Science.gov

Sample records for wave energy power

  1. Energy analysis of wave and tidal power

    NASA Astrophysics Data System (ADS)

    Harrison, R.; Smith, K. G.; Varley, J. S.

    1980-06-01

    Energy requirements for building wave- and tidal-power systems are estimated and the relationship between energy requirements and extraction efficiency is examined for wavepower systems. It is found that a point of maximum net output is reached, beyond which further increases in extraction efficiency result in decreased net energy. In this manner, the energy analysis identifies a limit on the energy which could, in principle, be extracted by a wave-energy system. Finally, it is noted that although similar limits could be identified for other types of energy sources, the tidal power analysis is confined to a brief comparison of energy inputs and outputs.

  2. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  3. Power inversion design for ocean wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Talebani, Anwar N.

    The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.

  4. Wind, Wave, and Tidal Energy Without Power Conditioning

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  5. Power from Ocean Waves.

    ERIC Educational Resources Information Center

    Newman, J. N.

    1979-01-01

    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  6. Dielectric elastomer energy harvesting: maximal converted energy, viscoelastic dissipation and a wave power generator

    NASA Astrophysics Data System (ADS)

    Lv, Xiongfei; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2015-11-01

    Dielectric elastomer (DE) is a smart soft material. It is able to produce large deformation under mechanical force and electric field, so that it can achieve mutual conversion between mechanical energy and electrical energy. Based on this property, dielectric elastomer can be used in energy harvesting field. In this paper, firstly, we analyzed the constitutive relation under different hyperelastic models (Gent and neo-Hookean model) based on both theoretical and experimental study. Secondly, we depicted the allowable areas in force-displacement and voltage-charge plane according to different failure modes, and then calculated the maximal energy density in one energy harvesting period. Thirdly, we studied the viscoelastic energy dissipation which can lose the input mechanical energy in the energy harvesting process. Finally, we designed and fabricated a wave power generator, and tested its performance. This paper is of deep significance to the future applications of DE generators.

  7. Energy Flux in the Cochlea: Evidence Against Power Amplification of the Traveling Wave.

    PubMed

    van der Heijden, Marcel; Versteegh, Corstiaen P C

    2015-10-01

    Traveling waves in the inner ear exhibit an amplitude peak that shifts with frequency. The peaking is commonly believed to rely on motile processes that amplify the wave by inserting energy. We recorded the vibrations at adjacent positions on the basilar membrane in sensitive gerbil cochleae and tested the putative power amplification in two ways. First, we determined the energy flux of the traveling wave at its peak and compared it to the acoustic power entering the ear, thereby obtaining the net cochlear power gain. For soft sounds, the energy flux at the peak was 1 ± 0.6 dB less than the middle ear input power. For more intense sounds, increasingly smaller fractions of the acoustic power actually reached the peak region. Thus, we found no net power amplification of soft sounds and a strong net attenuation of intense sounds. Second, we analyzed local wave propagation on the basilar membrane. We found that the waves slowed down abruptly when approaching their peak, causing an energy densification that quantitatively matched the amplitude peaking, similar to the growth of sea waves approaching the beach. Thus, we found no local power amplification of soft sounds and strong local attenuation of intense sounds. The most parsimonious interpretation of these findings is that cochlear sensitivity is not realized by amplifying acoustic energy, but by spatially focusing it, and that dynamic compression is realized by adjusting the amount of dissipation to sound intensity. PMID:26148491

  8. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device design projects to scale up the current Ocean Power Technology PowerBuoy from 150kW to 500kW.

  9. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    SciTech Connect

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  10. Cycloidal Wave Energy Converter

    SciTech Connect

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  11. Stability analysis of the Gyroscopic Power Take-Off wave energy point absorber

    NASA Astrophysics Data System (ADS)

    Nielsen, Søren R. K.; Zhang, Zili; Kramer, Morten M.; Olsen, Jan

    2015-10-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber consists of a float rigidly connected to a lever. The operational principle is somewhat similar to that of the so-called gyroscopic hand wrist exercisers, where the rotation of the float is brought forward by the rotational particle motion of the waves. At first, the equations of motion of the system are derived based on analytical rigid body dynamics. Next, assuming monochromatic waves simplified equations are derived, valid under synchronisation of the ring of the gyro to the angular frequency of the excitation. Especially, it is demonstrated that the dynamics of the ring can be described as an autonomous nonlinear single-degree-of-freedom system, affected by three different types of point attractors. One where the ring vibrations are attracted to a static equilibrium point indicating unstable synchronisation and two types of attractors where the ring is synchronised to the wave angular frequency, either rotating in one or the opposite direction. Finally, the stability conditions and the basins of attraction to the point attractors defining the synchronised motion are determined.

  12. Irregular Wave Energy Extraction Analysis for a Slider Crank WEC Power Take-Off System

    SciTech Connect

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard

    2015-09-02

    Slider crank Wave Energy Converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this WEC has been done under regular sinusoidal wave conditions, and a suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and the control methodology is modified to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but still a reasonable amount of energy can be extracted.

  13. Wave powered machine

    SciTech Connect

    Holmes, W.A.

    1986-12-09

    A device is described to convert the motion of waves in a body of water to other forms of energy comprising: a. vertical supports fixed to the bottom of the body of water, b. rail means supported by the vertical supports, c. a frame fixed to the vertical supports at an elevation above the surface of the body of water, d. a shaft supported on the frame to rotate, e. rotating means fixed to the shaft, f. a float engaged with the rail means to move vertically up and down from the influence of waves, the float carrying actuating means in the form of two vertical racks pivotally connected to the float and with their upper extremities pivotally connected to a common link. One of the racks is adapted to drive the rotating means on an upstroke of the float and the other of the racks to drive the rotating means on a downstroke of the float. The actuating means cooperates with the rotating means to cause the rotating means to rotate unidirectionally during a power stroke of the actuating means, g. a power take-off from the shaft, and h. the float having a skirt fixed to the bottom thereof, the skirt having means to vent the space beneath it.

  14. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  15. Metamaterial Mediated Energy Exchange between Wave and Beam in the High-Power regime

    NASA Astrophysics Data System (ADS)

    Seviour, Rebecca; Tan, Yap Soon

    2010-11-01

    In this presentation we discuss metamaterial mediated energy exchange between charged particle beams and electromagnetic waves in the high-power regime, using coupled mode theory and a Pierce's approach. We present a modified form of Pierce's theory which takes into account the presence of the metamaterial and the intrinsic loss associated with metamaterials. We examine the unit-cell surface current distribution and loss in a metamaterial consisting of Complementary Split Ring Resonators (CSRR), focusing on the differences in loss between metamaterials in waveguide and free-space. We also discuss experimental and numerical parameter extraction techniques and the validated of each approach in the different cases of metamaterials in waveguide and in free space.

  16. Wave action power plant

    SciTech Connect

    Lucia, L.V.

    1982-03-16

    A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.

  17. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  18. Hydroelectric power from ocean waves

    NASA Astrophysics Data System (ADS)

    Raghavendran, K.

    1981-02-01

    This paper describes a system which converts the variable energy of ocean waves into a steady supply of energy in a conventional form. The system consists of a set of floats and Persian wheels located off-shore and a storage reservoir on the shore. The floats oscillate vertically as the waves pass below them and turn their respective Persian wheels which lift sea water to a height and deliver to the reservoir through an interconnecting pipeline. The head of water in the reservoir operates a hydraulic turbine which in turn works a generator to supply electricity. Due to the recurrent wave action, water is maintained at the optimum level in the reservoir to ensure continuous power supply.

  19. Offshore wave energy experiment

    SciTech Connect

    Nielsen, K.; Scholten, N.C.; Soerensen, K.A. |

    1995-12-31

    This article describes the second phase of the off-shore wave energy experiment, taking place in the Danish part of the North Sea near Hanstholm. The wave power converter is a scale model consisting of a float 2.5 meter in diameter connected by rope to a seabed mounted piston pump installed on 25 meter deep water 2,5 km offshore. The structure, installation procedure results and experience gained during the test period will be presented and compared to calculations based on a computer model.

  20. Improved power capacity in a high efficiency klystron-like relativistic backward wave oscillator by distributed energy extraction

    SciTech Connect

    Xiao, Renzhen; Chen, Changhua; Cao, Yibing; Sun, Jun

    2013-12-07

    With the efficiency increase of a klystron-like relativistic backward wave oscillator, the maximum axial electric field and harmonic current simultaneously appear at the end of the beam-wave interaction region, leading to a highly centralized energy exchange in the dual-cavity extractor and a very high electric field on the cavity surface. Thus, we present a method of distributed energy extraction in this kind of devices. Particle-in-cell simulations show that with the microwave power of 5.1 GW and efficiency of 70%, the maximum axial electric field is decreased from 2.26 MV/cm to 1.28 MV/cm, indicating a threefold increase in the power capacity.

  1. The Promise of Wave Power (Invited)

    NASA Astrophysics Data System (ADS)

    Brekken, T.

    2010-12-01

    The solutions to today's energy challenges need to be explored through alternative, renewable and clean energy sources to enable diverse energy resource plans. An extremely abundant and promising source of energy exists in the world's oceans: it is estimated that if 0.2 % of the oceans' untapped energy could be harnessed, it could provide power sufficient for the entire world. Ocean energy exists in the forms of wave, tidal, marine currents, thermal (temperature gradient) and salinity. Among these forms, significant opportunities and benefits have been identified in the area of ocean wave energy extraction, i.e., harnessing the motion of the ocean waves, and converting that motion into electrical energy. Ocean wave energy refers to the kinetic and potential energy in the heaving motion of ocean waves. Wave energy is essentially concentrated solar energy (as is wind energy). The heating of the earth’s surface by the sun (with other complex processes) drives the wind, which in turn blows across the surface of the ocean to create waves. At each stage of conversion, the power density increases. Ocean wave power offers several attractive qualities, including high power density, low variability, and excellent forecastability. A typical large ocean wave propogates at around 12 m/s with very little attenuation across the ocean. If the waves can be detected several hundred kilometers off shore, there can be 10 hours or more of accurate forecast horizon. In fact, analysis has shown good forecast accuracy up to 48 hours in advance. Off the coast Oregon, the yearly average wave power is approximately 30 kW per meter of crestlength (i.e., unit length transverse to the direction of wave propagation and parallel to the shore.) This compares very favorably with power densities of solar and wind, which typically range in the several hundreds of Watts per square meter. Globally, the wave energy resource is stronger on the west coasts of large landmasses and increases in strength

  2. Energy of a shock wave generated in different metals under irradiation by a high-power laser pulse

    SciTech Connect

    Gus'kov, S. Yu. Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Skala, J.; Pisarczyk, P.

    2007-10-15

    The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 10{sup 14} W/cm{sup 2}. It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2-3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed.

  3. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. PMID:26873972

  4. Design of a hydraulic power take-off system for the wave energy device with an inverse pendulum

    NASA Astrophysics Data System (ADS)

    Zhang, Da-hai; Li, Wei; Zhao, Hai-tao; Bao, Jing-wei; Lin, Yong-gang

    2014-04-01

    This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.

  5. Feasibility study on wave energy power plant with oscillating water column system in Bawean Island Seas Indonesia

    NASA Astrophysics Data System (ADS)

    Ali, A. F.; Hadi, S.

    2016-03-01

    As a huge archipelago with 17,480 islands, Indonesia still has difficulties to electrify all of its islands especially on the remote ones (areas) because of a power grid coverage limitation of National Electrical Company (PLN). This research discusses the potential calculation of sea wave power conversion by utilizing Oscillating Water Column (OWC) system in remote islands, especially on Bawean Island Seas. OWC system is chosen because of its advantages compared to other systems and also because of its suitability towards sea and coast areas in Indonesia. Kim Nielsen and David Ross Law were used for the power calculation. The research took data sampling during one month in 2015 with the result of wave height average of 2.09 meters. That obtained data resulted wave energy of within 270.19 and electrical power output of about 52.7 kW by using Oscillating Water Column system. Based on this result, Break Even Point (BEP) for one plant covering 117 houses will become zero in the period of 3 years 8 months.

  6. Wave power potential in Malaysian territorial waters

    NASA Astrophysics Data System (ADS)

    Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul

    2016-06-01

    Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.

  7. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  8. Wave Energy Potential in the Latvian EEZ

    NASA Astrophysics Data System (ADS)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  9. Wave-operated power plant

    SciTech Connect

    Ghesquiere, H.

    1980-08-12

    This wave-operated power plant comprises a perforated caisson breakwater in which propellers, or turbines, are mounted in the perforations or openings and drives hydraulic pumps connected thereto, which in turn drives a hydraulic motor coupled to an electric generator. One-way flap valves are mounted in the openings. Some of said flap valves allow the rushing waves to enter the caisson, while the other flap valves allow the water to flow out of the caisson.

  10. Controller for a wave energy converter

    SciTech Connect

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  11. Tide following wave power machine

    SciTech Connect

    Murphy, J.T.

    1982-09-21

    At least two spaced piers are constructed on a suitable tidal beach extending from the shore into the water a predetermined distance to meet the first breaking waves at low tide. A carriage is movably supported on the piers on an inclined path, the carriage having a frame supporting a pair of spaced sprocket wheels on each end over which is passed an endless belt. The ends of a plurality of blades are secured to the chain in spaced relation completely thereabout. Each sprocket wheels closest to shore is connected to a gear train for transmitting the torque generated by the wave action to a power belt extending along each pier to a transducer located at the shore end of the pier. Means are provided for moving the carriage on the pier on an inclined path in and out from the shore to meet the level of the changing tide so as to continuously generate power throughout the tidal wave.

  12. Feasibility of Wave Energy in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lu, M.; Hodgson, P.

    2014-12-01

    Kinetic energy produced by the movement of ocean waves can be harnessed by wave energy converter equipment such as wave turbines to power onshore electricity generators, creating a valuable source of renewable energy. This experiment measures the potential of wave energy in Hoi Ha Wan Marine Park, Hong Kong using a data buoy programmed to send data through wireless internet every five minutes. Wave power (known as 'wave energy flux') is proportional to wave energy periodicity and to the square of wave height, and can be calculated using the equation: P = 0.5 kW/(m3)(s) x Hs2 x Tp P = wave energy flux (wave energy per unit of wave crest length in kW/m) Hs = significant wave height (m) Tp = wave period (seconds) Acoustic Doppler Current Profilers (ADCPs), or ultrasonic sensors, were installed on the seabed at three monitoring locations to measure Significant Wave Heights (Hs), Significant Wave Periods (Tp) and Significant Wave Direction (Wd). Over a twelve month monitoring period, Significant Wave Heights ranged from 0 ~ 8.63m. Yearly averages were 1.051m. Significant Wave Period ranged from 0 ~ 14.9s. Yearly averages were 6.846s. The maximum wave energy amount recorded was 487.824 kW/m. These results implied that electricity sufficient to power a small marine research center could be supplied by a generator running at 30% efficiency or greater. A wave piston driven generator prototype was designed that could meet output objectives without using complex hydraulics, expensive mechanical linkages, or heavy floating buoys that might have an adverse impact on marine life. The result was a design comprising a water piston connected by an air pipe to a rotary turbine powered generator. A specially designed air valve allowed oscillating bidirectional airflow generated in the piston to be converted into unidirectional flow through the turbine, minimizing kinetic energy loss. A 35cm wave with a one second period could generate 139.430W of electricity, with an efficiency of 37.6%.

  13. Wireless power transmission using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Kural, A.; Pullin, R.; Featherston, C.; Paget, C.; Holford, K.

    2011-07-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  14. Key features of wave energy.

    PubMed

    Rainey, R C T

    2012-01-28

    For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays. PMID:22184669

  15. Wave energy desalinization

    SciTech Connect

    Hopfe, H.H.

    1982-06-22

    A device for producing fresh water from salt sea water by utilizing the hydrodynamic energy of waves, comprising a buoyant platform; means for mooring the platform; a pump connected to the mooring means; a reservoir for pressurized sea water; a desalination system for extracting fresh water from the sea water; hydraulic flow control means for causing the pump to pump sea water into the sea water reservoir, as motion of the buoyant platform is produced due to the passing of waves beneath it; measuring means for measuring parameters of the sea adjacent the buoyant platform; and a control device connected to control the pressure in the sea water reservoir and the flow of sea water from the reservoir through the desalination system in response to the parameters of the sea.

  16. Fundamental formulae for wave-energy conversion

    PubMed Central

    Falnes, Johannes; Kurniawan, Adi

    2015-01-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612

  17. Modeling, Control, and Simulation of Battery Storage Photovoltaic-Wave Energy Hybrid Renewable Power Generation Systems for Island Electrification in Malaysia

    PubMed Central

    Samrat, Nahidul Hoque; Ahmad, Norhafizan Bin; Choudhury, Imtiaz Ahmed; Taha, Zahari Bin

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions. PMID:24892049

  18. Modeling, control, and simulation of battery storage photovoltaic-wave energy hybrid renewable power generation systems for island electrification in Malaysia.

    PubMed

    Samrat, Nahidul Hoque; Bin Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Bin Taha, Zahari

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions. PMID:24892049

  19. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind.

