Pan Xiaoyin; Slamet, Marlina; Sahni, Viraht
2010-04-15
We extend our prior work on the construction of variational wave functions {psi} that are functionals of functions {chi}:{psi}={psi}[{chi}] rather than simply being functions. In this manner, the space of variations is expanded over those of traditional variational wave functions. In this article we perform the constrained search over the functions {chi} chosen such that the functional {psi}[{chi}] satisfies simultaneously the constraints of normalization and the exact expectation value of an arbitrary single- or two-particle Hermitian operator, while also leading to a rigorous upper bound to the energy. As such the wave function functional is accurate not only in the region of space in which the principal contributions to the energy arise but also in the other region of the space represented by the Hermitian operator. To demonstrate the efficacy of these ideas, we apply such a constrained search to the ground state of the negative ion of atomic hydrogen H{sup -}, the helium atom He, and its positive ions Li{sup +} and Be{sup 2+}. The operators W whose expectations are obtained exactly are the sum of the single-particle operators W={Sigma}{sub i}r{sub i}{sup n},n=-2,-1,1,2, W={Sigma}{sub i{delta}}(r{sub i}), W=-(1/2){Sigma}{sub i{nabla}i}{sup 2}, and the two-particle operators W={Sigma}{sub n}u{sup n},n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|. Comparisons with the method of Lagrangian multipliers and of other constructions of wave-function functionals are made. Finally, we present further insights into the construction of wave-function functionals by studying a previously proposed construction of functionals {psi}[{chi}] that lead to the exact expectation of arbitrary Hermitian operators. We discover that analogous to the solutions of the Schroedinger equation, there exist {psi}[{chi}] that are unphysical in that they lead to singular values for the expectations. We also explain the origin of the singularity.
Holographic tunneling wave function
NASA Astrophysics Data System (ADS)
Conti, Gabriele; Hertog, Thomas; van der Woerd, Ellen
2015-12-01
The Hartle-Hawking wave function in cosmology can be viewed as a decaying wave function with anti-de Sitter (AdS) boundary conditions. We show that the growing wave function in AdS familiar from Euclidean AdS/CFT is equivalent, semiclassically and up to surface terms, to the tunneling wave function in cosmology. The cosmological measure in the tunneling state is given by the partition function of certain relevant deformations of CFTs on a locally AdS boundary. We compute the partition function of finite constant mass deformations of the O( N ) vector model on the round three sphere and show this qualitatively reproduces the behaviour of the tunneling wave function in Einstein gravity coupled to a positive cosmological constant and a massive scalar. We find the amplitudes of inhomogeneities are not damped in the holographic tunneling state.
Adaptive multiconfigurational wave functions
Evangelista, Francesco A.
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Marto, Natlia
2005-01-01
During the summer of 2003, record high temperatures were reported across Europe, causing thousands of casualties. Heat waves are sporadic recurrent events, characterised by intense and prolonged heat, associated with excess mortality and morbidity. The most frequent cause of death directly attributable to heat is heat stroke but heat waves are known to cause increases in all-cause mortality, specially circulatory and respiratory mortality. Epidemiological studies demonstrate excess casualties cluster in specific risk groups. The elderly, those with chronic medical conditions and the socially isolated are particularly vulnerable. Air conditioning is the strongest protective factor against heat-related disorders. Heat waves cause disease indirectly, by aggravating chronic disorders, and directly, by causing heat-related illnesses (HRI). Classic HRI include skin eruptions, heat cramps, heat syncope, heat exhaustion and heat stroke. Heat stroke is a medical emergency characterised by hyperthermia and central nervous system dysfunction. Treatment includes immediate cooling and support of organ-system function. Despite aggressive treatment, heat stroke is often fatal and permanent neurological damage is frequent in those who survive. Heat related illness and death are preventable through behavioural adaptations, such as use of air conditioning and increased fluid intake. Other adaptation measures include heat emergency warning systems and intervention plans and environmental heat stress reduction. Heat related mortality is expected to rise as a consequence of the increasing proportion of elderly persons, the growing urban population, and the anticipated increase in number and intensity of heat waves associated with global warming. Improvements in surveillance and response capability may limit the adverse health conditions of future heat waves. It is crucial that health professionals are prepared to recognise, prevent and treat HRI and learn to cooperate with local health agencies. PMID:16684487
Properties of resonance wave functions.
NASA Technical Reports Server (NTRS)
More, R. M.; Gerjuoy, E.
1973-01-01
Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428
Vortices in atomic wave functions
NASA Astrophysics Data System (ADS)
Macek, J. H.
2010-02-01
Vortices in atomic wave functions are shown to have observable consequences. It is shown that time-dependent electron wave functions in coordinate space go over to electron emission amplitudes in the limit that time becomes infinite. This relation between wave functions and emission amplitudes is called the imaging theorem. According to this theorem vortices in wave functions at small times when particles interact in a complex way appear as vortices in electron momentum distributions where they produce observable features. Conversely, some observable structures may be interpreted in terms of vortices no matter how they are seen or computed. We verify that previously unexplained features in (e,2e) triply differential cross sections can be interpreted in terms of vortices.
Wave-function functionals for the density
Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht
2011-11-15
We extend the idea of the constrained-search variational method for the construction of wave-function functionals {psi}[{chi}] of functions {chi}. The search is constrained to those functions {chi} such that {psi}[{chi}] reproduces the density {rho}(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals {psi}[{chi}] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals {psi}[{chi}] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W={Sigma}{sub i}r{sub i}{sup n}, n=-2,-1,1,2, W={Sigma}{sub i}{delta}(r{sub i}) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2){Sigma}{sub i}{nabla}{sub i}{sup 2}, the two-particle operators W={Sigma}{sub n}u{sup n}, n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|, and the energy are accurate. We note that the construction of such functionals {psi}[{chi}] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional {psi}[{chi}] is closer to the true wave function.
Green's Functions of Wave Equations in
NASA Astrophysics Data System (ADS)
Deng, Shijin; Wang, Weike; Yu, Shih-Hsien
2015-06-01
We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave.
Spatial wave functions of photon and electron
Khokhlov, D. L.
2010-12-01
The quantum mechanical model of the photon and electron is considered. The photon is conceived of as a particle moving with the speed of light which is accompanied by the wave function of the photon spreading out with an infinite speed. The wave function of the electron is introduced in terms of virtual photons tied to the electron. A description of electrostatic and magnetostatic interactions is given through the wave functions of electrons. The approach provides an explanation of the results of recent experiments measuring the speed of propagation of the bound magnetic field.
Wave impact on a deck or baffle
NASA Astrophysics Data System (ADS)
Md Noar, Nor Aida Zuraimi; Greenhow, Martin
2015-02-01
Some coastal or ocean structures have deck-like baffles or horizontal platforms that can be exposed to wave action in heavy seas. A similar situation may occur in partially-filled tanks with horizontal baffles that become engulfed by sloshing waves. This can result in dangerous wave impact loads (slamming) causing a rapid rise of pressures which may lead to local damaging by crack initiation and/or propagation. We consider the wave impact against the whole of underside of horizontal deck (or baffle) projecting from a seawall (or vertical tank wall), previously studied by Wood and Peregrine (1996) using a different method based on conformal mappings. The approach used is to simplify the highly time-dependent and very nonlinear problem by considering the time integral of the pressure over the duration of the impact pressure-impulse, P (x, y). Our method expresses this in terms of eigenfunctions that satisfy the boundary conditions apart from that on the impact region and the matching of the two regions (under the platform and under the free surface); this results in a matrix equation to be solved numerically. As in Wood and Peregrine, we found that the pressure impulse on the deck increases when the length of deck increases, there is a strong pressure gradient beneath the deck near the seaward edge and the maximum pressure impulse occurs at the landward end of the impact zone.
On single nucleon wave functions in nuclei
Talmi, Igal
2011-05-06
The strong and singular interaction between nucleons, makes the nuclear many body theory very complicated. Still, nuclei exhibit simple and regular features which are simply described by the shell model. Wave functions of individual nucleons may be considered just as model wave functions which bear little resemblance to the real ones. There is, however, experimental evidence for the reality of single nucleon wave functions. There is a simple method of constructing such wave functions for valence nucleons. It is shown that this method can be improved by considering the polarization of the core by the valence nucleon. This gives rise to some rearrangement energy which affects the single valence nucleon energy within the nucleus.
The geometry of electron wave functions
Aminov, Yurii A
2013-02-28
To each wave function we assign a codimension-two submanifold in Euclidean space. We study the case of the wave function of a single electron in the hydrogen atom or other hydrogen-type atoms with quantum numbers n, l, m in detail. We prove theorems describing the behaviour of the scalar and sectional curvature of the constructed submanifold, depending on the quantum numbers. We also consider the external geometry of the submanifold. Bibliography: 9 titles.
Weak measurement and Bohmian conditional wave functions
Norsen, Travis; Struyve, Ward
2014-11-15
It was recently pointed out and demonstrated experimentally by Lundeen et al. that the wave function of a particle (more precisely, the wave function possessed by each member of an ensemble of identically-prepared particles) can be “directly measured” using weak measurement. Here it is shown that if this same technique is applied, with appropriate post-selection, to one particle from a perhaps entangled multi-particle system, the result is precisely the so-called “conditional wave function” of Bohmian mechanics. Thus, a plausibly operationalist method for defining the wave function of a quantum mechanical sub-system corresponds to the natural definition of a sub-system wave function which Bohmian mechanics uniquely makes possible. Similarly, a weak-measurement-based procedure for directly measuring a sub-system’s density matrix should yield, under appropriate circumstances, the Bohmian “conditional density matrix” as opposed to the standard reduced density matrix. Experimental arrangements to demonstrate this behavior–and also thereby reveal the non-local dependence of sub-system state functions on distant interventions–are suggested and discussed. - Highlights: • We study a “direct measurement” protocol for wave functions and density matrices. • Weakly measured states of entangled particles correspond to Bohmian conditional states. • Novel method of observing quantum non-locality is proposed.
Stress Wave Source Characterization: Impact, Fracture, and Sliding Friction
NASA Astrophysics Data System (ADS)
McLaskey, Gregory Christofer
Rapidly varying forces, such as those associated with impact, rapid crack propagation, and fault rupture, are sources of stress waves which propagate through a solid body. This dissertation investigates how properties of a stress wave source can be identified or constrained using measurements recorded at an array of sensor sites located far from the source. This methodology is often called the method of acoustic emission and is useful for structural health monitoring and the noninvasive study of material behavior such as friction and fracture. In this dissertation, laboratory measurements of 1--300 mm wavelength stress waves are obtained by means of piezoelectric sensors which detect high frequency (10 kHz--3MHz) motions of a specimen's surface, picometers to nanometers in amplitude. Then, stress wave source characterization techniques are used to study ball impact, drying shrinkage cracking in concrete, and the micromechanics of stick-slip friction of Poly(methyl methacrylate) (PMMA) and rock/rock interfaces. In order to quantitatively relate recorded signals obtained with an array of sensors to a particular stress wave source, wave propagation effects and sensor distortions must be accounted for. This is achieved by modeling the physics of wave propagation and transduction as linear transfer functions. Wave propagation effects are precisely modeled by an elastodynamic Green's function, sensor distortion is characterized by an instrument response function, and the stress wave source is represented with a force moment tensor. These transfer function models are verified though calibration experiments which employ two different mechanical calibration sources: ball impact and glass capillary fracture. The suitability of the ball impact source model, based on Hertzian contact theory, is experimentally validated for small (˜1 mm) balls impacting massive plates composed of four different materials: aluminum, steel, glass, and PMMA. Using this transfer function approach and the two mechanical calibration sources, four types of piezoelectric sensors were calibrated: three commercially available sensors and the Glaser-type conical piezoelectric sensor, which was developed in the Glaser laboratory. The distorting effects of each sensor are modeled using autoregressive-moving average (ARMA) models, and because vital phase information is robustly incorporated into these models, they are useful for simulating or removing sensor-induced distortions, so that a displacement time history can be retrieved from recorded signals. The Glaser-type sensor was found to be very well modeled as a unidirectional displacement sensor which detects stress wave disturbances down to about 1 picometer in amplitude. Finally, the merits of a fully calibrated experimental system are demonstrated in a study of stress wave sources arising from sliding friction, and the relationship between those sources and earthquakes. A laboratory friction apparatus was built for this work which allows the micro-mechanisms of friction to be studied with stress wave analysis. Using an array of 14 Glaser-type sensors, and precise models of wave propagation effects and the sensor distortions, the physical origins of the stress wave sources are explored. Force-time functions and focal mechanisms are determined for discrete events found amid the "noise" of friction. These localized events are interpreted to be the rupture of micrometer-sized contacts, known as asperities. By comparing stress wave sources from stick-slip experiments on plastic/plastic and rock/rock interfaces, systematic differences were found. The rock interface produces very rapid (<1 microsecond) implosive forces indicative of brittle asperity failure and fault gouge formation, while rupture on the plastic interface releases only shear force and produces a source more similar to earthquakes commonly recorded in the field. The difference between the mechanisms is attributed to the vast differences in the hardness and melting temperatures of the two materials, which affect the distribution of asperities as well as their failure behavior. With proper scaling, the strong link between material properties and laboratory earthquakes will aid in our understanding of fault mechanics and the generation of earthquakes and seismic tremor.
The Wave Function and Quantum Reality
Gao Shan
2011-03-28
We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but be a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. It is further argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. The suggested new interpretation of the wave function provides a natural realistic alternative to the orthodox interpretation, and it also implies that the de Broglie-Bohm theory and many-worlds interpretation are wrong and the dynamical collapse theories are in the right direction by admitting wavefunction collapse.
Convergent close coupling versus the generalized Sturmian function approach: Wave-function analysis
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Mitnik, D. M.; Gasaneo, G.; Randazzo, J. M.; Kadyrov, A. S.; Fursa, D. V.; Bray, I.
2015-11-01
We compare the physical information contained in the Temkin-Poet (TP) scattering wave function representing electron-impact ionization of hydrogen, calculated by the convergent close-coupling (CCC) and generalized Sturmian function (GSF) methodologies. The idea is to show that the ionization cross section can be extracted from the wave functions themselves. Using two different procedures based on hyperspherical Sturmian functions we show that the transition amplitudes contained in both GSF and CCC scattering functions lead to similar single-differential cross sections. The single-continuum channels were also a subject of the present studies, and we show that the elastic and excitation amplitudes are essentially the same as well.
Faddeev wave function decomposition using bipolar harmonics
NASA Astrophysics Data System (ADS)
Friar, J. L.; Tomusiak, E. L.; Gibson, B. F.; Payne, G. L.
1981-08-01
The standard partial wave (channel) representation for the Faddeev solution to the Schrdinger equation for the ground state of 3 nucleons is written in terms of functions which couple the interacting pair and spectator angular momenta to give S, P, and D waves. For each such coupling there are three terms, one for each of the three cyclic permutations of the nucleon coordinates. A series of spherical harmonic identities is developed which allows writing the Faddeev solution in terms of a basis set of 5 bipolar harmonics: 1 for S waves; 1 for P waves; and 3 for D waves. The choice of a D-wave basis is largely arbitrary, and specific choices correspond to the decomposition schemes of Derrick and Blatt, Sachs, Gibson and Schiff, and Bolsterli and Jezak. The bipolar harmonic form greatly simplifies applications which utilize the wave function, and we specifically discuss the isoscalar charge (or mass) density and the 3He Coulomb energy. [NUCLEAR STRUCTURE Three-body problem, classification of states.
Swell-Dissipation Function for Wave Models
NASA Astrophysics Data System (ADS)
Babanin, A.
2012-04-01
In the paper, we will investigate swell attenuation due to production of turbulence by the wave orbital motion. Theoreticaly, potential waves cannot generate the vortex motion, but the scale considerations indicate that if the steepness of waves is not too small, the Reynolds number can exceed the critical values. This means that in presence of initial non-potential disturbances the orbital velocities can generate the vortex motion and turbulence. This problem was investigated by laboratory means, numerical simulations and field observations. As a sink of wave energy, such dissipation is small in presence of wave breaking, but is essential for swell. Swell prediction by spectral wave models is often poor, but is important for offshore and maritime industry, and across a broad range of oceanographic and air-sea interaction applications. Based on the research of wave-induced turbulence, new swell-dissipation function is proposed. It agrees well with satellite observations of long-distance swell propagation and has been employed and tested in spectral wave models.
Spectroscopic measurement of an atomic wave function
Kapale, Kishore T.; Qamar, Shahid; Zubairy, M. Suhail
2003-02-01
We present a simple spectroscopic method based on Autler-Townes spectroscopy to determine the center-of-mass atomic wave function. The detection of spontaneously emitted photons from a three-level atom, in which two upper levels are driven by a classical standing light, yields information about the position and momentum distribution of the atom [A. M. Herkommer, W. P. Schleich, and M. S. Zubairy, J. Mod. Opt. 44, 2507 (1997)]. In this paper, we show that both the amplitude and phase information of the center-of-mass atomic wave function can be obtained from these distributions after a series of conditional measurements on the atom and the emitted photon.
Measurement of Oblique Impact-generated Shear Waves
NASA Technical Reports Server (NTRS)
Dahl, J. M.; Schultz, P. H.
2001-01-01
Experimental strain measurements reveal that oblique impacts can generate shear waves with displacements as large as those in the P-wave. Large oblique impacts may thus be more efficient sources of surface disruption than vertical impacts. Additional information is contained in the original extended abstract.
Covariance Constraints for Light Front Wave Functions
NASA Astrophysics Data System (ADS)
Müller, D.
2016-03-01
Light front wave functions (LFWFs) are often utilized to model parton distributions and form factors where their transverse and longitudinal momenta are tied to each other in some manner that is often guided by convenience. On the other hand, the cross talk of transverse and longitudinal momenta is governed by Poincaré symmetry and thus popular LFWF models are often not usable to model more intricate quantities such as generalized parton distributions. In this contribution a closer look to this issue is given and it is shown how to overcome the issue for two-body LFWFs.
Impact detection using ultrasonic waves based on artificial immune system
NASA Astrophysics Data System (ADS)
Okamoto, Keisuke; Mita, Akira
2009-03-01
This paper presents a structural health monitoring system for judging structural condition of metallic plates by analyzing ultrasonic waves. Many critical accidents of structures like buildings and aircrafts are caused by small structural errors; cracks and loosened bolts etc. This is a reason why we need to detect little errors at an early stage. Moreover, to improve precision and to reduce cost for damage detection, it is necessary to build and update the database corresponding to environmental change. This study focuses our attention on the automatable structures, specifically, applying artificial immune system (AIS) algorithm to determine the structure safe or not. The AIS is a novelty computational detection algorithm inspired from biological defense system, which discriminates between self and non-self to reject nonself cells. Here, self is defined to be normal data patterns and non-self is abnormal data patterns. Furthermore, it is not only pattern recognition but also it has a storage function. In this study, a number of impact resistance experiments of duralumin plates, with normal structural condition and abnormal structural condition, are examined and ultrasonic waves are acquired by AE sensors on the surface of the aluminum plates. By accumulating several feature vectors of ultrasonic waves, a judging method, which can determine an abnormal wave as nonself, inspired from immune system is created. The results of the experiments show good performance of this method.
Variational wave functions for homogenous Bose systems
NASA Astrophysics Data System (ADS)
St?, Andrs; Szpfalusy, Pter
2008-02-01
We study variational wave functions of the product form, factorizing according to the wave vectors k , for the ground state of a system of bosons interacting via positive pair interactions with a positive Fourier transform. Our trial functions are members of different orthonormal bases in Fock space. Each basis contains a quasiparticle vacuum state and states with an arbitrary finite number of quasiparticles. One of the bases is that of Valatin and Butler (VB), introduced fifty years ago and parametrized by an infinite set of variables determining Bogoliubovs canonical transformation for each k . In another case, inspired by Nozires and Saint James the canonical transformation for k=0 is replaced by a shift in the creation/annihilation operators. For the VB basis we prove that the lowest energy is obtained in a state with volume quasiparticles in the zero mode. The number of k=0 physical particles is of the order of the volume and its fluctuation is anomalously large, resulting in an excess energy. The same fluctuation is normal in the second type of optimized bases, the minimum energy is smaller and is attained in a vacuum state. Associated quasiparticle theories and questions about the gap in their spectrum are also discussed.
