With this arrangement the buoy can be moored in a body of water, and, when there is water motion, the flux lines of the magnetized roller device cut the one or more windings so as to cause electrical current flow to be provided through the rectifying device.

  19. Wave powered buoy generator

    SciTech Connect

    Rowe, R.A.

    1982-12-02

    The wave powered buoy generator includes a hollow buoy which has inner and outer surfaces. The buoy is preferably spherical in shape. One or more windings are mounted to the buoy parallel to its surfaces with each winding havng a pair of ends. A magnetized device which, is preferably a ball, is located within the buoy for rolling back and forth therein. A device is connected to the ends of the windings for rectifying current flow therefrom. With this arrangement the buoy can be moored in a body of water, and, when there is water motion, the flux lines of the magnetized roller device cut the one or more windings so as to cause electrical current flow to be provided through the rectifying device.

  20. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. PMID:26873972

  1. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  2. Real-time Coupled Ensemble Kalman Filter Forecasting & Nonlinear Model Predictive Control Approach for Optimal Power Take-off of a Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Cavaglieri, Daniele; Bewley, Thomas; Previsic, Mirko

    2014-11-01

    In recent years, there has been a growing interest in renewable energy. Among all the available possibilities, wave energy conversion, due to the huge availability of energy that the ocean could provide, represents nowadays one of the most promising solutions. However, the efficiency of a wave energy converter for ocean wave energy harvesting is still far from making it competitive with more mature fields of renewable energy, such as solar and wind energy. One of the main problems is related to the difficulty to increase the power take-off through the implementation of an active controller without a precise knowledge of the oncoming wavefield. This work represents the first attempt at defining a realistic control framework for optimal power take-off of a wave energy converter where the ocean wavefield is predicted through a nonlinear Ensemble Kalman filter which assimilates data from a wave measurement device, such as a Doppler radar or a measurement buoy. Knowledge of the future wave profile is then leveraged in a nonlinear direct multiple shooting model predictive control framework allowing the online optimization of the energy absorption under motion and machinery constraints of the device.

  3. Controller for a wave energy converter

    SciTech Connect

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  4. Wave-operated power plant

    SciTech Connect

    Ghesquiere, H.

    1980-08-12

    This wave-operated power plant comprises a perforated caisson breakwater in which propellers, or turbines, are mounted in the perforations or openings and drives hydraulic pumps connected thereto, which in turn drives a hydraulic motor coupled to an electric generator. One-way flap valves are mounted in the openings. Some of said flap valves allow the rushing waves to enter the caisson, while the other flap valves allow the water to flow out of the caisson.

  5. Feasibility of Wave Energy in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lu, M.; Hodgson, P.

    2014-12-01

    Kinetic energy produced by the movement of ocean waves can be harnessed by wave energy converter equipment such as wave turbines to power onshore electricity generators, creating a valuable source of renewable energy. This experiment measures the potential of wave energy in Hoi Ha Wan Marine Park, Hong Kong using a data buoy programmed to send data through wireless internet every five minutes. Wave power (known as 'wave energy flux') is proportional to wave energy periodicity and to the square of wave height, and can be calculated using the equation: P = 0.5 kW/(m3)(s) x Hs2 x Tp P = wave energy flux (wave energy per unit of wave crest length in kW/m) Hs = significant wave height (m) Tp = wave period (seconds) Acoustic Doppler Current Profilers (ADCPs), or ultrasonic sensors, were installed on the seabed at three monitoring locations to measure Significant Wave Heights (Hs), Significant Wave Periods (Tp) and Significant Wave Direction (Wd). Over a twelve month monitoring period, Significant Wave Heights ranged from 0 ~ 8.63m. Yearly averages were 1.051m. Significant Wave Period ranged from 0 ~ 14.9s. Yearly averages were 6.846s. The maximum wave energy amount recorded was 487.824 kW/m. These results implied that electricity sufficient to power a small marine research center could be supplied by a generator running at 30% efficiency or greater. A wave piston driven generator prototype was designed that could meet output objectives without using complex hydraulics, expensive mechanical linkages, or heavy floating buoys that might have an adverse impact on marine life. The result was a design comprising a water piston connected by an air pipe to a rotary turbine powered generator. A specially designed air valve allowed oscillating bidirectional airflow generated in the piston to be converted into unidirectional flow through the turbine, minimizing kinetic energy loss. A 35cm wave with a one second period could generate 139.430W of electricity, with an efficiency of 37.6%.

  6. Tide following wave power machine

    SciTech Connect

    Murphy, J.T.

    1982-09-21

    At least two spaced piers are constructed on a suitable tidal beach extending from the shore into the water a predetermined distance to meet the first breaking waves at low tide. A carriage is movably supported on the piers on an inclined path, the carriage having a frame supporting a pair of spaced sprocket wheels on each end over which is passed an endless belt. The ends of a plurality of blades are secured to the chain in spaced relation completely thereabout. Each sprocket wheels closest to shore is connected to a gear train for transmitting the torque generated by the wave action to a power belt extending along each pier to a transducer located at the shore end of the pier. Means are provided for moving the carriage on the pier on an inclined path in and out from the shore to meet the level of the changing tide so as to continuously generate power throughout the tidal wave.

  7. Key features of wave energy.

    PubMed

    Rainey, R C T

    2012-01-28

    For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays. PMID:22184669

  8. Sources and potential uses of wave energy

    NASA Astrophysics Data System (ADS)

    Woodbridge, D. D.

    An analysis of ocean wave energy and its uses is presented. The ocean energy conversion systems surveyed include the ocean valve, the spherical vane, the hinged raft and the oscillating water column systems. The configuration of the Ocean Swell and Wave Energy Converter (OSWEC) is detailed, and its potential power output is discussed. It is noted that the utilization of a single OSWEC system of 20 MW would result in a savings of nearly 25,000 barrels of oil a month.

  9. Wave energy apparatus

    SciTech Connect

    Wells, A.A.

    1983-05-17

    Wave energy apparatus comprises a hollow buoy for floating in water. The buoy has a turbine which rotates in response to air flow into and out of the buoy through a nozzle. The turbine is designed to rotate in the same direction regardless of the axial direction of air flow. The air flow is caused by the change of level of water within the buoy in response to wave motion. To enable rocking motion to be accommodated as well as vertical motion, the interior of the buoy is divided into a plurality of conduits, by means of partitions, the conduits directing air to different portions of the turbine. The conduits preferably have lateral openings and may be defined in part by upwardly inclined portions of an inertial body. In an alternative embodiment the buoy has a closed bottom and liquid in the buoy is acted on by a centrally disposed air spring.

  10. Fundamental formulae for wave-energy conversion.

    PubMed

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612

  11. Fundamental formulae for wave-energy conversion

    PubMed Central

    Falnes, Johannes; Kurniawan, Adi

    2015-01-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612

  12. Modeling, Control, and Simulation of Battery Storage Photovoltaic-Wave Energy Hybrid Renewable Power Generation Systems for Island Electrification in Malaysia

    PubMed Central

    Samrat, Nahidul Hoque; Ahmad, Norhafizan Bin; Choudhury, Imtiaz Ahmed; Taha, Zahari Bin

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions. PMID:24892049

  13. Modeling, control, and simulation of battery storage photovoltaic-wave energy hybrid renewable power generation systems for island electrification in Malaysia.

    PubMed

    Samrat, Nahidul Hoque; Bin Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Bin Taha, Zahari

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions. PMID:24892049

  14. Wave energy: a Pacific perspective.

    PubMed

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy. PMID:22184673

  15. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind.

    PubMed

    McIntosh, Scott W; De Pontieu, Bart; Carlsson, Mats; Hansteen, Viggo; Boerner, Paul; Goossens, Marcel

    2011-07-28

    Energy is required to heat the outer solar atmosphere to millions of degrees (refs 1, 2) and to accelerate the solar wind to hundreds of kilometres per second (refs 2-6). Alfvén waves (travelling oscillations of ions and magnetic field) have been invoked as a possible mechanism to transport magneto-convective energy upwards along the Sun's magnetic field lines into the corona. Previous observations of Alfvénic waves in the corona revealed amplitudes far too small (0.5 km s(-1)) to supply the energy flux (100-200 W m(-2)) required to drive the fast solar wind or balance the radiative losses of the quiet corona. Here we report observations of the transition region (between the chromosphere and the corona) and of the corona that reveal how Alfvénic motions permeate the dynamic and finely structured outer solar atmosphere. The ubiquitous outward-propagating Alfvénic motions observed have amplitudes of the order of 20 km s(-1) and periods of the order of 100-500 s throughout the quiescent atmosphere (compatible with recent investigations), and are energetic enough to accelerate the fast solar wind and heat the quiet corona. PMID:21796206

  16. HARNESSING OCEAN WAVE ENERGY TO GENERATE ELECTRICITY

    EPA Science Inventory

    A technical challenge to sustainability is finding an energy source that is abundant enough to meet global demands without producing greenhouse gases or radioactive waste. Energy from ocean surface waves can provide the people of this planet a clean, endless power source to me...

  17. Wave energy and intertidal productivity

    PubMed Central

    Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.

    1987-01-01

    In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813

  18. Wave activated power generation system

    SciTech Connect

    Ono, Y.

    1983-08-09

    A wave activated power generation system of the float type is disclosed, comprising at least one piston-cylinder device having an anchored cylinder and a piston slidable in the cylinder and cooperating with the cylinder to form a pumping chamber above the piston and a low pressure chamber below the piston. The cylinder has an intake port and an exhaust port both formed at an upper port thereof to communicate with the pumping chamber and each provided with a check valve. A float is connected through a cable to the piston of the piston- cylinder device. A pair of fluid storages are connected to the intake port and the exhaust port of the pumping chamber, respectively. A waterwheel generator is driven by the fluid flowing from one of the fluid storages to another. A pressure regulating device is connected to the low pressure chamber so as to maintain the low pressure chamber at a pressure lower than the pressure in the pumping chamber, the difference in pressure ceaselessly applying a downward force on the piston to keep the cable in a tensed condition.

  19. Characterization of local wave energy propagation

    NASA Astrophysics Data System (ADS)

    Latifah, Arnida L.

    2016-02-01

    Understanding the local wave energy propagation is essential, especially for tracing the propagation of large energy. This paper focuses on characterizing the local wave energy propagation of slowly varying surface water waves. The wave is assumed to be unidirectional above flat bottom. We investigated the local features of waves such as wave energy, wave number, wave frequency, and local group velocity through complexification signal. From the analysis the local group velocity plays an important role as the double characteristic lines of the wave energy and the wave number. Therefore the local wave energy was successfully traced as energy trajectory by these characteristic lines. The energy trajectory was then numerically computed by finite difference scheme. In the application, we investigated the slowly varying waves; Gaussian waves, Trichromatic waves, and Peregrine soliton, in which the converging and diverging energy of these cases have been observed well from the energy trajectories.

  20. Ocean, Wave and Tidal Energy Systems; (USA)

    SciTech Connect

    Raridon, M.H.; Hicks, S.C.

    1991-01-01

    Ocean, Wave, and Tidal Energy Systems (OES) announces on a biomonthly basis the current worldwide information available on all aspects of ocean thermal energy conversion systems based on exploitation of the temperature difference between the surface water and ocean depth. All aspects of salinity gradient power systems based on extracting energy from mixing fresh water with seawater are included, along with information on wave and tidal power. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  1. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  2. Climate change impact on wave energy in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas

    2015-06-01

    Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.

  3. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  4. Power conditioning system for energy sources

    DOEpatents

    Mazumder, Sudip K. (Chicago, IL); Burra, Rajni K. (Chicago, IL); Acharya, Kaustuva (Chicago, IL)

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  5. Variance of transionospheric VLF wave power absorption

    NASA Astrophysics Data System (ADS)

    Tao, X.; Bortnik, J.; Friedrich, M.

    2010-07-01

    To investigate the effects of D-region electron-density variance on wave power absorption, we calculate the power reduction of very low frequency (VLF) waves propagating through the ionosphere with a full wave method using the standard ionospheric model IRI and in situ observational data. We first verify the classic absorption curves of Helliwell's using our full wave code. Then we show that the IRI model gives overall smaller wave absorption compared with Helliwell's. Using D-region electron densities measured by rockets during the past 60 years, we demonstrate that the power absorption of VLF waves is subject to large variance, even though Helliwell's absorption curves are within ±1 standard deviation of absorption values calculated from data. Finally, we use a subset of the rocket data that are more representative of the D region of middle- and low-latitude VLF wave transmitters and show that the average quiet time wave absorption is smaller than that of Helliwell's by up to 100 dB at 20 kHz and 60 dB at 2 kHz, which would make the model-observation discrepancy shown by previous work even larger. This result suggests that additional processes may be needed to explain the discrepancy.

  6. Boat powered by sea waves

    SciTech Connect

    Gargos, G.

    1984-11-06

    A boat having an external float pivotally fixed to the boat. Through linkage, the motion of the float relative to the boat resulting from wave motion drives a dual cylinder pump. The pump admits water from the body of water in which the boat is suspended and pressurizes that water for direction aft as a means for propulsion.

  7. Tunable multi-channel terahertz wave power splitter

    NASA Astrophysics Data System (ADS)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-12-01

    The combination of terahertz technology and photonic crystal provides a new approach to realize compact terahertz wave devices. Relying on a conventional photonic crystal waveguide and photonic crystal surface-mode waveguides, a tunable multi-channel terahertz-wave power splitter is proposed. The mechanism of such a power splitter is further theoretically analyzed and numerically investigated with the aid of the plane-wave-expansion method and the finite-difference time-domain method. With an appropriate design, the proposed device can split the input terahertz wave energy equally into six output ports at the frequency of 0.6 THz. When changing the external magnetic field, the input terahertz wave can be equally divided into four output ports with the aid of a magnetic-sensitive material. Furthermore, the present device is very compact and the total size is of 4.4×6.0 mm2.

  8. Determination of internal wave power from synthetic schlieren data

    NASA Astrophysics Data System (ADS)

    Lee, Frank M.; Allshouse, Michael; Morrison, P. J.; Swinney, Harry L.

    2014-11-01

    Internal waves are generated in the ocean by tidal flow over bottom topography, and they are of considerable interest because of their significant contribution to the energy budget of the ocean. One way of measuring internal waves produced in the laboratory setting is by a technique called ``synthetic schlieren,'' whereby the perturbation density field is obtained from the change in index of refraction in the fluid. However, the usual computation of power requires the velocity and pressure, or under certain assumptions, the stream function [Lee et al., ``Experimental determination of radiated internal wave power without pressure field data,'' Phys. Fluids 26, 046606 (2014)]. We present a method for computing the radiated internal wave power that uses only the perturbation density field, assuming the flow is sufficiently 2-dimensional, and we demonstrate the method using data from simulations and experiments.

  9. Direct Drive Wave Energy Buoy

    SciTech Connect

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  10. Protective, Modular Wave Power Generation System

    SciTech Connect

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  11. Assessing wave energy effects on biodiversity: the wave hub experience.

    PubMed

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative. PMID:22184674

  12. Wave energy technology in China.

    PubMed

    You, Yage; Sheng, Songwei; Wu, Bijun; He, Yunqi

    2012-01-28

    This paper traces the research stages of China's study of wave energy technology, summarizing the findings and deficiencies of each stage from oscillating water column, through onshore oscillating buoy to floating Duck. It also highlights the major innovations in China's new floating Duck device. PMID:22184672

  13. Ocean wave energy converting vessel

    SciTech Connect

    Boyce, P.F.

    1986-08-26

    An ocean wave energy conversion system is described comprised of a four beam quadrapod supported by bouyant members from which is suspended a pendulum. The pendulum contains a vertical generator shaft and a generator, the generator shaft being splined and fitted with two racheted pulleys, the pulleys being looped, one clockwise and one counterclockwise with separate cables. The cables are attached at their ends to the bow and stern of the quadrapod, whereby the generator shaft will pin when the quadrapod rocks over waves and the pendulum tends toward the center of earth.

  14. Discrete control of resonant wave energy devices.

    PubMed

    Clément, A H; Babarit, A

    2012-01-28

    Aiming at amplifying the energy productive motion of wave energy converters (WECs) in response to irregular sea waves, the strategies of discrete control presented here feature some major advantages over continuous control, which is known to require, for optimal operation, a bidirectional power take-off able to re-inject energy into the WEC system during parts of the oscillation cycles. Three different discrete control strategies are described: latching control, declutching control and the combination of both, which we term latched-operating-declutched control. It is shown that any of these methods can be applied with great benefit, not only to mono-resonant WEC oscillators, but also to bi-resonant and multi-resonant systems. For some of these applications, it is shown how these three discrete control strategies can be optimally defined, either by analytical solution for regular waves, or numerically, by applying the optimal command theory in irregular waves. Applied to a model of a seven degree-of-freedom system (the SEAREV WEC) to estimate its annual production on several production sites, the most efficient of these discrete control strategies was shown to double the energy production, regardless of the resource level of the site, which may be considered as a real breakthrough, rather than a marginal improvement. PMID:22184663

  15. Wave energy propelling marine ship

    SciTech Connect

    Kitabayashi, S.

    1982-06-29

    A wave energy propelling marine ship comprises a cylindrical ship body having a hollow space therein for transporting fluid material therewithin, a ship body disposed in or on the sea; a propeller attached to the ship body for the purpose of propelling the marine ship for sailing; a rudder for controlling the moving direction of the marine ship; at least one rotary device which includes a plurality of compartments which are each partitioned into a plurality of water chambers by a plurality of radial plates, and a plurality of water charge and/or discharge ports, wherein wave energy is converted into mechanical energy; and device for adjusting buoyancy of the marine ship so that the rotary device is positioned advantageously on the sea surface.

  16. Starting to Experiment with Wave Power

    ERIC Educational Resources Information Center

    Hare, Jonathan; McCallie, Ellen

    2005-01-01

    Outlined is a simple design for a working wave-powered electrical generator based on one made on the BBC "Rough Science" TV series. The design has been kept deliberately simple to facilitate rapid pupil/student involvement and most importantly so that there is much scope for their own ingenuity and ideas. The generator works on the principle of

  17. Starting to Experiment with Wave Power

    ERIC Educational Resources Information Center

    Hare, Jonathan; McCallie, Ellen

    2005-01-01

    Outlined is a simple design for a working wave-powered electrical generator based on one made on the BBC "Rough Science" TV series. The design has been kept deliberately simple to facilitate rapid pupil/student involvement and most importantly so that there is much scope for their own ingenuity and ideas. The generator works on the principle of…

  18. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  19. Energy flow, energy density of Timoshenko beam and wave mode incoherence

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Rao, Zhushi; Ta, Na

    2015-10-01

    Time-averaged energy flow and energy density are of significance in vibration analysis. The wave decomposition method is more fruitful and global in physical sense than the state variables depicted point by point. By wave approach, the Timoshenko beam vibration field is decomposed into two distinct modes: travelling and evanescent waves. Consequently, the power and energy functions defined on these waves' amplitude and phase need to be established. However, such formulas on Timoshenko beam are hardly found in literatures. Furthermore, the incoherence between these two modes is of theoretical and practical significance. This characteristic guarantees that the resultant power or energy of a superposed wave field is equal to the sum of the power or energy that each wave mode would generate individually. Unlike Euler-Bernoulli beam, such incoherence in the Timoshenko beam case has not been theoretically proved so far. Initially, the power and energy formulas based on wave approach and the corresponding incoherence proof are achieved by present work, both in theoretical and numerical ways. Fortunately, the theoretical and numerical results show that the travelling and evanescent wave modes are incoherent with each other both on power and energy functions. Notably, the energy function is unconventional and self-defined in order to obtain the incoherence. Some remarkable power transmission characteristics of the evanescent wave are also illustrated meanwhile.

  20. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Agapitov, O. V.; Mourenas, D.; Krasnoselskikh, V. V.; Mozer, F. S.

    2015-05-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  1. High power millimeter wave ECRH source needs for fusion program

    SciTech Connect

    Not Available

    1984-06-01

    This document stems from the four-day Gyrotron Symposium held at the US Department of Energy (DOE) Headquarters on June 13-16, 1983, and serves as a position paper for the Office of Fusion Energy, DOE, on high-power millimeter wave source development for Electron Cyclotron Heating (ECH) of plasmas. It describes the fusion program needs for gyrotron as ECH sources, their current status, and desirable development strategies.

  2. Decadal wave power variability in the North-East Atlantic and North Sea

    NASA Astrophysics Data System (ADS)

    Santo, H.; Taylor, P. H.; Woollings, T.; Poulson, S.

    2015-06-01

    Estimation of the long-term behavior of wave climate is crucial for harnessing wave energy in a cost-effective way. Previous studies have linked wave heights to the north-south atmospheric pressure anomalies in the North Atlantic, suggesting that the wave climate fluctuates as a response to changes in zonal circulation in the atmosphere. We identify changes in wave power in the North-East Atlantic that are strongly correlated to the dominant pressure anomalies, the North Atlantic Oscillation (NAO), and other modes. We present a reconstructed wave power climate for 1665-2005, using a combination of known and proxy indices for the NAO and other modes. Our reconstruction shows high interannual and multidecadal variability, which makes wave energy prediction challenging. This variability should be considered in any long-term reliability analysis for wave energy devices and in power scheme economics.

  3. Wave Energy Budget in the Earth Radiation Belts

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton; Agapitov, Oleksiy; Mourenas, Didier; Krasnoselskikh, Vladimir; Mozer, Forest

    2015-04-01

    Whistlers are important electromagnetic waves pervasive in Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and ionization or chemical composition in the upper-atmosphere. Here, we report an analysis of ten-year Cluster data, evaluating for the first time the wave energy budget in Earth's magnetosphere and revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with ten times smaller magnetic power than parallel waves, typically have similar total energy. Very oblique waves may turn out to be a crucial agent of energy redistribution in Earth's radiation belts, controlled by solar activity.

  4. Constructing the frequency and wave normal distribution of whistler-mode wave power

    NASA Astrophysics Data System (ADS)

    Watt, C. E. J.; Degeling, A. W.; Rankin, R.

    2013-05-01

    We introduce a new methodology that allows the construction of wave frequency distributions due to growing incoherent whistler-mode waves in the magnetosphere. The technique combines the equations of geometric optics (i.e., raytracing) with the equation of transfer of radiation in an anisotropic lossy medium to obtain spectral energy density as a function of frequency and wavenormal angle. We describe the method in detail and then demonstrate how it could be used in an idealized magnetosphere during quiet geomagnetic conditions. For a specific set of plasma conditions, we predict that the wave power peaks off the equator at ˜15° magnetic latitude. The new calculations predict that wave power as a function of frequency can be adequately described using a Gaussian function, but as a function of wavenormal angle, it more closely resembles a skew normal distribution. The technique described in this paper is the first known estimate of the parallel and oblique incoherent wave spectrum as a result of growing whistler-mode waves and provides a means to incorporate self-consistent wave-particle interactions in a kinetic model of the magnetosphere over a large volume.

  5. The Wave Carpet: An Omnidirectional and Broadband Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Alam, M.-Reza

    2015-11-01

    Inspired by the strong attenuation of ocean surface waves by muddy seafloors, we have designed, theoretically investigated the performance, and experimentally tested the ``Wave Carpet:'' a mud-resembling synthetic seabed-mounted mat composed of vertically-acting linear springs and generators that can be used as an efficient wave energy absorption device. The Wave Carpet is completely under the water surface hence imposes minimal danger to boats and the sea life (i.e. no mammal entanglement). It is survivable against the high momentum of storm surges and in fact can perform even better under very energetic (e.g. stormy) sea conditions when most existing wave energy devices are needed to shelter themselves by going into an idle mode. In this talk I will present an overview of analytical results for the linear problem, direct simulation of highly nonlinear wave fields, and results of the experimental wave tank investigation.

  6. Starting to experiment with wave power

    NASA Astrophysics Data System (ADS)

    Hare, Jonathan; McCallie, Ellen

    2005-11-01

    Outlined is a simple design for a working wave-powered electrical generator based on one made on the BBC Rough Science TV series. The design has been kept deliberately simple to facilitate rapid pupil/student involvement and most importantly so that there is much scope for their own ingenuity and ideas. The generator works on the principle of Faraday induction using coils of wire and magnets.

  7. Electron Acceleration by High Power Radio Waves in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  8. The peculiarities of energy characteristics of acoustic waves in piezoelectric materials and structures.

    PubMed

    Zaitsev, Boris D; Teplykh, Andrei A; Kuznetsova, Iren E

    2007-03-01

    This paper is devoted to detailed theoretical investigation of energy density and power flow of homogeneous (bulk) and inhomogeneous (surface and plate) plane acoustic waves in piezoelectric materials and structures. The analysis of these waves in different materials of various crystallographic orientations allowed us to establish some energy regularities. These regularities are the same for instantaneous energy characteristics of homogeneous waves and for time-average energy characteristics on unit of aperture of inhomogeneous waves if the electrical energy and power flow in vacuum are taken into account. It has been shown that, for strong piezoactive waves, the electric energy density may exceed the mechanical energy density more than three times. PMID:17375829

  9. Optimal geometry of an axisymmetric wave energy converter

    NASA Astrophysics Data System (ADS)

    Edwards, Emma; Yue, Dick K. P.; Vortical Flow Research Laboratory Team

    2015-11-01

    There have been a number of theoretical, experimental and pilot-scale studies on wave energy converters with varying shapes and designs, but due to the complex nature of wave-body hydrodynamics, as yet there is not one single three-dimensional shape that is agreed-upon to be optimal for wave power extraction. Our objective is to determine the optimal geometry to maximize power uptake over a spectrum of incident waves. As an initial investigation, we consider an axisymmetric floating wave power extraction device operating in heave. We assume linear wave conditions. The body geometry is described by smooth polynomial basis functions and is allowed to be completely general, subject to simple constraints. We consider a linear power uptake with a fixed damping coefficient (which could be optimized). For each frequency in the spectrum, hydrodynamic coefficients are calculated using a linear frequency-domain panel method. Then, for a specific incident wave spectrum, maximal extractable power is integrated over the entire spectrum. We will discuss the optimal geometry and associated maximum power for different geometrical constraints and wave conditions.

  10. Energy and Momentum Transport in String Waves

    ERIC Educational Resources Information Center

    Juenker, D. W.

    1976-01-01

    Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)

  11. Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses

    PubMed Central

    Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  12. Catching the right wave: evaluating wave energy resources and potential compatibility with existing marine and coastal uses.

    PubMed

    Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  13. Energy harvesting from sea waves with consideration of airy and JONSWAP theory and optimization of energy harvester parameters

    NASA Astrophysics Data System (ADS)

    Mirab, Hadi; Fathi, Reza; Jahangiri, Vahid; Ettefagh, Mir Mohammad; Hassannejad, Reza

    2015-12-01

    One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.

  14. Understanding the effects of bathymetry, wave climate, and coastline shape on wave energy delivery to rocky coastlines using machine learning

    NASA Astrophysics Data System (ADS)

    Goldstein, E. B.; Limber, P. W.; Murray, A.; Adams, P. N.

    2013-12-01

    Coastal headlands protruding seaward modify the incoming wave field. Notably, wave refraction over bathymetry associated with a subaerial headland results in the focusing of wave energy on headlands, hypothesized to be a primary mechanism of headland erosion and a control on planform coastline evolution. In this contribution we examine the factors that control wave energy delivery, specifically the impact of mean seabed slope, headland amplitude and wave climate (i.e. height, period, offshore wave direction). This study is a direct extension of a recently developed analytical model of rocky coastline evolution (Limber et al., submitted; Limber and Murray, submitted). We utilize a wave ray tracing model to determine the mean wave power density delivered to protruding rocky headlands of various size over a range of wave conditions. With this large model data set, we employ genetic programming (a machine learning technique) to develop a predictive equation for mean wave power delivered to a headland as a function of the wave climate and headland size. Preliminary results from the coupled wave ray-machine learning analysis show headland averaged wave power density scales linearly with cross-shore headland amplitude and is proportional to offshore wave energy density, wave period, and the offshore wave approach angle. However, relative to headland amplitude, the wave characteristics exert significantly stronger control on power delivery. The new relationship can be modified to reflect an ';effective' wave climate that describes the long-term wave energy delivery to the coast. This term can be estimated using historic wave buoy data. From purely dimensional grounds, previous work suggested that wave power density and the erosion rate of cliffed margins are linearly related. The constant that links power density and cliff retreat, however, is difficult to quantify. On coasts with known erosion rates, we will use the effective long-term wave energy delivery to determine the range of values for the constant that scales wave power to erosion rate, which allows observed sea cliff retreat rates to be related to the offshore wave conditions. Limber, P.W., Murray, A.B., Adams, P.N., and Goldstein, E.B., Unraveling the dynamics that control cross-shore headland amplitude on rocky coastlines, Part 1: Model development. Submitted to J. Geophys. Res. - Earth Surface. Limber, P.W., and Murray, A.B., Unraveling the dynamics that control cross-shore headland amplitude on rocky coastlines, Part 2: Model results and comparisons to nature. Submitted to J. Geophys. Res. - Earth Surface.

  15. Energy absorption from ocean waves: a free ride for cetaceans.

    PubMed

    Bose, N; Lien, J

    1990-06-22

    Flukes of cetaceans are capable of absorbing energy from ocean waves for propulsion. The extent of this energy absorption is demonstrated by considering the flukes of an immature fin whale, Balaenoptera physalus. In a fully developed seaway corresponding to a wind speed of 20 knots (around Beaufort force 5) and at a low swimming speed, of 2.5 m s-1, this whale was able to absorb up to 25% of its required propulsive power in head seas and 33% of propulsive power in following seas. Consequences of wave-energy absorption for energetics of cetacean migrations are discussed. PMID:1974063

  16. Wave energy resource assessment with AltiKa satellite altimetry: A case study at a wave energy site

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Martn Mguez, Beln.; McIlvenny, Jason; Gleizon, Philippe

    2015-07-01

    A simple model to estimate wave power at a coastal site from satellite radar altimetry is proposed. We used data from the AltiKa altimeter on board the SARAL satellite because of its superior performance near the coast. The deep water approximation was applied to our 60 m deep site along with a simple empirical model to estimate wave period, T, from altimeter significant wave height, Hs, and backscattering coefficient, ?0. A known relation between zero-crossing period, Tz, and wave energy period, TE, was used in combination with Hs to calculate wave power per meter wave crest (P). The annual and seasonal mean values of P using AltiKa parameters largely agreed with known ranges of P at the site. A comparison with shallower sites and sites closer to the coast revealed that for estimation of Tz from AltiKa the water depth could be taken into account and an empirical relation is given.

  17. Ocean floor mounting of wave energy converters

    SciTech Connect

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  18. Wave and tide powered generation apparatus

    SciTech Connect

    Suggs, L. F.

    1985-09-03

    A wave and tide powered generation apparatus includes a frame which is fixed relative to the varying level of the body of water, and includes a float operably associated with the frame for movement in response to the varying level of the body of water. A rotatable drum is attached to the float and has a drive line with a middle portion wrapped around the rotatable drum. Upper and lower ends of the drive line are attached to upper and lower portions of the frame. Movement of the float upward or downward relative to the frame causes the rotatable drum to be rotated due to its engagement with the drive line. A power transfer apparatus transmits the rotary motion of the drum to a generator.

  19. Performance of a direct drive hydro turbine for wave power generation

    NASA Astrophysics Data System (ADS)

    Lee, Y.-H.; Kim, C.-G.; Choi, Y.-D.; Kim, I.-S.; Hwang, Y.-C.

    2010-08-01

    Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil-fueled power plants as a countermeasure against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for wave power plant. Experiment and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that the DDT obtains fairly good turbine efficiency in both cases of with wave and no wave conditions. As the turbine performance is influenced considerably by the wave condition, designed point of the turbine should be determined according to the wave condition at an expected installation site. Most of the output power generates at the runner passage of the Stage 2.

  20. Millimeter-Wave Power-Combining with Radiating Oscillator Arrays.

    NASA Astrophysics Data System (ADS)

    York, Robert Armstrong

    The next generation of communications and radar systems will soon begin to exploit the millimeter-wave portion of the electromagnetic spectrum. Such systems will require a high-power source of millimeter-wave energy, ideally small, lightweight, highly efficient, and failure -proof over a span of decades. Circuits using semiconductor devices have proved useful for this purpose at lower frequencies, but unfortunately the power generating capacity of solid -state devices diminishes quickly as frequencies approach 100 GHz. This has forced designers to use bulky, inefficient, and unreliable (but high-power) vacuum-tube sources. Combining the power produced by a large number of individual solid-state devices has been suggested as a means of overcoming the inherent limitations of millimeter -wave devices. In order to compete with vacuum-tube sources, power-combiners would require up to 1000 devices, presenting a difficult engineering challenge. This thesis introduces one possible solution to this problem. The proposed concept uses arrays of millimeter-wave oscillators, where each oscillator contains one or more active devices in a planar radiating structure. The oscillators are weakly coupled to synchronize frequency and phase relationships, and the power produced by each oscillator is radiatively combined in free-space, which gives rise to very high combining efficiencies. The array concept has been demonstrated at microwave frequencies using both Gunn and MESFET devices in a 4 x 4 patch antenna configuration. The Gunn array produced 22 Watts Equivalent Radiated Power (ERP), and the MESFET array produced 10 Watts ERP. A new theory has been developed which describes the coupled-oscillator dynamics, and has been shown to accurately predict experimentally observed effects. In addition to strict CW power-combining, a new mode of operation has been discovered which enables the same arrays to generate high-power pulses of energy. This new effect involves a "mode-locking" approach, similar to a commonly used technique in lasers, and has the inherent property of beam-scanning. These effects have been observed experimentally, and can also be explained using the coupled -oscillator theory.

  1. Standing wave tube electro active polymer wave energy converter

    NASA Astrophysics Data System (ADS)

    Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.

    2012-04-01

    Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.

  2. Energy in a String Wave

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed

  3. Energy in a String Wave

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…

  4. Use of numerical wind-wave models for assessment of the offshore wave energy resource

    SciTech Connect

    Pontes, M.T.; Barstow, S.; Bertotti, L.; Cavaleri, L.; Oliveira-Pires, H.

    1997-08-01

    In the last two decades the performance of numerical wind-wave models has improved considerably. Several models have been routinely producing good quality wave estimates globally since the mid-1980s. The verifications of wind-wave models have mainly focused on the evaluation of the error of the significant wave height H{sub s} estimates. However, for wave energy purposes, the main parameters to be assessed are the wave power P{sub w} and the mean (energy) period T{sub e}. Since P{sub w} is proportional to H{sub s}{sup 2}T{sub e}, its expected error is much larger than for the single-wave parameters. This paper summarizes the intercomparison of two wind-wave models against buoy data in the North Atlantic and the Mediterranean Sea to select the most suitable one for the construction of an Atlas of the wave energy resource in European waters. A full verification in the two basins of the selected model--the WAM model, implemented in the routine operation of the European Centre for Medium-Range Weather Forecasts--was then performed against buoy and satellite altimeter data. It was found that the WAM model accuracy is very good for offshore locations in the North Atlantic; but for the Mediterranean Sea the results are much less accurate, probably due to a lower quality of the input wind fields.

  5. Optimisation Of a Magnetostrictive Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Mundon, T. R.; Nair, B.

    2014-12-01

    Oscilla Power, Inc. (OPI) is developing a patented magnetostrictive wave energy converter aimed at reducing the cost of grid-scale electricity from ocean waves. Designed to operate cost-effectively across a wide range of wave conditions, this will be the first use of reverse magnetostriction for large-scale energy production. The device architecture is a straightforward two-body, point absorbing system that has been studied at length by various researchers. A large surface float is anchored to a submerged heave (reaction) plate by multiple taut tethers that are largely made up of discrete, robust power takeoff modules that house the magnetostrictive generators. The unique generators developed by OPI utilize the phenomenon of reverse magnetostriction, which through the application of load to a specific low cost alloy, can generate significant magnetic flux changes, and thus create power through electromagnetic induction. Unlike traditional generators, the mode of operation is low-displacement, high-force, high damping which in combination with the specific multi-tether configuration creates some unique effects and interesting optimization challenges. Using an empirical approach with a combination of numerical tools, such as ORCAFLEX, and physical models, we investigated the properties and sensitivities of this system arrangement, including various heave plate geometries, with the overall goal of identifying the mass and hydrodynamic parameters required for optimum performance. Furthermore, through a detailed physical model test program at the University of New Hampshire, we were able to study in more detail how the heave plate geometry affects the drag and added mass coefficients. In presenting this work we will discuss how alternate geometries could be used to optimize the hydrodynamic parameters of the heave plate, allowing maximum inertial forces in operational conditions, while simultaneously minimizing the forces generated in extreme waves. This presentation will cover the significant findings from this research, including physical model results and identified sensitivity parameters. In addition, we will discuss some preliminary results from our large-scale ocean trial conducted in August & September of this year.

  6. Transmission of wave energy in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  7. Wave energy devices with compressible volumes.

    PubMed

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-12-01

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m(3) and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s. PMID:25484609

  8. Wave energy devices with compressible volumes

    PubMed Central

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-01-01

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s. PMID:25484609

  9. Wave energy extraction by coupled resonant absorbers.

    PubMed

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment. PMID:22184664

  10. Analysis of Waves in the Near-Field of Wave Energy Converter Arrays through Stereo Video

    NASA Astrophysics Data System (ADS)

    Black, C.; Haller, M. C.

    2013-12-01

    Oregon State University conducted a series of laboratory experiments to measure and quantify the near-field wave effects caused within arrays of 3 and 5 Wave Energy Converters (WEC). As the waves and WECs interact, significant scattering and radiation occurs increasing/decreasing the wave heights as well as changing the direction the wave is traveling. These effects may vary based on the number of WECs within an array and their respective locations. The findings of this analysis will assist in selecting the WEC farm location and in improving WEC design. Analyzing the near-field waves will help determine the relative importance of absorption, scattering, and radiation as a function of the incident wave conditions and device performance. The WEC mooring system design specifications may also be impacted if the wave heights in the near-field are greater than expected. It is imperative to fully understand the near-field waves before full-scale WEC farms can be installed. Columbia Power Technologies' Manta served as the test WEC prototype on a 1 to 33 scale. Twenty-three wave gages measured the wave heights in both regular and real sea conditions at locations surrounding and within the WEC arrays. While these gages give a good overall picture of the water elevation behavior, it is difficult to resolve the complicated wave field within the WEC array using point gages. Here stereo video techniques are applied to extract the 3D water surface elevations at high resolution in order to reconstruct the multi-directional wave field in the near-field of the WEC array. The video derived wave information will also be compared against the wave gage data.

  11. Energy cascade in internal-wave attractors

    NASA Astrophysics Data System (ADS)

    Brouzet, C.; Ermanyuk, E. V.; Joubaud, S.; Sibgatullin, I.; Dauxois, T.

    2016-02-01

    One of the pivotal questions in the dynamics of the oceans is related to the cascade of mechanical energy in the abyss and its contribution to mixing. Here, we propose internal-wave attractors in the large-amplitude regime as a unique self-consistent experimental and numerical setup that models a cascade of triadic interactions transferring energy from large-scale monochromatic input to multi-scale internal-wave motion. We also provide signatures of a discrete wave turbulence framework for internal waves. Finally, we show how, beyond this regime, we have a clear transition to a regime of small-scale high-vorticity events which induce mixing.