    PubMed

    McIntosh, Scott W; De Pontieu, Bart; Carlsson, Mats; Hansteen, Viggo; Boerner, Paul; Goossens, Marcel

    2011-07-28

    Energy is required to heat the outer solar atmosphere to millions of degrees (refs 1, 2) and to accelerate the solar wind to hundreds of kilometres per second (refs 2-6). Alfvén waves (travelling oscillations of ions and magnetic field) have been invoked as a possible mechanism to transport magneto-convective energy upwards along the Sun's magnetic field lines into the corona. Previous observations of Alfvénic waves in the corona revealed amplitudes far too small (0.5 km s(-1)) to supply the energy flux (100-200 W m(-2)) required to drive the fast solar wind or balance the radiative losses of the quiet corona. Here we report observations of the transition region (between the chromosphere and the corona) and of the corona that reveal how Alfvénic motions permeate the dynamic and finely structured outer solar atmosphere. The ubiquitous outward-propagating Alfvénic motions observed have amplitudes of the order of 20 km s(-1) and periods of the order of 100-500 s throughout the quiescent atmosphere (compatible with recent investigations), and are energetic enough to accelerate the fast solar wind and heat the quiet corona. PMID:21796206

  20. Wave energy: a Pacific perspective.

    PubMed

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy. PMID:22184673

  1. HARNESSING OCEAN WAVE ENERGY TO GENERATE ELECTRICITY

    EPA Science Inventory

    A technical challenge to sustainability is finding an energy source that is abundant enough to meet global demands without producing greenhouse gases or radioactive waste. Energy from ocean surface waves can provide the people of this planet a clean, endless power source to me...

  2. Image processing to optimize wave energy converters

    NASA Astrophysics Data System (ADS)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  3. Wave activated power generation system

    SciTech Connect

    Ono, Y.

    1983-08-09

    A wave activated power generation system of the float type is disclosed, comprising at least one piston-cylinder device having an anchored cylinder and a piston slidable in the cylinder and cooperating with the cylinder to form a pumping chamber above the piston and a low pressure chamber below the piston. The cylinder has an intake port and an exhaust port both formed at an upper port thereof to communicate with the pumping chamber and each provided with a check valve. A float is connected through a cable to the piston of the piston- cylinder device. A pair of fluid storages are connected to the intake port and the exhaust port of the pumping chamber, respectively. A waterwheel generator is driven by the fluid flowing from one of the fluid storages to another. A pressure regulating device is connected to the low pressure chamber so as to maintain the low pressure chamber at a pressure lower than the pressure in the pumping chamber, the difference in pressure ceaselessly applying a downward force on the piston to keep the cable in a tensed condition.

  4. Enhanced Singular Wave Reactor for Surface Power

    NASA Astrophysics Data System (ADS)

    Popa-Simil, L.

    The "CANDLE" (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) also known as singular wave reactor has many significant advantages related to elimination of the need for enrichment. The use of micro-hetero structured fuel, generically called "cer-liq-mesh" will further improve burnup up to 90%. In spite it has typically large dimensions, being heavy to be transported in space, in a single piece, but because it will deliver energy in hundreds MW level for about 100 years per charge using natural Uranium or Thorium as fuel available on the planet's surface, and because it can be assembled locally becomes a very attractive option for self sustainable power cycles. The "cer-liq-mesh" fuel based singular wave reactor is smaller, less than ¼ from the size of "Candle" reactor, and has a very high burnup reducing the fuel cycle drastically. It can be transported by parts, with extremely small probability of over-unity criticality accident and be assembled to run on the surface. This represents a better option for extraterrestrial applications; in spite it requires a more complicated fuel fabrication that pays back in a simplified fuel cycle and minimum waste.

  5. Wave energy and intertidal productivity

    PubMed Central

    Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.

    1987-01-01

    In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813

  6. Ocean, Wave and Tidal Energy Systems; (USA)

    SciTech Connect

    Raridon, M.H.; Hicks, S.C.

    1991-01-01

    Ocean, Wave, and Tidal Energy Systems (OES) announces on a biomonthly basis the current worldwide information available on all aspects of ocean thermal energy conversion systems based on exploitation of the temperature difference between the surface water and ocean depth. All aspects of salinity gradient power systems based on extracting energy from mixing fresh water with seawater are included, along with information on wave and tidal power. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  7. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  8. Climate change impact on wave energy in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas

    2015-06-01

    Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.

  9. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  10. Wave energy resource assessment based on satellite observations around Indonesia

    NASA Astrophysics Data System (ADS)

    Ribal, Agustinus; Zieger, Stefan

    2016-06-01

    A preliminary assessment of wave energy resource around Indonesian's ocean has been carried out by means of analyzing satellite observations. The wave energy flux or wave power can be approximated using parameterized sea states. Wave power scales with significant wave height, characteristic wave period and water depth. In this approach, the significant wave heights were obtained from ENVISAT (Environmental Satellite) data which have been calibrated. However, as the characteristic wave period is rarely specified and therefore must be estimated from other variables when information about the wave spectra is unknown. Here, the characteristic wave period was calculated with an empirical model that utilizes altimeter estimates of wave height and backscatter coefficient originally proposed. For the Indonesian region, wave power energy is calculated over two periods of one year each and was compared with the results from global hindcast carried out with a recent release of wave model WAVEWATCH III. We found that, the most promising wave power energy regions around the Indonesian archipelago are located in the south of Java island and the south west of Sumatera island. In these locations, about 20 - 30 kW/m (90th percentile: 30-50 kW/m, 99th percentile: 40-60 kW/m) wave power energy on average has been found around south of Java island during 2010. Similar results have been found during 2011 at the same locations. Some small areas which are located around north of Irian Jaya (West Papua) are also very promising and need further investigation to determine its capacity as a wave energy resource.

  11. Power conditioning system for energy sources

    SciTech Connect

    Mazumder, Sudip K.; Burra, Rajni K.; Acharya, Kaustuva

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  12. Tunable multi-channel terahertz wave power splitter

    NASA Astrophysics Data System (ADS)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-12-01

    The combination of terahertz technology and photonic crystal provides a new approach to realize compact terahertz wave devices. Relying on a conventional photonic crystal waveguide and photonic crystal surface-mode waveguides, a tunable multi-channel terahertz-wave power splitter is proposed. The mechanism of such a power splitter is further theoretically analyzed and numerically investigated with the aid of the plane-wave-expansion method and the finite-difference time-domain method. With an appropriate design, the proposed device can split the input terahertz wave energy equally into six output ports at the frequency of 0.6 THz. When changing the external magnetic field, the input terahertz wave can be equally divided into four output ports with the aid of a magnetic-sensitive material. Furthermore, the present device is very compact and the total size is of 4.4×6.0 mm2.

  13. Hydrodynamic Performance of a Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Yang, Yingchen

    2010-11-01

    To harvest energy from ocean waves, a new wave energy converter (WEC) was proposed and tested in a wave tank. The WEC freely floats on the water surface and rides waves. It utilizes its wave-driven angular oscillation to convert the mechanical energy of waves into electricity. To gain the maximum possible angular oscillation of the WEC under specified wave conditions, both floatation of the WEC and wave interaction with the WEC play critical roles in a joint fashion. During the experiments, the submersion condition of the WEC and wave condition were varied. The results were analyzed in terms of the oscillation amplitude, stability, auto-orientation capability, and wave frequency dependency.

  14. Protective, Modular Wave Power Generation System

    SciTech Connect

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  15. Direct Drive Wave Energy Buoy

    SciTech Connect

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  16. Energy in a String Wave

    NASA Astrophysics Data System (ADS)

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed simple harmonic2. They also know elements of the string at the highest and the lowest positions—the crests and the troughs—are momentarily at rest, while those at the centerline (zero displacement) have the greatest speed, as shown in Fig. 1. Irrespective of this, they are less familiar with the energy associated with the wave. They may fail to answer a question such as, "In a traveling string wave, which elements have respectively the greatest kinetic energy (KE) and the greatest potential energy (PE)?" The answer to the former is not difficult; elements at zero position have the fastest speed and hence their KE, being proportional to the square of speed, is the greatest. To the PE, what immediately comes to their mind may be the simple harmonic motion (SHM), in which the PE is the greatest and the KE is zero at the two turning points. It may thus lead them to think elements at crests or troughs have the greatest PE. Unfortunately, this association is wrong. Thinking that the crests or troughs have the greatest PE is a misconception.3

  17. Power spectra of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Dewan, E. M.

    1990-09-01

    The OH layer located in the region of 85 km altitude emits strong infrared radiation. Gravity waves can be modulate the brightness of this layer over a wide range of spatial scales. Such fluctuations constitute, in effect, a form of IR clutter which could potentially degrade surveillance systems in certain situations. For this reason there is interest in the spatial and temporal variations of atmospheric internal gravity waves. A physical, similitude model of internal gravity waves assumes saturation of the waves and control by cascade processes of the temporal and horizontal scales of the waves. This model contains all the power spectral densities (PSD's) (sometimes merely called spectra) to be found in the formalism of Garrett and Munk. The latter is a purely empirical model for internal gravity waves applicable to the atmosphere and ocean. The main new predictions of the present model are that the dissipation rate controls the amplitudes of the frequency and horizontal wave number spectra. The validity of the proposed model is unknown at this time, and will depend upon the future experimental tests. It is shown, however, that based on 'typical' parametric values, results from the model are encouraging.

  18. Starting to Experiment with Wave Power

    ERIC Educational Resources Information Center

    Hare, Jonathan; McCallie, Ellen

    2005-01-01

    Outlined is a simple design for a working wave-powered electrical generator based on one made on the BBC "Rough Science" TV series. The design has been kept deliberately simple to facilitate rapid pupil/student involvement and most importantly so that there is much scope for their own ingenuity and ideas. The generator works on the principle of…

  19. High power millimeter wave ECRH source needs for fusion program

    SciTech Connect

    Not Available

    1984-06-01

    This document stems from the four-day Gyrotron Symposium held at the US Department of Energy (DOE) Headquarters on June 13-16, 1983, and serves as a position paper for the Office of Fusion Energy, DOE, on high-power millimeter wave source development for Electron Cyclotron Heating (ECH) of plasmas. It describes the fusion program needs for gyrotron as ECH sources, their current status, and desirable development strategies.

  20. Decadal wave power variability in the North-East Atlantic and North Sea

    NASA Astrophysics Data System (ADS)

    Santo, H.; Taylor, P. H.; Woollings, T.; Poulson, S.

    2015-06-01

    Estimation of the long-term behavior of wave climate is crucial for harnessing wave energy in a cost-effective way. Previous studies have linked wave heights to the north-south atmospheric pressure anomalies in the North Atlantic, suggesting that the wave climate fluctuates as a response to changes in zonal circulation in the atmosphere. We identify changes in wave power in the North-East Atlantic that are strongly correlated to the dominant pressure anomalies, the North Atlantic Oscillation (NAO), and other modes. We present a reconstructed wave power climate for 1665-2005, using a combination of known and proxy indices for the NAO and other modes. Our reconstruction shows high interannual and multidecadal variability, which makes wave energy prediction challenging. This variability should be considered in any long-term reliability analysis for wave energy devices and in power scheme economics.

  1. Ocean wave energy converting vessel

    SciTech Connect

    Boyce, P.F.

    1986-08-26

    An ocean wave energy conversion system is described comprised of a four beam quadrapod supported by bouyant members from which is suspended a pendulum. The pendulum contains a vertical generator shaft and a generator, the generator shaft being splined and fitted with two racheted pulleys, the pulleys being looped, one clockwise and one counterclockwise with separate cables. The cables are attached at their ends to the bow and stern of the quadrapod, whereby the generator shaft will pin when the quadrapod rocks over waves and the pendulum tends toward the center of earth.

  2. Wave energy propelling marine ship

    SciTech Connect

    Kitabayashi, S.

    1982-06-29

    A wave energy propelling marine ship comprises a cylindrical ship body having a hollow space therein for transporting fluid material therewithin, a ship body disposed in or on the sea; a propeller attached to the ship body for the purpose of propelling the marine ship for sailing; a rudder for controlling the moving direction of the marine ship; at least one rotary device which includes a plurality of compartments which are each partitioned into a plurality of water chambers by a plurality of radial plates, and a plurality of water charge and/or discharge ports, wherein wave energy is converted into mechanical energy; and device for adjusting buoyancy of the marine ship so that the rotary device is positioned advantageously on the sea surface.

  3. Constructing the frequency and wave normal distribution of whistler-mode wave power

    NASA Astrophysics Data System (ADS)

    Watt, C. E. J.; Degeling, A. W.; Rankin, R.

    2013-05-01

    We introduce a new methodology that allows the construction of wave frequency distributions due to growing incoherent whistler-mode waves in the magnetosphere. The technique combines the equations of geometric optics (i.e., raytracing) with the equation of transfer of radiation in an anisotropic lossy medium to obtain spectral energy density as a function of frequency and wavenormal angle. We describe the method in detail and then demonstrate how it could be used in an idealized magnetosphere during quiet geomagnetic conditions. For a specific set of plasma conditions, we predict that the wave power peaks off the equator at ˜15° magnetic latitude. The new calculations predict that wave power as a function of frequency can be adequately described using a Gaussian function, but as a function of wavenormal angle, it more closely resembles a skew normal distribution. The technique described in this paper is the first known estimate of the parallel and oblique incoherent wave spectrum as a result of growing whistler-mode waves and provides a means to incorporate self-consistent wave-particle interactions in a kinetic model of the magnetosphere over a large volume.

  4. The Wave Carpet: An Omnidirectional and Broadband Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Alam, M.-Reza

    2015-11-01

    Inspired by the strong attenuation of ocean surface waves by muddy seafloors, we have designed, theoretically investigated the performance, and experimentally tested the ``Wave Carpet:'' a mud-resembling synthetic seabed-mounted mat composed of vertically-acting linear springs and generators that can be used as an efficient wave energy absorption device. The Wave Carpet is completely under the water surface hence imposes minimal danger to boats and the sea life (i.e. no mammal entanglement). It is survivable against the high momentum of storm surges and in fact can perform even better under very energetic (e.g. stormy) sea conditions when most existing wave energy devices are needed to shelter themselves by going into an idle mode. In this talk I will present an overview of analytical results for the linear problem, direct simulation of highly nonlinear wave fields, and results of the experimental wave tank investigation.

  5. Catching the right wave: evaluating wave energy resources and potential compatibility with existing marine and coastal uses.

    PubMed

    Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  6. Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses

    PubMed Central

    Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  7. Optimal geometry of an axisymmetric wave energy converter

    NASA Astrophysics Data System (ADS)

    Edwards, Emma; Yue, Dick K. P.; Vortical Flow Research Laboratory Team

    2015-11-01

    There have been a number of theoretical, experimental and pilot-scale studies on wave energy converters with varying shapes and designs, but due to the complex nature of wave-body hydrodynamics, as yet there is not one single three-dimensional shape that is agreed-upon to be optimal for wave power extraction. Our objective is to determine the optimal geometry to maximize power uptake over a spectrum of incident waves. As an initial investigation, we consider an axisymmetric floating wave power extraction device operating in heave. We assume linear wave conditions. The body geometry is described by smooth polynomial basis functions and is allowed to be completely general, subject to simple constraints. We consider a linear power uptake with a fixed damping coefficient (which could be optimized). For each frequency in the spectrum, hydrodynamic coefficients are calculated using a linear frequency-domain panel method. Then, for a specific incident wave spectrum, maximal extractable power is integrated over the entire spectrum. We will discuss the optimal geometry and associated maximum power for different geometrical constraints and wave conditions.

  8. Energy harvesting from sea waves with consideration of airy and JONSWAP theory and optimization of energy harvester parameters

    NASA Astrophysics Data System (ADS)

    Mirab, Hadi; Fathi, Reza; Jahangiri, Vahid; Ettefagh, Mir Mohammad; Hassannejad, Reza

    2015-12-01

    One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.

  9. Wave power extraction from a transient heaving cylinder

    SciTech Connect

    Hudspeth, R. T.; Slotta, L. S.

    1980-01-01

    Wave power extracted from the transient motion of a periodically restrained-released heaving circular cylinder proposed by Falnes and Budal is examined under the limitations of linear wave theory excitation. Numerical estimates for the normalized radiated wave amplitudes required for the waveforce excitation derived by Mei are computed from the computationally efficient variational method developed by Black and Mei for the wave force diffraction regime. Wave power estimates for the rising period only of the heaving motion are given; while the falling period of the motion is neglected. A graphical summary is presented which demonstrates the parametric dependency of the dimensionless wave power rate on the design wave parameters and the body geometry for three general types of transient power systems heaving in deep water conditions. The total power requirements for the complete power extraction system as well as the real fluid viscous effects are not included.

  10. Electronic Power Conditioner for Ku-band Travelling Wave Tube

    NASA Astrophysics Data System (ADS)

    Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.

    2016-07-01

    A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.

  11. On the dependence of storm time ULF wave power on magnetopause location: Impacts for ULF wave radial diffusion

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle R.; Mann, Ian R.; Sibeck, David G.

    2015-11-01

    Ultralow frequency (ULF) waves play a crucial role in energetic particle dynamics in the inner magnetosphere. We examine the role of the magnetopause location in controlling the amplitude and penetration of ULF waves within the inner magnetosphere during 63 coronal mass ejection (CME)-driven and corotating interaction region (CIR)-driven geomagnetic storms. Significantly, at the time when the magnetopause is most compressed, ULF wave power increases and penetrates to the deepest L shells. Most likely this is explained by proximity to the energy source and accumulation of energy within a smaller volume through solar wind-magnetopause-magnetosphere coupling, and changes in the storm time Alfvén continuum resulting from variations in the cold plasma density. The observed ULF wave power is consistently larger than Kp-dependent statistical estimates—especially in the heart of the outer radiation belt. This has important implications for radiation belt dynamics, including main phase loss and storm time ULF wave radial diffusion.

  12. Ocean floor mounting of wave energy converters

    SciTech Connect

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  13. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research. PMID:27294983

  14. Standing wave tube electro active polymer wave energy converter

    NASA Astrophysics Data System (ADS)

    Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.