Multideterminant Wave Functions in Quantum Monte Carlo.
Morales, Miguel A; McMinis, Jeremy; Clark, Bryan K; Kim, Jeongnim; Scuseria, Gustavo E
2012-07-10
Quantum Monte Carlo (QMC) methods have received considerable attention over past decades due to their great promise for providing a direct solution to the many-body Schrodinger equation in electronic systems. Thanks to their low scaling with the number of particles, QMC methods present a compelling competitive alternative for the accurate study of large molecular systems and solid state calculations. In spite of such promise, the method has not permeated the quantum chemistry community broadly, mainly because of the fixed-node error, which can be large and whose control is difficult. In this Perspective, we present a systematic application of large scale multideterminant expansions in QMC and report on its impressive performance with first row dimers and the 55 molecules of the G1 test set. We demonstrate the potential of this strategy for systematically reducing the fixed-node error in the wave function and for achieving chemical accuracy in energy predictions. When compared to traditional quantum chemistry methods like MP2, CCSD(T), and various DFT approximations, the QMC results show a marked improvement over all of them. In fact, only the explicitly correlated CCSD(T) method with a large basis set produces more accurate results. Further developments in trial wave functions and algorithmic improvements appear promising for rendering QMC as the benchmark standard in large electronic systems. PMID:26588949
New summation rules for coulomb wave functions
Chibisov; Ermolaev; Brouillard; Cherkani
2000-01-17
Sums of products of the Coulomb wave functions over degenerate manifolds have been obtained in a closed form. These sums appear in many atomic and molecular problems. The sums have been obtained making use of the properties of the Coulomb Green's function G(r, r('),E), in the limit E-->E(n), where E(n) is the eigenenergy of the hydrogenlike atomic ion. The closed Hostler-Pratt form of G in the coordinate representation has been used. The sums calculated are a consequence of the n degeneracy of the Coulomb atomic energy levels. This itself, as is well known, follows from the four-dimensional symmetry of the Coulomb problem for the hydrogen atom. PMID:11015936
Adiabatic corrections to density functional theory energies and wave functions.
Mohallem, Jos R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafro, Denise; Heine, Thomas
2008-09-25
The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228
Analytical Wave Functions for Ultracold Collisions.
NASA Astrophysics Data System (ADS)
Cavagnero, M. J.
1998-05-01
Secular perturbation theory of long-range interactions(M. J. Cavagnero, PRA 50) 2841, (1994). has been generalized to yield accurate wave functions for near threshold processes, including low-energy scattering processes of interest at ultracold temperatures. In particular, solutions of Schrödinger's equation have been obtained for motion in the combined r-6, r-8, and r-10 potentials appropriate for describing an utlracold collision of two neutral ground state atoms. Scattering lengths and effective ranges appropriate to such potentials are readily calculated at distances comparable to the LeRoy radius, where exchange forces can be neglected, thereby eliminating the need to integrate Schrödinger's equation to large internuclear distances. Our method yields accurate base pair solutions well beyond the energy range of effective range theories, making possible the application of multichannel quantum defect theory [MQDT] and R-matrix methods to the study of ultracold collisions.
String wave function across a Kasner singularity
Copeland, Edmund J.; Niz, Gustavo; Turok, Neil
2010-06-15
A collision of orbifold planes in 11 dimensions has been proposed as an explanation of the hot big bang. When the two planes are close to each other, the winding membranes become the lightest modes of the theory, and can be effectively described in terms of fundamental strings in a ten-dimensional background. Near the brane collision, the 11-dimensional metric is a Euclidean space times a 1+1-dimensional Milne universe. However, one may expect small perturbations to lead into a more general Kasner background. In this paper we extend the previous classical analysis of winding membranes to Kasner backgrounds, and using the Hamiltonian equations, solve for the wave function of loops with circular symmetry. The evolution across the singularity is regular, and explained in terms of the excitement of higher oscillation modes. We also show there is finite particle production and unitarity is preserved.
Intercellular Ca2+ Waves: Mechanisms and Function
Sanderson, Michael J.
2012-01-01
Intercellular calcium (Ca2+) waves (ICWs) represent the propagation of increases in intracellular Ca2+ through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca2+ from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs. PMID:22811430
Hadronic wave function in quantum chromodynamics
Brodsky, S.J.; Huang, T.; Lepage, G.P.
1980-01-01
The underlying link between hadronic phenomena in quantum chromodynamics at large and small distance is the hadronic wavefunction. The theoretical and empirical constraints on the hadronic wave-function and hadronic structure functions; the predictions of perturbative QCD for the large transverse momentum tail of the Fock state infinite momentum wavefunction psi (k/sub perpendicular to i/,x/sub i/,s/sub i/); the valence Fock state meson wavefunctions from the meson decay; the evolution equations of the distribution amplitudes; and a simplified model for the basic wavefunctions are presented. In particular, a new type of low energy theorem is obtained for the pion wavefunction from the ..pi../sup 0/ ..-->.. ..gamma gamma... This result, together with the constraint on the valence wavefunction from the ..pi../sup 0/ ..-->.. ..mu nu.. decay, leads to the probability of finding the valence vertical bar q anti q > state. All these constraints allow construction of a possible model which describes hadronic wavefunctions, probability amplitudes, and distributions. Results are compared with data for form factors and the deep inelastic processes. This work represents a first attempt to construct a model of hadronic structure which is consistent with data and QCD at large and small distances.
Breaking wave impact on a slender horizontal cylinder
Prasad, S.; Isaacson, M.; Chan, E.S.
1994-12-31
The present paper describes the results of an experimental study of impact forces due to plunging wave action on a horizontal circular cylinder located near the still water level. The vertical and horizontal components of the impact force on the cylinder due to a single plunging wave have been measured for 3 elevations of the cylinder, and 6 locations of wave breaking relative to the horizontal location of the cylinder. A video record of the impact process has been used to estimate the kinematics of the wave and plunging jet prior to impact. The force measurements have been corrected for the dynamic response of the cylinder, and analyzed to obtain slamming coefficients and rise times. It is observed that the cylinder elevation and its horizontal location have a significant effect on the peak impact force. The magnitude of the impact force due to a breaking wave is 4 to 20 times greater than that due to a regular non-breaking wave of similar height and period. In addition to the fluid velocity, the curvature of the water surface has a noticeable effect on the peak impact force.
Asymptotic behavior of atomic and molecular wave functions
Katriel, J.; Davidson, E. R.
1980-01-01
The asymptotic form of bound-state wave functions is derived by analytic continuation of asymptotic scattering-state wave functions. The result is also regorously derived by using an approach that is independent of scattering theory. One aspect of the result is that the N electron wave function becomes the lowest accessible exact wave function for the remaining N 1 electrons when one electron is far away from all the nuclei. This shows that the recently developed extended Koopmans' procedures are in principle exact for the first ionization energy. PMID:16592857
POSSIBLE EXPERIMENTS ON WAVE FUNCTION LOCALIZATION DUE TO COMPTON SCATTERING
Aleksandrov, Alexander V; Danilov, Viatcheslav V; Gorlov, Timofey V; Liu, Yun; Shishlo, Andrei P; Nagaitsev,
2013-01-01
The reduction of a particle s wave function in the process of radiation or light scattering is a longstanding problem. Its solution will give a clue on processes that form, for example, wave functions of electrons constantly emitting synchrotron radiation quanta in storage rings. On a more global scale, it may shed light on wave function collapse due to the process of measurement. In this paper we consider various experimental options using Fermilab electron beams and a possible electron beam from the SNS linac and lasers to detect electron wave function change due to Compton scattering.
A Hammer-Impact, Aluminum, Shear-Wave Seismic Source
Haines, Seth S.
2007-01-01
Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.
Impact induced solitary wave propagation through a woodpile structure
NASA Astrophysics Data System (ADS)
Kore, R.; Waychal, A.; Agarwal, S.; Yadav, P.; Uddin, Ahsan; Sahoo, N.; Shelke, A.
2016-02-01
In this paper, we investigate solitary wave propagation through a one-dimensional woodpile structure excited by low and high velocity impact. Woodpile structures are a sub-class of granular metamaterial, which supports propagation of nonlinear waves. Hertz contact law governs the behavior of the solitary wave propagation through the granular media. Towards an experimental study, a woodpile structure was fabricated by orthogonally stacking cylindrical rods. A shock tube facility has been developed to launch an impactor on the woodpile structure at a velocity of 30 m s‑1. Embedded granular chain sensors were fabricated to study the behavior of the solitary wave. The impact induced stress wave is studied to investigate solitary wave parameters, i.e. contact force, contact time, and solitary wave velocity. With the aid of the experimental setup, numerical simulations, and a theoretical solution based on the long wavelength approximation, formation of the solitary wave in the woodpile structure is validated to a reasonable degree of accuracy. The nondispersive and compact supported solitary waves traveling at sonic wave velocity offer unique properties that could be leveraged for application in nondestructive testing and structural health monitoring.
Extreme waves impact on the ship mooring near berth
NASA Astrophysics Data System (ADS)
Leont'ev, Victor; Nudner, Igor; Semenov, Konstantin; Pelinovsky, Efim
2013-04-01
Ensuring safe ships berthing and loading-unloading operations at berths need reliable mooring systems. The choice of its parameters corresponds to calculating of the maximum displacements of the boat, which are caused by external impact of extreme waves, winds, and currents. Ship motions are described by system of differential equations, which contain disturbing, inertia, damping, and restoring forces, which magnitude strongly depends on the berth design and configuration of its elements. The major impact on the boat movements is caused by sea waves. In the given paper, an interaction between sea waves and ship located near the berth is studied. The cross-sectional shape of the boat is assumed to be rectangular and under-berth slope profile is approximated by finite number of steps. Different types of berth constructions are taken into account: containing impermeable or partially permeable front vertical wall, wave attenuation camera behind it with or without under-berth slope. The fluid is assumed ideal and incompressible, and its motion is potential. The stated problem is reduced to the determination of the velocity potential that satisfies the Laplace equation; the boundary condition on the free surface; the condition of non-flux through the impermeable bottom, the ship and berth elements; the condition on the surface of the permeable wall that is in proportionality between the wave flow velocity through the wall and pressure drop from its front to back faces. The problem is solved by dividing of the region into sub-domains with conditions of the hydrodynamic pressure and velocity continuity on its boundaries. In each sub-domain the solution is found using Fourier method in the form of functional series with unknown coefficients which are found from the system of linear algebraic equations. Calculated velocity potentials are used to determine different hydrodynamic characteristics of ship motions, such as horizontal and vertical components of disturbing force and moment, added masses and damping coefficients for all types of boat motions. The results of calculations are presented and they are compared with experimental data performed by authors.
NASA Astrophysics Data System (ADS)
O'Dea, A.; Haller, M. C.
2013-12-01
As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN through the external modification of the wave spectra at the device locations, based on a new experimentally determined Power Transfer Function established in an earlier WEC-array laboratory study. Changes in nearshore forcing conditions for each array size and configuration are compared in order to determine the scale of the far-field effects of WEC arrays and which array sizes and configurations could have the most significant impacts on coastal processes.
Imaging the wave functions of adsorbed molecules
Lftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Soubatch, Serguei; Tautz, F. Stefan; Ramsey, Michael G.; Puschnig, Peter
2014-01-01
The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust. PMID:24344291
NASA Astrophysics Data System (ADS)
Yamashita, Chihoko
2011-12-01
Full understanding of gravity wave influences on the middle and upper atmosphere remains an unresolved research topic. The goals of this work are two-fold. First, gravity wave sources and propagation characteristics are explored using assimilated meteorological analyses from the European Centre for Medium-Range Weather Forecasting (ECMWF) during the 2009 stratospheric sudden warming (SSW). Second, gravity wave impacts on polar temperatures in the middle and upper atmosphere are examined by modulating the gravity wave parameterization scheme in the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM). Gravity waves that are resolved in ECMWFT799 are validated with satellite and lidar observations. ECMWF gravity wave potential energy density (GW-Ep) shows two enhancements, on January 5 and 15--22, prior to the peak 2009 SSW on January 23--24. The two gravity wave enhancements are associated with the amplifications of planetary wave 1 and wave 2, respectively, and there is a sudden decay of GW-Ep after the peak 2009 SSW. GW-Ep enhancements prior to the SSW correspond well with the positive vertical gradients of total perturbation energy flux (FE), indicating an in-situ energy source. The spatial and temporal distributions of gravity wave activities correlate with those of the residual tendencies introduced by Snyder et al. [2009]. These results suggest that the two peaks of GW-Ep are caused by the enhancements of the wave excitation in the stratosphere due to the residual tendency forcings. The sudden decay of gravity wave amplitudes correlates well with the suppressions of gravity wave propagation from the troposphere to the stratosphere obtained from the ray-tracing model. In addition, the vertical derivatives of FE decay after January 22. These results indicate that the sudden decay of gravity waves after the wind reversal is likely due to suppressions of gravity wave propagation from the troposphere along with the reductions of in-situ gravity wave excitation by the polar night jet. The responses of the mesosphere and lower thermosphere (MLT) temperatures to gravity waves during SSWs are investigated using TIME-GCM through modifying gravity wave parameters. This study confirms that the height of gravity wave forcing region is mainly determined by gravity wave amplitude and wavelength, and the vertical depth is closely tied to the spectral width of gravity wave phase speed. The gravity wave forcings control the pattern and strength of residual circulation and thereby the characteristics of MLT cooling and warming regions. The planetary wave forcings in the MLT also affect the vertical depth and magnitude of MLT temperature anomalies through further modifying the residual circulation. These planetary wave forcings are likely generated in-situ by the gravity wave forcings at high latitudes. Therefore, the mechanisms of gravity wave controlling the MLT temperature during a SSW are directly through gravity wave forcing and indirectly through generating planetary waves in-situ. Realistic gravity wave variations during the 2009 SSW obtained from ECMWF-T799 are implemented in TIME-GCM. The following two simulations are examined. Case 1 includes the enhanced gravity waves with longitudinal variations. Case 2 suppresses gravity waves with horizontal wavelength longer than 150 km. Both cases improve the TIME-GCM simulations of the MLT temperature responses to the 2009 SSW, indicating that realistic gravity wave variations have impacts on the MLT thermal structure.
Six Impossible Things: Fractional Charge From Laughlin's Wave Function
Shrivastava, Keshav N.
2010-12-23
The Laughlin's wave function is found to be the zero-energy ground state of a {delta}-function Hamiltonian. The finite negative value of the ground state energy which is 91 per cent of Wigner value, can be obtained only when Coulomb correlations are introduced. The Laughlin's wave function is of short range and it overlaps with that of the exact wave functions of small (number of electrons 2 or 5) systems. (i) It is impossible to obtain fractional charge from Laughlin's wave function. (ii) It is impossible to prove that the Laughlin's wave function gives the ground state of the Coulomb Hamiltonian. (iii) It is impossible to have particle-hole symmetry in the Laughlin's wave function. (iv) It is impossible to derive the value of m in the Laughlin's wave function. The value of m in {psi}{sub m} can not be proved to be 3 or 5. (v) It is impossible to prove that the Laughlin's state is incompressible because the compressible states are also likely. (vi) It is impossible for the Laughlin's wave function to have spin. This effort is directed to explain the experimental data of quantum Hall effect in GaAs/AlGaAs.
Exclusive processes of charmonium production and charmonium wave functions
Braguta, V. V. Likhoded, A. K. Luchinsky, A. V.
2012-01-15
Results obtained by studying the properties of the leading-twist wave functions for the S- and P-wave states of charmonia are presented. Wave-function models that can be used to calculate various processes involving the production of these mesons were constructed on the basis of these investigations. Calculations for some exclusive processes of charmonium production were performed within the models in question.
Impact of simulated heat waves on soybean physiology and yield
Technology Transfer Automated Retrieval System (TEKTRAN)
With increases in mean global temperatures and associated climate change, extreme temperature events are predicted to increase in both intensity and frequency. Despite the clearly documented negative public health impacts of heat waves, the impact on physiology and yields of key agricultural species...
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
NASA Technical Reports Server (NTRS)
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
Wave propagation in a plate after impact by a projectile
NASA Technical Reports Server (NTRS)
El-Raheb, M.; Wagner, P.
1987-01-01
The wave propagation in a circular plate after impact by a cylindrical projectile is studied. In the vicinity of impact, the pressure is computed numerically. An intense pressure pulse is generated that peaks 0.2 microns after impact, then drops sharply to a plateau. The response of the plate is determined adopting a modal solution of Mindlin's equations. Velocity and acceleration histories display both propagating and dispersive features.
Physical measurements of breaking wave impact on a floating wave energy converter
NASA Astrophysics Data System (ADS)
Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison
2013-04-01
Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.
Waves in Periodic Dissipative Laminate Metamaterial Generated by Plate Impact
NASA Astrophysics Data System (ADS)
Franco Navarro, Pedro; Benson, David; Nesterenko, Vitali
2015-06-01
Waves generated by plate impact loading of Al/W laminates with different size of cell were investigated numerically depending on the impactor/cell mass ratio. The materials model took into account viscoplastic behavior of materials. It was observed that this mass ratio has a direct impact on the structure of stress pulses traveling through the composite. At the small impactor/cell mass ratio travelling waves closely resembling solitary waves were quickly formed near the impacted surface. They propagate as quasistationary weakly attenuating localized pulses. The properties of these pulses were satisfactory described based on a theoretical model using dispersive and nonlinear parameters of the materials similar to solitary solutions for the Korteweg-de Vries equation (KdV). The temperature at given pressure at the maximum is dramatically different then the temperature corresponding to the shock wave at the same pressure reflecting a different paths of loading. Increase of impactor/cell mass ratio results in the train of solitary like pulses which number increased with the increase of the impactor/cell mass ratio. At large impactor/cell mass ratio oscillatory stationary shock waves were formed. The leading front of these stationary shock waves was closely described by a solitary like pulse observed at small impactor/cell mass ratio. One of the authors (PFN) was supported by UCMexus Fellowship
Heat waves in urban heat islands: interactions, impacts, and mitigation
NASA Astrophysics Data System (ADS)
Bou-Zeid, E.; Li, D.
2013-12-01
Urbanization rates and the intensity of anthropogenic global warming are both on the rise. By the middle of this century, climate change impacts on humans will be largely manifested in urban regions and will result from a combination of global to regional impacts related to greenhouse gas emissions, as well as regional to local impacts related to land-cover changes associated with urbanization. Alarmingly, our understanding of how these two distinct impacts will interact remains very poor. One example, which is the focus of this study, is the interaction of urban heat islands and heat waves. Urban heat islands (UHIs) are spatial anomalies consisting of higher temperatures over built terrain; while their intensity varies with many factors, it consistently increases with city size. UHIs will hence intensify in the future as cities expand. Heat waves are temporal anomalies in the regional temperatures that affect both urban and rural areas; there is high certainty that the frequency and intensity of such waves will increase as a result global warming. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses of a heat wave event over the Baltimore-Washington urban corridor reveals synergistic interactions between urban heat islands and heat waves. Not only do heat waves increase the regional temperatures, but they also intensify the difference between urban and rural temperatures. That is, their impact is stronger in cities and the urban heat stress during such waves is larger than the sum of the background urban heat island effect and the heat wave effect. We also develop a simple analytical model of this interaction that suggests that this exacerbated impact in urban areas is primarily to the lack of surface moisture, with low wind speeds also playing a smaller role. Finally, the effectiveness of cool and green roofs as UHI mitigation strategies during intense heat waves are evaluated at city scales. These strategies are shown to reduce urban surface temperatures in the Baltimore-Washington corridor by about 5 K and urban air temperatures by about 1 K. These reductions are most significant in the dense urban cores of the two cities, but they are not sufficient to fully offset the UHI effect.
Madden Julian Oscillation impacts on global ocean surface waves
NASA Astrophysics Data System (ADS)
Marshall, Andrew G.; Hendon, Harry H.; Durrant, Tom H.; Hemer, Mark A.