  12. What can wave energy learn from offshore oil and gas?

    PubMed

    Jefferys, E R

    2012-01-28

    This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position. PMID:22184670

  13. Ocean, Wave, and Tidal Energy Systems: Current abstracts

    NASA Astrophysics Data System (ADS)

    Smith, L.; Lane, D. W.

    1988-01-01

    Ocean, Wave, and Tidal Energy Systems (OES) announces on a bimonthly basis the current worldwide information available on all aspects of ocean thermal energy conversion systems based on exploitation of the temperature difference between the surface water and ocean depth. All aspects of salinity gradient power systems based on extracting energy from mixing fresh water with seawater are included, along with information on wave and tidal power. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Data Base (EDB) during the past two months. Also included are U.S. information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  14. Hydrodynamic principles of wave power extraction.

    PubMed

    Mei, Chiang C

    2012-01-28

    The hydrodynamic principles common to many wave power converters are reviewed via two representative systems. The first involves one or more floating bodies, and the second water oscillating in a fixed enclosure. It is shown that the prevailing basis is impedance matching and resonance, for which the typical analysis can be illustrated for a single buoy and for an oscillating water column. We then examine the mechanics of a more recent design involving a compact array of small buoys that are not resonated. Its theoretical potential is compared with that of a large buoy of equal volume. A simple theory is also given for a two-dimensional array of small buoys in well-separated rows parallel to a coast. The effects of coastline on a land-based oscillating water column are examined analytically. Possible benefits of moderate to large column sizes are explored. Strategies for broadening the frequency bandwidth of high efficiency by controlling the power-takeoff system are discussed. PMID:22184659

  15. Power and energy

    SciTech Connect

    Zorpette, G.

    1991-01-01

    Any lingering doubt that the world's electric power industries are driven primarily by politics was probably dispelled last year. Global reverberations of the crisis in the Persian Gulf offered the most striking confirmation, causing wide fluctuations in oil prices and prompting utilities all over the world to reconsider energy technologies not taken seriously since the last oil crisis. In Europe, major developments included the privatization of British electric utilities, the takeover of the antiquated East German power system by three West German utilities, and the Swedish Government's apparent retreat from a plan to abandon its nuclear power program. In the United States, amendments to the Clean Air Act - the first in 13 years - will have expensive ramifications for that country's utilities. Another response to increasing pressure for cleaner air, not only in the United States but in Europe and Japan as well, was the resurrection of an idea whose time still may not have come: the electric vehicle. Last year, major automakers and other technical firms in all three regions pledged to commercialize electric cars in the near future.

  16. WEC-Sim (Wave Energy Converter - SIMulator)

    Energy Science and Technology Software Center (ESTSC)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-sourcemore » code to model WECs.« less

  17. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  18. Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint

    SciTech Connect

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-08-24

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  19. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial scale plant. It is important to understand that the purpose of this study was to establish baseline scenarios based on basic device data that was provided to use by the manufacturer for illustrative purposes only.

  20. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    NASA Astrophysics Data System (ADS)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the largest potential changes in wave height. The SNL-SWAN model simulations for various WEC devices provide the basis for a solid model understanding, giving the confidence necessary for future WEC evaluations.

  1. Stochastic Control of Inertial Sea Wave Energy Converter

    PubMed Central

    Mattiazzo, Giuliana; Giorcelli, Ermanno

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267

  2. Stochastic control of inertial sea wave energy converter.

    PubMed

    Raffero, Mattia; Martini, Michele; Passione, Biagio; Mattiazzo, Giuliana; Giorcelli, Ermanno; Bracco, Giovanni

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267

  3. Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications

    ERIC Educational Resources Information Center

    Meath, Sian E.; Aye, Lu; Haritos, Nicholas

    2008-01-01

    This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and…

  4. Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications

    ERIC Educational Resources Information Center

    Meath, Sian E.; Aye, Lu; Haritos, Nicholas

    2008-01-01

    This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and

  5. Pulsed discharges produced by high-power surface waves

    NASA Astrophysics Data System (ADS)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  6. Environmental assessment for the Satellite Power System (SPS): studies of honey bees exposed to 2. 45 GHz continuous-wave electromagnetic energy

    SciTech Connect

    Gary, N E; Westerdahl, B B

    1980-12-01

    A system for small animal exposure was developed for treating honey bees, Apis mellifera L., in brood and adult stages, with 2.45 GHz continuous wave microwaves at selected power densities and exposure times. Post-treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw/cm/sup 2/ for 24 hours. Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw/cm/sup 2/ during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave-exposed (5 to 40 mw/cm/sup 2/) areas versus control areas.

  7. Clustering of cycloidal wave energy converters

    DOEpatents

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  8. Multistable chain for ocean wave vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Harne, R. L.; Schoemaker, M. E.; Wang, K. W.

    2014-03-01

    The heaving of ocean waves is a largely untapped, renewable kinetic energy resource. Conversion of this energy into electrical power could integrate with solar technologies to provide for round-the-clock, portable, and mobile energy supplies usable in a wide variety of marine environments. However, the direct drive conversion methodology of gridintegrated wave energy converters does not efficiently scale down to smaller, portable architectures. This research develops an alternative power conversion approach to harness the extraordinarily large heaving displacements and long oscillation periods as an excitation source for an extendible vibration energy harvesting chain. Building upon related research findings and engineering insights, the proposed system joins together a series of dynamic cells through bistable interfaces. Individual impulse events are generated as the inertial mass of each cell is pulled across a region of negative stiffness to induce local snap through dynamics; the oscillating magnetic inertial mass then generates current in a coil which is connected to energy harvesting circuitry. It is shown that linking the cells into a chain transmits impulses through the system leading to cascades of vibration and enhancement of electrical energy conversion from each impulse event. This paper describes the development of the multistable chain and ways in which realistic design challenges were addressed. Numerical modeling and corresponding experiments demonstrate the response of the chain due to slow and large amplitude input motion. Lastly, experimental studies give evidence that energy conversion efficiency of the chain for wave energy conversion is much higher than using an equal number of cells without connections.

  9. Propulsion of small launch vehicles using high power millimeter waves

    SciTech Connect

    Benford, J.; Myrabo, L.

    1994-12-31

    The use of microwave and millimeter wave beamed energy for propulsion of vehicles in the atmosphere and in space has been under study for at least 35 years. The need for improved propulsion technology is clear: chemical rockets orbit only a few percent of the liftoff mass at a cost of over $3,000/lb. The key advantage of the beamed power approach is to place the heavy and expensive components on the ground or in space, not in the vehicle. This paper, following upon the high power laser propulsion programs, uses a multi-cycle propulsion engine in which the first phase of ascent is based on the air breathing ramjet principle, a repetitive Pulsed Detonation Engine (PDE) which uses a microwave-supported detonation to heat the air working fluid, i.e., propellant. The second phase is a pure beam-heated rocket. The key factor is that high peak power is essential to this pulsed engine. This paper explores this propulsion concept using millimeter waves, the most advantageous part of the spectrum. The authors find that efficient system concepts can be developed for the beam powered launch system and that, while the capital cost may be as high as the earlier orbital transfer concepts, the operating cost is much lower. The vehicle can have payload-to-mass ratios on the order of one and cost (per pound to orbit) two orders of magnitudes less than for chemical rockets. This allows the weight of microwave powered vehicles to be very small, as low as {approximately}100 kg for test devices.

  10. Directional wave climate and power variability along the Southeast Australian shelf

    NASA Astrophysics Data System (ADS)

    Mortlock, Thomas R.; Goodwin, Ian D.

    2015-04-01

    Variability in the modal wave climate is a key process driving large-scale coastal behaviour on moderate- to high-energy sandy coastlines, and is strongly related to variability in synoptic climate drivers. On sub-tropical coasts, shifts in the sub-tropical ridge (STR) modulate the seasonal occurrence of different wave types. However, in semi-enclosed seas, isolating directional wave climates and synoptic drivers is hindered by a complex mixed sea-swell environment. Here we present a directional wave climate typology for the Tasman Sea based on a combined statistical-synoptic approach using mid-shelf wave buoy observations along the Southeast Australian Shelf (SEAS). Five synoptic-scale wave climates exist during winter, and six during summer. These can be clustered into easterly (Tradewind), south-easterly (Tasman Sea) and southerly (Southern Ocean) wave types, each with distinct wave power signatures. We show that a southerly shift in the STR and trade-wind zone, consistent with an observed poleward expansion of the tropics, forces an increase in the total wave energy flux in winter for the central New South Wales shelf of 1.9 GJ m-1 wave-crest-length for 1° southerly shift in the STR, and a reduction of similar magnitude (approximately 1.8 GJ m-1) during summer. In both seasons there is an anti-clockwise rotation of wave power towards the east and south-east at the expense of southerly waves. Reduced obliquity of constructive wave power would promote a general disruption to northward alongshore sediment transport, with the cross-shore component becoming increasingly prevalent. Results are of global relevance to sub-tropical east coasts where the modal wave climate is influenced by the position of the zonal STR.

  11. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    PubMed

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity. PMID:25975615

  12. On the use of nonlinear solitary waves for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Kaiyuan; Rizzo, Piervincenzo

    2015-04-01

    In the last decade there has been an increasing attention on the use of highly- and weakly- nonlinear solitary waves in engineering and physics. These waves can form and travel in nonlinear systems such as one-dimensional chains of spherical particles. One engineering application of solitary waves is the fabrication of acoustic lenses, which are employed in a variety of fields ranging from biomedical imaging and surgery to defense systems and damage detection. In this paper we propose to couple an acoustic lens to a wafer-type lead zirconate titanate transducer (PZT) to harvest energy from the vibration of an object tapping the lens. The lens is composed of a circle array made of chains of particles in contact with a polycarbonate material where the nonlinear waves coalesce into linear waves. The PZT located at the designed focal point converts the mechanical energy carried by the stress wave into electricity to power a load resistor. The performance of the designed harvester is compared to a conventional cantilever beam, and the experimental results show that the power generated with the nonlinear lens has the same order of magnitude of the beam.

  13. Energy 101: Concentrating Solar Power

    SciTech Connect

    2010-01-01

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  14. Energy 101: Concentrating Solar Power

    ScienceCinema

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  15. Switchable nonlinear metasurfaces for absorbing high power surface waves

    NASA Astrophysics Data System (ADS)

    Kim, Sanghoon; Wakatsuchi, Hiroki; Rushton, Jeremiah J.; Sievenpiper, Daniel F.

    2016-01-01

    We demonstrate a concept of a nonlinear metamaterial that provides power dependent absorption of incident surface waves. The metasurface includes nonlinear circuits which transform it from a low loss to high loss state when illuminated with high power waves. The proposed surface allows low power signals to propagate but strongly absorbs high power signals. It can potentially be used on enclosures for electric devices to protest against damage. We experimentally verify that the nonlinear metasurface has two distinct states controlled by the incoming signal power. We also demonstrate that it inhibits the propagation of large signals and dramatically decreases the field that is leaked through an opening in a conductive enclosure.

  16. Oblique sounding of the ionosphere by powerful wave beams

    NASA Astrophysics Data System (ADS)

    Molotkov, I. A.; Atamaniuk, B.

    2011-04-01

    The article is devoted to modeling the impact on the ionosphere powerful obliquely incident wave beam. The basis of this analysis will be orbital variational principle for the intense wave beams-generalization of Fermat's principle to the case of a nonlinear medium (Molotkov and Vakulenko, 1988a,b; Molotkov, 2003, 2005). Under the influence of a powerful wave beam appears manageable the additional stratification of the ionospheric layer F2. Explicit expressions show how the properties of the test beam, with a shifted frequency, released in the same direction as the beam depend on the intensity of a powerful beam and the frequency shift.

  17. Fundamental research on oscillating water column wave power absorbers

    SciTech Connect

    Maeda, H.; Kato, W.; Kinoshita, T.; Masuda, K.

    1985-03-01

    An oscillating water column (OWC) wave power absorber is one of the most promising devices, as well as the Salter Duck and the Clam. This paper presents a simple prediction method, in which the equivalent floating body approximation is used, for absorbing wave power characteristics of an oscillating water column device. The effects of the compressibility of air and inertia of an air turbine and electric generator on absorbed wave power are obtained by using the equivalent electric circuit concept. Both the experimental and theoretical studies are carried out in this paper.

  18. Ultra-compact 1 × 8 Channel terahertz Wave Power Splitter

    NASA Astrophysics Data System (ADS)

    Hu, Jian-Rong; Li, Jiu-Sheng

    2016-03-01

    Relying on 1 × 2 photonic crystal waveguide and photonic crystal resonator, a compact eight-channel terahertz wave power splitter is proposed. The mechanism of such a device is further theoretically analyzed and numerically investigated with the aid of the plane wave expansion method and the finite-difference time-domain method. With an appropriate design, the proposed power splitter can split the input terahertz wave energy equally into eight output ports at the frequency of 0.667 THz. Furthermore, the total size of the present device is of 4.33 mm × 3.74 mm. Due to its small size, the multi-channel terahertz wave power splitter has practical applications in the terahertz wave integrated circuit fields.

  19. Fusion applications of high power millimeter wave sources

    SciTech Connect

    Freeman, R.L.; George, T.V.

    1994-01-01

    Heating by means of high power electron cyclotron (EC) waves in the mm wavelength range is considered to be one of the most attractive approaches for heating fusion plasmas to the temperatures required to achieve ignition. EC waves have also been used to drive plasma current by using directional launch and to stabilize MHD instabilities in tokamak plasmas through localized heating or current drive. Experiments are planned on both JET and TFTR to measure the alpha particle distribution by scattering EC waves.

  20. Solitary and shock waves in discrete strongly nonlinear double power-law materials

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Nesterenko, V. F.

    2007-06-01

    A laminar metamaterial supporting strongly nonlinear solitary and shock waves with impact energy mitigating capabilities is presented. It consists of steel plates with intermittent polymer toroidal rings acting as strongly nonlinear springs with large allowable strain. The force-displacement relationship of a compressed o-ring is described by the addition of two power-law relationships resulting in a solitary wave speed and width depending on the amplitude. This double nonlinearity allows splitting of an initial impulse into three separate strongly nonlinear solitary wave trains. Solitary and shock waves are observed experimentally and analyzed numerically in an assembly with Teflon o-rings.

  1. Electromagnetic wave energy conversion research

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  2. Investigation on the possibility of extracting wave energy from the Texas coast

    NASA Astrophysics Data System (ADS)

    Haces-Fernandez, Francisco

    Due to the great and growing demand of energy consumption in the Texas Coast area, the generation of electricity from ocean waves is considered very important. The combination of the wave energy with offshore wind power is explored as a way to increase power output, obtain synergies, maximize the utilization of assigned marine zones and reduce variability. Previously literature has assessed the wave energy generation, combined with wind in different geographic locations such as California, Ireland and the Azores Island. In this research project, the electric power generation from ocean waves on the Texas Coast was investigated, assessing its potential from the meteorological data provided by five buoys from National Data Buoy Center of the National Oceanic and Atmospheric Administration, considering the Pelamis 750 kW Wave Energy Converter (WEC) and the Vesta V90 3 MW Wind Turbine. The power output from wave energy was calculated for the year 2006 using Matlab, and the results in several locations were considered acceptable in terms of total power output, but with a high temporal variability. To reduce its variability, wave energy was combined with wind energy, obtaining a significant reduction on the coefficient of variation on the power output. A Matlab based interface was created to calculate power output and its variability considering data from longer periods of time.

  3. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy

    PubMed Central

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity. PMID:25975615

  4. Aiding Design of Wave Energy Converters via Computational Simulations

    NASA Astrophysics Data System (ADS)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  5. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Willke, B.; Danzmann, K.; Fallnich, C.; Frede, M.; Heurs, M.; King, P.; Kracht, D.; Kwee, P.; Savage, R.; Seifert, F.; Wilhelm, R.

    2006-03-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requiremets and new results (RIN <= 4×10-9/surdHz) will be presented.

  6. On the Crest of a Wave: A Review of Wave Power Technology

    ERIC Educational Resources Information Center

    Harris, Fank

    2014-01-01

    The energy potentially available from waves around the coast of the UK far exceeds our domestic and industrial demands and yet, despite much research, numerous patent applications and several pilot schemes, the exploitation of waves for their energy largely remains in transition between development and commercialisation. This article examines the…

  7. On the Crest of a Wave: A Review of Wave Power Technology

    ERIC Educational Resources Information Center

    Harris, Fank

    2014-01-01

    The energy potentially available from waves around the coast of the UK far exceeds our domestic and industrial demands and yet, despite much research, numerous patent applications and several pilot schemes, the exploitation of waves for their energy largely remains in transition between development and commercialisation. This article examines the

  8. Investigation of suitable sites for Wave Energy Converters around Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Iuppa, C.; Cavallaro, L.; Vicinanza, D.; Foti, E.

    2015-02-01

    An analysis of wave energy along the coasts of Sicily (Italy) is presented with the aim of selecting possible sites for the implementation of Wave Energy Converters (WECs). The analysis focuses on the selection of hot-spot-areas of energy concentration. A third-generation model was adopted to reconstruct the wave data along the coast over a period of 14 years. The reconstruction was performed using the wave and wind data from the European Centre for Medium-Range Weather Forecasts. The analysis of wave energy allowed us to characterise the most energetic zones, which are located on the western side of Sicily and on the Strait of Sicily. Moreover, the estimate of the annual wave power on the entire computational domain identified eight interesting sites. The main features of the sites include relatively high wave energy and proximity to the coast, which may be possible sites for the implementation of WEC farms.

  9. Investigation of suitable sites for wave energy converters around Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Iuppa, C.; Cavallaro, L.; Vicinanza, D.; Foti, E.

    2015-07-01

    An analysis of wave energy along the coasts of Sicily (Italy) is presented with the aim of selecting possible sites for the implementation of wave energy converters (WECs). The analysis focuses on the selection of hotspot areas of energy concentration. A third-generation model was adopted to reconstruct the wave data along the coast over a period of 14 years. The reconstruction was performed using the wave and wind data from the European Centre for Medium-Range Weather Forecasts. The analysis of wave energy allowed us to characterise the most energetic zones, which are located on the western side of Sicily and on the Strait of Sicily. Moreover, the estimate of the annual wave power on the entire computational domain identified eight interesting sites. The main features of the sites include relatively high wave energy and proximity to the coast, which makes them possible sites for the implementation of WEC farms.

  10. Direct Drive Wave Energy Buoy

    SciTech Connect

    Rhinefrank, Ken

    2011-11-02

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress and results for this project which will be used to inform the utility-scale design process, improve cost estimates, accurately forecast energy production and to observe system operation and survivability.

  11. Multi-electrodes in SAW with square wave ac power

    SciTech Connect

    Bunker, T.A.

    1982-07-01

    Examines the feasibility of using AC square wave power for multi-electrode submerged arc welding (SAW) by arranging 2 power sources for weld test using two-electrode submerged arc welding. Presents figures showing phase relationship between lead arc current and trail arc current for Scott connected multi-electrode SAW, and arc deflection vs. electrical degrees. Suggests that Scott connection is preferred because it balances the primary line draw. Concludes that the multielectrode submerged arc process with constant potential square wave power increases travel speed and deposition rates which can be added to the economies obtained from a narrow groove joint configuration and the SAW process.

  12. Assembly for harnessing wave and tide energy

    SciTech Connect

    Vides, M.M.

    1988-01-12

    An assembly for harnessing wave and tide energy, is described comprising: (a) an elongated float means for floating on the surface of a body of water having waves moving therealong, (b) support means freely pivotally connected to the float means for maintaining the float means parallel to the surface of the water, (c) the support means being effective to maintain the float means with its longest dimension disposed in a direction parallel to the length of the waves moving along the surface of the body of the water, (d) transmission means including two parallel transmission shafts responsive to the support means as the float means moves up and down with the movement of the waves to produce a rotational movement from which energy may be derived, (e) the support means including two arm members each having an outer free end pivotally connected to the float means and having counterweight means located at the other inner end thereof which counterweight means extends to an opposing side of the transmission shaft with respect to the corresponding float means to neutralize a portion of the weight of the float means and arm member, (f) base structures fixedly disposed on the bottom of the body of water with the transmission means located on the base structures that are laterally displaced with respect to each other and extend outwardly from a shore station into the body of water in a direction transverse to the length of the waves moving along the surface of the body of water.

  13. Magma energy for power generation

    SciTech Connect

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  14. Direct Drive Wave Energy Buoy – 33rd scale experiment

    SciTech Connect

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  15. Energy, A Crisis in Power.

    ERIC Educational Resources Information Center

    Holdren, John; Herrera, Philip

    The demand of Americans for more and more power, particularly electric power, contrasted by the deep and growing concern for the environment and a desire by private citizens to participate in the public decisions that affect the environment is the dilemma explored in this book. Part One by John Holdren, offers a scientist's overview of the energy

  16. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  17. Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy.

    PubMed

    Jiang, Tao; Zhang, Li Min; Chen, Xiangyu; Han, Chang Bao; Tang, Wei; Zhang, Chi; Xu, Liang; Wang, Zhong Lin

    2015-12-22

    Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy. PMID:26567754

  18. High-energy cosmic ray intensity waves

    SciTech Connect

    Jacklyn, R.M.; Duldig, M.L.; Pomerantz, M.A.

    1987-08-01

    A new mode of galactic cosmic ray modulation has been observed. It manifests itself as waves of isotropic intensity variations of high-energy (--150 GeV) galactic cosmic rays. The wave periods are in synchronism with the alternating toward and away polarity states of the sectored interplanetary magnetic field. Since data with the requisite precision for observing the phenomenon first became available in 1982, isotropic intensity waves have occurred during the latter half of three successive years when the long-term modulation was maximum (1982) and recovering rapidly (1983 and 1984), but were not readily discernible in 1985, after the steady state intensity had recovered almost to the solar minimum level. The variational spectrum ..delta..j( p)/( j( p) = kp/sup ..gamma../ (where p is magnetic rigidity) is hard, with ..gamma..approx. =0. Although the largest Forbush decrease ever recorded occurred while the 1982 episode was in progress, isotropic intensity waves are not causally related to that effect. However, the isotropic intensity waves observed thus far are in phase in the southern hemisphere with much smaller concurrent variations of the north-south anisotropy. The new phenomenon bespeaks a difference, not yet identified, in the plasma regimes on opposite sides of the neutral sheet. Copyright American Geophysical Union 1987

  19. Mm-wave power meter mount

    NASA Technical Reports Server (NTRS)

    Mullen, D. L.; Oltmans, D. A.; Stelzried, C. T.

    1968-01-01

    E-band thermistor mount and a technique for adjusting a temperature compensating thermistor to provide an electrically balanced bridge are used for measuring RF power in the mm-wavelength. The mount is relatively insensitive to temperature effects that cause measurement errors in single ended circuits.

  20. Limitations on millimeter-wave power generation with spiraling electron beams.

    NASA Technical Reports Server (NTRS)

    Kulke, B.

    1972-01-01

    A study is made of the suitability of the interaction between a thin, solid, spiraling electron beam of 5-15-kV energy and a microwave cavity, for the purpose of generating watts of CW millimeter-wave power. The effect of finite energy spread in the electron beam is considered both theoretically and experimentally. Measured results are given for a prototype device operating at 9.4 GHz. Power outputs of 5 W and electronic efficiencies near 2% have been obtained. The data agree well with the theory, subject to some ambiguity in the energy-distribution parameters. The performance is strongly limited by the energy spread in the beam.

  1. Wave energy transmission apparatus for high-temperature environments

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)

    2010-01-01

    A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.

  2. The Future Potential of Wave Power in the US

    NASA Astrophysics Data System (ADS)

    Previsic, M.; Epler, J.; Hand, M.; Heimiller, D.; Short, W.; Eurek, K.

    2012-12-01

    The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the US, is located in close proximity of coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As renewable electricity generation technologies, ocean wave energy offers a low air pollutant option for diversifying the US electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses: (1) The energy extraction potential from the US wave energy resource, (2) The present cost of wave technology in /kW, (3) The estimated cost of energy in /kWh, and (4) Cost levels at which the technology should see significant deployment. RE Vision Consulting in collaboration with NREL engaged in various analyses to establish present-day and future cost profiles for MHK technologies, compiled existing resource assessments and wave energy supply curves, and developed cost and deployment scenarios using the ReEDS analysis model to estimate the present-day technology cost reductions necessary to facilitate significant technology deployment in the US.

  3. Power and energy

    SciTech Connect

    Zorpette, G

    1990-01-01

    According to the author, in response to financial and competitive pressures, U.S. utilities have been proposing and consummating mergers on a scale not seen since the 1930s. The author discusses how such proposals have far-reaching consequences for U.S. transmission networks, and, along with concrete proposals for new federal clean air legislation, hint at structural changes in the utility industry. Competitive and environmental concerns are seen as having fostered technical advances, particularly in the harnessing of renewable- and alternative-energy sources and in the use of computers to monitor and control interconnected high-voltage transmission networks.

  4. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  5. Power and polarization monitor development for high power millimeter-wave

    SciTech Connect

    Makino, R. Kobayashi, K.; Kubo, S.; Kobayashi, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T.

    2014-11-15

    A new type monitor of power and polarization states of millimeter-waves has been developed to be installed at a miter-bend, which is a part of transmission lines of millimeter-waves, for electron cyclotron resonance heating on the Large Helical Device. The monitor measures amplitudes and phase difference of the electric field of the two orthogonal polarizations which are needed for calculation of the power and polarization states of waves. The power and phase differences of two orthogonal polarizations were successfully detected simultaneously.

  6. Artificial reef effect and fouling impacts on offshore wave power foundations and buoys - a pilot study

    NASA Astrophysics Data System (ADS)

    Langhamer, Olivia; Wilhelmsson, Dan; Engström, Jens

    2009-04-01

    Little is known about the effects of offshore energy installations on the marine environment, and further research could assist in minimizing environmental risks as well as in enhancing potential positive effects on the marine environment. While biofouling on marine energy conversion devices on one hand has the potential to be an engineering concern, these structures can also affect biodiversity by functioning as artificial reefs. The Lysekil Project is a test park for wave power located at the Swedish west coast. Here, buoys acting as point absorbers on the surface are connected to generators anchored on concrete foundations on the seabed. In this study we investigated the colonisation of foundations by invertebrates and fish, as well as fouling assemblages on buoys. We examined the influence of surface orientation of the wave power foundations on epibenthic colonisation, and made observations of habitat use by fish and crustaceans during three years of submergence. We also examined fouling assemblages on buoys and calculated the effects of biofouling on the energy absorption of the wave power buoys. On foundations we demonstrated a succession in colonisation over time with a higher degree of coverage on vertical surfaces. Buoys were dominated by the blue mussel Mytilus edulis. Calculations indicated that biofouling have no significant effect in the energy absorption on a buoy working as a point absorber. This study is the first structured investigation on marine organisms associated with wave power devices.

  7. Analysis of the power capacity of overmoded slow wave structures

    SciTech Connect

    Zhang, Dian; Zhang, Jun; Zhong, Huihuang; Jin, Zhenxing

    2013-07-15

    As the generated wavelength shortens, overmoded slow wave structures (SWSs) with large diameters are employed in O-type Cerenkov high power microwave (HPM) generators to achieve high power capacity. However, reported experimental results suggest that overmoded slow wave HPM generators working at millimeter wavelength output much lower power than those working at X-band do, despite the fact that the value of D/λ (here, D is the average diameter of SWSs and λ is the generated wavelength) of the former is much larger than that of the latter. In order to understand this, the characteristics of the power capacity of the TM{sub 0n} modes in overmoded SWSs are numerically investigated. Our analysis reveals the following facts. First, the power capacity of higher order TM{sub 0n} modes is apparently larger than that of TM{sub 01} mode. This is quite different from the conclusion got in the foregone report, in which the power capacity of overmoded SWSs is estimated by that of smooth cylindrical waveguides. Second, the rate at which the power capacity of TM{sub 01} mode in overmoded SWSs grows with diameter does not slow down as the TM{sub 01} field transforms from “volume wave” to “surface wave.” Third, once the diameter of overmoded SWSs and the beam voltage are fixed, the power capacity of TM{sub 01} wave drops as periodic length L shortens and the generated frequency rises, although the value of D/λ increases significantly. Therefore, it is necessary to investigate the capability of annular electron beam to interact efficiently with higher order TM{sub 0n} modes in overmoded SWSs if we want to improve the power capacity of overmoded O-type Cerenkov HPM generators working at high frequency.

  8. Chromospheric alfvenic waves strong enough to power the solar wind.

    PubMed

    De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S

    2007-12-01

    Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona. PMID:18063784

  9. Wave-actuated power take-off device for electricity generation

    SciTech Connect

    Chertok, Allan

    2013-01-31

    Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME'€™s power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels €”e.g., 10 to 100kW?

  10. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN through the external modification of the wave spectra at the device locations, based on a new experimentally determined Power Transfer Function established in an earlier WEC-array laboratory study. Changes in nearshore forcing conditions for each array size and configuration are compared in order to determine the scale of the far-field effects of WEC arrays and which array sizes and configurations could have the most significant impacts on coastal processes.

  11. Superoscillations without sidebands: power-efficient sub-diffraction imaging with propagating waves.

    PubMed

    Wong, Alex M H; Eleftheriades, George V

    2015-01-01

    A superoscillation wave is a special superposition of propagating electromagnetic (EM) waves which varies with sub-diffraction resolution inside a fixed region. This special property allows superoscillation waves to carry sub-diffraction details of an object into the far-field, and makes it an attractive candidate technology for super-resolution devices. However, the Shannon limit seemingly requires that superoscillations must exist alongside high-energy sidebands, which can impede its widespread application. In this work we show that, contrary to prior understanding, one can selectively synthesize a portion of a superoscillation wave and thereby remove its high-energy region. Moreover, we show that by removing the high-energy region of a superoscillation wave-based imaging device, one can increase its power efficiency by two orders of magnitude. We describe the concept behind this development, elucidate conditions under which this phenomenon occurs, then report fullwave simulations which demonstrate the successful, power-efficient generation of sub-wavelength focal spots from propagating waves. PMID:25677306

  12. Superoscillations without Sidebands: Power-Efficient Sub-Diffraction Imaging with Propagating Waves

    PubMed Central

    Wong, Alex M. H.; Eleftheriades, George V.

    2015-01-01

    A superoscillation wave is a special superposition of propagating electromagnetic (EM) waves which varies with sub-diffraction resolution inside a fixed region. This special property allows superoscillation waves to carry sub-diffraction details of an object into the far-field, and makes it an attractive candidate technology for super-resolution devices. However, the Shannon limit seemingly requires that superoscillations must exist alongside high-energy sidebands, which can impede its widespread application. In this work we show that, contrary to prior understanding, one can selectively synthesize a portion of a superoscillation wave and thereby remove its high-energy region. Moreover, we show that by removing the high-energy region of a superoscillation wave-based imaging device, one can increase its power efficiency by two orders of magnitude. We describe the concept behind this development, elucidate conditions under which this phenomenon occurs, then report fullwave simulations which demonstrate the successful, power-efficient generation of sub-wavelength focal spots from propagating waves. PMID:25677306

  13. Modeling explosion generated Scholte waves in sandy sediments with power law dependent shear wave speed.

    PubMed

    Soloway, Alexander G; Dahl, Peter H; Odom, Robert I

    2015-10-01

    Experimental measurements of Scholte waves from underwater explosions collected off the coast of Virginia Beach, VA in shallow water are presented. It is shown here that the dispersion of these explosion-generated Scholte waves traveling in the sandy seabed can be modeled using a power-law dependent shear wave speed profile and an empirical source model that determines the pressure time-series at 1 m from the source as a function of TNT-equivalent charge weight. PMID:26520346

  14. Wave Energy Research, Testing and Demonstration Center

    SciTech Connect

    Batten, Belinda

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar environmental considerations. While the non-grid connected testing facility provides an option for WEC developers to prove their technology in a fully-energetic wave environment, the absence of grid connection is somewhat of a limitation. To prove that their technology is commercially viable, developers seek a multi-year grid connected testing option. To address this need, NNMREC is developing a companion grid connected test facility in Newport, Oregon, where small arrays of WECs can be tested as well.

  15. Power and energy for posterity

    NASA Technical Reports Server (NTRS)

    Barthelemy, R. F.; Cooper, R. F.

    1972-01-01

    The use of sophisticated space energy generation and storage systems to benefit the general public was examined. The utilization of these systems for pollution-free generation of energy to satisfy mankind's future electrical, thermal, and propulsion needs was of primary concern. Ground, air, and space transportation; commercial, peaking, and emergency electrical power; and metropolitan and unit thermal energy requirements were considered. Each type of energy system was first analyzed in terms of its utility in satisfying the requirement, and then its potential in reducing the air, noise, thermal, water, and nuclear pollution from future electrical and thermal systems was determined.

  16. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  17. Numerical Modeling of Fluid Structure Interactions of a Floating Wave Energy Extraction Device

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.

    2014-12-01

    In recent years there has been increased attention towards developing the strategies for harnessing hydrokinetic and wave energy from the ocean. There exists several hydrokinetic energy devices designed to extract energy from the ocean current but few wave energy devices are available. The moored floating cylinder-like structure that has been recently developed in South Korea is one of such devices. We carry out numerical simulation of the three-dimensional interactions of a floating cylinder and incoming waves using the level-set curvilinear immersed boundary method of Kang and Sotiropoulos (2012) to improve the understanding the wave energy extraction mechanisms of that device. The results demonstrate the potential of our numerical model as a powerful engineering tool for predicting complex wave-structure interaction phenomena associated with energy extraction devices.

  18. Power-Law Singularities in Gravity-Capillary Waves

    NASA Astrophysics Data System (ADS)

    Lathrop, Daniel P.; Shi, William T.; Errett Hogrefe, J.

    1997-11-01

    Strongly driven waves will break and produce local singularities. Parametrically forced standing waves (Faraday waves) may break in a way that shows a local power-law divergence on the free surface. We experimentally explore this state for its local structure, time dynamics and creation threshold. A local analytical model for the surface height compares favorably with image sequences taken of individual events. This local model is based on liquid collapsing into a cylindrical void, and leads to a flow field with an upward jet. Surface tension and inertial forces are in balance in this special solution, thus selecting one power law form for the free surface. Inertial forces may overwhelm surface tension in other solution types possibly leading to a family of different singularities.

  19. Devices for extracting energy from waves

    SciTech Connect

    Comyns-Carr, C.A.; Platts, M.J.

    1981-08-11

    The invention relates to a device for extracting energy from waves, the device having a pump or a number of pumps arranged to be operated by relative motion between hingedly connected members of the device in response to waves so as to displace a fluid. The device according to the invention is provided with a vane pump having a pump chamber defined by one of the members and a vane extending from an adjacent member so as to be displaced in the pump chamber by the relative motion of the members to displace the fluid. The members may be hingedly connected together at a number of locations at which a respective bearing is supported by a resiliently flexible mounting.

  20. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  1. Noise powered nonlinear energy harvesting

    NASA Astrophysics Data System (ADS)

    Gammaitoni, Luca; Neri, Igor; Vocca, Helios

    2011-04-01

    The powering of small-scale electronic mobile devices has been in recent years the subject of a great number of research efforts aimed primarily at finding an alternative solution to standard batteries. The harvesting of kinetic energy present in the form of random vibrations (from non-equilibrium thermal noise up to machine vibrations) is an interesting option due to the almost universal presence of some kind of motion. Present working solutions for vibration energy harvesting are based on oscillating mechanical elements that convert kinetic energy via capacitive, inductive or piezoelectric methods. These oscillators are usually designed to be resonantly tuned to the ambient dominant frequency. However, in most cases the ambient random vibrations have their energy distributed over a wide spectrum of frequencies, especially at low frequency, and frequency tuning is not always possible due to geometrical/dynamical constraints. We present a new approach to the powering of small autonomous sensors based on vibration energy harvesting by the exploitation of nonlinear stochastic dynamics. Such a method is shown to outperform standard linear approaches based on the use of resonant oscillators and to overcome some of the most severe limitations of present strategies, like narrow bandwidth, need for continuous frequency tuning and low power efficiency. We demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting from ambient vibration.

  2. Internal energy relaxation in shock wave structure

    SciTech Connect

    Josyula, Eswar Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-12-15

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  3. Modeling and enhancement of piezoelectric power extraction from one-dimensional bending waves

    NASA Astrophysics Data System (ADS)

    Tol, S.; Degertekin, F. L.; Erturk, A.

    2014-04-01

    Vibration-based energy harvesting has been heavily researched over the last decade to enable self-powered small electronic components for wireless applications in various disciplines ranging from biomedical to civil engineering. The existing research efforts in this interdisciplinary field have mostly focused on the harvesting of deterministic or stochastic vibrational energy available at a fixed position in space. Such an approach is convenient to design and employ linear and nonlinear vibration-based energy harvesters, such as base-excited cantilevers with piezoelectric laminates. However, persistent vibrations at a fixed frequency and spatial point, or standing wave patterns, are rather simplified representations of ambient vibrational energy. As an alternative to energy harvesting from spatially localized vibrations and standing wave patterns, this work presents an investigation into the harvesting of one-dimensional bending waves in infinite beams. The focus is placed on the use of piezoelectric patches bonded to a thin and long beam and employed to transform the incoming wave energy into usable electricity while minimizing the traveling waves reflected and transmitted from the harvester domain. To this end, performance enhancement by wavelength matching, resistiveinductive circuits, and a localized obstacle are explored. Electroelastic model predictions and performance enhancement efforts are validated experimentally for various case studies.

  4. Non-linear control of the ''clam'' wave energy device. Final report

    SciTech Connect

    Not Available

    1983-09-01

    A promising wave energy device being currently investigated is the ''clam'' device. The clam extracts energy by pumping air through a specially designed (Wells) turbine. Although operation of the Wells turbine does not require a rectified air flow, some additional control will be necessary to optimize the phase of the clam motion for good efficiencies. An examination of the equation of motion in the time domain suggests the possibility of non-linear phase control by mechanical, power take-off, or pneumatic latching. Latching can be shown to increase the efficiency of the device in the longer wavelengths of the wave spectrum, i.e. those of high incident wave power.

  5. Energy Industry Powers CTE Program

    ERIC Educational Resources Information Center

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  6. Energy Industry Powers CTE Program

    ERIC Educational Resources Information Center

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a

  7. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  8. Field-aligned chorus wave spectral power in Earth's outer radiation belt

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Agapitov, O.; Artemyev, A.; Kronberg, E. A.; Haaland, S. E.; Daly, P. W.; Krasnoselskikh, V. V.; Boscher, D.; Bourdarie, S.; Zaliznyak, Y.; Rolland, G.