    2012-04-01

    Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.

  15. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    DOE PAGESBeta

    Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less

  16. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    SciTech Connect

    Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.

  17. Energy in a String Wave

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…

  18. Optimisation Of a Magnetostrictive Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Mundon, T. R.; Nair, B.

    2014-12-01

    Oscilla Power, Inc. (OPI) is developing a patented magnetostrictive wave energy converter aimed at reducing the cost of grid-scale electricity from ocean waves. Designed to operate cost-effectively across a wide range of wave conditions, this will be the first use of reverse magnetostriction for large-scale energy production. The device architecture is a straightforward two-body, point absorbing system that has been studied at length by various researchers. A large surface float is anchored to a submerged heave (reaction) plate by multiple taut tethers that are largely made up of discrete, robust power takeoff modules that house the magnetostrictive generators. The unique generators developed by OPI utilize the phenomenon of reverse magnetostriction, which through the application of load to a specific low cost alloy, can generate significant magnetic flux changes, and thus create power through electromagnetic induction. Unlike traditional generators, the mode of operation is low-displacement, high-force, high damping which in combination with the specific multi-tether configuration creates some unique effects and interesting optimization challenges. Using an empirical approach with a combination of numerical tools, such as ORCAFLEX, and physical models, we investigated the properties and sensitivities of this system arrangement, including various heave plate geometries, with the overall goal of identifying the mass and hydrodynamic parameters required for optimum performance. Furthermore, through a detailed physical model test program at the University of New Hampshire, we were able to study in more detail how the heave plate geometry affects the drag and added mass coefficients. In presenting this work we will discuss how alternate geometries could be used to optimize the hydrodynamic parameters of the heave plate, allowing maximum inertial forces in operational conditions, while simultaneously minimizing the forces generated in extreme waves. This presentation

  19. Wave energy devices with compressible volumes

    PubMed Central

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-01-01

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s. PMID:25484609

  20. A radioisotope-powered surface acoustic wave transponder

    NASA Astrophysics Data System (ADS)

    Tin, S.; Lal, A.

    2009-09-01

    We demonstrate a 63Ni radioisotope-powered pulse transponder that has a SAW (surface acoustic wave) device as the frequency transmission frequency selector. Because the frequency is determined by a SAW device, narrowband detection with an identical SAW device enables the possibility for a long-distance RF-link. The SAW transponders can be buried deep into structural constructs such as steel and concrete, where changing batteries or harvesting vibration or EM energy is not a reliable option. RF-released power to radioisotope- released power amplification is 108, even when regulatory safe amounts of 63Ni are used. Here we have achieved an 800 µW pulse (315 MHz, 10 µs pause) across a 50 Ω load every 3 min, using a 1.5 milli-Ci 63Ni source.

  1. Transmission of wave energy in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  2. What can wave energy learn from offshore oil and gas?

    PubMed

    Jefferys, E R

    2012-01-28

    This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position. PMID:22184670

  3. Ocean, Wave, and Tidal Energy Systems: Current abstracts

    NASA Astrophysics Data System (ADS)

    Smith, L.; Lane, D. W.

    1988-01-01

    Ocean, Wave, and Tidal Energy Systems (OES) announces on a bimonthly basis the current worldwide information available on all aspects of ocean thermal energy conversion systems based on exploitation of the temperature difference between the surface water and ocean depth. All aspects of salinity gradient power systems based on extracting energy from mixing fresh water with seawater are included, along with information on wave and tidal power. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Data Base (EDB) during the past two months. Also included are U.S. information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  4. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    NASA Astrophysics Data System (ADS)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  5. Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications

    ERIC Educational Resources Information Center

    Meath, Sian E.; Aye, Lu; Haritos, Nicholas

    2008-01-01

    This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and…

  6. Simulation of coastal wave spectra energy from ENVISAT satellite data

    NASA Astrophysics Data System (ADS)

    Marghany, Maged

    2014-06-01

    In the last two decades, scientists have developed several powerful techniques to retrieve energy from natural sources such as a sun radiations, oceans and winds. This study is aimed at stimulating wave energy from large scale synthetic aperture radar (SAR) during different monsoon periods. In doing so, the nonlinear velocity bunching algorithm is used to retrieve the information of ocean wave spectra parameters such as significant wave height, directions, and energy on offshore, midshore, and onshore. Therefore, the maximum peak of the wave energy spectra density of 1.4 m2 s has occurred during northeast monsoon period. It is clear that the mid-shore and onshore has the highest peak of 0.8 and 1.37 m2 s, respectively as compared to offshore. In conclusions, a nonlinear algorithm of velocity bunching can be used to retrieve the significant wave height from synthetic aperture radar (SAR). In addition, SAR can be used to map the distribution of ocean wave spectra energy and determined the potential energy zone in Malaysia coastal waters.

  7. WEC-Sim (Wave Energy Converter - SIMulator)

    Energy Science and Technology Software Center (ESTSC)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-sourcemore » code to model WECs.« less

  8. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  9. Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint

    SciTech Connect

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-08-24

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  10. Energy Extraction from a Slider-Crank Wave Energy Converter under Irregular Wave Conditions

    SciTech Connect

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-10-19

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  11. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two

  12. Stochastic Control of Inertial Sea Wave Energy Converter

    PubMed Central

    Mattiazzo, Giuliana; Giorcelli, Ermanno

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267

  13. Propulsion of small launch vehicles using high power millimeter waves

    SciTech Connect

    Benford, J.; Myrabo, L.

    1994-12-31

    The use of microwave and millimeter wave beamed energy for propulsion of vehicles in the atmosphere and in space has been under study for at least 35 years. The need for improved propulsion technology is clear: chemical rockets orbit only a few percent of the liftoff mass at a cost of over $3,000/lb. The key advantage of the beamed power approach is to place the heavy and expensive components on the ground or in space, not in the vehicle. This paper, following upon the high power laser propulsion programs, uses a multi-cycle propulsion engine in which the first phase of ascent is based on the air breathing ramjet principle, a repetitive Pulsed Detonation Engine (PDE) which uses a microwave-supported detonation to heat the air working fluid, i.e., propellant. The second phase is a pure beam-heated rocket. The key factor is that high peak power is essential to this pulsed engine. This paper explores this propulsion concept using millimeter waves, the most advantageous part of the spectrum. The authors find that efficient system concepts can be developed for the beam powered launch system and that, while the capital cost may be as high as the earlier orbital transfer concepts, the operating cost is much lower. The vehicle can have payload-to-mass ratios on the order of one and cost (per pound to orbit) two orders of magnitudes less than for chemical rockets. This allows the weight of microwave powered vehicles to be very small, as low as {approximately}100 kg for test devices.

  14. Directional wave climate and power variability along the Southeast Australian shelf

    NASA Astrophysics Data System (ADS)

    Mortlock, Thomas R.; Goodwin, Ian D.

    2015-04-01

    Variability in the modal wave climate is a key process driving large-scale coastal behaviour on moderate- to high-energy sandy coastlines, and is strongly related to variability in synoptic climate drivers. On sub-tropical coasts, shifts in the sub-tropical ridge (STR) modulate the seasonal occurrence of different wave types. However, in semi-enclosed seas, isolating directional wave climates and synoptic drivers is hindered by a complex mixed sea-swell environment. Here we present a directional wave climate typology for the Tasman Sea based on a combined statistical-synoptic approach using mid-shelf wave buoy observations along the Southeast Australian Shelf (SEAS). Five synoptic-scale wave climates exist during winter, and six during summer. These can be clustered into easterly (Tradewind), south-easterly (Tasman Sea) and southerly (Southern Ocean) wave types, each with distinct wave power signatures. We show that a southerly shift in the STR and trade-wind zone, consistent with an observed poleward expansion of the tropics, forces an increase in the total wave energy flux in winter for the central New South Wales shelf of 1.9 GJ m-1 wave-crest-length for 1° southerly shift in the STR, and a reduction of similar magnitude (approximately 1.8 GJ m-1) during summer. In both seasons there is an anti-clockwise rotation of wave power towards the east and south-east at the expense of southerly waves. Reduced obliquity of constructive wave power would promote a general disruption to northward alongshore sediment transport, with the cross-shore component becoming increasingly prevalent. Results are of global relevance to sub-tropical east coasts where the modal wave climate is influenced by the position of the zonal STR.

  15. End-boundary sheath potential, Langmuir waves, electron and ion energy distribution in the low pressure DC powered Non-ambipolar Electron Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Lee; Chen, Zhiying; Funk, Merritt

    2013-09-01

    The non-ambipolar electron plasma (NEP) is heated by electron beam extracted from the electron-source Ar plasma through a dielectric injector by an accelerator located inside NEP. NEP pressure is in the 1-3mTorr range of N2 and its accelerator voltage varied from VA = + 80 to VA = + 600V. The non-ambipolar beam-current injected into NEP is in the range of 10s Acm-2 and it heats NEP through beam-plasma instabilities. Its EED f has a Maxwellian bulk followed by a broad energy-continuum connecting to the most energetic group with energies above the beam-energy. The remnant of the injected electron-beam power terminates at the NEP end-boundary floating-surface setting up sheath potentials from VS = 80 to VS = 580V in response to the applied values of VA. The floating-surface is bombarded by a space-charge neutral plasma-beam whose IED f is near mono-energetic. When the injected electron-beam power is adequately damped by NEP, its end-boundary floating-surface VS can be linearly controlled at almost 1:1 ratio by VA. NEP does not have an electron-free sheath; its ``sheath'' is a widen presheath that consists of a thermal presheath followed by an ``anisotropic'' presheath, leading up to the end-boundary floating-surface. Its ion-current of the plasma-beam is much higher than what a conventional thermal presheath can supply. If the NEP parameters cannot damp the electron beam power sufficiently, VS will collapse and becomes irresponsive to VA.

  16. ULF wave power features in the topside ionosphere revealed by Swarm observations

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Pilipenko, Viacheslav

    2015-09-01

    Recently developed automated methods for deriving the characteristics of ultra low frequency (ULF) waves are applied to the Swarm data sets in order to retrieve new information about the near-Earth electromagnetic environment. Here we present the first ULF wave observations by Swarm, analyzing 1 year data from the mission. We find evidence for the decay of the amplitude of the Pc3 (20-100 mHz) signal with altitude in the topside ionosphere as predicted by theoretical models of wave propagation. We show that the major characteristics of the Swarm ULF power maps generally agree with respect to the wave activity seen by the upper satellite and the lower pair of satellites when the power spectrum of the upper satellite is shifted by 1 h in magnetic local time. Moreover, a puzzling enhancement, not predicted by current ULF wave theories, of compressional Pc3 wave energy was revealed by Swarm in the region of South Atlantic Anomaly.

  17. Switchable nonlinear metasurfaces for absorbing high power surface waves

    NASA Astrophysics Data System (ADS)

    Kim, Sanghoon; Wakatsuchi, Hiroki; Rushton, Jeremiah J.; Sievenpiper, Daniel F.

    2016-01-01

    We demonstrate a concept of a nonlinear metamaterial that provides power dependent absorption of incident surface waves. The metasurface includes nonlinear circuits which transform it from a low loss to high loss state when illuminated with high power waves. The proposed surface allows low power signals to propagate but strongly absorbs high power signals. It can potentially be used on enclosures for electric devices to protest against damage. We experimentally verify that the nonlinear metasurface has two distinct states controlled by the incoming signal power. We also demonstrate that it inhibits the propagation of large signals and dramatically decreases the field that is leaked through an opening in a conductive enclosure.

  18. Ultra-compact 1 × 8 Channel terahertz Wave Power Splitter

    NASA Astrophysics Data System (ADS)

    Hu, Jian-Rong; Li, Jiu-Sheng

    2016-08-01

    Relying on 1 × 2 photonic crystal waveguide and photonic crystal resonator, a compact eight-channel terahertz wave power splitter is proposed. The mechanism of such a device is further theoretically analyzed and numerically investigated with the aid of the plane wave expansion method and the finite-difference time-domain method. With an appropriate design, the proposed power splitter can split the input terahertz wave energy equally into eight output ports at the frequency of 0.667 THz. Furthermore, the total size of the present device is of 4.33 mm × 3.74 mm. Due to its small size, the multi-channel terahertz wave power splitter has practical applications in the terahertz wave integrated circuit fields.

  19. Environmental assessment for the Satellite Power System (SPS): studies of honey bees exposed to 2. 45 GHz continuous-wave electromagnetic energy

    SciTech Connect

    Gary, N E; Westerdahl, B B

    1980-12-01

    A system for small animal exposure was developed for treating honey bees, Apis mellifera L., in brood and adult stages, with 2.45 GHz continuous wave microwaves at selected power densities and exposure times. Post-treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw/cm/sup 2/ for 24 hours. Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw/cm/sup 2/ during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave-exposed (5 to 40 mw/cm/sup 2/) areas versus control areas.

  20. Oblique sounding of the ionosphere by powerful wave beams

    NASA Astrophysics Data System (ADS)

    Molotkov, I. A.; Atamaniuk, B.

    2011-04-01

    The article is devoted to modeling the impact on the ionosphere powerful obliquely incident wave beam. The basis of this analysis will be orbital variational principle for the intense wave beams-generalization of Fermat's principle to the case of a nonlinear medium (Molotkov and Vakulenko, 1988a,b; Molotkov, 2003, 2005). Under the influence of a powerful wave beam appears manageable the additional stratification of the ionospheric layer F2. Explicit expressions show how the properties of the test beam, with a shifted frequency, released in the same direction as the beam depend on the intensity of a powerful beam and the frequency shift.

  1. Fundamental research on oscillating water column wave power absorbers

    SciTech Connect

    Maeda, H.; Kato, W.; Kinoshita, T.; Masuda, K.

    1985-03-01

    An oscillating water column (OWC) wave power absorber is one of the most promising devices, as well as the Salter Duck and the Clam. This paper presents a simple prediction method, in which the equivalent floating body approximation is used, for absorbing wave power characteristics of an oscillating water column device. The effects of the compressibility of air and inertia of an air turbine and electric generator on absorbed wave power are obtained by using the equivalent electric circuit concept. Both the experimental and theoretical studies are carried out in this paper.

  2. Clustering of cycloidal wave energy converters

    DOEpatents

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  3. Universal power law for the spectrum of breaking Riemann waves

    NASA Astrophysics Data System (ADS)

    Pelinovsky, Dmitry; Pelinovsky, Efim; Kartashova, Elena; Talipova, Tatiana

    2014-05-01

    The universal power law for the spectrum of one-dimensional breaking Riemann waves is justified for the simple wave equation with arbitrary nonlinearity. This equation describe the long surface and internal wave in the coastal zone. The spectrum of spatial amplitudes at the breaking time has an power asymptotic decay with exponent - 4/3. This spectrum is formed by the singularity of the form like x1/3 in the wave shape at the breaking time. In addition, we demonstrate numerically that the universal power law is observed for long time in the range of small wave numbers if small dissipation or dispersion is accounted in the viscous Burgers or Korteweg-de Vries equations.

  4. On the use of nonlinear solitary waves for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Kaiyuan; Rizzo, Piervincenzo

    2015-04-01

    In the last decade there has been an increasing attention on the use of highly- and weakly- nonlinear solitary waves in engineering and physics. These waves can form and travel in nonlinear systems such as one-dimensional chains of spherical particles. One engineering application of solitary waves is the fabrication of acoustic lenses, which are employed in a variety of fields ranging from biomedical imaging and surgery to defense systems and damage detection. In this paper we propose to couple an acoustic lens to a wafer-type lead zirconate titanate transducer (PZT) to harvest energy from the vibration of an object tapping the lens. The lens is composed of a circle array made of chains of particles in contact with a polycarbonate material where the nonlinear waves coalesce into linear waves. The PZT located at the designed focal point converts the mechanical energy carried by the stress wave into electricity to power a load resistor. The performance of the designed harvester is compared to a conventional cantilever beam, and the experimental results show that the power generated with the nonlinear lens has the same order of magnitude of the beam.

  5. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    PubMed

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity. PMID:25975615

  6. Fusion applications of high power millimeter wave sources

    SciTech Connect

    Freeman, R.L.; George, T.V.

    1994-01-01

    Heating by means of high power electron cyclotron (EC) waves in the mm wavelength range is considered to be one of the most attractive approaches for heating fusion plasmas to the temperatures required to achieve ignition. EC waves have also been used to drive plasma current by using directional launch and to stabilize MHD instabilities in tokamak plasmas through localized heating or current drive. Experiments are planned on both JET and TFTR to measure the alpha particle distribution by scattering EC waves.

  7. Energy 101: Concentrating Solar Power

    ScienceCinema

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  8. Whistler Wave Energy Flow in the Plasmasphere

    NASA Astrophysics Data System (ADS)

    Kletzing, Craig; Santolik, Ondrej; Kurth, William; Hospodarsky, George; Christopher, Ivar; Bounds, Scott

    2016-07-01

    The measured wave properties of plasmaspheric hiss are important to constrain models of the generation of hiss as well as its propagation and amplification. For example, the generation mechanism for plasmaspheric hiss has been suggested to come from one of three possible mechanisms: 1) local generation and amplification, 2) whistlers from lightning, and 3) chorus emissions which have refracted into the plasmasphere. The latter two mechanisms are external sources which produce an incoherent hiss signature as the original waves mix in a stochastic manner, propagating in both directions along the background magnetic field. In contrast, local generation of plasmaspheric hiss within the plasmasphere should produce a signature of waves propagating away from the source region. For all three mechanisms scattering of energetic particles into the loss cone transfers some energy from the particles to the waves. By examining the statistical characteristics of the Poynting flux of plasmaspheric hiss, we can determine the properties of wave energy flow in the plasmasphere. We report on the statistics of observations from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) Waves instrument on the Van Allen Probes for periods when the spacecraft is inside the plasmasphere. We find that the Poynting flux associated with plasmaspheric hiss has distinct and unexpected radial structure which shows that there can be significant energy flow towards the magnetic equator. We show the properties of this electromagnetic energy flow as a function of position and frequency.