2015-12-01
We assess the impact of the tropical Madden Julian Oscillation (MJO) on global ocean wind waves using 30 years of wave data from a wave model hindcast that is forced with high resolution surface winds from the NCEP-CFSR reanalysis. We concentrate on the boreal winter season when the MJO has its greatest amplitude and is potentially a source of predictable wave impacts at intra-seasonal lead times. Statistically significant anomalies in significant wave height (Hs), peak wave period (Tp) and zonal wave energy flux (CgE) are found to covary with the intra-seasonal variation of surface zonal wind induced by the MJO as it traverses eastward from the western tropical Indian Ocean to the eastern tropical Pacific. Tp varies generally out of phase with Hs over the life cycle of the MJO, indicating that these MJO-wave anomalies are locally wind-generated rather than remotely generated by ocean swell. Pronounced Hs anomalies develop on the northwest shelf of Australia, where the MJO is known to influence sea level and surface temperatures, and in the western Caribbean Sea and Guatemalan-Panama Seas with enhanced wave anomalies apparent in the vicinity of the Tehuantepec and Papagayo gaps. Significant wave anomalies are also detected in the North Pacific and North Atlantic oceans in connection with the MJO teleconnection to the extratropics via atmospheric wave propagation. The impact in the north Atlantic stems from induction of the high phase of the North Atlantic Oscillation (NAO) about 1 week after MJO convection traverses the Indian Ocean, and the low phase of the NAO about one week after suppressed convection traverses the Indian Ocean. Strong positive Hs anomalies maximize on the Northern European coast in the positive NAO phase and vice versa for the negative NAO phase. The MJO also influences the occurrence of daily low (below the 5th percentile) and high (above the 95th percentile) wave conditions across the tropics and in the North Pacific and North Atlantic, emphasizing that the MJO may be a valuable source of intra-seasonal predictability of surface wave variability.
Proton Wave Functions in a Uniform Magnetic Field
Roberts, Dale S.; Kamleh, Waseem; Leinweber, Derek B.; Bowman, Patrick O.
2011-05-24
The wave function of the d-quark in the ground state of the proton, and how it is affected in the presence of a uniform background magnetic field is calculated in lattice QCD. We focus on the wave functions in the Landau and Coulomb gauges. When the quarks are annihilated at different lattice sites, we observe the formation of a scalar u-d diquark pair within the proton in the Landau gauge, which is not present in the Coulomb gauge. The overall distortion of the wave function under a very large magnetic field, as demanded by the quantisation conditions on the field, is quite small.
Nonstandard jump functions for radially symmetric shock waves
Baty, Roy S.; Tucker, Don H.; Stanescu, Dan
2008-10-01
Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals, and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function
Nonstandard jump functions for radically symmetric shock waves
Baty, Roy S; Tucker, Don H; Stanescu, Dan
2008-01-01
Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.
Boundary conditions on internal three-body wave functions
Mitchell, Kevin A.; Littlejohn, Robert G.
1999-10-01
For a three-body system, a quantum wave function {Psi}{sub m}{sup {ell}} with definite {ell} and m quantum numbers may be expressed in terms of an internal wave function {chi}{sub k}{sup {ell}} which is a function of three internal coordinates. This article provides necessary and sufficient constraints on {chi}{sub k}{sup {ell}} to ensure that the external wave function {Psi}{sub k}{sup {ell}} is analytic. These constraints effectively amount to boundary conditions on {chi}{sub k}{sup {ell}} and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r{sup |m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.
Impact of Functionally Graded Cylinders: Theory
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, S. M. (Technical Monitor)
2001-01-01
This final report summarizes the work funded under the Grant NAG3-2411 during the 04/05/2000-04/04/2001 period. The objective of this one-year project was to generalize the theoretical framework of the two-dimensional higher-order theory for the analysis of cylindrical functionally graded materials/structural components employed in advanced aircraft engines developed under past NASA Glenn funding. The completed generalization significantly broadens the theory's range of applicability through the incorporation of dynamic impact loading capability into its framework. Thus, it makes possible the assessment of the effect of damage due to fuel impurities, or the presence of submicron-level debris, on the life of functionally graded structural components. Applications involving advanced turbine blades and structural components for the reusable-launch vehicle (RLV) currently under development will benefit from the completed work. The theory's predictive capability is demonstrated through a numerical simulation of a one-dimensional wave propagation set up by an impulse load in a layered half-plane. Full benefit of the completed generalization of the higher-order theory described in this report will be realized upon the development of a related computer code.
Extracting momentum distributions from time-dependent wave functions
NASA Astrophysics Data System (ADS)
Macek, J. H.; Ovchinnikov, S. Y.; Sternberg, J. B.
2010-03-01
Time dependent state vectors for atomic processes are computed numerically and amplitudes for transitions to bound states obtained by projecting time-dependent state vectors onto bound state vectors at large times. Similar projections onto plane waves are used for continuum states. This requires large times since only then do plane waves represent particle motion. To use finite times, one projects onto asymptotic state vectors. Since the asymptotic states are often not known other procedures are sought. One such procedure replaces coordinates by the their classical counterpart, namely vt, where v is the velocity, and uses that coordinate space wave functions go over to momentum space wave functions at large times. This gives momentum distributions directly. In essence, if an exact wave function is obtained then there is no need to project that wave function onto imperfectly known asymptotic states to extract electron momentum distributions. We show how more familiar projection procedures derive from this simple prescription, which we call ``The Imaging Theorem" since it shows that momentum distributions image time-dependent wave functions.
The effects of extracorporeal shock wave lithotripsy on pacemaker function.
Langberg, J; Abber, J; Thuroff, J W; Griffin, J C
1987-09-01
Twenty-two pacemaker pulse generators were exposed to shock waves of an extracorporeal shock wave lithotripter to assess the effects of the extremely high pressure transients on pacemaker function. The pulse generator and distal aspect of the lead were positioned 5 cm from the focal point of the lithotripter and 10 cm from each other. Pulse generator function was analyzed during shock wave delivery synchronized with pulse generator output, during shock waves at a rate faster than the escape rate, and after exposure to lithotripsy. During shock waves delivered synchronously with pulse generator output, only one of 22 pulse generators malfunctioned by intermittently reverting to the magnet rate. When subjected to shock waves at a rate greater than the escape rate, 50% of the pulse generators were inhibited by electromechanical interference from the lithotripter. Both bipolar and unipolar devices were affected. However, analysis after exposure to shock waves showed that none of the pacemakers was damaged or spuriously reprogrammed. In conclusion, cardiac pacemakers do not appear to be damaged or reprogrammed by exposure to extracorporeal shock wave lithotripsy. The likelihood of false inhibition appears to be very low if shock waves are delivered synchronously with the QRS. PMID:2444938
Impact of plunging breaking waves on a partially submerged cube
NASA Astrophysics Data System (ADS)
Wang, A.; Ikeda, C.; Duncan, J. H.
2013-11-01
The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.
Structure of the number-projected BCS wave function
NASA Astrophysics Data System (ADS)
Dukelsky, J.; Pittel, S.; Esebbag, C.
2016-03-01
We study the structure of the number-projected BCS (PBCS) wave function in the particle-hole basis, displaying its similarities with coupled clusters theory (CCT). The analysis of PBCS together with several modifications suggested by the CCT wave function is carried out for the exactly solvable Richardson model involving a pure pairing Hamiltonian acting in a space of equally spaced, doubly degenerate levels. We point out the limitations of PBCS to describe the nonsuperconducting regime and suggest possible avenues for improvement.
Multi-time wave functions for quantum field theory
Petrat, Sören; Tumulka, Roderich
2014-06-15
Multi-time wave functions such as ϕ(t{sub 1},x{sub 1},…,t{sub N},x{sub N}) have one time variable t{sub j} for each particle. This type of wave function arises as a relativistic generalization of the wave function ψ(t,x{sub 1},…,x{sub N}) of non-relativistic quantum mechanics. We show here how a quantum field theory can be formulated in terms of multi-time wave functions. We mainly consider a particular quantum field theory that features particle creation and annihilation. Starting from the particle–position representation of state vectors in Fock space, we introduce multi-time wave functions with a variable number of time variables, set up multi-time evolution equations, and show that they are consistent. Moreover, we discuss the relation of the multi-time wave function to two other representations, the Tomonaga–Schwinger representation and the Heisenberg picture in terms of operator-valued fields on space–time. In a certain sense and under natural assumptions, we find that all three representations are equivalent; yet, we point out that the multi-time formulation has several technical and conceptual advantages. -- Highlights: •Multi-time wave functions are manifestly Lorentz-covariant objects. •We develop consistent multi-time equations with interaction for quantum field theory. •We discuss in detail a particular model with particle creation and annihilation. •We show how multi-time wave functions are related to the Tomonaga–Schwinger approach. •We show that they have a simple representation in terms of operator valued fields.
Asymptotically Exact Wave Functions of the Harper Equation
NASA Astrophysics Data System (ADS)
Abanov, A. G.; Talstra, J. C.; Wiegmann, P. B.
1998-09-01
We present asymptotically exact wave functions of an incommensurate Harper equation-one-dimensional Schrdinger equation of one particle on a lattice in a cosine potential. The wave functions can be written as an infinite product of string polynomials. The roots of these polynomials are solutions of Bethe equations. They are classified according to the string hypothesis. The string hypothesis gives asymptotically exact values of roots and reveals the hierarchical structure of the spectrum of the Harper equation.
The Pion Renormalized Light-Cone Wave Function
NASA Astrophysics Data System (ADS)
Trawiński, Arkadiusz P.
2016-03-01
An approximate light-cone wave function for the pion effective quark-antiquark Fock sector corresponding to a small value of the renormalization group parameter is presented. The approximate wave function is motivated by the LF-holography and the quadratic confinement potential in the front form of Hamiltonian dynamics, which is in harmony with the linear confining potential in the instant form. The pion radius, decay constant and form-factor are also presented.
Multi-time wave functions for quantum field theory
NASA Astrophysics Data System (ADS)
Petrat, Sren; Tumulka, Roderich
2014-06-01
Multi-time wave functions such as ?(t1,x,,tN,x) have one time variable tj for each particle. This type of wave function arises as a relativistic generalization of the wave function ?(t,x,,x) of non-relativistic quantum mechanics. We show here how a quantum field theory can be formulated in terms of multi-time wave functions. We mainly consider a particular quantum field theory that features particle creation and annihilation. Starting from the particle-position representation of state vectors in Fock space, we introduce multi-time wave functions with a variable number of time variables, set up multi-time evolution equations, and show that they are consistent. Moreover, we discuss the relation of the multi-time wave function to two other representations, the Tomonaga-Schwinger representation and the Heisenberg picture in terms of operator-valued fields on space-time. In a certain sense and under natural assumptions, we find that all three representations are equivalent; yet, we point out that the multi-time formulation has several technical and conceptual advantages.
Factorized molecular wave functions: Analysis of the nuclear factor
Lefebvre, R.
2015-06-07
The exact factorization of molecular wave functions leads to nuclear factors which should be nodeless functions. We reconsider the case of vibrational perturbations in a diatomic species, a situation usually treated by combining Born-Oppenheimer products. It was shown [R. Lefebvre, J. Chem. Phys. 142, 074106 (2015)] that it is possible to derive, from the solutions of coupled equations, the form of the factorized function. By increasing artificially the interstate coupling in the usual approach, the adiabatic regime can be reached, whereby the wave function can be reduced to a single product. The nuclear factor of this product is determined by the lowest of the two potentials obtained by diagonalization of the potential matrix. By comparison with the nuclear wave function of the factorized scheme, it is shown that by a simple rectification, an agreement is obtained between the modified nodeless function and that of the adiabatic scheme.
Breaking wave impact forces on truss support structures for offshore wind turbines
NASA Astrophysics Data System (ADS)
Cie?likiewicz, Witold; Gudmestad, Ove T.; Podra?ka, Olga
2014-05-01
Due to depletion of the conventional energy sources, wind energy is becoming more popular these days. Wind energy is being produced mostly from onshore farms, but there is a clear tendency to transfer wind farms to the sea. The foundations of offshore wind turbines may be truss structures and might be located in shallow water, where are subjected to highly varying hydrodynamic loads, particularly from plunging breaking waves. There are models for impact forces prediction on monopiles. Typically the total wave force on slender pile from breaking waves is a superposition of slowly varying quasi-static force, calculated from the Morison equation and additional dynamical, short duration force due to the impact of the breaker front or breaker tongue. There is not much research done on the truss structures of wind turbines and there are still uncertainties on slamming wave forces, due to plunging breaking waves on those structures. Within the WaveSlam (Wave slamming forces on truss structures in shallow water) project the large scale tests were carried out in 2013 at the Large Wave Flume in Forschungszentrum Kste (FZK) in Hannover, Germany. The following institutions participated in this initiative: the University of Stavanger and the Norwegian University of Science and Technology (project management), University of Gda?sk, Poland, Hamburg University of Technology and the University of Rostock, Germany and Reinertsen AS, Norway. This work was supported by the EU 7th Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV. The main aim of the experiment was to investigate the wave slamming forces on truss structures, development of new and improvement of existing methods to calculate forces from the plunging breakers. The majority of the measurements were carried out for regular waves with specified frequencies and wave heights as well as for the irregular waves based on JONSWAP spectrum. The truss structure was equipped with both total and local force transducers which measured the response of the structure to the impact force. Also, the free surface elevations, the water particle velocity and the water particle acceleration were recorded during the WaveSlam experiment. Both the total and the local force data have been analysed using the Frequency Response Function method, which has been already applied to the estimation of the wave slamming forces. The results of this classical approach were compared to the calculated slamming forces based on Goda and Wienke and Oumeraci theories. Slamming wave forces and slamming coefficients calculated using both models appeared to be very much larger than those obtained from the analysed recorded data, therefore there is a need for further research. Details of this research and modelling results will be presented in the final poster.
Donor wave functions in Si gauged by STM images
NASA Astrophysics Data System (ADS)
Saraiva, A. L.; Salfi, J.; Bocquel, J.; Voisin, B.; Rogge, S.; Capaz, Rodrigo B.; Caldern, M. J.; Koiller, Belita
2016-01-01
The triumph of effective mass theory in describing the energy spectrum of dopants does not guarantee that the model wave functions will withstand an experimental test. Such wave functions have recently been probed by scanning tunneling spectroscopy, revealing localized patterns of resonantly enhanced tunneling currents. We show that the shape of the conducting splotches resembles a cut through Kohn-Luttinger (KL) hydrogenic envelopes, which modulate the interfering Bloch states of conduction electrons. All the nonmonotonic features of the current profile are consistent with the charge density fluctuations observed between successive {001 } atomic planes, including a counterintuitive reduction of the symmetrya heritage of the lowered point group symmetry at these planes. A model-independent analysis of the diffraction figure constrains the value of the electron wave vector to k0=(0.82 0.03 ) (2 ? /aSi) . Unlike prior measurements, averaged over a sizable density of electrons, this estimate is obtained directly from isolated electrons. We further investigate the model-specific anisotropy of the wave function envelope, related to the effective mass anisotropy. This anisotropy appears in the KL variational wave function envelope as the ratio between Bohr radii b /a . We demonstrate that the central-cell-corrected estimates for this ratio are encouragingly accurate, leading to the conclusion that the KL theory is a valid model not only for energies but for wave functions as well.
Do Heat Waves have an Impact on Terrestrial Water Storage?
NASA Astrophysics Data System (ADS)
Brena-Naranjo, A.; Teuling, R.; Pedrozo-Acua, A.
2014-12-01
Recent works have investigated the impact of heat waves on the surface energy and carbon balance. However, less attention has been given to the impacts on terrestrial hydrology. During the summer of 2010, the occurrence of an exceptional heat wave affected severely the Northern Hemisphere. The extension (more than 2 million km2) and severity of this extreme event caused substantial ecosystem damage (more than 1 million ha of forest fires), economic and human losses (~500 billion USD and more than 17 million of indirect deaths, respectively). This work investigates for the first time the impacts of the 2010 summer heat wave on terrestrial water storage. Our study area comprises three different regions where air temperature records were established or almost established during the summer: Western Russia, the Middle East and Eastern Sahel. Anomalies of terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) were used to infer water storage deficits during the 2003-2013 period. Our analysis shows that Russia experienced the most severe water storage decline, followed by the Middle East, whereas Eastern Sahel was not significantly affected. The impact of the heat wave was spatially uniform in Russia but highly variable in the Middle East, with the Northern part substantially more affected than the Southern region. Lag times between maxima air temperatures and lower water storage deficits for Russia and the Middle East were approximately two and seven months, respectively. The results suggest that the response of terrestrial water storage to heat waves is stronger in energy-limited environments than in water-limited regions. Such differences in the magnitude and timing between meteorological and hydrological extremes can be explained by the propagation time between atmospheric water demand and natural or anthropogenic sources of water storage.
Joint Resummation for TMD Wave Function of Pion
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming
2015-02-01
QCD corrections to transverse-momentum-dependent pion wave function develop the mixed double logarithm ln x ln(? P2/k_T^2), when the gluon emission is collinear to the energetic pion. The fist scheme-independent kT factorization formula for ?*? ? ? transition form factor is achieved by resumming all the enhanced logarithms for both pion wave function and short-distance coefficient function. High-order QCD corrections and transfer momentum ? {Q2} dependence of pion form factor are found to be distinct from those predicted by the conventional resummation approach.
New approach to folding with the Coulomb wave function
NASA Astrophysics Data System (ADS)
Blokhintsev, L. D.; Kadyrov, A. S.; Mukhamedzhanov, A. M.; Savin, D. A.
2015-05-01
Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.
New approach to folding with the Coulomb wave function
Blokhintsev, L. D.; Savin, D. A.; Kadyrov, A. S.; Mukhamedzhanov, A. M.
2015-05-15
Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.
Heat wave impacts on mortality in Shanghai, 1998 and 2003
NASA Astrophysics Data System (ADS)
Tan, Jianguo; Zheng, Youfei; Song, Guixiang; Kalkstein, Laurence S.; Kalkstein, Adam J.; Tang, Xu
2007-01-01
A variety of research has linked extreme heat to heightened levels of daily mortality and, not surprisingly, heat waves both in 1998 and in 2003 all led to elevated mortality in Shanghai, China. While the heat waves in the two years were similar in meteorological character, elevated mortality was much more pronounced during the 1998 event, but it remains unclear why the human response was so varied. In order to explain the differences in human mortality between the two years heat waves, and to better understand how heat impacts human health, we examine a wide range of meteorological, pollution, and social variables in Shanghai during the summers (15 June to 15 September) of 1998 and 2003. Thus, the goal of this study is to determine what was responsible for the varying human health response during the two heat events. A multivariate analysis is used to investigate the relationships between mortality and heat wave intensity, duration, and timing within the summer season, along with levels of air pollution. It was found that for heat waves in both summers, mortality was strongly associated with the duration of the heat wave. In addition, while slightly higher than average, the air pollution levels for the two heat waves were similar and cannot fully explain the observed differences in human mortality. Finally, since the meteorological conditions and pollution levels for the two heat waves were alike, we conclude that improvements in living conditions in Shanghai, such as increased use of air conditioning, larger living areas, and increased urban green space, along with higher levels of heat awareness and the implementation of a heat warning system, were responsible for the lower levels of human mortality in 2003 compared to 1998.
Heat wave impacts on mortality in Shanghai, 1998 and 2003.
Tan, Jianguo; Zheng, Youfei; Song, Guixiang; Kalkstein, Laurence S; Kalkstein, Adam J; Tang, Xu
2007-01-01
A variety of research has linked extreme heat to heightened levels of daily mortality and, not surprisingly, heat waves both in 1998 and in 2003 all led to elevated mortality in Shanghai, China. While the heat waves in the two years were similar in meteorological character, elevated mortality was much more pronounced during the 1998 event, but it remains unclear why the human response was so varied. In order to explain the differences in human mortality between the two years' heat waves, and to better understand how heat impacts human health, we examine a wide range of meteorological, pollution, and social variables in Shanghai during the summers (15 June to 15 September) of 1998 and 2003. Thus, the goal of this study is to determine what was responsible for the varying human health response during the two heat events. A multivariate analysis is used to investigate the relationships between mortality and heat wave intensity, duration, and timing within the summer season, along with levels of air pollution. It was found that for heat waves in both summers, mortality was strongly associated with the duration of the heat wave. In addition, while slightly higher than average, the air pollution levels for the two heat waves were similar and cannot fully explain the observed differences in human mortality. Finally, since the meteorological conditions and pollution levels for the two heat waves were alike, we conclude that improvements in living conditions in Shanghai, such as increased use of air conditioning, larger living areas, and increased urban green space, along with higher levels of heat awareness and the implementation of a heat warning system, were responsible for the lower levels of human mortality in 2003 compared to 1998. PMID:17039379
Quantum Corral Wave-function Engineering
NASA Astrophysics Data System (ADS)
Correa, Alfredo; Reboredo, Fernando; Balseiro, Carlos
2005-03-01
We present a theoretical method for the design and optimization of quantum corrals[1] with specific electronic properties. Taking advantage that spins are subject to a RKKY interaction that is directly controlled by the scattering of the quantum corral, we design corral structures that reproduce spin Hamiltonians with coupling constants determined a priori[2]. We solve exactly the bi-dimensional scattering problem for each corral configuration within the s-wave approximation[3] and subsequently the geometry of the quantum corral is optimized by means of simulated annealing[4] and genetic algorithms[5]. We demonstrate the possibility of automatic design of structures with complicated target electronic properties[6]. This work was performed under the auspices of the US Department of Energy by the University of California at the LLNL under contract no W-7405-Eng-48. [1] M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature 403, 512 (2000) [2] D. P. DiVincenzo et al., Nature 408, 339 (2000) [3] G. A. Fiete and E. J. Heller, Rev. Mod. Phys. 75, 933 (2003) [4] M. R. A. T. N. Metropolis et al., J. Chem. Phys. 1087 (1953) [5] E. Aarts and J. K. Lenstra, eds. Local search in combinatorial problems (Princeton University Press, 1997) [6] A. A. Correa, F. Reboredo and C. Balseiro, Phys. Rev. B (in press).