    2015-05-01

    Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the magnetosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave-particle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40°. We use 10 years of magnetic and electric field wave power measured by STAFF-SA onboard Cluster spacecraft to model the initial (equatorial) chorus wave spectral power, as well as PEACE and RAPID measurements to model the properties of energetic electrons (~ 0.1-100 keV) in the outer radiation belt. The dependence of this distribution upon latitude obtained from Cluster STAFF-SA is then consistently reproduced along a certain L-shell range (4 ≤ L ≤ 6.5), employing WHAMP-based ray tracing simulations in hot plasma within a realistic inner magnetospheric model. We show here that, as latitude increases, the chorus peak frequency is globally shifted towards lower frequencies. Making use of our simulations, the peak frequency variations can be explained mostly in terms of wave damping and amplification, but also cross-L propagation. These results are in good agreement with previous studies of chorus wave spectral extent using data from different spacecraft (Cluster, POLAR and THEMIS). The chorus peak frequency variations are then employed to calculate the pitch angle and energy diffusion rates, resulting in more effective pitch angle electron scattering (electron lifetime is halved) but less effective acceleration. These peak frequency parameters can thus be used to improve the accuracy of diffusion coefficient calculations.

  9. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect

    Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

  10. Electric power generation: Tidal and wave power. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the feasibility of obtaining electric power from ocean disturbances such as waves, swells, and tides. The engineering and economic aspects are emphasized. Theoretical analysis of the power plant potential of selected sites around the world is included. (Contains 250 citations and includes a subject term index and title list.)

  11. Electric power generation: Tidal and wave power. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning the feasibility of obtaining electric power from ocean disturbances such as waves, swells, and tides. The engineering and economic aspects are emphasized. Theoretical analysis of the power plant potential of selected sites around the world is included. (Contains 250 citations and includes a subject term index and title list.)

  12. Floating type ocean wave power station equipped with hydroelectric unit

    NASA Astrophysics Data System (ADS)

    Okamoto, Shun; Kanemoto, Toshiaki; Umekage, Toshihiko

    2013-10-01

    The authors have invented the unique ocean wave power station, which is composed of the floating type platform with a pair of the floats lining up at the interval of one wave pitch and the counter-rotating type wave power unit, its runners are submerged in the seawater at the middle position of the platform. Such profiles make the flow velocity at the runner is twice faster than that of the traditional fixed/caisson type OWC, on the ideal flow conditions. Besides, the runners counter-rotate the inner and the outer armatures of the peculiar generator, respectively, and the relative rotational speed is also twice faster than the speed of the single runner/armature. Such characteristics make the runner diameter large, namely the output higher, as requested, because the torque of the power unit never act on the floating type platform. At the preliminary reseach, this paper verifies to get the power using a Wells type single runner installed in the model station. The runner takes the output which is affected by the oscillating amplitude of the platform, the rotational speed and the inertia force of the runner, etc.

  13. A low-cost float method of harnessing wave energy

    SciTech Connect

    George, M.P.

    1983-12-01

    The author proposes in this paper a low-cost and simple method of harnessing wave energy that should enable coastal regions to be self-sufficient in electric power. The method is eminently applicable to India and such developing countries, being simple and involving a small capital investment. The method was evolved after study of the Indian West Coast fronting the Arabian Sea, and can harness about 50% of the wave energy. A log of wood about 5 metres long and 50 cm. in diameter, having a specific gravity of 0.8 to 0.9, is made to float parallel to the beach and about 50 metres away from it. Its movement is restricted to the vertical plane by means of poles. Two roller chains are attached to the ends of the log which pass over two sprocket free-wheels. When the log is lifted with the crest of the wave, the roller chain moves over the free-wheel. When the trough of the wave reaches the log, its weight is applied to the sprocket wheels through the roller chains. Each sprocket wheel rotates and the rotation is multiplied with a gear wheel. The torque from the high speed spindle of the gear is applied to a small alternating current generator. The AC output from the generator is rectified and used either for charging a battery bank, or connected to the lighting system, or supplied to electrolytic tank for producing hydrogen and other chemicals at the site. A chain of such systems along the coast can supply enough power to light the fishermen's hamlets stretching along the coast.

  14. High-speed photographic investigation of underwater shock wave due to electric pulse power

    NASA Astrophysics Data System (ADS)

    Otsuka, Masahiko; Inoue, Kouhei; Itoh, Shigeru

    2005-03-01

    In recent years, researches of high energy emitted in a short time are performed actively. The high energy is used for manufacturing and forming. The propagation velocity of the reaction in a high energy explosive may reach the maximum about 10 km/s, and may be accompanied by the shock wave. Many products using the high pressure r the shock wave produced by explosion of explosives are put in practical use. However, a legal restriction to use explosives is severe and needs many efforst for qualification acquisition for handling, maintenance, and security. It is simple to generate shock wave by electric pulse power, instead. In this study, when the shock large current was discharged for electrode, the underwater shock wave generated from electrode was investigated. Furthermore, when attaching metal wires with electrode, the shock large current was passed through metal wires and electrode. We compared the underwater shock wave generated from electrode and electrode with metal wire. The shadowgraph system and a high-speed camera (IMACON468 of HADLAND PHOTONICS, interframe times 10ns to 1ms in 10ns steps independently variable, number of channels framing:4 streak:1) were used to observe the underwater shockwave. The recorded a framing photograph and also by a streak photograph. The shadowgraph method is to observe and project the shadow of the light by density change on a screen or the film of a camera, and is also called direct projective technique. Firstly, we evaluated the explosion power of metal wire. When the shock large current was passed through a metal wire, we investigated underwater shock wave generated from metal wire using high-speed camera. The shock wave velocity and the peak pressure were obtained by using a streak photograph. It seems taht a strong shcok wave is obtained, if the bold wire using a mass condenser bank is exploded. Secondly, we observed underwater shock wave generated by discharge from electrode. When optical observation of the underwater shock wave was performed about the equipment which crushes a structure and a rock by sparking the shock large current, having generated the underwater shock wave near the sound velocity of water continuously at intervals of about 5 ?s was checked. Since a continuous wave generated, it is possible that the action time rise for a structure and a rock. Although a peak pressure value was not so high, it is possible that impulse to a structure can improve and it can crush a structure by the impulse rise.

  15. ENergy and Power Evaluation Program

    SciTech Connect

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  16. A powerful reflector in relativistic backward wave oscillator

    SciTech Connect

    Cao, Yibing Sun, Jun; Teng, Yan; Zhang, Yuchuan; Zhang, Lijun; Shi, Yanchao; Ye, Hu; Chen, Changhua

    2014-09-15

    An improved TM{sub 021} resonant reflector is put forward. Similarly with most of the slow wave structures used in relativistic backward wave oscillator, the section plane of the proposed reflector is designed to be trapezoidal. Compared with the rectangular TM{sub 021} resonant reflector, such a structure can depress RF breakdown more effectively by weakening the localized field convergence and realizing good electrostatic insulation. As shown in the high power microwave (HPM) generation experiments, with almost the same output power obtained by the previous structure, the improved structure can increase the pulse width from 25 ns to over 27 ns and no obvious surface damage is observed even if the generated HPM pulses exceed 1000 shots.

  17. Fundamental Studies On Development Of MHD (Magnetohydrodynamic) Generator Implement On Wave Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.

    2016-02-01

    As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.

  18. Design and performance of high laser power interferometers for gravitational-wave detection

    NASA Astrophysics Data System (ADS)

    Dooley, Katherine Laird

    A prediction of Einstein's general theory of relativity, gravitational waves (GWs) are perturbations of the flat space-time Minkowski metric that travel at the speed of light. Indirectly measured by Hulse and Taylor in the 1970s through the energy they carried away from a binary pulsar system, gravitational waves have yet to be detected directly. The Laser Interferometer Gravitational-wave Observatory (LIGO) is part of a global network of gravitational-wave detectors that seeks to detect directly gravitational waves and to study their sources. LIGO operates on the principle of measuring the gravitational wave's physical signature of a strain, or relative displacement of inertial masses. An extremely small effect whose biggest of expected transient signals on Earth is on the order of one part in 1023, gravitational-wave strain can only be measured by detectors so sensitive to displacement as to encounter the effects of quantum physics. To improve their sensitivities and to demonstrate advanced technologies, the LIGO observatories in Hanford, WA and Livingston, LA underwent an upgrade between fall 2007 and summer 2009 called Enhanced LIGO. This study focuses on the experimental challenges of one of the goals of the upgrade: operating at an increased laser power. I present the design and characterization of two of the interferometer subsystems that are critical for the path towards higher laser power: the Input Optics (IO) and the Angular Sensing and Control (ASC) subsystems. The IO required a new design so its optical components would not be susceptible to high power effects such as thermal lensing or thermal beam drift. The ASC required a new design in order to address static instabilities of the arm cavities caused by increased radiation pressure. In all, I demonstrate the capability of an interferometric GW detector to operate at several times the highest of laser powers previously used. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  19. Wave power variability and trends across the North Atlantic influenced by decadal climate patterns

    NASA Astrophysics Data System (ADS)

    Bromirski, Peter D.; Cayan, Daniel R.

    2015-05-01

    Climate variations influence North Atlantic winter storm intensity and resultant variations in wave energy levels. A 60 year hindcast allows investigation of the influence of decadal climate variability on long-term trends of North Atlantic wave power, PW, spanning the 1948-2008 epoch. PW variations over much of the eastern North Atlantic are strongly influenced by the fluctuating North Atlantic Oscillation (NAO) atmospheric circulation pattern, consistent with previous studies of significant wave height, Hs. Wave activity in the western Atlantic also responds to fluctuations in Pacific climate modes, including the Pacific North American (PNA) pattern and the El Niño/Southern Oscillation. The magnitude of upward long-term trends during winter over the northeast Atlantic is strongly influenced by heightened storm activity under the extreme positive phase of winter NAO in the early 1990s. In contrast, PW along the United States East Coast shows no increasing trend, with wave activity there most closely associated with the PNA. Strong wave power "events" exhibit significant upward trends along the Atlantic coasts of Iceland and Europe during winter months. Importantly, in opposition to the long-term increase of PW, a recent general decrease in PW across the North Atlantic from 2000 to 2008 occurred. The 2000-2008 decrease was associated with a general shift of winter NAO to its negative phase, underscoring the control exerted by fluctuating North Atlantic atmospheric circulation on PW trends.

  20. A low-power Wave Union TDC implemented in FPGA

    NASA Astrophysics Data System (ADS)

    Wu, J.; Shi, Y.; Zhu, D.

    2012-01-01

    A low-power time-to-digital convertor (TDC) for an application inside a vacuum has been implemented based on the Wave Union TDC scheme in a low-cost field-programmable gate array (FPGA) device. Bench top tests have shown that a time measurement resolution better than 30 ps (standard deviation of time differences between two channels) is achieved. Special firmware design practices are taken to reduce power consumption. The measurements indicate that with 32 channels fitting in the FPGA device, the power consumption on the FPGA core voltage is approximately 9.3 mW/channel and the total power consumption including both core and I/O banks is less than 27 mW/channel.

  1. A low-power wave union TDC implemented in FPGA

    SciTech Connect

    Wu, Jinyuan; Shi, Yanchen; Zhu, Douglas; /Illinois Math. Sci. Acad.

    2011-10-01

    A low-power time-to-digital convertor (TDC) for an application inside a vacuum has been implemented based on the Wave Union TDC scheme in a low-cost field programmable gate array (FPGA) device. Bench top tests have shown that a time measurement resolution better than 30 ps (standard deviation of time differences between two channels) is achieved. Special firmware design practices are taken to reduce power consumption. The measurements indicate that with 32 channels fitting in the FPGA device, the power consumption on the FPGA core voltage is approximately 9.3 mW/channel and the total power consumption including both core and I/O banks is less than 27 mW/channel.

  2. Sorting and Parameterization of Observed Saturn and Jupiter Chorus Wave Power

    NASA Astrophysics Data System (ADS)

    Menietti, Douglas; Horne, Richard; Shprits, Yuri; Woodfield, Emma; Groene, Joseph; Hospodarsky, George; Gurnett, Donald

    2014-05-01

    Recent work has shown that whistler mode chorus waves can accelerate electrons to MeV energies outside the orbit of the moon Io. These particles then form the source of Jupiter's radiation belts which peak near L=1.5. The wave acceleration process depends on the distribution of chorus wave power in frequency, local time, latitude and also on the plasma density. In this study we bin the chorus power spectral density observed by the Cassini radio and plasma wave science investigation (RPWS) at Saturn and the Galileo plasma wave investigation (PWS) at Jupiter. The spatial bins include L-shell (based on models), latitude, and local time. Within each spatial bin we calculate the mean power-versus-frequency profile (for upper and lower bands relative to the electron cyclotron frequency) which can then be fit to a guassian. One goal of the study is to provide a database for use in quasilinear models requiring the calculation of diffusion coefficients. In this report we present our initial findings.

  3. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect

    Paul T. Jacobson; George Hagerman; George Scott

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration’s (NOAA’s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  4. Energy extraction from ocean currents and waves: Mapping the most promising locations

    NASA Astrophysics Data System (ADS)

    Ordonez, A.; Hamlington, P.; Fox-Kemper, B.

    2012-12-01

    Concerns about fossil fuel supplies and an ever-increasing demand for energy have prompted the search for alternative power sources. One option is the ocean, a power-dense and renewable source of energy, but its capacity to meet human energy demands is poorly understood. Although raw wave energy resources have been investigated at many scales, there is still substantial uncertainty regarding how much useful power can be extracted. Even less is known about the energy available in ocean currents, especially on a global scale. Moreover, no studies have attempted to examine wave and current energy simultaneously while at the same time taking into account geographical, environmental, and technical factors that can substantially limit the amount of extractable energy. In this study, we use high fidelity oceanographic model data to assess the availability, recoverability, and value of energy in ocean wind waves and currents. Global wave energy transport, coastal wave energy flux, and current energy are calculated and mapped using the model data. These maps are then incorporated into a geographic information system (GIS) in order to assess the U.S. recoverable ocean energy resource. In the GIS, the amount of recoverable energy is estimated by combining the power output from realistic wave and current energy farms with physical and ecological data such as bathymetry and environmentally protected areas. This holistic approach is then used to examine the distribution and value of extractable wave and current energy along the U.S. coast. The results support previous studies that show that the U.S. West Coast has large potential for wave energy extraction and that the Florida Strait has high potential for current energy extraction. We also show that, at any particular location, the amount of available ocean energy is only one factor of many that determines the ultimate feasibility and value of the energy. We outline ways in which the GIS framework used in this assessment can be enhanced to better model the many variables that affect the value of ocean energy; future research in this area may lead to greater support for developing, testing, and deploying ocean energy converter technology.

  5. Compact pulse power device for generation of one-dimensional strong shock waves

    NASA Astrophysics Data System (ADS)

    Kondo, Kotaro; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2006-03-01

    A compact pulse power device is proposed for generation of one-dimensional strong shock waves, and preliminary experimental results are reported. The cross section of the discharge area is decreased by tapered electrodes to prevent the decay of the shock wave. This new device drives a quasi-one-dimensional strong shock with the front speed 45km/s in the acrylic guiding tube filled with Xe gas. When the front speed is more than the critical speed Drad, an interesting structure is observed at the shock front, which indicates that the radiative energy transport affects the shock structure.

  6. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial. PMID:26610976

  7. Real-time Ocean Wave Prediction for Optimal Performance of a Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Cavaglieri, Daniele; Bewley, Thomas

    2013-11-01

    In recent years, there has been a growing interest in renewable energy. Among all the available possibilities, wave energy conversion, due to the huge availability of energy that the ocean could provide, represents nowadays one of the most promising solutions. However, the efficiency of a wave energy converter for ocean wave energy harvesting is still far from making it competitive with more mature fields of renewable energy, such as solar and wind energy. One of the main problems is related to the inability to accurately predict the profile of oncoming waves approaching the wave energy converter. For this reason, we developed a new hybrid method for state estimation of nonlinear systems, which is based on a variational formulation of an ensemble smoother, combined with the formulation of the ensemble Kalman smoother. This method has been employed for the optimal forecasting of ocean waves via sensors placed on an array of wave energy converters. The coupled simulation of ocean waves and energy devices has been carried out leveraging a nonlinear High Order Spectral code.

  8. Mechanochemistry for Shock Wave Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Shaw, William; Ren, Yi; Su, Zhi; Moore, Jeffrey; Suslick, Kenneth; Dlott, Dana

    2015-06-01

    Using our laser-driven flyer-plate apparatus we have developed a technique for detecting mechanically driven chemical reactions that attenuate shock waves. In these experiments 75 μm laser-driven flyer-plates travel at speeds of up to 2.8 km/s. Photonic Doppler velocimetry is used to monitor both the flight speed and the motions of an embedded mirror behind the sample on the supporting substrate. Since the Hugoniot of the substrate is known, mirror motions can be converted into the transmitted shock wave flux and fluence through a sample. Flux shows the shock profile whereas fluence represents the total energy transferred per unit area, and both are measured as a function of sample thickness. Targets materials are micrograms of carefully engineered organic and inorganic compounds selected for their potential to undergo negative volume, endothermic reactions. In situ fluorescence measurements and a suite of post mortem analytical methods are used to detect molecular chemical reactions that occur due to impact.

  9. Scattered surface wave energy in the seismic coda

    USGS Publications Warehouse

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  10. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    SciTech Connect

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: Neil.Murphy@jpl.nasa.gov

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  11. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    PubMed

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean. PMID:25719956

  12. Diffuse Waves and Energy Densities Near Boundaries

    NASA Astrophysics Data System (ADS)

    Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.

    2007-12-01

    Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of this energy spectrum, ruling out non linear effects, may influence the seismic response for future earthquakes. Partial supports from DGAPA-UNAM, Project IN114706, Mexico; from Proyect MCyT CGL2005-05500-C02/BTE, Spain; from project DyETI of INSU-CNRS, France, and from the Instituto Mexicano del Petróleo are greatly appreciated.

  13. Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Power Generation

    NASA Astrophysics Data System (ADS)

    Prasad, Deepak; Zullah, Mohammed Asid; Choi, Young-Do; Lee, Young-Ho

    2010-06-01

    Cross flow turbine also known as Banki turbine, is a hydraulic turbine that may be classified as an impulse turbine. At present it has gained interest in small and low head establishments because of its simple structure, cost effectiveness and low maintenance. Therefore, the present paper expands on this idea and aims at implementing the Direct Drive Turbine (DDT) for wave power generation. Wave power has enormous amount of energy which is environmentally friendly, renewable and can be exploited to satisfy the energy needs. A Numerical Wave Tank (NWT) was used to simulate the sea conditions and after obtaining desired wave properties; the augmentation channel plus the front guide nozzle and rear chamber were integrated to the NWT. The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region which represented the turbine housing. The front and rear nozzle were geometrically identical. Two different nozzle configurations were studied; spiral rear wall type and a straight rear wall type. In addition to this, the effect of front guide nozzle divergent angle was also studied. The general idea is to investigate how different augmentation channel geometry and front guide nozzle divergent angle affects the flow, the water horse power and the first stage (primary stage) energy conversion. The analysis was performed using a commercial CFD code of the ANSYS-CFX. The results of the flow in an augmentation channel of the Direct Drive Turbine in oscillating flow for all the cases are presented by means of pressure and velocity vectors. The water horse power (WHP) and first stage energy conversion for the models are also presented.

  14. Laser power stabilization for second-generation gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Seifert, Frank; Kwee, Patrick; Heurs, Michèle; Willke, Benno; Danzmann, Karsten

    2006-07-01

    We present results on the power stabilization of a Nd:YAG laser in the frequency band from 1 Hz to 100 kHz. High-power, low-noise photodetectors are used in a dc-coupled control loop to achieve relative power fluctuations down to 5×10-9 Hz-1/2 at 10 Hz and 3.5×10-9 Hz-1/2 up to several kHz, which is very close to the shot-noise limit for 80 mA of detected photocurrent on each detector. We investigated and eliminated several noise sources such as ground loops and beam pointing. The achieved stability level is close to the requirements for the Advanced LIGO gravitational wave detector.

  15. Laser power stabilization for second-generation gravitational wave detectors.

    PubMed

    Seifert, Frank; Kwee, Patrick; Heurs, Michèle; Willke, Benno; Danzmann, Karsten

    2006-07-01

    We present results on the power stabilization of a Nd:YAG laser in the frequency band from 1 Hz to 100 kHz. High-power, low-noise photodetectors are used in a dc-coupled control loop to achieve relative power fluctuations down to 5 x 10(-9) Hz(-1/2) at 10 Hz and 3.5 x 10(-9) Hz(-1/2) up to several kHz, which is very close to the shot-noise limit for 80 mA of detected photocurrent on each detector. We investigated and eliminated several noise sources such as ground loops and beam pointing. The achieved stability level is close to the requirements for the Advanced LIGO gravitational wave detector. PMID:16770412

  16. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  17. Exploring Energy, Power, and Transportation Technology.

    ERIC Educational Resources Information Center

    Bowers, Donovan; Kellum, Mary

    These teacher's materials for a seven-unit course were developed to help students develop technological literacy, career exploration, and problem-solving skills relative to the communication industries. The seven units include an overview of energy and power, principles of energy and power, power production and conversion, power transmission and…

  18. High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube

    NASA Technical Reports Server (NTRS)

    Krawczyk, Richard; Wilson, Jeffrey; Simons, Rainee; Williams, Wallace; Bhasin, Kul; Robbins, Neal; Dibb, Daniel; Menninger, William; Zhai, Xiaoling; Benton, Robert; Burdette, James

    2007-01-01

    The L-3 Communications Model 999H traveling-wave tube (TWT) has been demonstrated to generate an output power of 144 W at 60-percent overall efficiency in continuous-wave operation over the frequency band from 31.8 to 32.3 GHz. The best TWT heretofore commercially available for operation in the affected frequency band is characterized by an output power of only 35 W and an efficiency of 50 percent. Moreover, whereas prior TWTs are limited to single output power levels, it has been shown that the output power of the Model 999H can be varied from 54 to 144 W. A TWT is a vacuum electronic device used to amplify microwave signals. TWTs are typically used in free-space communication systems because they are capable of operating at power and efficiency levels significantly higher than those of solid-state devices. In a TWT, an electron beam is generated by an electron gun consisting of a cathode, focusing electrodes, and an anode. The electrons pass through a hole in the anode and are focused into a cylindrical beam by a stack of periodic permanent magnets and travel along the axis of an electrically conductive helix, along which propagates an electromagnetic wave that has been launched by an input signal that is to be amplified. The beam travels within the helix at a velocity close to the phase velocity of the electromagnetic wave. The electromagnetic field decelerates some of the electrons and accelerates others, causing the beam to become formed into electron bunches, which further interact with the electromagnetic wave in such a manner as to surrender kinetic energy to the wave, thereby amplifying the wave. The net result is to amplify the input signal by a factor of about 100,000. After the electrons have passed along the helix, they impinge on electrodes in a collector. The collector decelerates the electrons in such a manner as to recover most of the remaining kinetic energy and thereby significantly increase the power efficiency of the TWT.

  19. Solitary and shock waves in discrete double power law materials

    NASA Astrophysics Data System (ADS)

    Herbold, Eric; Nesterenko, Vitali

    2007-06-01

    A novel strongly nonlinear metamaterial is composed using a periodic arrangement of toroidal rings between plates. The toroids are considered massless strongly nonlinear springs where the force versus displacement relationship is described by two additive power-law relationships. In these systems the nonlinearity is due to the dramatic change of the contact plane, which starts as an arbitrarily thin circle then increases in thickness with increasing compression. Solitary and shock waves are examined numerically and experimentally using three different types of polymer or rubber o-rings allowing mitigation of higher amplitude shock impulses in comparison with granular systems. In these systems a train of pulses can consist of two separate groups related to two strongly nonlinear regimes with different values of exponents, depending on the amplitude. In experiments two types of shock waves (monotonic or oscillatory) were observed depending on the type of o-rings.

  20. Artificial airglow excited by high-power radio waves.

    PubMed

    Bernhardt, P A; Duncan, L M; Tepley, C A

    1988-11-18

    High-power electromagnetic waves beamed into the ionosphere from ground-based transmitters illuminate the night sky with enhanced airglow. The recent development of a new intensified, charge coupled-device imager made it possible to record optical emissions during ionospheric heating. Clouds of enhanced airglow are associated with large-scale plasma density cavities that are generated by the heater beam. Trapping and focusing of electromagnetic waves in these cavities produces accelerated electrons that collisionally excite oxygen atoms, which emit light at visible wavelengths. Convection of plasma across magnetic field lines is the primary source for horizontal motion of the cavities and the airglow enhancements. During ionospheric heating experiments, quasi-cyclic formation, convection, dissipation and reappearance of the cavites comprise a major source of long-term variability in plasma densities during ionospheric heating experiments. PMID:17834046

  1. Control strategies to optimise power output in heave buoy energy convertors

    NASA Astrophysics Data System (ADS)

    Abu Zarim, M. A. U. A.; Sharip, R. M.

    2013-12-01

    Wave energy converter (WEC) designs are always discussed in order to obtain an optimum design to generate the power from the wave. Output power from wave energy converter can be improved by controlling the oscillation in order to acquire the interaction between the WEC and the incident wave.The purpose of this research is to study the heave buoys in the interest to generate an optimum power output by optimising the phase control and amplitude in order to maximise the active power. In line with the real aims of this study which investigate the theory and function and hence optimise the power generation of heave buoys as renewable energy sources, the condition that influence the heave buoy must be understand in which to propose the control strategies that can be use to control parameters to obtain optimum power output. However, this research is in an early stage, and further analysis and technical development is require.

  2. Wave energy dissipation by intertidal sand waves on a mixed-sediment Beach

    USGS Publications Warehouse

    Adams, P.; Ruggiero, P.

    2006-01-01

    Within the surf zone, the energy expended by wave breaking is strongly influenced by nearshore bathymetry, which is often linked to the character and abundance of local sediments. Based upon a continuous, two year record of Argus Beach Monitoring System (ABMS) data on the north shore of Kachemak Bay in southcentral Alaska, we model the enhancement of wave energy dissipation by the presence of intertidal sand waves. Comparison of model results from simulations in the presence and absence of sand waves illustrates that these ephemeral morphological features can offer significant protection to the backing beach and sea cliff through two mechanisms: (1) by moving the locus of wave breaking seaward and (2) by increasing energy expenditure associated with the turbulence of wave breaking. Copyright ASCE 2006.

  3. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong

    2009-03-01

    Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.

  4. Enhancement of particle-wave energy exchange by resonance sweeping

    SciTech Connect

    Berk, H.L.; Breizman, B.N.

    1995-10-01

    It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation.

  5. High efficiency octave bandwidth millimeter wave power amplifier

    NASA Astrophysics Data System (ADS)

    Sokolov, Vladimir; Swirhun, Stanley; Beyer, James B.; Prasad, S. N.

    1989-08-01

    Millimeter (MM) wave monolithic distributed amplifiers are designed to cover the 30 to 60 GHz frequency band. Both low-pass bandpass and negative resistance compensated designs are developed. The MMIC designs are based on pseudomorphic MODFET devices having 1/4 micron gates fabricated on 3-inch wafers using a hybrid e-beam/optical stepper lithography technique. In addition to standard pseudomorphic MODFET structures with uniformly doped AlGaAs, psuedo-pulsed-doped structures were also developed to address low drain breakdown voltage problems. 60 GHz monolithic gain cells with 10 mW output power were also developed.

  6. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  7. Experimental results using active control of traveling wave power flow

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Hall, Steven R.

    1991-01-01

    Active structural control experiments conducted on a 24-ft pinned-free beam derived feedback compensators on the basis of a traveling-wave approach. A compensator is thus obtained which eliminates resonant behavior by absorbing all impinging power. A causal solution is derived for this noncausal compensator which mimics its behavior in a given frequency range, using the Wiener-Hopf. This optimal Wiener-Hopf compensator's structure-damping performance is found to exceed any obtainable by means of rate feedback. Performance limitations encompassed the discovery of frequencies above which the sensor and actuator were no longer dual and an inadvertent coupling of the control hardware to unmodeled structure torsion modes.

  8. Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model

    NASA Astrophysics Data System (ADS)

    Trossman, D. S.; Arbic, B. K.; Garner, S.; Goff, J. A.; Jayne, S. R.; Metzger, E.; Wallcraft, A.

    2012-12-01

    We examine the impact of a lee wave drag parameterization on an eddying global ocean model. The wave drag parameterization represents the the momentum transfer associated with the generation of lee waves arising from geostrophic flow impinging upon rough topography. It is included in the online model, thus ensuring that abyssal currents and stratification in the simulation are affected by the presence of the wave drag. The model utilized here is the nominally 1/12th degree Hybrid Coordinate Ocean Model (HYCOM) forced by winds and air-sea buoyancy fluxes. An energy budget including the parameterized wave drag, quadratic bottom boundary layer drag, vertical eddy viscosity, and horizontal eddy viscosity is diagnosed during the model runs and compared with the wind power input and buoyancy fluxes. Wave drag and vertical viscosity are the largest of the mechanical energy dissipation rate terms, each more than half of a terawatt when globally integrated. The sum of all four dissipative terms approximately balances the rate of energy put by the winds and buoyancy fluxes into the ocean. An ad hoc global enhancement of the bottom drag at each grid point by a constant factor cannot serve as a perfect substitute for wave drag, particularly where there is little wave drag. Eddy length scales at the surface, sea surface height variance, surface kinetic energy, and positions of intensified jets in the model are compared with those inferred from altimetric observations. Vertical profiles of kinetic energy from the model are compared with mooring observations to investigate whether the model is improved when wave drag is inserted.; The drag and viscosity terms in our energy budget [log_10(W m^-2)]: (a) quadratic bottom boundary layer drag, (b) parameterized internal lee wave drag, (c) vertical viscosity, and (d) "horizontal" viscosity. Shown is an average of inline estimates over one year of the spin-up phase with wave drag.

  9. Careers in Geothermal Energy: Power from below

    ERIC Educational Resources Information Center

    Liming, Drew

    2013-01-01

    In the search for new energy resources, scientists have discovered ways to use the Earth itself as a valuable source of power. Geothermal power plants use the Earth's natural underground heat to provide clean, renewable energy. The geothermal energy industry has expanded rapidly in recent years as interest in renewable energy has grown. In 2011,…

  10. Design of stabilization system for medium wave infrared laser power

    NASA Astrophysics Data System (ADS)

    Ding, Zhong-kui; Wang, Lin; Shi, Xue-shun; Xu, Jun

    2013-12-01

    The 3~5um Medium Wave Infrared(MWIR) laser has gained a lot of attention for its important application values in remote sensing, medical, military and many other fields. However, there are many technical difficulties to fabricate those kind lasers, and the performance of their output power stabilities remain to be improved. In a practical application, the MWIR's output power will be instability when the temperature changes and the current varies. So a system of reducing MWIR power fluctuation should be established. In this paper, a photoelectric system of stabilizing the output power of He-Ne laser is developed, which is designed based on the theory of feedback control. Some primary devices and technologies are presented and the functions of each module are described in detail. Among of those, an auxiliary visible light path is designed to aid to adjust WMIR optical system. A converging lens as spatial filter is employed to eliminate stray light well. Dewar temperature control equipment is also used to reduce circuit noise in IR detector. The power supply of AD conversion circuit is independently designed to avoid the crosstalk caused by the analog section and digital section. Then the system has the advantages of good controllability, stability and high precision after above designation. Finally, the measurement precision of the system is also analyzed and verified.

  11. Analysis of microwave interference switches with distributed power of switched wave and plasma gas-discharge switching

    NASA Astrophysics Data System (ADS)

    Artemenko, S. N.; Avgustinovich, V. A.; Gorev, S. A.; Igumnov, V. S.

    2015-11-01

    This paper reports on development of effective cascade type microwave interference switches using waveguide H-tees providing total transition attenuation value of about -50dB at the non-transmitting state, the power losses of -2-3dB at the transmitting state, and the working power compared to the one of a regular waveguide. These switches have different types of connections of two or three H-tees. Different designs provide different distributions of switched wave power between tees and provide different power levels of the switched wave. Characteristics of the switches made of tees matched from their side arms and of unmatched ones were calculated using the scattering matrix method. It was shown the matched tees used in the design allow decreasing by several times the power level of the switched wave and that increases the operating power and stability of the switching process. While some definite combination of unmatched tees allow increasing the power level of the switched wave and may provide effective switching of the transmitted wave at decreased power level. It was shown experimentally the cascade switches could be used as effective energy extraction device in an active resonant microwave compressor also.

  12. Energy and energy flux in axisymmetric slow and fast waves

    NASA Astrophysics Data System (ADS)

    Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.

    2015-06-01

    Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org

  13. Speech articulator measurements using low power EM-wave sensors.

    PubMed

    Holzrichter, J F; Burnett, G C; Ng, L C; Lea, W A

    1998-01-01

    Very low power electromagnetic (EM) wave sensors are being used to measure speech articulator motions as speech is produced. Glottal tissue oscillations, jaw, tongue, soft palate, and other organs have been measured. Previously, microwave imaging (e.g., using radar sensors) appears not to have been considered for such monitoring. Glottal tissue movements detected by radar sensors correlate well with those obtained by established laboratory techniques, and have used to estimate a voiced excitation function for speech processing applications. The noninvasive access, coupled with the small size, low power, and high resolution of these new sensors, permit promising research and development applications in speech production, communication disorders, speech recognition and related topics. PMID:9440346

  14. Speech articulator measurements using low power EM-wave sensors

    SciTech Connect

    Holzrichter, J.F.; Burnett, G.C.; Ng, L.C.; Lea, W.A.

    1998-01-01

    Very low power electromagnetic (EM) wave sensors are being used to measure speech articulator motions as speech is produced. Glottal tissue oscillations, jaw, tongue, soft palate, and other organs have been measured. Previously, microwave imaging (e.g., using radar sensors) appears not to have been considered for such monitoring. Glottal tissue movements detected by radar sensors correlate well with those obtained by established laboratory techniques, and have been used to estimate a voiced excitation function for speech processing applications. The noninvasive access, coupled with the small size, low power, and high resolution of these new sensors, permit promising research and development applications in speech production, communication disorders, speech recognition and related topics. {copyright} {ital 1998 Acoustical Society of America.}

  15. Experimental determination of radiated internal wave power without pressure field data

    NASA Astrophysics Data System (ADS)

    Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.

    2014-04-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux left<{J}right> and total radiated power P for two-dimensional internal gravity waves. Both left<{J}right> and P are determined from expressions involving only a scalar function, the stream function ?. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  16. Experimental determination of radiated internal wave power without pressure field data

    SciTech Connect

    Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.

    2014-04-15

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  17. Wave spectral energy variability in the northeast Pacific

    USGS Publications Warehouse

    Bromirski, P.D.; Cayan, D.R.; Flick, R.E.

    2005-01-01

    The dominant characteristics of wave energy variability in the eastern North Pacific are described from NOAA National Data Buoy Center (NDBC) buoy data collected from 1981 to 2003. Ten buoys at distributed locations were selected for comparison based on record duration and data continuity. Long-period (LP) [T > 12] s, intermediate-period [6 ??? T ??? 12] s, and short-period [T < 6] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses of monthly wave energy anomalies reveal that all three wave energy components exhibit similar patterns of spatial variability. The dominant mode represents coherent heightened (or diminished) wave energy along the West Coast from Alaska to southern California, as indicated by composites of the 700 hPa height field. The second EOF mode reveals a distinct El Nin??o-Southern Oscillation (ENSO)-associated spatial distribution of wave energy, which occurs when the North Pacific storm track is extended unusually far south or has receded to the north. Monthly means and principal components (PCs) of wave energy levels indicate that the 1997-1998 El Nin??o winter had the highest basin-wide wave energy within this record, substantially higher than the 1982-1983 El Nin??o. An increasing trend in the dominant PC of LP wave energy suggests that storminess has increased in the northeast Pacific since 1980. This trend is emphasized at central eastern North Pacific locations. Patterns of storminess variability are consistent with increasing activity in the central North Pacific as well as the tendency for more extreme waves in the south during El Nin??o episodes and in the north during La Nin??a. Copyright 2005 by the American Geophysical Union.

  18. Performance of large arrays of point absorbing direct-driven wave energy converters

    NASA Astrophysics Data System (ADS)

    Engström, J.; Eriksson, M.; Göteman, M.; Isberg, J.; Leijon, M.

    2013-11-01

    Future commercial installation of wave energy plants using point absorber technology will require clusters of tens up to several hundred devices, in order to reach a viable electricity production. Interconnected devices also serve the purpose of power smoothing, which is especially important for devices using direct-driven power take off. The scope of this paper is to evaluate a method to optimize wave energy farms in terms of power production, economic viability, and resources. In particular, the paper deals with the power variation in a large array of point-absorbing direct-driven wave energy converters, and the smoothing effect due to the number of devices and their hydrodynamic interactions. A few array geometries are compared and 34 sea states measured at the Lysekil research site at the Swedish west coast are used in the simulations. Potential linear flow theory is used with full hydrodynamic interactions between the buoys. It is shown that the variance in power production depends crucially on the geometry of the array and the number of interacting devices, but not significantly on the energy period of the waves.

  19. Wave energy gradients and shoreline change on Vabbinfaru platform, Maldives

    NASA Astrophysics Data System (ADS)

    Beetham, Edward Paul; Kench, Paul Simon

    2014-03-01

    This study examined coral reef platform wave processes and shoreline dynamics over short timescales. Wave energy gradients and shoreline change were measured over a 3-week period on Vabbinfaru platform, North Malé Atoll, Maldives, during the westerly monsoon in June 2010. Wave processes were measured using nine pressure sensors recording near continuous data for 19 days around the reef and shoreline of a small circular sand cay. Toe of beach position was surveyed before, during and after the deployment to map changes in shoreline configuration. Results show that wave height and direction on the windward reef are closely controlled by local wind activity inside the atoll lagoon. Wave transformation across the platform was found to exhibit strong tidal modulation and results in distinct cross-reef energy zonation. Results are presented by comparing two contrasting boundary wind conditions: the first 2 weeks characterised by moderate southwest winds, and the third week characterised by stronger northwest winds. Wave data was interpolated to platform scale and used to show spatial variations in energy exposure during the different boundary conditions. Under southwest winds, greatest wave energy was present on the western and leeward (eastern) reefs, driving an energy gradient towards the sheltered northern and southern shorelines. A net 4.5% increase in beach area was measured during this period. During stronger northwest winds, higher wave energy impacted the reef and was concentrated on the western reef, northern reef and northwest shoreline. An energy gradient formed around the island towards a low energy zone located at the southeast shoreline. Significant shoreline change occurred during this period with the toe of beach retreating landward by more than 10 m on the northwest, northeast and southwest of Vabbinfaru Island. Beach area was reduced by 3761 m2 (17%) as the shoreline was forced to adjust in response to a new hydrodynamic regime. Results show that the coral reef platform is able to modify and filter the incident wave climate, resulting in marked spatial differences in wave spectra. Spatial differences in wave energy are sensitive to local wind activity, resulting in rapid alteration in wave energy distribution around the platform. Results highlight that reef island shorelines are morphologically sensitive to short-term changes in boundary wind and wave conditions. Wave energy gradients driven by local wind activity have the potential to drive alongshore fluxes of sediment around island shorelines. Therefore, changes to the process regime can result in disequilibrium of the shoreline, forcing rapid adjustment of island sediment.