  9. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Willke, B.; Danzmann, K.; Fallnich, C.; Frede, M.; Heurs, M.; King, P.; Kracht, D.; Kwee, P.; Savage, R.; Seifert, F.; Wilhelm, R.

    2006-03-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requiremets and new results (RIN <= 4×10-9/surdHz) will be presented.

  10. Investigation on the possibility of extracting wave energy from the Texas coast

    NASA Astrophysics Data System (ADS)

    Haces-Fernandez, Francisco

    Due to the great and growing demand of energy consumption in the Texas Coast area, the generation of electricity from ocean waves is considered very important. The combination of the wave energy with offshore wind power is explored as a way to increase power output, obtain synergies, maximize the utilization of assigned marine zones and reduce variability. Previously literature has assessed the wave energy generation, combined with wind in different geographic locations such as California, Ireland and the Azores Island. In this research project, the electric power generation from ocean waves on the Texas Coast was investigated, assessing its potential from the meteorological data provided by five buoys from National Data Buoy Center of the National Oceanic and Atmospheric Administration, considering the Pelamis 750 kW Wave Energy Converter (WEC) and the Vesta V90 3 MW Wind Turbine. The power output from wave energy was calculated for the year 2006 using Matlab, and the results in several locations were considered acceptable in terms of total power output, but with a high temporal variability. To reduce its variability, wave energy was combined with wind energy, obtaining a significant reduction on the coefficient of variation on the power output. A Matlab based interface was created to calculate power output and its variability considering data from longer periods of time.

  11. Impacts of ULF wave power on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Doherty, P.; Zesta, E.; Moldwin, M.

    2015-12-01

    The impact of the ULF wave power, which is excited by long-lived high solar wind speed streams, in the magnetosphere has been well understood. For example, it has been reported that ULF pulsations may be the likely acceleration mechanism for generating storm-time MeV "killer" electrons in the magnetosphere. However, the impact of this energetic ULF wave power onto the ionosphere is not yet explored very well. In this paper we unequivocally demonstrated that during intense Pc5 ULF wave activity period, distinct pulsations with the same periodicity were found in the TEC data observed by GPS receivers located at different latitudes. The GPS-TEC has been used as a powerful tool to study the propagation pattern of transient ionospheric disturbances generated by seismic or internal gravity waves. Since then the small-scale variations (undulation) of GPS TEC has been associated with either gravity wave or TIDs. However, these small scale undulations of TECs turned out to be sensitive enough to the intense global ULF waves as well. The wavelet analysis of GPS TEC small scale undulations shows a peak value at the frequency of 2-10mHz which is a typical frequency range of Pc5 ULF wave. The typical internal gravity wave frequency is less than 1.6 or 2 mHz, therefore the TEC waves are likely due to ULF waves. At the same time, we detect the ULF activity on the ground using a chain of ground-based magnetometer data, depicting the ULF wave penetration from high latitude to low latitude region. All these observations demonstrate that Pc5 waves with a likely driver in the solar wind can penetrate to the ionosphere and cause small scale undulation on the ionospheric density structures.

  12. On the Crest of a Wave: A Review of Wave Power Technology

    ERIC Educational Resources Information Center

    Harris, Fank

    2014-01-01

    The energy potentially available from waves around the coast of the UK far exceeds our domestic and industrial demands and yet, despite much research, numerous patent applications and several pilot schemes, the exploitation of waves for their energy largely remains in transition between development and commercialisation. This article examines the…

  13. Fluctuations of energy flux in wave turbulence.

    PubMed

    Falcon, Eric; Aumaître, Sébastien; Falcón, Claudio; Laroche, Claude; Fauve, Stéphan

    2008-02-15

    We report that the power driving gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much stronger than its mean value. We show that its probability density function (PDF) has a most probable value close to zero and involves two asymmetric roughly exponential tails. We understand the qualitative features of the PDF using a simple Langevin-type model. PMID:18352479

  14. Aiding Design of Wave Energy Converters via Computational Simulations

    NASA Astrophysics Data System (ADS)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  15. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy

    PubMed Central

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity. PMID:25975615

  16. Electromagnetic wave energy conversion research

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  17. Neural rotational speed control for wave energy converters

    NASA Astrophysics Data System (ADS)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  18. Direct Drive Wave Energy Buoy

    SciTech Connect

    Rhinefrank, Ken

    2011-11-02

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress and results for this project which will be used to inform the utility-scale design process, improve cost estimates, accurately forecast energy production and to observe system operation and survivability.

  19. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  20. Magma energy for power generation

    SciTech Connect

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  1. Direct Drive Wave Energy Buoy – 33rd scale experiment

    SciTech Connect

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  2. Mm-wave power meter mount

    NASA Technical Reports Server (NTRS)

    Mullen, D. L.; Oltmans, D. A.; Stelzried, C. T.

    1968-01-01

    E-band thermistor mount and a technique for adjusting a temperature compensating thermistor to provide an electrically balanced bridge are used for measuring RF power in the mm-wavelength. The mount is relatively insensitive to temperature effects that cause measurement errors in single ended circuits.

  3. Devices for extracting energy from waves

    SciTech Connect

    Comyns-Carr, C.A.; Platts, M.J.

    1981-09-15

    The invention relates to a device for extracting energy from waves and having a pump arranged to be operated by relative motion between members of the device in response to waves. The pump according to the invention has a pump body with a flexible portion extending between the members so as to define a pump chamber having a volume which varies as a result of the aforesaid relative motion. In one form of the invention the pump body is provided by a tubular bellows comprising elastomeric material. A plurality of such pumps may be disposed between the members, each pump being activated by said relative motion.

  4. Nonlinear Internal Waves - Evolution and Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Orr, M.; Mignerey, P.

    2003-04-01

    Nonlinear internal waves have been observed propagating up the slope of the South China Sea during the recent ONR Asian Seas International Acoustics Experiment. Energy dissipation rates have been extracted. The location of the initiation of the depression to elevation conversion has been identified. Scaling parameters have been extracted and used to initialize a two-layer evolution equation model simulation. Mode1, 2 linear and nonlinear internal waves and instabilities have been observed near the shelf break of the United States of America New Jersey Shelf. Acoustic flow visualization records will be presented. Work supported by the Office of Naval Research (ONR) Ocean Acoustics Program and ONR's NRL base funding.

  5. An atlas of the wave energy resource in Europe

    SciTech Connect

    Pontes, M.T.; Athanassoulis, G.A.; Barstow, S.; Cavaleri, L.; Holmes, B.; Mollison, D.; Oliveira-Pires, H.

    1995-12-31

    This paper presents an Atlas of the European offshore wave energy resource that is being developed within the scope of an European project. It will be mainly based on wave estimates produced by the numerical wind-wave model WAM that is in routine operation at the European Centre for Medium-Range Weather Forecasts, Reading, UK. This model was chosen after a preliminary verification of two models again buoy data for a one-year period. Wave measurements will be used for the Norwegian Sea and the North Sea. The Atlas will be produced as a user-friendly software package for MS-DOS microcomputers permitting fast retrieval of information as well as saving and printing of statistics and maps. The Atlas will include annual and seasonal statistics of significant wave height, mean and peak period, mean direction and wave power levels (global values as well as directional distributions). These data will be both presented as tables, graphs and as geographic maps.

  6. Power and polarization monitor development for high power millimeter-wave

    SciTech Connect

    Makino, R. Kobayashi, K.; Kubo, S.; Kobayashi, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T.

    2014-11-15

    A new type monitor of power and polarization states of millimeter-waves has been developed to be installed at a miter-bend, which is a part of transmission lines of millimeter-waves, for electron cyclotron resonance heating on the Large Helical Device. The monitor measures amplitudes and phase difference of the electric field of the two orthogonal polarizations which are needed for calculation of the power and polarization states of waves. The power and phase differences of two orthogonal polarizations were successfully detected simultaneously.

  7. Artificial reef effect and fouling impacts on offshore wave power foundations and buoys - a pilot study

    NASA Astrophysics Data System (ADS)

    Langhamer, Olivia; Wilhelmsson, Dan; Engström, Jens

    2009-04-01

    Little is known about the effects of offshore energy installations on the marine environment, and further research could assist in minimizing environmental risks as well as in enhancing potential positive effects on the marine environment. While biofouling on marine energy conversion devices on one hand has the potential to be an engineering concern, these structures can also affect biodiversity by functioning as artificial reefs. The Lysekil Project is a test park for wave power located at the Swedish west coast. Here, buoys acting as point absorbers on the surface are connected to generators anchored on concrete foundations on the seabed. In this study we investigated the colonisation of foundations by invertebrates and fish, as well as fouling assemblages on buoys. We examined the influence of surface orientation of the wave power foundations on epibenthic colonisation, and made observations of habitat use by fish and crustaceans during three years of submergence. We also examined fouling assemblages on buoys and calculated the effects of biofouling on the energy absorption of the wave power buoys. On foundations we demonstrated a succession in colonisation over time with a higher degree of coverage on vertical surfaces. Buoys were dominated by the blue mussel Mytilus edulis. Calculations indicated that biofouling have no significant effect in the energy absorption on a buoy working as a point absorber. This study is the first structured investigation on marine organisms associated with wave power devices.

  8. Energy neutral and low power wireless communications

    NASA Astrophysics Data System (ADS)

    Orhan, Oner

    Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a

  9. Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy.

    PubMed

    Jiang, Tao; Zhang, Li Min; Chen, Xiangyu; Han, Chang Bao; Tang, Wei; Zhang, Chi; Xu, Liang; Wang, Zhong Lin

    2015-12-22

    Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy. PMID:26567754

  10. Coaxial extraction of RF power from a traveling wave amplifier

    SciTech Connect

    Naqvi, S.; Kerslick, G.S.; Nation, J.A.; Schaecter, L.

    1996-12-31

    The authors present new results from a high-power relativistic traveling wave tube amplifier experiment in which the RF power is extracted in a coaxial output section. The amplifier consists of two slow-wave structures separated by a resistive sever. The first stage imparts a small modulation to the beam. The second stage consists of an iris-loaded circular waveguide which is tapered from both ends by an adiabatic increase in the iris aperture with each successive period. The periodic length and the external cavity radius are kept constant. This provides a low-reflection transition from the slow-wave structure to the empty circular waveguide. A coaxial inner conductor is inserted into the output tapered section of the slow-wave structure and its` position and radius chosen to minimize reflections and maximize extracted RF power. It is shown both experimentally and through MAGIC simulations that a fairly low reflection circular TM{sub 01} to coaxial TEM mode transition can be made this way. Any small reflections form the output end travel backwards and are absorbed in the sever. In contrast to the traditional transverse extraction of power into a rectangular waveguide, the coaxial extraction is fairly broadband and exhibits much lower sensitivity to dimensions. The beam is dumped through an aperture in the inner conductor. Presently, the power is extracted into the coaxial waveguide and absorbed into a tapered resistive load. This will be later converted to the TE{sub 10} mode of a rectangular waveguide.

  11. Analysis of the power capacity of overmoded slow wave structures

    SciTech Connect

    Zhang, Dian; Zhang, Jun; Zhong, Huihuang; Jin, Zhenxing

    2013-07-15

    As the generated wavelength shortens, overmoded slow wave structures (SWSs) with large diameters are employed in O-type Cerenkov high power microwave (HPM) generators to achieve high power capacity. However, reported experimental results suggest that overmoded slow wave HPM generators working at millimeter wavelength output much lower power than those working at X-band do, despite the fact that the value of D/λ (here, D is the average diameter of SWSs and λ is the generated wavelength) of the former is much larger than that of the latter. In order to understand this, the characteristics of the power capacity of the TM{sub 0n} modes in overmoded SWSs are numerically investigated. Our analysis reveals the following facts. First, the power capacity of higher order TM{sub 0n} modes is apparently larger than that of TM{sub 01} mode. This is quite different from the conclusion got in the foregone report, in which the power capacity of overmoded SWSs is estimated by that of smooth cylindrical waveguides. Second, the rate at which the power capacity of TM{sub 01} mode in overmoded SWSs grows with diameter does not slow down as the TM{sub 01} field transforms from “volume wave” to “surface wave.” Third, once the diameter of overmoded SWSs and the beam voltage are fixed, the power capacity of TM{sub 01} wave drops as periodic length L shortens and the generated frequency rises, although the value of D/λ increases significantly. Therefore, it is necessary to investigate the capability of annular electron beam to interact efficiently with higher order TM{sub 0n} modes in overmoded SWSs if we want to improve the power capacity of overmoded O-type Cerenkov HPM generators working at high frequency.

  12. Wave-actuated power take-off device for electricity generation

    SciTech Connect

    Chertok, Allan

    2013-01-31

    Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME's power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels e.g., 10 to 100kW?

  13. Chromospheric alfvenic waves strong enough to power the solar wind.

    PubMed

    De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S

    2007-12-01

    Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona. PMID:18063784

  14. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  15. Superoscillations without Sidebands: Power-Efficient Sub-Diffraction Imaging with Propagating Waves

    PubMed Central

    Wong, Alex M. H.; Eleftheriades, George V.

    2015-01-01

    A superoscillation wave is a special superposition of propagating electromagnetic (EM) waves which varies with sub-diffraction resolution inside a fixed region. This special property allows superoscillation waves to carry sub-diffraction details of an object into the far-field, and makes it an attractive candidate technology for super-resolution devices. However, the Shannon limit seemingly requires that superoscillations must exist alongside high-energy sidebands, which can impede its widespread application. In this work we show that, contrary to prior understanding, one can selectively synthesize a portion of a superoscillation wave and thereby remove its high-energy region. Moreover, we show that by removing the high-energy region of a superoscillation wave-based imaging device, one can increase its power efficiency by two orders of magnitude. We describe the concept behind this development, elucidate conditions under which this phenomenon occurs, then report fullwave simulations which demonstrate the successful, power-efficient generation of sub-wavelength focal spots from propagating waves. PMID:25677306

  16. Wave energy transmission apparatus for high-temperature environments

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)

    2010-01-01

    A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.

  17. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  18. Shock wave generated by high-energy electric spark discharge

    NASA Astrophysics Data System (ADS)

    Liu, Qingming; Zhang, Yunming

    2014-10-01

    Shock wave generated by electric spark discharge was studied experimentally and the shock wave energy was evaluated in this paper. A pressure measurement system was established to study the pressure field of the electric spark discharge process. A series of electric spark discharge experiments were carried out and the energy of the electric spark used in present study was in the range of 10 J, 100 J, and 1000 J, respectively. The shock wave energy released from the electric spark discharge process was calculated by using the overpressure values at different measurement points near the electric spark discharge center. The good consistency of shock wave energies calculated by pressure histories at different measuring points in the same electric spark discharge experiment illustrates the applicability of the weak shock wave theory in calculating the energy of shock wave induced by electric spark discharge process. The result showed that shock wave formed at the initial stage of electric spark discharge process, and the shock wave energy is only a little part of electric spark energy. From the analysis of the shock wave energy and electric spark energy, a good linear relationship between shock wave energy and electric spark energy was established, which make it possible to calculate shock wave energy by measuring characteristic parameters of electric spark discharge process instead of shock wave. So, the initiation energy of direct initiation of detonation can be determined easily by measuring the parameters of electric spark discharge process.

  19. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN

  20. System-reliability studies for wave-energy generation

    NASA Astrophysics Data System (ADS)

    Dawson, J. M.; Din, S.; Mytton, M. G.; Shore, N. L.; Stansfield, H. B.

    1980-06-01

    A study is reported that is being undertaken in the United Kingdom to determine means of developing the potential of the large wave-energy resource around the coast, in particular, that to the west facing the Atlantic. It is shown that derivation of the mean annual energy to be expected involved knowledge, not only of the wave climates, conversion efficiency characteristics of the proposed devices and of the power transmission system, but also of factors reflecting the availability overall. Attention is given to a simplified approach to the quantifying of reliability for each stage of the process. An appropriate method of analysis is established and a summary of the results obtained is given.

  1. High-powered tunable terahertz source based on a surface-emitted terahertz-wave parametric oscillator

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Bing, Pibin; Yao, Jianquan; Xu, Degang; Zhong, Kai

    2012-09-01

    A high-powered pulsed terahertz (THz)-wave has been parametrically generated via a surface-emitted THz-wave parametric oscillator (TPO). The effective parametric gain length under the noncollinear phase matching condition was calculated for optimization of the parameters of the TPO. A large volume crystal of MgO:LiNbO3 was used as the gain medium. THz-wave radiation covering a frequency range from 0.87 to 2.73 THz was obtained. The average power of the THz-wave was 9.12 μW at 1.75 THz when the pump energy was 94 mJ, corresponding to an energy conversion efficiency of about 9.7×10-6 and a photon conversion efficiency of about 0.156%. The THz-wave power in our experiments is high enough for practical applications to spectrum analysis and imaging.

  2. Power and energy for posterity

    NASA Technical Reports Server (NTRS)

    Barthelemy, R. F.; Cooper, R. F.

    1972-01-01

    The use of sophisticated space energy generation and storage systems to benefit the general public was examined. The utilization of these systems for pollution-free generation of energy to satisfy mankind's future electrical, thermal, and propulsion needs was of primary concern. Ground, air, and space transportation; commercial, peaking, and emergency electrical power; and metropolitan and unit thermal energy requirements were considered. Each type of energy system was first analyzed in terms of its utility in satisfying the requirement, and then its potential in reducing the air, noise, thermal, water, and nuclear pollution from future electrical and thermal systems was determined.