Delta function excitation of waves in the earth's ionosphere
NASA Technical Reports Server (NTRS)
Vidmar, R. J.; Crawford, F. W.; Harker, K. J.
1983-01-01
Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.
Diving-wave migration using Airy functions
Albertin, U.K.
1993-08-10
A method is described for imaging seismic reflection data selected from a data volume, comprising: preprocessing said selected seismic reflection data by application of normal moveout, dip moveout and a time-domain-to-frequency-domain transformation; determining the velocity field characteristic of said data volume; forming a velocity model for said data volume by fitting a velocity function to said velocity field, said function being characterized by a linear gradient in sloth; from the velocity model, calculating parameters for defining an Airy operator; separating normal seismic data from evanescent seismic data and saving said evanescant data in a random access memory; iterating downwardly, migrating said normal seismic data with the aid of said Airy operator; extracting said evanescent data from memory and iterating upwardly, migrating said evanescent seismic data with the aid of said Airy operator; summing the results of the downward and upward iterations; and inversely Fourier-transforming the summation.
NASA Astrophysics Data System (ADS)
Sternberg, James; Macek, J. H.; Ovchinnikov, Serge; Lee, Teck-Ghee; Schultz, D. R.
2008-05-01
Vortices are a nearly ubiquitous feature of nature. It is well known that they form in large scale processes such as weather, but they are also formed in the quantum realm. One place where they can be seen quite clearly is in the wave functions for ion- atom collisions at a set impact parameter. In this work we use a very low noise and highly accurate numerical method to propagate the time dependent Schr"odinger equation (TDSE) for such a collision. With this method we see the formation of vortices in the wave function, the interaction between them and their destruction. We also observe how the transport of angular momentum by vortices affects the overall behavior of the wave function.
Test of the Pluvinage wave function for the helium ground state
NASA Astrophysics Data System (ADS)
Jones, S.; Macek, Joseph H.; Madison, D. H.
2004-07-01
The accuracy of the Pluvinage wave function for the ground state of helium is investigated by considering a number of different physical processes including double ionization by photoabsorption, Compton scattering, and electron impact. In the high-energy limit of these processes, the accuracy of the initial ground state can be ascertained without reference to the final double-continuum state. In this limit, we find that a Hylleraas description is superior to the Pluvinage one. For intermediate energies, final-state correlation becomes important, so we employ a 3C description of the final state (the 3C wave function is the double-continuum analog of the Pluvinage wave function). In this case, however, better agreement with experiment is obtained with the Pluvinage initial state. A possible explanation for this seemingly paradoxical result is suggested.
B meson wave function in k{sub T} factorization
Li Hsiangnan; Liao, Huei-Shih
2004-10-01
We study the asymptotic behavior of the B meson wave function in the framework of k{sub T} factorization theorem. We first construct a definition of the k{sub T}-dependent B meson wave function, which is free of light-cone divergences. Next-to-leading-order corrections are then calculated based on this definition. The treatment of different types of logarithms in the above corrections, including the Sudakov logarithms, and those depending on a renormalization scale and on an infrared regulator, is summarized. The criticism raised in the literature on our resummation formalism and Sudakov effect is responded. We show that the B meson wave function remains normalizable after taking into account renormalization-group evolution effects, contrary to the observation derived in the collinear factorization theorem.
Hydrogen-oscillator connection: Passage formulas between wave functions
Kibler, M.; Ronveaux, A.; Negadi, T.
1986-06-01
Recent works on the hydrogen-oscillator connection are extended to cover in a systematic (and easily computarizable) way the problem of the expansion of an R/sup 3/ hydrogen wave function in terms of R/sup 4/ oscillator wave functions. Passage formulas from oscillator to hydrogen wave functions are obtained in six cases resulting from the combination of the following coordinate systems: spherical and parabolic coordinate systems for the hydrogen atom in three dimensions, and Cartesian, double polar, and hyperspherical coordinate systems for the isotropic harmonic oscillator in four dimensions. These coordinate systems are particularly useful in physical applications (e.g., Zeeman and Stark effects for hydrogenlike ions and coherent state approaches to the Coulomb problem).
Correlated continuum wave functions for three particles with Coulomb interactions
Gasaneo, G.; Colavecchia, F.D.; Garibotti, C.R.; Miraglia, J.E.; Macri, P.
1997-04-01
We present an approximate solution of the Schr{umlt o}dinger equation for the three-body Coulomb problem. We write the Hamiltonian in parabolic curvilinear coordinates and study the possible separation of the wave equation as a system of coupled partial differential equations. When two of the particles are heavier than the others, we write an approximate wave equation that incorporates some terms of the Hamiltonian that before had been considered as a perturbation. Its solution can be expressed in terms of a confluent hypergeometric function of two variables. We show that the proposed wave function includes a correlation between the motion of the light particle relative to the heavy particles and verifies the correct asymptotic behavior when all particles are far from each other. Finally, we discuss the possible uses of this function in the calculation of transition matrices and differential cross sections in ionizing collisions. {copyright} {ital 1997} {ital The American Physical Society}
Charmed Quark Component of the Photon Wave Function
Anisovich, V.V.; Dakhno, L.G.; Markov, V.N.; Nikonov, V.A.; Sarantsev, A.V.
2005-12-01
We determine the cc-bar component of the photon wave function on the basis of (i) the data on the transitions e{sup +}e{sup -} {yields} J/{psi}(3096), {psi}(3686), {psi}(4040), {psi}(4415), (ii) partial widths of the two-photon decays {eta}{sub c0}(2979), {chi}{sub c0}(3415), {chi}{sub c2}(3556) {yields} {gamma}{gamma}, and (iii) wave functions of the charmonium states obtained by solving the Bethe-Salpeter equation for the cc-bar system. Using the obtained cc-bar component of the photon wave function, we calculate the {gamma}{gamma}-decay partial widths for radial excitation of the 2S state, {eta}{sub c0}(3594) {yields} {gamma}{gamma}, and 2P states {chi}{sub c0}(3849), {chi}{sub c2}(3950) {yields} {gamma}{gamma}.
Pain's Impact on Adaptive Functioning
ERIC Educational Resources Information Center
Breau, L. M.; Camfield, C. S.; McGrath, P. J.; Finley, G. A.
2007-01-01
Background: Pain interferes with the functioning of typical children, but no study has examined its effect on children with pre-existing intellectual disabilities (ID). Methods: Caregivers of 63 children observed their children for 2-h periods and recorded in 1-week diaries: pain presence, cause, intensity and duration. Caregivers also recorded…
Evolution of wave function in a dissipative system
NASA Technical Reports Server (NTRS)
Yu, Li-Hua; Sun, Chang-Pu
1994-01-01
For a dissipative system with Ohmic friction, we obtain a simple and exact solution for the wave function of the system plus the bath. It is described by the direct product in two independent Hilbert space. One of them is described by an effective Hamiltonian, the other represents the effect of the bath, i.e., the Brownian motion, thus clarifying the structure of the wave function of the system whose energy is dissipated by its interaction with the bath. No path integral technology is needed in this treatment. The derivation of the Weisskopf-Wigner line width theory follows easily.
Compressive Direct Measurement of the Quantum Wave Function
NASA Astrophysics Data System (ADS)
Mirhosseini, Mohammad; Magaa-Loaiza, Omar S.; Hashemi Rafsanjani, Seyed Mohammad; Boyd, Robert W.
2014-08-01
The direct measurement of a complex wave function has been recently realized by using weak values. In this Letter, we introduce a method that exploits sparsity for the compressive measurement of the transverse spatial wave function of photons. The procedure involves weak measurements of random projection operators in the spatial domain followed by postselection in the momentum basis. Using this method, we experimentally measure a 192-dimensional state with a fidelity of 90% using only 25 percent of the total required measurements. Furthermore, we demonstrate the measurement of a 19 200-dimensional state, a task that would require an unfeasibly large acquiring time with the standard direct measurement technique.
Concerning Infeasibility of the Wave Functions of the Universe
NASA Astrophysics Data System (ADS)
Bolotin, Arkady
2015-09-01
Difficulties with finding the general exact solutions to the Wheeler-DeWitt equation, i.e. the wave functions of the Universe, are known and well documented. However, the present paper draws attention to a completely different matter, which is rarely if ever discussed in relation to this equation, namely, the time complexity of the Wheeler-DeWitt equation, that is, the time required to exactly solve the equation for a given universe. As it is shown in the paper, whatever generic exact algorithm is used to solve the equation, most likely such an algorithm cannot be faster than brute force, which makes the wave functions of the Universe infeasible.
Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.
Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J
2014-06-15
A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species. PMID:24768171
Calculation of the nucleon structure function from the nucleon wave function
NASA Technical Reports Server (NTRS)
Hussar, Paul E.
1993-01-01
Harmonic oscillator wave functions have played an historically important role in our understanding of the structure of the nucleon, most notably by providing insight into the mass spectra of the low-lying states. High energy scattering experiments are known to give us a picture of the nucleon wave function at high-momentum transfer and in a frame in which the nucleon is traveling fast. A simple model that crosses the twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon wave function provided by the deep inelastic scattering data and by the oscillator model is presented.
Difficulty in detecting deviations from wave-function collapse
Lloyd, S.
1988-10-01
We use the example of a Stern-Gerlach apparatus to show that the quantum-mechanical measurement problem ceases to be a physical problem for a measuring device with many degrees of freedom in the sense that deviations from wave-function collapse become virtually impossible to detect.
Numerical computation of an Evans function for travelling waves.
Harley, K; van Heijster, P; Marangell, R; Pettet, G J; Wechselberger, M
2015-08-01
We demonstrate a geometrically inspired technique for computing Evans functions for the linearised operators about travelling waves. Using the examples of the F-KPP equation and a Keller-Segel model of bacterial chemotaxis, we produce an Evans function which is computable through several orders of magnitude in the spectral parameter and show how such a function can naturally be extended into the continuous spectrum. In both examples, we use this function to numerically verify the absence of eigenvalues in a large region of the right half of the spectral plane. We also include a new proof of spectral stability in the appropriate weighted space of travelling waves of speed c≥2√δ in the F-KPP equation. PMID:26048189
Explicitly correlated wave function for a boron atom
NASA Astrophysics Data System (ADS)
Puchalski, Mariusz; Komasa, Jacek; Pachucki, Krzysztof
2015-12-01
We present results of high-precision calculations for a boron atom's properties using wave functions expanded in the explicitly correlated Gaussian basis. We demonstrate that the well-optimized 8192 basis functions enable a determination of energy levels, ionization potential, and fine and hyperfine splittings in atomic transitions with nearly parts per million precision. The results open a window to a spectroscopic determination of nuclear properties of boron including the charge radius of the proton halo in the 8B nucleus.
Simulation of wind wave growth with reference source functions
NASA Astrophysics Data System (ADS)
Badulin, Sergei I.; Zakharov, Vladimir E.; Pushkarev, Andrei N.
2013-04-01
We present results of extensive simulations of wind wave growth with the so-called reference source function in the right-hand side of the Hasselmann equation written as follows First, we use Webb's algorithm [8] for calculating the exact nonlinear transfer function Snl. Second, we consider a family of wind input functions in accordance with recent consideration [9] ( )s S = ?(k)N , ?(k) = ? ? ?- f (?). in k 0 ?0 in (2) Function fin(?) describes dependence on angle ?. Parameters in (2) are tunable and determine magnitude (parameters ?0, ?0) and wave growth rate s [9]. Exponent s plays a key role in this study being responsible for reference scenarios of wave growth: s = 4-3 gives linear growth of wave momentum, s = 2 - linear growth of wave energy and s = 8-3 - constant rate of wave action growth. Note, the values are close to ones of conventional parameterizations of wave growth rates (e.g. s = 1 for [7] and s = 2 for [5]). Dissipation function Sdiss is chosen as one providing the Phillips spectrum E(?) ~ ?5 at high frequency range [3] (parameter ?diss fixes a dissipation scale of wind waves) Sdiss = Cdiss?4w?N (k)?(? - ?diss) (3) Here frequency-dependent wave steepness ?2w = E(?,?)?5-g2 makes this function to be heavily nonlinear and provides a remarkable property of stationary solutions at high frequencies: the dissipation coefficient Cdiss should keep certain value to provide the observed power-law tails close to the Phillips spectrum E(?) ~ ?-5. Our recent estimates [3] give Cdiss ? 2.0. The Hasselmann equation (1) with the new functions Sin, Sdiss (2,3) has a family of self-similar solutions of the same form as previously studied models [1,3,9] and proposes a solid basis for further theoretical and numerical study of wave evolution under action of all the physical mechanisms: wind input, wave dissipation and nonlinear transfer. Simulations of duration- and fetch-limited wind wave growth have been carried out within the above model setup to check its conformity with theoretical predictions, previous simulations [2,6,9], experimental parameterizations of wave spectra [1,4] and to specify tunable parameters of terms (2,3). These simulations showed realistic spatio-temporal scales of wave evolution and spectral shaping close to conventional parameterizations [e.g. 4]. An additional important feature of the numerical solutions is a saturation of frequency-dependent wave steepness ?w in short-frequency range. The work was supported by the Russian government contract No.11.934.31.0035, Russian Foundation for Basic Research grant 11-05-01114-a and ONR grant N00014-10-1-0991. References [1] S. I. Badulin, A. V. Babanin, D. Resio, and V. Zakharov. Weakly turbulent laws of wind-wave growth. J. Fluid Mech., 591:339-378, 2007. [2] S. I. Badulin, A. N. Pushkarev, D. Resio, and V. E. Zakharov. Self-similarity of wind-driven seas. Nonl. Proc. Geophys., 12:891-946, 2005. [3] S. I. Badulin and V. E. Zakharov. New dissipation function for weakly turbulent wind-driven seas. ArXiv e-prints, (1212.0963), December 2012. [4] M. A. Donelan, J. Hamilton, and W. H. Hui. Directional spectra of wind-generated waves. Phil. Trans. Roy. Soc. Lond. A, 315:509-562, 1985. [5] M. A. Donelan and W. J. Pierson-jr. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92(C5):4971-5029, 1987. [6] E. Gagnaire-Renou, M. Benoit, and S. I. Badulin. On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech., 669:178-213, 2011. [7] R. L. Snyder, F. W. Dobson, J. A. Elliot, and R. B. Long. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102:1-59, 1981. [8] D. J. Webb. Non-linear transfers between sea waves. Deep Sea Res., 25:279-298, 1978. [9] V. E. Zakharov, D. Resio, and A. N. Pushkarev. New wind input term consistent with experimental, theoretical and numerical considerations. ArXiv e-prints, (1212.1069), December 2012.
Impact of Tsunami-Generated Gravity Waves on the Ionosphere
NASA Astrophysics Data System (ADS)
Huba, J. D.; Drob, D. P.
2014-12-01
The NRL first-principles ionosphere model SAMI3 is used to study the ionospheric effects associated with tsunami-driven gravity waves. It is shown that gravity-wave induced variations in the neutral wind lead to plasma velocity variations both perpendicular and parallel to the geomagnetic field. Moreover, the electric field induced by the neutral wind perturbations can map to the conjugate hemisphere. Thus, electron density variations can be generated in both hemispheres which impact the total electron content (TEC) and 6300A airglow emission. It is found that the TEC exhibits variations +/- 0.15 TECU and the 6300A airglow emission variation is up to +/- 2.5% relative to the unperturbed background airglow. These results are consistent with observational data. Research supported by NRL Base Funds and ONR BRC program.
Impact of boat-generated waves on intertidal estuarine sediments
NASA Astrophysics Data System (ADS)
Blanpain, O.; Deloffre, J.; Lafite, R.; Gomit, G.; Calluaud, D.; David, L.
2010-12-01
Hydrodynamics in the macrotidal Seine estuary (France) are controlled by the semi-diurnal tidal regime modulated seasonally by the fluvial discharge. Wind effect on sediment transport (through wind waves and swell) is observed at the mouth of the estuary. Over the last century, authorities have put emphasis on facilitating economic exchanges by means of embankment building and increased dredging activity. These developments led to allow and secure sea vessel traffic in the Seine estuary (from its mouth to the port of Rouen, 125 km upstream) but they also resulted in a change of estuarine hydrodynamics and sediment transport features. A riversides restoration policy has been recently started by port authorities. In this context, the objective of the field-based study presented is to connect vessel characteristics (i.e. speed, draft...), boat-generated waves and their sedimentary impacts. Such information will be used by stakeholders to manage riverside. The natural intertidal site of interest is located in the fluvial freshwater part of the Seine estuary characterized by a 4.5 m maximum tidal range. The foreshore slope is gently decreasing and surface sediments are composed of fine to coarse sand with occasional mud drapes. In order to decipher boat-generated events, the sampling strategy is based on continuous ADV measurements coupled with a turbidimeter and an altimeter to study sediment dynamics. These instruments are settled in the lower part of the foreshore (i) to obtain a significant dataset (i.e. oceanic instruments are not measuring in air) on a zone statically affected by boat waves and (ii) because most of boat traffic occurs during early flood or late ebb period. Spatial variations are assessed along a cross-section through grain-size analysis of surface sediments and topography measurements using pole technique. Results enhance hydrodynamic and sedimentary impacts of boat-generated waves compared respectively to tidal and wind effects. Long-term altimeter measurements in relation with boat traffic data base demonstrate that boat-generated waves are the key hydrodynamic parameter controlling short term tidal flat evolution. Concerning hydrodynamics, two main types of boat-generated waves can be distinguished: one corresponds to barges, the other to sea vessels. The critical parameter controlling wave characteristics, bottom shear stress and thus sedimentary impacts is the distance between seabed and keel. Thus, considering their larger seabed-keel distance, barges do not significantly affect the sedimentary cover of the intertidal area. On the contrary, sea-vessels can induce rapid changes of the tidal flat texture (i.e. bed flattening, mud drapes...) and morphology: erosion and sedimentation rates in a range of 0.5 to 6 cm.min-1 have been measured. Such energetic events occur generally during the squat generated wave run-up and can affect the seabed in water depths up to 1.5 m. In the freshwater part of the Seine estuary annual sediment inputs are mostly controlled by river flow (during river flood) while medium term scale evolution is dependent on tidal range and short term sediment dynamics (i.e. bedload, resuspension) on sea-vessels waves.
