Baryon scattering at high energies: wave function, impact factor, and gluon radiation
NASA Astrophysics Data System (ADS)
Bartels, J.; Motyka, L.
2008-05-01
The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark antiquark pair in ?* scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in ?* scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the ?*-initiated quark antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2?4 transition vertex (triple pomeron vertex). The odderon term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three-reggeized gluon state, which then, via a new 3?4 transition vertex, couples to the four-gluon (two-pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes.
Adaptive multiconfigurational wave functions
NASA Astrophysics Data System (ADS)
Evangelista, Francesco A.
2014-03-01
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N2 and the potential energy curves for the first three singlet states of C2. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu2O_2^{2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Adaptive multiconfigurational wave functions
Evangelista, Francesco A.
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Joulakian, B.; Hanssen, J.; Rivarola, R.; Motassim, A. [Institut de Physique, Laboratoire de Physique Moleculaire et des Collisions, Universite de Metz, Technopole 2000, 1 Rue Arago, 57078 Metz Cedex 3 (France)] [Institut de Physique, Laboratoire de Physique Moleculaire et des Collisions, Universite de Metz, Technopole 2000, 1 Rue Arago, 57078 Metz Cedex 3 (France); [Instituto de Fisica Rosario (Consejo National de Investigaciones Cientificas y Tecnicas y Universidad Nacional de Rosario), Avenida Pellegrini 250, 2000 Rosario (Argentina)
1996-08-01
The differential cross section of the dissociative ionization of H{sub 2}{sup +} by fast (2-keV) electron impact is determined theoretically using a two-center continuum wave function for the slow (50-eV) ejected electron satisfying the correct boundary conditions. The variation of the sevenfold differential cross section with the scattering angle for fixed molecular alignment shows diffraction patterns, which differ from those obtained by the multicenter atomic model of Messiah. The effect of the molecular alignment is studied for small, intermediate, and large scattering angles. This reveals preferential directions for the internuclear axis. {copyright} {ital 1996 The American Physical Society.}
Wave Function as Geometric Entity
NASA Astrophysics Data System (ADS)
Lev, Bohdan I.
A new approach to the geometrization of the electron theory is proposed. The particle wave function is represented by a geometric entity, i.e., Clifford number, with the translation rules possessing the structure of Dirac equation for any manifold. A solution of this equation is obtained in terms of geometric treatment. Interference of electrons whose wave functions are represented by geometric entities is considered. New experiments concerning the geometric nature of electrons are proposed.
Wave-function functionals for the density
Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht [Sacred Heart University, Fairfield, Connecticut 06825 (United States); Faculty of Science, Ningbo University, 315211 Ningbo (China); Brooklyn College and The Graduate School of the City University of New York, New York, New York 10016 (United States)
2011-11-15
We extend the idea of the constrained-search variational method for the construction of wave-function functionals {psi}[{chi}] of functions {chi}. The search is constrained to those functions {chi} such that {psi}[{chi}] reproduces the density {rho}(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals {psi}[{chi}] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals {psi}[{chi}] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W={Sigma}{sub i}r{sub i}{sup n}, n=-2,-1,1,2, W={Sigma}{sub i}{delta}(r{sub i}) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2){Sigma}{sub i}{nabla}{sub i}{sup 2}, the two-particle operators W={Sigma}{sub n}u{sup n}, n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|, and the energy are accurate. We note that the construction of such functionals {psi}[{chi}] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional {psi}[{chi}] is closer to the true wave function.
Wave functions of linear systems
Tomasz Sowinski
2007-06-05
Complete analysis of quantum wave functions of linear systems in an arbitrary number of dimensions is given. It is shown how one can construct a complete set of stationary quantum states of an arbitrary linear system from purely classical arguments. This construction is possible because for linear systems classical dynamics carries the whole information about quantum dynamics.
Meson wave function from holographic approaches
Vega, Alfredo; Schmidt, Ivan [Departamento de Fisica y Centro de Estudios Subatomicos, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile); Branz, Tanja; Gutsche, Thomas; Lyubovitskij, Valery E. [Institut fuer Theoretische Physik, Universitaet Tuebingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)
2010-08-04
We discuss the light-front wave function for the valence quark state of mesons using the AdS/CFT correspondence. We consider two kinds of wave functions obtained in different holographic Soft-Wall approaches.
Dirac wave functions in nuclear distorted-wave calculations
Rost, E.; Shepard, J.R.; Murdock, D.
1982-08-16
A distorted-wave formulation of simple direct nuclear reactions, using Dirac wave functions, is presented. The resulting amplitude contains interior damping due to relativistic Darwin terms. The calculations are compared with standard Schroedinger results and significant differences are found.
The destructive impact of the rogue waves
NASA Astrophysics Data System (ADS)
Shamin, Roman
2013-04-01
In our talk rogue waves at the ocean will be considered. By means of numerical modeling dangerous impact of rogue waves on the ships and oil rigs is calculated. Cases when these waves can bring in accident are considered. Using statistics of emergence of waves (see [1]-[2]), it is possible to estimate risks in each case. These results can be used for safety of the ships and oil rigs from rogue waves. References [1] V.E. Zakharov, A.I. Dyachenko, R.V. Shamin. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y [2] V.E. Zakharov, R.V. Shamin. Statistics of rogue waves in computer experiments // JETP Letters, 2012, V. 96, Issue 1, pp 66-69.
Impact produced stress waves in composites
Clements, B.; Johnson, J.; Addessio, F.; Hixson, R.
1997-05-01
The Nonhomogenized Dynamic Method of Cells (NHDMOC) is used to study the propagation of stress waves through laminates. The accuracy of the theory is tested by applying it to a plate-impact experiment and checking its ability to resolve a propagation shock wave front. The theory is then compared to Lagrangian hydrodynamic calculations, where it is found that the NHDMOC consistently requires less fine spatial and temporal grids, and less artificial viscosity to control numerical noise. The theory is then used to treat the impact of an epoxy-graphite bilaminate. When the viscoelastic properties of the epoxy are accounted for, the theory agrees well with the experiment.
Modular matrices from universal wave-function overlaps in Gutzwiller-projected parton wave functions
Mei, Jia-Wei
We implement the universal wave-function overlap (UWFO) method to extract modular S and T matrices for topological orders in Gutzwiller-projected parton wave functions (GPWFs). The modular S and T matrices generate a ...
Meson wave function from holographic models
Vega, Alfredo; Schmidt, Ivan [Departamento de Fisica y Centro de Estudios Subatomicos, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile); Branz, Tanja; Gutsche, Thomas; Lyubovitskij, Valery E. [Institut fuer Theoretische Physik, Universitaet Tuebingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)
2009-09-01
We consider the light-front wave function for the valence quark state of mesons using the AdS/CFT correspondence, as has been suggested by Brodsky and Teramond. Two kinds of wave functions, obtained in different holographic Soft-Wall models, are discussed.
The wave functions of the octet baryons
Zhitnitskii, I. R.; Ogloblin, A. A.; Chernyak, V. L.
1988-11-01
By means of the QCD sum-rule method we investigate the properties of theleading-twist wave functions of the baryons of the nucleon octet. From theresults of analyzing the sum rules we construct model wave functions. Wecalculate the asymptotic behavior of the magnetic form factors of the hyperons.
Gravity-Related Wave Function Collapse
NASA Astrophysics Data System (ADS)
Diósi, Lajos
2014-05-01
The gravity-related model of spontaneous wave function collapse, a longtime hypothesis, damps the massive Schrödinger Cat states in quantum theory. We extend the hypothesis and assume that spontaneous wave function collapses are responsible for the emergence of Newton interaction. Superfluid helium would then show significant and testable gravitational anomalies.
Stress Wave Source Characterization: Impact, Fracture, and Sliding Friction
NASA Astrophysics Data System (ADS)
McLaskey, Gregory Christofer
Rapidly varying forces, such as those associated with impact, rapid crack propagation, and fault rupture, are sources of stress waves which propagate through a solid body. This dissertation investigates how properties of a stress wave source can be identified or constrained using measurements recorded at an array of sensor sites located far from the source. This methodology is often called the method of acoustic emission and is useful for structural health monitoring and the noninvasive study of material behavior such as friction and fracture. In this dissertation, laboratory measurements of 1--300 mm wavelength stress waves are obtained by means of piezoelectric sensors which detect high frequency (10 kHz--3MHz) motions of a specimen's surface, picometers to nanometers in amplitude. Then, stress wave source characterization techniques are used to study ball impact, drying shrinkage cracking in concrete, and the micromechanics of stick-slip friction of Poly(methyl methacrylate) (PMMA) and rock/rock interfaces. In order to quantitatively relate recorded signals obtained with an array of sensors to a particular stress wave source, wave propagation effects and sensor distortions must be accounted for. This is achieved by modeling the physics of wave propagation and transduction as linear transfer functions. Wave propagation effects are precisely modeled by an elastodynamic Green's function, sensor distortion is characterized by an instrument response function, and the stress wave source is represented with a force moment tensor. These transfer function models are verified though calibration experiments which employ two different mechanical calibration sources: ball impact and glass capillary fracture. The suitability of the ball impact source model, based on Hertzian contact theory, is experimentally validated for small (˜1 mm) balls impacting massive plates composed of four different materials: aluminum, steel, glass, and PMMA. Using this transfer function approach and the two mechanical calibration sources, four types of piezoelectric sensors were calibrated: three commercially available sensors and the Glaser-type conical piezoelectric sensor, which was developed in the Glaser laboratory. The distorting effects of each sensor are modeled using autoregressive-moving average (ARMA) models, and because vital phase information is robustly incorporated into these models, they are useful for simulating or removing sensor-induced distortions, so that a displacement time history can be retrieved from recorded signals. The Glaser-type sensor was found to be very well modeled as a unidirectional displacement sensor which detects stress wave disturbances down to about 1 picometer in amplitude. Finally, the merits of a fully calibrated experimental system are demonstrated in a study of stress wave sources arising from sliding friction, and the relationship between those sources and earthquakes. A laboratory friction apparatus was built for this work which allows the micro-mechanisms of friction to be studied with stress wave analysis. Using an array of 14 Glaser-type sensors, and precise models of wave propagation effects and the sensor distortions, the physical origins of the stress wave sources are explored. Force-time functions and focal mechanisms are determined for discrete events found amid the "noise" of friction. These localized events are interpreted to be the rupture of micrometer-sized contacts, known as asperities. By comparing stress wave sources from stick-slip experiments on plastic/plastic and rock/rock interfaces, systematic differences were found. The rock interface produces very rapid (<1 microsecond) implosive forces indicative of brittle asperity failure and fault gouge formation, while rupture on the plastic interface releases only shear force and produces a source more similar to earthquakes commonly recorded in the field. The difference between the mechanisms is attributed to the vast differences in the hardness and melting temperatures of the two materials, which affect the distribution of asp
The Wave Function and Quantum Reality
Shan Gao
2011-08-04
We investigate the meaning of the wave function by analyzing the mass and charge density distribution of a quantum system. According to protective measurement, a charged quantum system has mass and charge density proportional to the modulus square of its wave function. It is shown that the mass and charge density is not real but effective, and it is formed by the ergodic motion of a localized particle with the total mass and charge of the system. Moreover, it is argued that the ergodic motion is not continuous but discontinuous and random. This result suggests a new interpretation of the wave function, according to which the wave function is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations. It is shown that the suggested interpretation of the wave function disfavors the de Broglie-Bohm theory and the many-worlds interpretation but favors the dynamical collapse theories, and the random discontinuous motion of particles may provide an appropriate random source to collapse the wave function.
Wave functions for fractional Chern insulators
McGreevy, John
We provide a parton construction of wave functions and effective field theories for fractional Chern insulators. We also analyze a strong-coupling expansion in lattice gauge theory that enables us to reliably map the parton ...
On single nucleon wave functions in nuclei
Talmi, Igal [Weizamnn Institute of Science, Rehovot 76100 (Israel)
2011-05-06
The strong and singular interaction between nucleons, makes the nuclear many body theory very complicated. Still, nuclei exhibit simple and regular features which are simply described by the shell model. Wave functions of individual nucleons may be considered just as model wave functions which bear little resemblance to the real ones. There is, however, experimental evidence for the reality of single nucleon wave functions. There is a simple method of constructing such wave functions for valence nucleons. It is shown that this method can be improved by considering the polarization of the core by the valence nucleon. This gives rise to some rearrangement energy which affects the single valence nucleon energy within the nucleus.
Light-cone wave functions of mesons
G. Stoll
1999-04-29
A review of light-cone, covariant and gauge-invariant wave-functions of mesons is presented. They are basic non-perturbative objects needed for hard exclusive processes and for the method of light-cone QCD sum rules. The emphasis is on the vector mesons and a new (model-independent) way of computing the mass corrections of vector-meson wave functions is given.
Time symmetry in wave function collapse models
Daniel Bedingham
2015-02-25
A framework for wave function collapse models that is symmetric under time reversal is presented. Within this framework there are equivalent pictures of collapsing wave functions evolving in both time directions. The backwards-in-time Born rule can be broken by an initial condition on the Universe resulting in asymmetric behaviour. Similarly the forwards-in-time Born rule can in principle be broken by a final condition on the Universe.
The Maxwell wave function of the photon
M. G. Raymer; Brian J. Smith
2006-04-24
James Clerk Maxwell unknowingly discovered a correct relativistic, quantum theory for the light quantum, forty-three years before Einstein postulated the photon's existence. In this theory, the usual Maxwell field is the quantum wave function for a single photon. When the non-operator Maxwell field of a single photon is second quantized, the standard Dirac theory of quantum optics is obtained. Recently, quantum-state tomography has been applied to experimentally determine photon wave functions.
Interferometric Measurement of the Biphoton Wave Function
NASA Astrophysics Data System (ADS)
Beduini, Federica A.; Zieli?ska, Joanna A.; Lucivero, Vito G.; de Icaza Astiz, Yannick A.; Mitchell, Morgan W.
2014-10-01
Interference between an unknown two-photon state (a "biphoton") and the two-photon component of a reference state gives a phase-sensitive arrival-time distribution containing full information about the biphoton temporal wave function. Using a coherent state as a reference, we observe this interference and reconstruct the wave function of single-mode biphotons from a low-intensity narrow band squeezed vacuum state.
NASA Astrophysics Data System (ADS)
Alwan, O.; Chuluunbaatar, O.; Assfeld, X.; Naja, A.; Joulakian, B. B.
2014-11-01
The variation of the triple differential cross section of the (e,2e) simple ionization of CO2 with the direction of the ejected electron is studied. The calculations are performed in the frame of a perturbative first Born procedure, using a three-center Dyson type description for the 1?g bound electron and an approximate three-center continuum solution of the corresponding Schrödinger equation for a specific wave vector {{{k}}e} for the free ejected electron, which satisfies the correct asymptotic boundary condition up to the order O({{(kr)}-2}). Empirical values for the screening of the three nuclei of the target and for the Sommerfeld parameters of the three-center Coulomb continuum function are introduced. The results are compared to existing experimental results and a theoretical result obtained by the same approach, using a Hartree–Fock Slater type orbital.
The Wave Function and Quantum Reality
Gao Shan [Unit for History and Philosophy of Science and Centre for Time, SOPHI, University of Sydney, Sydney, NSW 2006 (Australia)
2011-03-28
We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but be a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. It is further argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. The suggested new interpretation of the wave function provides a natural realistic alternative to the orthodox interpretation, and it also implies that the de Broglie-Bohm theory and many-worlds interpretation are wrong and the dynamical collapse theories are in the right direction by admitting wavefunction collapse.
Functional methods for waves in random media
NASA Technical Reports Server (NTRS)
Chow, P. L.
1981-01-01
Some basic ideas in functional methods for waves in random media are illustrated through a simple random differential equation. These methods are then generalized to solve certain random parabolic equations via an exponential representation given by the Feynman-Kac formula. It is shown that these functional methods are applicable to a number of problems in random wave propagation. They include the forward-scattering approximation in Gaussian white-noise media; the solution of the optical beam propagation problem by a phase-integral method; the high-frequency scattering by bounded random media; and a derivation of approximate moment equations from the functional integral representation.
Functional methods for waves in random media
NASA Technical Reports Server (NTRS)
Chow, P. L.
1981-01-01
Some basic ideas in functional methods for waves in random media are illustrated through a simple random differential equation. These methods are then generalized to solve certain random parabolic equations via an exponential representation given by the Feynman-Kac formula. It is shown that these functional methods are applicable to a number of problems in random wave propagation. They include the forward-scattering approximation in Gaussian white-noise media; the solution of the optical beam propagation problem by a phase-integral method; the high-frequency scattering by bounded random media, and a derivation of approximate moment equations from the functional integral representation.
The evolution of oscillator wave functions
Mark Andrews
2015-09-20
We consider some of the methods that can be used to reveal the general features of how wave functions evolve with time in the harmonic oscillator. We first review the periodicity properties over each multiple of a quarter of the classical period of oscillation. Then we show that any wave function can be simply transformed so that its centroid, defined by the expectation values of position and momentum, remains at rest at the center of the oscillator. This implies that we need only consider the evolution of this restricted class of wave functions; the evolution of all others can be reduced to these. The evolution of the spread in position $\\Delta_x$ and momentum $\\Delta_p$ throws light on energy and uncertainty and on squeezed and coherent states. Finally we show that any wave function can be transformed so that $\\Delta_x$ and $\\Delta_p$ do not change with time and that the evolution of all wave functions can easily be found from the evolution of those at rest at the origin with unchanging $\\Delta_x$ and $\\Delta_p$.
Twist-2 Light-Cone Pion Wave Function
V. M. Belyaev; Mikkel B. Johnson
1997-06-16
We present an analysis of the existing constraints for the twist-2 light-cone pion wave function. We find that existing information on the pion wave function does not exclude the possibility that the pion wave function attains its asymptotic form. New bounds on the parameters of the pion wave function are presented.