  20. Power combiner

    DOEpatents

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  1. Comparison of performances of turbines for wave energy conversion

    NASA Astrophysics Data System (ADS)

    Kinoue, Yoichi; Setoguchi, Toshiaki; Kuroda, Tomohiko; Kaneko, Kenji; Takao, Manabu; Thakker, Ajit

    2003-11-01

    The Wells turbine for a wave power generator is a self-rectifying air turbine that is available for an energy conversion in an oscillating water-air column without any rectifying valve. The objective of this paper is to compare the performances of the Wells turbines in which the profile of blade are NACA0020, NACA0015, CA9 and HSIM15-262123-1576 in the small-scale model testing. The running characteristics in the steady flow, the start and running characteristics in the sinusoidal flow and the hysteretic characteristics in the sinusoidal flow were investigated for four kinds of turbine. As a conclusion, the turbine in which the profile of blade is NACA0020 has the best performances among 4 turbines for the running and starting characteristics in the small-scale model testing.

  2. Power marketing and renewable energy

    SciTech Connect

    Fang, J.M.

    1997-09-01

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

  3. The role of the ionosphere in coupling upstream ULF wave power into the dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Arnoldy, R. L.; Anderson, B. J.; Rosenberg, T. J.

    1991-01-01

    A series of recent studies of Pc 3 magnetic pulsations in the dayside outer magnetosphere has given new insights into the possible mechanisms of entry of ULF wave power into the magnetosphere from a bow shock-related upstream source. A comparison is made of data from two 10-hour intervals on successive days in April 1986 and then a possible model for transmission of pulsation signals from the magnetosheath into the dayside magnetosphere is presented. Clear interplanetary magnetic field magnitude control of dayside resonant harmonic pulsations and band-limited very high latitude pulsations, as well as pulsation-modulated precipitation of what appear to be magnetosheath/boundary layer electrons are shown. It is believed that this modulated precipitation may be responsible for the propagation of upstream wave power in the Pc 3 frequency band into the high-latitude ionosphere, from whence it may be transported throughout the dayside outer magnetosphere by means of an 'ionospheric transistor'. In this model, modulations in ionospheric conductivity caused by cusp/cleft precipitation cause varying ionospheric currents with frequency spectra determined by the upstream waves; these modulations will be superimposed on the Birkeland currents, which close via these ionospheric currents. Modulated region 2 Birkeland currents will in turn provide a narrow-band source of wave energy to a wide range of dayside local times in the outer magnetosphere.

  4. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    SciTech Connect

    Goossens, M.; Van Doorsselaere, T.; Soler, R.; Verth, G.

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  5. Dynamics of a mechanical frequency up-converted device for wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Lin, Zheng; Zhang, Yongliang

    2016-04-01

    This paper proposes a novel mechanical impact-driven frequency up-converted device for wave energy harvesting, which could bridge a gap between waves of frequency 0.03-1 Hz and electrical generators of operation frequency hundreds hertz. The device mainly consists of a cylindrical buoy, beams and teeth. A mathematical model for the dynamics of such a device is presented, which incorporates the fluid-structure interaction between the wave and the buoy, and the structural interactions between the beams and the teeth. The momentum balance method and the coefficient of restitution are employed, which give rise to piecewise nonlinear equations governing the motions of the buoy and the beams. Experimental tests carried out in a wave flume validate the model and prove the effectiveness of frequency up-converted method in wave energy harvesting. The characteristics of frequency up-converted transformation from buoy motion to beams oscillation for wave energy harvesting are probed, and the effects of beam Young's modulus, beam number, wave period and wave height on strain power of the beams are explored.

  6. Mechanism for generating power from wave motion on a body of water

    SciTech Connect

    Sachs, G.A.; Sachs, H.K.

    1982-09-28

    A mechanism for generating power from wave motion on a body of water is described. The mechanism includes a buoyant body which is adapted to float on a body of water and to roll and pitch in response to the wave motion of the water. A gyro-wave energy transducer is mounted on the buoyant body for translating the pendulum-like motions of the buoyant body into rotational motion. The gyro-wave energy transducer includes a gimbal comprised of first and second frames, with the first frame being pivotally mounted to the second frame and the second frame being pivotally mounted to the buoyant body. A gyroscope is mounted to the first frame for rotation about an axis perpendicular to the axes of rotation of the first and second frames. A motor/generator is coupled to the gyroscope for maintaining a controlled rotational velocity for the gyroscope. Transferring members are associated with one of the first and second frames for transferring torque of one of the first and second frames to the gyroscope about an axis that is perpendicular to that of the gyroscope which results in rotation of the other of the first and second frames. An electrical generator is responsive to the relative rotational movement of the first and second frames for generating electrical energy. A storage battery is mounted on the buoyant body for storing and releasing electrical energy and is operatively coupled to the motor/generator and the electrical generator. A control circuit is associated with the generator and the motor/generator unit of the gyroscope and is responsive to the time rate of change of current produced by the generator for controlling the rotational velocity of the gyroscope in order to maintain maximum power output from the electrical generator.

  7. Estimating Energy Dissipation Due to Wave Breaking in the Surf Zone Using Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Carini, Roxanne J.

    Wave breaking is the largest forcing mechanism in the surf zone. Therefore, quantifying energy dissipation due to wave breaking is important for improving models that seek to predict nearshore circulation, wave-current interactions, air-sea gas exchange, erosion and accretion of sediment, and storm surge. Wave energy dissipation is difficult to measure with in situ instruments, and even the most reliable estimates are limited to point measurements. Using remote sensing technologies, specifically infrared (IR) imagery, the high spatial and temporal variability of wave breaking may be sampled. Duncan (1981) proposed a model (D81) for dissipation on a wave-by-wave basis, based on wave slope and roller length, the crest-perpendicular length of the aerated region of a breaking wave. The wave roller is composed of active foam, which, in thermal IR images, appears brighter than the surrounding water and the residual foam, the foam left behind in the wake of a breaking wave. Using IR imagery taken during the Surf Zone Optics 2010 experiment at Duck, NC, and exploiting the distinct signature of active foam, a retrieval algorithm was developed to identify and extract breaking wave roller length. Roller length was then used to estimate dissipation rate via the D81 formulation. The D81 dissipation rate estimates compare reasonably to in situ dissipation estimates at a point. When the D81 estimates are compared to the bulk energy flux into the surf zone, it is found that wave breaking dissipates approximately 25-36% of the incoming wave energy. The D81 dissipation rate estimates also agree closely with those from a dissipation parameterization proposed by Janssen and Battjes (2007) (JB07) and commonly applied within larger nearshore circulation models. The JB07 formulation, however, requires additional physical parameters (wave height and water depth) that are often sparsely sampled and are difficult to attain from remote sensing alone. The power of the D81 formulation lies in its dependence on surface signatures alone, and with the methods developed here and those proposed for future work, wave energy dissipation rate maps could be produced for any imageable coastline.

  8. Active Power and Nonactive Power Control of Distributed Energy Resources

    SciTech Connect

    Xu, Yan; Li, Fangxing; Rizy, D Tom; Kueck, John D

    2008-01-01

    Distributed energy resources (DE) have been widely used in the power systems to supply active power, and most of the present DE resources are operated with limited or without nonactive power capability. This paper shows that with a slight modification in hardware configuration and a small boost in the power ratings, as well as proper implementation of control strategies, a DE system with a power electronics converter interface can provide active power and nonactive power simultaneously and independently. A DE can provide dynamic voltage regulation to the local bus because of its nonactive power capability. Furthermore, the proposed DE control method in this paper can effectively compensate the unbalance in the local voltage. The system requirements such as the inverter current rating and the dc voltage rating are discussed. The analysis of the system requirements to provide nonactive power shows that it is cost-effective to have DE provide voltage regulation.

  9. Design of the dual-buoy wave energy converter based on actual wave data of East Sea

    NASA Astrophysics Data System (ADS)

    Kim, Jeongrok; Kweon, Hyuck-Min; Jeong, Weon-Mu; Cho, Il-Hyoung; Cho, Hong-Yeon

    2015-07-01

    A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: 36.404 N° and 129.274 E°) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

  10. Advanced Gunn diode as high power terahertz source for a millimetre wave high power multiplier

    NASA Astrophysics Data System (ADS)

    Amir, F.; Mitchell, C.; Farrington, N.; Missous, M.

    2009-09-01

    An advanced step-graded Gunn diode is reported, which has been developed through joint modelling-experimental work. The ~ 200 GHz fundamental frequency devices have been realized to test GaAs based Gunn oscillators at sub-millimetre wave for use as a high power (multi mW) Terahertz source in conjunction with a mm-wave multiplier, with novel Schottky diodes. The epitaxial growth of both the Gunn diode and Schottky diode wafers were performed using an industrial scale Molecular Beam Epitaxy (V100+) reactor. The Gunn diodes were then manufactured and packaged by e2v Technologies (UK) Plc. Physical models of the high power Gunn diode sources, presented here, are developed in SILVACO.

  11. Relationship between directions of wave and energy propagation for cold plasma waves

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1986-01-01

    The dispersion relation for plasma waves is considered in the 'cold' plasma approximation. General formulas for the dependence of the phase and group velocities on the direction of wave propagation with respect to the local magnetic field are obtained for a cold magnetized plasma. The principal cold plasma resonances and cut-off frequencies are defined for an arbitrary angle and are used to establish basic regimes of frequency where the cold plasma waves can propagate or can be evanescent. The relationship between direction of wave and energy propagation, for cold plasma waves in hydrogen atmosphere, is presented in the form of angle diagrams (angle between group velocity and magnetic field versus angle between phase velocity and magnetic field) and polar diagrams (also referred to as 'Friedrich's diagrams') for different directions of wave propagation. Morphological features of the diagrams as well as some critical angles of propagation are discussed.

  12. Wave Turbulence in Superfluid {sup 4}He: Energy Cascades and Rogue Waves in the Laboratory

    SciTech Connect

    Efimov, V. B.; Ganshin, A. N.; McClintock, P. V. E.; Kolmakov, G. V.; Mezhov-Deglin, L. P.

    2008-11-13

    Recent work on second sound acoustic turbulence in superfluid {sup 4}He is reviewed. Observations of forward and inverse energy cascades are described. The onset of the inverse cascade occurs above a critical driving energy and it is accompanied by giant waves that constitute an acoustic analogue of the rogue waves that occasionally appear on the surface of the ocean. The theory of the phenomenon is outlined and shown to be in good agreement with the experiments.

  13. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  14. Computational fluid dynamics model of the artificial upwelling powered by surface waves

    NASA Astrophysics Data System (ADS)

    Soloviev, A.

    2014-12-01

    A number of studies during the last few decades were devoted to the artificial upwelling powered by surface waves. Potential applications of this system include an increase of supply of nutrients to the surface water to support sea farming and a local reduction of surface temperature in coastal waters. The system represents a pipeline attached to a buoy. Pumping of deep water takes place due to a valve located at the top end of the tube (Vershinsky et al. 1984; Liu et al. 1999). On the way up the system pumps deep water and on the way down it ejects the deep water in the surface layer. This system can be classified as a wave-driven inertial pump and is very effective in bringing deeper water to the surface. However, the deep water has tendency to sink, producing an effluent plume. In this work, a prototype, 3D computational fluid dynamics model of the wave-driven artificial upwelling has been developed. The model is implemented in the ANSYS Fluent software and is able to simulate dynamics of the wave following buoy system and dilution of the deep water in the upper layer of the ocean under various stratification and surface wave conditions. The model results are compared with available field data. Liu, C.C.K., Dai, J., Lin, H., and Guo, F. (1999). Hydrodynamic performance of wave-drive artificial upwelling, J. Engrg. Mech., ASCE, 125(7), 728-732. Vershinsky, N.V., Pshenichny, B.P., and Soloviev, A.V. (1987). Artificial upwelling using the energy of surface waves. Oceanology 27(3), 400-402.

  15. Wave-current interactions at the FloWave Ocean Energy Research Facility

    NASA Astrophysics Data System (ADS)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The initial tests used a correction factor based on a linear combination of wave and current (Smith 1997), which was found to be reasonably accurate, although the requirement for higher order theory is also explored. FloWave is a new facility that offers the ability to study wave-current interactions at arbitrary angles with relatively fast currents. This is important as waves and tidal currents at sites of interest for renewable energy generation may not be aligned (Lewis et al. 2014), and so better understanding of these conditions is required. References Lewis, M.J. et al., 2014. Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Applied Energy, 136, pp.495-508. Smith, J.M., 1997. Coastal Engineering Technical Note One-dimensional wave-current interaction (CETN IV-9), Vicksburg, MS.

  16. Water Power for a Clean Energy Future

    SciTech Connect

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  17. Effect of high energy shock waves on tumor cells.

    PubMed

    Kohri, K; Uemura, T; Iguchi, M; Kurita, T

    1990-01-01

    Exposure of bladder tumor cell strain HT-1197, chronic bonemarrow leukemic cell strain K-562, and African green-turtle normal kidney cell strain Vero to high energy shock waves resulted in ultrastructural changes and a reduction in cell viability as determined by 3H-thymidine incorporation assay and flowcytometer. K-562 was the most sensitive while Vero was the most resistant to the high energy shock wave. By flowcytometry using anti BrdU antibody, described K-562 in the S phase was found to be inhibited by the exposure. Electron microscopy revealed destruction of microvilli over the cell surface and swollen mitochondria in K-562 and HT-1197. These effects were related to the number of high energy shock wave exposures. Our study demonstrates that a high energy shock wave has an anti-tumor effect in vitro. PMID:2339478

  18. Internal wave energy radiated from a turbulent mixed layer

    SciTech Connect

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  19. Internal wave energy radiated from a turbulent mixed layer

    NASA Astrophysics Data System (ADS)

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-01

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%-3% of the turbulent kinetic energy density of the turbulent layer.

  20. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    SciTech Connect

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  1. Generation of extremely low frequency radiation by ionospheric electrojet modulation using powerful high-frequency heating waves

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Lee, S. H.

    2004-02-01

    Using amplitude-modulated high-frequency (HF) heating waves for electron heating, the conductivity of plasma and thus the embedded electrojet currents in high-latitude ionosphere can be modulated accordingly to set up the ionospheric antenna current for extremely low frequency (ELF) wave generation. Electron heating is hampered by inelastic collisions of electrons with neutral particles (mainly due to vibration excitation of N2), which cause the induced modulation current to remain at a low level. However, this inelastic collision loss rate drops rapidly to a low value in the energy regime from 3.5 to 6 eV. Thus, as the heating power exceeds a critical level, electron heating suddenly reaches an unexpected high level, resulting to a near step increase (of about 5 to 8 dB depending on the modulation waveform and frequency) in the spectral intensity of ELF radiation. The dependency of this critical HF heating-wave power on the modulation frequency is determined for three heating wave modulation forms: (1) rectangular wave, (2) sine wave, and (3) half-wave rectified wave.

  2. Design and characterization of an ultrasonic lamb-wave power delivery system.

    PubMed

    Kural, Aleksander; Pullin, Rhys; Holford, Karen; Lees, Jonathan; Naylon, Jack; Paget, Christophe; Featherston, Carol

    2013-06-01

    In this paper, a novel design for an ultrasonic power transmission system designed for use in aircraft structural monitoring systems is described. The prototype system uses ultrasonic Lamb waves to carry energy along plates, such as those used in aircraft structures, and commercially available piezoelectric patch transducers as the transmitter and receiver. This sets it apart from other acoustic power transmission systems reported to date. The optimum configuration transmitted 12.7 mW of power across a distance of 54 cm in a 1.5-mm-thick aluminum plate, while being driven by a 20-Vpp, 35-kHz sinusoidal electric signal. This is in the same order of magnitude as the power required by the wireless sensors nodes of a structural health monitoring system currently being developed by Cardiff University and its partners. Thus, the power transmission system can be considered a viable component of the power source combination considered for the sensor nodes, which will also include vibration and thermal energy harvesting. The paper describes the design and optimization of the transmission and reception circuits with the use of inductive compensation. The use of laser vibrometry to characterize the transducers and to understand the signal propagation between them is also reported. PMID:25004476

  3. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, Gaylen V.; Bass, Isaac L.; Hackel, Richard P.; Jenkins, Sherman L.; Kanz, Vernon K.; Paisner, Jeffrey A.

    1993-01-01

    A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).

  4. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

    1993-09-21

    A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

  5. Power Amplifier Module with 734-mW Continuous Wave Output Power

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.

  6. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  7. Equilibrium shoreline response of a high wave energy beach

    USGS Publications Warehouse

    Yates, M.L.; Guza, R.T.; O'Reilly, W. C.; Hansen, J.E.; Barnard, P.L.

    2011-01-01

    Four years of beach elevation surveys at Ocean Beach, San Francisco, California, are used to extend an existing equilibrium shoreline change model, previously calibrated with fine sand and moderate energy waves, to medium sand and higher-energy waves. The shoreline, characterized as the cross-shore location of the mean high water contour, varied seasonally by between 30 and 60 m, depending on the alongshore location. The equilibrium shoreline change model relates the rate of horizontal shoreline displacement to the hourly wave energy E and the wave energy disequilibrium, the difference between E and the equilibrium wave energy that would cause no change in the present shoreline location. Values for the model shoreline response coefficients are tuned to fit the observations in 500 m alongshore segments and averaged over segments where the model has good skill and the estimated effects of neglected alongshore sediment transport are relatively small. Using these representative response coefficients for 0.3 mm sand from Ocean Beach and driving the model with much lower-energy winter waves observed at San Onofre Beach (also 0.3 mm sand) in southern California, qualitatively reproduces the small seasonal shoreline fluctuations at San Onofre. This consistency suggests that the shoreline model response coefficients depend on grain size and may be constant, and thus transportable, between sites with similar grain size and different wave climates. The calibrated model response coefficients predict that for equal fluctuations in wave energy, changes in shoreline location on a medium-grained (0.3 mm) beach are much smaller than on a previously studied fine-grained (0.2 mm) beach. Copyright ?? 2011 by the American Geophysical Union.

  8. Equilibrium shoreline response of a high wave energy beach

    NASA Astrophysics Data System (ADS)

    Yates, M. L.; Guza, R. T.; O'Reilly, W. C.; Hansen, J. E.; Barnard, P. L.

    2011-04-01

    Four years of beach elevation surveys at Ocean Beach, San Francisco, California, are used to extend an existing equilibrium shoreline change model, previously calibrated with fine sand and moderate energy waves, to medium sand and higher-energy waves. The shoreline, characterized as the cross-shore location of the mean high water contour, varied seasonally by between 30 and 60 m, depending on the alongshore location. The equilibrium shoreline change model relates the rate of horizontal shoreline displacement to the hourly wave energy E and the wave energy disequilibrium, the difference between E and the equilibrium wave energy that would cause no change in the present shoreline location. Values for the model shoreline response coefficients are tuned to fit the observations in 500 m alongshore segments and averaged over segments where the model has good skill and the estimated effects of neglected alongshore sediment transport are relatively small. Using these representative response coefficients for 0.3 mm sand from Ocean Beach and driving the model with much lower-energy winter waves observed at San Onofre Beach (also 0.3 mm sand) in southern California, qualitatively reproduces the small seasonal shoreline fluctuations at San Onofre. This consistency suggests that the shoreline model response coefficients depend on grain size and may be constant, and thus transportable, between sites with similar grain size and different wave climates. The calibrated model response coefficients predict that for equal fluctuations in wave energy, changes in shoreline location on a medium-grained (0.3 mm) beach are much smaller than on a previously studied fine-grained (0.2 mm) beach.

  9. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    SciTech Connect

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  10. The hydrodynamics of a wave-power device in a tapered harbor

    SciTech Connect

    Gallachoir, B.P.O.; Thomas, G.P.; Sarmento, A.J.N.A.

    1995-12-31

    This paper considers the hydrodynamic performance of a single wave-power device placed at the end of a tapered harbor and set in a reflecting coastline. A relatively simple model, in which the harbor width is assumed to be much smaller than the incident wavelength, is used to calculate approximate values for the hydrodynamic coefficients and hence determine the energy absorbing capabilities of the device. A comparison is presented between a device in a rectangular harbor and one in a tapered harbor in order to make a preliminary assessment of the influence of the taper.

  11. Approach warning system for snowplow using aerial-high-power ultrasonic wave with radio wave

    NASA Astrophysics Data System (ADS)

    Manabu, Aoyagi; Yuta, Amagi; Hiroaki, Miura; Okeya, Ryota; Hideki, Tamura; Takehiro, Takano

    2012-05-01

    An approach warning system for a snowplow and guide was developed by using aerial-high-power ultrasonic transducer. To be robust against some serious factors in winter, ultrasonic signal and radio one were combined on the system, and the flat face side of stepped circular vibrating plate was utilized as a radiation plate. The ultrasonic wave radiated from the flat face side still had a better directivity, and the flat face had advantage to prevent bad influences from water, snow or ice. From experiment results, when double transducers were set on both sides of roof of snowplow, this system was able to be measure distance between a guide and snowplow in whole of controlled area.

  12. An array effect of wave energy farm buoys

    NASA Astrophysics Data System (ADS)

    Kweon, Hyuck-Min; Lee, Jung-Lyul

    2012-12-01

    An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion.Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.

  13. Energy, A Crisis in Power.

    ERIC Educational Resources Information Center

    Holdren, John; Herrera, Philip

    The demand of Americans for more and more power, particularly electric power, contrasted by the deep and growing concern for the environment and a desire by private citizens to participate in the public decisions that affect the environment is the dilemma explored in this book. Part One by John Holdren, offers a scientist's overview of the energy…

  14. Pulsed Power Driven Fusion Energy

    SciTech Connect

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  15. A direct current rectification scheme for microwave space power conversion using traveling wave electron acceleration

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1993-01-01

    The formation of the Vision-21 conference held three years ago allowed the present author to reflect and speculate on the problem of converting electromagnetic energy to a direct current by essentially reversing the process used in traveling wave tubes that converts energy in the form of a direct current to electromagnetic energy. The idea was to use the electric field of the electromagnetic wave to produce electrons through the field emission process and accelerate these electrons by the same field to produce an electric current across a large potential difference. The acceleration process was that of cyclotron auto-resonance. Since that time, this rather speculative ideas has been developed into a method that shows great promise and for which a patent is pending and a prototype design will be demonstrated in a potential laser power beaming application. From the point of view of the author, a forum such as Vision-21 is becoming an essential component in the rather conservative climate in which our initiatives for space exploration are presently formed. Exchanges such as Vision-21 not only allows us to deviate from the 'by-the-book' approach and rediscover the ability and power in imagination, but provides for the discussion of ideas hitherto considered 'crazy' so that they may be given the change to transcend from the level of eccentricity to applicability.

  16. Supernova-blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    NASA Astrophysics Data System (ADS)

    Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.

    2016-05-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm-3 ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1 - 100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with log-normal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{_turb}/p_{0} =23.07 (n_{_{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2M2))^{1.49}(n_{_{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

  17. Traveling wave interferometry particularly for solar power satellites

    SciTech Connect

    Ott, J.H.; Rice, J.S.

    1983-01-11

    A method and apparatus are described for use in scientific measurement analysis and control. Travelling interference fringes are generated by radiating at least two different periodic waves at two different frequencies, one from each of two different radiators. The waves are received, mixed and filtered to detect at least one beat signal from these waves which represents the travelling interference fringe. The phase of that beat signal is detected relative to a reference signal of the same frequency as the beat signal. The radiated waves may be received at a second antenna and the phase of the beat of the waves at the first antenna is compared to the phase of the beat as observed at the second antenna. A third wave may be radiated from the first antenna to provide a reference signal which is the beat generated by the third wave and the other wave from the same radiator.

  18. Anomalous absorption of powerful radio waves on the striations developed during ionospheric modification

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Lukyanov, A. V.; Zybin, K. P.

    1996-02-01

    A nonlinear theory of anomalous absorption of powerful radio waves on small scale irregularities in the ionosphere is constructed. Peculiarities of the absorption near the third electron gyrofrequency are investigated and discussed. The theory is shown to be in agreement with observations. The existence of a maximum in the probe wave absorption is predicted. Its dependence on the shift between the probe wave frequency and the pump wave frequency is determined.

  19. Wave propagation downstream of a high power helicon in a dipolelike magnetic field

    SciTech Connect

    Prager, James; Winglee, Robert; Roberson, B. Race; Ziemba, Timothy

    2010-01-15

    The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.

  20. Energy Storage for the Power Grid

    SciTech Connect

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  1. Teachers Environmental Resource Unit: Energy and Power.

    ERIC Educational Resources Information Center

    Bemiss, Clair W.

    Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…

  2. Renewable Energy. The Power to Choose.

    ERIC Educational Resources Information Center

    Deudney, Daniel; Flavin, Christopher

    This book, consisting of 13 chapters, charts the progress made in renewable energy in recent years and outlines renewable energy's prospects. Areas addressed include: energy at the crossroads (discussing oil, gas, coal, nuclear power, and the conservation revolution); solar building design; solar collection; sunlight to electricity; wood; energy…

  3. Full Band Millimeter-Wave Power-Combining Amplifier Using a Lossy Power-Combining Network

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoqiang; Yang, Guiting; Zhang, Yunhua; Zhao, Xuan; She, Yuchen

    2016-04-01

    This paper presents a millimeter-wave broadband power-combining amplifier using a novel lossy waveguide-based power combiner. The lossy combiner has a performance of broadband low-loss combining symmetrically and has properties of good match and high isolation at and between ports, because lossy planar lines are embedded in the lossy combiner and even-mode excitations are weakened. The measured results show that the lossy combiners has a loss of about 0.14 dB and achieves reflection and isolation of about—15 dB in 26.5-40 GHz. And then, using the lossy combiner, a compact lossy waveguide-based four-way-combining network is fabricated. The lossy network has a measured loss of about 0.25 dB and achieves good improvements of match and isolation in the full Ka-band. The improvements can enhance stability of amplifying units when the lossy combining network used in multi-way power-combining amplifier. Using the lossy combining network, a solid-state power-combining amplifier is developed, and corresponding experimental results show that output power is more than 30 dBm and combining efficiency is more than 80 % in the full Ka-band.

  4. Local energy decay for linear wave equations with variable coefficients

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  5. HIGH POWER OPERATIONS AT THE LOW ENERGY DEMONSTRATION ACCELERATOR (LEDA)

    SciTech Connect

    M. DURAN; V. R. HARRIS

    2001-01-01

    Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr continuous wave (CW) beam operation milestone. The LEDA accelerator is a prototype of the low-energy front-end of the linear accelerator (linac) that would have been used in an APT plant. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadrupole (RFQ) with associated high-power and low-level RF systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. Details of the LEDA design features will be discussed along with the operational health physics experiences that occurred during the LEDA commissioning phase.

  6. Zero energy of plane-waves for ELKOs

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2011-06-01

    We consider the ELKO field in interaction through contorsion with its own spin density, and we investigate the form of the consequent autointeractions; to do so we take into account the high-density limit and find plane wave solutions: such plane waves give rise to contorsional autointeractions for which the Ricci metric curvature vanishes and therefore the energy density is equal to zero identically. Consequences are discussed.

  7. Method of, and apparatus for, extracting energy from waves

    SciTech Connect

    Laithwaite, E.R.; Salter, S.H.

    1981-11-17

    In a method of, and apparatus for, extracting energy from waves on a liquid, the precession of a gyroscope in response to angular motion of a member in response to waves performs useful work by operating a hydraulic pump. Advantageously, pairs of gyroscopes having their rotors spinning in opposite directions are mounted in the member so as to balance the output torques of the gyroscopes.

  8. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system

    SciTech Connect

    Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K.; Doane, J.; Olstad, R.; Henderson, M.

    2011-06-15

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20 deg. - 40 deg. from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  9. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system. PMID:21721690

  10. Effects of wave induced motion on power generation of offshore floating wind farms

    NASA Astrophysics Data System (ADS)

    Shoele, Kourosh

    2014-11-01

    Wind power has been the world's fastest growing energy source for more than a decade. There is a continuous effort to study the potentials of offshore floating wind farms in producing electricity. One of the major technical challenges in studying the performance of offshore floating wind farms is the hydrodynamic and aerodynamic interactions between individual turbines. In this study, a novel approach is presented to study the hydrodynamic interaction between group of floating wind turbines and determine how wave induced motion of the platforms modifies the power generation of the farm. In particular, exact analytical models are presented to solve the hydrodynamic diffraction and radiation problem of a group of floating wind turbine platforms, to model the aerodynamic interaction between turbines, and to quantify the nonlinear dynamic of the mooring lines used to stabilize the floating platforms through connecting them to the seabed. The overall performance of the farm with different configuration and at different wind and wave conditions are investigated and the effects of the sea state condition as well as the distance between the turbines in the farm on the low frequency temporal variation of the power output are discussed.

  11. Theoretical studies of high power millimeter wave quasi-optical gyro-amplifiers

    SciTech Connect

    Hu, W.; Kreischer, K.E.; Temkin, R.J.; Wang, C.Y.; Manheimer, W.

    1995-12-31

    The authors present a linear and a non-linear theory of a 95 GHz quasi-optical gyrotron amplifier. The linear theory of the quasi-optical gyrotron amplifier is derived using Floquet`s theorem, and assuming unperturbed distribution function at each of the periodicity length. The theory predicts that a quasi-optical gyrotron amplifier at 95 GHz is capable of achieving peak power of hundreds of kilowatts and average power of tens of kilowatts. A set of parameters is calculated using the theory. At beam energy of 100 kV, 10 amps of beam current and velocity ratio of 1.5, the minimum growth length is about 8 cm and maximum stable length is about 60 cm. The bandwidth is calculated to be 1.5 GHz. The non-linear theory models the parallel mirror configuration using a plane wave. Calculation indicates that, at a beam energy of 120 kV, a beam current of 35 A, velocity ratio of 2, a frequency of 120 GHz, an angle between the beam and wave of 74.8 degrees, and assuming no thermal spread, it is possible to achieve efficiency of 46% when tuning coils are optimized. If the magnetic field is kept fixed at 5.75 T, then 36% is possible. If a 5% perpendicular velocity spread is assumed, then 33% can be reached.

  12. Energy analysis of the solar power satellite.

    PubMed

    Herendeen, R A; Kary, T; Rebitzer, J

    1979-08-01

    The energy requirements to build and operate the proposed Solar Power Satellite are evaluated and compared with the energy it produces. Because the technology is so speculative, uncertainty is explicitly accounted for. For a proposed 10-gigawatt satellite system, the energy ratio, defined as the electrical energy produced divided by the primary nonrenewable energy required over the lifetime of the system, is of order 2, where a ratio of 1 indicates the energy breakeven point. This is significantly below the energy ratio of today's electricity technologies such as light-water nuclear or coal-fired electric plants. PMID:17758765

  13. Innovative power generators for energy harvesting using electroactive polymer artificial muscles

    NASA Astrophysics Data System (ADS)

    Chiba, Seiki; Waki, Mikio; Kornbluh, Roy; Pelrine, Ron

    2008-03-01

    The type of electroactive polymer known as dielectric elastomers has shown considerable promise for a variety of actuator applications and may be well suited for harvesting energy from environmental sources such as ocean waves or water currents. The high energy density and conversion efficiency of dielectric elastomers can allow for very simple and robust "direct drive" generators. Preliminary energy harvesting generators based on dielectric elastomers have been tested. A generator attached to a rotating waterwheel via a crankshaft produced 35 mJ per revolution in a laboratory test with an actual water flow. A generator that harvests the energy of ocean waves for purposes of supplying power to ocean buoys (such as navigation buoys) was tested at sea for two weeks. This buoy-mounted generator uses a proof-mass to provide the mechanical forces that stretch and contract the dielectric elastomer generator. The generator operated successfully during the sea trials. Wave conditions were very small during this test. Although the device did not produce large amounts of power, it did produce net power output with waves as small as 10 cm peak-to-peak wave height. Both the waterwheel and buoy-mounted generators will be scaled up to produce larger amounts of power. The use of significantly larger amounts of dielectric elastomer material to produce generator modules with outputs in the kilowatt range is being investigated for application to ocean wave power systems.

  14. Traveling-wave photomixers fabricated on high energy nitrogen-ion-implanted GaAs

    SciTech Connect

    Mikulics, M.; Michael, E. A.; Marso, M.; Lepsa, M.; Hart, A. van der; Lueth, H.; Dewald, A.; Stancek, S.; Mozolik, M.; Kordos, P.

    2006-08-14

    The authors report on fabrication and measurement of traveling-wave photomixers based on high energy and low dose nitrogen-ion-implanted GaAs. They used 3 MeV energy to implant N{sup +} ions into GaAs substrates with an ion concentration dose of 3x10{sup 12} cm{sup -2}. The N{sup +}-implanted GaAs photomixers exhibit improvements in the output power in comparison with their counterparts, photomixers fabricated on low-temperature-grown GaAs. The maximal output power was 2.64 {mu}W at 850 GHz. No saturation of the output power with increased bias voltage and optical input power was observed. These characteristics make N{sup +}-implanted GaAs the material of choice for efficient high power sources of terahertz radiation.

  15. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  16. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    SciTech Connect

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  17. SPS Energy Conversion Power Management Workshop

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.

  18. Measurements of radiated elastic wave energy from dynamic tensile cracks

    NASA Technical Reports Server (NTRS)

    Boler, Frances M.

    1990-01-01

    The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.

  19. Energy Decisions: Is Solar Power the Solution?

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2011-01-01

    People around the world are concerned about affordable energy. It is needed to power the global economy. Petroleum-based transportation and coal-fired power plants are economic prime movers fueling the global economy, but coal and gasoline are also the leading sources of air pollution. Both of these sources produce greenhouse gases and toxins.

  20. Power Technologies Energy Data Book - Fourth Edition

    SciTech Connect

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  1. Energy Decisions: Is Solar Power the Solution?

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2011-01-01

    People around the world are concerned about affordable energy. It is needed to power the global economy. Petroleum-based transportation and coal-fired power plants are economic prime movers fueling the global economy, but coal and gasoline are also the leading sources of air pollution. Both of these sources produce greenhouse gases and toxins.…

  2. Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves.

    PubMed

    Hazan, Zadik; Zumeris, Jona; Jacob, Harold; Raskin, Hanan; Kratysh, Gera; Vishnia, Moshe; Dror, Naama; Barliya, Tilda; Mandel, Mathilda; Lavie, Gad

    2006-12-01

    Low-energy surface acoustic waves generated from electrically activated piezo elements are shown to effectively prevent microbial biofilm formation on indwelling medical devices. The development of biofilms by four different bacteria and Candida species is prevented when such elastic waves with amplitudes in the nanometer range are applied. Acoustic-wave-activated Foley catheters have all their surfaces vibrating with longitudinal and transversal dispersion vectors homogeneously surrounding the catheter surfaces. The acoustic waves at the surface are repulsive to bacteria and interfere with the docking and attachment of planktonic microorganisms to solid surfaces that constitute the initial phases of microbial biofilm development. FimH-mediated adhesion of uropathogenic Escherichia coli to guinea pig erythrocytes was prevented at power densities below thresholds that activate bacterial force sensor mechanisms. Elevated power densities dramatically enhanced red blood cell aggregation. We inserted Foley urinary catheters attached with elastic-wave-generating actuators into the urinary tracts of male rabbits. The treatment with the elastic acoustic waves maintained urine sterility for up to 9 days compared to 2 days in control catheterized animals. Scanning electron microscopy and bioburden analyses revealed diminished biofilm development on these catheters. The ability to prevent biofilm formation on indwelling devices and catheters can benefit the implanted medical device industry. PMID:16940055

  3. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  4. Maximum gravitational-wave energy emissible in magnetar flares

    SciTech Connect

    Corsi, Alessandra; Owen, Benjamin J.

    2011-05-15

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies ({approx}10{sup 49} erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc. 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10{sup 48}-10{sup 49} erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  5. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  6. Coal and nuclear power: Illinois' energy future

    SciTech Connect

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  7. Demand, energy, and power factor. Master's thesis

    SciTech Connect

    Gough, M.J.

    1994-08-01

    This paper briefly presents the results of a study of various utility rate schedules from across the United States and describes a video produced to explain some major features of these rate structures. In particular, the demand, energy and power factor sections of each rate schedule are explored to understand the impacts of selected features on utility costs and on evaluation of energy conservation projects. The accompanying video was produced for the Energy Systems Laboratory's Industrial Assessment Center (IAC) at Texas AM University. This video will be used during industrial audits to explain typical demand, energy and power factor structures and savings potentials that can be realized by implementation of energy conservation retrofit projects, known as energy conservation opportunities (ECO's), that may be presented through the energy audit process.

  8. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2007-01-01

    At high energies, the relevant degrees of freedom are Wilson lines--infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  9. Power-amplifying strategy in vibration-powered energy harvesters

    NASA Astrophysics Data System (ADS)

    Ma, Pyung Sik; Kim, Jae Eun; Kim, Yoon Young

    2010-04-01

    A new cantilevered piezoelectric energy harvester (PEH) of which the additional lumped mass is connected to a harmonically oscillating base through an elastic foundation is proposed for maximizing generated power and enlarging its frequency bandwidth. The base motion is assumed to provide a given acceleration level. Earlier, a similar energy harvester employing the concept of the dynamic vibration absorber was developed but the mechanism of the present energy harvester is new because it incorporates a mass-spring system in addition to a conventional cantilevered piezoelectric energy harvesting beam with or without a tip mass. Consequently, the proposed energy harvester actually forms a two-degree-of-freedom system. It will be theoretically shown that the output power can be indeed substantially improved if the fundamental resonant frequencies of each of the two systems in the proposed energy harvester are simultaneously tuned as closely as possible to the input excitation frequency and also if the mass ratio of a piezoelectric energy harvesting beam to the lumped mass is adjusted below a certain value. The performance of the proposed energy harvester is checked by numerical simulation.

  10. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  11. Space solar power - An energy alternative

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  12. Wave Energy Resources Assessment for the China Sea Based on Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Meng, Junmin; Zhang, Jie; Wan, Yong; Fabrice, Collard

    2014-11-01

    Wave energy is a type of significant renewable energy of ocean. In order to exploit this promising energy, it is necessary to have a full apprehension of its distribution. Remote sensing is a novel method for ocean wave observations. In this paper, based on 2009-2013 AVISO multi-satellites merged altimeter data by CNES&CLS and ESA ENVISAT ASAR observed wave field, assessment of wave energy resources were carried out. We select the South China Sea and the sea area around the Yangtze Estuary in the East China Sea as examples. Some factors about wave energy were calculated to assess the distribution of wave energy in these areas. The results show that it is effective and feasible to evaluate wave energy resources by altimeter and SAR(Synthetic Aperture Radar) data. We can carry out wave observations and wave energy assessment better by the combination of remote sensing data and wave model simulation.

  13. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  14. The environmental interactions of tidal and wave energy generation devices

    SciTech Connect

    Frid, Chris; Andonegi, Eider; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  15. Dynamic power balance for nonlinear waves in unbalanced gain and loss landscapes

    NASA Astrophysics Data System (ADS)

    Kominis, Yannis

    2015-12-01

    The presence of losses in nonlinear photonic structures necessitates the introduction of active parts for wave power compensation resulting in unbalanced gain and loss landscapes where localized beam propagation is, in general, dynamically unstable. Here we provide generic sufficient conditions for the relation between the gain-loss and the refractive index profiles in order to ensure efficient wave trapping and stable propagation for a wide range of beam launching conditions such as initial power, angle of incidence, and position. The stability is a consequence of an underlying dynamic power balance mechanism related to a conserved quantity of wave dynamics.

  16. Comparison of heaving buoy and oscillating flap wave energy converters

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Mohd Aftar; Green, David A.; Metcalfe, Andrew V.; Najafian, G.