Imaging a Molecular Orbital Wave Function Using High Harmonic Emission
NASA Astrophysics Data System (ADS)
Villeneuve, David
2005-05-01
Single-electron molecular orbital wave functions are mathematical constructs that are used to describe the multi-electron wave function of molecules. The highest lying orbitals are of particular interest since they are responsible for the chemical properties of molecules. To observe them change as molecular bonds are formed and broken is to observe the essence of chemistry. Yet single orbitals are difficult to observe experimentally --- until now impossible on the time scale of chemical reactions. We show that the full 3-dimensional structure of a single orbital can be imaged using a seemingly unlikely technique --- high harmonic generation from aligned molecules using intense femtosecond laser pulses. We show how the broadband harmonic spectra, measured for a series of molecular alignments, lead to a tomographic reconstruction of the single electron orbital wave function of dinitrogen. This leads to ontological discussions about the meaning of a wave function, particularly in a multielectron system. A non-ionizing femtosecond laser pulse creates a rotational wavepacket that causes periodic molecular alignment. A more intense pulse induces high harmonic emission from the aligned molecules. The recollision electron current pulse is characterized as it returns to a reference argon atom. Assuming that we know the shape of the 3p orbital of argon, we can determine the spectral phase and amplitude of the recollision current. The phase of the harmonic emission from nitrogen is referenced to the phase of argon by measuring the interference in a mixed target gas. The polarization of the emission is also recorded by polarimetry. All of these measurements lead to the reconstruction of the nitrogen sigma-g orbital shape. We also show that attosecond dynamics of an electron wave packet can be measured in the high harmonic spectrum.
Edge states for the Kalmeyer-Laughlin wave function
NASA Astrophysics Data System (ADS)
Herwerth, Benedikt; Sierra, Germn; Tu, Hong-Hao; Cirac, J. Ignacio; Nielsen, Anne E. B.
2015-12-01
We study lattice wave functions obtained from the SU(2)1 Wess-Zumino-Witten conformal field theory. Following Moore and Read's construction, the Kalmeyer-Laughlin fractional quantum Hall state is defined as a correlation function of primary fields. By an additional insertion of Kac-Moody currents, we associate a wave function with each state of the conformal field theory. These wave functions span the complete Hilbert space of the lattice system. On the cylinder, we study global properties of the lattice states analytically and correlation functions numerically using a Metropolis Monte Carlo method. By comparing short-range bulk correlations, numerical evidence is provided that the states with one current operator represent edge states in the thermodynamic limit. We show that the edge states with one Kac-Moody current of lowest order have a good overlap with low-energy excited states of a local Hamiltonian, for which the Kalmeyer-Laughlin state approximates the ground state. For some states, exact parent Hamiltonians are derived on the cylinder. These Hamiltonians are SU(2) invariant and nonlocal with up to four-body interactions.
Scalar functions for wave extraction in numerical relativity
Nerozzi, Andrea
2007-05-15
Wave extraction plays a fundamental role in the binary black hole simulations currently performed in numerical relativity. Having a well-defined procedure for wave extraction, which matches simplicity with efficiency, is critical especially when comparing waveforms from different simulations. Recently, progress has been made in defining a general technique which uses Weyl scalars to extract the gravitational wave signal, through the introduction of the quasi-Kinnersley tetrad. This procedure has been used successfully in current numerical simulations; however, it involves complicated calculations. The work in this paper simplifies the procedure by showing that the choice of the quasi-Kinnersley tetrad is reduced to the choice of the timelike vector used to create it. The spacelike vectors needed to complete the tetrad are then easily identified, and it is possible to write the expression for the Weyl scalars in the right tetrad, as simple functions of the electric and magnetic parts of the Weyl tensor.
Phases of Augmented Hadronic Light-Front Wave Functions
Brodsky, Stanley J.; Pasquini, Barbara; Xiao, Bo-Wen; Yuan, Feng; /LBNL, NSD /RIKEN BNL
2010-02-15
It is an important question whether the final/initial state gluonic interactions which lead to naive-time-reversal-odd single-spin asymmetries and diffraction at leading twist can be associated in a definite way with the light-front wave function hadronic eigensolutions of QCD. We use light-front time-ordered perturbation theory to obtain augmented light-front wave functions which contain an imaginary phase which depends on the choice of advanced or retarded boundary condition for the gauge potential in light-cone gauge. We apply this formalism to the wave functions of the valence Fock states of nucleons and pions, and show how this illuminates the factorization properties of naive-time-reversal-odd transverse momentum dependent observables which arise from rescattering. In particular, one calculates the identical leading-twist Sivers function from the overlap of augmented light-front wavefunctions that one obtains from explicit calculations of the single-spin asymmetry in semi-inclusive deep inelastic lepton-polarized nucleon scattering where the required phases come from the final-state rescattering of the struck quark with the nucleon spectators.
Deducing spectroscopic factors from wave-function asymptotics
Capel, P.; Danielewicz, P.; Nunes, F. M.
2010-11-15
In a coupled-channel model, we explore the effects of coupling between configurations on the radial behavior of the wave function and, in particular, on the spectroscopic factor (SF) and the asymptotic normalization coefficient (ANC). We evaluate the extraction of a SF from the ratio of the ANC of the coupled-channel model to that of a single-particle approximation of the wave function. We perform this study within a core+n collective model, which includes two states of the core that connect by a rotational coupling. To get additional insights, we also use a simplified model that takes a {delta} function for the coupling potential. Calculations are performed for {sup 11}Be. Fair agreement is obtained between the SF inferred from the single-particle approximation and the one obtained within the coupled-channel models. Significant discrepancies are observed only for large coupling strength and/or large admixture, that is, a small SF. This suggests that reliable SFs can be deduced from the wave-function asymptotics when the structure is dominated by one configuration, that is, for a large SF.
Helicon Wave Physics Impacts on Electrodeless Thruster Design
NASA Technical Reports Server (NTRS)
Gilland, James
2003-01-01
Effective generation of helicon waves for high density plasma sources is determined by the dispersion relation and plasma power balance. Helicon wave plasma sources inherently require an applied magnetic field of .01-0.1 T, an antenna properly designed to couple to the helicon wave in the plasma, and an rf power source in the 10-100 s of MHz, depending on propellant choice. For a plasma thruster, particularly one with a high specific impulse (>2000 s), the physics of the discharge would also have to address the use of electron cyclotron resonance (ECR) heating and magnetic expansion. In all cases the system design includes an optimized magnetic field coil, plasma source chamber, and antenna. A preliminary analysis of such a system, calling on experimental data where applicable and calculations where required, has been initiated at Glenn Research Center. Analysis results showing the mass scaling of various components as well as thruster performance projections and their impact on thruster size are discussed.
Helicon Wave Physics Impacts on Electrodeless Thruster Design
NASA Technical Reports Server (NTRS)
Gilland, James H.
2007-01-01
Effective generation of helicon waves for high density plasma sources is determined by the dispersion relation and plasma power balance. Helicon wave plasma sources inherently require an applied magnetic field of .01-0.1 T, an antenna properly designed to couple to the helicon wave in the plasma, and an rf power source in the 10-100 s of MHz, depending on propellant choice. For a plasma thruster, particularly one with a high specific impulse (>2000 s), the physics of the discharge would also have to address the use of electron cyclotron resonance (ECR) heating and magnetic expansion. In all cases the system design includes an optimized magnetic field coil, plasma source chamber, and antenna. A preliminary analysis of such a system, calling on experimental data where applicable and calculations where required, has been initiated at Glenn Research Center. Analysis results showing the mass scaling of various components as well as thruster performance projections and their impact on thruster size are discussed.
Estimating Moho depth utilizing S-wave receiver functions
NASA Astrophysics Data System (ADS)
Ceylan, S.; Rychert, C.; Harmon, N.
2014-12-01
H-k stacking method [Zhu and Kanamori, 2000] is a widely used grid search technique for estimating the Moho depth (H) and Vp/Vs (k) beneath a given station. The H-k surface reaches a maximum when the optimum H and k values are used, which is assumed to be the average crustal structure beneath the seismic station. In general, the method is employed in conjunction with P-wave receiver functions. Here, we investigate the usability of H-k stacking method with S-to-P (Sp) conversions and S-wave reverberations within the crust, employing an extended multi-taper deconvolution. We apply the method to southern California, using data recorded between 1990-2011. We compare results with those of prior studies that used P-to-S (Ps) conversions [Zhu and Kanamori, 2000; Yan and Clayton, 2007], applying a smoothing length of 0.5 degrees to reflect lateral Sp sensitivity. P-waves have better potential to resolve lateral variations in Moho depth owing to the higher frequency content and the geometry of Ps ray path. Our results from Sp conversions are in broad agreement with those from Ps, affirming that S-wave receiver functions can be used in conjunction with the H-k stacking method. Consistent with the P-wave receiver function results, crust is thinner beneath the central Transverse Range (30 km) with respect to eastern Transverse Range (33 km) and Peninsular Region (35 km). Our Moho depth observations (35 km) are more compatible with those of Yan and Clayton [2007] (~35 km) than Zhu and Kanamori [2000] (~30 km) beneath Sierra Nevada, most probably due to a larger data set this study and Yan and Clayton [2007] use. Also, results from this study are deeper than those from Ps for the Salton Trough (30-35 km vs. 25 km). In this case, broad receiver function waveform characteristics suggest a more gradual impedance change across the Moho discontinuity and/or a multi-layered crust. We suggest that a combination of P- and S-wave receiver functions can yield more robust crustal thickness estimates, providing additional constraints in areas where data coverage is not sufficient, Ps results become complicated due to multiple crustal layers, or velocity gradients are gradual.
Measurement and Shaping of Biphoton Spectral Wave Functions
NASA Astrophysics Data System (ADS)
Tischler, N.; Bse, A.; Helt, L. G.; Juan, M. L.; Piro, N.; Ghosh, J.; Steel, M. J.; Molina-Terriza, G.
2015-11-01
In this work we present a simple method to reconstruct the complex spectral wave function of a biphoton, and hence gain complete information about the spectral and temporal properties of a photon pair. The technique, which relies on quantum interference, is applicable to biphoton states produced with a monochromatic pump when a shift of the pump frequency produces a shift in the relative frequencies contributing to the biphoton. We demonstrate an example of such a situation in type-II parametric down conversion allowing arbitrary paraxial spatial pump and detection modes. Moreover, our test cases demonstrate the possibility to shape the spectral wave function. This is achieved by choosing the spatial mode of the pump and of the detection modes, and takes advantage of spatiotemporal correlations.
Configuration interaction wave functions: A seniority number approach
NASA Astrophysics Data System (ADS)
Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oa, Ofelia B.
2014-06-01
This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.
Electron number probability distributions for correlated wave functions.
Francisco, E; Martn Pends, A; Blanco, M A
2007-03-01
Efficient formulas for computing the probability of finding exactly an integer number of electrons in an arbitrarily chosen volume are only known for single-determinant wave functions [E. Cances et al., Theor. Chem. Acc. 111, 373 (2004)]. In this article, an algebraic method is presented that extends these formulas to the case of multideterminant wave functions and any number of disjoint volumes. The derived expressions are applied to compute the probabilities within the atomic domains derived from the space partitioning based on the quantum theory of atoms in molecules. Results for a series of test molecules are presented, paying particular attention to the effects of electron correlation and of some numerical approximations on the computed probabilities. PMID:17362099
Singlet Mott state simulating the bosonic Laughlin wave function
NASA Astrophysics Data System (ADS)
Lian, Biao; Zhang, Shoucheng
2014-01-01
We study properties of a class of spin-singlet Mott states for arbitrary spin S bosons on a lattice, with particle number per cite n =S/l+1, where l is a positive integer. We show that such a singlet Mott state can be mapped to a bosonic Laughlin wave function on a sphere with a finite number of particles at filling ? =1/2l. Spin, particle, and hole excitations in the Mott state are discussed, among which the hole excitation can be mapped to the quasihole of the bosonic Laughlin wave function. We show that this singlet Mott state can be realized in a cold-atom system on an optical lattice and can be identified using Bragg spectroscopy and Stern-Gerlach techniques. This class of singlet Mott states may be generalized to map to bosonic Laughlin states with filling ? =q/2l.
Singlet Mott State Simulating the Bosonic Laughlin Wave Function
NASA Astrophysics Data System (ADS)
Lian, Biao; Zhang, Shou-Cheng
2014-03-01
We study properties of a class of spin singlet Mott states for arbitrary spin S bosons on a lattice, with particle number per cite n = S / l + 1 , where l is a positive integer. We show that such a singlet Mott state can be mapped to a bosonic Laughlin wave function on the sphere with a finite number of particles at filling ? = 1 / 2 l . Bosonic spinons, particle and hole excitations in the Mott state are discussed, among which the hole excitation can be mapped to the quasi-hole of the bosonic Laughlin wave function. We show that this singlet Mott state can be realized in a cold atom system on optical lattice, and can be identified using Bragg spectroscopy and Stern-Gerlach techniques. This class of singlet Mott states may be generalized to simulate bosonic Laughlin states with filling ? = q / 2 l .
Wave function analysis of MHC-peptide interactions.
Crdenas, Constanza; Obregn, Mateo; Balbn, Alejandro; Villaveces, Jos Luis; Patarroyo, Manuel E
2007-01-01
We have carried out an analysis of the wave function data for three MHC-peptide complexes: HLA-DRbeta1*0101-HA, HLA-DRbeta1*0401-HA and HLA-DRbeta1*0401-Col. We used quantum chemistry computer programs to generate wave function coefficients for these complexes, from which we obtained both molecular and atomic orbital data for both pocket and peptide amino acids within each pocket region. From these discriminated data, interaction molecular orbitals (IMOs) were identified as those with large and similar atomic orbital coefficient contributions from both pocket and peptide amino acids. The present results correlate well with our previous research where only electrostatic moments were used to explore molecular component interactions. Furthermore, we show a quantum chemical methodology to produce more fine-grained results concerning amino acid behavior in the MHC-peptide interaction. PMID:16793298
Configuration interaction wave functions: A seniority number approach
Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oa, Ofelia B.
2014-06-21
This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.
Multifractal electronic wave functions in the Anderson model of localization
Schreiber, M.; Grussbach, H. )
1992-06-20
In this paper, investigations of the multifractal properties of electronic wave functions in disordered samples are reviewed. The characteristic mass exponents of the multifractal measure, the generalized dimensions and the singularity spectra are discussed for typical cases. New results for large 3D systems are reported, suggesting that the multifractal properties at the mobility edge which separates localized and extended states are independent of the microscopic details of the model.
Detecting topological order in a ground state wave function.
Levin, Michael; Wen, Xiao-Gang
2006-03-24
A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N, di, F(lmn)(ijk), delta(ijk). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the "topological entropy" which directly measures the total quantum dimension D= Sum(id2i). PMID:16605803
Detecting Topological Order in a Ground State Wave Function
NASA Astrophysics Data System (ADS)
Levin, Michael; Wen, Xiao-Gang
2006-03-01
A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N,di,Flmnijk,?ijk). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the topological entropy which directly measures the total quantum dimension D=?idi2.
The second moment of the pion light cone wave function
Luigi del Debbio; Massimo di Pierro; Alex Dougall
2003-09-25
We present a preliminary result for second moment of the light cone wave function of the pion. This parameter is the subject of a discrepancy between theoretical predictions (coming from lattice and sum rules) and a recent experimental result (that remarkably agrees with purely perturbative predictions). In this work we exploit lattice hypercubic symmetries to remove power divergences and, moreover, implement a full 1-loop matching for all the contributing operators.
Reconstructing the Shock Wave From the Wolfe Creek Meteorite Impact.
NASA Astrophysics Data System (ADS)
Heine, C.; O'Neill, C. J.
2003-12-01
The Wolfe Creek meteorite crater is an 800m diameter impact structure located in the Tanami Desert near Hall's Creek, Western Australia. The crater formed <300000 years ago, and is the 2nd largest crater from which fragments of the impacting meteorite (a medium octahedrite) have been recovered. We present the results of new ground based geophysical (magnetics and gravity) surveys conducted over the structure in July-August, 2003. The results highlight the simple structure of the crater under the infilling sediments, and track the extent of deformation and the ejecta blanket under the encroaching sanddunes. The variations in the dip of the foliations around the crater rim confirm that the crater approached from East-Northeast, as deduced from the ejecta distribution, and provide constraints on the kinetic energy and angle of the impactor. We also use the distribution of shocked quartz in the target rock (Devonian sandstones) to reconstruct the shock loading conditions of the impact using the Grieve and Robertson (1976) criterion. We also use a Simplified Arbitrary Langrangian-Eulerian hydrocode (SALE 2) to simulate the propagation of shock waves through a material described by a Tillotson equation of state. Using the deformational and PT constraints of the Wolfe-Creek crater, we can estimate the partitioning of kinetic energy as a result of this medium-size impact.
Sensory Function: Insights From Wave 2 of the National Social Life, Health, and Aging Project
Kern, David W.; Wroblewski, Kristen E.; Chen, Rachel C.; Schumm, L. Philip; McClintock, Martha K.
2014-01-01
Objectives. Sensory function, a critical component of quality of life, generally declines with age and influences health, physical activity, and social function. Sensory measures collected in Wave 2 of the National Social Life, Health, and Aging Project (NSHAP) survey focused on the personal impact of sensory function in the home environment and included: subjective assessment of vision, hearing, and touch, information on relevant home conditions and social sequelae as well as an improved objective assessment of odor detection. Method. Summary data were generated for each sensory category, stratified by age (6290 years of age) and gender, with a focus on function in the home setting and the social consequences of sensory decrements in each modality. Results. Among both men and women, older age was associated with self-reported impairment of vision, hearing, and pleasantness of light touch. Compared with women, men reported significantly worse hearing and found light touch less appealing. There were no gender differences for vision. Overall, hearing loss seemed to have a greater impact on social function than did visual impairment. Discussion. Sensory function declines across age groups, with notable gender differences for hearing and light touch. Further analysis of sensory measures from NSHAP Wave 2 may provide important information on how sensory declines are related to health, social function, quality of life, morbidity, and mortality in this nationally representative sample of older adults. PMID:25360015
Impact! Chandra Images a Young Supernova Blast Wave
NASA Astrophysics Data System (ADS)
2000-05-01
Two images made by NASA's Chandra X-ray Observatory, one in October 1999, the other in January 2000, show for the first time the full impact of the actual blast wave from Supernova 1987A (SN1987A). The observations are the first time that X-rays from a shock wave have been imaged at such an early stage of a supernova explosion. Recent observations of SN 1987A with the Hubble Space Telescope revealed gradually brightening hot spots from a ring of matter ejected by the star thousands of years before it exploded. Chandra's X-ray images show the cause for this brightening ring. A shock wave is smashing into portions of the ring at a speed of 10 million miles per hour (4,500 kilometers per second). The gas behind the shock wave has a temperature of about ten million degrees Celsius, and is visible only with an X-ray telescope. "With Hubble we heard the whistle from the oncoming train," said David Burrows of Pennsylvania State University, University Park, the leader of the team of scientists involved in analyzing the Chandra data on SN 1987A. "Now, with Chandra, we can see the train." The X-ray observations appear to confirm the general outlines of a model developed by team member Richard McCray of the University of Colorado, Boulder, and others, which holds that a shock wave has been moving out ahead of the debris expelled by the explosion. As this shock wave collides with material outside the ring, it heats it to millions of degrees. "We are witnessing the birth of a supernova remnant for the first time," McCray said. The Chandra images clearly show the previously unseen, shock-heated matter just inside the optical ring. Comparison with observations made with Chandra in October and January, and with Hubble in February 2000, show that the X-ray emission peaks close to the newly discovered optical hot spots, and indicate that the wave is beginning to hit the ring. In the next few years, the shock wave will light up still more material in the ring, and an inward moving, or reverse, shock wave will heat the material ejected in the explosion itself. "The supernova is digging up its own past," said McCray. The observations were made on October 6, 1999, using the Advanced CCD Imaging Spectrometer (ACIS) and the High Energy Transmission Grating, and again on January 17, 2000, using ACIS. Other members of the team were Eli Michael of the University of Colorado; Dr. Una Hwang, Dr. Steven Holt and Dr. Rob Petre of NASA's Goddard Space Flight Center in Greenbelt, MD; Professor Roger Chevalier of the University of Virginia, Charlottesville; and Professors Gordon Garmire and John Nousek of Pennsylvania State University. The results will be published in an upcoming issue of the Astrophysical Journal. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University. The High Energy Transmission Grating was built by the Massachusetts Institute of Technology. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. More About SN 1987A Images to illustrate this release and more information on Chandra's progress can be found on the Internet at: http://chandra.harvard.edu/photo/2000/sn1987a/index.html AND http://chandra.nasa.gov More About SN 1987A
Joint inversion of receiver function and surface wave dispersion observations
NASA Astrophysics Data System (ADS)
Julià, J.; Ammon, C. J.; Herrmann, R. B.; Correig, A. M.