Emergence and destruction of macroscopic wave functions
NASA Astrophysics Data System (ADS)
Gertjerenken, Bettina; Holthaus, Martin
2015-08-01
The concept of the macroscopic wave function is a key for understanding macroscopic quantum phenomena. The existence of this object reflects a certain order, as it is present in a Bose-Einstein condensate when a single-particle orbital is occupied by a macroscopic number of bosons. We extend these ideas to situations in which a condensate is acted on by an explicitly time-dependent force. While one might assume that such a force would necessarily degrade any pre-existing order, we demonstrate that macroscopic wave functions can persist even under strong forcing. Our definition of the time-dependent order parameter is based on a comparison of the evolution of N-particle states on the one hand, and of states with N - 1 particles on the other. Our simulations predict the possibility of an almost instantaneous dynamical destruction of a macroscopic wave function under currently accessible experimental conditions.
Plasmon wave function of graphene nanoribbons
NASA Astrophysics Data System (ADS)
Silveiro, I.; Plaza Ortega, J. M.; García de Abajo, F. J.
2015-08-01
We find the low-frequency optical response of highly doped individual and arrayed graphene nanoribbons to be accurately described in terms of plasmon wave functions (PWFs). More precisely, we focus on the lowest-order transverse dipolar mode, for which we define the wave function as the induced charge density associated with the plasmon. We show that a single universal wave function is capable of describing the normal-incidence interaction of paired, co-planar, and stacked arrays of ribbons down to small inter-ribbon distances. Our work provides both intuitive insight into graphene plasmon interactions and a practical way of accurately describing complex graphene geometries based on the PWFs of the individual components.
Spectroscopic measurement of an atomic wave function
NASA Astrophysics Data System (ADS)
Kapale, Kishore T.; Qamar, Shahid; Zubairy, M. Suhail
2003-02-01
We present a simple spectroscopic method based on Autler-Townes spectroscopy to determine the center-of-mass atomic wave function. The detection of spontaneously emitted photons from a three-level atom, in which two upper levels are driven by a classical standing light, yields information about the position and momentum distribution of the atom [A. M. Herkommer, W. P. Schleich, and M. S. Zubairy, J. Mod. Opt. 44, 2507 (1997)]. In this paper, we show that both the amplitude and phase information of the center-of-mass atomic wave function can be obtained from these distributions after a series of conditional measurements on the atom and the emitted photon.
Semiclassical wave functions for open quantum billiards
NASA Astrophysics Data System (ADS)
Lackner, Fabian; B?ezinová, Iva; Burgdörfer, Joachim; Libisch, Florian
2013-08-01
We present a semiclassical approximation to the scattering wave function ?(r,k) for an open quantum billiard, which is based on the reconstruction of the Feynman path integral. We demonstrate its remarkable numerical accuracy for the open rectangular billiard and show that the convergence of the semiclassical wave function to the full quantum state is controlled by the mean path length or equivalently the dwell time for a given scattering state. In the numerical implementation a cutoff length in the maximum path length or, equivalently, a maximum dwell time ?max included implies a finite energy resolution ?E˜?max-1. Possible applications include leaky billiards and systems with decoherence present.
Semiclassical wave functions for open quantum billiards.
Lackner, Fabian; B?ezinová, Iva; Burgdörfer, Joachim; Libisch, Florian
2013-08-01
We present a semiclassical approximation to the scattering wave function ?(r,k) for an open quantum billiard, which is based on the reconstruction of the Feynman path integral. We demonstrate its remarkable numerical accuracy for the open rectangular billiard and show that the convergence of the semiclassical wave function to the full quantum state is controlled by the mean path length or equivalently the dwell time for a given scattering state. In the numerical implementation a cutoff length in the maximum path length or, equivalently, a maximum dwell time ?(max) included implies a finite energy resolution ?E~?(max)(-1). Possible applications include leaky billiards and systems with decoherence present. PMID:24032910
Nonlinear wave function expansions : a progress report.
Shepard, R.; Minkoff, M.; Brozell, S. R.; Chemistry
2007-12-01
Some recent progress is reported for a novel nonlinear expansion form for electronic wave functions. This expansion form is based on spin eigenfunctions using the Graphical Unitary Group Approach and the wave function is expanded in a basis of product functions, allowing application to closed and open shell systems and to ground and excited electronic states. Each product basis function is itself a multiconfigurational expansion that depends on a relatively small number of nonlinear parameters called arc factors. Efficient recursive procedures for the computation of reduced one- and two-particle density matrices, overlap matrix elements, and Hamiltonian matrix elements result in a very efficient computational procedure that is applicable to very large configuration state function (CSF) expansions. A new energy-based optimization approach is presented based on product function splitting and variational recombination. Convergence of both valence correlation energy and dynamical correlation energy with respect to the product function basis dimension is examined. A wave function analysis approach suitable for very large CSF expansions is presented based on Shavitt graph node density and arc density. Some new closed-form expressions for various Shavitt Graph and Auxiliary Pair Graph statistics are presented.
Electron-impact excitation of Li II in the distorted-wave approximation
NASA Technical Reports Server (NTRS)
Pindzola, M. S.; Bhatia, A. K.; Temkin, A.
1980-01-01
The 1(1)S yields 2(3)P electron-impact-excitation cross section for Li II is calculated in the distorted-wave approximation. Two forms of the distorted-wave method are examined; in the first form both the initial and final wave functions are distorted, while in the second form only the initial wave function is distorted. In both forms a partial-wave expansion of the scattered amplitude is made, and exchange is incorporated in a consistent manner. The effects of including more than one configuration in the target-state wave function are also examined. For incident energies greater than 90 eV, distorted-wave calculations agree moderately well with recent experimental and theoretical results.
The wave function of a gravitating shell
V. I. Dokuchaev; S. V. Chernov
2010-10-01
We have calculated a discrete spectrum and found an exact analytical solution in the form of Meixner polynomials for the wave function of a thin gravitating shell in the Reissner-Nordstrom geometry. We show that there is no extreme state in the quantum spectrum of the gravitating shell, as in the case of extreme black hole.
Vortex Wave Function of Bose Superfluid
NASA Astrophysics Data System (ADS)
Tang, Jian-Ming; Thouless, D. J.
1998-03-01
We construct a variational many body wave function for the single vortex state in the Bose superfluid. Following the quantization scheme developed by Peierls and Yoccoz(R. E. Peierls and J. Yoccoz, Proc. Phys. Soc. A70), 381 (1957) and by Peierls and Thouless(R. E. Peierls and D. J. Thouless, Nucl. Phys. 38), 354 (1962), a better approximation of the wave function can be obtained by using the superposition of localized ones. The overlap matrix element between two Feynman wave functions localized at different points is calculated. An integral equation is thus developed for the weighting factor. In the two dimensional case, a close analogy to the motion of the electron in the magnetic field is made. A numerical study is conducted for this case in the ideal Boson limit. The result shows the improved Feynman wave functions for the ground states and excited states corresponding to the cyclotron motion. The effective vortex mass is calculated and taken the infinite system limit. The core structure comparing to the Gross-Pitaevskii solution of the non-linear Schrödinger equation will be discussed.
N400: Functional Significance Difference Waves
Coulson, Seana
N400: Functional Significance #12;#12;#12;Difference Waves #12;Sentence Intermediate Words #12;Sensitivity to Cloze Probability · Cloze Probability · Graded Sensitivity Unexpected: · Large Negativity of word recognition? #12;Materials #12;Results LONG SOA · Nonhomograph · N4 unrelated > N4 contextually
Spectroscopic measurement of an atomic wave function
Kapale, KT; Qamar, S.; Zubairy, M. Suhail.
2003-01-01
We present a simple spectroscopic method based on Autler-Townes spectroscopy to determine the center-of-mass atomic wave function. The detection of spontaneously emitted photons from a three-level atom, in which two upper levels are driven by a...
Stream function solutions for steady water waves
NASA Astrophysics Data System (ADS)
Huang, Min-Chih; Hudspeth, Robert T.
Two stream function solutions for steady two-dimensional water waves are reviewed. The algorithm developed by DALRYMPLE (1974 , Proc. 6th Conf. Offshore Tech., pp. 843-856) and used by HUDSPETH and SLOTTA (1978 , Proceedings of the American Society of Civil Engineers, 104, 319-334) is compared with the algorithm developed by CHAPLIN (1980 , Coastal Engineering, 3, 179-205). By examining more closely the near-breaking wave conditions, it is shown that celerity does not increase monotonically with increasing dimensionless wave steepness. Numerical comparisons between the two algorithms indicate that the Dalrymple algorithm is more accurate for near-breaking waves and requires less computer programming effort. Neither algorithm appears to be able to predict breaking wave conditions as accurately as the COKELET (1977 , Philosophical Transactions of the Royal Society of London, A286, 183-230) algorithm. Numerical comparisons of the Dalrymple free surface error convergence criteria with the Chaplin significant figures convergence criteria indicate that the free surface error convergence criterion is more consistent for stream function representations.
STUDY OF BLAST WAVE IMPACT ON CONCRETE AJIT GEEVARGHESE JOHN
Texas at Arlington, University of
STUDY OF BLAST WAVE IMPACT ON CONCRETE by AJIT GEEVARGHESE JOHN Presented to the Faculty Company. #12;ii ACKNOWLEDGEMENTS I would like to express my deep gratitude and admiration to my advisor OF BLAST WAVE IMPACT ON CONCRETE Publication No. ______ Ajit Geevarghese John, M.S. The University of Texas
Impact detection using ultrasonic waves based on artificial immune system
NASA Astrophysics Data System (ADS)
Okamoto, Keisuke; Mita, Akira
2009-03-01
This paper presents a structural health monitoring system for judging structural condition of metallic plates by analyzing ultrasonic waves. Many critical accidents of structures like buildings and aircrafts are caused by small structural errors; cracks and loosened bolts etc. This is a reason why we need to detect little errors at an early stage. Moreover, to improve precision and to reduce cost for damage detection, it is necessary to build and update the database corresponding to environmental change. This study focuses our attention on the automatable structures, specifically, applying artificial immune system (AIS) algorithm to determine the structure safe or not. The AIS is a novelty computational detection algorithm inspired from biological defense system, which discriminates between self and non-self to reject nonself cells. Here, self is defined to be normal data patterns and non-self is abnormal data patterns. Furthermore, it is not only pattern recognition but also it has a storage function. In this study, a number of impact resistance experiments of duralumin plates, with normal structural condition and abnormal structural condition, are examined and ultrasonic waves are acquired by AE sensors on the surface of the aluminum plates. By accumulating several feature vectors of ultrasonic waves, a judging method, which can determine an abnormal wave as nonself, inspired from immune system is created. The results of the experiments show good performance of this method.
Hadron wave functions and pion decay constant
NASA Astrophysics Data System (ADS)
Hwa, Rudolph C.; Lam, C. S.
1982-11-01
Low-Q2 form factors of hadrons are described in terms of their constituents (valons). Their behaviors at low Q2 are contrasted with those at high Q2, and the inappropriateness of extrapolating from one region to the other is emphasized. On the basis of the valon model the wave functions of hadrons are determined from the data on form factors. The result is used to calculate the ratio F?(Q2)Fp(Q2) at intermediate values of Q2, and agreement with data is found for Q2<10 GeV2. The pion decay constant is then calculated with the help of the pion wave function so determined; the result f?=102 MeV agrees with data to within 10%.
Wave function methods for fractional electrons
NASA Astrophysics Data System (ADS)
Steinmann, Stephan N.; Yang, Weitao
2013-08-01
Determining accurate chemical potentials is of considerable interest in various chemical and physical contexts: from small molecular charge-transfer complexes to bandgap in bulk materials such as semi-conductors. Chemical potentials are typically evaluated either by density functional theory, or, alternatively, by computationally more intensive Greens function based GW computations. To calculate chemical potentials, the ground state energy needs to be defined for fractional charges. We thus explore an extension of wave function theories to fractional charges, and investigate the ionization potential and electron affinity as the derivatives of the energy with respect to the electron number. The ultimate aim is to access the chemical potential of correlated wave function methods without the need of explicitly changing the numbers of electrons, making the approach readily applicable to bulk materials. We find that even though second order perturbation theory reduces the fractional charge error considerably compared to Hartree-Fock and standard density functionals, higher order perturbation theory is more accurate and coupled-cluster approaches are even more robust, provided the electrons are bound at the Hartree-Fock level. The success of post-HF approaches to improve over HF relies on two equally important aspects: the integer values are more accurate and the Coulomb correlation between the fractionally occupied orbital and all others improves the straight line behavior significantly as identified by a correction to Hartree-Fock. Our description of fractional electrons is also applicable to fractional spins, illustrating the ability of coupled-cluster singles and doubles to deal with two degenerate fractionally occupied orbitals, but its inadequacy for three and more fractional spins, which occur, for instance, for spherical atoms and when dissociating double bonds. Our approach explores the realm of typical wave function methods that are applied mostly in molecular chemistry, but become available to the solid state community and offer the advantage of an integrated approach: fundamental gap, relative energies, and optimal geometries can be obtained at the same level.
The wave functions of the. Sigma. * and. Xi. * hyperons
Ogloblin, A.A. )
1989-07-01
The QCD sum-rule technique is used to study the properties of the leading-twist wave functions of the {Sigma}*(1385) and {Xi}*(1530) hyperons. Model wave functions are proposed which satisfy the QCD sum roles. These wave functions are used to calculate the electromagnetic form factors of the {Sigma}* and {Xi}* resonances and the form factors for octet---decuplet transitions.
Impact of Functionally Graded Cylinders: Theory
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, S. M. (Technical Monitor)
2001-01-01
This final report summarizes the work funded under the Grant NAG3-2411 during the 04/05/2000-04/04/2001 period. The objective of this one-year project was to generalize the theoretical framework of the two-dimensional higher-order theory for the analysis of cylindrical functionally graded materials/structural components employed in advanced aircraft engines developed under past NASA Glenn funding. The completed generalization significantly broadens the theory's range of applicability through the incorporation of dynamic impact loading capability into its framework. Thus, it makes possible the assessment of the effect of damage due to fuel impurities, or the presence of submicron-level debris, on the life of functionally graded structural components. Applications involving advanced turbine blades and structural components for the reusable-launch vehicle (RLV) currently under development will benefit from the completed work. The theory's predictive capability is demonstrated through a numerical simulation of a one-dimensional wave propagation set up by an impulse load in a layered half-plane. Full benefit of the completed generalization of the higher-order theory described in this report will be realized upon the development of a related computer code.
Primordial gravitational waves and the collapse of the wave function
Leon, Gabriel; Landau, Susana J
2015-01-01
"The self-induced collapse hypothesis'' has been introduced by D. Sudarsky and collaborators to explain the origin of cosmic structure from a perfect isotropic and homogeneous universe during the inflationary regime. In this paper, we calculate the power spectrum for the tensor modes, within the semiclassical gravity approximation, with the additional hypothesis of a generic self-induced collapse of the inflaton's wave function; we also compute an estimate for the tensor-to-scalar ratio. Based on this calculation, we show that the considered proposal exhibits a strong suppression of the tensor modes amplitude; nevertheless, the corresponding amplitude is still consistent with the joint BICEP/KECK and Planck collaborations limit on the tensor-to-scalar ratio.
Relativistic Wave Functions and Their Applications.
NASA Astrophysics Data System (ADS)
Hussar, Paul Edward
The covariant harmonic oscillator model is presented as a scheme which successfully unites the special theory of relativity with probabalistic quantum mechanics, and which exhibits many features compatible with the behavior of observed hadrons. The quarks are confined in the oscillator model. The parton model is reviewed with an emphasis given to the critical role of the Lorentz transformation in this picture. Quantum chromodynamics (QCD), in conjunction with perturbation theory and the renormalization group, yields a way of understanding the change in the parton densities with the four momentum transfer, but leaves unresolved the question of how to describe the underlying hadron wave function. The valon model attempts to do just this in a phenomenological way by making an extrapolation of the usual QCD analysis. The relativistic oscillator is shown to yield close agreement with the phenomenological valon momentum fraction distribution functions. Nucleon structure functions obtained from the relativistic oscillator in this picture are seen to give good agreement with experiment. Structure functions of mesons obtained along similar lines give good agreement with regard to shape, but there are questions regarding the normalization. Several recent models which introduce the quark spin into the oscillator system are then examined. It is shown that the Poincare group provides a unifying language in terms of which the essential similarity of these models can be seen. A general form for the solutions of the equations provided by the different models is obtained in terms of wave functions which are diagonal under the action of the Poincare group Casimir operators. The solutions to these models are compared with the observed mass spectra. The electromagnetic interaction is introduced into two of these schemes along lines previously used for the spinless oscillator. The resulting pion form factor exhibits a power-law fall-off behavior which is functionally compatible with the data.
Breaking wave impact on a slender horizontal cylinder
Prasad, S.; Isaacson, M.; Chan, E.S.
1994-12-31
The present paper describes the results of an experimental study of impact forces due to plunging wave action on a horizontal circular cylinder located near the still water level. The vertical and horizontal components of the impact force on the cylinder due to a single plunging wave have been measured for 3 elevations of the cylinder, and 6 locations of wave breaking relative to the horizontal location of the cylinder. A video record of the impact process has been used to estimate the kinematics of the wave and plunging jet prior to impact. The force measurements have been corrected for the dynamic response of the cylinder, and analyzed to obtain slamming coefficients and rise times. It is observed that the cylinder elevation and its horizontal location have a significant effect on the peak impact force. The magnitude of the impact force due to a breaking wave is 4 to 20 times greater than that due to a regular non-breaking wave of similar height and period. In addition to the fluid velocity, the curvature of the water surface has a noticeable effect on the peak impact force.