    2013-04-01

    Waves offer an attractive source of renewable energy, with relatively low environmental impact, for communities reasonably close to the sea. Two types of simple wave energy converters (WEC), the heaving buoy WEC and the oscillating flap WEC, are studied. Both WECs are considered as simple energy converters because they can be modelled, to a first approximation, as single degree of freedom linear dynamic systems. In this study, we estimate the response of both WECs to typical wave inputs; wave height for the buoy and corresponding wave surge for the flap, using spectral methods. A nonlinear model of the oscillating flap WEC that includes the drag force, modelled by the Morison equation is also considered. The response to a surge input is estimated by discrete time simulation (DTS), using central difference approximations to derivatives. This is compared with the response of the linear model obtained by DTS and also validated using the spectral method. Bendat's nonlinear system identification (BNLSI) technique was used to analyze the nonlinear dynamic system since the spectral analysis was only suitable for linear dynamic system. The effects of including the nonlinear term are quantified.

  17. Breezy Power: From Wind to Energy

    ERIC Educational Resources Information Center

    Claymier, Bob

    2009-01-01

    This lesson combines the science concepts of renewable energy and producing electricity with the technology concepts of design, constraints, and technology's impact on the environment. Over five class periods, sixth-grade students "work" for a fictitious power company as they research wind as an alternative energy source and design and test a

  18. Breezy Power: From Wind to Energy

    ERIC Educational Resources Information Center

    Claymier, Bob

    2009-01-01

    This lesson combines the science concepts of renewable energy and producing electricity with the technology concepts of design, constraints, and technology's impact on the environment. Over five class periods, sixth-grade students "work" for a fictitious power company as they research wind as an alternative energy source and design and test a…

  19. Fluid Power Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in fluid power systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…

  20. Saving Energy Through Advanced Power Strips (Poster)

    SciTech Connect

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  1. Computational simulation of the interactions between water waves and two-dimensional wave energy converters

    NASA Astrophysics Data System (ADS)

    Ghasemi, Amirmahdi; Pathak, Ashish; Chiodi, Robert; Raessi, Mehdi

    2013-11-01

    Ocean waves represent a vast renewable energy resource, which is mostly untapped. We present a computational tool for simulation of the interactions between waves and two-dimensional oscillating solid bodies representing simple wave energy converters (WECs). The computational tool includes a multiphase flow solver, in which the two-step projection method with GPU acceleration is used to solve the Navier-Stokes equations. The fictitious domain method is used to capture the interactions of a moving rigid solid body with the two-fluid flow. The solid and liquid volumes are tracked using the volume-of-fluid (VOF) method, while the triple points and phase interfaces in three-phase cells are resolved. A consistent mass and momentum transport scheme is used to handle the large density ratio. We present results of two wave generation mechanisms with a piston or flap wave maker, where the theoretical and experimental results were used for validation. Then, simulation results of several simple devices representative of distinct WECs, including a bottom-hinged flap device as well as cylindrical or rectangular terminators are presented. The results are in good agreement with the available experimental data.

  2. Excitation of small-scale waves in the F region of the ionosphere by powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Chernyshev, M. Y.; Kornienko, V. A.

    1998-01-01

    Ionospheric small-scale waves in the F region, initiated by heating facilities in Nizhniy Novgorod, have been studied by the method of field-aligned scattering of diagnostic HF radio signals. Experimental data have been obtained on the radio path Kiev-N. Novgorod-St. Petersburg during heating campaigns with heater radiated power ERP = 20 MW and 100 MW. Observations of scattered HF signals have been made by a Doppler spectrum device with high temporal resolution. Analysis of the experimental data shows a relation between the heater power level and the parameters of ionospheric small-scale oscillations falling within the range of Pc 3-4 magnetic pulsations. It is found that the periods of wave processes in the F region of the ionosphere, induced by the heating facility, decrease with increasing heating power. The level of heating power also has an impact on the horizontal east-west component of the electric field E, the vertical component of the Doppler velocity Vd and the amplitude of the vertical displacements M of the heated region. Typical magnitudes of these parameters are the following: E = 1.25 mVm, Vd = 6 ms, M = 600-1500 m for ERP = 20 MW and E = 2.5-4.5 mVm, Vd = 11-25 ms, M = 1000-5000 m for ERP = 100 MW. The results obtained confirm the hypothesis of excitation of the Alfvén resonator by powerful HF radio waves which leads to the generation of magnetic field oscillations in the heated region giving rise to artificial Pc 3-4 magnetic pulsations and ionospheric small-scale wave processes. In this situation an increase of the heater power would lead to a growth of the electric field of hydromagnetic waves propagating in the ionosphere as well as the amplitude of the vertical displacements of the heated region.

  3. Energy Servers Deliver Clean, Affordable Power

    NASA Technical Reports Server (NTRS)

    2010-01-01

    K.R. Sridhar developed a fuel cell device for Ames Research Center, that could use solar power to split water into oxygen for breathing and hydrogen for fuel on Mars. Sridhar saw the potential of the technology, when reversed, to create clean energy on Earth. He founded Bloom Energy, of Sunnyvale, California, to advance the technology. Today, the Bloom Energy Server is providing cost-effective, environmentally friendly energy to a host of companies such as eBay, Google, and The Coca-Cola Company. Bloom's NASA-derived Energy Servers generate energy that is about 67-percent cleaner than a typical coal-fired power plant when using fossil fuels and 100-percent cleaner with renewable fuels.

  4. Analysis and simulation of standing wave pattern of powerful HF radio waves in ionospheric reflection region

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhou, Chen; Zhao, Zheng-Yu; Yang, Xu-Bo

    2015-12-01

    For the study of the various non-linear effects generated in ionospheric modulation experiments, accurate calculation of the field intensity variation in the whole reflection region for an electromagnetic wave vertically impinging upon the ionosphere is meaningful. In this paper, mathematical expressions of the electric field components of the characteristic heating waves are derived, by coupling the equation describing a wave initially impinging vertically upon the ionosphere with the Forsterling equation. The variation of each component of the electric field and the total electric field intensity of the standing wave pattern under a specific density profile are calculated by means of a uniform approximation, which is applied throughout the region near the reflection point. The numerical calculation results demonstrate that the total electric field intensity of the ordinary (O)-mode wave varies rapidly in space and reaches several maxima below the reflection point. Evident swelling phenomena of the electric field intensity are found. Our results also indicate that this effect is more pronounced at higher latitudes and that the geomagnetic field is important for wave pattern variation. The electric field intensity of the standing wave pattern of the extraordinary (X)-mode wave exhibits some growth below the reflection point, but its swelling effect is significantly weaker than that of the O-mode wave.

  5. Microwatt power consumption maximum power point tracking circuit using an analogue differentiator for piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Zhu, M.

    2015-12-01

    A maximum power point tracking (MPPT) scheme by tracking the open-circuit voltage from a piezoelectric energy harvester using a differentiator is presented in this paper. The MPPT controller is implemented by using a low-power analogue differentiator and comparators without the need of a sensing circuitry and a power hungry controller. This proposed MPPT circuit is used to control a buck converter which serves as a power management module in conjunction with a full-wave bridge diode rectifier. Performance of this MPPT control scheme is verified by using the prototyped circuit to track the maximum power point of a macro-fiber composite (MFC) as the piezoelectric energy harvester. The MFC was bonded on a composite material and the whole specimen was subjected to various strain levels at frequency from 10 to 100 Hz. Experimental results showed that the implemented full analogue MPPT controller has a tracking efficiency between 81% and 98.66% independent of the load, and consumes an average power of 3.187 μW at 3 V during operation.

  6. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  7. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2014-06-01

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  8. Jason Tracks Powerful Tropical Cyclone Gonu's High Winds, Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Wind Speed Wave Height Click on images for larger versions

    This pair of images from the radar altimeter instrument on the U.S./France Jason mission reveals information on wind speeds and wave heights of Tropical Cyclone Gonu, which reached Category 5 strength in the Arabian Sea prior to landfall in early June 2007. Strong winds near 20 meters per second and wave heights of greater than 5 meters were recorded. These high waves are extremely rare in the Arabian Sea and exacerbated heavy flooding from the storm surge over much of the Oman coastline.

    The U.S. portion of the Jason mission is managed by JPL for NASA's Science Mission Directorate, Washington, D.C. Research on Earth's oceans using Jason and other space-based capabilities is conducted by NASA's Science Mission Directorate to better understand and protect our home planet.

  9. Energy storage options for space power

    SciTech Connect

    Hoffman, H.W.; Martin, J.F.; Olszewski, M.

    1985-01-01

    Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Review of storage options (superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels) suggests that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 to 2000 kJ/kg at temperatures to 1675/sup 0/K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (approx. 550 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

  10. Wave-plate structures, power selective optical filter devices, and optical systems using same

    SciTech Connect

    Koplow, Jeffrey P.

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  11. Grating formation by a high power radio wave in near-equator ionosphere

    SciTech Connect

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Such a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.

  12. Energy eigenstates of magnetostatic waves and oscillations.

    PubMed

    Kamenetskii, E O

    2001-06-01

    Effect of excitation of magnetostatic oscillations in a ferrite resonator by the microwave magnetic field was a subject of many publications of more than the last 40 years. The most interesting multiresonance spectrum of absorption peaks one can observe experimentally is a case of disk-form small ferrite resonators. It is shown in this paper that such small ferrite resonators can be considered as "artificial molecular structures" with properties characterized by energy eigenstates of magnetostatic oscillations. A special interest in these properties may be found in the field of microwave artificial composite materials. PMID:11415247

  13. Optimization of Reaction Plates for Wave Energy Conversion

    NASA Astrophysics Data System (ADS)

    Brown, A. C.

    2014-12-01

    Reaction forces are generated as energy is extracted from the motion of ocean waves relative to a wave energy converter (WEC). The reaction forces effect the momentum of the WEC, and in most cases it is beneficial to transfer the loads to a relatively stationary external body. It has become common for WECs to include reaction plates that use hydrodynamic damping to transfer the loads developed during energy extraction to the relatively stationary water below the surface of the ocean. Reaction plates allow WECs to use compliant moorings, which reduce mooring loads and are more easily deployed than taut moorings. Heave plates are commonly used on offshore platforms, but the design of reaction plates for wave energy converters has received little attention. This work presents an initial optimization of reaction plate form to improve the heave and surge performance of the WEC reference models developed for the US Department of Energy. The benefits and drawbacks of various reaction plate geometries are compared, and the impacts on WEC stability, peak loading, and energy production are considered.

  14. Power management circuit for resonant energy harvesters

    NASA Astrophysics Data System (ADS)

    Jirku, Tomas; Steinbauer, Miloslav; Kluge, Martin

    2009-05-01

    This paper deals with the design of the power management circuit for the vibration generator developed in the frame of the European WISE project and its testing in the connection with the generator and the dynamic load simulating the real load. This generator is used as an autonomous energy source for wireless sensor applications. It can be used for example in the aeronautic, automotive and many other applications. The generator output power analysis was based on the vibration spectrum measured on the helicopter engine, provided by the consortium EADS, EUROCOPTER, DASSAULT AVIATION - 6.RP -WIreless SEnsing (WISE) project. This spectrum shows very unstable vibration levels. It was done the statistical analysis of these vibration levels and it was shown that there is a need of the power management circuit, which can provide a stable output voltage for the supplied circuit and if there is a need it can store an immediately unusable generated energy. The generator can't be used as the only energy source for the sensor circuit, because there are not any vibrations when for example a motor is stopped. In these periods and in the time of low vibration levels the circuit must be supplied from battery. The power management circuit described in this paper fulfills these requirements. It has two power inputs - the battery and the generator. It can switch between them at certain defined generator output levels by the threshold detector. Also when there is too much of the generated power, it can store the extra energy in the storage for the later usage. The storage device is the advanced capacitor. The advanced capacitor is a device containing three capacitors. These capacitors are connected (and charged) sequentially so the increasing capacity is provided. The developed power management was tested in the connection with the real vibration generator raised by stable vibration levels and the dynamic load simulating the real sensor in the main operation stages - sampling and data transmitting. It was shown that the generator with output power of 8mW@0,3GRMS with generator weight of 140g together with the described power management circuit can save about 50% of battery energy with the mentioned vibration spectrum. The generator used for the testing was improved, so it is more sensitive and also the sensor power requirements were decreased, so now it can be saved up to 100% battery energy during the generator operation. Also the power management circuit is still refined.

  15. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    SciTech Connect

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  16. Newly Discovered Parametric Instabilities Excited by High Power Radio Waves in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul

    2010-11-01

    A powerful electromagnetic wave can decay into a large number of low frequency electrostatic waves and a scattered electromagnetic wave by generalized stimulated Brillouin scatter (GSBS). The generalization occurs in the F-layer ionosphere because of the presence of the magnetic field supporting a large number of plasma waves not present in an unmagnetized plasma. Stimulated Brillouin scatter excites the ion acoustic mode. In addition, GSBS can excite slow MHD, Alfven, fast MHD, ion cyclotron, whistler, lower hybrid, ion Bernstein waves. The first detection of this process during ionospheric modification with high power radio waves was demonstrated using the HAARP transmitter in Alaska in 2009. Subsequent experiments have provided additional verification of the GSBS process with quantitative measurements of the scattered electromagnetic waves with low frequency offsets from the pump wave. Relative to ground-based laboratory experiments with laser plasma interactions, the ionospheric HF wave interactions experiments are more completely diagnosed into terms of understanding the basic decay process of the magnetized plasma. Applications of the GSBS observations included remote sensing of the plasma state and launching propagating wave modes.

  17. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  18. Calculations of the heights, periods, profile parameters, and energy spectra of wind waves

    NASA Technical Reports Server (NTRS)

    Korneva, L. A.

    1975-01-01

    Sea wave behavior calculations require the precalculation of wave elements as well as consideration of the spectral functions of ocean wave formation. The spectrum of the random wave process is largely determined by the distribution of energy in the actual wind waves observed on the surface of the sea as expressed in statistical and spectral characteristics of the sea swell.

  19. Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    2014-09-01

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

  20. Effects of Wave Energy Converter (WEC) Arrays on Wave, Current, and Sediment Circulation

    NASA Astrophysics Data System (ADS)

    Ruehl, K.; Roberts, J. D.; Jones, C.; Magalen, J.; James, S. C.

    2012-12-01

    The characterization of the physical environment and commensurate alteration of that environment due to Wave Energy Conversion (WEC) devices, or arrays of devices, must be understood to make informed device-performance predictions, specifications of hydrodynamic loads, and environmental evaluations of eco-system responses (e.g., changes to circulation patterns, sediment dynamics, and water quality). Hydrodynamic and sediment issues associated with performance of wave-energy devices will primarily be nearshore where WEC infrastructure (e.g., anchors, piles) are exposed to large forces from the surface-wave action and currents. Wave-energy devices will be subject to additional corrosion, fouling, and wear of moving parts caused by suspended sediments in the water column. The alteration of the circulation and sediment transport patterns may also alter local ecosystems through changes in benthic habitat, circulation patterns, or other environmental parameters. Sandia National Laboratories is developing tools and performing studies to quantitatively characterize the environments where WEC devices may be installed and to assess potential affects to hydrodynamics and local sediment transport. The primary tools are wave, hydrodynamic, and sediment transport models. To ensure confidence in the resulting evaluation of system-wide effects, the models are appropriately constrained and validated with measured data where available. An extension of the US EPA's EFDC code, SNL-EFDC, provides a suitable platform for modeling the necessary hydrodynamics;it has been modified to directly incorporate output from a SWAN wave model of the region. Model development and results are presented. In this work, a model is exercised for Monterey Bay, near Santa Cruz where a WEC array could be deployed. Santa Cruz is located on the northern coast of Monterey Bay, in Central California, USA. This site was selected for preliminary research due to the readily available historical hydrodynamic data (currents and wave heights, periods, and directions), sediment characterization data, and near-shore bathymetric data. In addition, the region has been under evaluation for future ocean energy projects. The modeling framework of SWAN and SNL-EFDC combined with field validation datasets allows for a robust quantitative description of the nearshore environment within which the MHK devices will be evaluated. This quantitative description can be directly incorporated into environmental impact assessments to eliminate guesswork related to the effects of the presence of large-scale arrays. These results can be used to design more efficient arrays while minimizing impacts on the nearshore environments. Further investigations into fine-scale scour near the structures will help determine if these large-scale results show that, in fact, there is deposition adjacent to the arrays, which could have design implications on anchorage and cabling systems.

  1. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    SciTech Connect

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-07-15

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  2. Power management for energy harvesting wireless sensors

    NASA Astrophysics Data System (ADS)

    Arms, S. W.; Townsend, C. P.; Churchill, D. L.; Galbreath, J. H.; Mundell, S. W.

    2005-05-01

    The objective of this work was to demonstrate smart wireless sensing nodes capable of operation at extremely low power levels. These systems were designed to be compatible with energy harvesting systems using piezoelectric materials and/or solar cells. The wireless sensing nodes included a microprocessor, on-board memory, sensing means (1000 ohm foil strain gauge), sensor signal conditioning, 2.4 GHz IEEE 802.15.4 radio transceiver, and rechargeable battery. Extremely low power consumption sleep currents combined with periodic, timed wake-up was used to minimize the average power consumption. Furthermore, we deployed pulsed sensor excitation and microprocessor power control of the signal conditioning elements to minimize the sensors" average contribution to power draw. By sleeping in between samples, we were able to demonstrate extremely low average power consumption. At 10 Hz, current consumption was 300 microamps at 3 VDC (900 microwatts); at 5 Hz: 400 microwatts, at 1 Hz: 90 microwatts. When the RF stage was not used, but data were logged to memory, consumption was further reduced. Piezoelectric strain energy harvesting systems delivered ~2000 microwatts under low level vibration conditions. Output power levels were also measured from two miniature solar cells; which provided a wide range of output power (~100 to 1400 microwatts), depending on the light type & distance from the source. In summary, system power consumption may be reduced by: 1) removing the load from the energy harvesting & storage elements while charging, 2) by using sleep modes in between samples, 3) pulsing excitation to the sensing and signal conditioning elements in between samples, and 4) by recording and/or averaging, rather than frequently transmitting, sensor data.

  3. Low-power continuous-wave four-wave mixing wavelength conversion in AlGaAs-nanowaveguide microresonators.

    PubMed

    Kultavewuti, Pisek; Pusino, Vincenzo; Sorel, Marc; Stewart Aitchison, J

    2015-07-01

    We experimentally demonstrate enhanced wavelength conversion in a Q?7500 deeply etched AlGaAs-nanowaveguide microresonator via degenerate continuous-wave four-wave mixing with a pump power of 24mW. The maximum conversion efficiency is -43??dB and accounts for 12dB enhancement compared to that of a straight nanowaveguide. The experimental results and theoretical predictions agree very well and show optimized conversion efficiency of -15??dB. This work represents a step toward realizing a fully integrated optical devices for generating new optical frequencies. PMID:26125359

  4. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester

    NASA Astrophysics Data System (ADS)

    Yoon, Sunghyun; Cho, Young-Ho

    2014-11-01

    We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2~1.0μW in the Human heart rate range on the skin contact area of 3.71cm2. Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves.

  5. Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1993-01-01

    Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.

  6. Low power energy harvesting and storage techniques from ambient human powered energy sources

    NASA Astrophysics Data System (ADS)

    Yildiz, Faruk

    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide small amounts of electricity to low-power electronic devices. These studies were focused to investigate and obtain power from different energy sources, such as vibration, light, sound, airflow, heat, waste mechanical energy and temperature variations. This research studied forms of ambient energy sources such as waste mechanical (rotational) energy from hydraulic door closers, and fitness exercise bicycles, and its conversion and storage into usable electrical energy. In both of these examples of applications, hydraulic door closers and fitness exercise bicycles, human presence is required. A person has to open the door in order for the hydraulic door closer mechanism to function. Fitness exercise bicycles need somebody to cycle the pedals to generate electricity (while burning calories.) Also vibrations, body motions, and compressions from human interactions were studied using small piezoelectric fiber composites which are capable of recovering waste mechanical energy and converting it to useful electrical energy. Based on ambient energy sources, electrical energy conversion and storage circuits were designed and tested for low power electronic applications. These sources were characterized according to energy harvesting (scavenging) methods, and power and energy density. At the end of the study, the ambient energy sources were matched with possible electronic applications as a viable energy source.

  7. MAGNETOACOUSTIC WAVE ENERGY FROM NUMERICAL SIMULATIONS OF AN OBSERVED SUNSPOT UMBRA

    SciTech Connect

    Felipe, T.; Khomenko, E.; Collados, M.

    2011-07-01

    We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through three-dimensional MHD numerical simulations. A magnetostatic sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere, introducing the fluctuations measured with the Si I {lambda}10827 line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the He I {lambda}10830 line, the Ca II H core, and the Fe I blends in the wings of the Ca II H line. The simulations show a remarkable agreement with the observations. They reproduce the velocity maps and power spectra at the formation heights of the observed lines, as well as the phase and amplification spectra between several pairs of lines. We find that the stronger shocks at the chromosphere are accompanied with a delay between the observed signal and the simulated one at the corresponding height, indicating that shocks shift the formation height of the chromospheric lines to higher layers. Since the simulated wave propagation matches very well the properties of the observed one, we are able to use the numerical calculations to quantify the energy contribution of the magnetoacoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is too low to balance the chromospheric radiative losses. The energy contained at the formation height of the lowermost Si I {lambda}10827 line in the form of slow magnetoacoustic waves is already insufficient to heat the higher layers, and the acoustic energy which reaches the chromosphere is around 3-9 times lower than the required amount of energy. The contribution of the magnetic energy is even lower.

  8. Novel Nuclear Powered Photocatalytic Energy Conversion

    SciTech Connect

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

    2005-08-29

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

  9. Radiation of inertial kinetic energy as near-inertial waves forced by tropical Pacific Easterly waves

    NASA Astrophysics Data System (ADS)

    Soares, S. M.; Richards, K. J.

    2013-05-01

    Easterly waves (EW) are low level tropical atmospheric disturbances able to resonantly force strong mixed layer inertial currents. Using data from two Tropical Atmosphere Ocean/Eastern Pacific Investigation of Climate Processes (TAO/EPIC) buoys located along 95°W and a multiparameterization one-dimensional turbulence model, we examine how the EW-forced surface inertial kinetic energy (IKE) loss is partitioned between turbulent dissipation and near-inertial wave (NIW) radiation. Several EW-forcing events are individually simulated with a version of the General Ocean Turbulence Model modified to include a linear damping coefficient to account for the NIW radiation energy sink. The kinetic energy budget of these simulations shows that NIW radiation accounted for typically 50-60% of the IKE loss and in some cases up to 80%. These empirically derived estimates of the contribution of the radiated NIWs to the loss of wind-induced surface IKE are substantially higher than recently published numerical estimates. Furthermore, the results indicate that the vertical NIW energy flux increases linearly with the wind input of IKE, an easily obtained quantity. The NIW vertical energy flux estimated for a single near-resonant event is comparable to extreme north Pacific wintertime-averaged fluxes, indicating the existence of important episodic sources of near-inertial energy available for mixing within and below the thermocline in the tropical region.

  10. Energy of nonlinear internal waves in the South China Sea

    NASA Astrophysics Data System (ADS)

    Lien, R.-C.; Tang, T. Y.; Chang, M. H.; D'Asaro, E. A.

    2005-03-01

    Four sets of ADCP measurements were taken in the South China Sea (SCS); these results were combined with previous satellite observations and internal-tide numerical model results. Analysis suggests that strong internal tides are generated in Luzon Strait, propagate as a narrow tidal beam into the SCS, are amplified by the shoaling continental slope near TungSha Island, become nonlinear, and evolve into high-frequency nonlinear internal waves (NIW). Internal waves in the SCS have geographically distinct characteristics. (1) West of Luzon Strait the total internal wave energy (Eiw) is 10 that predicted by Garrett-Munk spectra (EGM) (Levine, 2002). There is no sign of NIW. (2) Near TungSha Island Eiw = 13 EGM. Strong nonlinear and high-harmonic tides are present. Repetitive trains of large-amplitude NIW appear primarily at a semidiurnal periodicity with their amplitudes modulated at a fortnightly tidal cycle. The rms vertical velocity of NIW shows a clear spring-neap tidal cycle and is linearly proportional to the barotropic tidal height in Luzon Strait with a 1.85-day time lag, consistent with the travel time of internal tides from Luzon Strait to TungSha Island. (3) At the northern SCS shelfbreak Eiw = 4 EGM. Single depression waves are found, but no multiple-waves packets are evident. (4) On the continental shelf Eiw = 2 EGM. Both depression and elevation NIW exist.

  11. Wecpos - Wave Energy Coastal Protection Oscillating System: A Numerical Assessment

    NASA Astrophysics Data System (ADS)

    Dentale, Fabio; Pugliese Carratelli, Eugenio; Rzzo, Gianfranco; Arsie, Ivan; Davide Russo, Salvatore

    2010-05-01

    In recent years, the interest in developing new technologies to produce energy with low environmental impact by using renewable sources has grown exponentially all over the world. In this context, the experiences made to derive electricity from the sea (currents, waves, etc.) are of particular interest. At the moment, due to the many existing experiments completed or still in progress, it is quite impossible explain what has been obtained but it is worth mentioning the EMEC, which summarizes the major projects in the world. Another important environmental aspect, also related to the maritime field, is the coastal protection from the sea waves. Even in this field, since many years, the structural and non-structural solutions which can counteract this phenomenon are analyzed, in order to cause the least possible damage to the environment. The studies in development by the researchers of the University of Salerno are based on these two aspect previously presented. Considering the technologies currently available, a submerged system has been designed, WECPOS (Wave Energy Coastal Protection Oscillating System), to be located on relatively shallow depths, to can be used simultaneously for both electricity generation and for the coastal protection using the oscillating motion of the water particles. The single element constituting the system is realized by a fixed base and three movable panels that can fluctuate in a fixed angle. The waves interact with the panels generating an alternative motion which can be exploited to produce electricity. At the same time, the constraint movement imposed for the rotation of the panels is a barrier to the wave propagation phenomena, triggering the breaking in the downstream part of the device. So the wave energy will be dissipated obtaining a positive effect for the coastal protection. Currently, the efficiency and effectiveness of the system (WECPOS single module) has been studied by using numerical models. Using the FLOW-3D® software it has been possible to evaluate the hydrodynamic interactions that occur between a regular wave, with different height and period characteristics. The RANS equations, coupled with the RNG turbulence model, have been integrated on a three-dimensional channel (90.0 x 6.0 x 8.0 m), using a numerical domain made of two mesh blocks: a general one containing the entire domain (cells size 0.30 cm) and the localized one on the device (cells size 0.10 cm). With the results, by assessing the rotational angle, angular velocity, hydraulic torque of the individual panel it has been possible to estimate the potential energy production. A Matlab/Simulink model has been built to estimate the production of electric energy by means of an oleodynamic system consisting of a piston and a turbine coupled with an electric generator. About the coastal protection, by estimating some characteristic parameters of the wave motion (zero-moment wave height Hmo, transmission coefficient Kt and the average free surface elevation), the behaviour of the WECPOS device has been analyzed for its ability in wave energy dissipation.

  12. Experimental study on load characteristics in a floating type pendulum wave energy converter

    NASA Astrophysics Data System (ADS)

    Murakami, Tengen; Imai, Yasutaka; Nagata, Shuichi

    2014-10-01

    A floating type pendulum wave energy converter (FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al. in 1998. They showed that this device had high energy conversion efficiency. In the previous research, the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys, belts and a generator. As a result, the influence of the electrical load on the generating efficiency was shown. Continuously, the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper. In a later part of this paper, the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research. From the above experiment, it may be concluded that the maximum primary conversion efficiency is achieved as high as 98% at the optimal load.

  13. Time- and power-dependent operation of a parametric spin-wave amplifier

    SciTech Connect

    Brächer, T.; Heussner, F.; Pirro, P.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Serga, A. A.; Hillebrands, B.

    2014-12-08

    We present the experimental observation of the localized amplification of externally excited, propagating spin waves in a transversely in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide by means of parallel pumping. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the dependency of the amplification on the applied pumping power and on the delay between the input spin-wave packet and the pumping pulse. We show that there are two different operation regimes: At large pumping powers, the spin-wave packet needs to enter the amplifier before the pumping is switched on in order to be amplified while at low powers the spin-wave packet can arrive at any time during the pumping pulse.

  14. Challenges and Techniques in Measurements of Noise, Cryogenic Noise and Power in Millimeter-Wave and Submillimeter-Wave Amplifiers

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2014-01-01

    We will present the topic of noise measurements, including cryogenic noise measurements, of Monolithic Microwave Integrated Circuit (MMIC) and Sub-Millimeter-Wave Monolithic Microwave Integrated Circuit (S-MMIC) amplifiers, both on-wafer, and interfaced to waveguide modules via coupling probes. We will also present an overview of the state-of-the-art in waveguide probe techniques for packaging amplifier chips, and discuss methods to obtain the lowest loss packaging techniques available to date. Linearity in noise measurements will be discussed, and experimental methods for room temperature and cryogenic noise measurements will be presented. We will also present a discussion of power amplifier measurements for millimeter-wave and submillimeter-wave amplifiers, and the tools and hardware needed for this characterization.

  15. Energy and Power Technology. Curriculum Guide.

    ERIC Educational Resources Information Center

    North Dakota State Board for Vocational Education, Bismarck.

    One of a set of six guides for an industrial arts curriculum at the junior high school level, this guide provides the basic foundation to develop a one-semester course based on the cluster concept, energy and power technology. The guide suggests manipulative and experimental student-conducted activities or teacher demonstrations which focus on the…

  16. Tower Power: Producing Fuels from Solar Energy

    ERIC Educational Resources Information Center

    Antal, M. J., Jr.

    1976-01-01

    This article examines the use of power tower technologies for the production of synthetic fuels. This process overcomes the limitations of other processes by using a solar furnace to drive endothermic fuel producing reactions and the resulting fuels serve as a medium for storing solar energy. (BT)

  17. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves

    SciTech Connect

    Kuo, Spencer; Snyder, Arnold; Chang, Chia-Lie

    2010-08-15

    Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

  18. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Chang, Chia-Lie

    2010-08-01

    Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

  19. Inflation that runs naturally: Gravitational waves and suppression of power at large and small scales

    NASA Astrophysics Data System (ADS)

    Minor, Quinn E.; Kaplinghat, Manoj

    2015-03-01

    We point out three correlated predictions of the axion monodromy inflation model: the large amplitude of gravitational waves, the suppression of power on horizon scales and on scales relevant for the formation of dwarf galaxies. While these predictions are likely generic to models with oscillations in the inflaton potential, the axion monodromy model naturally accommodates the required running spectral index through Planck-scale corrections to the inflaton potential. Applying this model to a combined data set of Planck, ACT, SPT, and WMAP low-? polarization cosmic microwave background (CMB) data, we find a best-fit tensor-to-scalar ratio r0.05=0.07-0.04+0.05 due to gravitational waves, which may have been observed by the BICEP2 experiment. Despite the contribution of gravitational waves, the total power on large scales (CMB power spectrum at low multipoles) is lower than the standard ? CDM cosmology with a power-law spectrum of initial perturbations and no gravitational waves, thus mitigating some of the tension on large scales. There is also a reduction in the matter power spectrum of 20-30% at scales corresponding to k =10 Mpc-1 , which are relevant for dwarf galaxy formation. This will alleviate some of the unsolved small-scale structure problems in the standard ? CDM cosmology. The inferred matter power spectrum is also found to be consistent with recent Lyman-? forest data, which is in tension with the Planck-favored ? CDM model with a power-law primordial power spectrum.

  20. Ocean Wave Energy Estimation Using Active Satellite Imagery as a Solution of Energy Scarce in Indonesia Case Study: Poteran Island's Water, Madura

    NASA Astrophysics Data System (ADS)

    Nadzir, Z. A.; Karondia, L. A.; Jaelani, L. M.; Sulaiman, A.; Pamungkas, A.; Koenhardono, E. S.; Sulisetyono, A.

    2015-10-01

    Ocean wave energy is one of the ORE (Ocean Renewable Energies) sources, which potential, in which this energy has several advantages over fossil energy and being one of the most researched energy in developed countries nowadays. One of the efforts for mapping ORE potential is by computing energy potential generated from ocean wave, symbolized by Watt per area unit using various methods of observation. SAR (Synthetic Aperture Radar) is one of the hyped and most developed Remote Sensing method used to monitor and map the ocean wave energy potential effectively and fast. SAR imagery processing can be accomplished not only in remote sensing data applications, but using Matrices processing application as well such as MATLAB that utilizing Fast Fourier Transform and Band-Pass Filtering methods undergoing Pre-Processing stage. In this research, the processing and energy estimation from ALOSPALSAR satellite imagery acquired on the 5/12/2009 was accomplished using 2 methods (i.e Magnitude and Wavelength). This resulted in 9 potential locations of ocean wave energy between 0-228 W/m2, and 7 potential locations with ranged value between 182-1317 W/m2. After getting through buffering process with value of 2 km (to facilitate the construction of power plant installation), 9 sites of location were estimated to be the most potential location of ocean wave energy generation in the ocean with average depth of 8.058 m and annual wind speed of 6.553 knot.

  1. Dynamic Behaviors of Materials under Ramp Wave Loading on Compact Pulsed Power Generators

    NASA Astrophysics Data System (ADS)

    Zhao, Jianheng; Luo, Binqiang; Wang, Guiji; Chong, Tao; Tan, Fuli; Liu, Cangli; Sun, Chengwei

    The technique using intense current to produce magnetic pressure provides a unique way to compress matter near isentrope to high density without obvious temperature increment, which is characterized as ramp wave loading, and firstly developed by Sandia in 1998. Firstly recent advances on compact pulsed power generators developed in our laboratory, such as CQ-4, CQ-3-MMAF and CQ-7 devices, are simply introduced here, which devoted to ramp wave loading from 50GPa to 200 GPa, and to ultrahigh-velocity flyer launching up to 30 km/s. And then, we show our progress in data processing methods and experiments of isentropic compression conducted on these devices mentioned above. The suitability of Gruneisen EOS and Vinet EOS are validated by isentropic experiments of tantalum, and the parameters of SCG constitutive equation of aluminum and copper are modified to give better prediction under isentropic compression. Phase transition of bismuth and tin are investigated under different initial temperatures, parameters of Helmholtz free energy and characteristic relaxation time in kinetic phase transition equation are calibrated. Supported by NNSF of China under Contract No.11327803 and 11176002

  2. Method and apparatus for generating electric power by waves

    SciTech Connect

    Watabe, T.; Dote, Y.; Kondo, H.; Matsuda, T.; Takagi, M.; Yano, K.

    1984-12-25

    At least one caisson which is part or all of a breakwater forms a water chamber therein whose closure is a pendulum having a natural period in rocking or oscillating the same as a period of stationary wave surges caused in the water chamber by rocking movement of the pendulum owing to wave force impinging against the pendulum. At least one double-acting piston and cylinder assembly is connected to the pendulum, so that when a piston of the assembly is reciprocatively moved by the pendulum, pressure difference between cylinder chambers on both sides of the piston of the assembly controls a change-over valve which in turn controls hydraulic pressure discharged from the cylinder chambers to be supplied to a plurality of hydraulic motors respectively having accumulators of a type wherein accumulated pressure and volume of the hydraulic liquid are proportional to each other, whereby driving a common generator alternately by the hydraulic motors.

  3. Wave Power for U.S. Coast Guard First District Lighthouses

    SciTech Connect

    Walker, A.; Kandt, A.; Heimiller, D.

    2006-01-01

    Lighthouses and other navigational aids are situated near tumultuous seas and thus may be good candidates for early applications of wave energy conversion technologies. This paper describes gravity wave physics and the characteristics of mechanical radiation (growth, propagation, diffraction, and shoaling).

  4. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    SciTech Connect

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  5. Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.

    PubMed

    Kartashova, Elena

    2012-10-01

    A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc. PMID:23214551

  6. A permanent magnet tubular linear generator for wave energy conversion

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Liu, Chunyuan; Yuan, Bang; Hu, Minqiang; Huang, Lei; Zhou, Shigui

    2012-04-01

    A novel three-phase permanent magnet tubular linear generator (PMTLG) with Halbach array is proposed for the sea wave energy conversion. Non-linear axi-symmetrical finite element method (FEM) is implemented to calculate the magnetic fields along air-gap for different Halbach arrays of PMTLGs. The PMTLG characteristics are analyzed and the simulation results are validated by the experiment. An assistant tooth is implemented to greatly minimize the end and cogging effects which cause the oscillatory detent force.

  7. Energy storage for hybrid remote power systems

    SciTech Connect

    Isherwood, W., LLNL

    1998-03-01

    Energy storage can be a cost-effective component of hybrid remote power systems. Storage serves the special role of taking advantage of intermittent renewable power sources. Traditionally this role has been played by lead-acid batteries, which have high life-cycle costs and pose special disposal problems. Hydrogen or zinc-air storage technologies can reduce life-cycle costs and environmental impacts. Using projected data for advanced energy storage technologies, LLNL ran an optimization for a hypothetical Arctic community with a reasonable wind resource (average wind speed 8 m/s). These simulations showed the life-cycle annualized cost of the total energy system (electric plus space heating) might be reduced by nearly 40% simply by adding wind power to the diesel system. An additional 20 to 40% of the wind-diesel cost might be saved by adding hydrogen storage or zinc-air fuel cells to the system. Hydrogen produced by electrolysis of water using intermittent, renewable power provides inexpensive long-term energy storage. Conversion back to electricity with fuel cells can be accomplished with available technology. The advantages of a hydrogen electrolysis/fuel cell system include low life-cycle costs for long term storage, no emissions of concern, quiet operation, high reliability with low maintenance, and flexibility to use hydrogen as a direct fuel (heating, transportation). Disadvantages include high capital costs, relatively low electrical turn-around efficiency, and lack of operating experience in utility settings. Zinc-air fuel cells can lower capital and life-cycle costs compared to hydrogen, with most of the same advantages. Like hydrogen systems, zinc-air technology promises a closed system for long-term storage of energy from intermittent sources. The turn around efficiency is expected to exceed 60%, while use of waste heat can potentially increase overall energy efficiency to over 80%.

  8. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    PubMed Central

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  9. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  10. The effect of refraction and friction on wave energy distribution along beaches

    SciTech Connect

    Arafa, F.

    1983-12-01

    In order to stimulate wave action on coasts, an analytical model that describes the manner by which obliquely incident surface gravity waves approach a sloping beach is presented. The combined effects of dept refraction, shoaling and bottom turbulent friction on wave heights, energy distribution and crest alignment are simulated. The model describes wave motion outside the surf zone i.e. wave breaking is not considered. Effects of wave reflection, diffraction and percolation as well as effects of currents whether winddriven or density-driven are neglected. Thus wave refraction by current gradient is not considered. Linearized wave theory together with the principle of constancy of wave period are used to simulate wave motion away from the shore. Short-crested, large-amplitude waves are not considered. Wave asymmetry, wave radiation and other second-order effects are neglected.