2000-10-01
We implement a method to invert jointly teleseismic P-wave receiver functions and surface wave group and phase velocities for a mutually consistent estimate of earth structure. Receiver functions are primarily sensitive to shear wave velocity contrasts and vertical traveltimes, and surface wave dispersion measurements are sensitive to vertical shear wave velocity averages. Their combination may bridge resolution gaps associated with each individual data set. We formulate a linearized shear velocity inversion that is solved using a damped least-squares scheme that incorporates a priori smoothness constraints for velocities in adjacent layers. The data sets are equalized for the number of data points and physical units in the inversion process. The combination of information produces a relatively simple model with a minimal number of sharp velocity contrasts. We illustrate the approach using noise-free and realistic noise simulations and conclude with an inversion of observations from the Saudi Arabian Shield. Inversion results for station SODA, located in the Arabian Shield, include a crust with a sharp gradient near the surface (shear velocity changing from 1.8 to 3.5kms-1 in 3km) underlain by a 5-km-thick layer with a shear velocity of 3.5kms-1 and a 27-km-thick layer with a shear velocity of 3.8kms-1, and an upper mantle with an average shear velocity of 4.7kms-1. The crust-mantle transition has a significant gradient, with velocity values varying from 3.8 to 4.7kms-1 between 35 and 40km depth. Our results are compatible with independent inversions for crustal structure using refraction data.
NASA Astrophysics Data System (ADS)
Hedayatrasa, Saeid; Bui, Tinh Quoc; Zhang, Chuanzeng; Lim, Chee Wah
2014-02-01
Numerical modeling of the Lamb wave propagation in functionally graded materials (FGMs) by a two-dimensional time-domain spectral finite element method (SpFEM) is presented. The high-order Chebyshev polynomials as approximation functions are used in the present formulation, which provides the capability to take into account the through thickness variation of the material properties. The efficiency and accuracy of the present model with one and two layers of 5th order spectral elements in modeling wave propagation in FGM plates are analyzed. Different excitation frequencies in a wide range of 28-350 kHz are investigated, and the dispersion properties obtained by the present model are verified by reference results. The through thickness wave structure of two principal Lamb modes are extracted and analyzed by the symmetry and relative amplitude of the vertical and horizontal oscillations. The differences with respect to Lamb modes generated in homogeneous plates are explained. Zero-crossing and wavelet signal processing-spectrum decomposition procedures are implemented to obtain phase and group velocities and their dispersion properties. So it is attested how this approach can be practically employed for simulation, calibration and optimization of Lamb wave based nondestructive evaluation techniques for the FGMs. The capability of modeling stress wave propagation through the thickness of an FGM specimen subjected to impact load is also investigated, which shows that the present method is highly accurate as compared with other existing reference data.
NASA Technical Reports Server (NTRS)
Huang, K.-N.
1977-01-01
A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.
Statistical properties and correlation functions for drift waves
NASA Technical Reports Server (NTRS)
Horton, W.
1986-01-01
The dissipative one-field drift wave equation is solved using the pseudospectral method to generate steady-state fluctuations. The fluctuations are analyzed in terms of space-time correlation functions and modal probability distributions. Nearly Gaussian statistics and exponential decay of the two-time correlation functions occur in the presence of electron dissipation, while in the absence of electron dissipation long-lived vortical structures occur. Formulas from renormalized, Markovianized statistical turbulence theory are given in a local approximation to interpret the dissipative turbulence.
Transverse instability of a plane front of fast impact ionization waves
Kyuregyan, A. S.
2012-05-15
The transverse instability of a plane front of fast impact ionization waves in p{sup +}-n-n{sup +} semiconductor structures with a finite concentration of donors N in the n layer has been theoretically analyzed. It is assumed that the high velocity u of impact ionization waves is ensured owing to the avalanche multiplication of the uniform background of electrons and holes whose concentration {sigma}{sub b} ahead of the front is high enough for the continuum approximation to be applicable. The problem of the calculation of the growth rate s of a small harmonic perturbation with wavenumber k is reduced to the eigenvalue problem for a specific homogeneous Volterra equation of the second kind containing the sum of double and triple integrals of an unknown eigenfunction. This problem has been solved by the method of successive approximations. It has been shown that the function s(k) for small k values increases monotonically in agreement with the analytical theory reported in Thermal Engineering 58 (13), 1119 (2011), reaches a maximum s{sub M} at k = k{sub M}, then decreases, and becomes negative at k > k{sub 01}. This behavior of the function s(k) for short-wavelength perturbations is due to a decrease in the distortion of the field owing to a finite thickness of the space charge region of the front and 'smearing' of perturbation of concentrations owing to the transverse transport of charge carriers. The similarity laws for perturbations with k Greater-Than-Or-Equivalent-To k{sub M} have been established: at fixed {sigma}{sub b} values and the maximum field strength on the front E{sub 0M}, the growth rate s depends only on the ratio k/N and the boundary wavenumber k{sub 01} {proportional_to} N. The parameters s{sub M}, k{sub M}, and k{sub 01}, which determine the perturbation growth dynamics and the upper boundary of the instability region for impact ionization waves, have been presented as functions of E{sub 0M}. These dependences indicate that the model of a plane impact ionization wave is insufficient for describing the operation of avalanche voltage sharpers and that fronts of fast streamers in the continuum approximation should be stable with respect to transverse perturbations in agreement with the previously reported numerical simulation results. The results have been confirmed by the numerical simulation of the evolution of small harmonic perturbations of the steady-state plane impact ionization wave.
Computational aspects of the continuum quaternionic wave functions for hydrogen
Morais, J.
2014-10-15
Over the past few years considerable attention has been given to the role played by the Hydrogen Continuum Wave Functions (HCWFs) in quantum theory. The HCWFs arise via the method of separation of variables for the time-independent Schrödinger equation in spherical coordinates. The HCWFs are composed of products of a radial part involving associated Laguerre polynomials multiplied by exponential factors and an angular part that is the spherical harmonics. In the present paper we introduce the continuum wave functions for hydrogen within quaternionic analysis ((R)QHCWFs), a result which is not available in the existing literature. In particular, the underlying functions are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R{sup 3} and R{sup 4}). We prove that the (R)QHCWFs are orthonormal to one another. The representation of these functions in terms of the HCWFs are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of fundamental properties and further computation of the hydrogen-like atom transforms of the (R)QHCWFs are also discussed. We address all the above and explore some basic facts of the arising quaternionic function theory. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QHCWFs are new in the literature and have some consequences that are now under investigation.
Computational aspects of the continuum quaternionic wave functions for hydrogen
NASA Astrophysics Data System (ADS)
Morais, J.
2014-10-01
Over the past few years considerable attention has been given to the role played by the Hydrogen Continuum Wave Functions (HCWFs) in quantum theory. The HCWFs arise via the method of separation of variables for the time-independent Schrdinger equation in spherical coordinates. The HCWFs are composed of products of a radial part involving associated Laguerre polynomials multiplied by exponential factors and an angular part that is the spherical harmonics. In the present paper we introduce the continuum wave functions for hydrogen within quaternionic analysis ((R)QHCWFs), a result which is not available in the existing literature. In particular, the underlying functions are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R3 and R4). We prove that the (R)QHCWFs are orthonormal to one another. The representation of these functions in terms of the HCWFs are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of fundamental properties and further computation of the hydrogen-like atom transforms of the (R)QHCWFs are also discussed. We address all the above and explore some basic facts of the arising quaternionic function theory. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QHCWFs are new in the literature and have some consequences that are now under investigation.
NASA Astrophysics Data System (ADS)
Werby, M. F.; Strayer, M. R.; Nagarajan, M. A.
1980-06-01
Exact finite range distorted-wave Born approximation analysis of the ground state reactions 208Pb(p,t)206Pb and 18O(p,t)16O are presented. The calculations are carried out using a realistic triton wave function comprising a spatially symmetric S and mixed symmetric S' and D states. The transfer interaction is treated consistently with the interaction used in obtaining the triton wave function. The use of a realistic wave function and transfer potential yields improved agreement between experimental and theoretical angular distributions. Calculations using the wave function of the transferred neutron pair suggest it is possible to explain both the absolute magnitude and shape of the angular distribution for these transitions. NUCLEAR REACTIONS (p,t), distorted-wave Born approximation analyses.
Influence of rotating electron wave functions on l -shell ionization and alignment
NASA Astrophysics Data System (ADS)
Legrand, I. C.; Dörner, R.; Schmidt-Böcking, H.; Zoran, V.
In adiabatic ion-atom collisions, the target electron distribution will follow the rotation of the internuclear axis resulting in a change of the subshell ionization probabilities as well as of the alignment tensor as compared with the case of frozen electron wave functions. In the present work we compare SCA calculations based on frozen and rotating relativistic electron wave functions with experimental l-subshell probabilities and l 3-subshell differential alignment measured by Dörner et al. for 1 MeV protons on Samarium. In this case, where the intrashell couplings play a minor role, the agreement between calculations and experiment is significantly improved assuming a partial rotation of the target electron distribution during the collision, possibly depending on substate and impact parameter.
A Critical Examination of Wind-Wave Spectral Functional Form
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Long, Steven R.
1999-01-01
Traditionally, data from random ocean waves are presented in spectral functions. The spectra are the result of Fourier analysis. Fourier spectral analysis has dominated data analysis for, at least, the last hundred years. It has been the standard method for is examining the global amplitude-frequency distributions. Although Fourier transform valid under extremely general conditions, there are some crucial restrictions for the Fourier spectral analysis. The system must be linear, and the data must be stationary- otherwise, the resulting spectrum will make little physical sense. The stationarity requirement is also a common required criterion for most of other available data analysis methods. Nevertheless, few, if any, natural phenomena are linear and stationary. To compound these complications is the imperfection of our probes or numerical schemes the interactions of the imperfect probes even with a perfect linear system can make the final data nonlinear. Furthermore, all the available data are usually of finite duration. Under these conditions, Fourier analysis is of limited use, For lack of alternatives, however, Fourier analysis is still used to process such data. The loose application of Fourier analysis and the insouciant adoption of the stationary and linear assumptions may lead to misleading conclusions. Ocean waves are know to be nonlinear, and the wind system generating the wave field are seldom stationary- As a result, the traditional examination of the spectral form hardly made physical sense. A new method for analyzing nonlinear and nonstationary data has been developed. The key part is the Empirical Mode Decomposition (EMD) method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF) that serve as the basis of the representation of the data, This decomposition method is adaptive, and, therefore, highly efficient. The IMFs admit well-behaved Hilbert transforms, and yield instantaneous energy and frequency as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Among the main conceptual innovations is the introduction of the instantaneous frequencies for complicated data sets, which eliminate the need of spurious harmonics to represent nonlinear and nonstationary signals. The spectral forms of the ocean waves are very different. This new method offers the first physical meaningful view of the wave spectrum. Data from laboratory and field will be presented to illustrate the differences.
Green's function for SH-waves in a cylindrically monoclinic material
NASA Astrophysics Data System (ADS)
Watanabe, Kazumi; Payton, Robert G.
2002-11-01
Green's function for SH-waves in a cylindrically monoclinic material is considered for impulsive and time-harmonic sources. Closed form expressions for the Green's function are derived for a few limited values of anisotropic parameters. A very interesting time development of the wave front shape is illustrated and the wave front singularity is discussed for the transient SH-wave. Contours of the displacement amplitude for the time-harmonic wave are also shown.
Li, Yong; Fang, Hui; Min, Changjun; Yuan, Xiaocong
2015-01-01
Under the usual approximation of treating a biological particle as a spheroidal droplet, we consider the analysis of its size and shape with the high frequency photoacoustics and develop a numerical method which can simulate its characteristic photoacoustic waves. This numerical method is based on the calculation of spheroidal wave functions, and when comparing to the finite element model (FEM) calculation, can reveal more physical information and can provide results independently at each spatial points. As the demonstration, red blood cells (RBCs) and MCF7 cell nuclei are studied, and their photoacoustic responses including field distribution, spectral amplitude, and pulse forming are calculated. We expect that integrating this numerical method with the high frequency photoacoustic measurement will form a new modality being extra to the light scattering method, for fast assessing the morphology of a biological particle. PMID:26442830
Li, Yong; Fang, Hui; Min, Changjun; Yuan, Xiaocong
2015-01-01
Under the usual approximation of treating a biological particle as a spheroidal droplet, we consider the analysis of its size and shape with the high frequency photoacoustics and develop a numerical method which can simulate its characteristic photoacoustic waves. This numerical method is based on the calculation of spheroidal wave functions, and when comparing to the finite element model (FEM) calculation, can reveal more physical information and can provide results independently at each spatial points. As the demonstration, red blood cells (RBCs) and MCF7 cell nuclei are studied, and their photoacoustic responses including field distribution, spectral amplitude, and pulse forming are calculated. We expect that integrating this numerical method with the high frequency photoacoustic measurement will form a new modality being extra to the light scattering method, for fast assessing the morphology of a biological particle. PMID:26442830
NASA Astrophysics Data System (ADS)
Li, Yong; Fang, Hui; Min, Changjun; Yuan, Xiaocong
2015-10-01
Under the usual approximation of treating a biological particle as a spheroidal droplet, we consider the analysis of its size and shape with the high frequency photoacoustics and develop a numerical method which can simulate its characteristic photoacoustic waves. This numerical method is based on the calculation of spheroidal wave functions, and when comparing to the finite element model (FEM) calculation, can reveal more physical information and can provide results independently at each spatial points. As the demonstration, red blood cells (RBCs) and MCF7 cell nuclei are studied, and their photoacoustic responses including field distribution, spectral amplitude, and pulse forming are calculated. We expect that integrating this numerical method with the high frequency photoacoustic measurement will form a new modality being extra to the light scattering method, for fast assessing the morphology of a biological particle.
Gudimetla, V S Rao; Holmes, Richard B; Riker, Jim F
2012-12-01
An analytical expression for the log-amplitude correlation function for plane wave propagation through anisotropic non-Kolmogorov turbulent atmosphere is derived. The closed-form analytic results are based on the Rytov approximation. These results agree well with wave optics simulation based on the more general Fresnel approximation as well as with numerical evaluations, for low-to-moderate strengths of turbulence. The new expression reduces correctly to the previously published analytic expressions for the cases of plane wave propagation through both nonisotropic Kolmogorov turbulence and isotropic non-Kolmogorov turbulence cases. These results are useful for understanding the potential impact of deviations from the standard isotropic Kolmogorov spectrum. PMID:23455912
Ultrasonic characterization of functionally gradient materials with leaky Rayleigh wave
NASA Astrophysics Data System (ADS)
Kawashima, Koichiro; Takenouchi, Naoki; Awaji, Hideo; Nishikawa, Tadahiro
1999-12-01
Young's modulus of functionally gradient Al2O3/Ni ceramics, which was formed by centrifugal casting and has gradient of the elastic properties along a particular direction on the surface, is estimated by velocity measurement of the leaky Rayleigh and longitudinal waves. Those velocities were measured every 1mm with a line focused PVDF transducer, of which central frequency, focal length and width are 36MHz, 5mm and 8mm. Thus measured Young's modulus varies from 370GPa (Al2O3 rich side) to 200GPa (Ni rich side).
Chameleon fields, wave function collapse and quantum gravity
NASA Astrophysics Data System (ADS)
Zanzi, A.
2015-07-01
Chameleon fields are quantum (usually scalar) fields, with a density-dependent mass. In a high-density environment, the mass of the chameleon is large. On the contrary, in a small-density environment (e.g. on cosmological distances), the chameleon is very light. A model where the collapse of the wave function is induced by chameleon fields is presented. During this analysis, a Chameleonic Equivalence Principle (CEP) will be formulated: in this model, quantum gravitation is equivalent to a conformal anomaly. Further research efforts are necessary to verify whether this proposal is compatible with phenomeno logical constraints.
A critical survey of wave propagation and impact in composite materials
NASA Technical Reports Server (NTRS)
Moon, F. C.
1973-01-01
A review of the field of stress waves in composite materials is presented covering the period up to December 1972. The major properties of waves in composites are discussed and a summary is made of the major experimental results in this field. Various theoretical models for analysis of wave propagation in laminated, fiber and particle reinforced composites are surveyed. The anisotropic, dispersive and dissipative properties of stress pulses and shock waves in such materials are reviewed. A review of the behavior of composites under impact loading is presented along with the application of wave propagation concepts to the determination of impact stresses in composite plates.
Joint Inversion of P- and S-Wave Receiver Functions and Surface-Wave Dispersion in Africa
NASA Astrophysics Data System (ADS)
Julia, J.; Nyblade, A.; Pasyanos, M. E.
2011-12-01
Knowledge of the lithospheric structure of Africa comes mainly from tomographic inversion of surface-wave dispersion velocities from distant earthquakes. Surface-waves propagate at long periods and sample continental structure with large wavelengths, and surface-wave tomography has consistently delineated gross variations in crustal thickness - including thin crust under Mesozoic and Cenozoic rifts and passive continental margins and thicker crust under the Precambrian cratons - as well as gross variations in lithospheric structure - including thick lithosphere and fast upper mantle velocities under the cratons and thinned lithosphere and slower upper mantle velocities under the rifts - across the continent. Long-period surface-waves, however, cannot accurately resolve rapid variations in seismic velocity structure and important details, such as the character of the lithosphere-asthenosphere boundary, are usually not reported. Detailed velocity structure can be inferred from shorter-wavelength body waves, for example, through modeling of P- and S-wave receiver functions. P-wave receiver functions (PRFs) constrain detailed variation in crustal S-wave velocity structure through travel-times and amplitudes of P-to-S conversions at seismic discontinuities. Similarly, S-wave receiver functions constrain detailed variations at lithospheric and sub-lithospheric depths through travel-times and amplitudes of S-to-P conversions. We investigate detailed lithospheric structure of the African continent by developing S-wave velocity-depth profiles from the joint inversion of PRF and SRF waveforms with tomographic fundamental-mode, Rayleigh-wave group velocities. Receiver functions alone cannot uniquely resolve absolute S-wave velocity structure, but their joint inversion with surface-wave dispersion velocities bridges resolution gaps among the data sets and constrains velocity-depth profiles more uniquely. We will concentrate on open data from broadband stations with long recording times, and discuss the implications of the resulting velocity models regarding composition, tectonics, and evolution of the African lithosphere.
Birth weight impacts on wave reflections in children and adolescents.
Lurbe, Empar; Torro, Maria Isabel; Carvajal, Eva; Alvarez, Vicente; Redn, Josep
2003-03-01
The objective of the present study was to assess central aortic pressure and wave reflection in children and adolescents at different birth weights. Two hundred nineteen healthy children (126 girls), from 7 to 18 years of age (mean, 11.3 years) and born at term after a normotensive pregnancy, were included. The subjects were divided according to birth weight: <2.5 kg, from 2.5 to 2.999 kg, from 3.0 to 3.5 kg, and >3.5 kg. Pressure waveforms were recorded from the radial artery of the wrist, and the waveform data were then processed by the SphygmoCor radial/aortic transform software module to produce the estimated aortic pressure waveform. Augmentation index, an estimate of the pulse wave reflection, was significantly higher in children with the lowest birth weights compared with the other birth weight groups. In a multiple regression analysis, short stature, low heart rate, female gender, and lower birth weight had independent significant inverse correlations to the augmentation index when adjusted for diastolic blood pressure (R2=0.21). In summary, the results showed a relatively aged phenotype of large-vessel function in the children with the lowest birth weights. These early alterations may be amplified throughout life and may contribute to the increased cardiovascular risk associated with low birth weight. PMID:12623973
Werby, M.F.; Strayer, M.R.; Nagarajan, M.A.
1980-06-01
Exact finite range distorted-wave Born-approximation analysis of the ground-state reactions /sup 208/Pb( p,t)/sup 206/Pb and /sup 18/O( p,t)/sup 16/O are presented. The calculations are carried out using a realistic triton wave function comprising a spatially symmetric S and mixed symmetric S' and D states. The transfer interaction is treated consistently with the interaction used in obtaining the triton wave function. The use of a realistic wave function and transfer potential yields improved agreement between experimental and theoretical angular distributions. Calculations using the wave function of the transferred neutron pair suggest it is possible to explain both the absolute magnitude and shape of the angular distribution for these transitions.