Functional evolution of quantum cylindrical waves
Demian H. J. Cho; Madhavan Varadarajan
2006-10-16
Kucha{\\v{r}} showed that the quantum dynamics of (1 polarization) cylindrical wave solutions to vacuum general relativity is determined by that of a free axially-symmetric scalar field along arbitrary axially-symmetric foliations of a fixed flat 2+1 dimensional spacetime. We investigate if such a dynamics can be defined {\\em unitarily} within the standard Fock space quantization of the scalar field. Evolution between two arbitrary slices of an arbitrary foliation of the flat spacetime can be built out of a restricted class of evolutions (and their inverses). The restricted evolution is from an initial flat slice to an arbitrary (in general, curved) slice of the flat spacetime and can be decomposed into (i) `time' evolution in which the spatial Minkowskian coordinates serve as spatial coordinates on the initial and the final slice, followed by (ii) the action of a spatial diffeomorphism of the final slice on the data obtained from (i). We show that although the functional evolution of (i) is unitarily implemented in the quantum theory, generic spatial diffeomorphisms of (ii) are not. Our results imply that a Tomanaga-Schwinger type functional evolution of quantum cylindrical waves is not a viable concept even though, remarkably, the more limited notion of functional evolution in Kucha{\\v{r}}'s `half parametrized formalism' is well-defined.
Wave functions of log-periodic oscillators
Bessa, V.; Guedes, I. [Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Fortaleza, CE 60455-760 (Brazil)
2011-06-15
We use the Lewis and Riesenfeld invariant method [J. Math. Phys. 10, 1458 (1969)] and a unitary transformation to obtain the exact Schroedinger wave functions for time-dependent harmonic oscillators exhibiting log-periodic-type behavior. For each oscillator we calculate the quantum fluctuations in the coordinate and momentum as well as the quantum correlations between the coordinate and momentum. We observe that the oscillator with m=m{sub 0}t/t{sub 0} and {omega}={omega}{sub 0}t{sub 0}/t, which exhibits an exact log-periodic oscillation, behaves as the harmonic oscillator with m and {omega} constant.
Photon wave functions and quantum interference experiments
G. G. Lapaire; J. E. Sipe
2006-07-02
We present a general theory to describe two-photon interference, including a formal description of few photon intereference in terms of single-photon amplitudes. With this formalism, it is possible to describe both frequency entangled and separable two-photon interference in terms of single-photon wave functions. Using this description, we address issues related to the physical interpretation of two-photon interference experiments. We include a discussion on how few-photon interference can be interpreted as a bosonic exchange effect, and how this relates to traditional exchange effects with fermions.
A Hammer-Impact, Aluminum, Shear-Wave Seismic Source
Haines, Seth S.
2007-01-01
Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.
Adiabatic corrections to density functional theory energies and wave functions.
Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas
2008-09-25
The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228
Green function for three-wave coupling problems
Molevich, N E
2001-07-31
The Green function is found for three-wave coupling problems. The function was used for analysis of parametric amplification in dissipative and active media. It is shown that the parametric increment in active media can become exponential. As an example, the nonstationary stimulated scattering of electromagnetic waves by sound and temperatures waves is considered. (nonlinear optical phenomena)
Second order distorted wave calculations for electron impact ionization processes
NASA Astrophysics Data System (ADS)
Chen, Zhangjin
Electron impact ionization of atoms provides a fundamental test of the current understanding of atomic structure as well as our understanding of the three body problem. Triple differential cross sections (TDCS), measured in the coincidence experiment, provide the most sensitive test of the theory of electron impact ionization processes. It was found two decades ago that second-order effects were crucial in explaining both the positions and magnitudes of the binary and recoil peaks in the TDCS. However, the existing theoretical calculations of second-order amplitudes typically resort to simplifying approximations, such as the closure approximation or neglecting the real part of the Green's function, to make the calculation tractable. In this work, we have developed a second-order distorted wave (DWB2) theory for atomic ionization which does not make these approximations. The DWB2 theory has been used to calculate the TDCS for electron impact ionization of hydrogen. It is found that the DWB2 results are in good agreement with absolute experimental measurements for incident energy greater than 100 eV. We have also performed DWB2 calculations for electron impact ionization of helium with the residual ion left in the n=1 and 2 states at intermediate energies in coplanar asymmetric geometry. Both the neutral and ionic distorting potentials are employed for the projectile in the final state. It has been found that the DWB2 results with the ionic distorting potential are in better agreement with experiment for the case in which the residual ion is left in the excited states. We have also performed the calculations to check the validity of the closure approximation and the simplified Green's function approximation and found that these approximations are not accurate for non-coplanar geometry and low incident energies.
Deep Inelastic Scattering and Light-Cone Wave Functions
V. M. Belyaev; Mikkel B. Johnson
1996-05-11
In the framework of light-cone QCD sum rules, we study the valence quark distribution function $q(x_B)$ of a pion for moderate $x_B$. The sum rule with the leading twist-2 wave function gives $q(x_B)=\\varphi_\\pi(x_B)$. Twist-4 wave functions give about 30\\% for $x_B\\sim 0.5$. It is shown that QCD sum rule predictions, with the asymptotic pion wave function, are in good agreement with experimental data. We found that a two-hump profile for the twist-2 wave function leads to a valence quark disribution function that contradicts experimental data.
Impact of simulated heat waves on soybean physiology and yield
Technology Transfer Automated Retrieval System (TEKTRAN)
With increases in mean global temperatures and associated climate change, extreme temperature events are predicted to increase in both intensity and frequency. Despite the clearly documented negative public health impacts of heat waves, the impact on physiology and yields of key agricultural species...
Guided ultrasonic waves for impact damage detection in composite panels
NASA Astrophysics Data System (ADS)
Murat, B. I. S.; Khalili, P.; Fromme, P.
2014-03-01
Carbon fiber laminate composites, consisting of layers of polymer matrix reinforced with high strength carbon fibers, are increasingly employed for aerospace structures. They offer advantages for aerospace applications, e.g., good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, fiber and matrix breakage or delaminations can occur, reducing the load carrying capacity of the structure. Efficient structural health monitoring of composite panels can be achieved using guided ultrasonic waves propagating along the structure. Impact damage was induced in the composite panels using standard drop weight procedures. The guided wave scattering at the impact damage was measured using a noncontact laser interferometer, quantified, and compared to baseline measurements on undamaged composite panels. Significant scattering of the first anti-symmetrical (A0) guided wave mode was observed, allowing for the detection of barely visible impact damage. The guided wave scattering was modeled using full three-dimensional Finite Element (FE) simulations, and the influence of the different damage mechanisms investigated. Good agreement between experiments and predictions was found. The sensitivity of guided waves for the detection of barely visible impact damage in composite panels has been verified.
Direct Impacts of Waves on Cold-Point Tropopause Temperature
NASA Astrophysics Data System (ADS)
Kim, J.; Alexander, M.
2013-12-01
Lower stratospheric water vapor is strongly correlated with temperature in the tropical tropopause layer (TTL), especially with cold-point temperature (CPT). Waves control CPT by affecting the TTL dynamics in a direct and indirect way. The indirect impact is to change CPT by changing mean tropical upwelling, a part of the stratospheric Brewer-Dobson circulation driven by waves from the tropics, subtropics, and high latitudes. CPT in the tropics is also directly modulated by vertically propagating waves regardless of any changes in mean upwelling. As the term implies, cold-point temperature will decrease in the presence of waves because the cold-point is more sensitive to the cold phase of the wave than the warm phase. Here we focus on the direct impact of waves on CPT using radiosonde observations. In addition to changes in mean TTL temperatures, decreases in CPTs due to a broad spectrum of waves show significant differences from year to year. The direct modulation of CPT by TTL waves will result in considerable changes in stratospheric humidity. We further discuss if reanalysis data properly capture observed CPTs and decreases in CPTs due to waves. This could be a simple test of the validity of stratospheric water vapor trajectory calculations based on reanalysis temperatures.
NASA Astrophysics Data System (ADS)
O'Dea, A.; Haller, M. C.
2013-12-01
As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN through the external modification of the wave spectra at the device locations, based on a new experimentally determined Power Transfer Function established in an earlier WEC-array laboratory study. Changes in nearshore forcing conditions for each array size and configuration are compared in order to determine the scale of the far-field effects of WEC arrays and which array sizes and configurations could have the most significant impacts on coastal processes.
Wave propagation in a plate after impact by a projectile
NASA Technical Reports Server (NTRS)
El-Raheb, M.; Wagner, P.
1987-01-01
The wave propagation in a circular plate after impact by a cylindrical projectile is studied. In the vicinity of impact, the pressure is computed numerically. An intense pressure pulse is generated that peaks 0.2 microns after impact, then drops sharply to a plateau. The response of the plate is determined adopting a modal solution of Mindlin's equations. Velocity and acceleration histories display both propagating and dispersive features.
Energy partitioning in {sup 1}S-wave electron-impact ionization of atomic hydrogen
Shakeshaft, Robin
2010-03-15
Results of calculations of the integrated cross section and the energy distribution for ionization of ground-state hydrogen by {sup 1}S-wave electron impact are presented. The breakup amplitude is expressed as a volume integral that contains an approximate final-state wave function which accounts for postcollision dynamic screening. The error in this wave function is accounted for by the response function, which is represented on a real discrete (Sturmian) basis, with its physical branch specified by the arrow of time. It is found that the energy distribution is primarily convex for impact energies from about 2 to 10 eV above threshold, and primarily flat from about 10 to 20 eV above threshold. The shape of the energy distribution appears to reflect both the competition between escape and recapture, and the substantial postcollision exchange of energy between the electrons. A rough, nonclassical criterion for predicting the curvature of the energy distribution is derived.
Intercellular Ca2+ Waves: Mechanisms and Function
Sanderson, Michael J.
2012-01-01
Intercellular calcium (Ca2+) waves (ICWs) represent the propagation of increases in intracellular Ca2+ through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca2+ from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs. PMID:22811430
Angular correlation function and scattering coefficient of electromagnetic waves
Zhang, Guifu
Angular correlation function and scattering coefficient of electromagnetic waves scattered We study three-dimensional (3-D) electromagnetic wave scattering from a buried object under a two-3232(98)00412-8] OCIS codes: 290.0290, 290.5880. 1. INTRODUCTION The study of electromagnetic wave scattering
Pain's Impact on Adaptive Functioning
ERIC Educational Resources Information Center
Breau, L. M.; Camfield, C. S.; McGrath, P. J.; Finley, G. A.
2007-01-01
Background: Pain interferes with the functioning of typical children, but no study has examined its effect on children with pre-existing intellectual disabilities (ID). Methods: Caregivers of 63 children observed their children for 2-h periods and recorded in 1-week diaries: pain presence, cause, intensity and duration. Caregivers also recorded…
Heat waves in urban heat islands: interactions, impacts, and mitigation
NASA Astrophysics Data System (ADS)
Bou-Zeid, E.; Li, D.
2013-12-01
Urbanization rates and the intensity of anthropogenic global warming are both on the rise. By the middle of this century, climate change impacts on humans will be largely manifested in urban regions and will result from a combination of global to regional impacts related to greenhouse gas emissions, as well as regional to local impacts related to land-cover changes associated with urbanization. Alarmingly, our understanding of how these two distinct impacts will interact remains very poor. One example, which is the focus of this study, is the interaction of urban heat islands and heat waves. Urban heat islands (UHIs) are spatial anomalies consisting of higher temperatures over built terrain; while their intensity varies with many factors, it consistently increases with city size. UHIs will hence intensify in the future as cities expand. Heat waves are temporal anomalies in the regional temperatures that affect both urban and rural areas; there is high certainty that the frequency and intensity of such waves will increase as a result global warming. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses of a heat wave event over the Baltimore-Washington urban corridor reveals synergistic interactions between urban heat islands and heat waves. Not only do heat waves increase the regional temperatures, but they also intensify the difference between urban and rural temperatures. That is, their impact is stronger in cities and the urban heat stress during such waves is larger than the sum of the background urban heat island effect and the heat wave effect. We also develop a simple analytical model of this interaction that suggests that this exacerbated impact in urban areas is primarily to the lack of surface moisture, with low wind speeds also playing a smaller role. Finally, the effectiveness of cool and green roofs as UHI mitigation strategies during intense heat waves are evaluated at city scales. These strategies are shown to reduce urban surface temperatures in the Baltimore-Washington corridor by about 5 K and urban air temperatures by about 1 K. These reductions are most significant in the dense urban cores of the two cities, but they are not sufficient to fully offset the UHI effect.
Waves in Periodic Dissipative Laminate Metamaterial Generated by Plate Impact
NASA Astrophysics Data System (ADS)
Franco Navarro, Pedro; Benson, David; Nesterenko, Vitali
2015-06-01
Waves generated by plate impact loading of Al/W laminates with different size of cell were investigated numerically depending on the impactor/cell mass ratio. The materials model took into account viscoplastic behavior of materials. It was observed that this mass ratio has a direct impact on the structure of stress pulses traveling through the composite. At the small impactor/cell mass ratio travelling waves closely resembling solitary waves were quickly formed near the impacted surface. They propagate as quasistationary weakly attenuating localized pulses. The properties of these pulses were satisfactory described based on a theoretical model using dispersive and nonlinear parameters of the materials similar to solitary solutions for the Korteweg-de Vries equation (KdV). The temperature at given pressure at the maximum is dramatically different then the temperature corresponding to the shock wave at the same pressure reflecting a different paths of loading. Increase of impactor/cell mass ratio results in the train of solitary like pulses which number increased with the increase of the impactor/cell mass ratio. At large impactor/cell mass ratio oscillatory stationary shock waves were formed. The leading front of these stationary shock waves was closely described by a solitary like pulse observed at small impactor/cell mass ratio. One of the authors (PFN) was supported by UCMexus Fellowship
Rapidity resummation for $B$-meson wave functions
Shen, Yue-Long
2014-01-01
Transverse-momentum dependent (TMD) hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity $\\zeta$ of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for $B$-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic $B$-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of $B$-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive $B$-meson decays. The phenomenological consequence of rapidity-resummation improved $B$-meson wave functions is further discussed in the context of $B \\t...
Shock Waves Impacting Composite Material Plates: The Mutual Interaction
NASA Astrophysics Data System (ADS)
Andreopoulos, Yiannis
2013-02-01
High-performance, fiber-reinforced polymer composites have been extensively used in structural applications in the last 30 years because of their light weight combined with high specific stiffness and strength at a rather low cost. The automotive industry has adopted these materials in new designs of lightweight vehicles. The mechanical response and characterization of such materials under transient dynamic loading caused with shock impact induced by blast is not well understood. Air blast is associated with a fast traveling shock front with high pressure across followed by a decrease in pressure behind due to expansion waves. The time scales associated with the shock front are typically 103 faster than those involved in the expansion waves. Impingement of blast waves on structures can cause a reflection of the wave off the surface of the structure followed by a substantial transient aerodynamic load, which can cause significant deformation and damage of the structure. These can alter the overpressure, which is built behind the reflected shock. In addition, a complex aeroelastic interaction between the blast wave and the structure develops that can induce reverberation within an enclosure, which can cause substantial overpressure through multiple reflections of the wave. Numerical simulations of such interactions are quite challenging. They usually require coupled solvers for the flow and the structure. The present contribution provides a physics-based analysis of the phenomena involved, a critical review of existing computational techniques together with some recent results involving face-on impact of shock waves on thin composite plates.
Retarded Green's function of a Vainshtein system and Galileon waves
NASA Astrophysics Data System (ADS)
Chu, Yi-Zen; Trodden, Mark
2013-01-01
Motivated by the desire to test modified gravity theories exhibiting the Vainshtein mechanism, we solve in various physically relevant limits, the retarded Galileon Green’s function (for the cubic theory) about a background sourced by a massive spherically symmetric static body. The static limit of our result will aid us, in a forthcoming paper, in understanding the impact of Galileon fields on the problem of motion in the solar system. In this paper, we employ this retarded Green’s function to investigate the emission of Galileon radiation generated by the motion of matter lying deep within the Vainshtein radius rv of the central object: acoustic waves vibrating on its surface, and the motion of compact bodies gravitationally bound to it. If ? is the typical wavelength of the emitted radiation, and r0 is the typical distance of the source from the central mass, with r0?rv, then, compared to its noninteracting massless scalar counterpart, we find that the Galileon radiation rate is suppressed by the ratio (rv/?)-3/2 at the monopole and dipole orders at high frequencies rv/??1. However, at high enough multipole order, the radiation rate is enhanced by powers of rv/r0. At low frequencies rv/??1, and when the motion is nonrelativistic, Galileon waves yield a comparable rate for the monopole and dipole terms, and are amplified by powers of the ratio rv/r0 for the higher multipoles.
Photon wave functions, wave-packet quantization of light, and coherence theory
Brian J. Smith; M. G. Raymer
2007-12-09
The monochromatic Dirac and polychromatic Titulaer-Glauber quantized field theories (QFTs) of electromagnetism are derived from a photon-energy wave function in much the same way that one derives QFT for electrons, that is, by quantization of a single-particle wave function. The photon wave function and its equation of motion are established from the Einstein energy-momentum-mass relation, assuming a local energy density. This yields a theory of photon wave mechanics (PWM). The proper Lorentz-invariant single-photon scalar product is found to be non-local in coordinate space, and is shown to correspond to orthogonalization of the Titulaer-Glauber wave-packet modes. The wave functions of PWM and mode functions of QFT are shown to be equivalent, evolving via identical equations of motion, and completely describe photonic states. We generalize PWM to two or more photons, and show how to switch between the PWM and QFT viewpoints. The second-order coherence tensors of classical coherence theory and the two-photon wave functions are shown to propagate equivalently. We give examples of beam-like states, which can be used as photon wave functions in PWM, or modes in QFT. We propose a practical mode converter based on spectral filtering to convert between wave packets and their corresponding biorthogonal dual wave packets.