  11. Phase-locking and coherent power combining of broadband linearly chirped optical waves.

    PubMed

    Satyan, Naresh; Vasilyev, Arseny; Rakuljic, George; White, Jeffrey O; Yariv, Amnon

    2012-11-01

    We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ~ 60 kHz, and a residual phase error variance of < 0.01 rad(2) between the chirped waves is obtained. Further, we demonstrate the simultaneous phase-locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers-where a rapidly chirping seed laser reduces stimulated Brillouin scattering-and electronic beam steering of chirped optical waves. PMID:23187338

  12. The method of imbedded Lagrangian element to estimate wave power absorption by some submerged devices

    NASA Astrophysics Data System (ADS)

    Nihous, Gérard C.

    2014-06-01

    A simple approach is described to estimate the wave power absorption potential of submerged devices known to cause wave focusing and flow enhancement. In particular, the presence of a flow-through power take-off (PTO) system, such as low-head turbines, can be accounted for. The wave radiation characteristics of an appropriately selected Lagrangian element (LE) in the fluid domain are first determined. In the limit of a vanishing mass, the LE reduces to a patch of distributed normal dipoles. The hydrodynamic coefficients of this virtual object are then input in a standard equation of motion where the effect of the PTO can be represented, for example, as a dashpot damping term. The process is illustrated for a class of devices recently proposed by Carter and Ertekin (2011), although in a simplified form. Favorable wave power absorption is shown for large ratios of the LE wave radiation coefficient over the LE added mass coefficient. Under optimal conditions, the relative flow reduction from the PTO theoretically lies between 0.50 and , with lower values corresponding to better configurations. Wave power capture widths, the sensitivity of results to PTO damping and sample spectral calculations at a typical site in Hawaiian waters are proposed to further illustrate the versatility of the method.

  13. Fractal ladder models and power law wave equations

    PubMed Central

    Kelly, James F.; McGough, Robert J.

    2009-01-01

    The ultrasonic attenuation coefficient in mammalian tissue is approximated by a frequency-dependent power law for frequencies less than 100 MHz. To describe this power law behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By combining this constitutive equation with linearized conservation principles and an adiabatic equation of state, a fractional partial differential equation that describes power law attenuation is derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and 2, while the phase velocity is in agreement with the Kramers–Kronig relations. The fractal ladder model is compared to published attenuation coefficient data, thus providing equivalent lumped parameters. PMID:19813816

  14. Efficient millimeter wave 1140 GHz/ diode for harmonic power generation

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Epitaxial gallium arsenide diode junction formed in a crossed waveguide structure operates as a variable reactance harmonic generator. This varactor diode can generate power efficiently in the low-millimeter wavelength.

  15. Thermal energy storage for power generation applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Zen I.; Brown, D. R.

    1990-03-01

    Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.

  16. Experimental observations of the spatial structure of wave-like disturbances generated in midlatitude ionosphere by high power radio waves

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Andreeva, E.; Padokhin, A. M.; Nazarenko, M.; Frolov, V.; Komrakov, G.; Bolotin, I.

    2012-12-01

    We present the results of the experiments carried out in 2009-2012 on the Sura heating facility (Radio Physical Research Institute, N. Novgorod, Russia) on modification of the midlatitude ionosphere by powerful HF radiowaves. The experiments were conducted using O-mode radiowaves at frequencies lower than critical frequency of the ionospheric F2 layer both in daytime and nighttime ionosphere. Various schemes of the radiation of the heating wave were used including square wave modulation of the effective radiated power (ERP) at various frequencies and power stepping. Radio transmissions of the low- (Parus/Tsikada) and high-orbital (GPS/GLONASS) navigational satellites received at the mobile network of receiving sites were used for the remote sensing of the heated area of the ionosphere. The variations in the slant total electron content (TEC), which are proportional to the reduced phase of navigational signals, were studied for the satellite passes for which ionospheric penetration points crossed the disturbed area during HF heating. The variations in TEC caused by HF heating are identified in a number of examples. It is shown that the GNSS TEC spectra contain frequency components corresponding to the modulation periods of the ERP of the heating wave. The manifestations of the heating-induced variations in TEC are most prominent in the area of magnetic zenith of the pumping wave. Different behavior of TEC variations was observed during nighttime and daytime heating experiments. In daytime conditions the pump wave switched ON causes the increase of TEC while in the nighttime it causes a decrease in TEC. This can be explained by the different contribution of the processes responsible for the increase and decrease of TEC in daytime in nighttime conditions. In this work we also present the first time radiotomographic reconstructions of the spatial structure of the wave-like disturbances, generated in the ionosphere by high-power radio waves radiated by the Sura heater with a square wave modulation of the ERP at a frequency lower than or of the order of the Brunt-Vaisala frequency of the neutral atmosphere. The observed wavelike structures, which are possibly AGWs, diverge from the heated area of the ionosphere (observed like a narrow trough with dimensions corresponding to the diagram pattern of the Sura heater), the spatial period of these disturbances is 200-250 km and they are easily traced up to a distance of 700-800 km from the heated region. These observations are in good agreement with complimentary GPS/GLONASS data. We also present the examples of amplitude scintillations of the signals of low-orbital radio beacons corresponding to small-scale field-aligned irregularities in the heated area of ionosphere. The possibility of generation of electromagnetic waves by moving wave-like structures in ionosphere (like AGWs induced by HF-heating observed in our experiments) is also addressed in this work. The authors are grateful to the staff of the Sura facility for their help in conducting the experiments and acknowledge the support of the Russian Foundation for Basic Research (grants 10-05-01126, 11-02-00374, 11-05-01157, 12-02-31839, 12-05-33065, 12-05-10068), grant of the President of Russian Federation MK-2544.2012.5 and Lomonosov Moscow State University Program of Development.

  17. Internal wave pressure, velocity, and energy flux from density perturbations

    NASA Astrophysics Data System (ADS)

    Allshouse, Michael R.; Lee, Frank M.; Morrison, Philip J.; Swinney, Harry L.

    2016-05-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field J =p u , which requires simultaneous measurements of the pressure and velocity perturbation fields p and u , respectively. We present a method for obtaining the instantaneous J (x ,z ,t ) from density perturbations alone: A Green's function-based calculation yields p ; u is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: The Green's function method is applied to the density perturbation field from the simulations and the result for J is found to agree typically to within 1% with J computed directly using p and u from the Navier-Stokes simulation. We also apply the Green's function method to density perturbation data from laboratory schlieren measurements of internal waves in a stratified fluid and the result for J agrees to within 6 % with results from Navier-Stokes simulations. Our method for determining the instantaneous velocity, pressure, and energy flux fields applies to any system described by a linear approximation of the density perturbation field, e.g., to small-amplitude lee waves and propagating vertical modes. The method can be applied using our matlab graphical user interface EnergyFlux.

  18. The impact of sea surface currents in wave power potential modeling

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  19. Power limits for wind energy concentrator systems

    NASA Astrophysics Data System (ADS)

    Dick, E.

    Momentum theory, in the classical sense of Betz, is applied to wind energy concentrator systems in order to determine their theoretical power limits. It is shown that the power coefficient based on frontal area for any concentrator system can be written in a form which is very similar to the form of a free turbine. The difference lies in the different functional relationships between the wind velocity at the rotor disk and the wind velocity behind the system. This functional relationship is called the system function. Due to the different system functions, the maxima of the power coefficients are different. It is shown that the system function is favorable for the diffuser augmented concentrator system and that it is unfavorable for the tipvane system and the tornado system.

  20. Pulse energy evolution for high-resolution Lamb wave inspection

    NASA Astrophysics Data System (ADS)

    Hua, Jiadong; Lin, Jing; Zeng, Liang; Gao, Fei

    2015-06-01

    Generally, tone burst excitation methods are used to reduce the effect of dispersion in Lamb wave inspection. In addition, algorithms for dispersion compensation are required to simplify responses, especially in long-range inspection. However, the resolution is always limited by the time duration of tone burst excitation. A pulse energy evolution method is established to overcome this limitation. In this method, a broadband signal with a long time (e.g. a chirp, white noise signal, or a pseudo-random sequence) is used as excitation to actuate Lamb waves. First of all, pulse compression is employed to estimate system impulse response with a high signal-to-noise ratio. Then, dispersion compensation is applied repeatedly with systemically varied compensation distances, obtaining a series of compensated signals. In these signals, amplitude (or energy) evolution associated with the change of compensation distance is utilized to estimate the actual propagation distance of the interested wave packet. Finally, the defect position is detected by an imaging algorithm. Several experiments are given to validate the proposed method.

  1. Equilibrium distribution of the wave energy in a carbyne chain

    NASA Astrophysics Data System (ADS)

    Kovriguine, D. A.; Nikitenkova, S. P.

    2016-03-01

    The steady-state energy distribution of thermal vibrations at a given ambient temperature has been investigated based on a simple mathematical model that takes into account central and noncentral interactions between carbon atoms in a one-dimensional carbyne chain. The investigation has been performed using standard asymptotic methods of nonlinear dynamics in terms of the classical mechanics. In the first-order nonlinear approximation, there have been revealed resonant wave triads that are formed at a typical nonlinearity of the system under phase matching conditions. Each resonant triad consists of one longitudinal and two transverse vibration modes. In the general case, the chain is characterized by a superposition of similar resonant triplets of different spectral scales. It has been found that the energy equipartition of nonlinear stationary waves in the carbyne chain at a given temperature completely obeys the standard Rayleigh-Jeans law due to the proportional amplitude dispersion. The possibility of spontaneous formation of three-frequency envelope solitons in carbyne has been demonstrated. Heat in the form of such solitons can propagate in a chain of carbon atoms without diffusion, like localized waves.

  2. Ultra-power shock wave driven by a laser-accelerated electron beam

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu

    2015-06-01

    This review is presented on modern research to achieve in a laboratory experiment the new level of shock-wave pressure of a few hundred or even thousands of Mbar when a substance is exposed to a stream of laser-accelerated fast electrons. The applications associated with the use of ultra-power shock waves as the ignition driver of inertial fusion targets as well as the tool in studying the equation of a state of a matter are discussed.

  3. Nonlinear Energy Balance Model of Particle Acceleration by Parallel Shock Waves

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. I.; Galinsky, V. L.

    2007-12-01

    A new theoretical/numerical model of particles acceleration by quasi-parallel shocks is developed and results of numerical analysis are discussed. The model assumes that resonant wave--particle interaction is the most important physical mechanisms relevant to motion and acceleration of particles as well as to excitation and dumping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles will be pitch--angle scattered. Since the total distribution function (for bulk plasma and high energy tail) is included in the model, no any special bootstrap or termination assumptions are required (neither introduction of separate population of seed particles nor some ad-hoc escape rate of accelerated particles are needed). The preliminary results show not only remarkable agreement with diffusive shock acceleration (DSA) models in prediction of power spectra for accelerated particles in upstream region but also reveal presence of spectral break in high energy part of the spectra. The role of the second order Fermi acceleration at the initial stage of acceleration is discussed.

  4. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2015-05-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  5. Dispersion of capillary-gravity waves: a derivation based on conservation of energy

    NASA Astrophysics Data System (ADS)

    Behroozi, F.; Podolefsky, N.

    2001-05-01

    Waves on fluids provide an excellent context for introducing some important topics in fluid dynamics. In this paper we first discuss the behaviour of standing surface waves and present their special properties. Next the dispersion relation of surface waves is derived in a novel way by applying the conservation of energy to the case of standing waves.

  6. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    NASA Astrophysics Data System (ADS)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  7. Electric Power From Ambient Energy Sources

    SciTech Connect

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  8. Electrocaloric energy efficiency and cooling power

    NASA Astrophysics Data System (ADS)

    Mathur, Neil

    2014-03-01

    How much energy is required to drive electrocaloric effects near ferroelectric phase transitions? I will compare electrocaloric ceramic and polymer films with each other, with magnetocaloric materials (exploited in over 40 prototype refrigerators), and with elastocaloric materials. I will also discuss the cooling power that could be achieved in electrocaloric heat pumps based on multilayer capacitors in which heat flow is modelled using finite element analysis.

  9. Space solar power - An available energy source

    NASA Technical Reports Server (NTRS)

    Ferdman, S.; Kline, R. L.

    1976-01-01

    The development of satellite solar power stations is described with attention given to station design and assembly in space. Problems associated with conversion of solar energy into microwaves and with getting the station into orbit are considered. The use of a solar propulsion system for pushing the station to high orbit is discussed along with questions of station lifetime (estimated to be about thirty years). The paper is copiously illustrated with drawings projecting various aspects of station design and utilization.

  10. Holocene reef development where wave energy reduces accommodation

    USGS Publications Warehouse

    Grossman, Eric E.; Fletcher, Charles H.

    2004-01-01

    Analyses of 32 drill cores obtained from the windward reef of Kailua Bay, Oahu, Hawaii, indicate that high wave energy significantly reduced accommodation space for reef development in the Holocene and produced variable architecture because of the combined influence of sea-level history and wave exposure over a complex antecedent topography. A paleostream valley within the late Pleistocene insular limestone shelf provided accommodation space for more than 11 m of vertical accretion since sea level flooded the bay 8000 yr BP. Virtually no net accretion (pile-up of fore-reef-derived rubble (rudstone) and sparse bindstone, and (3) a final stage of catch-up bindstone accretion in depths > 6 m. Coral framestone accreted at rates of 2.5-6.0 mm/yr in water depths > 11 m during the early Holocene; it abruptly terminated at ~4500 yr BP because of wave scour as sea level stabilized. More than 4 m of rudstone derived from the upper fore reef accreted at depths of 6 to 13 m below sea level between 4000 and 1500 yr BP coincident with late Holocene relative sea-level fall. Variations in the thickness, composition, and age of these reef facies across spatial scales of 10-1000 m within Kailua Bay illustrate the importance of antecedent topography and wave-related stress in reducing accommodation space for reef development set by sea level. Although accommodation space of 6 to 17 m has existed through most of the Holocene, the Kailua reef has been unable to catch up to sea level because of persistent high wave stress.

  11. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  12. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2.0 millimeters..

  13. Sound power spectrum and wave drag of a propeller in flight

    NASA Astrophysics Data System (ADS)

    Hanson, D. B.

    1989-04-01

    Theory is presented for the sound power and sound power spectrum of a single rotation propeller in forward flight. Calculations are based on the linear wave equation with sources distributed over helicoidal surfaces to represent effects of blade thickness and steady loading. Sound power is distributed continuously over frequecy, as would be expected from Doppler effects, rather than in discrete harmonics. The theory is applied to study effects of sweep and Mach number in propfans. An acoustic efficiency is defined as the ratio of radiated sound power to shaft input power. This value is the linear estimate of the effect of wave drag due to the supersonic blade section speeds. It is shown that the acoustic efficiency is somewhat less than 1 percent for a well designed propfan.

  14. Sound power spectrum and wave drag of a propeller in flight

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1989-01-01

    Theory is presented for the sound power and sound power spectrum of a single rotation propeller in forward flight. Calculations are based on the linear wave equation with sources distributed over helicoidal surfaces to represent effects of blade thickness and steady loading. Sound power is distributed continuously over frequecy, as would be expected from Doppler effects, rather than in discrete harmonics. The theory is applied to study effects of sweep and Mach number in propfans. An acoustic efficiency is defined as the ratio of radiated sound power to shaft input power. This value is the linear estimate of the effect of wave drag due to the supersonic blade section speeds. It is shown that the acoustic efficiency is somewhat less than 1 percent for a well designed propfan.

  15. First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; Lai, R.

    2008-01-01

    Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.

  16. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    NASA Astrophysics Data System (ADS)

    Tong, Yu; Zhao, Hongcai; Fang, Hui; Zhao, Youquan; Yuan, Xiaocong

    2016-02-01

    Photoacoustic Doppler (PAD) power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  17. The influence of solar wind variability on magnetospheric ULF wave power

    NASA Astrophysics Data System (ADS)

    Pokhotelov, D.; Rae, I. J.; Murphy, K. R.; Mann, I. R.

    2015-06-01

    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.

  18. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    NASA Astrophysics Data System (ADS)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang

    2016-04-01

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM01. The existence of TM01 mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  19. Stabilized high-power laser system for the gravitational wave detector advanced LIGO.

    PubMed

    Kwee, P; Bogan, C; Danzmann, K; Frede, M; Kim, H; King, P; Pöld, J; Puncken, O; Savage, R L; Seifert, F; Wessels, P; Winkelmann, L; Willke, B

    2012-05-01

    An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments. PMID:22565688

  20. Advanced applications and solid-state power sources for millimeter-wave systems

    NASA Astrophysics Data System (ADS)

    Thoren, G. R.

    1984-12-01

    Attention is given to the design features and performance capabilities of mm-wave systems for smart munitions and minimissile guidance, communications, fire control, and radiometry, as well as to the solid state power sources, such as IMPATT diodes, which have made these integrated, light-weight systems possible. The majority of applications foreseen for mm-wave electronics are subsumed under advanced radar systems, including secure and interference-free military radars, high resolution and imaging radars, space object and target characteristics identification, and jet engine exhaust and cannon blast detection. Attention is given to silicon, GaAs, and InP IMPATT diodes and their power combiners.

  1. Performance Prediction of OWC Type Small Size Wave Power Device with Impulse Turbine

    NASA Astrophysics Data System (ADS)

    Suzuki, Masami; Takao, Manabu; Satoh, Eiji; Nagata, Shuichi; Toyota, Kazutaka; Setoguchi, Toshiaki

    This paper investigates a small size wave power device with an impulse turbine installed in the breakwater near Niigata Port, Japan. The device consists of an air chamber, a turbine, a generator and pressure-relief valves. This study reveals the characteristics of each component in this system with impulse turbine and a direct current dynamo the power of which is consumed by a constant resistor. In this paper special features of the impulse turbine are found, and the system characteristics are briefly represented. The overall plant performance was analyzed using mathematical model of an oscillating water column (OWC) based on linear water wave theory and the special features of the impulse turbine.

  2. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    NASA Astrophysics Data System (ADS)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present harbour protection, and installed at -10m depth (length=300 m) may produce about 2.7 GWh/y with a total costs of about 12,000,000 €, where only the 50% of the amount are the costs of the SSG device. Obviously the environmental impact of the two solutions is quite different. Aim of this study is to provide a multicriteria decision support framework to evaluate the best WEC typology and location in the perspective of the environmental cost-benefit analysis. The general environmental aspects generated by wave power projects will be described. Colonisation patterns and biofouling will be discussed with particular reference to changes of the seabed and alterations due to new substrates. In addition, impacts for fish, fishery and marine mammals will be also considered. We suggest that wave power projects should be evaluated also on the basis of their environmental impacts in the perspective of the Strategic Environmental Assessment (SEA) analysis, as implemented by the European Commission (SEA Directive 2001/42/EC). The early incorporation of the environmental aspects involved in the evaluation of wave power projects will give the opportunity for early mitigations or design modifications, most likely making wave projects more acceptable in the long run and more suitable for the marine environment.

  3. Generation of acoustic waves by power microwave pulses with the use of thin metal films

    NASA Astrophysics Data System (ADS)

    Andreev, V. G.; Vdovin, V. A.

    2005-10-01

    We study the features of excitation of acoustic waves by high-power microwave pulses in thin metal films bordering on liquid. Aluminum films with thicknesses 1 10 nm deposited onto a quartz substrate were used in experiments. It is shown theoretically that the absorption coefficient of microwaves is maximum for film thickness from 2 to 3 nm and the value of this maximum is determined by the dielectric permittivity of the bordering liquid. Theoretical calculations and experiments are performed for water and ethyl alcohol. The sound generation in a layered system quartz-aluminum film-liquid is analyzed with the help of the step-by-step approach. At the first step, microwave energy is absorbed in the film and heat is released. Then heat almost instantly diffuses into a liquid whose thermal expansion creates an acoustic signal. Profiles of acoustic signals excited in aluminum films by microwave pulses with a 5-ns duration and an energy of up to 1 mJ are experimentally detected. The most efficient transduction was observed for an aluminum film 3.5 nm thick.

  4. Energy scaling of terahertz-wave parametric sources.

    PubMed

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier. PMID:25836452

  5. The use of remote sensing and linear wave theory to model local wave energy around Alphonse Atoll, Seychelles

    NASA Astrophysics Data System (ADS)

    Hamylton, S.

    2011-12-01

    This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).

  6. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-09-01

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case.

  7. Evaluation of turbulent magnetic energy spectra in the three-dimensional wave vector domain in the solar wind

    SciTech Connect

    Gary, S Peter; Narita, Y; Glassmeier, K H; Goldstein, M L; Safraoui, F; Treumann, R A

    2009-01-01

    Using four-point measurements of the CLUSTER spacecraft, the energy distribution of magnetic field fluctuations in the solar wind is determined directly in the three-dimensional wave vector domain in the range 3 x 10{sup -4} rad/km < k < 3 x 10{sup -3} rad/km. The analysis method takes account of a regular tetrahedron configuration of CLUSTER and the Doppler effect. The energy distribution in the flow rest frame is anisotropic, characterized by two distinct extended structures perpendicular to the mean magnetic field and furthermore perpendicular to the flow direction. The three-dimensional distribution is averaged around the direction of the mean magnetic field direction, and then is further reduced to one-dimensional distributions in the wave number domain parallel and perpendicular to the mean magnetic field. The one-dimensional energy spectra are characterized by the power law with the index -5/3 and furthermore very close energy density between parallel and perpendicular directions to the mean magnetic field at the same wave numbers. Though the distributions and the spectra are not covered in a wide range of wave vectors, our measurements suggest that the solar wind fluctuation is anisotropic in the three-dimensional wave vector space. It is, however, rather isotropic when reduced into the parallel and perpendicular wave vector geometries due to the second anisotropy imposed by the flow direction.

  8. Relationship between wave energy and free energy from pickup ions in the Comet Halley environment

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Johnstone, A. D.

    1992-01-01

    The free energy available from the implanted heavy ion population at Comet Halley is calculated by assuming that the initial unstable velocity space ring distribution of the ions evolves toward a bispherical shell. Ultimately this free energy adds to the turbulence in the solar wind. Upstream and downstream free energies are obtained separately for the conditions observed along the Giotto spacecraft trajectory. The results indicate that the waves are mostly upstream propagating in the solar wind frame. The total free energy density always exceeds the measured wave energy density because, as expected in the nonlinear process of ion scattering, the available energy is not all immediately released. An estimate of the amount which has been released can be obtained from the measured oxygen ion distributions and again it exceeds that observed. The theoretical analysis is extended to calculate the k spectrum of the cometary-ion-generated turbulence.

  9. Transmitting electric energy through a closed elastic wall by acoustic waves and piezoelectric transducers.

    PubMed

    Yang, Zengtao; Guo, Shaohua; Yang, Jiashi

    2008-01-01

    Transmission of electric energy through a closed elastic wall by piezoelectric transducers and acoustic waves is studied based on the linear theory of piezoelectricity and elasticity. A theoretical analysis is performed. For the structure and motion considered, the 3-D equations of linear piezoelectricity reduce to a 1-D mathematical problem. An exact solution is obtained. Transmitted voltage, current, power, efficiency and stress distribution are obtained. Their dependence on various parameters is examined. The model and results of this paper are closer to real situations compared with those in a previous analysis. PMID:18599426

  10. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  11. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to demonstrate our operational-planning framework and economic justification for different storage applications. A new reliability model is proposed for security and adequacy assessment of power networks containing renewable resources and energy storage systems. The proposed model is used in combination with the operational-planning framework to enhance the reliability and operability of wind integration. The proposed framework optimally utilizes the storage capacity for reliability applications of wind integration. This is essential for justification of storage deployment within regulated utilities where the absence of market opportunities limits the economic advantage of storage technologies over gas-fired generators. A control strategy is also proposed to achieve the maximum reliability using energy storage systems. A cost-benefit analysis compares storage technologies and conventional alternatives to reliably and efficiently integrate different wind penetrations and determines the most economical design. Our simulation results demonstrate the necessity of optimal storage placement for different wind applications. This dissertation also proposes a new stochastic framework to optimally charge and discharge electric vehicles (EVs) to mitigate the effects of wind power uncertainties. Vehicle-to-grid (V2G) service for hedging against wind power imbalances is introduced as a novel application for EVs. This application enhances the predictability of wind power and reduces the power imbalances between the scheduled output and actual power. An Auto Regressive Moving Average (ARMA) wind speed model is developed to forecast the wind power output. Driving patterns of EVs are stochastically modeled and the EVs are clustered in the fleets of similar daily driving patterns. Monte Carlo Simulation (MCS) simulates the system behavior by generating samples of system states using the wind ARMA model and EVs driving patterns. A Genetic Algorithm (GA) is used in combination with MCS to optimally coordinate the EV fleets for their V2G services and minimize the penalty cost associated with wind power imbalances. The economic characteristics of automotive battery technologies and costs of V2G service are incorporated into a cost-benefit analysis which evaluates the economic justification of the proposed V2G application. Simulation results demonstrate that the developed algorithm enhances wind power utilization and reduces the penalty cost for wind power under-/over-production. This offers potential revenues for the wind producer. Our cost-benefit analysis also demonstrates that the proposed algorithm will provide the EV owners with economic incentives to participate in V2G services. The proposed smart scheduling strategy develops a sustainable integrated electricity and transportation infrastructure.

  12. On the concept of sloped motion for free-floating wave energy converters

    PubMed Central

    Payne, Grégory S.; Pascal, Rémy; Vaillant, Guillaume

    2015-01-01

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range. PMID:26543397

  13. Wave energy utilization into ship propulsion by fins attached to a ship

    SciTech Connect

    Isshiki, H.

    1994-12-31

    Resistance of a ship increases in waves, that is, so called resistance increase of a ship due to waves. However, an oscillatory hydrofoil attached to the ship bow generates thrust. Under a certain condition, the ship can be driven by wave power alone. This paper reviews the design and performance of such a system.

  14. Development of a high power 12GHz PPM focused traveling wave tube

    NASA Technical Reports Server (NTRS)

    Lewis, R.

    1975-01-01

    An analytical and experimental program to demonstrate the technical feasibility of a high efficiency coupled cavity traveling wave tube with periodic permanent magnetic focusing operating at 12.06 GHz, with 1 to 2 kilowatts CW power is described. Such a tube would ultimately be used for broadcasting power transmission from a satellite. The electron gun was designed to be demountable with a replaceable cathode, and the tube to be operable in a bakeable vacuum chamber with its collector replaced by a collector. Therefore, the high efficiency design was concerned with the slow wave structure only, utilizing velocity resynchronization. A special adapter was designed which incorporated an electromagnet refocusing section and a collector baseplate to facilitate testing the collector. CW output power of 1000 watts yielding 21.5% electronic efficiency was demonstrated, with a minimum output power of 525 watts across the specified 160 MHz bandwidth.

  15. Power detectors for integrated microwave/mm-wave imaging systems in mainstream silicon technologies

    NASA Astrophysics Data System (ADS)

    Gu, Qun Jane; Li, James C.; Tang, Adrian

    2016-04-01

    This paper analyzes and compares three different types of detectors, including CMOS power detectors, bipolar power detectors, and super-regenerative detectors, deployed in the literature for integrated microwave/mm-wave imaging systems in mainstream silicon technologies. Each detector has unique working mechanism and demonstrates different behavior with respects to bias conditions, input signal power, as well as bandwidth responses. Two Figure-of-Merits for both wideband and narrowband imaging have been defined to quantify the detector performance comparison. CMOS and Bipolar detectors are good for passive imaging, while super regenerative detectors are superior for active imaging. The analytical results have been verified by both simulation and measurement results. These analyses intend to provide design insights and guidance for integrated microwave/mm-wave imaging power detectors.

  16. All-metal metamaterial slow-wave structure for high-power sources with high efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Yanshuai; Duan, Zhaoyun; Tang, Xianfeng; Wang, Zhanliang; Zhang, Yabin; Feng, Jinjun; Gong, Yubin

    2015-10-01

    In this paper, we have proposed a metamaterial (MTM) which is suitable for the compact high-power vacuum electron devices. For example, an S-band slow-wave structure (SWS) based on the all-metal MTMs has been studied by both simulation and experiment. The results show that this MTM SWS is very helpful to miniaturize the high-power vacuum electron devices and largely improve the output power and the electronic efficiency. The simulation model of an S-band MTM backward wave oscillator (BWO) is built, and the particle-in-cell simulated results are presented here: a 2.454 GHz signal is generated and its peak output power is 4.0 MW with a higher electronic efficiency of 31.5% relative to the conventional BWOs.

  17. Renewable Energy for Sustainable Rural Village Power

    SciTech Connect

    Touryan, J. O. V.; Touryan, K. J.

    1999-08-05

    It is estimated that two billion people live without electricity and its services worldwide. In addition, there is a sizeable number of rural villages that have limited electrical service, with either part-day operation by diesel generator or partial electrification. For many villages connected to the grid, power is often sporadically available and of poor quality. The US National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program that involves hybrid systems, to address these potential electricity opportunities in rural villages through the application of renewable energy technologies.1 The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. Hybrid systems are multi-disciplinary, multi-technology, multi-application programs composed of six activities, including village applications development, computer model development, systems analysis, pilot project development, technical assistance, and Internet-based village power project data base. While the current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel generator, micro-hydro and micro-biomass technologies may be integrated in the future. Thirteen countries are actively engaged in hybrid systems for rural and remote applications and another dozen countries have requested assistance in exploring wind/PV hybrid systems within their territories. At present rural/remote site application of renewable technologies is the fastest growing aspect of renewable energy worldwide.

  18. Oscillating-water-column wave-energy-converter based on dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Vertechy, R.; Fontana, M.; Rosati Papini, G. P.; Bergamasco, M.

    2013-04-01

    Dielectric Elastomers (DE) have been largely studied as actuators and sensors. Fewer researches have addressed their application in the field of energy harvesting. Their light weightiness, low cost, high corrosion resistance, and their intrinsic high-voltage and cyclical-way of operation make DE suited for harvesting mechanical energy from sea waves. To date, the development of cost-effective Wave Energy Converters (WECs) is hindered by inherent limitations of available material technologies. State of the art WECs are indeed based on traditional mechanical components, hydraulic transmissions and electromagnetic generators, which are all made by stiff, bulky, heavy and costly metallic materials. As a consequence, existing WECs result in being expensive, difficult to assemble, sensitive to corrosion and hard to maintain in the marine environment. DE generators could be an enabling technology for overcoming the intrinsic limitations of current WEC technologies. In this context, this paper focuses on Polymer-based Oscillating-Water-Column (Poly-OWC) type WECs, and analyzes the viability of using DE generators as power-take-off systems. Regarding paper structure, the first sections introduce the working principle of OWC devices and discuss possible layouts for their DE-based power-take-off system. Then, a simplified hydraulic-electro-hyperelastic model of a two-dimensional Poly-OWC is described. Finally, preliminary simulation results are shown which provide insights on the potential capabilities of Poly-OWC.

  19. Characterization of Waves Propagating Parallel and Anti-Parallel Downstream of a High Power Helicon Source

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Tim; Roberson, Race; Winglee, Robert

    2008-11-01

    Measurements of the wavelength and phase velocity of waves propagating downstream of a helicon source were found to deviate significantly from the expected values based on a bounded helicon wave and matched more closely with that of a freely propagating whistler wave. The data also revealed significant differences in the measured wave fields between when the antenna was driving waves parallel and anti-parallel to B0. These waves are correlated with the ion acceleration detected over a large axial distance, distinguishing this effect from acceleration through a double layer. Radial measurements of the wave fields propagating parallel and anti-parallel show differences in radial confinement of the waves with the profile changing from peaking on axis to maximizing at the edges of the plasma stream. Detailed results of magnetic field measurements taken both axially and radially with 3-axis bdot probes will be presented, and these measurements will be supplemented with plasma density measurements from Langmuir probes and ion energy analyzer results.

  20. Optical design of zero-power Hubble Space Telescope wave-front correctors for null testing.

    PubMed

    Hannan, P G; Davila, P; Wood, H J

    1993-04-01

    The optical design of the second-generation wide-field/planetary-camera instrument for the Hubble Space Telescope has been modified to compensate for the spherical aberration of the optical telescope assembly (OTA) by introduction of undercorrected spherical aberration into the wave front. This instrument can be tested in a simple manner to ensure that its aberration contribution has the proper sign and magnitude. We present designs for a near-zero power doublet lens that can be used to generate a spherically aberrated wave front that is similar to the OTA wave front. When this lens is used in combination with the instrument, a near-perfect or nulled wave front should be produced, resulting in a high-quality point image on axis. We also present lens designs for a similar test that can be performed on the OTA simulators now being built to verify the other second-generation instruments. PMID:20820311

  1. Optical design of zero-power Hubble Space Telescope wave-front correctors for null testing

    NASA Technical Reports Server (NTRS)

    Hannan, Paul G.; Davila, Pam; Wood, H. J.

    1993-01-01

    The optical design of the second-generation wide-field/planetary-camera instrument for the Hubble Space Telescope has been modified to compensate for the spherical aberration of the optical telescope assembly (OTA) by introduction of undercorrected spherical aberration into the wave front. This instrument can be tested in a simple manner to ensure that its aberration contribution has the proper sign and magnitude. We present designs for a near-zero power doublet lens that can be used to generate a spherically aberrated wave front that is similar to the OTA wave front. When this lens is used in combination with the instrument, a near-perfect or nulled wave front should be produced, resulting in a high-quality point image on axis. We also present lens designs for a similar test that can be performed on the OTA simulators now being built to verify the other second-generation instruments.

  2. Energy and power limits for microbial activity

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J.

    2014-12-01

    The goal of this presentation is to describe a quantitative framework for determining how energy limits microbial activity, biomass and, ultimately, biogeochemical processes. Although this model can be applied to any environment, its utility is demonstrated in marine sediments, which are an attractive test habitat because they encompass a broad spectrum of energy levels, varying amounts of biomass and are ubiquitous. The potential number of active microbial cells in Arkonas Basin (Baltic Sea) sediments are estimated as a function of depth by quantifying the amount of energy that is available to them and the rate at which it is supplied: power. The amount of power supplied per cubic centimeter of sediment is determined by calculating the Gibbs energy of fermentation and sulfate reduction in combination with the rate of particulate organic carbon, POC, degradation. The Reactive Continuum Model (Boudreau and Ruddick, 1991), RCM, is used to determine the rate at which POC is made available for microbial consumption. The RCM represents POC as containing a range of different types of organic compounds whose ability to be consumed by microorganisms varies as a function of the age of the sediment and on the distribution of compound types that were initially deposited. The sediment age model and RCM parameters determined by (Mogollon et al., 2012) are used. The power available for fermentation and sulfate reduction coupled to H2 and acetate oxidation varies from 10-8 W cm-3 at the sediment water interface to between 10-11 - 10-12 W cm-3 at 3.5 meters below the seafloor, mbsf. Using values of maintenance powers for each of these catabolic activities taken from the literature, the total number of active cells in these sediments similarly decreases from just less than 108 cell cm-3 at the SWI to 4.6 x 104 cells cm-3 at 3.5 mbsf. The number of moles of POC decreases from 2.6 x 10-5 to 9.5 x 10-6, also becoming more recalcitrant with depth. Boudreau, B. P. and Ruddick, B. R. (1991) On a reactive continuum representation of organic matter diagenesis. Amer. J. Sci. 291, 507-538. Mogollon, J. M., Dale, A. W., Fossing, H. and Regnier, P. (2012) Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Bason (Baltic Sea). Biogeosciences 9, 1915-1933.

  3. Radiant Energy Power Source for Jet Aircraft

    SciTech Connect

    Doellner, O.L.

    1992-02-01

    This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

  4. New concepts in molecular and energy transport within carbon nanotubes: thermopower waves and stochastically resonant ion channels

    NASA Astrophysics Data System (ADS)

    Strano, Michael

    2012-02-01

    Our laboratory has been interested in how carbon nanotubes can be utilized to illustrate new concepts in molecular and energy transfer. In the first example, we predict and demonstrate the concept of thermopower waves for energy generation [1]. Coupling an exothermic chemical reaction with a thermally conductive CNT creates a self-propagating reactive wave driven along its length. We realize such waves in MWNT and show that they produce concomitant electrical pulses of high specific power >7 kW/kg. Such waves of high power density may find uses as unique energy sources. In the second system, we fabricate and study SWNT ion channels for the first time [2] and show that the longest, highest aspect ratio, and smallest diameter synthetic nanopore examined to date, a 500 μm SWNT, demonstrates oscillations in electro-osmotic current at specific ranges of electric field, that are the signatures of coherence resonance, yielding self-generated rhythmic and frequency locked transport. The observed oscillations in the current occur due to a coupling between stochastic pore blocking and a diffusion limitation that develops at the pore mouth during proton transport. [4pt] [1] Choi W, Hong S, Abrahamson JT, Han JH, Song C, Nair N, Baik S, Strano MS: Chemically driven carbon-nanotube-guided thermopower waves. NATURE MATERIALS, 9 (2010) 423-429.[0pt] [2] Lee, CY, Choi W, Han, JH, Strano MS: Coherence Resonance in a Single-Walled Carbon Nanotube Ion Channel. SCIENCE, 239

  5. Millimeter wave tokamak heating and current drive with a high power free electron laser

    SciTech Connect

    Thomassen, K.I.

    1987-01-01

    Experiments on microwave generation using a free electron laser (FEL) have shown this to be an efficient way to generate millimeter wave power in short, intense pulses. Short pulse FEL's have several advantages that make them attractive for application to ECR heating of tokamak fusion reactors. This paper reports on plans made to demonstrate the technology at the Microwave Tokamak Experiment (MTX) Facility.

  6. Photovoltaic power - An important new energy option

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  7. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed. PMID:25314546

  8. Wave properties near the subsolar magnetopause - Pc 3-4 energy coupling for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Strangeway, R. J.; Wygant, J. R.; Cattell, C. A.; Fitzenreiter, R. J.; Anderson, R. R.

    1993-01-01

    Strong slow mode waves in the Pc 3-4 frequency range are found in the magnetosheath close to the magnetopause. We have studied these waves at one of the ISEE subsolar magnetopause crossings using the magnetic field, electric field, and plasma measurements. We use the pressure balance at the magnetopause to calibrate the Fast Plasma Experiment data versus the magnetometer data. When we perform such a calibration and renormalization, we find that the slow mode structures are not in pressure balance and small scale fluctuations in the total pressure still remain in the Pc 3-4 range. Energy in the total pressure fluctuations can be transmitted through the magnetopause by boundary motions. The Poynting flux calculated from the electric and magnetic field measurements suggests that a net Poynting flux is transmitted into the magnetopause. The two independent measurements show a similar energy transmission coefficient. The transmitted energy flux is about 18 percent of the magnetic energy flux of the waves in the magnetosheath. Part of this transmitted energy is lost in the sheath transition layer before it enters the closed field line region. The waves reaching the boundary layer decay rapidly. Little wave power is transmitted into the magnetosphere.

  9. The sea surface currents as a potential factor in the estimation and monitoring of wave energy potential

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis

    2015-04-01

    The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.