NASA Astrophysics Data System (ADS)
Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael
2015-01-01
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
Horizon wave-function and the quantum cosmic censorship
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Micu, Octavian; Stojkovic, Dejan
2015-07-01
We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF) formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superextremal case (with charge-to-mass ratio ? > 1), which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for ?2 < 2, and this configuration has a non-vanishing probability of being a black hole, thus extending the classically allowed region for a charged black hole. However, the HWF is not normalisable for ?2 > 2, and the uncertainty in the location of the horizon blows up at ?2 = 2, signalling that such an object is no more well-defined. This perhaps implies that a quantum Cosmic Censorship might be conjectured by stating that no black holes with charge-to-mass ratio greater than a critical value (of the order of ?{ 2}) can exist.
Wave functions for fractional Chern insulators in disk geometry
NASA Astrophysics Data System (ADS)
He, Ai-Lei; Luo, Wei-Wei; Wang, Yi-Fei; Gong, Chang-De
2015-12-01
Recently, fractional Chern insulators (FCIs), also called fractional quantum anomalous Hall (FQAH) states, have been theoretically established in lattice systems with topological flat bands. These systems exhibit similar fractionalization phenomena to the conventional fractional quantum Hall (FQH) systems. Using the mapping relationship between the FQH states and the FCI/FQAH states, we construct the many-body wave functions of the fermionic FCI/FQAH states in disk geometry with the aid of the generalized Pauli principle (GPP) and Jack polynomials. Compared with the ground state by the exact diagonalization method, the wave-function overlap is higher than 0.97, even when the Hilbert space dimension is as large as 3 106. We also use the GPP and the Jack polynomials to construct edge excitations for the fermionic FCI/FQAH states. The quasi-degeneracy sequences of fermionic FCI/FQAH systems reproduce the prediction of the chiral Luttinger liquid theory, complementing the exact diagonalization results with larger lattice sizes and more particles.
Theory of steady-state plane tunneling-assisted impact ionization waves
Kyuregyan, A. S.
2013-07-15
The effect of band-to-band and trap-assisted tunneling on the properties of steady-state plane ionization waves in p{sup +}-n-n{sup +} structures is theoretically analyzed. It is shown that such tunneling-assisted impact ionization waves do not differ in a qualitative sense from ordinary impact ionization waves propagating due to the avalanche multiplication of uniformly distributed seed electrons and holes. The quantitative differences of tunneling-assisted impact ionization waves from impact ionization waves are reduced to a slightly different relation between the wave velocity u and the maximum field strength E{sub M} at the front. It is shown that disregarding impact ionization does not exclude the possibility of the existence of tunneling-assisted ionization waves; however, their structure radically changes, and their velocity strongly decreases for the same E{sub M}. A comparison of the dependences u(E{sub M}) for various ionization-wave types makes it possible to determine the conditions under which one of them is dominant. In conclusion, unresolved problems concerning the theory of tunneling-assisted impact ionization waves are discussed and the directions of further studies are outlined.
Climate change impact on wave energy in the Persian Gulf
NASA Astrophysics Data System (ADS)
Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas
2015-06-01
Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.
Impact force identification in aerospace panels by an inverse ultrasonic guided wave problem
NASA Astrophysics Data System (ADS)
Bartoli, Ivan; Salamone, Salvatore; Lanza di Scalea, Francesco; Rhymer, Jennifer; Kim, Hyonny
2011-04-01
This paper deals with monitoring impacts on aluminum and composite aerospace panels. The specific problems addressed are (1) the identification of the impact forces (force magnitude time history) and (2) the discrimination of "damaging impacts" from "non-damaging impacts." Ultrasonic guided waves generated by the impacts are used as the sensing mechanism. Flexible Macro-Fiber Composite (MFC) patches are used as the ultrasonic receivers. The impact force identification method is based on an optimization routine which minimizes the difference between the experimental impact waves and the numerical impact waves calculated by a Semi-Analytical Finite Element (SAFE) forced analysis. The differentiation of "damaging impacts" vs. "non-damaging impacts" is based on a frequency analysis of the impact waves. These techniques are demonstrated through an extensive experimental testing program involving the following six specimens: an aluminum panel, a quasi-isotropic CFRP composite panel, a highly anisotropic CFRP composite panel, a stiffened aluminum panel, a stiffened quasi-isotropic CFRP composite panel, and a stiffened anisotropic CFRP composite panel. These panels were subjected to low-velocity hammer impacts and to high-velocity gas-gun impacts by ice projectiles at speeds up to 170 m/sec using UCSD's gas-gun test facility. In all of these experiments, the techniques summarized above gave excellent results for both impact force identification and impact force discrimination.
The impact of heat waves on children's health: a systematic review.
Xu, Zhiwei; Sheffield, Perry E; Su, Hong; Wang, Xiaoyu; Bi, Yan; Tong, Shilu
2014-03-01
Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children's health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: "heatwave", "heat wave", "child health", "morbidity", "hospital admission", "emergency department visit", "family practice", "primary health care", "death" and "mortality". Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children's health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children's health perspective, identifying the best measure of children's exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children's birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children's disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended. PMID:23525899
The impact of heat waves on children's health: a systematic review
NASA Astrophysics Data System (ADS)
Xu, Zhiwei; Sheffield, Perry E.; Su, Hong; Wang, Xiaoyu; Bi, Yan; Tong, Shilu
2014-03-01
Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children's health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: "heatwave", "heat wave", "child health", "morbidity", "hospital admission", "emergency department visit", "family practice", "primary health care", "death" and "mortality". Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children's health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children's health perspective, identifying the best measure of children's exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children's birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children's disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.
Pulse Wave Velocity and Cognitive Function in Older Adults
Zhong, Wenjun; Cruickshanks, Karen J; Schubert, Carla R; Carlsson, Cynthia M; Chappell, Richard J; Klein, Barbara EK; Klein, Ronald; Acher, Charles W
2013-01-01
Arterial stiffness may be associated with cognitive function. In this study, pulse wave velocity (PWV) was measured from the carotid to femoral (CF-PWV) and from the carotid to radial (CR-PWV) with the Complior SP System (Alam Medical, Vincennes, France). Cognitive function was measured by six tests of executive function, psychomotor speed, memory, and language fluency. A total of 1433 participants were included (mean age 75 years, 43% men). Adjusting for age, sex, education, pulse rate, hemoglobin A1C, HDL cholesterol, hypertension, CVD history, smoking ,drinking, and depression symptoms, a CF-PWV > 12 m/s was associated with a lower Mini-Mental State Examination score (coefficient: ?0.31, se: 0.11, p=0.005), fewer words recalled on Auditory Verbal Learning Test (coefficient: ?1.10, se: 0.43, p=0.01), and lower score on the composite cognition score (coefficient: ?0.10, se: 0.05, p=0.04) and marginally significantly associated with longer time to complete Trail Making Test-B (coefficient: 6.30, se: 3.41, p=0.06), CF-PWV was not associated with Trail Making Test-A, Digit Symbol Substation Test, or Verbal Fluency Test. No associations were found between CR-PWV and cognitive performance measures. Higher large artery stiffness was associated with worse cognitive function, and longitudinal studies are needed to confirm these associations. PMID:23632267
Colombian ocean waves and coasts modeled by special functions
NASA Astrophysics Data System (ADS)
Duque Tisns, Simn
2013-06-01
Modeling the ocean bottom and surface of both Atlantic and Pacific Oceans near the Colombian coast is a subject of increasing attention due to the possibility of finding oil deposits that haven't been discovered, and as a way of monitoring the ocean limits of Colombia with other countries not only covering the possibility of naval intrusion but as a chance to detect submarine devices that are used by illegal groups for different unwished purposes. In the development of this topic it would be necessary to use Standard Hydrodynamic Equations to model the mathematical shape of ocean waves that will take differential equations forms. Those differential equations will be solved using computer algebra software and methods. The mentioned solutions will involve the use of Special Functions such as Bessel Functions, Whittaker, Heun, and so on. Using the Special Functions mentioned above, the obtained results will be simulated by numerical methods obtaining the typical patterns around the Colombian coasts (both surface and bottom). Using this simulation as a non-perturbed state, any change in the patter could be taken as an external perturbation caused by a strange body or device in an specific area or region modeled, building this simulation as an ocean radar or an unusual object finder. It's worth mentioning that the use of stronger or more rigorous methods and more advanced Special Functions would generate better theoretical results, building a more accurate simulation model that would lead to a finest detection.
Impact wave deposits provide new constraints on the location of the K/T boundary impact
NASA Technical Reports Server (NTRS)
Hildebrand, A. R.; Boynton, W. V.
1988-01-01
All available evidence is consistent with an impact into oceanic crust terminating the Cretaceous Period. Although much of this evidence is incompatible with an endogenic origin, some investigators still feel that a volcanic origin is possible for the Cretaceous/Tertiary (K/T) boundary clay layers. The commonly cited evidence for a large impact stems from delicate clay layers and their components and the impact site has not yet been found. Impact sites have been suggested all over the globe. The impact is felt to have occurred near North America by: the occurrence of a 2 cm thick ejecta layer only at North American locales, the global variation of shocked quartz grain sizes peaking in North America, the global variation of spinel compositions with most refractory compositions occurring in samples from the Pacific region and possibly uniquely severe plant extinctions in the North American region. The K/T boundary interval was investigated as preserved on the banks of the Brazos River, Texas. The K/T fireball and ejecta layers with associated geochemical anomalies were found interbedded with this sequence which apparently allows a temporal resolution 4 orders of magnitude greater than typical K/T boundary sections. A literature search reveals that such coarse deposits are widely preserved at the K/T boundary. Impact wave deposits have not been found elsewhere on the globe, suggesting the impact occurred between North and South America. The coarse deposits preserved in Deep Sea Drilling Project (DSDP) holes 151-3 suggest the impact occurred nearby. Subsequent tectonism has complicated the picture.
ASTROD-GW and its Gravitational-Wave Response Function
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou
2012-07-01
ASTROD-GW is an optimization of ASTROD to focus on the goal of detection of GWs. The mission orbits of the 3 spacecraft forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The 3 spacecraft range interferometrically with one another with arm length about 260 million kilometers. With 52 times longer in arm length compared to that of LISA, the strain detection sensitivity is 52 times better toward larger wavelength. The scientific aim is focused for gravitational wave detection at low frequency. The science goals include detection of GWs from MBHs, and Extreme-Mass-Ratio Black Hole Inspirals (EMRI), and using these observations to find the evolution of the equation of state of dark energy and to explore the co-evolution of massive black holes with galaxies. In this paper we give an overview of orbit design, time delay interferometry, payload selection and mission requirements for ASTROD-GW, and calculate its gravitational-wave response function.
Modelling storm development and the impact when introducing waves, sea spray and heat fluxes
NASA Astrophysics Data System (ADS)
Wu, Lichuan; Rutgersson, Anna; Sahle, Erik
2015-04-01
In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.
The effect of wave function orthogonality on the simultaneous ionization and excitation of helium
NASA Astrophysics Data System (ADS)
Liu, Li-Juan; Jia, Chang-Chun; Zhang, Li-Min; Chen, Jiao-Jiao; Chen, Zhang-Jin
2013-10-01
Within the framework of the first-order Born approximation, the triple differential cross sections (TDCSs) for simultaneous ionization and excitation of helium are calculated. The wave function of the ejected electron is chosen to be orthogonal or non-orthogonal to the wave function of the bound electron before ionization. It is found that the orthogonality has a strong effect on the TDCS, especially when plane waves and Coulomb waves are used to describe the projectile and the ejected electron.
Stress wave propagation in a composite beam subjected to transverse impact.
Lu, Wei-Yang; Song, Bo; Jin, Huiqing
2010-08-01
Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate dynamic transverse loading on a glass fiber/epoxy composite beam. The high-speed DIC technique was employed to study the transverse wave propagation.
Dominant partition method. [based on a wave function formalism
NASA Technical Reports Server (NTRS)
Dixon, R. M.; Redish, E. F.
1979-01-01
By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.
Probing dissociative molecular dications by mapping vibrational wave functions
Puettner, R.; Sekushin, V.; Kaindl, G.; Arion, T.; Lischke, T.; Mucke, M.; Hergenhahn, U.; Foerstel, M.; Bradshaw, A. M.
2011-04-15
We present high-resolution photoelectron-Auger-electron coincidence spectra of methane (CH{sub 4}). Since the vibrational structure in the photoelectron spectrum is resolved, the Auger spectra corresponding to different vibrational levels can be separated. The seven final states of CH{sub 4}{sup 2+} are either dissociative or metastable, but in any case are populated in a repulsive part of their potential-energy curve via the Auger decay. The Auger line shapes can therefore be obtained by mapping the vibrational wave functions of the core-hole state into energy space. We have implemented this connection in the data analysis. By simultaneously fitting the different Auger spectra, detailed information on the energies of the dicationic states and their repulsive potential-energy curves is derived.
Human brain networks function in connectome-specific harmonic waves.
Atasoy, Selen; Donnelly, Isaac; Pearson, Joel
2016-01-01
A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness. PMID:26792267
Wave-function-renormalization effects in resonantly enhanced tunneling
NASA Astrophysics Data System (ADS)
Lrch, N.; Pepe, F. V.; Lignier, H.; Ciampini, D.; Mannella, R.; Morsch, O.; Arimondo, E.; Facchi, P.; Florio, G.; Pascazio, S.; Wimberger, S.
2012-05-01
We study the time evolution of ultracold atoms in an accelerated optical lattice. For a Bose-Einstein condensate with a narrow quasimomentum distribution in a shallow optical lattice the decay of the survival probability in the ground band has a steplike structure. In this regime we establish a connection between the wave-function-renormalization parameter Z introduced by P. Facchi, H. Nakazato, and S. Pascazio [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.86.2699 86, 2699 (2001)] to characterize nonexponential decay and the phenomenon of resonantly enhanced tunneling, where the decay rate is peaked for particular values of the lattice depth and the accelerating force.
Human brain networks function in connectome-specific harmonic waves
Atasoy, Selen; Donnelly, Isaac; Pearson, Joel
2016-01-01
A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call ‘connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory–inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation–inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness. PMID:26792267
Topological wave functions and the 4D-5D lift
NASA Astrophysics Data System (ADS)
Gao, Peng; Pioline, Boris
2008-07-01
We revisit the holomorphic anomaly equations satisfied by the topological string amplitude from the perspective of the 4D-5D lift, in the context of ``magic'' Script N = 2 supergravity theories. In particular, we interpret the Gopakumar-Vafa relation between 5D black hole degeneracies and the topological string amplitude as the result of a canonical transformation from 4D to 5D charges. Moreover we use the known Bekenstein-Hawking entropy of 5D black holes to constrain the asymptotic behavior of the topological wave function at finite topological coupling but large Khler classes. In the process, some subtleties in the relation between 5D black hole degeneracies and the topological string amplitude are uncovered, but not resolved. Finally we extend these considerations to the putative one-parameter generalization of the topological string amplitude, and identify the canonical transformation as a Weyl reflection inside the 3D duality group.
Ramp wave generation using graded areal density ceramic flyers and the plate impact technique
NASA Astrophysics Data System (ADS)
Taylor, P.; Goff, M.; Hazell, P. J.; Leighs, J.; Wood, D.; Appleby-Thomas, G. J.
2014-05-01
A requirement exists to generate realistic insults in energetic targets, for example ramp loadings leading to shock waves. This paper examines the development of a ceramic flyer ramp wave generation technique. Ceramic stereolithography was used to produce fully-dense, graded areal density alumina ceramic flyers. These flyers consisted of multiple square pyramids arranged on a solid base. The gas gun plate impact and electromagnetic particle velocity gauge techniques were used to observe the ramp waves generated when the flyers impacted a Kel-F 81 polymer target. Ramp waves of varying properties were successfully generated in the targets, and good agreement was obtained with 3D hydrocode modelling.
Early heat waves over Italy and their impacts on durum wheat yields
NASA Astrophysics Data System (ADS)
Fontana, G.; Toreti, A.; Ceglar, A.; De Sanctis, G.
2015-07-01
In the last decades the Euro-Mediterranean region has experienced an increase in extreme temperature events such as heat waves. These extreme weather conditions can strongly affect arable crop growth and final yields. Here, early heat waves over Italy from 1995 to 2013 are identified and characterised and their impact on durum wheat yields is investigated. As expected, results confirm the impact of the 2003 heat wave and highlight a high percentage of concurrence of early heat waves and significant negative yield anomalies in 13 out of 39 durum wheat production areas. In south-eastern Italy (the most important area for durum wheat production), the percentage of concurrent events exceeds 80 %.
Early heat waves over Italy and their impacts on durum wheat yields
NASA Astrophysics Data System (ADS)
Fontana, G.; Toreti, A.; Ceglar, A.; De Sanctis, G.
2015-05-01
In the last decades the Euro-Mediterranean region has experienced an increase in extreme temperature events such as heat waves. These extreme weather conditions can strongly affect arable crop growth and final yields. Here, early heat waves over Italy from 1995 to 2013 are identified and characterised and their impact on durum wheat yields is investigated. As expected, results confirm the impact of the 2003 heat waves and highlight a high percentage of concurrence of early heat waves and significant negative yield anomalies in 13 out of 39 durum wheat production areas. In south-eastern Italy (the most important area for durum wheat production), the percentage of concurrent events exceeds 80%.
Impact of Tropical Instability Waves on ENSO characteristics
NASA Astrophysics Data System (ADS)
Imada, Y.; Kimoto, M.
2010-12-01
Tropical instability waves (TIWs) are equatorial sub-synoptic-scale eddies observed both in the Pacific and Atlantic Oceans as cusp-shaped frontal waves propagating westward during the second half of the year. It is known that TIWs are produced due both to a barotropic shear of an equatorial current system and to a meridional gradient of density and sea surface temperature (SST) through a baroclinic instability. TIWs are an important mechanism for distributing heat in the meridional direction. Recent study suggested that TIWs could play an important role in producing the asymmetry between El Nio and La Nia (An, 2008). In this study, the impact of TIWs in the Pacific Ocean on El Nio/Southen Oscillation (ENSO) is investigated by introducing a new scheme of TIWs into a coupled atmosphere-ocean general circulation model (AOGCM) MIROC. 100-year integrations are performed with and without the TIW parameterization which is the first attempt to represent the effect of baroclinic eddy heat transport. A comparison between two experiments figure out the three important roles of baroclinic eddies in ENSO characteristic. One is the responsibility of TIWs for ENSO asymmetry as suggested by An (2008). It is suggested that asymmetric heat transport associated with TIWs which are active (inactive) during La Nio (El Nio) gives an asymmetric negative feedback to ENSO, and explain the observed asymmetric feature of stronger-amplitude El Nio and weaker-amplitude La Nia asymmetry. Although previous studies have been suggested various possible factors affecting ENSO asymmetry, the significance level of TIW effect is still not clear. Yet, our results show that TIW-induced heat transport has a significant role in inducing ENSO skewness. The second role of baroclinic eddies is to promote the lower frequency of ENSO, because the stratification modified by the eddy heat transport around the off-equatorial thermocline is favorable for the reduction of the phase speed of the equatorial Rossby wave. As the third role of TIWs, it is found that the damping effect of TIW-induced heating which is dominant near the surface results in suppressing the temperature variations induced by a SST mode (Neelin et al,. 1998 ;Guilyardi, 2006) of ENSO. As a result, the contribution of a thermocline mode (Guilyardi, 2006) relatively increases. The resulting changes in ENSO characteristics are consistent with the observed ENSO modulation including increase of period, asymmetry, and shift from SST to thermocline mode, concurrent with the observed 1970s climate shift. The result of ocean assimilation conducted by high-resolution MIROC also shows the increasing TIW activity through the increasing meridional density gradient in the eastern tropical Pacific associated with the climate shift. Therefore, this numerical approach provides a new suggestion that TIWs have an important role in the interaction between the Pacific decadal variability and ENSO, and have possibility to contribute to the understanding of them.
Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.; Dennison, Deborah S.; Dearborn, David S.; Antoun, Tarabay H.
2015-05-19
As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore » conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less
Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.; Dennison, Deborah S.; Dearborn, David S.; Antoun, Tarabay H.
2015-05-19
As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface are conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.
Impact of American-Style Football Participation on Vascular Function
Kim, Jonathan H.; Sher, Salman; Wang, Francis; Berkstresser, Brant; Shoop, James L.; Galante, Angelo; Mheid, Ibhar Al; Ghasemzadeh, Nima; Hutter, Adolph M.; Williams, B. Robinson; Sperling, Laurence S.; Weiner, Rory B.; Quyyumi, Arshed A.; Baggish, Aaron L.