Calculation of the Aharonov-Bohm wave function
Alvarez, M.
1996-08-01
A calculation of the Aharonov-Bohm wave function is presented. The result is an asymptotic series of confluent hypergeometric functions which is finite at the forward direction. {copyright} {ital 1996 The American Physical Society.}
Measurement of Light-Cone Wave Functions by Diffractive Dissociation
Daniel Ashery
2002-05-07
Diffractive dissociation of particles can be used to study their light-cone wave functions. Results from Fermilab experiment E791 for diffractive dissociation of 500 GeV/c pi- mesons into di-jets show that the |q qbar> light-cone asymptotic wave function describes the data well for Q^2 ~ 10 (GeV/c)^2 or more.
Gravity-related wave function collapse: Is superfluid He exceptional?
Lajos Diósi
2013-02-21
The gravity-related model of spontaneous wave function collapse, a longtime hypothesis, damps the massive Schr\\"odinger Cat states in quantum theory. We extend the hypothesis and assume that spontaneous wave function collapses are responsible for the emergence of Newton interaction. Superfluid helium would then show significant and testable gravitational anomalies.
GVB RP: A Reliable MCSCF Wave Function for Large Systems
Goddard III, William A.
and provides smooth potential energy surfaces for most chemical reactions. The wave functions obtained; computational chemistry Introduction ccurate and reliable potential energy surfaces Aare essential for assessing Research Technology Co. compute ab initio energies is to start from the Z . ZHartree Fock HF wave function
New approximate radial wave functions for power-law potentials
Vladimir Kudryashov
2007-09-26
Radial wave functions for power-law potentials are approximated with the help of power-law substitution and explicit summation of the leading constituent WKB series. Our approach reproduces the correct behavior of the wave functions at the origin, at the turning points and far away from the turning points
Detecting wave function collapse without prior knowledge
NASA Astrophysics Data System (ADS)
Cowan, Charles Wesley; Tumulka, Roderich
2015-08-01
We are concerned with the problem of detecting with high probability whether a wave function has collapsed or not, in the following framework: A quantum system with a d-dimensional Hilbert space is initially in state ?; with probability 0 < p < 1, the state collapses relative to the orthonormal basis b1, …, bd. That is, the final state ?' is random, it is ? with probability 1 - p and bk (up to a phase) with p times Born's probability || ? 2 . Now an experiment on the system in state ?' is desired that provides information about whether or not a collapse has occurred. Elsewhere [C. W. Cowan and R. Tumulka, J. Phys. A: Math. Theor. 47, 195303 (2014)], we identify and discuss the optimal experiment in case that ? is either known or random with a known probability distribution. Here, we present results about the case that no a priori information about ? is available, while we regard p and b1, …, bd as known. For certain values of p, we show that the set of ?s for which any experiment E is more reliable than blind guessing is at most half the unit sphere; thus, in this regime, any experiment is of questionable use, if any at all. Remarkably, however, there are other values of p and experiments E such that the set of ?s for which E is more reliable than blind guessing has measure greater than half the sphere, though with a conjectured maximum of 64% of the sphere.
Chen, C. C.; Liu, C. C.; Su, K. W.; Lu, T. H.; Chen, Y. F.; Huang, K. F.
2007-04-15
We use a microcavity laser to explore the properties of experimental coherent waves as an analogous study of the chaotic wave functions in quantum billiards. With the eigenstate expansion method, the experimental high-order chaotic coherent waves are well reconstructed. The reconstructed wave functions are employed to calculate the field and intensity correlations. It is found that the spreading of k-space (momentum space) distribution leads to not only wave localization in coordinate space but also enhancement of long-range correlations.
Wave-particle duality and `bipartite' wave functions for a single particle
Zeqian Chen
2006-09-12
It is shown that `bipartite' wave functions can present a mathematical formalism of quantum theory for a single particle, in which the associated Schr\\"{o}dinger's wave functions correspond to those `bipartite' wave functions of product forms. This extension of Schr\\"{o}dinger's form establishes a mathematical expression of wave-particle duality and that von Neumann's entropy is a quantitative measure of complementarity between wave-like and particle-like behaviors. In particular, this formalism suggests that collapses of Schr\\"{o}dinger's wave functions can be regarded as the simultaneous transition of the particle from many levels to one. Our results shed considerable light on the basis of quantum mechanics, including quantum measurement.
Breaking wave impact forces on truss support structures for offshore wind turbines
NASA Astrophysics Data System (ADS)
Cie?likiewicz, Witold; Gudmestad, Ove T.; Podra?ka, Olga
2014-05-01
Due to depletion of the conventional energy sources, wind energy is becoming more popular these days. Wind energy is being produced mostly from onshore farms, but there is a clear tendency to transfer wind farms to the sea. The foundations of offshore wind turbines may be truss structures and might be located in shallow water, where are subjected to highly varying hydrodynamic loads, particularly from plunging breaking waves. There are models for impact forces prediction on monopiles. Typically the total wave force on slender pile from breaking waves is a superposition of slowly varying quasi-static force, calculated from the Morison equation and additional dynamical, short duration force due to the impact of the breaker front or breaker tongue. There is not much research done on the truss structures of wind turbines and there are still uncertainties on slamming wave forces, due to plunging breaking waves on those structures. Within the WaveSlam (Wave slamming forces on truss structures in shallow water) project the large scale tests were carried out in 2013 at the Large Wave Flume in Forschungszentrum Küste (FZK) in Hannover, Germany. The following institutions participated in this initiative: the University of Stavanger and the Norwegian University of Science and Technology (project management), University of Gda?sk, Poland, Hamburg University of Technology and the University of Rostock, Germany and Reinertsen AS, Norway. This work was supported by the EU 7th Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV. The main aim of the experiment was to investigate the wave slamming forces on truss structures, development of new and improvement of existing methods to calculate forces from the plunging breakers. The majority of the measurements were carried out for regular waves with specified frequencies and wave heights as well as for the irregular waves based on JONSWAP spectrum. The truss structure was equipped with both total and local force transducers which measured the response of the structure to the impact force. Also, the free surface elevations, the water particle velocity and the water particle acceleration were recorded during the WaveSlam experiment. Both the total and the local force data have been analysed using the Frequency Response Function method, which has been already applied to the estimation of the wave slamming forces. The results of this classical approach were compared to the calculated slamming forces based on Goda and Wienke and Oumeraci theories. Slamming wave forces and slamming coefficients calculated using both models appeared to be very much larger than those obtained from the analysed recorded data, therefore there is a need for further research. Details of this research and modelling results will be presented in the final poster.
Modular matrices from universal wave-function overlaps in Gutzwiller-projected parton wave functions
NASA Astrophysics Data System (ADS)
Mei, Jia-Wei; Wen, Xiao-Gang
2015-03-01
We implement the universal wave-function overlap (UWFO) method to extract modular S and T matrices for topological orders in Gutzwiller-projected parton wave functions (GPWFs). The modular S and T matrices generate a projective representation of S L (2 ,Z ) on the degenerate-ground-state Hilbert space on a torus and may fully characterize the 2+1D topological orders, i.e., the quasiparticle statistics and chiral central charge (up to E8 bosonic quantum Hall states). We use the variational Monte Carlo method to computed the S and T matrices of the chiral spin liquid (CSL) constructed by the GPWF on the square lattice, and we confirm that the CSL carries the same topological order as the ? =1/2 bosonic Laughlin state. We find that the nonuniversal exponents in the UWFO can be small, and direct numerical computation can be applied on relatively large systems. The UWFO may be a powerful method to calculate the topological order in GPWFs.
Data assimilation with an extended Kalman filter for impact-produced shock-wave dynamics
Ide, Kayo
Data assimilation with an extended Kalman filter for impact-produced shock-wave dynamics Jim Kao a assimilation to shock-wave dynamics induced by a high-speed impact. EKF solves the full nonlinear state
Nonstandard jump functions for radically symmetric shock waves
Baty, Roy S [Los Alamos National Laboratory; Tucker, Don H [UNIV OF UTAH; Stanescu, Dan [UNIV OF WYOMING
2008-01-01
Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.
Boundary conditions on internal three-body wave functions
Mitchell, Kevin A.; Littlejohn, Robert G.
1999-10-01
For a three-body system, a quantum wave function {Psi}{sub m}{sup {ell}} with definite {ell} and m quantum numbers may be expressed in terms of an internal wave function {chi}{sub k}{sup {ell}} which is a function of three internal coordinates. This article provides necessary and sufficient constraints on {chi}{sub k}{sup {ell}} to ensure that the external wave function {Psi}{sub k}{sup {ell}} is analytic. These constraints effectively amount to boundary conditions on {chi}{sub k}{sup {ell}} and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r{sup |m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.
Proton Wave Functions in a Uniform Magnetic Field
Roberts, Dale S.; Kamleh, Waseem; Leinweber, Derek B. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics, University of Adelaide 5005 (Australia); Bowman, Patrick O. [Centre for Theoretical Chemistry and Physics and Institute of Natural Sciences, Massey University (Albany), Private Bag 102904, North Shore City 0745 (New Zealand)
2011-05-24
The wave function of the d-quark in the ground state of the proton, and how it is affected in the presence of a uniform background magnetic field is calculated in lattice QCD. We focus on the wave functions in the Landau and Coulomb gauges. When the quarks are annihilated at different lattice sites, we observe the formation of a scalar u-d diquark pair within the proton in the Landau gauge, which is not present in the Coulomb gauge. The overall distortion of the wave function under a very large magnetic field, as demanded by the quantisation conditions on the field, is quite small.
Dark energy from quantum wave function collapse of dark matter
A. S. Majumdar; D. Home; S. Sinha
2009-09-03
Dynamical wave function collapse models entail the continuous liberation of a specified rate of energy arising from the interaction of a fluctuating scalar field with the matter wave function. We consider the wave function collapse process for the constituents of dark matter in our universe. Beginning from a particular early era of the universe chosen from physical considerations, the rate of the associated energy liberation is integrated to yield the requisite magnitude of dark energy around the era of galaxy formation. Further, the equation of state for the liberated energy approaches $w \\to -1$ asymptotically, providing a mechanism to generate the present acceleration of the universe.
Gutzwiller wave function for a model of strongly interacting bosons
Krauth, W. (NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)); Caffarel, M. (NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States) Laboratoire Dynamique des Interactions Moleculaires, Universite Paris VI, F-75252 Paris CEDEX 05 (France)); Bouchaud, J. (Laboratoire de Physique Statistique de l'Ecole Normale Superieure, 24, rue Lhomond, F-75231 Paris CEDEX 05 (France))
1992-02-01
We study a model of strongly interacting lattice bosons with a Gutzwiller-type wave function that contains only on-site correlations. The variational energy and the condensate fraction associated with the variational wave function are exactly evaluated for both finite and infinite systems and compared with exact quantum Monte Carlo results in two dimensions. This ansatz for the wave function gives the correct qualitative picture of the phase diagram of this system; at commensurate densities, this system enters a Mott-insulator phase for large values of the interaction.
Measurement of Light-Cone Wave Functions by Diffractive Dissociation
Daniel Ashery
2000-08-22
Diffractive dissociation of particles can be used to study their light-cone wave function. Results from Fermilab experiment E791 for diffractive dissociation of 500 GeV/c $\\pi^-$ mesons into di-jets are presented. The results show that the $|q\\bar {q}>$ light-cone asymptotic wave function describes the data well for $Q^2 \\sim 10 ~{\\rm (GeV/c)^2}$ or more. Evidence for color transparency comes from a measurement of the $A$-dependence of the yield of the diffractive di-jets. It is proposed to carry out similar studies for the light-cone wave function of the photon.
Real Tunneling Solutions and the Hartle-Hawking Wave Function
S. Carlip
1993-01-08
A real tunneling solution is an instanton for the Hartle-Hawking path integral with vanishing extrinsic curvature (vanishing ``momentum'') at the boundary. Since the final momentum is fixed, its conjugate cannot be specified freely; consequently, such an instanton will contribute to the wave function at only one or a few isolated spatial geometries. I show that these geometries are the extrema of the Hartle-Hawking wave function in the semiclassical approximation, and provide some evidence that with a suitable choice of time parameter, these extrema are the maxima of the wave function at a fixed time.
Do Heat Waves have an Impact on Terrestrial Water Storage?
NASA Astrophysics Data System (ADS)
Brena-Naranjo, A.; Teuling, R.; Pedrozo-Acuña, A.
2014-12-01
Recent works have investigated the impact of heat waves on the surface energy and carbon balance. However, less attention has been given to the impacts on terrestrial hydrology. During the summer of 2010, the occurrence of an exceptional heat wave affected severely the Northern Hemisphere. The extension (more than 2 million km2) and severity of this extreme event caused substantial ecosystem damage (more than 1 million ha of forest fires), economic and human losses (~500 billion USD and more than 17 million of indirect deaths, respectively). This work investigates for the first time the impacts of the 2010 summer heat wave on terrestrial water storage. Our study area comprises three different regions where air temperature records were established or almost established during the summer: Western Russia, the Middle East and Eastern Sahel. Anomalies of terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) were used to infer water storage deficits during the 2003-2013 period. Our analysis shows that Russia experienced the most severe water storage decline, followed by the Middle East, whereas Eastern Sahel was not significantly affected. The impact of the heat wave was spatially uniform in Russia but highly variable in the Middle East, with the Northern part substantially more affected than the Southern region. Lag times between maxima air temperatures and lower water storage deficits for Russia and the Middle East were approximately two and seven months, respectively. The results suggest that the response of terrestrial water storage to heat waves is stronger in energy-limited environments than in water-limited regions. Such differences in the magnitude and timing between meteorological and hydrological extremes can be explained by the propagation time between atmospheric water demand and natural or anthropogenic sources of water storage.
The response functions of electromagnetic wave logs and their applications
Guanglong Xing; Shande Yang
2006-01-01
A fundamental feature of the electromagnetic wave logs is the logging response (phase difference and amplitude ratio) dependent on the both dielectric constant and conductivity in general. We derived the response functions (RF) of the electromagnetic wave logs and proposed their fast algorithm based on an integral equation of electromagnetic field and a weak scattering approximation. Using the fast algorithm
Impact Localization Using Lamb Wave and Spiral FSAT
NASA Astrophysics Data System (ADS)
Rimal, Nischal
Wear and tear exists in almost every physical infrastructure. Modern day science has something in its pocket to early detect such wear and tear known as Structural Health Monitoring (SHM). SHM features a key role in tracking a structural failure and could prevent loss of human lives and money. The size and prices of presently available defect detection devices make them not suitable for on-site SHM. The exploitation of directional transducers and Lamb wave propagation for SHM has been proposed. The basis of the project was to develop an accurate localization algorithm and implementation of Lamb waves to detect the crack present in the plate like structures. In regards, the use of Frequency Steerable Acoustic Transducer (FSAT) was studied. The theory governing the propagation of Lamb wave was reviewed. The derivation of the equations and dispersion curve of Lamb waves are included. FSAT was studied from both theoretical and application view of point. The experiments carried out give us better understanding of the FSAT excitation and Lamb wave generation and detection. The Lamb wave generation and crack localization algorithm was constructed and with the proposed algorithm, simulated impacts are detected.
Nobel Lecture: Electronic structure of matter--wave functions and density functionals*
Wu, Zhigang
Nobel Lecture: Electronic structure of matter--wave functions and density functionals* W. Kohn] CONTENTS I. Introduction 1253 II. Schro¨dinger Wave Functions--Few versus Many Electrons 1255 A. Few-electron systems--the H2 molecule 1256 B. Many electrons--encountering an exponential wall 1257 C. Some meta
Wave function statistics and multifractality in disordered systems
Fominov, Yakov
Wave function statistics and multifractality in disordered systems Alexander D. Mirlin Forschungszentrum Karlsruhe & Universit¨at Karlsruhe http://www-tkm.physik.uni-karlsruhe.de/mirlin/ Workshop-r ) disorder - ensemble - statistical treatment: mesoscopic fluctuations Classical analogue: Electromagnetic
Rotating Waves in Neutral Partial Functional Differential Equations
J. Wu; H. Xia
1999-01-01
General results on the existence and global continuation of rotating waves are established for partial neutral functional differential equations defined on the unit circle. These results are applied to a class of coupled lossless transmission lines.
Spin-s wave functions with algebraic order Onuttom Narayan and B. Sriram Shastry
California at Santa Cruz, University of
November 2004) We generalize the Gutzwiller wave function for s= 1 2 spin chains to construct a family. In particular, the Gutzwiller wave function in one dimension has been very successful. The Gutzwiller wave of the Gutzwiller wave function to obtain wave functions for all s, which (based on our numerical results) seem
Impact of plunging breaking waves on a partially submerged cube
NASA Astrophysics Data System (ADS)
Wang, A.; Ikeda, C.; Duncan, J. H.
2013-11-01
The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.
Plane-wave expansion of elliptic cylindrical functions
NASA Astrophysics Data System (ADS)
Santini, Carlo; Frezza, Fabrizio; Tedeschi, Nicola
2015-08-01
Elliptic Cylindrical Waves (ECW), defined as the product of an angular Mathieu function by its corresponding radial Mathieu function, occur in the solution of scattering problems involving two-dimensional structures with elliptic cross sections. In this paper, we explicitly derive the expansion of ECW, along a plane surface, in terms of homogeneous and evanescent plane waves, showing the accuracy of the numerical implementation of the formulas and discussing possible applications of the result.