  3. ULF wave power features in the topside ionosphere revealed by Swarm observations

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Constantinos; Balasis, Georgios; Daglis, Ioannis A.; Giannakis, Omiros

    2016-04-01

    Recently developed automated methods for detecting and deriving the characteristics of ultra low frequency (ULF) waves are applied to the Swarm data sets in order to retrieve new information about the near-Earth electromagnetic environment. Here, we present the first ULF wave observations by Swarm, by performing a statistical study on the occurence and properties of Pc3 waves (20-100 mHz) for a time period spanning two years. We derive distributions for various properties of the detected wave events (amplitude, peak frequency, duration, bandwidth) and examine evidence for the decay of the amplitude of the Pc3 signal with altitude, as predicted by theoretical models of wave propagation. We show that the major characteristics of the Swarm ULF power maps generally agree between observations made by the upper satellite and the lower pair of satellites, when the power spectrum of the upper satellite is shifted in local time, to account for the angular separation between their orbital planes. Moreover, a puzzling enhancement, not predicted by current ULF wave theories, of compressional Pc3 wave energy was revealed by Swarm in the region of the South Atlantic Anomaly.

  4. Wave Energy Research, Testing and Demonstration Center

    SciTech Connect

    Batten, Belinda

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  5. Field-aligned chorus wave spectral power in Earth's outer radiation belt

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Agapitov, O.; Artemyev, A.; Kronberg, E. A.; Haaland, S. E.; Daly, P. W.; Krasnoselskikh, V. V.; Boscher, D.; Bourdarie, S.; Zaliznyak, Y.; Rolland, G.

    2015-05-01

    Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the magnetosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave-particle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40°. We use 10 years of magnetic and electric field wave power measured by STAFF-SA onboard Cluster spacecraft to model the initial (equatorial) chorus wave spectral power, as well as PEACE and RAPID measurements to model the properties of energetic electrons (~ 0.1-100 keV) in the outer radiation belt. The dependence of this distribution upon latitude obtained from Cluster STAFF-SA is then consistently reproduced along a certain L-shell range (4 ≤ L ≤ 6.5), employing WHAMP-based ray tracing simulations in hot plasma within a realistic inner magnetospheric model. We show here that, as latitude increases, the chorus peak frequency is globally shifted towards lower frequencies. Making use of our simulations, the peak frequency variations can be explained mostly in terms of wave damping and amplification, but also cross-L propagation. These results are in good agreement with previous studies of chorus wave spectral extent using data from different spacecraft (Cluster, POLAR and THEMIS). The chorus peak frequency variations are then employed to calculate the pitch angle and energy diffusion rates, resulting in more effective pitch angle electron scattering (electron lifetime is halved) but less effective acceleration. These peak frequency parameters can thus be used to improve the accuracy of diffusion coefficient calculations.

  6. Energy transfer by inertial waves during the buildup of turbulence in a rotating system.

    PubMed

    Kolvin, Itamar; Cohen, Kobi; Vardi, Yuval; Sharon, Eran

    2009-01-01

    We study the transition from fluid at rest to turbulence in a rotating tank. The energy is transported by inertial wave packets through the fluid volume. These high amplitude waves propagate at velocities consistent with those calculated from linearized theory [H. P. Greenspan, (Cambridge University Press, Cambridge, England, 1968)]. A "front" in the temporal evolution of the energy power spectrum indicates a time scale for energy transport at the linear wave speed. Nonlinear energy transfer between modes is governed by a different, longer, time scale. The observed mechanisms can lead to significant differences between rotating and two-dimensional turbulent flows. PMID:19257200

  7. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  8. Noise powered nonlinear energy harvesting

    NASA Astrophysics Data System (ADS)

    Gammaitoni, Luca; Neri, Igor; Vocca, Helios

    2011-04-01

    The powering of small-scale electronic mobile devices has been in recent years the subject of a great number of research efforts aimed primarily at finding an alternative solution to standard batteries. The harvesting of kinetic energy present in the form of random vibrations (from non-equilibrium thermal noise up to machine vibrations) is an interesting option due to the almost universal presence of some kind of motion. Present working solutions for vibration energy harvesting are based on oscillating mechanical elements that convert kinetic energy via capacitive, inductive or piezoelectric methods. These oscillators are usually designed to be resonantly tuned to the ambient dominant frequency. However, in most cases the ambient random vibrations have their energy distributed over a wide spectrum of frequencies, especially at low frequency, and frequency tuning is not always possible due to geometrical/dynamical constraints. We present a new approach to the powering of small autonomous sensors based on vibration energy harvesting by the exploitation of nonlinear stochastic dynamics. Such a method is shown to outperform standard linear approaches based on the use of resonant oscillators and to overcome some of the most severe limitations of present strategies, like narrow bandwidth, need for continuous frequency tuning and low power efficiency. We demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting from ambient vibration.

  9. Non-linear control of the ''clam'' wave energy device. Final report

    SciTech Connect

    Not Available

    1983-09-01

    A promising wave energy device being currently investigated is the ''clam'' device. The clam extracts energy by pumping air through a specially designed (Wells) turbine. Although operation of the Wells turbine does not require a rectified air flow, some additional control will be necessary to optimize the phase of the clam motion for good efficiencies. An examination of the equation of motion in the time domain suggests the possibility of non-linear phase control by mechanical, power take-off, or pneumatic latching. Latching can be shown to increase the efficiency of the device in the longer wavelengths of the wave spectrum, i.e. those of high incident wave power.

  10. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE

  11. Experimental demonstration of high power millimeter wave gyro-amplifiers

    NASA Astrophysics Data System (ADS)

    Blank, M.; Garven, M.; Calame, J. P.; Choi, J. J.; Danly, B. G.; Levush, B.; Nguyen, K.; Pershing, D. E.

    1999-05-01

    The Naval Research Laboratory is currently investigating gyro-amplifiers as high power, broadband sources for millimeter wave radars. A three-cavity Ka-band gyroklystron achieved 225 kW peak output power with 0.82% bandwidth. At W-band, several multi-cavity gyro-amplifiers have been experimentally demonstrated. A four-cavity gyroklystron amplifier has achieved 84 kW peak output power at 34% efficiency with 370 MHz bandwidth. A five-cavity gyroklystron demonstrated 72 kW peak output power with 410 MHz bandwidth and 50 dB saturated gain. For applications requiring greater bandwidth, gyrotwystron amplifiers are also under study. A four section W-band gyrotwystron demonstrated 50 kW peak output power at 925 MHz bandwidth. The results of recent Ka-band and W-band gyro-amplifier experiments and comparisons of measured data with predictions of theory are presented.

  12. Energy Industry Powers CTE Program

    ERIC Educational Resources Information Center

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  13. On the design of a prototype model of the floating wave power device ``Mighty Whale``

    SciTech Connect

    Hotta, H.; Washio, Y.; Yokozawa, H.; Pizer, D.J.

    1996-12-31

    The Mighty Whale is a floating wave power device to convert the wave energy to other convenient energy for the conservation of the sea, and to create the calm sea area such as a floating breakwater. JAMSTEC (Japan Marine Science and Technology Center) has been promoting the R and D on this Mighty Whale since 1986. Already, the authors have finished fundamental development by theoretical, numerical and experimental study on the basic Mighty Whale. By 1996, they will finish designing the prototype model of the Mighty Whale, will start to construct it, and will carry out the open sea test between 1998 and 1999 at the coastal sea of Japan. The dimensions of the Mighty Whale are 50m in length, 30m in breadth and it has 3 air chambers, 3 units of the air turbines and generators of 50 kW rated power. It will be moored by mooring chains and anchors at the site of about 35m water depth. The mechanism to absorb the wave energy is of the OWC (Oscillating Water Column) type with the Wells Turbine. Its efficiency to absorb the wave energy is about 40--50% on average in regular waves, and it can make in the lee zone the height of incident waves about one half under 8 sec of the significant wave period. Because of such behavior, and from the view point of sustainable development at the coastal zone, the authors recognize the Mighty Whale can be a convenient and beneficial structure for the coastal development. In this paper, they introduce this design, and discuss the utilization of the Mighty Whale for the coastal development.

  14. Internal energy relaxation in shock wave structure

    SciTech Connect

    Josyula, Eswar Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-12-15

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  15. Study on the generation of high-power terahertz wave from surface-emitted THz-wave parametric oscillator with MgO:LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Yao, Jianquan; Xu, Degang; Zhong, Kai; Bing, Pibin; Wang, Jingli

    2010-11-01

    High-power nanosecond pulsed THz-wave radiation was achieved via a surface-emitted THz-wave parametric oscillator (TPO). The effective parametric gain length under the condition of noncollinear phase matching was calculated to optimize the parameters of the TPO. Only one MgO:LiNbO3 crystal with large volume was used as gain medium. THz-wave radiation from 0.8 to 2.9 THz was obtained. The maximum THz-wave output was 289.9 nJ/pulse at 1.94 THz when pump power density was 211 MW/cm2, corresponding to the energy conversion efficiency of 3.43×10-6 and the photon conversion efficiency of about 0.05%. The far-field divergence angle of THz-wave radiation was 0.0204 rad at vertical direction and 0.0068 rad at horizontal direction.

  16. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high

  17. Fast wave power flow along SOL field lines in NSTX

    NASA Astrophysics Data System (ADS)

    Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.

    2012-10-01

    On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.

  18. Communicating Wave Energy: An Active Learning Experience for Students

    ERIC Educational Resources Information Center

    Huynh, Trongnghia; Hou, Gene; Wang, Jin

    2016-01-01

    We have conducted an education project to communicate the wave energy concept to high school students. A virtual reality system that combines both hardware and software is developed in this project to simulate the buoy-wave interaction. This first-of-its-kind wave energy unit is portable and physics-based, allowing students to conduct a number of…

  19. High power single frequency solid state master oscillator power amplifier for gravitational wave detection.

    PubMed

    Basu, Chandrajit; Wessels, Peter; Neumann, Jörg; Kracht, Dietmar

    2012-07-15

    High power single frequency, single mode, linearly polarized laser output at the 1 μm regime is in demand for the interferometric gravitational wave detectors (GWDs). A robust single frequency solid state master oscillator power amplifier (MOPA) is a promising candidate for such applications. We present a single frequency solid state multistage MOPA system delivering 177 W of linearly polarized output power at 1 μm with 83.5% TEM(00) mode content. PMID:22825159

  20. Efficiency enhancement in high power backward-wave oscillators

    SciTech Connect

    Goebel, D.M.; Feicht, J.R. Adler, E.A. ); Ponti, E.S. ); Eisenhart, R.L. ); Lemke, R.W. )

    1999-06-01

    High power microwave (HPM) sources based on the backward-wave oscillator (BWO) have been investigated for the past two decades primarily because of their potential for very high efficiency (15 to 40%) operation. Several different effects have been proposed to explain this high efficiency compared to conventional BWO's. One of the major contributors to the high efficiency of the plasma-filled Pasotron HPM BWO source is the presence of optimally phased end reflections. The Pasotron uses a long pulse ([ge]100 [micro]s) plasma-cathode electron-gun and plasma-filled slow-wave structure to produce microwave pulses in the range of 1 to 10 MW without the use of externally produced magnetic fields. The efficiency of the Pasotron can be enhanced by up to a factor of two when the device is configured as a standing-wave oscillator in which properly phased reflections from the downstream collector end of the finite length SWS constructively interfere with the fundamental backward-wave modes and improve the coupling of the beam to the circuit. Operation in this configuration increases the efficiency up to 30% but causes the frequency to vary in discrete steps and the output power to change strongly with beam parameters and oscillation frequency.

  1. A powerful reflector in relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Cao, Yibing; Sun, Jun; Teng, Yan; Zhang, Yuchuan; Zhang, Lijun; Shi, Yanchao; Ye, Hu; Chen, Changhua

    2014-09-01

    An improved TM021 resonant reflector is put forward. Similarly with most of the slow wave structures used in relativistic backward wave oscillator, the section plane of the proposed reflector is designed to be trapezoidal. Compared with the rectangular TM021 resonant reflector, such a structure can depress RF breakdown more effectively by weakening the localized field convergence and realizing good electrostatic insulation. As shown in the high power microwave (HPM) generation experiments, with almost the same output power obtained by the previous structure, the improved structure can increase the pulse width from 25 ns to over 27 ns and no obvious surface damage is observed even if the generated HPM pulses exceed 1000 shots.

  2. Precise measurement techniques of millimeter-wave power

    NASA Astrophysics Data System (ADS)

    Inoue, T.

    1981-06-01

    Precise power measurement techniques in the millimeter-wave region are described, with attention to a calorimetric method based on thermal balance control, on the basis of which a calorimeter for measuring effective bolometer mount efficiency has been developed. Automatic power measurement systems which incorporate digital techniques are also designed and developed, and two types of circular bolometer mount having high effective efficiency in the 100 GHz band are described. For the case of the 30 GHz band, a method which employs a coupler as a comparator and quarter-wavelength spacer is proposed which significantly reduces the influence of impedance mismatch.

  3. A low-power wave union TDC implemented in FPGA

    SciTech Connect

    Wu, Jinyuan; Shi, Yanchen; Zhu, Douglas; /Illinois Math. Sci. Acad.

    2011-10-01

    A low-power time-to-digital convertor (TDC) for an application inside a vacuum has been implemented based on the Wave Union TDC scheme in a low-cost field programmable gate array (FPGA) device. Bench top tests have shown that a time measurement resolution better than 30 ps (standard deviation of time differences between two channels) is achieved. Special firmware design practices are taken to reduce power consumption. The measurements indicate that with 32 channels fitting in the FPGA device, the power consumption on the FPGA core voltage is approximately 9.3 mW/channel and the total power consumption including both core and I/O banks is less than 27 mW/channel.

  4. High power continuous-wave Alexandrite laser with green pump

    NASA Astrophysics Data System (ADS)

    Ghanbari, Shirin; Major, Arkady

    2016-07-01

    We report on a continuous-wave (CW) Alexandrite (Cr:BeAl2O4) laser, pumped by a high power green source at 532 nm with a diffraction limited beam. An output power of 2.6 W at 755 nm, a slope efficiency of 26%, and wavelength tunability of 85 nm have been achieved using 11 W of green pump. To the best of our knowledge, this is the highest CW output power of a high brightness laser pumped Alexandrite laser reported to date. The results obtained in this experiment can lead to the development of a high power tunable CW and ultrafast sources of the near-infrared or ultraviolet radiation through frequency conversion.

  5. Wave power variability and trends across the North Atlantic influenced by decadal climate patterns

    NASA Astrophysics Data System (ADS)

    Bromirski, Peter D.; Cayan, Daniel R.

    2015-05-01

    Climate variations influence North Atlantic winter storm intensity and resultant variations in wave energy levels. A 60 year hindcast allows investigation of the influence of decadal climate variability on long-term trends of North Atlantic wave power, PW, spanning the 1948-2008 epoch. PW variations over much of the eastern North Atlantic are strongly influenced by the fluctuating North Atlantic Oscillation (NAO) atmospheric circulation pattern, consistent with previous studies of significant wave height, Hs. Wave activity in the western Atlantic also responds to fluctuations in Pacific climate modes, including the Pacific North American (PNA) pattern and the El Niño/Southern Oscillation. The magnitude of upward long-term trends during winter over the northeast Atlantic is strongly influenced by heightened storm activity under the extreme positive phase of winter NAO in the early 1990s. In contrast, PW along the United States East Coast shows no increasing trend, with wave activity there most closely associated with the PNA. Strong wave power "events" exhibit significant upward trends along the Atlantic coasts of Iceland and Europe during winter months. Importantly, in opposition to the long-term increase of PW, a recent general decrease in PW across the North Atlantic from 2000 to 2008 occurred. The 2000-2008 decrease was associated with a general shift of winter NAO to its negative phase, underscoring the control exerted by fluctuating North Atlantic atmospheric circulation on PW trends.

  6. A low-cost float method of harnessing wave energy

    SciTech Connect

    George, M.P.

    1983-12-01

    The author proposes in this paper a low-cost and simple method of harnessing wave energy that should enable coastal regions to be self-sufficient in electric power. The method is eminently applicable to India and such developing countries, being simple and involving a small capital investment. The method was evolved after study of the Indian West Coast fronting the Arabian Sea, and can harness about 50% of the wave energy. A log of wood about 5 metres long and 50 cm. in diameter, having a specific gravity of 0.8 to 0.9, is made to float parallel to the beach and about 50 metres away from it. Its movement is restricted to the vertical plane by means of poles. Two roller chains are attached to the ends of the log which pass over two sprocket free-wheels. When the log is lifted with the crest of the wave, the roller chain moves over the free-wheel. When the trough of the wave reaches the log, its weight is applied to the sprocket wheels through the roller chains. Each sprocket wheel rotates and the rotation is multiplied with a gear wheel. The torque from the high speed spindle of the gear is applied to a small alternating current generator. The AC output from the generator is rectified and used either for charging a battery bank, or connected to the lighting system, or supplied to electrolytic tank for producing hydrogen and other chemicals at the site. A chain of such systems along the coast can supply enough power to light the fishermen's hamlets stretching along the coast.

  7. 78 FR 40132 - Wave Energy Converter Prize Administration Webinar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... of Energy Efficiency and Renewable Energy Wave Energy Converter Prize Administration Webinar AGENCY: Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy (DOE). ACTION: Notice... available for public review on the DOE Office of Energy Efficiency and Renewable Energy (EERE) Web site...