  10. Dynamics of nonlinear snap--through chains with application to energy harvesting and wave propagation

    NASA Astrophysics Data System (ADS)

    Panigrahi, Smruti Ranjan

    There is much current research interest in nonlinear structures, smart materials, and metamaterials, that incorporate bistable, or snap-through, structural elements. Various applications include energy harvesting, energy dissipation, vibration absorption, vibration isolation, targeted energy transfer, bandgap design and metamaterials. In this dissertation, we explore snap-through structures with nonlinearity and negative linear stiffness. We start with a study of a simple Duffing oscillator with snap-through orbits around the separatrix. Multi-degree-of-freedom snap-through structures are known to convert the low-frequency inputs into high-frequency oscillations, and are called twinkling oscillators. A generalized two-degree-of-freedom (2-DOF) snap-through oscillator is shown to have rich bifurcation structure. The steady-state bifurcation analysis uncovered two unique bifurcations "star" and "eclipse" bifurcations, named due to their structures. The 2-DOF twinkler exhibits transient chaos in the snap-through regime. A fractal basin boundary study provides insight into the regions in the parameter space where the total energy level is predictable in an unsymmetric twinkler. Due to its capacity to convert low frequency to high-frequency oscillations, the snap-through oscillators can be used to harvest energy from low-frequency vibration sources. This idea has led us to explore the energy harvesting capacity of twinkling oscillators. Using magnets and linear springs we built (in collaboration with researchers at Duke university) novel experimental twinkling oscillators (SDOF and 2-DOF) for energy harvesting. When the magnets exhibit high-frequency oscillations through the inducting coil, a current is generated in the coil. This experiment shows promising results both for the SDOF and the 2-DOF twinkling energy generators by validating the frequency up-conversion and generating power from the low-frequency input oscillations. The experimental twinkling oscillator converted a 0.1 Hz input oscillation into 2.5 Hz output oscillation, a 25 times frequency up-conversion. The second part of this dissertation focuses on the dispersive nature of the waves in one dimensional nonlinear chains with weak nonlinearity. For metamaterial design, it is important to study the wave dispersion properties in the material for channeling energy in a desired direction or to build frequency-selective materials. In nonlinear structures there are various design parameters that can be tuned to produce desirable properties. The motivation of the wave propagation analysis is to understand the quadratic and cubic nonlinearity effects on the wave propagation behavior in an uniform periodic chain. Here the dispersion properties are studied through a multiple-scales perturbation approach for weakly nonlinear periodic media. Wave speed, cut-off frequencies, and wave-wave interaction characteristics are presented. The results show significant effect of quadratic nonlinearities in the dispersion characteristics of the waves in the chain.

  11. Hurricane Wave Power Extremes Along the U.S. Atlantic and Gulf Coasts

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Kossin, J. P.

    2007-12-01

    Extremes in wave power generated by tropical cyclones (TCs) will have an increasingly greater coastal impact as mean sea level rises. The Gulf 98th percentile (3 m) deep-water significant wave height, HS, measured at four open ocean NOAA buoys along the U.S. Atlantic coast and three Gulf buoys identifies extreme TC-generated wave events during the June-November hurricane season. Since 1978, there were substantially more significant HS events along the Atlantic coast than in the Gulf, with almost three times as many extreme wave events during September. The monthly distribution along both coasts peaks in September, with an equally likely chance of a significant TC wave event occurring during October as during August over the 1978-2006 data record. However, no clear trend in TC-generated extreme wave heights is observed. In general, the Atlantic buoys show a significant increase in seasonal wave power, PW, since 1995. PW during six of the hurricane seasons since 1995 exceeds all prior years at at least one of the Atlantic group buoys. In contrast to the Atlantic buoys, the Gulf buoys show exceptional seasonal PW levels only during the 2005 hurricane season when major Hurricanes Dennis, Emily, Katrina, Rita, and Wilma tracked trough the Gulf. The exceptional PW levels observed in the Gulf during 2005 were exceeded in the Atlantic during 1999, and approached during 1995 and 1996, attesting to a greater frequency of extreme TC-associated extreme wave events along the East Coast compared to the Gulf during the last four decades. A TC wave power index (WPI) increases significantly in the Atlantic during the mid-1990s, resulting largely from an increase in mid-to-late hurricane season TCs. The WPI is related to TC strength, size, duration, and frequency, and is highly correlated with the TC power dissipation index (PDI, Emanuel 2005). The close association of the WPI to hurricane activity implies that significant coastal impacts will increase as the PDI increases, regardless of TC landfall frequency. Differences between the Atlantic and Gulf WPI reflect systematic changes in TC genesis regions and subsequent tracks, characterized by their relationship with the regional circulation patterns described by the Atlantic Meridional Mode (Kossin and Vimont 2007).

  12. Momentum and energy transport by waves in the solar atmosphere and solar wind

    NASA Technical Reports Server (NTRS)

    Jacques, S. A.

    1977-01-01

    The fluid equations for the solar wind are presented in a form which includes the momentum and energy flux of waves in a general and consistent way. The concept of conservation of wave action is introduced and is used to derive expressions for the wave energy density as a function of heliocentric distance. The explicit form of the terms due to waves in both the momentum and energy equations are given for radially propagating acoustic, Alfven, and fast mode waves. The effect of waves as a source of momentum is explored by examining the critical points of the momentum equation for isothermal spherically symmetric flow. We find that the principal effect of waves on the solutions is to bring the critical point closer to the sun's surface and to increase the Mach number at the critical point. When a simple model of dissipation is included for acoustic waves, in some cases there are multiple critical points.

  13. Power combiner with high power capacity and high combination efficiency for two phase-locked relativistic backward wave oscillators

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Deng, Yuqun; Wang, Yue; Song, Zhimin; Li, Jiawei; Sun, Jun; Chen, Changhua

    2015-09-01

    To realize power combination of two phase-locked relativistic backward wave oscillators (RBWOs), a compact power combiner is designed and investigated by 3-D particle-in-cell (PIC) simulation and experiment. The power combiner consists of two TM01-TE11 serpentine mode converters with a common output. When the two incident ports are fed with TM01 modes with a relative phase of 180° and power of 2.5 GW at each port, the conversion efficiency from the incident TM01 modes to the combined TE11 mode is 95.2% at 9.3 GHz, and the maximum electric field in the combiner is 714 kV/cm. The PIC simulation shows that the output power from the common port is 4.2 GW when the power combiner is connected to the two RBWOs with input signals, both producing 2.2 GW microwave, corresponding to a combination efficiency of 95.4%. In the high power microwave test, a method is proposed to obtain the combination efficiency without breaking the vacuum, which is 94.1% when the two phase-locked RBWOs output 1.8 GW and 2.2 GW. The power capacity of multi-gigawatts has been demonstrated.

  14. A Nonlinear Energy Balance Model of Particle Acceleration by Collisionless Parallel Shock Waves

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2007-11-01

    We describe in this Letter a new way to model processes of particle acceleration in quasi-parallel shocks and report some promising preliminary results of numerical analysis. The treatment of plasma and waves is self-consistent and time-dependent but nevertheless relatively simple from a physical point of view. The model assumes that resonant wave-particle interaction is the most important mechanism for both shock formation and particle acceleration but does not use the diffusion-convection approach for the interaction. Instead it uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles pitch-angle scattered. Because the distribution function for bulk plasma and not just the high-energy tail is included in the model, no special bootstrap or termination assumptions are required (neither the introduction of a separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed). In spite of all the simplicity, the preliminary results not only show remarkable agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region but also reveal the presence of a spectral break in the high-energy part of the spectra. The results also confirm that acceleration can start from the thermal particles and confirm the importance of second-order Fermi acceleration.

  15. Progress on single barrier varactors for submillimeter wave power generation

    NASA Technical Reports Server (NTRS)

    Nilsen, Svein M.; Groenqvist, Hans; Hjelmgren, Hans; Rydberg, Anders; Kollberg, Erik L.

    1992-01-01

    Theoretical work on Single Barrier Varactor (SBV) diodes, indicate that the efficiency for a multiplier has a maximum for a considerably smaller capacitance variation than previously thought. The theoretical calculations are performed, both with a simple theoretical model and a complete computer simulation using the method of harmonic balance. Modeling of the SBV is carried out in two steps. First, the semiconductor transport equations are solved simultaneously using a finite difference scheme in one dimension. Secondly, the calculated I-V, and C-V characteristics are input to a multiplier simulator which calculates the optimum impedances, and output powers at the frequencies of interest. Multiple barrier varactors can also be modeled in this way. Several examples on how to design the semiconductor layers to obtain certain characteristics are given. The calculated conversion efficiencies of the modeled structures, in a multiplier circuit, are also presented. Computer simulations for a case study of a 750 GHz multiplier show that InAs diodes perform favorably compared to GaAs diodes. InAs and InGaAs SBV diodes have been fabricated and their current vs. voltage characteristics are presented. In the InAs diode, was the large bandgap semiconductor AlSb used as barrier. The InGaAs diode was grown lattice matched to an InP substrate with InAlAs as a barrier material. The current density is greatly reduced for these two material combinations, compared to that of GaAs/AlGaAs SBV diodes. GaAs based diodes can be biased to higher voltages than InAs diodes.

  16. Characteristics of short-crested waves and currents behind offshore man-made island type power plant

    SciTech Connect

    Ikeno, Masaaki; Kajima, Ryoichi; Matsuyama, Masafumi; Sakakiyama, Tsutomu

    1995-12-31

    This paper describes the diffracted waves with breaking and the nearshore currents caused by short-crested waves, behind a man-made island, on which nuclear power plants are constructed. Firstly, hydraulic model tests with a multi-directional wave maker were performed. Effects of the irregularity and directional spreading of waves, and the effects of cooling water intake flow on diffracted waves and nearshore currents behind a man-made island, were investigated experimentally. Secondly, a numerical model was developed to simulate deformation of multi-directional irregular waves and nearshore currents. The validity of the numerical model was verified through comparison with the experimental results.

  17. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices

    PubMed Central

    Shi, Qiongfeng; Wang, Tao; Lee, Chengkuo

    2016-01-01

    Acoustic energy transfer is a promising energy harvesting technology candidate for implantable biomedical devices. However, it does not show competitive strength for enabling self-powered implantable biomedical devices due to two issues – large size of bulk piezoelectric ultrasound transducers and output power fluctuation with transferred distance due to standing wave. Here we report a microelectromechanical systems (MEMS) based broadband piezoelectric ultrasonic energy harvester (PUEH) to enable self-powered implantable biomedical devices. The PUEH is a microfabricated lead zirconate titanate (PZT) diaphragm array and has wide operation bandwidth. By adjusting frequency of the input ultrasound wave within the operation bandwidth, standing wave effect can be minimized for any given distances. For example, at 1 cm distance, power density can be increased from 0.59 μW/cm2 to 3.75 μW/cm2 at input ultrasound intensity of 1 mW/cm2 when frequency changes from 250 to 240 kHz. Due to the difference of human body and manual surgical process, distance fluctuation for implantable biomedical devices is unavoidable and it strongly affects the coupling efficiency. This issue can be overcome by performing frequency adjustment of the PUEH. The proposed PUEH shows great potential to be integrated on an implanted biomedical device chip as power source for various applications. PMID:27112530

  18. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices.

    PubMed

    Shi, Qiongfeng; Wang, Tao; Lee, Chengkuo

    2016-01-01

    Acoustic energy transfer is a promising energy harvesting technology candidate for implantable biomedical devices. However, it does not show competitive strength for enabling self-powered implantable biomedical devices due to two issues - large size of bulk piezoelectric ultrasound transducers and output power fluctuation with transferred distance due to standing wave. Here we report a microelectromechanical systems (MEMS) based broadband piezoelectric ultrasonic energy harvester (PUEH) to enable self-powered implantable biomedical devices. The PUEH is a microfabricated lead zirconate titanate (PZT) diaphragm array and has wide operation bandwidth. By adjusting frequency of the input ultrasound wave within the operation bandwidth, standing wave effect can be minimized for any given distances. For example, at 1 cm distance, power density can be increased from 0.59 μW/cm(2) to 3.75 μW/cm(2) at input ultrasound intensity of 1 mW/cm(2) when frequency changes from 250 to 240 kHz. Due to the difference of human body and manual surgical process, distance fluctuation for implantable biomedical devices is unavoidable and it strongly affects the coupling efficiency. This issue can be overcome by performing frequency adjustment of the PUEH. The proposed PUEH shows great potential to be integrated on an implanted biomedical device chip as power source for various applications. PMID:27112530

  19. Wave energies and wave-induced longshore currents in an unstructured-grid model - circulation in front of barrier islands

    NASA Astrophysics Data System (ADS)

    Jörg-Olaf Wolff, , Prof. _., Dr.; Grashorn, Sebastian, , Dr.; Lettmann, Karsten A., , Dr.; Badewien, Thomas H., , Dr.; Stanev, Emil V., Prof. _., Dr.

    2015-04-01

    An unstructured-grid model (FVCOM) coupled to a wave model (FVCOM-SWAVE) is used to investigate the hydrodynamic and wave energy conditions during a moderate and a storm situation in the southern North Sea. Two different setups are presented. One setup covers the whole North Sea with moderately increased grid resolution at the coast, whereas the other comprises a very high resolution East Frisian Wadden Sea setup, one-way coupled to the coarser North Sea model. The results of both model setups are validated, compared to each other and analysed with a focus on longshore currents and wave energy. The results show that during storm conditions strong wave-induced longshore currents occur in front of the barrier islands of the East Frisian Wadden Sea, resulting in total current speeds up to 2 m/s. This effect is especially pronounced in the high-resolution setup. The wave-current interaction also influences the sea surface elevation by raising the water level in the tidal basins. Calculated wave energies show large differences between moderate wind and storm conditions with time-averaged values up to 200 kW/m. The numerical results indicate that wave-current coupling, albeit numerically expensive, cannot be ignored because it plays an important role in almost all near coastal transport phenomena (sediments, contaminants, bacteria, etc.).

  20. High energy laser beam steering with periodic shock waves

    NASA Astrophysics Data System (ADS)

    McBeth, Michael S.

    2010-10-01

    Atmospheric density gradients bend light as can be seen with naturally occurring mirages. Shock waves also produce density changes that bend or refract light. While a single shock front from a supersonic projectile refracts light only on the order of hundreds of arcseconds, theoretical results indicate that beam deflections of thirty or more degrees are possible from periodic shock waves. Two types of idealized plane periodic shock waves are analyzed. A ballisticsderived periodic shock wave based on empirical data from projectile firings and a synthetic-derived periodic shock wave based on a tradeoff between peak pressure amplitude and shock wave period required to produce a target density gradient. Predicted laser beam refractions from both types of idealized plane periodic shock waves are presented. Predicted laser beam steering angle versus peak pressure for fixed period synthetic-derived periodic shock waves is presented. Predicted laser beam steering angle versus shock wave period for fixed peak pressure amplitude syntheticderived periodic shock wave is presented.

  1. Effect of powerful oblique HF waves on ionospheric D-layer absorption

    NASA Astrophysics Data System (ADS)

    Bloom, R. M.

    1993-04-01

    A simple model of D-layer ionospheric heating in the presence of strong, high frequency (HF) radio waves is used to predict the anomalous, nonlinear wave absorption due to collisional and recombination effects induced by the indirect signal. It is found that little anomalous absorption occurs until effective radiated power (ERP) approaches 100 dBW; further increases in power of several dB beyond this 100 dBW threshold are frustrated by a comparable increase in self-induced, one-way absorption. This trend of increasing absorption with increasing transmitter ERP has considerable implications for design of communication or radar systems that use ultra-powerful, high-gain HF transmitters.

  2. Super-radiant backward-wave oscillators with enhanced power conversion

    SciTech Connect

    Rostov, V. V.; Savilov, A. V.

    2013-02-15

    We propose a method for a very significant increase of the peak power of a backward-wave electron oscillator operating in the non-stationary regime of the super-radiation of short rf pulses. This method is based on sectioning: a regular self-oscillator section is supported with a section providing amplification of the super-radiant pulse. Profiling of a resonant parameter in the amplifying section is used to avoid the parasitic self-excitation and to increase the efficiency of the electron-wave interaction. In such systems, the conversion factor (the ratio between the rf pulse power and the electron beam power) can achieve a few hundred percent.

  3. High-power and high-linearity traveling wave electroabsorption modulator

    NASA Astrophysics Data System (ADS)

    Yu, Paul K. L.; Chang, William S. C.; Li, Guoliang; Shubin, Ivan; Zhuang, Yuling; Chen, J. X.; Wu, Yang; Hayduk, Michael J.; Bussjager, Rebecca J.

    2004-08-01

    Design for high efficiency, high power traveling wave electroabsorption modulator using Intra-Step-Barrier Quantum Well (IQW) and Peripheral Coupled waveguide (PCW) designs are presented. Both of these designs have separately yielded EAMs with high optical power handling and low Vp properties, in an analog fiber link configuration. The IQW EAM has low Vp (~0.73 V) and high power handling (100 mW). The lumped element IQW EAM has achieved a link gain of -16 dB, a multi-octave SFDR of 110 dB-Hz2/3 and a single-octave SFDR of 121dB-Hz4/5 at the 1543 nm wavelength. The PCW MQW EAM with lumped element configuration can achieve a low link low, a high multi-octave SFDR at the same wavelength. The traveling wave properties of these EAMs are under investigation.

  4. Technical options for high average power free electron milimeter-wave and laser devices

    NASA Technical Reports Server (NTRS)

    Swingle, James C.

    1989-01-01

    Many of the potential space power beaming applications require the generation of directed energy beams with respectable amounts of average power (MWs). A tutorial summary is provided here on recent advances in the laboratory aimed at producing direct conversion of electrical energy to electromagnetic radiation over a wide spectral regime from microwaves to the ultraviolet.

  5. Optimization of sources for focusing wave energy in targeted formations

    NASA Astrophysics Data System (ADS)

    Jeong, C.; Kallivokas, L. F.; Huh, C.; Lake, L. W.

    2010-09-01

    We discuss a numerical approach for identifying the surface excitation that is necessary to maximize the response of a targeted subsurface formation. The motivation stems from observations in the aftermath of earthquakes, and from limited field experiments, whereby increased oil production rates were recorded and were solely attributable to the induced reservoir shaking. The observations suggest that focusing wave energy to the reservoir could serve as an effective low-cost enhanced oil recovery method. In this paper, we report on a general method that allows the determination of the source excitation, when provided with a desired maximization outcome at the targeted formation. We discuss, for example, how to construct the excitation that will maximize the kinetic energy in the target zone, while keeping silent the neighbouring zones. To this end, we cast the problem as an inverse-source problem, and use a partial-differential-equation-constrained optimization approach to arrive at an optimized source signal. We seek to satisfy stationarity of an augmented functional, which formally leads to a triplet of state, adjoint and control problems. We use finite elements to resolve the state and adjoint problems, and an iterative scheme to satisfy the control problem to converge to the sought source signal. We report on one-dimensional numerical experiments in the time domain involving a layered medium of semi-infinite extent. The numerical results show that the targeted formation's kinetic energy resulting from an optimized wave source could be several times greater than the one resulting from a blind source choice, and could overcome the mobility threshold of entrapped reservoir oil.

  6. Numerical simulation of the temperature, electron density, and electric field distributions near the ionospheric reflection height after turn-on of a powerful HF wave

    SciTech Connect

    Muldrew, D.B.

    1986-04-01

    The time variation of the electron temperature profile in the ionosphere following turn-on of a powerful 1-s HF pulse is determined numerically from the energy balance equation. Using this and the equations of motion and continuity for a plasma, the effect of heating and the pondermotive force of a powerful HF wave on the electron density and electric field distributions are determined by numerical simulation. The temperature variation and ponderomotive force modify the density distribution, and this new density distribution, in turn, modifies the electric field distribution of the HF wave. The density deviations grow for a few hundred milliseconds after HF turn-on and then begin to fluctuate in time. At all heights the wave number of the density deviations is approximately twice the wave number of the HF wave. For electric fields near reflection of about 6.0 V/m, the electric field distribution becomes complicated, apparently depending on Bragg scattering of the HF wave from the density deviations. Density impulses propagate away (up and down) from electric field maxima, at the ion thermal velocity, at both turn-on and turn-off of the HF wave.

  7. Method of and apparatus for inspecting and/or positioning objects with wave energy using wave guides

    SciTech Connect

    Pinyan, J.A.; Buckley, B.S.

    1987-07-07

    An apparatus is described for achieving at least one of inspecting and positioning of an object, that comprises: an array adapted to generate continuous wave energy of a single frequency, to transmit the wave energy to an interaction region where it interacts with the object, the array includes waveguides to transmit the energy in both directions to and from the objects. It includes sensor means comprising spaced-apart sensors disposed to receive the wave energy at places after interaction with the object. The sensor means are adapted to produce electric signals representative of the received wave energy. The array comprises a transducer to generate the continuous wave energy which is transmitted by a waveguide of waveguides to the interaction region. The array comprises coupling volume to achieve enhanced coupling between the waveguides and the transducer and the sensor means; means for processing the electric signals into at least one of amplitude and phase information for each sensor of the sensor means; and means for analyzing the at least one of amplitude and phase information from each sensor of sensors into at least one of a geometric characteristic and an electromagnetic characteristic of the object.

  8. Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications

    SciTech Connect

    Han, S. T.; Comfoltey, E. N.; Shapiro, Michael; Sirigiri, Jagadishwar R.; Tax, David; Temkin, Richard J; Woskov, P. P.; Chang, Won; Rasmussen, David A

    2008-08-01

    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3 {+-} 0.1 dB per miter bend using a VNA; and 0.22 {+-} 0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05 {+-} 0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications.

  9. Forecasting Electric Power Generation of Photovoltaic Power System for Energy Network

    NASA Astrophysics Data System (ADS)

    Kudo, Mitsuru; Takeuchi, Akira; Nozaki, Yousuke; Endo, Hisahito; Sumita, Jiro

    Recently, there has been an increase in concern about the global environment. Interest is growing in developing an energy network by which new energy systems such as photovoltaic and fuel cells generate power locally and electric power and heat are controlled with a communications network. We developed the power generation forecast method for photovoltaic power systems in an energy network. The method makes use of weather information and regression analysis. We carried out forecasting power output of the photovoltaic power system installed in Expo 2005, Aichi Japan. As a result of comparing measurements with a prediction values, the average prediction error per day was about 26% of the measured power.

  10. Modelling a point absorbing wave energy converter by the equivalent electric circuit theory: A feasibility study

    NASA Astrophysics Data System (ADS)

    Hai, Ling; Svensson, Olle; Isberg, Jan; Leijon, Mats

    2015-04-01

    There is a need to have a reliable tool to quickly assess wave energy converters (WECs). This paper explores whether it is possible to apply the equivalent electric circuit theory as an evaluation tool for point absorbing WEC system modelling. The circuits were developed starting from the force analysis, in which the hydrodynamic, mechanical, and electrical parameters were expressed by electrical components. A methodology on how to determine the parameters for electrical components has been explained. It is found that by using a multimeter, forces in the connection line and the absorbed electric power can be simulated and read directly from the electric circuit model. Finally, the circuit model has been validated against the full scale offshore experiment. The results indicated that the captured power could be predicted rather accurately and the line force could be estimated accurately near the designed working condition of the WEC.

  11. Waveguide Power Combiner Demonstration for Multiple High Power Millimeter Wave TWTAs

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.; Lesny, Gary G.; Glass, Jeffrey L.

    2004-01-01

    NASA is presently developing nuclear reactor technologies, under Project Prometheus, which will provide spacecraft with greatly increased levels of sustained onboard power and thereby dramatically enhance the capability for future deep space exploration. The first mission planned for use of this high power technology is the Jupiter Icy Moons Orbiter (JIMO). In addition to electric propulsion and science, there will also be unprecedented onboard power available for deep space communications. A 32 GHz transmitter with 1 kW of RF output power is being considered to enable the required very high data transmission rates. One approach to achieving the 1 kW RF power, now being investigated at NASA GRC, is the possible power combining of a number of 100-1 50 W TWTs now under development. The work presented here is the results of a proof-of-concept demonstration of the power combining Ka-band waveguide circuit design and test procedure using two Ka- band TWTAs (Varian model VZA6902V3 and Logimetrics model A440/KA-1066), both of which were previously employed in data uplink evaluation terminals at 29.36 GHz for the NASA Advanced Communications Technology Satellite (ACTS) program. The characterization of the individual TWTAs and power combining demonstration were done over a 500 MHz bandwidth from 29.1 to 29.6 GHz to simulate the Deep Space Network (DSN) bandwidth of 3 1.8 to 32.3 GHz. Figures 1-3 show some of the power transfer and gain measurements of the TWTAs using a swept signal generator (Agilent 83640b) for the RF input. The input and output powers were corrected for circuit insertion losses due to the waveguide components. The RF saturated powers of both ACTS TWTAs were on the order of 120 W, which is comparable to the expected output powers of the 32 GHz TWTs. Additional results for the individual TWTAs will be presented (AM/AM, AM/PM conversion and gain compression), some of which were obtained from swept frequency and power measurements using a vector network analyzer. The results for the power combining demonstration as well as a more detailed description of the power combining test circuit and test procedure will also be presented.

  12. Quasi-optical solid-state power combining for millimeter-wave active seeker applications

    SciTech Connect

    Halladay, R.H.; Terrill, S.D.; Bowling, D.R.; Gagnon, D.R. U.S. Navy, Naval Air Warfare Center, China Lake, CA )

    1992-05-01

    Consideration is given to quasi-optical power combining techniques, state-of-the-art demonstrated performance, and system issues as they apply to endoatmospheric homing seeker insertion. Quasi-optical power combining is based on combining microwave and millimeter-wave solid-state device power in space through the use of antennas and lenses. It is concluded that quasi-optical power combining meets the severe electrical requirements and packaging constraints of active MMW seekers for endoatmospheric hit-to-kill missiles. The approach provides the possibility of wafer-scale integration of major components for low cost production and offers high reliability. Critical issues include thermal loading and system integration, which must be resolved before the quasi-optical power combining technology will be applied to an active MMW seeker. 18 refs.

  13. The energy balance of wind waves and the remote sensing problem

    NASA Technical Reports Server (NTRS)

    Hasselmann, K.

    1972-01-01

    Measurements of wave growth indicate an energy balance of the wave spectrum governed primarily by input from the atmosphere, nonlinear transfer to shorter and longer waves, and advection. The pronounced spectral peak and sharp low frequency cut-off characteristic of fetch-limited spectra are explained as a self-stabilizing feature of the nonlinear wave-wave interactions. The momentum transferred from the atmosphere to the wind waves accounts for a large part of the wind drag. These findings are relevant for remote microwave sensing of the sea surface by backscatter and passive radiometry methods.

  14. Energy saving self-powered industrial dehumidifier

    SciTech Connect

    Biancardi, R.P.

    1988-07-26

    An energy saving self-powered industrial dehumidifier for use in a building having a tap water conduit leading from a source of supply to utilization points is described comprising: a dehumidifying apparatus positioned in a stream of air to be dehumidified in the building. The dehumidifying apparatus comprising conduit means for diverting at least a portion of a relatively continuously moving stream of tap water from the tap water conduit through a heat exchanger positioned in a stream of air and returning the diverted portion to the tap water stream upstream of the utilization points. Water vapor in the stream of air will condense onto the heat exchanger when the tap water has a temperature below a dew point temperature of the air stream, thereby dehumidifying the air stream.

  15. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  16. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  17. Experimental investigation of change of energy of infragavity waves in dependence on spectral characteristics of an irregular wind waves in coastal zone

    NASA Astrophysics Data System (ADS)

    Saprykina, Yana; Divinskii, Boris

    2013-04-01

    An infragravity waves are long waves with periods of 20 - 300 s. Most essential influence of infragarvity waves on dynamic processes is in a coastal zone, where its energy can exceed the energy of wind waves. From practical point of view, the infragravity waves are important, firstly, due to their influence on sand transport processes in a coastal zone. For example, interacting with group structure of wind waves the infragravity waves can define position of underwater bars on sandy coast. Secondly, they are responsible on formation of long waves in harbors. Main source of infragravity waves is wave group structure defined by sub-nonlinear interactions of wind waves (Longuet-Higgins, Stewart, 1962). These infragravity waves are bound with groups of wind waves and propagate with wave group velocity. Another type of infragravity waves are formed in a surf zone as a result of migration a wave breaking point (Symonds, et al., 1982). What from described above mechanisms of formation of infragravity waves prevails, till now it is unknown. It is also unknown how energy of infragravity waves depends on energy of input wind waves and how it changes during nonlinear wave transformation in coastal zone. In our work on the basis of the analysis of data of field experiment and numerical simulation a contribution of infragravity waves in total wave energy in depending on integral characteristics of an irregular wave field in the conditions of a real bathymetry was investigated. For analysis the data of field experiment "Shkorpilovtsy-2007" (Black sea) and data of numerical modeling of Boussinesq type equation with extended dispersion characteristics (Madsen et al., 1997) were used. It was revealed that infragravity waves in a coastal zone are defined mainly by local group structure of waves, which permanently changes due to nonlinearity, shoaling and breaking processes. Free infragravity waves appearing after wave breaking exist together with bound infragravity waves. There are no clear total dependences of energy of infrragravity waves from energy of wind waves and mean period of infragravity waves from mean period of wind waves. But significant wave height of infragravity waves depends on relative water depth (wave height of wind waves divided on water depth). There are different types of this dependence for breaking and non-breaking waves. The influence of peak period, significant wave height and directional spreading of initial wave spectrum on these dependences are discussed. The peculiarities of spectra of infragravity waves for non-breaking, breaking and multibreaking wind waves are shown. This work is supported by the RFBR, project 12-05-00965. References: Longuet-Higgins, M. S., R. W. Stewart, 1962. Radiation stress and mass transport in gravity waves, with an application to surf beats. J. Fluid Mech., 13, pp. 481-504. Symonds G., D.A. Huntley, A.J. Bowen, 1982. Two dimensional surf beat: long wave generation by a time-varying breakpoint. J. of Geoph. Res., 87(C), pp.492-498. Madsen P.A., Sorensen O.R., Shaffer H.A. 1997. Surf zone dynamics simulated by a Boussinesq type model. Coastal Engineering, 32, p. 255-287.

  18. Energy transformations and dissipation of nonlinear internal waves over New Jersey's continental shelf

    NASA Astrophysics Data System (ADS)

    Shroyer, E. L.; Moum, J. N.; Nash, J. D.

    2010-08-01

    The energetics of large amplitude, high-frequency nonlinear internal waves (NLIWs) observed over the New Jersey continental shelf are summarized from ship and mooring data acquired in August 2006. NLIW energy was typically on the order of 105 Jm-1, and the wave dissipative loss was near 50 W m-1. However, wave energies (dissipations) were ~10 (~2) times greater than these values during a particular week-long period. In general, the leading waves in a packet grew in energy across the outer shelf, reached peak values near 40 km inshore of the shelf break, and then lost energy to turbulent mixing. Wave growth was attributed to the bore-like nature of the internal tide, as wave groups that exhibited larger long-term (lasting for a few hours) displacements of the pycnocline offshore typically had greater energy inshore. For ship-observed NLIWs, the average dissipative loss over the region of decay scaled with the peak energy in waves; extending this scaling to mooring data produces estimates of NLIW dissipative loss consistent with those made using the flux divergence of wave energy. The decay time scale of the NLIWs was approximately 12 h corresponding to a length scale of 35 km (O(100) wavelengths). Imposed on these larger scale energetic trends, were short, rapid exchanges associated with wave interactions and shoaling on a localized topographic rise. Both of these events resulted in the onset of shear instabilities and large energy loss to turbulent mixing.

  19. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    PubMed

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment. PMID:26148299

  20. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals

    PubMed Central

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106–109 dB re. 1 μPa in the range 125–250 Hz, 1–2 dB above ambient noise levels (statistically significant). Outside the range 125–250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121–125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment. PMID:26148299

  1. Low-power, low-rate ultrasonic communications system transmitting axially along a cylindrical pipe using transverse waves.

    PubMed

    Chakraborty, Soumya; Saulnier, Gary J; Wilt, Kyle W; Curt, Edward; Scarton, Henry A; Litman, Robert B

    2015-10-01

    Acoustic-electric channels have been used in the recent past to send power and data through thin metallic barriers. Acoustic-electric channels formed along a structure which are highly attenuative and nonreverberant could have potential applications in aerospace, nuclear, and oil industries, among others. This work considers data transmission along the length of a cylindrical pipe both when in air and when filled and immersed in water using shear waves of transverse polarity. To combat the effects of frequency selectivity and to address the available power constraints, a simple modulation scheme using noncoherent demodulation is employed for data transmission: chirp-on-off keying (Chirp-OOK). The wideband nature of the chirp waveform provides resilience against nulls in the channel response while making it possible to implement a simple noncoherent energy detector. Monte Carlo simulation results using measured channel responses suggest that the bit error rate performance of the scheme matches quite closely with the theoretical results. The energy detector performance is independent of the type of the channel used as long as intersymbol-interference is negligible and same received Eb/N0 is maintained. A low-power prototype hardware system was implemented using microcontrollers, commercial ICs, and custom circuits. Successful data transmission was achieved across the 4.8 m length of pipe (in air and water) for a data rate of 100 bps using approximately 5 mW of transmit power. PMID:26470041

  2. Modular Low-Heater-Power Cathode/Electron Gun Assembly for Microwave and Millimeter Wave Traveling Wave Tubes

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    2000-01-01

    A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular cathode/electron gun assembly consists of four subassemblies the cathode, the focus electrode, the header (including the electrical feedthroughs), and the gun envelope (including the anode) a diagram of which is shown. The modular construction offers a number of significant advantages, including flexibility of design, interchangeability of parts, and a drop-in final assembly procedure for quick and accurate alignment. The gun can accommodate cathodes ranging in size from 0.050 to 0.250-in. in diameter and is applicable to TWT's over a broad range of sizes and operating parameters, requiring the substitution of only a few parts: that is, the cathode, focus electrode, and anode. The die-pressed cathode pellets can be made with either flat or concave (Pierce gun design) emitting surfaces. The gun can be either gridded (pulse operation) or ungridded (continuous operation). Important factors contributing to low cost are the greater use of CRT materials and parts, the standardization of processes (welding and mechanical capture), and tooling amenable to automated production. Examples are the use of simple shapes, drawn or stamped metal parts, and parts joined by welding or mechanical capture. Feasibility was successfully demonstrated in the retrofit and testing of a commercial Kaband (22-GHz) TWT. The modular cathode/electron gun assembly was computer modeled to replicate the performance of the original electron gun and fabricated largely from existing CRT parts. Significant test results included demonstration of low heater power (1.5-W, 1010 C brightness temperature for a 0.085-in.-diameter cathode), mechanical ruggedness (100g shock and vibration tests in accordance with military specifications (MIL specs)), and a very fast warmup. The results of these tests indicate that the low-cost CRT manufacturing approach can be used without sacrificing performance and reliability.

  3. Energy: Add Power to Your Collection.

    ERIC Educational Resources Information Center

    Rholes, Julia M.

    1981-01-01

    An annotated bibliography of 34 children's books on different types of energy at various reading levels includes general titles, as well as books on coal, geothermal energy, nuclear energy, ocean engineering, petroleum, solar energy, and wind energy. (CHC)

  4. Effect of the deformation of a regular ionospheric plasma profile on the anomalous absorption of a high-power radio wave in the resonance region

    NASA Astrophysics Data System (ADS)

    Vas'kov, V. V.; Dimant, Ia. S.

    1989-06-01

    It is shown that localized distortions of ionospheric plasma density profile due to the intense excitation of plasma oscillations near the upper-hybrid resonance of a high-power radio wave can lead to a change in the anomalous absorption of the disturbing wave. The profile deformation stabilizes the amplitude of a high-power radio wave reflected from the ionosphere and leads to an asymmetry in sounding waves with frequencies above and below that of the high-power wave.

  5. Entanglement of helicity and energy in kinetic Alfvén wave/whistler turbulence

    NASA Astrophysics Data System (ADS)

    Galtier, Sébastien; Meyrand, Romain

    2015-01-01

    The role of magnetic helicity is investigated in kinetic Alfvén wave and oblique whistler turbulence in presence of a relatively intense external magnetic field b 0 e ∥. In this situation, turbulence is strongly anisotropic and the fluid equations describing both regimes are the reduced electron magnetohydrodynamics (REMHD) whose derivation, originally made from the gyrokinetic theory, is also obtained here from compressible Hall magnetohydrodynamics (MHD). We use the asymptotic equations derived by Galtier and Bhattacharjee (2003 Phys. Plasmas 10, 3065-3076) to study the REMHD dynamics in the weak turbulence regime. The analysis is focused on the magnetic helicity equation for which we obtain the exact solutions: they correspond to the entanglement relation, n + ñ = -6, where n and ñ are the power law indices of the perpendicular (to b 0) wave number magnetic energy and helicity spectra, respectively. Therefore, the spectra derived in the past from the energy equation only, namely n = -2.5 and ñ = -3.5, are not the unique solutions to this problem but rather characterize the direct energy cascade. The solution ñ = -3 is a limit imposed by the locality condition; it is also the constant helicity flux solution obtained heuristically. The results obtained offer a new paradigm to understand solar wind turbulence at sub-ion scales where it is often observed that -3 < n < -2.5.

  6. Thermal energy conversion to motive power

    SciTech Connect

    Meador, J.T.

    1980-01-01

    Performance evaluations of both ideal and actual organic Rankine cycle (ORC) and steam Rankine cycles (SRC) are presented for systems that may be candidates for Solar Total Energy Systems (STES). Many organic fluids and heat engines (turbines or expanders) are being developed; therefore, performance of a few representative ORCs are evaluated. The electrical power outputs range from several kW to <10 MW with maximum cycle temperatures of 482/sup 0/C (900 F). Conclusions from basic Rankine cycle analyses are that the Carnot cycle concept should not be used as a standard of comparison for different cycle fluids, even when they are operating at the same inlet and exhaust temperatures. The ideal Rankine cycle with the maximum conversion efficiency, when based on exact physical properties of fluids, should provide a better standard for actual cycles. Three sets of maximum (ideal) Rankine cycle efficiency (n/sub r/) curves are estimated for steam and several organic fluids for exhaust temperatures of 38/sup 0/C, 100/sup 0/C, and 149/sup 0/C (100 F, 212 F, and 300F). These curves of n/sub r/ versus peak temperature at the expander inlet are referred to as Criterion Curves for basic Rankine cycles, in which corresponding inlet pressures are selected such that n/sub r/ will be a maximum. Basic cycle efficiencies indicate some fluids preferred for solar total energy applications.

  7. Power transfer and current generation of fast ions with large-{ital k}{sub {theta}} waves in tokamak plasmas

    SciTech Connect

    Heikkinen, J.A.; Sipilae, S.K.

    1995-10-01

    The direction and magnitude of power and momentum exchange between fast ions and electrostatic waves in slab and toroidal systems are obtained from global Monte Carlo simulations that include the quasilinear wave-induced ion diffusion both in velocity space and through a radially localized (lower hybrid) wave structure with propagation in one preferential poloidal direction in tokamaks. The model considers a full linearized collision model, finite fast ion orbits, and losses in toroidal geometry, and can properly treat the boundary effects on the particle--wave interaction in the configuration space. For an isotropic steady ion source, reduction of wave Landau damping but no wave amplification by wave localization is found for a Gaussian wave intensity distribution in radius, irrespective of the steepness of the radial gradient of the fast ion source rate. Enhanced wave-driven fast ion current, with magnitude, direction, and profile determined by the boundary conditions, net power transfer, and fast ion radial transport, is found to follow from the asymmetry in the parallel wave number spectrum created by the finite poloidal magnetic field. In the presence of intense well-penetrated waves the current carried by fusion {alpha} particles can be controlled by the choice of the poloidal wave number spectrum and the total current can greatly exceed the neoclassical bootstrap current of the {alpha} particles in a reactor. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2001-01-01

    A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64 GHz) and increases simultaneous bandwidth by 500 MHz.