Multi-time wave functions for quantum field theory
Petrat, Sören, E-mail: petrat@math.lmu.de [Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, 80333 München (Germany); Tumulka, Roderich, E-mail: tumulka@math.rutgers.edu [Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States)
2014-06-15
Multi-time wave functions such as ?(t{sub 1},x{sub 1},…,t{sub N},x{sub N}) have one time variable t{sub j} for each particle. This type of wave function arises as a relativistic generalization of the wave function ?(t,x{sub 1},…,x{sub N}) of non-relativistic quantum mechanics. We show here how a quantum field theory can be formulated in terms of multi-time wave functions. We mainly consider a particular quantum field theory that features particle creation and annihilation. Starting from the particle–position representation of state vectors in Fock space, we introduce multi-time wave functions with a variable number of time variables, set up multi-time evolution equations, and show that they are consistent. Moreover, we discuss the relation of the multi-time wave function to two other representations, the Tomonaga–Schwinger representation and the Heisenberg picture in terms of operator-valued fields on space–time. In a certain sense and under natural assumptions, we find that all three representations are equivalent; yet, we point out that the multi-time formulation has several technical and conceptual advantages. -- Highlights: •Multi-time wave functions are manifestly Lorentz-covariant objects. •We develop consistent multi-time equations with interaction for quantum field theory. •We discuss in detail a particular model with particle creation and annihilation. •We show how multi-time wave functions are related to the Tomonaga–Schwinger approach. •We show that they have a simple representation in terms of operator valued fields.
Modeling of Wave Impact Using a Pendulum System
Nie, Chunyong
2011-08-08
for high speed vessels. Faltinsen (1990) defined slamming impact as ?impulse loads with high pressure peaks occur during impact between a body and water?. There are several types of ship slamming in practice. Slamming on a bow flare or bottom occurs...-deck slamming acts on the bottom of the platform deck or the catamaran deck connecting the two pieces, when the heave motion is large. Green water slamming occurs on the bow stem by breaking waves or on the upper deck and bridge in rough seas when incoming...
Factorized molecular wave functions: Analysis of the nuclear factor
NASA Astrophysics Data System (ADS)
Lefebvre, R.
2015-06-01
The exact factorization of molecular wave functions leads to nuclear factors which should be nodeless functions. We reconsider the case of vibrational perturbations in a diatomic species, a situation usually treated by combining Born-Oppenheimer products. It was shown [R. Lefebvre, J. Chem. Phys. 142, 074106 (2015)] that it is possible to derive, from the solutions of coupled equations, the form of the factorized function. By increasing artificially the interstate coupling in the usual approach, the adiabatic regime can be reached, whereby the wave function can be reduced to a single product. The nuclear factor of this product is determined by the lowest of the two potentials obtained by diagonalization of the potential matrix. By comparison with the nuclear wave function of the factorized scheme, it is shown that by a simple rectification, an agreement is obtained between the modified nodeless function and that of the adiabatic scheme.
Simulations of Wave Propagation in the Jovian Atmosphere after SL9 Impact Events
NASA Astrophysics Data System (ADS)
Pond, Jarrad W.; Palotai, C.; Korycansky, D.; Harrington, J.
2013-10-01
Our previous numerical investigations into Jovian impacts, including the Shoemaker Levy- 9 (SL9) event (Korycansky et al. 2006 ApJ 646. 642; Palotai et al. 2011 ApJ 731. 3), the 2009 bolide (Pond et al. 2012 ApJ 745. 113), and the ephemeral flashes caused by smaller impactors in 2010 and 2012 (Hueso et al. 2013; Submitted to A&A), have covered only up to approximately 3 to 30 seconds after impact. Here, we present further SL9 impacts extending to minutes after collision with Jupiter’s atmosphere, with a focus on the propagation of shock waves generated as a result of the impact events. Using a similar yet more efficient remapping method than previously presented (Pond et al. 2012; DPS 2012), we move our simulation results onto a larger computational grid, conserving quantities with minimal error. The Jovian atmosphere is extended as needed to accommodate the evolution of the features of the impact event. We restart the simulation, allowing the impact event to continue to progress to greater spatial extents and for longer times, but at lower resolutions. This remap-restart process can be implemented multiple times to achieve the spatial and temporal scales needed to investigate the observable effects of waves generated by the deposition of energy and momentum into the Jovian atmosphere by an SL9-like impactor. As before, we use the three-dimensional, parallel hydrodynamics code ZEUS-MP 2 (Hayes et al. 2006 ApJ.SS. 165. 188) to conduct our simulations. Wave characteristics are tracked throughout these simulations. Of particular interest are the wave speeds and wave positions in the atmosphere as a function of time. These properties are compared to the characteristics of the HST rings to see if shock wave behavior within one hour of impact is consistent with waves observed at one hour post-impact and beyond (Hammel et al. 1995 Science 267. 1288). This research was supported by National Science Foundation Grant AST-1109729 and NASA Planetary Atmospheres Program Grant NNX11AD87G.
The Green-function transform and wave propagation
NASA Astrophysics Data System (ADS)
Sheppard, Colin; Kou, Shanshan; Lin, Jiao
2014-11-01
Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.
Semiclassical construction of random wave functions for confined systems.
Urbina, Juan Diego; Richter, Klaus
2004-01-01
We develop a statistical description of chaotic wave functions in closed systems obeying arbitrary boundary conditions by combining a semiclassical expression for the spatial two-point correlation function with a treatment of eigenfunctions as Gaussian random fields. Thereby we generalize Berry's isotropic random wave model by incorporating confinement effects through classical paths reflected at the boundaries. Our approach allows one to explicitly calculate highly nontrivial statistics, such as intensity distributions, in terms of usually few short orbits, depending on the energy window considered. We compare with numerical quantum results for the Africa billiard and derive nonisotropic random wave models for other prominent confinement geometries. PMID:15324114
Optimization of Gutzwiller wave functions in quantum Monte Carlo
Koch, E. [Max-Planck-Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany)] [Max-Planck-Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany); [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Gunnarsson, O. [Max-Planck-Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany)] [Max-Planck-Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany); Martin, R.M. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)] [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
1999-06-01
Gutzwiller functions are popular variational wave functions for correlated electrons in Hubbard models. Following the variational principle, we are interested in the Gutzwiller parameters that minimize, e.g., the expectation value of the energy. Rewriting the expectation value as a rational function in the Gutzwiller parameters, we find a very efficient way for performing that minimization. The method can be used to optimize general Gutzwiller-type wave functions both in variational and in fixed-node diffusion Monte Carlo. {copyright} {ital 1999} {ital The American Physical Society}
Matter Density and Relativistic Models of Wave Function Collapse
Daniel Bedingham; Detlef Duerr; GianCarlo Ghirardi; Sheldon Goldstein; Roderich Tumulka; Nino Zanghi
2013-07-12
Mathematical models for the stochastic evolution of wave functions that combine the unitary evolution according to the Schroedinger equation and the collapse postulate of quantum theory are well understood for non-relativistic quantum mechanics. Recently, there has been progress in making these models relativistic. But even with a fully relativistic law for the wave function evolution, a problem with relativity remains: Different Lorentz frames may yield conflicting values for the matter density at a space-time point. We propose here a relativistic law for the matter density function. According to our proposal, the matter density function at a space-time point x is obtained from the wave function psi on the past light cone of x by setting the i-th particle position in |psi|^2 equal to x, integrating over the other particle positions, and averaging over i. We show that the predictions that follow from this proposal agree with all known experimental facts.
Parametric dependence of ocean wave-radar modulation transfer functions
NASA Technical Reports Server (NTRS)
Plant, W. J.; Keller, W. C.; Cross, A.
1983-01-01
Microwave techniques at X and L band were used to determine the dependence of ocean-wave radar modulation transfer functions (MTFs) on various environmental and radar parameters during the Marine Remote Sensing experiment of 1979 (MARSEN 79). These MIF are presented, as are coherence functions between the AM and FM parts of the backscattered microwave signal. It is shown that they both depend on several of these parameters. Besides confirming many of the properties of transfer functions reported by previous authors, indications are found that MTFs decrease with increasing angle between wave propagation and antenna-look directions but are essentially independent of small changes in air-sea temperature difference. However, coherence functions are much smaller when the antennas are pointed perpendicular to long waves. It is found that X band transfer functions measured with horizontally polarized microwave radiation have larger magnitudes than those obtained by using vertical polarization.
Travis Norsen; Damiano Marian; Xavier Oriols
2014-10-14
The ontology of Bohmian mechanics includes both the universal wave function (living in 3N-dimensional configuration space) and particles (living in ordinary 3-dimensional physical space). Proposals for understanding the physical significance of the wave function in this theory have included the idea of regarding it as a physically-real field in its 3N-dimensional space, as well as the idea of regarding it as a law of nature. Here we introduce and explore a third possibility in which the configuration space wave function is simply eliminated -- replaced by a set of single-particle pilot-wave fields living in ordinary physical space. Such a re-formulation of the Bohmian pilot-wave theory can exactly reproduce the statistical predictions of ordinary quantum theory. But this comes at the rather high ontological price of introducing an infinite network of interacting potential fields (living in 3-dimensional space) which influence the particles' motion through the pilot-wave fields. We thus introduce an alternative approach which aims at achieving empirical adequacy (like that enjoyed by GRW type theories) with a more modest ontological complexity, and provide some preliminary evidence for optimism regarding the (once popular but prematurely-abandoned) program of trying to replace the (philosophically puzzling) configuration space wave function with a (totally unproblematic) set of fields in ordinary physical space.
Zou, Jun
1995-01-01
This thesis presents a result of measurements and analyses of the wave kinematics and impact loads on a scaled ISSC-TLP column fixed in a 2-D wave tank. The objective is to find out the mechanics of impact loads varied with kinematics in both space...
Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.
Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J
2014-06-15
A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species. PMID:24768171
The Light-Cone Wave Function of the Pion
T. Heinzl
2000-08-30
The light-cone wave function of the pion is calculated within the Nambu-Jona-Lasinio model. The result is used to derive the pion electromagnetic form factor, charge radius, structure function, pi-gamma transition form factor and distribution amplitude.
Supporting Information for: Prospect of Retrieving Vibrational Wave function by
Ihee, Hyotcherl
S1 Supporting Information for: Prospect of Retrieving Vibrational Wave function by Single assumes that the electron density distribution of an iodine molecule can be expressed as a sum of two as a function of time and reflected this information to the dynamic form factors used to calculate the single
Multifractality of wave functions at the quantum Hall transition revisited
NASA Astrophysics Data System (ADS)
Evers, F.; Mildenberger, A.; Mirlin, A. D.
2001-12-01
We investigate numerically the statistics of wave function amplitudes ?(r) at the integer quantum Hall transition. It is demonstrated that in the limit of a large system size the distribution function of \\|?\\|2 is log-normal, so that the multifractal spectrum f(?) is exactly parabolic. Our findings lend strong support to a recent conjecture for a critical theory of the quantum Hall transition.
Inside looking out: Probing JIMWLK wave functions with BFKL calculations
Altinoluk, Tolga; Kovner, Alex [Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, Connecticut 06269 (United States); Levin, Eugene [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Avenida Espana 1680, Casilla 110-V, Valparaiso (Chile); Department of Particle Physics, Tel Aviv University, Tel Aviv 69978 (Israel)
2010-10-01
We investigate the relation between the eigenvalues and eigenfunctions of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) and Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK/KLWMIJ) Hamiltonians. We show that the eigenvalues of the BFKL Hamiltonians are also exact eigenvalues of the KLWMIJ (and JIMWLK) Hamiltonian, albeit corresponding to possibly non-normalizable eigenfunctions. The question whether a given eigenfunction of BFKL corresponds to a normalizable eigenfunction of KLWMIJ is rather complicated, except in some obvious cases, and requires independent investigation. As an example to illustrate this relation we concentrate on the color octet exchange in the framework of KLWMIJ Hamiltonian. We show that it corresponds to the reggeized gluon exchange of BFKL, and find first correction to the BFKL wave function, which has the meaning of the impact factor for shadowing correction to the Reggeized gluon. We also show that the bootstrap condition in the KLWMIJ framework is satisfied automatically and does not carry any additional information to that contained in the second quantized structure of the KLWMIJ Hamiltonian. This is an example of how the bootstrap condition inherent in the t-channel unitarity arises in the s-channel picture.
Approximating strongly correlated wave functions with correlator product states
NASA Astrophysics Data System (ADS)
Changlani, Hitesh J.; Kinder, Jesse M.; Umrigar, C. J.; Chan, Garnet Kin-Lic
2009-12-01
We describe correlator product states, a class of numerically efficient many-body wave functions to describe strongly correlated wave functions in any dimension. Correlator product states introduce direct correlations between physical degrees of freedom in a simple way, yet provide the flexibility to describe a wide variety of systems. We show that many interesting wave functions can be mapped exactly onto correlator product states, including Laughlin’s quantum Hall wave function, Kitaev’s toric code states, and Huse and Elser’s frustrated spin states. We also outline the relationship between correlator product states and other common families of variational wave functions such as matrix product states, tensor product states, and resonating valence-bond states. Variational calculations for the Heisenberg and spinless Hubbard models demonstrate the promise of correlator product states for describing both two-dimensional and fermion correlations. Even in one-dimensional systems, correlator product states are competitive with matrix product states for a fixed number of variational parameters.
Delta function excitation of waves in the earth's ionosphere
NASA Technical Reports Server (NTRS)
Vidmar, R. J.; Crawford, F. W.; Harker, K. J.
1983-01-01
Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.
Exponentially Accurate Semiclassical Tunneling Wave Functions in One Dimension
of the semiclassical wave packets j of [6], e-itk2/(2 ) 2-j/2 (j!)-1/2 -1/4 -1/4 Hj((k - )/ 1/2 ) exp(-(k - )2 /(2 )), then the transmitted wave packet behaves like C exp((k-)/ ) e-itk2/(2 ) 2-j/2 (j!)-1/2 -1/4 -1/4 Hj((k-)/ 1/2 ) expExponentially Accurate Semiclassical Tunneling Wave Functions in One Dimension Vasile Gradinaru
Impact of Tsunami-Generated Gravity Waves on the Ionosphere
NASA Astrophysics Data System (ADS)
Huba, J. D.; Drob, D. P.
2014-12-01
The NRL first-principles ionosphere model SAMI3 is used to study the ionospheric effects associated with tsunami-driven gravity waves. It is shown that gravity-wave induced variations in the neutral wind lead to plasma velocity variations both perpendicular and parallel to the geomagnetic field. Moreover, the electric field induced by the neutral wind perturbations can map to the conjugate hemisphere. Thus, electron density variations can be generated in both hemispheres which impact the total electron content (TEC) and 6300A airglow emission. It is found that the TEC exhibits variations +/- 0.15 TECU and the 6300A airglow emission variation is up to +/- 2.5% relative to the unperturbed background airglow. These results are consistent with observational data. Research supported by NRL Base Funds and ONR BRC program.
Impact of boat-generated waves on intertidal estuarine sediments
NASA Astrophysics Data System (ADS)
Blanpain, O.; Deloffre, J.; Lafite, R.; Gomit, G.; Calluaud, D.; David, L.
2010-12-01
Hydrodynamics in the macrotidal Seine estuary (France) are controlled by the semi-diurnal tidal regime modulated seasonally by the fluvial discharge. Wind effect on sediment transport (through wind waves and swell) is observed at the mouth of the estuary. Over the last century, authorities have put emphasis on facilitating economic exchanges by means of embankment building and increased dredging activity. These developments led to allow and secure sea vessel traffic in the Seine estuary (from its mouth to the port of Rouen, 125 km upstream) but they also resulted in a change of estuarine hydrodynamics and sediment transport features. A riversides restoration policy has been recently started by port authorities. In this context, the objective of the field-based study presented is to connect vessel characteristics (i.e. speed, draft...), boat-generated waves and their sedimentary impacts. Such information will be used by stakeholders to manage riverside. The natural intertidal site of interest is located in the fluvial freshwater part of the Seine estuary characterized by a 4.5 m maximum tidal range. The foreshore slope is gently decreasing and surface sediments are composed of fine to coarse sand with occasional mud drapes. In order to decipher boat-generated events, the sampling strategy is based on continuous ADV measurements coupled with a turbidimeter and an altimeter to study sediment dynamics. These instruments are settled in the lower part of the foreshore (i) to obtain a significant dataset (i.e. oceanic instruments are not measuring in air) on a zone statically affected by boat waves and (ii) because most of boat traffic occurs during early flood or late ebb period. Spatial variations are assessed along a cross-section through grain-size analysis of surface sediments and topography measurements using pole technique. Results enhance hydrodynamic and sedimentary impacts of boat-generated waves compared respectively to tidal and wind effects. Long-term altimeter measurements in relation with boat traffic data base demonstrate that boat-generated waves are the key hydrodynamic parameter controlling short term tidal flat evolution. Concerning hydrodynamics, two main types of boat-generated waves can be distinguished: one corresponds to barges, the other to sea vessels. The critical parameter controlling wave characteristics, bottom shear stress and thus sedimentary impacts is the distance between seabed and keel. Thus, considering their larger seabed-keel distance, barges do not significantly affect the sedimentary cover of the intertidal area. On the contrary, sea-vessels can induce rapid changes of the tidal flat texture (i.e. bed flattening, mud drapes...) and morphology: erosion and sedimentation rates in a range of 0.5 to 6 cm.min-1 have been measured. Such energetic events occur generally during the squat generated wave run-up and can affect the seabed in water depths up to 1.5 m. In the freshwater part of the Seine estuary annual sediment inputs are mostly controlled by river flow (during river flood) while medium term scale evolution is dependent on tidal range and short term sediment dynamics (i.e. bedload, resuspension) on sea-vessels waves.