  8. ENergy and Power Evaluation Program

    SciTech Connect

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  9. Fundamental Studies On Development Of MHD (Magnetohydrodynamic) Generator Implement On Wave Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.

    2016-02-01

    As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.

  10. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect

    Jacobson, Paul T; Hagerman, George; Scott, George

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  11. Energy extraction from ocean currents and waves: Mapping the most promising locations

    NASA Astrophysics Data System (ADS)

    Ordonez, A.; Hamlington, P.; Fox-Kemper, B.

    2012-12-01

    Concerns about fossil fuel supplies and an ever-increasing demand for energy have prompted the search for alternative power sources. One option is the ocean, a power-dense and renewable source of energy, but its capacity to meet human energy demands is poorly understood. Although raw wave energy resources have been investigated at many scales, there is still substantial uncertainty regarding how much useful power can be extracted. Even less is known about the energy available in ocean currents, especially on a global scale. Moreover, no studies have attempted to examine wave and current energy simultaneously while at the same time taking into account geographical, environmental, and technical factors that can substantially limit the amount of extractable energy. In this study, we use high fidelity oceanographic model data to assess the availability, recoverability, and value of energy in ocean wind waves and currents. Global wave energy transport, coastal wave energy flux, and current energy are calculated and mapped using the model data. These maps are then incorporated into a geographic information system (GIS) in order to assess the U.S. recoverable ocean energy resource. In the GIS, the amount of recoverable energy is estimated by combining the power output from realistic wave and current energy farms with physical and ecological data such as bathymetry and environmentally protected areas. This holistic approach is then used to examine the distribution and value of extractable wave and current energy along the U.S. coast. The results support previous studies that show that the U.S. West Coast has large potential for wave energy extraction and that the Florida Strait has high potential for current energy extraction. We also show that, at any particular location, the amount of available ocean energy is only one factor of many that determines the ultimate feasibility and value of the energy. We outline ways in which the GIS framework used in this assessment can be

  12. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial. PMID:26610976

  13. Real-time Ocean Wave Prediction for Optimal Performance of a Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Cavaglieri, Daniele; Bewley, Thomas

    2013-11-01

    In recent years, there has been a growing interest in renewable energy. Among all the available possibilities, wave energy conversion, due to the huge availability of energy that the ocean could provide, represents nowadays one of the most promising solutions. However, the efficiency of a wave energy converter for ocean wave energy harvesting is still far from making it competitive with more mature fields of renewable energy, such as solar and wind energy. One of the main problems is related to the inability to accurately predict the profile of oncoming waves approaching the wave energy converter. For this reason, we developed a new hybrid method for state estimation of nonlinear systems, which is based on a variational formulation of an ensemble smoother, combined with the formulation of the ensemble Kalman smoother. This method has been employed for the optimal forecasting of ocean waves via sensors placed on an array of wave energy converters. The coupled simulation of ocean waves and energy devices has been carried out leveraging a nonlinear High Order Spectral code.

  14. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    SciTech Connect

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: Neil.Murphy@jpl.nasa.gov

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  15. High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube

    NASA Technical Reports Server (NTRS)

    Krawczyk, Richard; Wilson, Jeffrey; Simons, Rainee; Williams, Wallace; Bhasin, Kul; Robbins, Neal; Dibb, Daniel; Menninger, William; Zhai, Xiaoling; Benton, Robert; Burdette, James

    2007-01-01

    The L-3 Communications Model 999H traveling-wave tube (TWT) has been demonstrated to generate an output power of 144 W at 60-percent overall efficiency in continuous-wave operation over the frequency band from 31.8 to 32.3 GHz. The best TWT heretofore commercially available for operation in the affected frequency band is characterized by an output power of only 35 W and an efficiency of 50 percent. Moreover, whereas prior TWTs are limited to single output power levels, it has been shown that the output power of the Model 999H can be varied from 54 to 144 W. A TWT is a vacuum electronic device used to amplify microwave signals. TWTs are typically used in free-space communication systems because they are capable of operating at power and efficiency levels significantly higher than those of solid-state devices. In a TWT, an electron beam is generated by an electron gun consisting of a cathode, focusing electrodes, and an anode. The electrons pass through a hole in the anode and are focused into a cylindrical beam by a stack of periodic permanent magnets and travel along the axis of an electrically conductive helix, along which propagates an electromagnetic wave that has been launched by an input signal that is to be amplified. The beam travels within the helix at a velocity close to the phase velocity of the electromagnetic wave. The electromagnetic field decelerates some of the electrons and accelerates others, causing the beam to become formed into electron bunches, which further interact with the electromagnetic wave in such a manner as to surrender kinetic energy to the wave, thereby amplifying the wave. The net result is to amplify the input signal by a factor of about 100,000. After the electrons have passed along the helix, they impinge on electrodes in a collector. The collector decelerates the electrons in such a manner as to recover most of the remaining kinetic energy and thereby significantly increase the power efficiency of the TWT.

  16. High power continuous wave injection-locked solid state laser

    SciTech Connect

    Nabors, C.D.; Byer, R.L.

    1991-06-25

    This patent describes an injection locked laser system. It comprises a master laser, the master laser including a solid state gain medium and having a continuous wave, single frequency output; a slave laser including a solid state gain medium located in a resonant cavity and having a continuous wave output at a power at least ten times greater than the master laser, with the output of the master laser being injected into the slave laser in order to cause the slave laser to oscillate at the same frequency as the output of the master laser; and means for actively stabilizing the slave laser so that its output frequency remains locked with the output frequency of the master laser.

  17. Solitary and shock waves in discrete double power law materials

    NASA Astrophysics Data System (ADS)

    Herbold, Eric; Nesterenko, Vitali

    2007-06-01

    A novel strongly nonlinear metamaterial is composed using a periodic arrangement of toroidal rings between plates. The toroids are considered massless strongly nonlinear springs where the force versus displacement relationship is described by two additive power-law relationships. In these systems the nonlinearity is due to the dramatic change of the contact plane, which starts as an arbitrarily thin circle then increases in thickness with increasing compression. Solitary and shock waves are examined numerically and experimentally using three different types of polymer or rubber o-rings allowing mitigation of higher amplitude shock impulses in comparison with granular systems. In these systems a train of pulses can consist of two separate groups related to two strongly nonlinear regimes with different values of exponents, depending on the amplitude. In experiments two types of shock waves (monotonic or oscillatory) were observed depending on the type of o-rings.

  18. Scattered surface wave energy in the seismic coda

    USGS Publications Warehouse

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  19. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    PubMed

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean. PMID:25719956

  20. Mechanochemistry for Shock Wave Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Shaw, William; Ren, Yi; Su, Zhi; Moore, Jeffrey; Suslick, Kenneth; Dlott, Dana

    2015-06-01

    Using our laser-driven flyer-plate apparatus we have developed a technique for detecting mechanically driven chemical reactions that attenuate shock waves. In these experiments 75 μm laser-driven flyer-plates travel at speeds of up to 2.8 km/s. Photonic Doppler velocimetry is used to monitor both the flight speed and the motions of an embedded mirror behind the sample on the supporting substrate. Since the Hugoniot of the substrate is known, mirror motions can be converted into the transmitted shock wave flux and fluence through a sample. Flux shows the shock profile whereas fluence represents the total energy transferred per unit area, and both are measured as a function of sample thickness. Targets materials are micrograms of carefully engineered organic and inorganic compounds selected for their potential to undergo negative volume, endothermic reactions. In situ fluorescence measurements and a suite of post mortem analytical methods are used to detect molecular chemical reactions that occur due to impact.

  1. Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Tol, S.; Degertekin, F. L.; Erturk, A.

    2016-08-01

    We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.

  2. Net energy analysis - powerful tool for selecting elective power options

    SciTech Connect

    Baron, S.

    1995-12-01

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  3. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong

    2009-03-01

    Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.

  4. Diffuse Waves and Energy Densities Near Boundaries

    NASA Astrophysics Data System (ADS)

    Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.

    2007-12-01

    Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of

  5. Exploring Energy, Power, and Transportation Technology.

    ERIC Educational Resources Information Center

    Bowers, Donovan; Kellum, Mary

    These teacher's materials for a seven-unit course were developed to help students develop technological literacy, career exploration, and problem-solving skills relative to the communication industries. The seven units include an overview of energy and power, principles of energy and power, power production and conversion, power transmission and…

  6. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  7. Control strategies to optimise power output in heave buoy energy convertors

    NASA Astrophysics Data System (ADS)

    Abu Zarim, M. A. U. A.; Sharip, R. M.

    2013-12-01

    Wave energy converter (WEC) designs are always discussed in order to obtain an optimum design to generate the power from the wave. Output power from wave energy converter can be improved by controlling the oscillation in order to acquire the interaction between the WEC and the incident wave.The purpose of this research is to study the heave buoys in the interest to generate an optimum power output by optimising the phase control and amplitude in order to maximise the active power. In line with the real aims of this study which investigate the theory and function and hence optimise the power generation of heave buoys as renewable energy sources, the condition that influence the heave buoy must be understand in which to propose the control strategies that can be use to control parameters to obtain optimum power output. However, this research is in an early stage, and further analysis and technical development is require.

  8. Coupling of ICRF waves and axial transport of high-energy ions owing to spontaneously excited waves in the GAMMA 10 tandem mirror

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Hirata, M.; Iwai, T.; Yokoyama, T.; Ugajin, Y.; Sato, T.; Iimura, T.; Saito, Y.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Imai, T.

    2013-07-01

    Plasmas with high ion temperature of several kiloelectronvolts and a strong temperature anisotropy of greater than 10 were produced by ion cyclotron range of frequency (ICRF) heating in the GAMMA 10 tandem mirror. In such high-performance plasmas with strong anisotropy, high-frequency fluctuations, so-called Alfvén-ion-cyclotron (AIC) waves, are excited spontaneously. These AIC waves have several discrete peaks in the frequency spectrum. Coupling of the ICRF heating waves and the excited AIC waves was clearly observed in the density fluctuations measured with a newly developed reflectometer. Parametric decay from the heating ICRF waves to the AIC waves and low-frequency waves was also indicated. Alfvén waves with difference frequencies between the discrete peaks of the AIC waves were detected in a signal that measured the number of axially transported high-energy ions (over 6 keV) at the machine end, indicating pitch-angle scattering caused by the low-frequency waves. Energy transport along the magnetic field line is an important consideration when ICRF power is injected in the perpendicular direction to a magnetic field line. The importance of the spontaneously excited AIC waves for axial confinement of a tandem mirror through wave-wave couplings was demonstrated.

  9. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  10. Experimental results using active control of traveling wave power flow

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Hall, Steven R.

    1991-01-01

    Active structural control experiments conducted on a 24-ft pinned-free beam derived feedback compensators on the basis of a traveling-wave approach. A compensator is thus obtained which eliminates resonant behavior by absorbing all impinging power. A causal solution is derived for this noncausal compensator which mimics its behavior in a given frequency range, using the Wiener-Hopf. This optimal Wiener-Hopf compensator's structure-damping performance is found to exceed any obtainable by means of rate feedback. Performance limitations encompassed the discovery of frequencies above which the sensor and actuator were no longer dual and an inadvertent coupling of the control hardware to unmodeled structure torsion modes.

  11. Design of stabilization system for medium wave infrared laser power

    NASA Astrophysics Data System (ADS)

    Ding, Zhong-kui; Wang, Lin; Shi, Xue-shun; Xu, Jun

    2013-12-01

    The 3~5um Medium Wave Infrared(MWIR) laser has gained a lot of attention for its important application values in remote sensing, medical, military and many other fields. However, there are many technical difficulties to fabricate those kind lasers, and the performance of their output power stabilities remain to be improved. In a practical application, the MWIR's output power will be instability when the temperature changes and the current varies. So a system of reducing MWIR power fluctuation should be established. In this paper, a photoelectric system of stabilizing the output power of He-Ne laser is developed, which is designed based on the theory of feedback control. Some primary devices and technologies are presented and the functions of each module are described in detail. Among of those, an auxiliary visible light path is designed to aid to adjust WMIR optical system. A converging lens as spatial filter is employed to eliminate stray light well. Dewar temperature control equipment is also used to reduce circuit noise in IR detector. The power supply of AD conversion circuit is independently designed to avoid the crosstalk caused by the analog section and digital section. Then the system has the advantages of good controllability, stability and high precision after above designation. Finally, the measurement precision of the system is also analyzed and verified.

  12. Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Falter, James L.; Koseff, Jeffrey R.; Monismith, Stephen G.; Atkinson, Marlin J.

    2007-05-01

    Communities of benthic organisms can form very rough surfaces (canopies) on the seafloor. Previous studies have shown that an oscillatory flow induced by monochromatic surface waves will drive more flow inside a canopy than a comparable unidirectional current. This paper builds on these previous studies by investigating how wave energy is attenuated within canopies under spectral wave conditions, or random wave fields defined by many frequencies. A theoretical model is first developed to predict how flow attenuation within a canopy varies among the different wave components and predicts that shorter-period components will generally be more effective at driving flow within a canopy than longer-period components. To investigate the model performance, a field experiment was conducted on a shallow reef flat in which flow was measured both inside and above a model canopy array. Results confirm that longer-period components in the spectrum are significantly more attenuated than shorter-period components, in good agreement with the model prediction. This paper concludes by showing that the rate at which wave energy is dissipated by a canopy is closely linked to the flow structure within the canopy. Under spectral wave conditions, wave energy within a model canopy array is dissipated at a greater rate among the shorter-period wave components. These observations are consistent with previous observations of how wave energy is dissipated by the bottom roughness of a coral reef.

  13. High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter.

    PubMed

    Suizu, Koji; Miyamoto, Katsuhiko; Yamashita, Tomoyu; Ito, Hiromasa

    2007-10-01

    The exact power output of a table-top-sized terahertz (THz)-wave source using a nonlinear optical process has not been clarified because detectors for these experiments [Si bolometer, deuterated triglycine sulfate (DTGS), etc.] are not calibrated well. On the other hand, powermeters for the mid-infrared (mid-IR) region are well established and calibrated. We constructed a high-power dual-wavelength optical parametric oscillator with two KTP crystals as a light source for difference frequency generation. The obtained powers of dual waves were 21 mJ at ~1300 nm, ten times higher than that of the previous measurement. The device provides high-power THz-wave generation with ~100 times greater output power than that reported in previous works. A well-calibrated mid-IR powermeter at ~27 THz detected the generated THz wave; its measured energy was 2.4 microJ. Although the powermeter had no sensitivity in the lower-frequency range (below 20 THz), the pulse energy at such a low-frequency region was estimated in reference to the output spectrum obtained using a DTGS detector: the energy would be from about the submicrojoule level to a few microjoules in the THz-wave region. PMID:17909606

  14. Wave energy dissipation by intertidal sand waves on a mixed-sediment Beach

    USGS Publications Warehouse

    Adams, P.; Ruggiero, P.

    2006-01-01

    Within the surf zone, the energy expended by wave breaking is strongly influenced by nearshore bathymetry, which is often linked to the character and abundance of local sediments. Based upon a continuous, two year record of Argus Beach Monitoring System (ABMS) data on the north shore of Kachemak Bay in southcentral Alaska, we model the enhancement of wave energy dissipation by the presence of intertidal sand waves. Comparison of model results from simulations in the presence and absence of sand waves illustrates that these ephemeral morphological features can offer significant protection to the backing beach and sea cliff through two mechanisms: (1) by moving the locus of wave breaking seaward and (2) by increasing energy expenditure associated with the turbulence of wave breaking. Copyright ASCE 2006.

  15. Speech articulator measurements using low power EM-wave sensors

    SciTech Connect

    Holzrichter, J.F.; Burnett, G.C.; Ng, L.C.; Lea, W.A.

    1998-01-01

    Very low power electromagnetic (EM) wave sensors are being used to measure speech articulator motions as speech is produced. Glottal tissue oscillations, jaw, tongue, soft palate, and other organs have been measured. Previously, microwave imaging (e.g., using radar sensors) appears not to have been considered for such monitoring. Glottal tissue movements detected by radar sensors correlate well with those obtained by established laboratory techniques, and have been used to estimate a voiced excitation function for speech processing applications. The noninvasive access, coupled with the small size, low power, and high resolution of these new sensors, permit promising research and development applications in speech production, communication disorders, speech recognition and related topics. {copyright} {ital 1998 Acoustical Society of America.}

  16. Experimental determination of radiated internal wave power without pressure field data

    SciTech Connect

    Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.

    2014-04-15

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  17. Careers in Geothermal Energy: Power from below

    ERIC Educational Resources Information Center

    Liming, Drew

    2013-01-01

    In the search for new energy resources, scientists have discovered ways to use the Earth itself as a valuable source of power. Geothermal power plants use the Earth's natural underground heat to provide clean, renewable energy. The geothermal energy industry has expanded rapidly in recent years as interest in renewable energy has grown. In 2011,…

  18. Power combiner

    DOEpatents

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  19. Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys

    NASA Astrophysics Data System (ADS)

    Murray, R.; Rastegar, J.