  9. Low-current traveling wave tube for use in the microwave power module

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond W.; Ramins, Peter; Force, Dale A.; Dayton, James A.; Ebihara, Ben T.; Gruber, Robert P.

    1993-01-01

    The results of a traveling-wave-tube/multistage depressed-collector (TWT-MDC) design study in support of the Advanced Research Projects Agency/Department of Defense (ARPA/DOD) Microwave Power Module (MPM) Program are described. The study stressed the possible application of dynamic and other tapers to the RF output circuit of the MPM traveling wave tube as a means of increasing the RF and overall efficiencies and reducing the required beam current (perveance). The results indicate that a highly efficient, modified dynamic velocity taper (DVT) circuit can be designed for the broadband MPM application. The combination of reduced cathode current (lower perveance) and increased RF efficiency leads to (1) a substantially higher overall efficiency and reduction in the prime power to the MPM, and (2) substantially reduced levels of MDC and MPM heat dissipation, which simplify the cooling problems. However, the selected TWT circuit parameters need to be validated by cold test measurements on actual circuits.

  10. Low-current traveling wave tube for use in the microwave power module

    NASA Astrophysics Data System (ADS)

    Palmer, Raymond W.; Ramins, Peter; Force, Dale A.; Dayton, James A.; Ebihara, Ben T.; Gruber, Robert P.

    1993-07-01

    The results of a traveling-wave-tube/multistage depressed-collector (TWT-MDC) design study in support of the Advanced Research Projects Agency/Department of Defense (ARPA/DOD) Microwave Power Module (MPM) Program are described. The study stressed the possible application of dynamic and other tapers to the RF output circuit of the MPM traveling wave tube as a means of increasing the RF and overall efficiencies and reducing the required beam current (perveance). The results indicate that a highly efficient, modified dynamic velocity taper (DVT) circuit can be designed for the broadband MPM application. The combination of reduced cathode current (lower perveance) and increased RF efficiency leads to (1) a substantially higher overall efficiency and reduction in the prime power to the MPM, and (2) substantially reduced levels of MDC and MPM heat dissipation, which simplify the cooling problems. However, the selected TWT circuit parameters need to be validated by cold test measurements on actual circuits.

  11. A New High Resolution Wave Modeling System for Renewable Energy Applications in California and the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Galanis, G. N.; Kafatos, M.; Chu, P. C.; Hatzopoulos, N.; Emmanouil, G.; Kallos, G. B.

    2014-12-01

    The use of integrated high accuracy wave systems is of critical importance today for applications on renewable energy assessment and monitoring, especially over offshore areas where the availability of credible, quality controlled corresponding observations is limited. In this work a new wave modeling system developed by the Hellenic Naval Academy and the University of Athens, Greece, the Center of Excellence in Earth Systems Modeling & Observations of Schmid College of Science in Chapman University, USA and the Naval Ocean and Analysis Laboratory of the US-Naval Postgraduate School, is presented. The new wave system has been based on WAM (ECMWF parallel version) model and focuses on parameters that directly or not affect the estimation of wave power potential in offshore and near shore areas. The results obtained are utilized for monitoring the wave energy potential over the California and Eastern Mediterranean coastline. A detailed statistical analysis based on classical and non-conventional measures provides a solid framework for the quantification of the results. Extreme values-cases posing potential threats for renewable energy parks and platforms are particularly analyzed.

  12. A hybrid wave propagation and statistical energy analysis on the mid-frequency vibration of built-up plate systems

    NASA Astrophysics Data System (ADS)

    Ma, Yongbin; Zhang, Yahui; Kennedy, David

    2015-09-01

    Based on the concept of the hybrid finite element (FE) analysis and statistical energy analysis (SEA), a new hybrid method is developed for the mid-frequency vibration of a system comprising rectangular thin plates. The wave propagation method based on symplectic analysis is used to describe the vibration of the deterministic plate component. By enforcing the displacement continuity and equilibrium of force at the connection interface, the dynamic coupling between the deterministic plate component and the statistical plate component described by SEA is established. Furthermore, the hybrid solution formulation for the mid-frequency vibration of the system built up by plates is proposed. The symplectic analytical wave describing the deterministic plate component eliminates the boundary condition limitation of the traditional analytical wave propagation method and overcomes the numerical instability of numerical wave propagation methods. Numerical examples compare results from the proposed method with those from the hybrid FE-SEA method and the Monte Carlo method. The comparison illustrates that the proposed method gives good predictions for the mid-frequency behavior of the system considered here with low computational time. In addition, a constant proportionality coefficient between the system coupling power and the energy difference between the plate components can be found, when external forces are applied at different locations on a line perpendicular to the wave propagation direction. Based on this finding, two fast solution techniques are developed for the energy response of the system, and are validated by numerical examples.

  13. Comparison of low-power single-stage boost rectifiers for sub-milliwatt electromagnetic energy harvesters

    NASA Astrophysics Data System (ADS)

    Szarka, Gyorgy D.; Proynov, Plamen P.; Stark, Bernard H.; Burrow, Stephen G.

    2013-05-01

    Energy harvesting could provide power-autonomy to many important embedded sensing application areas. However, the available envelope often limits the power output, and also voltage levels. This paper presents the implementation of an enabling technology for space-restricted energy harvesting: Four highly efficient and fully autonomous power conditioning circuits are presented that are able to operate at deep-sub-milliwatt input power at less than 1 Vpk AC input, and provide a regulated output voltage. The four complete systems, implemented using discrete components, include the power converters, the corresponding ancillary circuits with sub-10 μW consumption, start-up circuit, and an ultra-lowpower shunt regulator with under-voltage lockout for the management of the accumulated energy. The systems differ in their power converter topology; all are boost rectifier variants that rectify and boost the generator's output in a single stage, that are selected to enable direct comparison between polarity-dependent and -independent, as well as between full-wave and half-wave power converter systems. Experimental results are derived over a range of 200-1200 μW harvester output power, the system being powered solely by the harvester. Experimental results show overall conversion efficiency, accounting for the quiescent power consumption, as high as 82% at 650 μW input, which remains in the 65-70% range even at 200 μW input for the half-wave variant. Harvester utilisation of over 90% is demonstrated in the sub-milliwatt range using full-wave topologies. For the evaluated generator, the full-wave, polarity-dependent boost rectifier offers the best overall system effectiveness, achieving up to 73% of the maximum extractable power.

  14. Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy

    NASA Astrophysics Data System (ADS)

    Adami, Riccardo; Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2016-05-01

    On a star graph made of N ≥ 3 halflines (edges) we consider a Schrödinger equation with a subcritical power-type nonlinearity and an attractive delta interaction located at the vertex. From previous works it is known that there exists a family of standing waves, symmetric with respect to the exchange of edges, that can be parametrized by the mass (or L2-norm) of its elements. Furthermore, if the mass is small enough, then the corresponding symmetric standing wave is a ground state and, consequently, it is orbitally stable. On the other hand, if the mass is above a threshold value, then the system has no ground state. Here we prove that orbital stability holds for every value of the mass, even if the corresponding symmetric standing wave is not a ground state, since it is anyway a local minimizer of the energy among functions with the same mass. The proof is based on a new technique that allows to restrict the analysis to functions made of pieces of soliton, reducing the problem to a finite-dimensional one. In such a way, we do not need to use direct methods of Calculus of Variations, nor linearization procedures.

  15. Role of the P-wave high frequency energy and duration as noninvasive cardiovascular predictors of paroxysmal atrial fibrillation.

    PubMed

    Alcaraz, Ral; Martnez, Arturo; Rieta, Jos J

    2015-04-01

    A normal cardiac activation starts in the sinoatrial node and then spreads throughout the atrial myocardium, thus defining the P-wave of the electrocardiogram. However, when the onset of paroxysmal atrial fibrillation (PAF) approximates, a highly disturbed electrical activity occurs within the atria, thus provoking fragmented and eventually longer P-waves. Although this altered atrial conduction has been successfully quantified just before PAF onset from the signal-averaged P-wave spectral analysis, its evolution during the hours preceding the arrhythmia has not been assessed yet. This work focuses on quantifying the P-wave spectral content variability over the 2h preceding PAF onset with the aim of anticipating as much as possible the arrhythmic episode envision. For that purpose, the time course of several metrics estimating absolute energy and ratios of high- to low-frequency power in different bands between 20 and 200Hz has been computed from the P-wave autoregressive spectral estimation. All the analyzed metrics showed an increasing variability trend as PAF onset approximated, providing the P-wave high-frequency energy (between 80 and 150Hz) a diagnostic accuracy around 80% to discern between healthy subjects, patients far from PAF and patients less than 1h close to a PAF episode. This discriminant power was similar to that provided by the most classical time-domain approach, i.e., the P-wave duration. Furthermore, the linear combination of both metrics improved the diagnostic accuracy up to 88.07%, thus constituting a reliable noninvasive harbinger of PAF onset with a reasonable anticipation. The information provided by this methodology could be very useful in clinical practice either to optimize the antiarrhythmic treatment in patients at high-risk of PAF onset and to limit drug administration in low risk patients. PMID:25758369

  16. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    SciTech Connect

    Stranak, Vitezslav; Herrendorf, Ann-Pierra; Drache, Steffen; Bogdanowicz, Robert; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

  17. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    NASA Astrophysics Data System (ADS)

    Stranak, Vitezslav; Herrendorf, Ann-Pierra; Drache, Steffen; Cada, Martin; Hubicka, Zdenek; Bogdanowicz, Robert; Tichy, Milan; Hippler, Rainer

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 μs after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti++ with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

  18. Sensitivity of Radar Wave Propagation Power to the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lentini, N.; Hackett, E. E.

    2014-12-01

    Radar is a remote sensor used for scientific, meteorological, and military applications. Radar waves are affected by the medium through which they propagate, impacting the accuracy of radar measurements. Thus, environmental effects should be understood and quantified. The marine atmospheric boundary layer (MABL) is highly dynamic and turbulent, and affects radar wave propagation. The ocean surface roughness impacts scattering behavior. These effects cause variability in constructive and destructive interference patterns due to reflection from the ocean surface, known as multipath. The atmospheric effects cause radar waves to attenuate and refract; this study focuses on the refractive effects. A high-fidelity, physics-based, parabolic wave equation simulation is used to model the radar propagation and accounts for effects of the rough ocean surface (wind seas and swell) as well as variable refractivity with height and range. We use a robust, variance based, sensitivity analysis method called the Extended Fourier Amplitude Sensitivity Test to quantify which environmental parameters have the most significant effect on the modeled radar wave propagation. In this sensitivity study, the environment is parameterized by 16 variables, 8 ocean surface and 8 atmospheric. Sensitivity analysis is performed for 3 radar frequencies (3, 9, and 15 GHz) and 2 polarizations (horizontal and vertical). Results indicate that radar wave propagation is more sensitive to atmospheric parameters than ocean surface parameters. The mixed layer has the most far-reaching effect over the entire model domain (a range of 60 km and altitudes up to 1 km), characterized by its height and refractivity gradient. The remaining important factors have a predominantly local effect in the region where they occur in the MABL atmospheric structure. At low altitudes, radar wave propagation power is most sensitive to the gradient and curvature of the vertical refractivity profile. This research provides insight into which aspects of the environment would need to be known with high accuracy to enable corrections for these environmental effects.

  19. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  20. Economic efficiency of power stations using renewable energy sources

    SciTech Connect

    Voronkin, A.F.; Lisochkina, T.V.; Malinina, T.V.

    1995-12-01

    This article examines the viability of power stations using the renewable resources of wind energy, tidal energy, and geothermal energy. General pros and cons of renewable resources are discussed, and the socioeconomic impacts and environmental impacts of these resources are listed and compared to those of traditional thermal and hydroelectric power plants.

  1. Colonisation of fish and crabs of wave energy foundations and the effects of manufactured holes - a field experiment.

    PubMed

    Langhamer, Olivia; Wilhelmsson, Dan

    2009-10-01

    Several Western European countries are planning for a significant development of offshore renewable energy along the European Atlantic Ocean coast, including many thousands of wave energy devices and wind turbines. There is an increasing interest in articulating the added values of the creation of artificial hard bottom habitats through the construction of offshore renewable energy devices, for the benefit of fisheries management and conservation. The Lysekil Project is a test park for wave power located about 100 km north of Gothenburg at the Swedish west coast. A wave energy device consists of a linear wave power generator attached to a foundation on the seabed, and connected by a wire to a buoy at the surface. Our field experiment examined the function of wave energy foundations as artificial reefs. In addition, potentials for enhancing the abundance of associated fish and crustaceans through manufactured holes of the foundations were also investigated. Assemblages of mobile organisms were examined by visual censuses in July and August 2007, 3 months after deployment of the foundations. Results generally show low densities of mobile organisms, but a significantly higher abundance of fish and crabs on the foundations compared to surrounding soft bottoms. Further, while fish numbers were not influenced by increased habitat complexity (holes), it had a significantly positive effect on quantities of edible crab (Cancer pagurus), on average leading to an almost five-fold increase in densities of this species. Densities of spiny starfish (Marthasterias glacialis) were negatively affected by the presence of holes, potentially due to increased predator abundance (e.g. C. pagurus). These results suggest a species-specific response to enhanced habitat complexity. PMID:19560811

  2. Effect of electron density profile on power absorption of high frequency electromagnetic waves in plasma

    SciTech Connect

    Xi Yanbin; Liu Yue

    2012-07-15

    Considering different typical electron density profiles, a multi slab approximation model is built up to study the power absorption of broadband (0.75-30 GHz) electromagnetic waves in a partially ionized nonuniform magnetized plasma layer. Based on the model, the power absorption spectra for six cases are numerically calculated and analyzed. It is shown that the absorption strongly depends on the electron density fluctuant profile, the background electron number density, and the collision frequency. A potential optimum profile is also analyzed and studied with some particular parameters.

  3. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves.

    PubMed

    Wen, Xiaonan; Yang, Weiqing; Jing, Qingshen; Wang, Zhong Lin

    2014-07-22

    We invented a triboelectric nanogenerator (TENG) that is based on a wavy-structured Cu-Kapton-Cu film sandwiched between two flat nanostructured PTFE films for harvesting energy due to mechanical vibration/impacting/compressing using the triboelectrification effect. This structure design allows the TENG to be self-restorable after impact without the use of extra springs and converts direct impact into lateral sliding, which is proved to be a much more efficient friction mode for energy harvesting. The working mechanism has been elaborated using the capacitor model and finite-element simulation. Vibrational energy from 5 to 500 Hz has been harvested, and the generator's resonance frequency was determined to be ∼100 Hz at a broad full width at half-maximum of over 100 Hz, producing an open-circuit voltage of up to 72 V, a short-circuit current of up to 32 μA, and a peak power density of 0.4 W/m(2). Most importantly, the wavy structure of the TENG can be easily packaged for harvesting the impact energy from water waves, clearly establishing the principle for ocean wave energy harvesting. Considering the advantages of TENGs, such as cost-effectiveness, light weight, and easy scalability, this approach might open the possibility for obtaining green and sustainable energy from the ocean using nanostructured materials. Lastly, different ways of agitating water were studied to trigger the packaged TENG. By analyzing the output signals and their corresponding fast Fourier transform spectra, three ways of agitation were evidently distinguished from each other, demonstrating the potential of the TENG for hydrological analysis. PMID:24964297

  4. A correlative investigation of the propagation of ULF wave power through the dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, Mark J.

    1990-01-01

    Three different ULF wave phenomena (azimuthally polarized Pc 3 pulsations, radially polarized Pc 4 pulsations, and solitary Pc 5 pulsations related to solar wind pressure pulses) were studied. The main problems covered are: (1) how do magnetospheric Pc 3-4 pulsations, which appear to originate in the solar wind, enter the magnetosphere, and how is this wave energy transported throughout the magnetosphere once it enters; (2) what is the ULF response of the outer dayside magnetosphere to solar wind pressure pulses; and (3) how do Pc 3-4 pulsations modulate ELF-VLF emissions in the dayside magnetosphere.

  5. Comparison of magnetosonic wave and water group ion energy densities at Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Staines, K.; Balogh, A.; Cowley, S. W. H.; Forster, P. M. De F.; Hynds, R. J.; Yates, T. S.; Sanderson, T. R.; Wenzel, K.-P.; Tsurutani, B. T.

    1991-01-01

    Measurements of the Comet Giacobini-Zinner (GZ) are presented to determine to what extent wave-particle scattering redistributed the initial pick-up energy of the ion population. Also examined is the difference between the ion thermal energy and the energy in the magnetic fields of the waves. In spite of uncertainty of about a factor of 2 noted in the pick-up and mass-loaded regions, it is shown that less than approximately 50 percent of the pick-up energy is converted into wave magnetic energy in the inbound pick-up region.

  6. Highly efficient terahertz wave filter for high-power laser beam separation

    SciTech Connect

    Guo, Bo; Cai, Bin E-mail: ymzhu@usst.edu.cn; Zhu, YiMing E-mail: ymzhu@usst.edu.cn; Tang, Jun

    2014-12-01

    In this study, we design and fabricate a two-layer device based on the Rayleigh scattering theory for effectively separating high-energy pump-laser-generated terahertz (THz) waves. The basic layer is comprised of cyclo olefin polymer and silicon nanoparticles, which can obstruct the propagation of the 800-nm, high-energy pump laser through scattering and absorption effects while permitting THz waves to pass through. In order to improve the laser damage threshold of the basic layer, an additional layer, which is composed of hollow silica nanoparticles, is used to diffuse the incident high-energy laser beam. Through this two-layer structure, a high 800-nm laser threshold and highly transparent THz region filter are fabricated.

  7. Experimental investigation of a Ka band high power millimeter wave generator operated at low guiding magnetic field

    SciTech Connect

    Zhu Jun; Shu Ting; Zhang Jun; Li Guolin; Zhang Zehai; Fan Yuwei

    2011-05-15

    An overmoded slow wave type Ka band generator is investigated experimentally to produce high power millimeter waves in this paper. The experiments were carried out at the TORCH-01 accelerator. The produced microwave frequency was measured by dispersive line method, and the power was estimated by integrating over the radiation pattern at far field. With relatively low guiding magnetic field of 0.8 T and diode voltage and beam current of 590 kV and 5.2 kA, respectively, a 33.56 GHz millimeter wave with an output power of 320 MW was generated, and the microwave mode was quasi-TM{sub 01} mode.

  8. A non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    SciTech Connect

    Hawsey, R.A.; Scudiere, M.B.

    1991-05-29

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  9. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOEpatents

    Hawsey, Robert A.; Scudiere, Matthew B.

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  10. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons. PMID:23405276

  11. Ultra High Energy Electrons Powered by Pulsar Rotation

    PubMed Central

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e±) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons. PMID:23405276

  12. The synoptic setting and possible energy sources for mesoscale wave disturbances

    NASA Technical Reports Server (NTRS)

    Uccellini, Louis W.; Koch, Steven E.

    1987-01-01

    Published data on 13 cases of mesoscale wave disturbances and their environment were examined to isolate common features for these cases and to determine possible energy sources for the waves. These events are characterized by either a singular wave of depression or wave packets with periods of 1-4 h, horizontal wavelengths of 50-500 km, and surface-pressure perturbation amplitudes of 0.2-7.0 mb. These wave events are shown to be associated with a distinct synoptic pattern (including the existence of a strong inversion in the lower troposphere and the propagation of a jet streak toward a ridge axis in the upper troposphere) while displaying little correlation with the presence of convective storm cells. The observed development of the waves is consistent with the hypothesis that the energy source needed to initiate and sustain the wave disturbances may be related to a geostrophic adjustment process associated with upper-tropospheric jet streaks.

  13. Ultra low-power hybrid spintronics-straintronics clocked with Surface Acoustic Waves (SAW)

    NASA Astrophysics Data System (ADS)

    Salehi Fashami, Mohammad; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2014-03-01

    The study of magnetization dynamics in magnetostrictive materials triggered with surface acoustic waves (SAWs) is of great interest not only from a fundamental point of view, but also for potential applications in energy efficient nanomagnetic computing. In this presentation, we model magnetization dynamics in dipole coupled arrays of nanomagnets clocked by acoustic waves. Specifically, this theoretical work demonstrates the feasibility of sequential logic devices such as flip-flops by showing that NAND gates and information propagation with cross-over of nanomagnet ``wires'' can be implemented and synchronously clocked with surface acoustic waves. We acknowledge support of the National Science Foundation (NSF) under NSF CAREER grant CCF-1253370, the NEB2020 Grant ECCS-1124714 and SHF grant CCF-1216614 as well as the Semiconductor Research Company (SRC) under NRI task 2203.001.

  14. Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications

    PubMed Central

    Han, S. T.; Comfoltey, E. N.; Shapiro, M. A.; Sirigiri, J. R.; Tax, D. S.; Temkin, R. J.; Woskov, P. P.; Rasmussen, D. A.

    2008-01-01

    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3±0.1 dB per miter bend using a VNA; and 0.22±0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05±0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications. PMID:19081774

  15. Energy-Saving RAM-Power Tap

    NASA Technical Reports Server (NTRS)

    Bruner, Alan Roy

    1987-01-01

    Reverse-flow HEXFET(R) minimizes voltage drop and power dissipation. HEXFET(R) scheme reduces voltage drop by approximately 80 percent. Design for power tap for random-access memory (RAM) has potential application in digital systems.

  16. Estimating wave energy dissipation in the surf zone using thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Carini, Roxanne J.; Chickadel, C. Chris; Jessup, Andrew T.; Thomson, Jim

    2015-06-01

    Thermal infrared (IR) imagery is used to quantify the high spatial and temporal variability of dissipation due to wave breaking in the surf zone. The foam produced in an actively breaking crest, or wave roller, has a distinct signature in IR imagery. A retrieval algorithm is developed to detect breaking waves and extract wave roller length using measurements taken during the Surf Zone Optics 2010 experiment at Duck, NC. The remotely derived roller length and an in situ estimate of wave slope are used to estimate dissipation due to wave breaking by means of the wave-resolving model by Duncan (1981). The wave energy dissipation rate estimates show a pattern of increased breaking during low tide over a sand bar, consistent with in situ turbulent kinetic energy dissipation rate estimates from fixed and drifting instruments over the bar. When integrated over the surf zone width, these dissipation rate estimates account for 40-69% of the incoming wave energy flux. The Duncan (1981) estimates agree with those from a dissipation parameterization by Janssen and Battjes (2007), a wave energy dissipation model commonly applied within nearshore circulation models.

  17. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    NASA Technical Reports Server (NTRS)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  18. Relation between fine structure of energy spectra for pulsating aurora electrons and frequency spectra of whistler mode chorus waves

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Saito, S.; Seki, K.; Nishiyama, T.; Kataoka, R.; Asamura, K.; Katoh, Y.; Ebihara, Y.; Sakanoi, T.; Hirahara, M.; Oyama, S.; Kurita, S.; Santolik, O.

    2015-09-01

    We investigate the origin of the fine structure of the energy spectrum of precipitating electrons for the pulsating aurora (PsA) observed by the low-altitude Reimei satellite. The Reimei satellite achieved simultaneous observations of the optical images and precipitating electrons of the PsA from satellite altitude (~620 km) with resolution of 40 ms. The main modulation of precipitation, with a few seconds, and the internal modulations, with a few hertz, that are embedded inside the main modulations are identified above ~3 keV. Moreover, stable precipitations at ~1 keV are found for the PsA. A "precipitation gap" is discovered between two energy bands. We identify the origin of the fine structure of the energy spectrum for the precipitating electrons using the computer simulation on the wave-particle interaction between electrons and chorus waves. The lower band chorus (LBC) bursts cause the main modulation of energetic electrons, and the generation and collapse of the LBC bursts determines on-off switching of the PsA. A train of rising tone elements embedded in the LBC bursts drives the internal modulations. A close set of upper band chorus (UBC) waves causes the stable precipitations at ~1 keV. We show that a wave power gap around the half gyrofrequency at the equatorial plane in the magnetosphere between LBC and UBC reduces the loss rate of electrons at the intermediate energy range, forming a gap of precipitating electrons in the ionosphere.

  19. 75 FR 21289 - Oregon Wave Energy Partners I, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Energy Regulatory Commission Oregon Wave Energy Partners I, LLC; Notice of Preliminary Permit Application..., 2010. On March 2, 2010, Oregon Wave Energy Partners I, LLC filed an application for a subsequent.... Applicant Contact: Mr. Charles F. Dunleavy, Oregon Wave Energy Partners I, LLC, 1590 Reed Road,...

  20. A High-Power G-band Schottky Local Oscillator Chain for Submillimeter Wave Heterodyne Detection

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Chen, Xiang; Cui, Wanzhao; Li, Xiaojun; Ge, Junxiang

    2015-05-01

    Local oscillator (LO) sources with sufficient output power are indispensable modules in submillimeter wave heterodyne detectors. In this work, we report on the design and characterization of a ×6×2 frequency multiplier chain that covers 176-196 GHz band. The LO chain mainly includes a W-band active times-6 frequency multiplier, a commercial W-band isolator, a W-band power module, a W-band band-pass filter (BPF) and a varactor-based G-band power-combined frequency doubler. First of all, design and performance of the W-band sextupler (×6), power module and BPF are briefly introduced. This is followed by a detailed description of the G-band frequency doubler as the key content. The final stage doubler employs two 50 μm thick quartz circuits and two commercially available varactor diodes. A circuit scheme named power-combining frequency multiplication is used for the doubler design. This circuit scheme is able to double the power handling capability of the frequency multiplier compared to the un-combined one. Therefore, the final stage doubler can fully make use of the driving power delivered by the power module to increase the output power. Each module is fabricated and assembled, and the discrete modules and the cascaded chain are measured, respectively. At room temperature, when pumped with 0 dBm at Ku-band, the LO chain produces at least 12.5 dBm in the 172-196 GHz band with a measured peak power of 16 dBm at 178 GHz. This power level is sufficient to pump a 0.36 THz heterodyne detector and makes it possible to deploy multi-pixel heterodyne imaging arrays in this frequency range.

  1. Effect of Stress on Energy Flux Deviation of Ultrasonic Waves in Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.

  2. Survey of energy harvesting and energy scavenging approaches for on-site powering of wireless sensor- and microinstrument-networks

    NASA Astrophysics Data System (ADS)

    Lee, D.; Dulai, G.; Karanassios, Vassili

    2013-05-01

    Energy (or power) harvesting can be defined as the gathering and either storing or immediately using energy "freely" available in a local environment. Examples include harvesting energy from obvious sources such as photon-fluxes (e.g., solar), or wind or water waves, or from unusual sources such as naturally occurring pH differences. Energy scavenging can be defined as gathering and storing or immediately re-using energy that has been discarded, for instance, waste heat from air conditioning units, from in-door lights or from everyday actions such as walking or from body-heat. Although the power levels that can be harvested or scavenged are typically low (e.g., from nWatt/cm2 to mWatt/cm2), the key motivation is to harvest or to scavenge energy for a wide variety of applications. Example applications include powering devices in remote weather stations, or wireless Bluetooth headsets, or wearable computing devices or for sensor networks for health and bio-medical applications. Beyond sensors and sensor networks, there is a need to power compete systems, such as portable and energy-autonomous chemical analysis microinstruments for use on-site. A portable microinstrument is one that offers the same functionality as a large one but one that has at least one critical component in the micrometer regime. This paper surveys continuous or discontinuous energy harvesting and energy scavenging approaches (with particular emphasis on sensor and microinstrument networks) and it discusses current trends. It also briefly explores potential future directions, for example, for nature-inspired (e.g., photosynthesis), for human-power driven (e.g., for biomedical applications, or for wearable sensor networks) or for nanotechnology-enabled energy harvesting and energy scavenging approaches.

  3. Excitation of guided ELF-VLF waves through modification of the F{sub 2} ionospheric layer by high-power radio waves

    SciTech Connect

    Markov, G. A.; Belov, A. S.; Komrakov, G. P.; Parrot, M.

    2012-03-15

    The possibility of controlled excitation of ELF-VLF electromagnetic waves through modification of the F{sub 2} ionospheric layer by high-power high-frequency emission is demonstrated in a natural experiment by using the Sura midlatitude heating facility. The excited low-frequency waves can be used to explore the near-Earth space and stimulate the excitation of a magnetospheric maser.

  4. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.

  5. Direct conversion of infrared radiant energy for space power applications

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  6. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa)

    NASA Astrophysics Data System (ADS)

    Booske, John H.

    2008-05-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave (mmw) to terahertz (THz) regime electromagnetic radiation, from 0.1 to 10THz. While vacuum electronic sources are a natural choice for high power, the challenges have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, high resolution radar, next generation acceleration drivers, and analysis of fluids and condensed matter. The compact size requirements for many of these high frequency sources require miniscule, microfabricated slow wave circuits. This necessitates electron beams with tiny transverse dimensions and potentially very high current densities for adequate gain. Thus, an emerging family of microfabricated, vacuum electronic devices share many of the same plasma physics challenges that are currently confronting "classic" high power microwave (HPM) generators including long-life bright electron beam sources, intense beam transport, parasitic mode excitation, energetic electron interaction with surfaces, and rf air breakdown at output windows. The contemporary plasma physics and other related issues of compact, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future research challenges and opportunities are discussed.

  7. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  8. A high power experimental traveling wave antenna for fast wave heating and current drive in DIII-D and relevance to ITER

    SciTech Connect

    Phelps, D.A.; Ikezi, H.; Moeller, C.P.

    1995-10-01

    The impact of a contemplated conversion of the directly driven high power antenna arrays in DIII-D to externally tuned and coupled traveling wave antennas (TWAs) is evaluated based on empirical modeling, computer simulation and low power experiments. A regime of operation is predicted within the TWA passband in which the reflected power from the TWA approaches 0.1% during ELM-free H-mode. Furthermore, this reflected power does not exceed 1% and the optimum phase velocity produced by the TWA decreases less than 5% during ELMs. This resilient operating regime is phase shifted using external tuning stubs, thus providing considerable experimental flexibility. Over 90% plasma coupling efficiency is achieved by recovering the TWA output power using a novel traveling wave recirculator. Combining the above attributes with efficient plasma coupling even at large antenna-plasma distances and the lack of need for dynamic tuning, TWAs appear to offer great promise for ITER.

  9. Results of a study of the effect of high-power short-wave emissions on the propagation of radio waves on the Kiev-Ioshkar-Ola path

    NASA Astrophysics Data System (ADS)

    Boguta, N. M.; Ivanov, V. A.; Katkov, E. V.; Maksimenko, O. I.; Mitiakova, E. E.; Uriadov, V. P.; Frolov, V. A.; Erm, R..

    Experiments were performed during March-April 1982 and April-June 1983 to study the effect of ionospheric disturbances caused by high-power radio transmissions on the propagation of decameter waves on the Kiev-Ioshkar-Ola path. Sounding waves were emitted at four fixed frequencies: 10.8, 16.6, 18.2, and 19.85 MHz; and high-power (50 MW) heating waves were emitted at 5.8-9.3 MHz. An analysis of the data shows that the degree of the effect of high-power radio emissions on the decameter-signal characteristics depends on ionospheric conditions, e.g., the effect was strongest when the critical frequencies on the path were highest, the effect being observed most frequently at 10.8 MHz.

  10. Acoustic wave energy fluxes for late-type stars.

    NASA Astrophysics Data System (ADS)

    Ulmschneider, P.; Theurer, J.; Musielak, Z. E.

    1996-11-01

    We revisit the problem of acoustic wave generation by turbulent convection in late-type stellar atmospheres. Using the Lighthill-Stein theory with modifications described in our recent paper Musielak et al. (1994ApJ...423..474M), we compute both acoustic frequency spectra and total acoustic fluxes on basis of grey LTE mixing-length convection zone models for population I stars, in the range of effective temperatures T_eff_=2000-10000K and gravities logg=0-8. The turbulent flow field is represented by an extended Kolmogorov spatial and modified Gaussian temporal energy spectrum. The mixing-length parameter was varied in the range ?=1-2. Particularly for M-dwarf stars we find large discrepancies between our fluxes and those of Bohn (1981 (Ph.D. Thesis, Univ. Wuerzburg, Germany), 1984A&A...130..202B). Except for very cool dwarf stars our total fluxes are well reproduced by the simple Lighthill-Proudmann formula already developed in the 1950's.

  11. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    NASA Astrophysics Data System (ADS)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.

  12. A geospatial assessment of the relationship between reef flat community calcium carbonate production and wave energy

    NASA Astrophysics Data System (ADS)

    Hamylton, S. M.; Pescud, A.; Leon, J. X.; Callaghan, D. P.

    2013-12-01

    The ability of benthic communities inhabiting coral reefs to produce calcium carbonate underpins the development of reef platforms and associated sedimentary landforms, as well as the fixation of inorganic carbon and buffering of diurnal pH fluctuations in ocean surface waters. Quantification of the relationship between reef flat community calcium carbonate production and wave energy provides an empirical basis for understanding and managing this functionally important process. This study employs geospatial techniques across the reef platform at Lizard Island, Great Barrier Reef, to (1) map the distribution and estimate the total magnitude of reef community carbonate production and (2) empirically ascertain the influence of wave energy on community carbonate production. A World-View-2 satellite image and a field data set of 364 ground referencing points are employed, along with data on physical reef characteristics (e.g. bathymetry, rugosity) to map and validate the spatial distribution of the four major community carbonate producers (live coral, carbonate sand, green calcareous macroalgae and encrusting calcified algae) across the reef platform. Carbonate production is estimated for the complete reef platform from the composition of these community components. A synoptic model of wave energy is developed using the Simulating WAves Nearshore (SWAN) two-dimensional model for the entire reef platform. The relationship between locally derived measures of carbonate production and wave energy is evaluated at both the global scale and local scale along spatial gradients of wave energy traversing the reef platform. A wave energy threshold is identified, below which carbonate production levels appear to increase with wave energy and above which mechanical forcing reduces community production. This implies an optimal set of hydrodynamic conditions characterized by wave energy levels of approximately 300 J m-2, providing an empirical basis for management of potential changes in community carbonate production associated with climate change-driven increases in wave energy.

  13. Simulation of High Power ICRF Wave Heating in the ITER Burning Plasma

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Barrett, R. F.; D'Azevedo, E. F.

    2007-11-01

    ITER relies on Ion-cyclotron Radio Frequency (ICRF) power to heat the plasma to fusion temperatures. To heat effectively, the waves must couple efficiently to the core plasma. Recent simulations using AORSA [1] on the 120 TF Cray XT-4 (Jaguar) at ORNL show that the waves propagate radially inward and are rapidly absorbed with little heating of the plasma edge. AORSA has achieved 87.5 trillion calculations per second (87.5 teraflops) on Jaguar, which is 73 percent of the system's theoretical peak. Three dimensional visualizations show ``hot spots'' near the antenna surface where the wave amplitude is high. AORSA simulations are also being used to study how to best use ICRF to drive plasma currents for optimizing ITER performance and pulse length. Results for Scenario 4 show a maximum current of 0.54 MA for 20 MW of power at 57 MHz. [1] E.F. Jaeger, L.A. Berry, E. D'Azevedo, et al., Phys. Plasmas. 8, 1573 (2001).

  14. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    SciTech Connect

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-05-06

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  15. Parametric study of power absorption from electromagnetic waves by small ferrite spheres

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.

    1989-01-01

    Algebraic expressions in terms of elementary mathematical functions are derived for power absorption and dissipation by eddy currents and magnetic hysteresis in ferrite spheres. Skin depth is determined by using a variable inner radius in descriptive integral equations. Numerical results are presented for sphere diameters less than one wavelength. A generalized power absorption parameter for both eddy currents and hysteresis is expressed in terms of the independent parameters involving wave frequency, sphere radius, resistivity, and complex permeability. In general, the hysteresis phenomenon has a greater sensitivity to these independent parameters than do eddy currents over the ranges of independent parameters studied herein. Working curves are presented for obtaining power losses from input to the independent parameters.

  16. Transfer of Energy, Potential, and Current by Alfvén Waves in Solar Flares

    NASA Astrophysics Data System (ADS)

    Melrose, D. B.; Wheatland, M. S.

    2013-11-01

    Alfvén waves play three related roles in the impulsive phase of a solar flare: they transport energy from a generator region to an acceleration region; they map the cross-field potential (associated with the driven energy release) from the generator region onto the acceleration region; and within the acceleration region they damp by setting up a parallel electric field that accelerates electrons and transfers the wave energy to them. The Alfvén waves may also be regarded as setting up new closed-current loops, with field-aligned currents that close across field lines at boundaries. A model is developed for large-amplitude Alfvén waves that shows how Alfvén waves play these roles in solar flares. A picket-fence structure for the current flow is incorporated into the model to account for the "number problem" and the energy of the accelerated electrons.

  17. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. PMID:26892203

  18. Wave energy saturation on a natural beach of variable slope.

    USGS Publications Warehouse

    Sallenger, A.H., Jr.; Holman, R.A.

    1985-01-01

    Time series of flow were measured across the inner surf zone during a storm. These data were used to quantify the dependence of wave height (transformed from measured flow) and velocity on local slope and depth. Local depth increased with local slope and was independent of deepwater wave steepness.-from Authors

  19. Gravitational waves, energy and Feynman’s “sticky bead”

    NASA Astrophysics Data System (ADS)

    Cooperstock, F. I.

    2015-07-01

    It is noted that in the broader sense, gravitational waves viewed as spacetime curvature which necessarily accompanies electromagnetic waves at the speed of light, are the routine perception of our everyday experience. We focus on the energy issue and Feynman’s “sticky bead” argument which has been regarded as central in supporting the conclusion that gravitational waves carry energy through the vacuum in general relativity. We discuss the essential neglected aspects of his approach which leads to the conclusion that gravitational waves would not cause Feynman’s bead to heat the stick on which it would supposedly rub. This opens the way to an examination of the entire issue of energy in general relativity. We briefly discuss our naturally-defined totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. When the cosmological term is included in the field equations, our energy expression includes the vacuum energy as required.

  20. Energy dispersive x-ray diffraction of charge density waves via chemical filtering

    SciTech Connect

    Feng Yejun; Somayazulu, M. S.; Jaramillo, R.; Rosenbaum, T.F.; Isaacs, E.D.; Hu Jingzhu; Mao Hokwang

    2005-06-15

    Pressure tuning of phase transitions is a powerful tool in condensed matter physics, permitting high-resolution studies while preserving fundamental symmetries. At the highest pressures, energy dispersive x-ray diffraction (EDXD) has been a critical method for geometrically confined diamond anvil cell experiments. We develop a chemical filter technique complementary to EDXD that permits the study of satellite peaks as weak as 10{sup -4} of the crystal Bragg diffraction. In particular, we map out the temperature dependence of the incommensurate charge density wave diffraction from single-crystal, elemental chromium. This technique provides the potential for future GPa pressure studies of many-body effects in a broad range of solid state systems.