Counting Rule for Hadronic Light-Cone Wave Functions
Xiangdong Ji; Jian-Ping Ma; Feng Yuan
2003-01-17
We introduce a systematic way to write down the Fock components of a hadronic light-cone wave function with $n$ partons and orbital angular momentum projection $l_z$. We show that the wave function amplitude $\\psi_n(x_i,k_{i\\perp},l_{zi})$ has a leading behavior $1/(k^2_\\perp)^{[n+|l_z|+{\\rm min}(n'+|l_z'|)]/2-1}$ when all parton transverse momenta are uniformly large, where $n'$ and $l_z'$ are the number of partons and orbital angular momentum projection, respectively, of an amplitude that mixes under renormalization. The result can be used as a constraint in modeling the hadronic light-cone wave functions. We also derive a generalized counting rule for hard exclusive processes involving parton orbital angular momentum and hadron helicity flip.
Wave function for two-neutron halo states
NASA Astrophysics Data System (ADS)
Souza, Lucas A.; Bellotti, Filipe F.; Frederico, Tobias
2015-07-01
In this work we investigate the theoretical aspects associated with the few-body universal properties of the weakly-bound two neutron halo in light nuclei. We emphasize that our study of wave functions can be used as inputs in calculations of reaction processes with light exotic nuclei. Starting from the Faddeev decomposition of the wave function for 3-body systems interacting through zero range forces, we calculate two-neutron halo states for large two-body scattering lengths coming closer to what is know today as Efimov's Physics. We report our findings for the wave function for a three-body n — n — C system, where we consider two neutrons as a halo around a compact core C. We focus our study on halo structure of Borromean systems like 11Li, 14Be, and 22C.
Laws of Nature and the Reality of the Wave Function
Dorato, Mauro
2015-01-01
In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering any discussion about nominalism, I conclude that an elimination of abstract entities from one's ontology commits one to instrumentalism about the wave function, a position that therefore is not as unmotivated as it has seemed to be to many philosophers.
Quantum flux and reverse engineering of quantum wave functions
NASA Astrophysics Data System (ADS)
Mason, D. J.; Borunda, M. F.; Heller, E. J.
2013-06-01
An interpretation of the probability flux is given, based on a derivation of its eigenstates and relating them to coherent-state projections on a quantum wave function. An extended definition of the flux operator is obtained using coherent states. We present a “processed Husimi” representation, which makes decisions using many Husimi projections at each location. The processed Husimi representation reverse engineers or deconstructs the wave function, yielding the underlying classical ray structure. Our approach makes possible interpreting the dynamics of systems where the probability flux is uniformly zero or strongly misleading. The new technique is demonstrated by the calculation of particle flow maps of the classical dynamics underlying a quantum wave function in simple model systems such as a circular billiard with and without a magnetic field.
Correlations in the wave function of the Universe
NASA Astrophysics Data System (ADS)
Halliwell, J. J.
1987-12-01
The Everett-type interpretations of quantum mechanics and quantum cosmology proposed independently by Hartle, Geroch, and Wada are discussed. They essentially involve regarding a strong peak in the wave function as a definite prediction. Wave functions in quantum cosmology are usually peaked about correlations between coordinates and momenta, and methods for identifying such correlations are introduced. The first method involves Wigner's function, a quantum-mechanical analogue of the classical phase-space distribution. The properties of this distribution are discussed and it is shown how it can be of use in describing the emergence of classical behavior from quantum systems. The second method involves a suitably chosen canonical transformation. These methods are applied to harmonic-oscillator examples, which are of relevance to scalar field fluctuations in inflationary universe models. These methods are also applied to WKB wave functions in quantum mechanics and quantum cosmology. The manner in which the wave function becomes peaked about sets of classical solutions is elucidated. This is extended to include inhomogeneous perturbations about minisuperspace in quantum cosmology, and the derivation of the semiclassical Einstein equations, G??=8?G
Quantum Corral Wave-function Engineering
NASA Astrophysics Data System (ADS)
Correa, Alfredo; Reboredo, Fernando; Balseiro, Carlos
2005-03-01
We present a theoretical method for the design and optimization of quantum corrals[1] with specific electronic properties. Taking advantage that spins are subject to a RKKY interaction that is directly controlled by the scattering of the quantum corral, we design corral structures that reproduce spin Hamiltonians with coupling constants determined a priori[2]. We solve exactly the bi-dimensional scattering problem for each corral configuration within the s-wave approximation[3] and subsequently the geometry of the quantum corral is optimized by means of simulated annealing[4] and genetic algorithms[5]. We demonstrate the possibility of automatic design of structures with complicated target electronic properties[6]. This work was performed under the auspices of the US Department of Energy by the University of California at the LLNL under contract no W-7405-Eng-48. [1] M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature 403, 512 (2000) [2] D. P. DiVincenzo et al., Nature 408, 339 (2000) [3] G. A. Fiete and E. J. Heller, Rev. Mod. Phys. 75, 933 (2003) [4] M. R. A. T. N. Metropolis et al., J. Chem. Phys. 1087 (1953) [5] E. Aarts and J. K. Lenstra, eds. Local search in combinatorial problems (Princeton University Press, 1997) [6] A. A. Correa, F. Reboredo and C. Balseiro, Phys. Rev. B (in press).
Diving-wave migration using Airy functions
Albertin, U.K.
1993-08-10
A method is described for imaging seismic reflection data selected from a data volume, comprising: preprocessing said selected seismic reflection data by application of normal moveout, dip moveout and a time-domain-to-frequency-domain transformation; determining the velocity field characteristic of said data volume; forming a velocity model for said data volume by fitting a velocity function to said velocity field, said function being characterized by a linear gradient in sloth; from the velocity model, calculating parameters for defining an Airy operator; separating normal seismic data from evanescent seismic data and saving said evanescant data in a random access memory; iterating downwardly, migrating said normal seismic data with the aid of said Airy operator; extracting said evanescent data from memory and iterating upwardly, migrating said evanescent seismic data with the aid of said Airy operator; summing the results of the downward and upward iterations; and inversely Fourier-transforming the summation.
Electron wave functions in diamond and zinc-blende semiconductors
Boiko, D. L.; Feron, P.; Besnard, P. [ENSSAT, Laboratoire d'Optronique, CNRS (UMR 6082 FOTON), 6 rue de Kerampont, 22300 Lannion (France)
2006-01-15
New electron wave functions at the center of the Brillouin zone are given for the valence and conduction bands of semiconductor crystals with diamond and zinc-blende lattice symmetries. They are analyzed in the absence of spin-orbit coupling and take into account the lack of inversion symmetry in zinc-blende lattices compared to diamond ones. For this reason, our wave functions differ from the traditionally used ones. In particular, for zinc-blende symmetry crystals, they provide nonvanishing intravalence band matrix elements of momentum p in accordance with group theory selection rules.
Concerning Infeasibility of the Wave Functions of the Universe
NASA Astrophysics Data System (ADS)
Bolotin, Arkady
2015-09-01
Difficulties with finding the general exact solutions to the Wheeler-DeWitt equation, i.e. the wave functions of the Universe, are known and well documented. However, the present paper draws attention to a completely different matter, which is rarely if ever discussed in relation to this equation, namely, the time complexity of the Wheeler-DeWitt equation, that is, the time required to exactly solve the equation for a given universe. As it is shown in the paper, whatever generic exact algorithm is used to solve the equation, most likely such an algorithm cannot be faster than brute force, which makes the wave functions of the Universe infeasible.
Calculation of the nucleon structure function from the nucleon wave function
NASA Technical Reports Server (NTRS)
Hussar, Paul E.
1993-01-01
Harmonic oscillator wave functions have played an historically important role in our understanding of the structure of the nucleon, most notably by providing insight into the mass spectra of the low-lying states. High energy scattering experiments are known to give us a picture of the nucleon wave function at high-momentum transfer and in a frame in which the nucleon is traveling fast. A simple model that crosses the twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon wave function provided by the deep inelastic scattering data and by the oscillator model is presented.
Helicon Wave Physics Impacts on Electrodeless Thruster Design
NASA Technical Reports Server (NTRS)
Gilland, James
2003-01-01
Effective generation of helicon waves for high density plasma sources is determined by the dispersion relation and plasma power balance. Helicon wave plasma sources inherently require an applied magnetic field of .01-0.1 T, an antenna properly designed to couple to the helicon wave in the plasma, and an rf power source in the 10-100 s of MHz, depending on propellant choice. For a plasma thruster, particularly one with a high specific impulse (>2000 s), the physics of the discharge would also have to address the use of electron cyclotron resonance (ECR) heating and magnetic expansion. In all cases the system design includes an optimized magnetic field coil, plasma source chamber, and antenna. A preliminary analysis of such a system, calling on experimental data where applicable and calculations where required, has been initiated at Glenn Research Center. Analysis results showing the mass scaling of various components as well as thruster performance projections and their impact on thruster size are discussed.
Helicon Wave Physics Impacts on Electrodeless Thruster Design
NASA Technical Reports Server (NTRS)
Gilland, James H.
2007-01-01
Effective generation of helicon waves for high density plasma sources is determined by the dispersion relation and plasma power balance. Helicon wave plasma sources inherently require an applied magnetic field of .01-0.1 T, an antenna properly designed to couple to the helicon wave in the plasma, and an rf power source in the 10-100 s of MHz, depending on propellant choice. For a plasma thruster, particularly one with a high specific impulse (>2000 s), the physics of the discharge would also have to address the use of electron cyclotron resonance (ECR) heating and magnetic expansion. In all cases the system design includes an optimized magnetic field coil, plasma source chamber, and antenna. A preliminary analysis of such a system, calling on experimental data where applicable and calculations where required, has been initiated at Glenn Research Center. Analysis results showing the mass scaling of various components as well as thruster performance projections and their impact on thruster size are discussed.
Excitation of Coherent States: Wave Function Development and Analysis
Gaurav Singh; Anshul Choudhary; T. R. Seshadri
2014-12-02
Agarwal and Tara, in 1991 introduced a new class of states defined as m times application of creation operator to Coherent States known as Excited Coherent States (ECS) or Photon Added Coherent States (PACS). They are neither completely quantum nor completely classical. Here we present and develop these Excited Coherent Sates from a basic and more approachable Wave-function approach. We have derived the ECS wave function as a blend of Coherent States and Fock States and thus established them as a result of Quantum fluctuations (represented by Fock states) on Coherent States. We further derived and analyzed basic relations such as wave packet width and uncertainty relation in a more generalized form and presented their development with time. Another important property of ECS is Quadrature Squeezing. Here we also present a general analysis of squeezing in ECS and derived conditions on parameters for squeezing.
Surface acoustic wave depth profiling of a functionally graded material
Goossens, Jozefien; Leclaire, Philippe; Xu Xiaodong; Glorieux, Christ; Martinez, Loic; Sola, Antonella; Siligardi, Cristina; Cannillo, Valeria; Van der Donck, Tom; Celis, Jean-Pierre [Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde en Sterrenkunde, Katholieke Universiteit Leuven, PO 2416, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Equipe Circuit Instrumentation et Modelisation en Electronique (ECIME) IUP GE, Universite de Cergy, Rue de Eragny, Neuville sur Oise, 95031 Cergy Pontoise Cedex (France); Dipartimento di Ingegneria dei Materiali e dell' Ambiente, University of Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Departement Department of Metallurgy and Materials Engineering (MTM), Katholieke Universiteit Leuven, PO 2450, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium)
2007-09-01
The potential and limitations of Rayleigh wave spectroscopy to characterize the elastic depth profile of heterogeneous functional gradient materials are investigated by comparing simulations of the surface acoustic wave dispersion curves of different profile-spectrum pairs. This inverse problem is shown to be quite ill posed. The method is then applied to extract information on the depth structure of a glass-ceramic (alumina) functionally graded material from experimental data. The surface acoustic wave analysis suggests the presence of a uniform coating region consisting of a mixture of Al{sub 2}O{sub 3} and glass, with a sharp transition between the coating and the substrate. This is confirmed by scanning electron microscope with energy dispersive x-ray analysis.
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased. PMID:26076278
Numerical computation of an Evans function for travelling waves.
Harley, K; van Heijster, P; Marangell, R; Pettet, G J; Wechselberger, M
2015-08-01
We demonstrate a geometrically inspired technique for computing Evans functions for the linearised operators about travelling waves. Using the examples of the F-KPP equation and a Keller-Segel model of bacterial chemotaxis, we produce an Evans function which is computable through several orders of magnitude in the spectral parameter and show how such a function can naturally be extended into the continuous spectrum. In both examples, we use this function to numerically verify the absence of eigenvalues in a large region of the right half of the spectral plane. We also include a new proof of spectral stability in the appropriate weighted space of travelling waves of speed c?2?? in the F-KPP equation. PMID:26048189
Impact of autocorrelation on functional connectivity.
Arbabshirani, Mohammad R; Damaraju, Eswar; Phlypo, Ronald; Plis, Sergey; Allen, Elena; Ma, Sai; Mathalon, Daniel; Preda, Adrian; Vaidya, Jatin G; Adali, Tülay; Calhoun, Vince D
2014-11-15
Although the impact of serial correlation (autocorrelation) in residuals of general linear models for fMRI time-series has been studied extensively, the effect of autocorrelation on functional connectivity studies has been largely neglected until recently. Some recent studies based on results from economics have questioned the conventional estimation of functional connectivity and argue that not correcting for autocorrelation in fMRI time-series results in "spurious" correlation coefficients. In this paper, first we assess the effect of autocorrelation on Pearson correlation coefficient through theoretical approximation and simulation. Then we present this effect on real fMRI data. To our knowledge this is the first work comprehensively investigating the effect of autocorrelation on functional connectivity estimates. Our results show that although FC values are altered, even following correction for autocorrelation, results of hypothesis testing on FC values remain very similar to those before correction. In real data we show this is true for main effects and also for group difference testing between healthy controls and schizophrenia patients. We further discuss model order selection in the context of autoregressive processes, effects of frequency filtering and propose a preprocessing pipeline for connectivity studies. PMID:25072392
Gutzwiller-type wave functions for correlated fermions
Vollhardt, D.; Van Dongen, P.G.J.; Gebhard, F.; Metzner, W. (Institut fur Theoretische Physik C, Technisch Hochschule Aachen, D-5100 Aachen (DE))
1990-04-01
In the last few years significant theoretical progress has been made in understanding of the physics and quality of Gutzwiller-type variational wave functions for correlated Fermi systems. In particular, new analytic techniques are now available that allow for exact evaluations of expectation values. A review of the state-of-the-art is presented.
Reality of the wave function and quantum entanglement
Mani Bhaumik
2014-11-14
The intrinsic fluctuations of the underlying, immutable quantum fields that fill all space and time can support the element of reality of a wave function in quantum mechanics. The mysterious non-locality of quantum entanglement may also be understood in terms of these inherent quantum fluctuations, ever-present at the most fundamental level of the universe.
Ground state wave function and energy of the lithium atom
Puchalski, M; Puchalski, Mariusz; Pachucki, Krzysztof
2006-01-01
Highly accurate nonrelativistic ground-state wave function and energy of the lithium atom is obtained in the Hylleraas basis set. The leading relativistic corrections,as represented by Breit-Pauli Hamiltonian, are obtained in fair agreement with the former results. The calculational method is based on the analytical evaluation of Hylleraas integrals with the help of recursion relations.
The Schrodinger Wave Functional and S-branes
J. Klusoÿn
In this paper we will consider the minisuperspace approach to S-branes dynamics in the Schrodinger picture description. Time-evolution of vacuum wave functional for quantum field theory on S-brane is studied. Open string pair produc- tion is calculated. The analysis of density matrix for mixed states is also performed.
Vector Meson Form Factors and Wave Functions from Holographic QCD
Hovhannes Grigoryan; Anatoly Radyushkin
2007-10-10
Based on the holographic dual model of QCD, we study 2- and 3-point functions of vector currents and derive form factors as well as wave functions for the vector mesons. As a result, generalized vector-meson dominance representation for form factors is obtained with a very specific VMD pattern. The calculated electric radius of the rho-meson is shown to be in a good agreement with predictions from lattice QCD.
J. P. Ma; Q. Wang
2005-03-14
A direct generalization of the transverse momentum integrated(TMI) light-cone wave function to define a transverse momentum dependent(TMD) light-cone wave function will cause light-cone singularities and they spoil TMD factorization. We motivate a definition in which the light-cone singularities are regularized with non-light like Wilson lines. The defined TMD light-cone wave function has some interesting relations to the corresponding TMI one. When the transverse momentum is very large, the TMD light-cone wave function is determined perturbatively in term of the TMI one. In the impact $b$-space with a small $b$, the TMD light-cone wave function can be factorized in terms of the TMI one. In this letter we study these relations. By-products of our study are the renormalization evolution of the TMI light-cone wave function and the Collins-Soper equation of the TMD light-cone wave function, the later will be useful for resumming Sudakov logarithms.
Rossby Wave Green's Functions in an Azimuthal Wind
Webb, G M; Hu, Q
2015-01-01
Green's functions for Rossby waves in an azimuthal wind are obtained, in which the stream-function $\\psi$ depends on $r$, $\\phi$ and $t$, where $r$ is cylindrical radius and $\\phi$ is the azimuthal angle in the $\\beta$-plane relative to the easterly direction, in which the $x$-axis points east and the $y$-axis points north. The Rossby wave Green's function with no wind is obtained using Fourier transform methods, and is related to the previously known Green's function obtained for this case, which has a different but equivalent form to the Green's function obtained in the present paper. We emphasize the role of the wave eikonal solution, which plays an important role in the form of the solution. The corresponding Green's function for a rotating wind with azimuthal wind velocity ${\\bf u}=\\Omega r{\\bf e}_\\phi$ ($\\Omega=$const.) is also obtained by Fourier methods, in which the advective rotation operator in position space is transformed to a rotation operator in ${\\bf k}$ transform space. The finite Rossby defo...
Refined applications of the collapse of the wave function
NASA Astrophysics Data System (ADS)
Stodolsky, L.