    2009-03-01

    Harvesting mechanical energy from ocean wave oscillations for conversion to electrical energy has long been pursued as an alternative or self-contained power source. The attraction to harvesting energy from ocean waves stems from the sheer power of the wave motion, which can easily exceed 50 kW per meter of wave front. The principal barrier to harvesting this power is the very low and varying frequency of ocean waves, which generally vary from 0.1Hz to 0.5Hz. In this paper the application of a novel class of two-stage electrical energy generators to buoyant structures is presented. The generators use the buoy's interaction with the ocean waves as a low-speed input to a primary system, which, in turn, successively excites an array of vibratory elements (secondary system) into resonance - like a musician strumming a guitar. The key advantage of the present system is that by having two decoupled systems, the low frequency and highly varying buoy motion is converted into constant and much higher frequency mechanical vibrations. Electrical energy may then be harvested from the vibrating elements of the secondary system with high efficiency using piezoelectric elements. The operating principles of the novel two-stage technique are presented, including analytical formulations describing the transfer of energy between the two systems. Also, prototypical design examples are offered, as well as an in-depth computer simulation of a prototypical heaving-based wave energy harvester which generates electrical energy from the up-and-down motion of a buoy riding on the ocean's surface.

  20. Wave energy and wave-induced flow reduction by full-scale model Posidonia oceanica seagrass

    NASA Astrophysics Data System (ADS)

    Manca, E.; Cáceres, I.; Alsina, J. M.; Stratigaki, V.; Townend, I.; Amos, C. L.

    2012-12-01

    This paper presents results from experiments in a large flume on wave and flow attenuation by a full-scale artificial Posidonia oceanica seagrass meadow in shallow water. Wave height and in-canopy wave-induced flows were reduced by the meadow under all tested regular and irregular wave conditions, and were affected by seagrass density, submergence and distance from the leading edge. The energy of irregular waves was reduced at all components of the spectra, but reduction was greater at the peak spectral frequency. Energy dissipation factors were largest for waves with small orbital amplitudes and at low wave Reynolds numbers. An empirical model, commonly applied to predict friction factors by rough beds, proved applicable to the P. oceanica bed. However at the lowest Reynolds numbers, under irregular waves, the data deviated significantly from the model. In addition, the wave-induced flow dissipation in the lower canopy increased with increasing wave orbital amplitude and increasing density of the mimics. The analysis of the wave-induced flow spectra confirm this trend: the reduction of flow was greatest at the longer period component of the spectra. Finally, we discuss the implications of these findings for sediment dynamics and the role of P. oceanica beds in protecting the shore from erosion.

  1. Energy and energy flux in axisymmetric slow and fast waves

    NASA Astrophysics Data System (ADS)

    Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.

    2015-06-01

    Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org

  2. The role of the ionosphere in coupling upstream ULF wave power into the dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Arnoldy, R. L.; Anderson, B. J.; Rosenberg, T. J.

    1991-01-01

    A series of recent studies of Pc 3 magnetic pulsations in the dayside outer magnetosphere has given new insights into the possible mechanisms of entry of ULF wave power into the magnetosphere from a bow shock-related upstream source. A comparison is made of data from two 10-hour intervals on successive days in April 1986 and then a possible model for transmission of pulsation signals from the magnetosheath into the dayside magnetosphere is presented. Clear interplanetary magnetic field magnitude control of dayside resonant harmonic pulsations and band-limited very high latitude pulsations, as well as pulsation-modulated precipitation of what appear to be magnetosheath/boundary layer electrons are shown. It is believed that this modulated precipitation may be responsible for the propagation of upstream wave power in the Pc 3 frequency band into the high-latitude ionosphere, from whence it may be transported throughout the dayside outer magnetosphere by means of an 'ionospheric transistor'. In this model, modulations in ionospheric conductivity caused by cusp/cleft precipitation cause varying ionospheric currents with frequency spectra determined by the upstream waves; these modulations will be superimposed on the Birkeland currents, which close via these ionospheric currents. Modulated region 2 Birkeland currents will in turn provide a narrow-band source of wave energy to a wide range of dayside local times in the outer magnetosphere.

  3. Mechanism for generating power from wave motion on a body of water

    SciTech Connect

    Sachs, G.A.; Sachs, H.K.

    1982-09-28

    A mechanism for generating power from wave motion on a body of water is described. The mechanism includes a buoyant body which is adapted to float on a body of water and to roll and pitch in response to the wave motion of the water. A gyro-wave energy transducer is mounted on the buoyant body for translating the pendulum-like motions of the buoyant body into rotational motion. The gyro-wave energy transducer includes a gimbal comprised of first and second frames, with the first frame being pivotally mounted to the second frame and the second frame being pivotally mounted to the buoyant body. A gyroscope is mounted to the first frame for rotation about an axis perpendicular to the axes of rotation of the first and second frames. A motor/generator is coupled to the gyroscope for maintaining a controlled rotational velocity for the gyroscope. Transferring members are associated with one of the first and second frames for transferring torque of one of the first and second frames to the gyroscope about an axis that is perpendicular to that of the gyroscope which results in rotation of the other of the first and second frames. An electrical generator is responsive to the relative rotational movement of the first and second frames for generating electrical energy. A storage battery is mounted on the buoyant body for storing and releasing electrical energy and is operatively coupled to the motor/generator and the electrical generator. A control circuit is associated with the generator and the motor/generator unit of the gyroscope and is responsive to the time rate of change of current produced by the generator for controlling the rotational velocity of the gyroscope in order to maintain maximum power output from the electrical generator.

  4. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-07-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power (P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  5. Wave spectral energy variability in the northeast Pacific

    USGS Publications Warehouse

    Bromirski, P.D.; Cayan, D.R.; Flick, R.E.

    2005-01-01

    The dominant characteristics of wave energy variability in the eastern North Pacific are described from NOAA National Data Buoy Center (NDBC) buoy data collected from 1981 to 2003. Ten buoys at distributed locations were selected for comparison based on record duration and data continuity. Long-period (LP) [T > 12] s, intermediate-period [6 ??? T ??? 12] s, and short-period [T < 6] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses of monthly wave energy anomalies reveal that all three wave energy components exhibit similar patterns of spatial variability. The dominant mode represents coherent heightened (or diminished) wave energy along the West Coast from Alaska to southern California, as indicated by composites of the 700 hPa height field. The second EOF mode reveals a distinct El Nin??o-Southern Oscillation (ENSO)-associated spatial distribution of wave energy, which occurs when the North Pacific storm track is extended unusually far south or has receded to the north. Monthly means and principal components (PCs) of wave energy levels indicate that the 1997-1998 El Nin??o winter had the highest basin-wide wave energy within this record, substantially higher than the 1982-1983 El Nin??o. An increasing trend in the dominant PC of LP wave energy suggests that storminess has increased in the northeast Pacific since 1980. This trend is emphasized at central eastern North Pacific locations. Patterns of storminess variability are consistent with increasing activity in the central North Pacific as well as the tendency for more extreme waves in the south during El Nin??o episodes and in the north during La Nin??a. Copyright 2005 by the American Geophysical Union.

  6. Advanced Gunn diode as high power terahertz source for a millimetre wave high power multiplier

    NASA Astrophysics Data System (ADS)

    Amir, F.; Mitchell, C.; Farrington, N.; Missous, M.

    2009-09-01

    An advanced step-graded Gunn diode is reported, which has been developed through joint modelling-experimental work. The ~ 200 GHz fundamental frequency devices have been realized to test GaAs based Gunn oscillators at sub-millimetre wave for use as a high power (multi mW) Terahertz source in conjunction with a mm-wave multiplier, with novel Schottky diodes. The epitaxial growth of both the Gunn diode and Schottky diode wafers were performed using an industrial scale Molecular Beam Epitaxy (V100+) reactor. The Gunn diodes were then manufactured and packaged by e2v Technologies (UK) Plc. Physical models of the high power Gunn diode sources, presented here, are developed in SILVACO.

  7. Propulsion of small launch vehicles using high power millimeter waves

    SciTech Connect

    Benford, J.; Myrabo, L.

    1994-12-31

    High power microwaves have been proposed for propulsion of vehicles and projectiles in the atmosphere and in space. The requirements in terms of high power microwave technology have not been examined in any detail. The need for improved propulsion technology is clear: chemical rockets orbit only a few percent of the liftoff mass at a cost of about 3,000$/lb. The key advantage of any beamed power approach is in placing the heavy and expensive components on the ground or in space. The authors propose a system with uses a two-stage propulsion method in which the first phase of ascent is based on the ramjet principle, a repetitive Pulsed Detonation Engine which uses a microwave-supported detonation to heat the air fuel. The second phase is a pure rocket. This paper explores this propulsion concept using millimeter waves, the most advantageous part of the spectrum. They find that efficient system concepts can be developed: the vehicle can have payload-to-mass ratios on the order of one and cost per pound to orbit one or two orders of magnitude less that chemical rockets.

  8. Boring and Sealing Rock with Directed Energy Millimeter-Waves

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H. H.; Oglesby, K.

    2015-12-01

    Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.

  9. Dynamics of a mechanical frequency up-converted device for wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Lin, Zheng; Zhang, Yongliang

    2016-04-01

    This paper proposes a novel mechanical impact-driven frequency up-converted device for wave energy harvesting, which could bridge a gap between waves of frequency 0.03-1 Hz and electrical generators of operation frequency hundreds hertz. The device mainly consists of a cylindrical buoy, beams and teeth. A mathematical model for the dynamics of such a device is presented, which incorporates the fluid-structure interaction between the wave and the buoy, and the structural interactions between the beams and the teeth. The momentum balance method and the coefficient of restitution are employed, which give rise to piecewise nonlinear equations governing the motions of the buoy and the beams. Experimental tests carried out in a wave flume validate the model and prove the effectiveness of frequency up-converted method in wave energy harvesting. The characteristics of frequency up-converted transformation from buoy motion to beams oscillation for wave energy harvesting are probed, and the effects of beam Young's modulus, beam number, wave period and wave height on strain power of the beams are explored.

  10. Estimating Energy Dissipation Due to Wave Breaking in the Surf Zone Using Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Carini, Roxanne J.

    Wave breaking is the largest forcing mechanism in the surf zone. Therefore, quantifying energy dissipation due to wave breaking is important for improving models that seek to predict nearshore circulation, wave-current interactions, air-sea gas exchange, erosion and accretion of sediment, and storm surge. Wave energy dissipation is difficult to measure with in situ instruments, and even the most reliable estimates are limited to point measurements. Using remote sensing technologies, specifically infrared (IR) imagery, the high spatial and temporal variability of wave breaking may be sampled. Duncan (1981) proposed a model (D81) for dissipation on a wave-by-wave basis, based on wave slope and roller length, the crest-perpendicular length of the aerated region of a breaking wave. The wave roller is composed of active foam, which, in thermal IR images, appears brighter than the surrounding water and the residual foam, the foam left behind in the wake of a breaking wave. Using IR imagery taken during the Surf Zone Optics 2010 experiment at Duck, NC, and exploiting the distinct signature of active foam, a retrieval algorithm was developed to identify and extract breaking wave roller length. Roller length was then used to estimate dissipation rate via the D81 formulation. The D81 dissipation rate estimates compare reasonably to in situ dissipation estimates at a point. When the D81 estimates are compared to the bulk energy flux into the surf zone, it is found that wave breaking dissipates approximately 25-36% of the incoming wave energy. The D81 dissipation rate estimates also agree closely with those from a dissipation parameterization proposed by Janssen and Battjes (2007) (JB07) and commonly applied within larger nearshore circulation models. The JB07 formulation, however, requires additional physical parameters (wave height and water depth) that are often sparsely sampled and are difficult to attain from remote sensing alone. The power of the D81 formulation lies in

  11. Design of the dual-buoy wave energy converter based on actual wave data of East Sea

    NASA Astrophysics Data System (ADS)

    Kim, Jeongrok; Kweon, Hyuck-Min; Jeong, Weon-Mu; Cho, Il-Hyoung; Cho, Hong-Yeon

    2015-07-01

    A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: 36.404 N° and 129.274 E°) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

  12. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  13. Design and characterization of an ultrasonic lamb-wave power delivery system.

    PubMed

    Kural, Aleksander; Pullin, Rhys; Holford, Karen; Lees, Jonathan; Naylon, Jack; Paget, Christophe; Featherston, Carol

    2013-06-01

    In this paper, a novel design for an ultrasonic power transmission system designed for use in aircraft structural monitoring systems is described. The prototype system uses ultrasonic Lamb waves to carry energy along plates, such as those used in aircraft structures, and commercially available piezoelectric patch transducers as the transmitter and receiver. This sets it apart from other acoustic power transmission systems reported to date. The optimum configuration transmitted 12.7 mW of power across a distance of 54 cm in a 1.5-mm-thick aluminum plate, while being driven by a 20-Vpp, 35-kHz sinusoidal electric signal. This is in the same order of magnitude as the power required by the wireless sensors nodes of a structural health monitoring system currently being developed by Cardiff University and its partners. Thus, the power transmission system can be considered a viable component of the power source combination considered for the sensor nodes, which will also include vibration and thermal energy harvesting. The paper describes the design and optimization of the transmission and reception circuits with the use of inductive compensation. The use of laser vibrometry to characterize the transducers and to understand the signal propagation between them is also reported. PMID:25004476

  14. Relationship between directions of wave and energy propagation for cold plasma waves

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1986-01-01

    The dispersion relation for plasma waves is considered in the 'cold' plasma approximation. General formulas for the dependence of the phase and group velocities on the direction of wave propagation with respect to the local magnetic field are obtained for a cold magnetized plasma. The principal cold plasma resonances and cut-off frequencies are defined for an arbitrary angle and are used to establish basic regimes of frequency where the cold plasma waves can propagate or can be evanescent. The relationship between direction of wave and energy propagation, for cold plasma waves in hydrogen atmosphere, is presented in the form of angle diagrams (angle between group velocity and magnetic field versus angle between phase velocity and magnetic field) and polar diagrams (also referred to as 'Friedrich's diagrams') for different directions of wave propagation. Morphological features of the diagrams as well as some critical angles of propagation are discussed.

  15. Wave Turbulence in Superfluid {sup 4}He: Energy Cascades and Rogue Waves in the Laboratory

    SciTech Connect

    Efimov, V. B.; Ganshin, A. N.; McClintock, P. V. E.; Kolmakov, G. V.; Mezhov-Deglin, L. P.

    2008-11-13

    Recent work on second sound acoustic turbulence in superfluid {sup 4}He is reviewed. Observations of forward and inverse energy cascades are described. The onset of the inverse cascade occurs above a critical driving energy and it is accompanied by giant waves that constitute an acoustic analogue of the rogue waves that occasionally appear on the surface of the ocean. The theory of the phenomenon is outlined and shown to be in good agreement with the experiments.

  16. Power Amplifier Module with 734-mW Continuous Wave Output Power

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.

  17. High power folded waveguide millimeter-wave gyro-TWT

    SciTech Connect

    Choi, J.J.; Ganguly, A.K.; Armstrong, C.M.

    1994-12-31

    Investigations on a periodic TE serpentine waveguide gyro-TWT are underway at NRL. A high power axis-encircling electron beam interacts with a fundamental TE waveguide mode when it passes through an oversized beam tunnel hole in the narrow wall of the H-plane bend rectangular serpentine waveguide. Potential advantages of the circuit configuration include: easy fabrication, fundamental forward space harmonic operation, large beam tunnel suitable for high power application, natural separation of beam and rf, and simplicity of coupling. To avoid bandwidth reduction due to closely spaced stop-bands and large gap detuning angle, a double rigid TE folded waveguide structure is proposed. To utilize the entire bandwidth, it is necessary to suppress gyro-BWO oscillation at the higher space harmonics. Linear theory predicts that oscillation takes place at {approximately} 7 cm near the stop-band frequency. Therefore, a multi-stage configuration is required to saturate the device without oscillations. An experiment is underway at NRL to verify the negative mass instability in both fast and slow wave regions in a transverse folded waveguide structure and to investigate the basic circuit stability characteristics. Design parameters of the amplifier, large signal simulations using a MAGIC code and cold-test results of the circuit components will be presented.

  18. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

    1993-09-21

    A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

  19. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, Gaylen V.; Bass, Isaac L.; Hackel, Richard P.; Jenkins, Sherman L.; Kanz, Vernon K.; Paisner, Jeffrey A.

    1993-01-01

    A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).

  20. Estimating the Power per Mode Number and Power vs L-shell of Broadband, Storm-time ULF Waves

    NASA Astrophysics Data System (ADS)

    Sarris, T. E.; Li, X.; Liu, W.; Argyriadis, E.

    2013-12-01

    In studies of particles' radial diffusion processes in the magnetosphere it is well known that Ultra-Low Frequency (ULF) waves of frequency m*ωd can resonantly interact with particles of drift frequency ωd, where m is the azimuthal mode number of the waves; however due to difficulties in estimating m an over-simplifying assumption is often made in radial diffusion simulations, namely that all ULF wave power is located at m=1 or, in some cases, m=2. In another assumption that is commonly made, power measured from geosynchronous satellites is assumed to be uniform across L-shells. In the present work, a technique is presented for extracting information on the distribution of ULF wave power in a range of azimuthal mode numbers, through calculations of the cross-power and phase differences between a number of azimuthally aligned pairs of magnetometers, either in space or on the ground. We find that the temporal evolution of power at each mode number gives unique insight into the temporal evolution of ULF waves during a storm as well as a more accurate characterization of broadband ULF waves. Furthermore, using multi-spacecraft measurements during a particular storm, we calculate the L-dependence of ULF wave power. These measurements and calculations can be used in more accurate ULF wave representation in radial diffusion simulations.

  1. Water Power for a Clean Energy Future

    SciTech Connect

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  2. Wave-current interactions at the FloWave Ocean Energy Research Facility

    NASA Astrophysics Data System (ADS)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  3. Modeling of power and energy transduction of embedded piezoelectric wafer active sensors for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Giurgiutiu, Victor

    2010-04-01

    This paper presents a systematic investigation of power and energy transduction in piezoelectric wafer active sensors (PWAS) for structural health monitoring (SHM). After a literature review of the state of the art, the paper develops a simplified pitch-catch model of power and energy transduction of PWAS attached to structure. The model assumptions include: (a) 1-D axial and flexural wave propagation; (b) ideal bonding (pin-force) connection between PWAS and structure; (c) ideal excitation source at the transmitter PWAS and fully-resistive external load at the receiver PWAS. Frequency response functions are developed for voltage, current, complex power, active power, etc. First, we examined PWAS transmitter and determined the active power, reactive power, power rating of electrical requirement under harmonic voltage excitation. It was found that the reactive power is dominant and defines the power requirement for power supply / amplifier for PWAS applications. The electrical and mechanical power analysis at the PWAS structure interface indicates all the active electrical power provides the mechanical power at the interface. This provides the power and energy for the axial and flexural waves power and energy that propagate into the structure. The sum of forward and backward wave power equals the mechanical power PWAS applied to the structure. The parametric study of PWAS transmitter size shows the proper size and excitation frequency selection based on the tuning effects. Second, we studied the PWAS receiver structural interface acoustic and electrical energy transduction. The parametric study of receiver size, receiver impedance and external electrical load gives the PWAS design guideline for PWAS sensing and power harvesting applications. Finally we considered the power flow for a complete pitch-catch setup. In pitch-catch mode, the power flows from electrical source into piezoelectric power at the transmitter; the piezoelectric conduction converts the electrical

  4. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    SciTech Connect

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  5. Near field effects of millimeter-wave power transmission for medical applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Song, Kyo D.; Lee, Kunik; Kim, Jaehwan; Choi, Sang H.

    2011-04-01

    An integration of micro devices system and wireless power transmission (WPT) technology offers a great potential to revolutionize current health care devices. The system integration of wireless power transmission devices with smart microsensors is crucial for replacing a power storage devices and miniaturizing wireless biomedical systems. Our research goal is to replace battery power supply with an implantable millimeter-wave rectenna. Recently, a hat system with a small millimeter-wave antenna which can feed millimeter-wave power to thin-film rectenna array embedding Schottky diodes was introduced for neural sensing and stimulation applications. In order to prove the design concept and investigate wireless power coupling efficiency under the system design, near-field wireless power transmission was studied in terms of wave frequency and distance. Also, in this paper, we will present the influence of biological objects to the wireless power transmission, simulating the experimental conditions of human objects for future medical applications.

  6. Research and development on high-power millimeter-wave and submillimeter-wave electron tubes

    NASA Astrophysics Data System (ADS)

    Mourier, G.

    Several high-power generators operating in the frequency range above 20 GHz are examined. These are hot-cathode vacuum tubes of the gyrotron type, which operate at voltages under 200 kV and in a magnetic field under 40 kG. A gyrotron research and development program is described, with particular emphasis on its computer-aided design and the use of superconducting magnets. Devices operating in frequency ranges above 200-300 GHz are described, and the concept of using transverse interaction rather than longitudinal interaction is discussed. Although transverse interaction has less energetic efficiency, its uniform magnetic field, high value of deceleration, and the possibility of using a wave with low group velocity make it a viable option. Devices incorporating a small electron accelerator in the same vacuum envelope and operating at relatively low voltage at higher frequencies are presently being investigated.

  7. Approach warning system for snowplow using aerial-high-power ultrasonic wave with radio wave

    NASA Astrophysics Data System (ADS)

    Manabu, Aoyagi; Yuta, Amagi; Hiroaki, Miura; Okeya, Ryota; Hideki, Tamura; Takehiro, Takano

    2012-05-01

    An approach warning system for a snowplow and guide was developed by using aerial-high-power ultrasonic transducer. To be robust against some serious factors in winter, ultrasonic signal and radio one were combined on the system, and the flat face side of stepped circular vibrating plate was utilized as a radiation plate. The ultrasonic wave radiated from the flat face side still had a better directivity, and the flat face had advantage to prevent bad influences from water, snow or ice. From experiment results, when double transducers were set on both sides of roof of snowplow, this system was able to be measure distance between a guide and snowplow in whole of controlled area.

  8. High-power traveling wave tubes powered by a relativistic electron beam

    SciTech Connect

    Shiffler, D.A. Jr.

    1991-01-01

    This thesis presents the results of a high power traveling wave tube a high power, rippled wall waveguide TWT powered by a relativistic electron beam. Initially, the amplifiers consisted of a single section of slow wave structure. Two TWT's of this type were used, with lengths of 11 and 22 periods. These single state tubes were linear and operated in the Tm{sub 01} mode at maximum gains of 33 dB and bandwidths on order of 20 MHz centered at 8.76 GHz. The maximum efficiency was 11% corresponding to an output power of 110 MW. Below beam currents of 1.4 kA, the single stage tubes were monochromatic and phase stable to within {plus minus}8{degree}; however, above this current, a sideband-like structure developed in the frequency spectrum. The two sidebands were unequally displaced from the center frequency. As the current was increased still further to 1.6 kA, the single stage amplifier oscillated due to positive feedback arising from reflections at the exit taper of the TWT. At this point, the TWT was no longer useful as an amplifier. To reduce the positive feedback and stop the oscillations, the author severed the amplifier. Two different lengths of sever were used, the shorter of the two having the highest gain. The shorter sever saturated at 975 A, with a total gain of 37 dB and total power output of 410 MW. Beyond this current, the tube was no longer linear with respect to the input power. The bandwidth of severed tube was about 100 MHz centered at 8.76 GHz. The severed amplifiers showed the sideband-like behavior at all the beam currents used. The sideband frequency separation from the center frequency increased with beam current.

  9. Internal wave energy radiated from a turbulent mixed layer

    NASA Astrophysics Data System (ADS)

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-01

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%-3% of the turbulent kinetic energy density of the turbulent layer.

  10. Internal wave energy radiated from a turbulent mixed layer

    SciTech Connect

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  11. A direct current rectification scheme for microwave space power conversion using traveling wave electron acceleration

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1993-01-01

    The formation of the Vision-21 conference held three years ago allowed the present author to reflect and speculate on the problem of converting electromagnetic energy to a direct current by essentially reversing the process used in traveling wave tubes that converts energy in the form of a direct current to electromagnetic energy. The idea was to use the electric field of the electromagnetic wave to produce electrons through the field emission process and accelerate these electrons by the same field to produce an electric current across a large potential difference. The acceleration process was that of cyclotron auto-resonance. Since that time, this rather speculative ideas has been developed into a method that shows great promise and for which a patent is pending and a prototype design will be demonstrated in a potential laser power beaming application. From the point of view of the author, a forum such as Vision-21 is becoming an essential component in the rather conservative climate in which our initiatives for space exploration are presently formed. Exchanges such as Vision-21 not only allows us to deviate from the 'by-the-book' approach and rediscover the ability and power in imagination, but provides for the discussion of ideas hitherto considered 'crazy' so that they may be given the change to transcend from the level of eccentricity to applicability.

  12. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    NASA Astrophysics Data System (ADS)

    Westerhof, E.; Nielsen, S. K.; Oosterbeek, J. W.; Salewski, M.; de Baar, M. R.; Bongers, W. A.; Bürger, A.; Hennen, B. A.; Korsholm, S. B.; Leipold, F.; Moseev, D.; Stejner, M.; Thoen, D. J.

    2009-09-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power heating beam. The density determines the detailed phasing of the scattered radiation relative to the O-point passage. The scattering power depends strongly nonlinearly on the heating beam power.

  13. Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    NASA Astrophysics Data System (ADS)

    Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.

    2016-08-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm- 3] ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1to100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with lognormal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{turb}/{p_{{0}}} =23.07 (n_{{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2{M}2))^{1.49}(n_{{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

  14. Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    NASA Astrophysics Data System (ADS)

    Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.

    2016-08-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media with uniform (and with stellar wind blown bubbles), power-law, and turbulent density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with $n(r) \\sim$ $r^{-2}$ (for $n(r) > n_{_{\\rm floor}}$) the amount of momentum injection is solely regulated by the background density $n_{_{\\rm floor}}$ and compares to $n_{_{\\rm uni}}$ = $n_{_{\\rm floor}}$. However, in turbulent ambient media with log-normal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as $p_{_{\\rm turb}}/\\mathrm{p_{_{0}}}\\ =23.07\\, \\left(\\frac{n_{_{0,\\rm turb}}}{1\\,{\\rm cm}^{-3}}\\right)^{-0.12} + 0.82 (\\ln(1+b^{2}\\mathcal{M}^{2}))^{1.49}\\left(\\frac{n_{_{0,\\rm turb}}}{1\\,{\\rm cm}^{-3}}\\right)^{-1.6}$. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

  15. Supernova-blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    NASA Astrophysics Data System (ADS)

    Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.

    2016-05-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm-3 ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1 - 100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with log-normal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{_turb}/p_{0} =23.07 (n_{_{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2M2))^{1.49}(n_{_{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

  16. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  17. Experimental study of breaking and energy dissipation in surface waves

    NASA Astrophysics Data System (ADS)

    Ruiz Chavarria, Gerardo; Le Gal, Patrice; Le Bars, Michael

    2014-11-01

    We present an experimental study of the evolution of monochromatic waves produced by a parabolic wave maker. Because of the parabolic shape of the wave front, the waves exhibit spatial focusing and their amplitude dramatically increases over distances of a few wavelengths. Unlike linear waves, the amplitude of the free surface deformation cannot exceed a certain threshold and when this happens the waves break. In order to give a criterion for the appearance of breaking, we calculate the steepness defined as ɛ = H/ λ (where H is the wave height and λ their wavelength) for waves of frequencies in the range 4-10 Hz. We found that wave breaking develops when ɛ attains approximately a value of 0.10. We also evaluate the lost of energy carried by the waves during their breaking by a detailed and accurate measurement of their amplitude using an optical Fourier transform profilometry. G. Ruiz Chavarria acknowledges DGAPA-UNAM by support under Project IN 116312 (Vorticidad y ondas no lineales en fluidos).

  18. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    SciTech Connect

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  19. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    NASA Astrophysics Data System (ADS)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  20. Wave propagation downstream of a high power helicon in a dipolelike magnetic field

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Winglee, Robert; Roberson, B. Race

    2010-01-01

    The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.

  1. Wave propagation downstream of a high power helicon in a dipolelike magnetic field

    SciTech Connect

    Prager, James; Winglee, Robert; Roberson, B. Race; Ziemba, Timothy

    2010-01-15

    The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.

  2. Equilibrium shoreline response of a high wave energy beach

    NASA Astrophysics Data System (ADS)

    Yates, M. L.; Guza, R. T.; O'Reilly, W. C.; Hansen, J. E.; Barnard, P. L.

    2011-04-01

    Four years of beach elevation surveys at Ocean Beach, San Francisco, California, are used to extend an existing equilibrium shoreline change model, previously calibrated with fine sand and moderate energy waves, to medium sand and higher-energy waves. The shoreline, characterized as the cross-shore location of the mean high water contour, varied seasonally by between 30 and 60 m, depending on the alongshore location. The equilibrium shoreline change model relates the rate of horizontal shoreline displacement to the hourly wave energy E and the wave energy disequilibrium, the difference between E and the equilibrium wave energy that would cause no change in the present shoreline location. Values for the model shoreline response coefficients are tuned to fit the observations in 500 m alongshore segments and averaged over segments where the model has good skill and the estimated effects of neglected alongshore sediment transport are relatively small. Using these representative response coefficients for 0.3 mm sand from Ocean Beach and driving the model with much lower-energy winter waves observed at San Onofre Beach (also 0.3 mm sand) in southern California, qualitatively reproduces the small seasonal shoreline fluctuations at San Onofre. This consistency suggests that the shoreline model response coefficients depend on grain size and may be constant, and thus transportable, between sites with similar grain size and different wave climates. The calibrated model response coefficients predict that for equal fluctuations in wave energy, changes in shoreline location on a medium-grained (0.3 mm) beach are much smaller than on a previously studied fine-grained (0.2 mm) beach.

  3. Equilibrium shoreline response of a high wave energy beach

    USGS Publications Warehouse

    Yates, M.L.; Guza, R.T.; O'Reilly, W. C.; Hansen, J.E.; Barnard, P.L.

    2011-01-01

    Four years of beach elevation surveys at Ocean Beach, San Francisco, California, are used to extend an existing equilibrium shoreline change model, previously calibrated with fine sand and moderate energy waves, to medium sand and higher-energy waves. The shoreline, characterized as the cross-shore location of the mean high water contour, varied seasonally by between 30 and 60 m, depending on the alongshore location. The equilibrium shoreline change model relates the rate of horizontal shoreline displacement to the hourly wave energy E and the wave energy disequilibrium, the difference between E and the equilibrium wave energy that would cause no change in the present shoreline location. Values for the model shoreline response coefficients are tuned to fit the observations in 500 m alongshore segments and averaged over segments where the model has good skill and the estimated effects of neglected alongshore sediment transport are relatively small. Using these representative response coefficients for 0.3 mm sand from Ocean Beach and driving the model with much lower-energy winter waves observed at San Onofre Beach (also 0.3 mm sand) in southern California, qualitatively reproduces the small seasonal shoreline fluctuations at San Onofre. This consistency suggests that the shoreline model response coefficients depend on grain size and may be constant, and thus transportable, between sites with similar grain size and different wave climates. The calibrated model response coefficients predict that for equal fluctuations in wave energy, changes in shoreline location on a medium-grained (0.3 mm) beach are much smaller than on a previously studied fine-grained (0.2 mm) beach. Copyright ?? 2011 by the American Geophysical Union.

  4. Energy, A Crisis in Power.

    ERIC Educational Resources Information Center

    Holdren, John; Herrera, Philip

    The demand of Americans for more and more power, particularly electric power, contrasted by the deep and growing concern for the environment and a desire by private citizens to participate in the public decisions that affect the environment is the dilemma explored in this book. Part One by John Holdren, offers a scientist's overview of the energy…

  5. An array effect of wave energy farm buoys

    NASA Astrophysics Data System (ADS)

    Kweon, Hyuck-Min; Lee, Jung-Lyul

    2012-12-01

    An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion.Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.

  6. Pulsed Power Driven Fusion Energy

    SciTech Connect

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  7. Energy Budget of Alfven Wave Interactions with the Auroral Acceleration Region

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Fedorov, E.; Engebretson, M. J.

    2003-12-01

    Recent Polar satellite observations of intense Alfven ULF bursts over auroral arcs prompted researchers to suggest that ULF wave activity does provide energy to the auroral arc intensification. However, to provide physical grounds for this suggestion, it is important to know possible bounds on the rate of the ULF wave energy transfer into electron acceleration. To estimate the power dissipated in the ionosphere and that transferred into electron acceleration, we consider the interaction of magnetospheric Alfven waves with the auroral ionosphere, comprising the auroral acceleration region (AAR). The AAR is characterized by a mirror resistance to the field-aligned upward current that can provide the potential drop and the acceleration of electrons. Analytical treatment of the interaction of Alfven waves with the combined magnetosphere-AAR-topside ionosphere-E-layer system has been made within the "thin" AAR approximation, which is valid for small-scale disturbances. The input of Alfven waves into the energy balance of the AAR depends critically on their transverse scale. Only waves with scales comparable to the Alfven transit scale, that is kperpendicular to λ A ˜= 1, will provide energy into electron acceleration. This process is expected to be more effective above a conductive ionosphere. These theoretical predictions could be verified with the multi-satellite measurements in the Cluster-2 mission.

  8. Full Band Millimeter-Wave Power-Combining Amplifier Using a Lossy Power-Combining Network

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoqiang; Yang, Guiting; Zhang, Yunhua; Zhao, Xuan; She, Yuchen

    2016-04-01

    This paper presents a millimeter-wave broadband power-combining amplifier using a novel lossy waveguide-based power combiner. The lossy combiner has a performance of broadband low-loss combining symmetrically and has properties of good match and high isolation at and between ports, because lossy planar lines are embedded in the lossy combiner and even-mode excitations are weakened. The measured results show that the lossy combiners has a loss of about 0.14 dB and achieves reflection and isolation of about—15 dB in 26.5-40 GHz. And then, using the lossy combiner, a compact lossy waveguide-based four-way-combining network is fabricated. The lossy network has a measured loss of about 0.25 dB and achieves good improvements of match and isolation in the full Ka-band. The improvements can enhance stability of amplifying units when the lossy combining network used in multi-way power-combining amplifier. Using the lossy combining network, a solid-state power-combining amplifier is developed, and corresponding experimental results show that output power is more than 30 dBm and combining efficiency is more than 80 % in the full Ka-band.

  9. Effects of wave induced motion on power generation of offshore floating wind farms

    NASA Astrophysics Data System (ADS)

    Shoele, Kourosh

    2014-11-01

    Wind power has been the world's fastest growing energy source for more than a decade. There is a continuous effort to study the potentials of offshore floating wind farms in producing electricity. One of the major technical challenges in studying the performance of offshore floating wind farms is the hydrodynamic and aerodynamic interactions between individual turbines. In this study, a novel approach is presented to study the hydrodynamic interaction between group of floating wind turbines and determine how wave induced motion of the platforms modifies the power generation of the farm. In particular, exact analytical models are presented to solve the hydrodynamic diffraction and radiation problem of a group of floating wind turbine platforms, to model the aerodynamic interaction between turbines, and to quantify the nonlinear dynamic of the mooring lines used to stabilize the floating platforms through connecting them to the seabed. The overall performance of the farm with different configuration and at different wind and wave conditions are investigated and the effects of the sea state condition as well as the distance between the turbines in the farm on the low frequency temporal variation of the power output are discussed.

  10. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system. PMID:21721690