2015-05-01
In a two-part system, the collapse of the wave function of one part can put the other part in a state which would be difficult or impossible to achieve otherwise, in particular, one sensitive to small effects in the "collapse" interaction. We present some applications to the very symmetric and experimentally accessible situations of the decays ? (1020 )?KoKo , ? (3770 )?DoDo, or ? (4 s )?BoBo , involving the internal state of the two-state Ko, Do, or Bo mesons. The collapse of the wave function occasioned by a decay of one member of the pair (away side) fixes the state vector of that side's two-state system. Bose-Einstein statistics then determines the state of the recoiling meson (near side), whose evolution can then be followed further. In particular, the statistics requirement dictates that the "away side" and "near side" internal wave functions must be orthogonal at the time of the collapse. Thus a C P violation in the away side decay implies a complementary C P impurity on the near side, which can be detected in the further evolution. The C P violation so manifested is necessarily direct C P violation, since neither the mass matrix nor time evolution was involved in the collapse. A parametrization of the direct C P violation is given, and various manifestations are presented. Certain rates or combination of rates are identified which are nonzero only if there is direct C P violation. The very explicit and detailed use made of the collapse of the wave function makes the procedure interesting with respect to the fundamentals of quantum mechanics. We note an experimental consistency test for our treatment of the collapse of the wave function, which can be carried out by a certain measurement of partial decay rates.
Simulation of wind wave growth with reference source functions
NASA Astrophysics Data System (ADS)
Badulin, Sergei I.; Zakharov, Vladimir E.; Pushkarev, Andrei N.
2013-04-01
We present results of extensive simulations of wind wave growth with the so-called reference source function in the right-hand side of the Hasselmann equation written as follows First, we use Webb's algorithm [8] for calculating the exact nonlinear transfer function Snl. Second, we consider a family of wind input functions in accordance with recent consideration [9] ( )s S = ?(k)N , ?(k) = ? ? ?- f (?). in k 0 ?0 in (2) Function fin(?) describes dependence on angle ?. Parameters in (2) are tunable and determine magnitude (parameters ?0, ?0) and wave growth rate s [9]. Exponent s plays a key role in this study being responsible for reference scenarios of wave growth: s = 4-3 gives linear growth of wave momentum, s = 2 - linear growth of wave energy and s = 8-3 - constant rate of wave action growth. Note, the values are close to ones of conventional parameterizations of wave growth rates (e.g. s = 1 for [7] and s = 2 for [5]). Dissipation function Sdiss is chosen as one providing the Phillips spectrum E(?) ~ ?5 at high frequency range [3] (parameter ?diss fixes a dissipation scale of wind waves) Sdiss = Cdiss?4w?N (k)?(? - ?diss) (3) Here frequency-dependent wave steepness ?2w = E(?,?)?5-g2 makes this function to be heavily nonlinear and provides a remarkable property of stationary solutions at high frequencies: the dissipation coefficient Cdiss should keep certain value to provide the observed power-law tails close to the Phillips spectrum E(?) ~ ?-5. Our recent estimates [3] give Cdiss ? 2.0. The Hasselmann equation (1) with the new functions Sin, Sdiss (2,3) has a family of self-similar solutions of the same form as previously studied models [1,3,9] and proposes a solid basis for further theoretical and numerical study of wave evolution under action of all the physical mechanisms: wind input, wave dissipation and nonlinear transfer. Simulations of duration- and fetch-limited wind wave growth have been carried out within the above model setup to check its conformity with theoretical predictions, previous simulations [2,6,9], experimental parameterizations of wave spectra [1,4] and to specify tunable parameters of terms (2,3). These simulations showed realistic spatio-temporal scales of wave evolution and spectral shaping close to conventional parameterizations [e.g. 4]. An additional important feature of the numerical solutions is a saturation of frequency-dependent wave steepness ?w in short-frequency range. The work was supported by the Russian government contract No.11.934.31.0035, Russian Foundation for Basic Research grant 11-05-01114-a and ONR grant N00014-10-1-0991. References [1] S. I. Badulin, A. V. Babanin, D. Resio, and V. Zakharov. Weakly turbulent laws of wind-wave growth. J. Fluid Mech., 591:339-378, 2007. [2] S. I. Badulin, A. N. Pushkarev, D. Resio, and V. E. Zakharov. Self-similarity of wind-driven seas. Nonl. Proc. Geophys., 12:891-946, 2005. [3] S. I. Badulin and V. E. Zakharov. New dissipation function for weakly turbulent wind-driven seas. ArXiv e-prints, (1212.0963), December 2012. [4] M. A. Donelan, J. Hamilton, and W. H. Hui. Directional spectra of wind-generated waves. Phil. Trans. Roy. Soc. Lond. A, 315:509-562, 1985. [5] M. A. Donelan and W. J. Pierson-jr. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92(C5):4971-5029, 1987. [6] E. Gagnaire-Renou, M. Benoit, and S. I. Badulin. On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech., 669:178-213, 2011. [7] R. L. Snyder, F. W. Dobson, J. A. Elliot, and R. B. Long. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102:1-59, 1981. [8] D. J. Webb. Non-linear transfers between sea waves. Deep Sea Res., 25:279-298, 1978. [9] V. E. Zakharov, D. Resio, and A. N. Pushkarev. New wind input term consistent with experimental, theoretical and numerical considerations. ArXiv e-prints, (1212.1069), December 2012.
Two-Variable Hermite Function as Quantum Entanglement of Harmonic Oscillator's Wave Functions
NASA Astrophysics Data System (ADS)
Lu, Hai-Liang; Fan, Hong-Yi
2007-06-01
We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(r)Hm,n(?a1†,?a2†)|00rangle, which is the minimum uncertainty state for sum squeezing, in langle?| representation is calculated.
Partial-wave analysis of two-hadron fragmentation functions
Alessandro Bacchetta; Marco Radici
2002-12-19
We reconsider the option of extracting the transversity distribution by using interference fragmentation functions into two leading hadrons inside the same current jet. To this end, we perform a new study of two-hadron fragmentation functions. We derive new positivity bounds on them. We expand the hadron pair system in relative partial waves, so that we can naturally incorporate in a unified formalism specific cases already studied in the literature, such as the fragmentation functions arising from the interference between the s- and p-wave production of two mesons, as well as the production of a spin-one hadron. In particular, our analysis clearly distinguishes two different ways to access the transversity distribution in two-hadron semi-inclusive leptoproduction.
Scalar functions for wave extraction in numerical relativity
Nerozzi, Andrea [Center for Relativity, University of Texas at Austin, Austin Texas 78712-1081 (United States)
2007-05-15
Wave extraction plays a fundamental role in the binary black hole simulations currently performed in numerical relativity. Having a well-defined procedure for wave extraction, which matches simplicity with efficiency, is critical especially when comparing waveforms from different simulations. Recently, progress has been made in defining a general technique which uses Weyl scalars to extract the gravitational wave signal, through the introduction of the quasi-Kinnersley tetrad. This procedure has been used successfully in current numerical simulations; however, it involves complicated calculations. The work in this paper simplifies the procedure by showing that the choice of the quasi-Kinnersley tetrad is reduced to the choice of the timelike vector used to create it. The spacelike vectors needed to complete the tetrad are then easily identified, and it is possible to write the expression for the Weyl scalars in the right tetrad, as simple functions of the electric and magnetic parts of the Weyl tensor.
Phases of Augmented Hadronic Light-Front Wave Functions
Brodsky, Stanley J.; Pasquini, Barbara; Xiao, Bo-Wen; Yuan, Feng; /LBNL, NSD /RIKEN BNL
2010-02-15
It is an important question whether the final/initial state gluonic interactions which lead to naive-time-reversal-odd single-spin asymmetries and diffraction at leading twist can be associated in a definite way with the light-front wave function hadronic eigensolutions of QCD. We use light-front time-ordered perturbation theory to obtain augmented light-front wave functions which contain an imaginary phase which depends on the choice of advanced or retarded boundary condition for the gauge potential in light-cone gauge. We apply this formalism to the wave functions of the valence Fock states of nucleons and pions, and show how this illuminates the factorization properties of naive-time-reversal-odd transverse momentum dependent observables which arise from rescattering. In particular, one calculates the identical leading-twist Sivers function from the overlap of augmented light-front wavefunctions that one obtains from explicit calculations of the single-spin asymmetry in semi-inclusive deep inelastic lepton-polarized nucleon scattering where the required phases come from the final-state rescattering of the struck quark with the nucleon spectators.
Phases of Augmented Hadronic Light-Front Wave Functions
Yuan, Feng; Brodsky, S.J.; Pasquini, B.; Xiao, B.-W.
2010-01-05
It is an important question whether the final/initial state gluonic interactions which lead to naive-time-reversal-odd single-spin asymmetries and diffraction at leading twist can be associated in a definite way with the light-front wave function hadronic eigensolutions of QCD. We use light-front time-ordered perturbation theory to obtain augmented light-front wave functions which contain an imaginary phase which depends on the choice of advanced or retarded boundary condition for the gauge potential in light-cone gauge. We apply this formalism to the wave functions of the valence Fock states of nucleons and pions, and show how this illuminates the factorization properties of naive-time-reversal-odd transverse momentum dependent observables which arise from rescattering. In particular, one calculates the identical leading-twist Sivers function from the overlap of augmented light-front wavefunctions that one obtains from explicit calculations of the single-spin asymmetry in semi-inclusive deep inelastic lepton-polarized nucleon scattering where the required phases come from the final-state rescattering of the struck quark with the nucleon spectators.
Phases of Augmented Hadronic Light-Front Wave Functions
Stanley J. Brodsky; Barbara Pasquini; Bowen Xiao; Feng Yuan
2010-01-08
It is an important question whether the final/initial state gluonic interactions which lead to naive-time-reversal-odd single-spin asymmetries and diffraction at leading twist can be associated in a definite way with the light-front wave function hadronic eigensolutions of QCD. We use light-front time-ordered perturbation theory to obtain augmented light-front wave functions which contain an imaginary phase which depends on the choice of advanced or retarded boundary condition for the gauge potential in light-cone gauge. We apply this formalism to the wave functions of the valence Fock states of nucleons and pions, and show how this illuminates the factorization properties of naive-time-reversal-odd transverse momentum dependent observables which arise from rescattering. In particular, one calculates the identical leading-twist Sivers function from the overlap of augmented light-front wavefunctions that one obtains from explicit calculations of the single-spin asymmetry in semi-inclusive deep inelastic lepton-polarized nucleon scattering where the required phases come from the final-state rescattering of the struck quark with the nucleon spectators.
NASA Technical Reports Server (NTRS)
Huang, K.-N.
1977-01-01
A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.
The impact of the summer 2003 heat wave in Iberia: how should we measure it?
Díaz, J; García-Herrera, R; Trigo, R M; Linares, C; Valente, M A; De Miguel, J M; Hernández, E
2006-01-01
We present a new approach to improve the reliability of quantifying the impact of a heat wave on mortality rates. We show, for the recent European summer 2003 heat wave, that the use of absolute maximum temperature values, or number of days above a given threshold, can be misleading. Here, we have assessed the impact of the heat wave on Iberian mortality by applying a four step procedure: (1) calculating, for each observatory, the local maximum temperature (T (max)) distributions, (2) calculating the corresponding 95th percentile values (T (threshold)), (3) locally defining extremely hot days (EHD) as those days on which the local threshold of the 95th percentile of the series is exceeded, and (4) calculating the total degrees-days (DD) of exceedance, by calculating the difference T (max)-T (threshold) and summing these values for all days above T (threshold). We show that the relationship between summer mortality rates and the DD index is non-linear and can be described by a logarithmic function, with a correlation coefficient of 0.78, which explains 60.6% of the mortality variance (F value of 24.64, significant at P<0.0001). Using maximum temperatures, no significant relationship is found with mortality, whereas the EHD frequency shows a significant association with mortality, albeit weaker than that obtained with DD. PMID:16235090
On African easterly waves that impacted two tropical cyclones in 2004 Melinda S. Peng,1
Li, Tim
On African easterly waves that impacted two tropical cyclones in 2004 Melinda S. Peng,1 Bing Fu,2 for the genesis of two tropical cyclones located one-wavelength apart. In addition, using piecewise time easterly waves that impacted two tropical cyclones in 2004, Geophys. Res. Lett., 33, L11807, doi:10
A critical survey of wave propagation and impact in composite materials
NASA Technical Reports Server (NTRS)
Moon, F. C.
1973-01-01
A review of the field of stress waves in composite materials is presented covering the period up to December 1972. The major properties of waves in composites are discussed and a summary is made of the major experimental results in this field. Various theoretical models for analysis of wave propagation in laminated, fiber and particle reinforced composites are surveyed. The anisotropic, dispersive and dissipative properties of stress pulses and shock waves in such materials are reviewed. A review of the behavior of composites under impact loading is presented along with the application of wave propagation concepts to the determination of impact stresses in composite plates.
Spin-orbit decomposition of ab initio nuclear wave functions
NASA Astrophysics Data System (ADS)
Johnson, Calvin W.
2015-03-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
Horizon Wave-Function and the Quantum Cosmic Censorship
Roberto Casadio; Octavian Micu; Dejan Stojkovic
2015-05-25
We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF) formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superxtremal case (with charge-to-mass ratio $\\alpha>1$), which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for $\\alpha^2 2$, and the uncertainty in the location of the horizon blows up at $\\alpha^2=2$, signalling that such an object is no more well-defined. This perhaps implies that a quantum Cosmic Censorhip might be conjectured by stating that no black holes with charge-to-mass ratio greater than a critical value (of the order of $\\sqrt{2}$) can exist.
Electron number probability distributions for correlated wave functions.
Francisco, E; Martín Pendás, A; Blanco, M A
2007-03-01
Efficient formulas for computing the probability of finding exactly an integer number of electrons in an arbitrarily chosen volume are only known for single-determinant wave functions [E. Cances et al., Theor. Chem. Acc. 111, 373 (2004)]. In this article, an algebraic method is presented that extends these formulas to the case of multideterminant wave functions and any number of disjoint volumes. The derived expressions are applied to compute the probabilities within the atomic domains derived from the space partitioning based on the quantum theory of atoms in molecules. Results for a series of test molecules are presented, paying particular attention to the effects of electron correlation and of some numerical approximations on the computed probabilities. PMID:17362099
Non-mechanical nature of the wave function collapse
A. Yu. Samarin
2015-08-12
The wave function transformation of the quantum particle considered as a continuous medium was described by the evolution operator with the kernel in the form of path integral. It is shown that this approach allows considering not only Schrodinger evolution, but and the collapse phenomenon. The collapse entity is the nonlocal transformation of the quantum particle internal structure and it is not connected with its mechanical motion. Probably this fact allows the instantaneous signalling using the collapse without violating relativistic requirements.
Coevolution of Quantum Wave Functions and the Friedmann Universe
W. Q. Sumner; D. Y. Sumner
2007-04-20
Erwin Schrodinger (1939) proved that quantum wave functions coevolve with the curved spacetime of the Friedmann universe. Schrodinger's derivation explains the Hubble redshift of photons in an expanding universe, the energy changes of moving particles, and establishes the coevolution of atoms and other quantum systems with spacetime geometry. The assumption often made that small quantum systems are isolated and that their properties remain constant as the Friedmann universe evolves is incompatible with relativistic quantum mechanics and with general relativity.
Interaction between light and matter: A photon wave function approach
Pablo L. Saldanha; C. H. Monken
2011-06-14
The Bialynicki-Birula-Sipe photon wave function formalism is extended to include the interaction between photons and continuous non-absorptive media. When the second quantization of this formalism is introduced, a new way of describing the quantum interactions between light and matter emerges. As an example of application, the quantum state of the twin photons generated by parametric down conversion is obtained in agreement with previous treatments, but with a more intuitive interpretation.
The Second Moment of the Pion Light Cone Wave Function
Luigi Del Debbio; Massimo Di Pierro; Alex Dougall
2002-11-21
We present a preliminary result for second moment of the light cone wave function of the pion. This parameter is the subject of a discrepancy between theoretical predictions (coming from lattice and sum rules) and a recent experimental result (that remarkably agrees with purely perturbative predictions). In this work we exploit lattice hypercubic symmetries to remove power divergences and, moreover, implement a full 1-loop matching for all the contributing operators.
Strongly correlated wave functions for artificial atoms and molecules
Constantine Yannouleas; Uzi Landman
2002-08-27
A method for constructing semianalytical strongly correlated wave functions for single and molecular quantum dots is presented. It employs a two-step approach of symmetry breaking at the Hartree-Fock level and of subsequent restoration of total spin and angular momentum symmetries via Projection Techniques. Illustrative applications are presented for the case of a two-electron helium-like single quantum dot and a hydrogen-like quantum dot molecule.
Coevolution of Quantum Wave Functions and the Friedmann Universe
Sumner, W Q
2000-01-01
Erwin Schrodinger (1939) proved that quantum wave functions coevolve with the curved spacetime of the Friedmann universe. Schrodinger's derivation explains the Hubble redshift of photons in an expanding universe, the energy changes of moving particles, and establishes the coevolution of atoms and other quantum systems with spacetime geometry. The assumption often made that small quantum systems are isolated and that their properties remain constant as the Friedmann universe evolves is incompatible with relativistic quantum mechanics and with general relativity.
Semiclassical wave functions and energy spectra in polygon billiards
Stefan Giller
2014-12-01
A consistent scheme of semiclassical quantization in polygon billiards by wave function formalism is presented. It is argued that it is in the spirit of the semiclassical wave function formalism to make necessary rationalization of respective quantities accompanied the procedure of the semiclassical quantization in polygon billiards. Unfolding rational polygon billiards (RPB) into corresponding Riemann surfaces (RS) periodic structures of the latter are demonstrated with 2g independent periods on the respective multitori with g as their genuses. However it is the two dimensional real space of the real linear combinations of these periods which is used for quantizing RPB. A class of doubly rational polygon billiards (DRPB) is distinguished for which these real linear relations are rational and their semiclassical quantization by wave function formalism is presented. It is shown that semiclassical quantization of both the classical momenta and the energy spectra are determined completely by periodic structure of the corresponding RS. Each RS is then reduced to elementary polygon patterns (EPP) as its basic periodic elements. Each such EPP can be glued to a torus of genus g. Semiclassical wave functions (SWF) are then constructed on EPP. The SWF for DRPB appear to be exact. They satisfy the Dirichlet, the Neumannn or the mixed boundary conditions. Not every mixing is allowed however and a respective incompleteness of SWF is discussed. Dens families of DRPB are used for approximate semiclassical quantization of RPB. General rational polygons are quantized by approximating them by DRPB. An extension of the formalism to irrational polygons is described as well. The semiclassical approximations constructed in the paper are controlled by general criteria of the eigenvalue theory. A relation between the superscar solutions and SWF constructed in the paper is also discussed.
Energy optimization of quantum Monte Carlo wave functions
NASA Astrophysics Data System (ADS)
Umrigar, C. J.; Toulouse, J.
2006-03-01
In recent years many methods have been proposed for energy optimizing quantum Monte Carlo wave functions. Of these, the three highly efficient methods are: 1) The generalized eigenvalue method of Nightingale and Melik-Alaverdian, which was proposed by them for linear parameters only but extended by us to nonlinear parameters. 2) The effective fluctuation potential (EFP) method of Fahy, Filippi and coworkers, and the recent perturbative EFP of Schautz, Scemama and Filippi. We show that the latter can be more simply derived as first-order perturbation theory in a nonorthogonal basis. 3) The modified Newton method of Umrigar and Filippi and of Sorella. We show that the three methods are related to each other and point out that a control parameter can be employed in each of them to make them totally stable. We use these methods to optimize all the parameters in the Jastrow and the determinantal parts of the wave function and point out that different issues arise in optimizing the Jastrow and the determinantal parameters. By systematically increasing the number of determinants we find that seemingly similar systems, such as C2 and Si2 have vastly different fixed-node errors for single-determinant wave functions.
Pion wave function from QCD sum rules with nonlocal condensates
A. V. Radyushin
1994-06-01
The authors investigate a model QCD sum rule for the pion wave function {var_phi}{sub {pi}}(x) based on the non-diagonal correlator whose perturbative spectral density vanishes and {Phi}(x, M{sup 2}), the theoretical side of the sum rule, consists of condensate contributions only. They study the dependence of {Phi}(x, M{sup 2}) on the Borel parameter M{sup 2} and observe that {Phi}(x, M{sup 2}) has a humpy form, with the humps becoming more and more pronounced when M{sup 2} increases. They demonstrate that this phenomenon reflects just the oscillatory nature of the higher states wave functions, while the lowest state wave function, {var_phi}{sub {pi}}(x), extracted from their QCD sum rule analysis, has no humps, is rather narrow and its shape is close to the asymptotic form {var_phi}{sub {pi}}{sup as}(x) = 6x(1{minus}x).
Improved variational many-body wave function in light nuclei
Usmani, Q. N.; Anwar, K.; Singh, A.; Rawitscher, G.
2009-09-15
We propose and implement a simple method for improving the variational wave function of a many-body system. We have obtained a significant improvement in the binding energies, wave functions, and variance for the light nuclei {sup 3}H, {sup 4}He, and {sup 6}Li, using the fully realistic Argonne (AV{sub 18}) two-body and Urbana-IX (UIX) three-body interactions. The energy of {sup 4}He was improved by about 0.2 MeV and the {sup 6}Li binding energy was increased by {approx_equal}1.7 MeV compared to earlier variational Monte Carlo results. The latter result demonstrates the significant progress achieved by our method, and detailed analyses of the improved results are given. With central interactions the results are found to be in agreement with the 'exact' calculations. Our study shows that the relative error in the many-body wave functions, compared to two-body pair correlations, increases rapidly at least proportionally to the number of pairs in the system. However, this error does not increase indefinitely since the pair interactions saturate owing to convergence of cluster expansion.
Gudimetla, V S Rao; Holmes, Richard B; Riker, Jim F
2012-12-01
An analytical expression for the log-amplitude correlation function for plane wave propagation through anisotropic non-Kolmogorov turbulent atmosphere is derived. The closed-form analytic results are based on the Rytov approximation. These results agree well with wave optics simulation based on the more general Fresnel approximation as well as with numerical evaluations, for low-to-moderate strengths of turbulence. The new expression reduces correctly to the previously published analytic expressions for the cases of plane wave propagation through both nonisotropic Kolmogorov turbulence and isotropic non-Kolmogorov turbulence cases. These results are useful for understanding the potential impact of deviations from the standard isotropic Kolmogorov spectrum. PMID:23455912
Gudimetla, V S Rao; Holmes, Richard B; Riker, Jim F
2014-01-01
An analytical expression for the log-amplitude correlation function based on the Rytov approximation is derived for spherical wave propagation through an anisotropic non-Kolmogorov refractive turbulent atmosphere. The expression reduces correctly to the previously published analytic expressions for the case of spherical wave propagation through isotropic Kolmogorov turbulence. These results agree well with a wave-optics simulation based on the more general Fresnel approximation, as well as with numerical evaluations, for low-to-moderate strengths of turbulence. These results are useful for understanding the potential impact of deviations from the standard isotropic Kolmogorov spectrum. PMID:24561950
Theory of steady-state plane tunneling-assisted impact ionization waves
Kyuregyan, A. S., E-mail: ask@vei.ru [Lenin All-Russian Electrical-Engineering Institute (Russian Federation)
2013-07-15
The effect of band-to-band and trap-assisted tunneling on the properties of steady-state plane ionization waves in p{sup +}-n-n{sup +} structures is theoretically analyzed. It is shown that such tunneling-assisted impact ionization waves do not differ in a qualitative sense from ordinary impact ionization waves propagating due to the avalanche multiplication of uniformly distributed seed electrons and holes. The quantitative differences of tunneling-assisted impact ionization waves from impact ionization waves are reduced to a slightly different relation between the wave velocity u and the maximum field strength E{sub M} at the front. It is shown that disregarding impact ionization does not exclude the possibility of the existence of tunneling-assisted ionization waves; however, their structure radically changes, and their velocity strongly decreases for the same E{sub M}. A comparison of the dependences u(E{sub M}) for various ionization-wave types makes it possible to determine the conditions under which one of them is dominant. In conclusion, unresolved problems concerning the theory of tunneling-assisted impact ionization waves are discussed and the directions of further studies are outlined.
Statistical properties and correlation functions for drift waves
NASA Technical Reports Server (NTRS)
Horton, W.
1986-01-01
The dissipative one-field drift wave equation is solved using the pseudospectral method to generate steady-state fluctuations. The fluctuations are analyzed in terms of space-time correlation functions and modal probability distributions. Nearly Gaussian statistics and exponential decay of the two-time correlation functions occur in the presence of electron dissipation, while in the absence of electron dissipation long-lived vortical structures occur. Formulas from renormalized, Markovianized statistical turbulence theory are given in a local approximation to interpret the dissipative turbulence.
Measurement of the Pion and Photon Light-Cone Wave Functions by Diffractive Dissociation
Daniel Ashery
2005-11-24
The measurement of the pion light-cone wave function is revisited and results for the Gegenbauer coefficients are presented. Mesurements of the photon electromagnetic and hadronic wave functions are described and results are presented.
Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht
2014-01-14
We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function. PMID:24437888
Computational aspects of the continuum quaternionic wave functions for hydrogen
NASA Astrophysics Data System (ADS)
Morais, J.
2014-10-01
Over the past few years considerable attention has been given to the role played by the Hydrogen Continuum Wave Functions (HCWFs) in quantum theory. The HCWFs arise via the method of separation of variables for the time-independent Schrödinger equation in spherical coordinates. The HCWFs are composed of products of a radial part involving associated Laguerre polynomials multiplied by exponential factors and an angular part that is the spherical harmonics. In the present paper we introduce the continuum wave functions for hydrogen within quaternionic analysis ((R)QHCWFs), a result which is not available in the existing literature. In particular, the underlying functions are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R3 and R4). We prove that the (R)QHCWFs are orthonormal to one another. The representation of these functions in terms of the HCWFs are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of fundamental properties and further computation of the hydrogen-like atom transforms of the (R)QHCWFs are also discussed. We address all the above and explore some basic facts of the arising quaternionic function theory. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QHCWFs are new in the literature and have some consequences that are now under investigation.
NASA Astrophysics Data System (ADS)
Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael
2015-01-01
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
Gutzwiller-Jastrow wave functions for the 1/[ital r] Hubbard model
Wang, D.F. (Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544 (United States)); Zhong, Q.F. (International School for Advanced Study, Via Beirut 4, 34014 Trieste (Italy)); Coleman, P. (Serin Physics Laboratory, Rutgers University, P. O. Box 849, Piscataway, New Jersey 08854 (United States))
1993-09-15
In this work, we study the wave functions of the one-dimensional 1/[ital r] Hubbard model in the strong-interaction limit [ital U]=[infinity]. A set of Gutzwiller-Jastrow wave functions are shown to be eigenfunctions of the Hamiltonian. The entire excitation spectrum and the thermodynamics are also studied in terms of more generalized Jastrow wave functions. For the wave functions and integrability conditions at finite on-site energy, further investigations are needed.
Modelling storm development and the impact when introducing waves, sea spray and heat fluxes
NASA Astrophysics Data System (ADS)
Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik
2015-04-01
In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.
CUMULATIVE IMPACTS ON WATER QUALITY FUNCTIONS OF WETLANDS
Cumulative impacts on the water quality function of wetlands are impacts whose total effect cannot be predicted from the sum of the effects of individual impacts. he wetland is not a simple filter; it embodies chemical, physical, and biotic processes that can detain, transform, r...
S-wave velocity structure in southwest China from surface wave tomography and receiver functions
NASA Astrophysics Data System (ADS)
Wang, W.; Wu, J.; Fang, L.; Lai, G.; Yang, T.
2013-12-01
Using the surface wave records of 504 teleseismic events at 50 temporal and 92 permanent seismic stations in southwest China, we extracted the phase velocity dispersion curves with interstation correlation method, and obtained the phase velocity maps at 10, 15, 25, 40, 60 and 75 s with a grid space of 0.5×0.5 from surface wave tomography. Meanwhile, we obtained the S-wave velocity structures beneath three profiles from the joint inversion of receiver functions and surface waves. From the maps at short periods (10 and 15 s) and long periods (40, 60 and 75 s), different distribution features of high velocity zones (HVZs for short) and low velocity zones (LVZs for short) are shown in the study area: HVZs at short periods are shown in the Panzhihua - Emeishan region, Sichuan basin and Weixi-Lijiang region, surrounding the LVZs from Songpan-Ganzi block to the east of Lijiang where there are significant higher elevations; whereas HVZs at long periods are shown in the Weixi-Lijiang region, Panzhihua-Chuxiong basin and Kunming-Tonghai region and forming a line in the center part of the study area, and the fast polarization directions of the shear wave from SKS analysis on the two sides of the line change significantly. These phenomena indicate plateau material flow can be blocked in two different depth intervals and leads to different horizontal extensions. From the maps at long periods and the structures along the profiles, LVZs are shown in the upper mantle beneath rapid slip fault zones, such as Anninghe - Zemuhe - Xiaojiang fault zone, Red River fault zone and Xiaojinhe fault zone, implying these faults are deep penetrating faults. Figure (a-f) Rayleigh wave phase velocity maps at 10, 15, 25,40,60 and 75 s with a resolution of 100 km. The black lines represent faults. The red points represent M?6 earthquakes. The colour scale changes in different panels. Figure (g) Distribution of the seismic stations and regional tectonic features in the study area. Figure (h-j) The S wave velocity structures beneath the profiles AA', BB' and CC' from the joint inversion of receiver functions and surface waves. The results at different stations are vertically projected to the profiles.
The Computation of Wave Functions in Momentum Space - I: The Helium Atom
R. McWeeny; C. A. Coulson
1949-01-01
The possibilities of obtaining precise momentum wave functions for atoms by direct solution of the wave equation in momentum space are examined in some detail. An iterative method of approximating to the wave function is employed in computing the momentum distribution function for the helium atom. Although in this instance considerable accuracy is achieved, formidable difficulties arise in extending the
NASA Astrophysics Data System (ADS)
Taniguchi, Yasutaka; Kanada-En'yo, Yoshiko
2013-08-01
A method of separating a Slater determinant wave function with a two-center neck structure into spatially localized subsystems is proposed, and it is applied to ? + ? Margenau-Brink cluster wave functions and antisymmetrized molecular dynamics wave functions of the ground state in 10Be and a negative-parity largely deformed state in 35S.
Variational Calculation on the Helium Atom Using a Hydrogenic Trial Wave Function Frank Rioux
Rioux, Frank
Rioux Chemistry Department CSB|SJU Gaussian Trial Wave Function: r ,( ) 3 exp - rVariational Calculation on the Helium Atom Using a Hydrogenic Trial Wave Function Frank( ):= Demonstrate the wave function is normalized. 0 r r ,( )2 4 r 2 d assume 0>, simplify 1 The terms
Variational Calculation on the Helium Atom Using a Gaussian Trial Wave Function Frank Rioux
Chemistry Department CSB|SJU Gaussian Trial Wave Function: r ,( ) 2 3 4 exp - r 2Variational Calculation on the Helium Atom Using a Gaussian Trial Wave Function Frank Rioux ( ):= Demonstrate the wave function is normalized. 0 r r ,( )2 4 r 2 d assume 0>, simplify 1 The terms
IMPACTS OF URBANIZATION ON WATERSHED HYDROLOGIC FUNCTION
Although urbanization has a major impact on watershed hydrology, there have not been studies to quantify basic hydrological relationships that are altered by the addition of impervious surfaces. The USDA-ARS and USEPA-ORD-NRMRL have initiated a pilot program to study the impacts...
IMPACTS OF URBANIZATION ON WATERSHED HYDROLOGIC FUNCTION
Technology Transfer Automated Retrieval System (TEKTRAN)
Although urbanization has a major impact on watershed hydrology, there have not been studies to quantify basic hydrological relationships are altered by the addition of impervious surfaces. The USDA-ARS and USEPA-ORD-NRMRL have initiated a pilot program to study the impacts of different extents and...
Spin-orbit interaction with nonlinear wave functions.
Brozell, S. R.; Shepard, R.; Zhang, Z.; Stanford Univ.
2007-12-01
The computation of the spin-orbit interaction is discussed for electronic wave functions expressed in the new nonlinear expansion form. This form is based on spin eigenfunctions using the graphical unitary group approach (GUGA). The nodes of a Shavitt graph in GUGA are connected by arcs, and a Configuration State Function (CSF) is represented as a walk along arcs from the vacuum node to a head node. The wave function is a linear combination of product functions each of which is a linear combination of all CSFs, wherein each CSF coefficient is a product of nonlinear arc factors. When the spin-orbit interaction is included the Shavitt graph is a union of single-headed Shavitt graphs each with the same total number of electrons and orbitals. Thus spin-orbit Shavitt graphs are multiheaded. For full-CI multiheaded Shavitt graphs, analytic expressions are presented for the number of walks, the number of nodes, the number of arcs, and the number of node pairs in the associated auxiliary pair graph.
Stress wave propagation in a composite beam subjected to transverse impact.
Lu, Wei-Yang; Song, Bo; Jin, Huiqing
2010-08-01
Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate dynamic transverse loading on a glass fiber/epoxy composite beam. The high-speed DIC technique was employed to study the transverse wave propagation.
Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.; Dennison, Deborah S.; Dearborn, David S.; Antoun, Tarabay H.
2015-01-01
As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface are conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.
Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.; Dennison, Deborah S.; Dearborn, David S.; Antoun, Tarabay H.
2015-01-01
As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore »conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less
Early heat waves over Italy and their impacts on durum wheat yields
NASA Astrophysics Data System (ADS)
Fontana, G.; Toreti, A.; Ceglar, A.; De Sanctis, G.
2015-07-01
In the last decades the Euro-Mediterranean region has experienced an increase in extreme temperature events such as heat waves. These extreme weather conditions can strongly affect arable crop growth and final yields. Here, early heat waves over Italy from 1995 to 2013 are identified and characterised and their impact on durum wheat yields is investigated. As expected, results confirm the impact of the 2003 heat wave and highlight a high percentage of concurrence of early heat waves and significant negative yield anomalies in 13 out of 39 durum wheat production areas. In south-eastern Italy (the most important area for durum wheat production), the percentage of concurrent events exceeds 80 %.
Early heat waves over Italy and their impacts on durum wheat yields
NASA Astrophysics Data System (ADS)
Fontana, G.; Toreti, A.; Ceglar, A.; De Sanctis, G.
2015-05-01
In the last decades the Euro-Mediterranean region has experienced an increase in extreme temperature events such as heat waves. These extreme weather conditions can strongly affect arable crop growth and final yields. Here, early heat waves over Italy from 1995 to 2013 are identified and characterised and their impact on durum wheat yields is investigated. As expected, results confirm the impact of the 2003 heat waves and highlight a high percentage of concurrence of early heat waves and significant negative yield anomalies in 13 out of 39 durum wheat production areas. In south-eastern Italy (the most important area for durum wheat production), the percentage of concurrent events exceeds 80%.
Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling
NASA Astrophysics Data System (ADS)
GÜLdemeister, Nicole; WÜNnemann, Kai; Durr, Nathanael; Hiermaier, Stefan
2013-01-01