2014-01-01
Although hypertension is common among American-style football players, the presence of concomitant vascular dysfunction has not previously been characterized. We sought to examine the impact of American-style football participation on arterial stiffness and to compare metrics of arterial function between collegiate American-style football participants and non-athletic collegiate controls. Newly matriculated collegiate athletes were studied longitudinally during a single season of American-style football participation and were then compared to healthy undergraduate controls. Arterial stiffness was characterized by use of applanation tonometry (SphygmoCor). American-style football participants (N = 32, 18.4 0.5 years old) were evenly comprised of Caucasians (N = 14, 44%) and African-Americans (N = 18, 56%). A single season of American-style football participation led to an increase in central aortic pulse pressure (27 4 vs. 34 8 mm Hg, P <0.001). Relative to controls (N = 47), pulse wave velocity was increased among ASF participants (5.6 0.7 vs. 6.2 0.9 m/s, P = 0.002). After adjusting for height, weight, body-mass index, systolic blood pressure, and diastolic blood pressure, American-style football participation was independently predictive of increased pulse wave velocity (? = 0.33, P = 0.04). In conclusion, American-style football participation leads to changes in central hemodynamics and increased arterial stiffness. PMID:25465938
The impact energy of a moored tanker under the action of regular waves
Yu-Cheng Li
1982-09-01
The influence that factors such as mooring line conditions, fender arrangements, dolphin arrangements, degree of ship loading, waves of long period, wave direction, and wind on the impact energy of a moored tanker were studied. Based on systematic test data, a semi-empirical formula was developed to calculate the impact energy of the moored ship on the berthing facilities under the action of regular waves. It was shown by experiment that this method is suitable for calculating the impact energy of moored ships of capacities as great as 200 X 10/sup 3/ t.
Riemann {zeta} function from wave-packet dynamics
Mack, R.; Schleich, W. P.; Dahl, J. P.; Moya-Cessa, H.; Strunz, W. T.; Walser, R.
2010-09-15
We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann {zeta} function {zeta}(s,a). Indeed, the autocorrelation function at a time t is determined by {zeta}({sigma}+i{tau},a), where {sigma} is governed by the temperature of the thermal phase state and {tau} is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials display a universal behavior; they take the shape of a logarithm. However, their form close to the origin depends on the value of the Hurwitz parameter a in {zeta}(s,a). In particular, we establish a connection between the value of the potential energy at its minimum, the Hurwitz parameter and the Maslov index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann {zeta} wave-packet dynamics using cold atoms in appropriately tailored light fields.
Propagating two-particle reduced density matrices without wave functions
NASA Astrophysics Data System (ADS)
Lackner, Fabian; Březinová, Iva; Sato, Takeshi; Ishikawa, Kenichi L.; Burgdörfer, Joachim
2015-02-01
Describing time-dependent many-body systems where correlation effects play an important role remains a major theoretical challenge. In this paper we develop a time-dependent many-body theory that is based on the two-particle reduced density matrix (2-RDM). We present a closed equation of motion for the 2-RDM by developing a reconstruction functional for the three-particle reduced density matrix (3-RDM) that preserves norm, energy, and spin symmetries during time propagation. We show that approximately enforcing N -representability during time evolution is essential for achieving stable solutions. As a prototypical test case which features long-range Coulomb interactions we employ the one-dimensional model for lithium hydride (LiH) in strong infrared laser fields. We probe both one-particle observables such as the time-dependent dipole moment and two-particle observables such as the pair density and mean electron-electron interaction energy. Our results are in very good agreement with numerically exact solutions for the N -electron wave function obtained from the multiconfigurational time-dependent Hartree-Fock method.
Assessing the orbital selective Mott transition with variational wave functions
NASA Astrophysics Data System (ADS)
Tocchio, Luca F.; Arrigoni, Federico; Sorella, Sandro; Becca, Federico
2016-03-01
We study the Mott metal–insulator transition in the two-band Hubbard model with different hopping amplitudes t 1 and t 2 for the two orbitals on the two-dimensional square lattice by using non-magnetic variational wave functions, similarly to what has been considered in the limit of infinite dimensions by dynamical mean-field theory. We work out the phase diagram at half filling (i.e. two electrons per site) as a function of R={{t}2}/{{t}1} and the on-site Coulomb repulsion U, for two values of the Hund’s coupling J = 0 and J/U = 0.1. Our results are in good agreement with previous dynamical mean-field theory calculations, demonstrating that the non-magnetic phase diagram is only slightly modified from infinite to two spatial dimensions. Three phases are present: a metallic one, for small values of U, where both orbitals are itinerant; a Mott insulator, for large values of U, where both orbitals are localized because of the Coulomb repulsion; and the so-called orbital-selective Mott insulator (OSMI), for small values of R and intermediate Us, where one orbital is localized while the other one is still itinerant. The effect of the Hund’s coupling is two-fold: on one side, it favors the full Mott phase over the OSMI; on the other side, it stabilizes the OSMI at larger values of R.
Higher twist parton distributions from light-cone wave functions
Braun, V. M.; Lautenschlager, T.; Pirnay, B.; Manashov, A. N.
2011-05-01
We explore the possibility to construct higher-twist parton distributions in a nucleon at some low reference scale from convolution integrals of the light-cone wave functions (WFs). To this end we introduce simple models for the four-particle nucleon WFs involving three valence quarks and a gluon with total orbital momentum zero, and estimate their normalization (WF at the origin) using QCD sum rules. We demonstrate that these WFs provide one with a reasonable description of both polarized and unpolarized parton densities at large values of the Bjorken variable x{>=}0.5. Twist-three parton distributions are then constructed as convolution integrals of qqqg and the usual three-quark WFs. The cases of the polarized structure function g{sub 2}(x,Q{sup 2}) and single transverse spin asymmetries are considered in detail. We find that the so-called gluon pole contribution to twist-three distributions relevant for single spin asymmetry vanishes in this model, but is generated perturbatively at higher scales by the evolution, in the spirit of Glueck-Reya-Vogt parton distributions.
Assessing the orbital selective Mott transition with variational wave functions.
Tocchio, Luca F; Arrigoni, Federico; Sorella, Sandro; Becca, Federico
2016-03-16
We study the Mott metal-insulator transition in the two-band Hubbard model with different hopping amplitudes t 1 and t 2 for the two orbitals on the two-dimensional square lattice by using non-magnetic variational wave functions, similarly to what has been considered in the limit of infinite dimensions by dynamical mean-field theory. We work out the phase diagram at half filling (i.e. two electrons per site) as a function of [Formula: see text] and the on-site Coulomb repulsion U, for two values of the Hund's coupling J = 0 and J/U = 0.1. Our results are in good agreement with previous dynamical mean-field theory calculations, demonstrating that the non-magnetic phase diagram is only slightly modified from infinite to two spatial dimensions. Three phases are present: a metallic one, for small values of U, where both orbitals are itinerant; a Mott insulator, for large values of U, where both orbitals are localized because of the Coulomb repulsion; and the so-called orbital-selective Mott insulator (OSMI), for small values of R and intermediate Us, where one orbital is localized while the other one is still itinerant. The effect of the Hund's coupling is two-fold: on one side, it favors the full Mott phase over the OSMI; on the other side, it stabilizes the OSMI at larger values of R. PMID:26881997
On the Galilean transformation of the few-electron wave functions
NASA Astrophysics Data System (ADS)
Frolov, Alexei M.
2013-06-01
The Galilean transformations of the few-electron atomic wave functions are considered. We discuss the few-electron wave functions constructed in the model of independent electrons as well as the truly correlated (or highly accurate) wave functions. Results of our analysis are applied to determine the probability of formation of the negatively charged tritium/protium ions during the nuclear (n, 3He; t, p)-reaction of the helium-3 atoms with thermal/slow neutrons.
P-wave Receiver Functions reveal the Bohemian Massif crust
NASA Astrophysics Data System (ADS)
Kampfova Exnerova, Hana; Plomerova, Jaroslava; Vecsey, Ludek
2015-04-01
In this study we present initial results of P-wave Receiver Functions (RF) calculated from broad-band waveforms of teleseismic events recorded by temporary and permanent stations in the Bohemian Massif (BM, Central Europe). Temporary arrays BOHEMA I (2001-2003), BOHEMA II (2004-2005) and BOHEMA III (2005-2006) operated during passive seismic experiments oriented towards studying velocity structure of the lithosphere and the upper mantle. Receiver Functions show relative response of the Earth structure under a seismic station and nowadays represent frequently-used method to retrieve structure of the crust, whose knowledge is needed in various studies of the upper mantle. The recorded waveforms are composites of direct P and P-to-S converted waves that reverberate in the structure beneath the receiver (Ammon, 1997). The RFs are sensitive to seismic velocity contrast and are thus suited to identifying velocity discontinuities in the crust, including the Mohorovi?i? discontinuity (Moho). Relative travel-time delays of the converted phases detected in the RFs are transformed into estimates of discontinuity depths assuming external information on the vp/vs and P velocity. To evaluate RFs we use the Multiple-taper spectral correlation (MTC) method (Park and Levin, 2000) and process signals from teleseismic events at epicentral distances of 30 - 100 with magnitude Mw > 5.5. Recordings are filtered with Butterworth band-pass filter of 2 - 8 s. To select automatically signals which are strong enough, we calculate signal-to-noise ratios (SNR) in two steps. In the first step we calculate SNR for signals from intervals (-1s, 3s)/(-10s, -2s), where P-arrival time represent time zero. In the second step we broaden the intervals and calculate SNR for (-1s, 9s)/(-60s, -2s). We also employ forward modelling of the RFs using Interactive Receiver Functions Forward Modeller (IRFFM) (Tkal?i? et al., 2010) to produce, in the first step, one-dimensional velocity models under individual seismic station. Stacked traces of the RFs show strong conversions with positive polarity (indicating a velocity increase across the discontinuity) between 3.3 and 4.5 s after the P-wave arrival at almost all stations. We relate these pulses to conversions at the Moho discontinuity. Assuming a constant crustal vp/vs ratio (1.73) and average crustal velocity vp=6.3 km/s for all stations, analogically to Geissler et al (2012), we multiply the evaluated Ps delay times by factor of 8.3 km/s and estimate the Moho beneath the Bohemian Massif at depths between 27 and 37 km. The crust is thinnest in the western part of the BM, beneath the SW end of the Eger Rift. The Moldanubian part of the BM exhibits the thickest crust. At most of the stations we also see one or two intra-crustal conversions, sometimes stronger than that related to the Moho. Several stations exhibit significant variations of the RF with back-azimuth. The aim of this study is to update existing three dimensional P-velocity crustal model of the Bohemian Massif (Karousov et al., 2012) compiled from control-source seismic results.
The Environmental Impact of a Wave Dragon Array Operating in the Black Sea
Rusu, Eugen
2013-01-01
The present work describes a study related to the influence on the shoreline dynamics of a wave farm consisting of Wave Dragon devices operating in the western side of the Black Sea. Based on historical data analysis of the wave climate, the most relevant environmental conditions that could occur were defined, and for these cases, simulations with SWAN spectral phase averaged wave model were performed. Two situations were considered for the most representative patterns: model simulations without any wave energy converter and simulations considering a wave farm consisting of six Wave Dragon devices. Comparisons of the wave model outputs have been carried out in both geographical and spectral spaces. The results show that although a significant influence appears near the wave farm, this gradually decreases to the coast line level. In order to evaluate the influence of the wave farm on the longshore currents, a nearshore circulation modeling system was used. In relative terms, the longshore current velocities appear to be more sensitive to the presence of the wave farm than the significant wave height. Finally, the possible impact on the marine flora and fauna specific to the target area was also considered and discussed. PMID:23844401
[Dynamics of bacterial population waves in relation to the function of chemotaxis response].
Aslanidi, G V; Dzheliadin, T P; Shakhbazian, V Iu; Tsyganova, V G; Tsyganov, M A; Ivanitskiĭ, G R
2009-01-01
The time of formation and rate of bacterial population waves as a function of substrate concentration has been investigated. It was shown both theoretically and in experiment that the time of wave formation increases with substrate concentration. At the same time, the rate of wave propagation decreases at relatively high substrate concentrations. A comparative analysis of the dynamics of bacterial population waves in different chemotaxis responses was carried out in in silico experiments with the Keller-Segel model. PMID:19334631
A technique for generating shear waves in cylindrical shells under radial impact
NASA Technical Reports Server (NTRS)
Blum, A.; Mortimer, R. W.; Rose, J. L.
1974-01-01
Experimental techniques are developed to study and measure the shear-wave velocity in an aluminum cylindrical shell subjected to a radial impact. The radial impact is obtained by exploding an electrical detonator inserted in plastic plugs mounted on the end of the shell. Strain gages, mounted on the outside surface of the shell at various axial locations, are used to obtain oscilloscope traces from which the shear-wave velocity can be calculated.
Stress transmission in porous materials impacted by shock waves
NASA Astrophysics Data System (ADS)
Kazemi-Kamyab, Vahid; Subramaniam, Kolluru; Andreopoulos, Yiannis
2011-01-01
The interaction of moving shock waves with short length elastic porous aluminum samples of various porosities was investigated in a shock tube facility in a setup where the specimens were placed in front of a long rod of a modified Hopkinson Bar. High frequency response miniature pressure transducers and semiconductor strain gages were used to measure the pore gas pressure and the transmitted stress wave to the rod respectively. It was found that the effect of pore gas flow on the total stress history was inversely proportional to the material's porosity, permeability and length. For low porosity aluminum samples due to the very low and very confined volumetric gas flow rate within the foam, a minimal contribution of the gas pressure within the pores to the total stress was observed and the magnitude of stress wave transmitted to the rod was amplified mainly due to the lower acoustic impedance of the foams relative to the rod. However, in a high porosity aluminum specimens with a high permeability and low inertial coefficient, there is a high volumetric gas flow rate within the foam, where faster wave interactions within the gas phase take place resulting in an earlier arrival of the rarefaction wave and restricting the magnitude of the total stress to reach its value when no gas flow into the pores is allowed. Due to this out of phase interaction between the wave propagating within the gas phase and the fast wave propagating in the solid matrix, the magnitude of the stress wave transmitted to the rod was slightly attenuated when the high porous foam was placed in front of the rod. It was also found that the aluminum foams deviate from a linearly elastic medium behavior and demonstrate dispersive and dissipative properties which result in the gradual rise or fall of the stress and damping of the oscillations. The pore gas flow influences the profile of the oscillations by introducing dissipation and dispersion into the propagating wave in the solid phase due to the nonlinear nature of the solid-fluid interaction. Further data analysis included a decomposition of the measured time-dependent signals into two components, one with low frequency content which is argued that it is associated with Biot's slow wave and one with high frequency contributions which corresponds to the fast wave propagation. It is also argued that this decomposition can differentiate the effects of gas pressure in the pores from the stress in the matrix of the porous medium.
Ben Salah, Issam; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi
2015-08-01
Numerical examples for wave propagation in a three-layer structure have been investigated for both electrically open and shorted cases. The first order differential equations are solved by both methods ODE and Stiffness matrix. The solutions are used to study the effects of thickness and gradient coefficient of soft middle layer on the phase velocity and on the electromechanical coupling factor. We demonstrate that the electromechanical coupling factor is substantially increased when the equivalent thickness is in the order of the wavelength. The effects of gradient coefficients are plotted for the first mode when electrical and mechanical gradient variations are applied separately and altogether. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. The impact related to the gradient coefficient of the soft middle layer, on the mechanical displacement and the Poynting vector, is carried out. The numericals results are illustrated by a set of appropriate curves related to various profiles. The obtained results set guidelines not only for the design of high-performance surface acoustic wave (SAW) devices, but also for the measurement of material properties in a functionally graded piezoelectric layered system using Love waves. PMID:25964239
Quantum anti-Zeno effect without wave function reduction
Ai, Qing; Xu, Dazhi; Yi, Su; Kofman, A. G.; Sun, C. P.; Nori, Franco
2013-01-01
We study the measurement-induced enhancement of the spontaneous decay for a two-level subsystem, where measurements are treated as couplings between the excited state and an auxiliary state rather than the von Neumann's wave function reduction. The photon radiated in a fast decay of the atom, from the auxiliary state to the excited state, triggers a quasi-measurement, as opposed to a projection measurement. Our use of the term “quasi-measurement” refers to a “coupling-based measurement”. Such frequent quasi-measurements result in an exponential decay of the survival probability of atomic initial state with a photon emission following each quasi-measurement. Our calculations show that the effective decay rate is of the same form as the one based on projection measurements. The survival probability of the atomic initial state obtained by tracing over all the photon states is equivalent to that of the atomic initial state with a photon emission following each quasi-measurement.
Newton force from wave function collapse: speculation and test
NASA Astrophysics Data System (ADS)
Disi, Lajos
2014-04-01
The Diosi-Penrose model of quantum-classical boundary postulates gravity-related spontaneous wave function collapse of massive degrees of freedom. The decoherence effects of the collapses are in principle detectable if not masked by the overwhelming environmental decoherence. But the DP (or any other, like GRW, CSL) spontaneous collapses are not detectable themselves, they are merely the redundant formalism of spontaneous decoherence. To let DP collapses become testable physics, recently we extended the DP model and proposed that DP collapses are responsible for the emergence of the Newton gravitational force between massive objects. We identified the collapse rate, possibly of the order of 1/ms, with the rate of emergence of the Newton force. A simple heuristic emergence (delay) time was added to the Newton law of gravity. This non-relativistic delay is in peaceful coexistence with Einstein's relativistic theory of gravitation, at least no experimental evidence has so far surfaced against it. We derive new predictions of such a 'lazy' Newton law that will enable decisive laboratory tests with available technologies. The simple equation of 'lazy' Newton law deserves theoretical and experimental studies in itself, independently of the underlying quantum foundational considerations.
Wave-functions overlap in stoichiometric lanthanide laser crystals
NASA Astrophysics Data System (ADS)
Petrov, Dimitar N.
2015-10-01
Two-center overlap integrals (TCOIs), < 4 f | 4 f > of symmetry types σ, π, δ, φ, < 2 s | 4 f > , < 2 p | 4 f > σ, and < 2 p | 4 f > π, have been computed for 11 stoichiometric lasing lanthanide compounds: PrP4O15, NdP5O14, NdLiP4O12, NdAl3(BO3)4, NdNa5(WO4)4, NdK3(PO4)2, NdKP4O12, HoF3, Ho3Al5O12, Er3Al5O12, and ErP5O14. Four-term (4-t) and six-term (6-t) SCF Slater-type orbitals have been employed for Ln3+ at mean distances Ln3+-Ln3+ and Ln3+-ligand. Different results for ion pair overlap have been obtained by using 4-t or 6-t wave functions of Pr3+ and Nd3+. The TCOIs have been correlated with measured lifetimes of laser transitions of Pr3+, Nd3+, Ho3+, and Er3+ in the mentioned crystals.
Impacts of wave spreading and multidirectional waves on estimating Stokes drift
NASA Astrophysics Data System (ADS)
Webb, A.; Fox-Kemper, B.
2015-12-01
The Stokes drift, and its leading-order approximation, for a random sea depend upon the interaction of different wave groups and the process of wave spreading. Here Stokes drift direction and magnitude from prescribed spectra, local observational buoy data, and global model WAVEWATCH III output are used to analyze approximations of Stokes drift for directional random seas in deep water. To facilitate analysis, a new approximation is defined to incorporate the systematic effects of wave spreading. Stokes drift is typically overestimated by ignoring these effects or by ignoring directional differences in swell and wind seas. These two errors are differentiated and found to be largely uncorrelated. These errors depend strongly on depth, with deeper Stokes drift favoring narrow-banded swell and shallower Stokes drift favoring wind seas. Results are consistent among the data examined. Mean Stokes drift magnitude reductions from wave spreading and multidirectional wave effects alone are 14-20% and 7-23% respectively, giving a combined reduction of 20-40% versus unidirectional waves, depending on wave age and depth. Approximations that do not include these reductions however, will on average overestimate Stokes drift by 16-26%, 26-43%, and 45-71% respectively. In addition to magnitude, the direction of Stokes drift is also affected and multidirectional waves generate a directional veer with depth: the 30/60/90% confidence intervals are bounded (approximately) by ± 0.12/0.28/0.84 radians (± 7/16/48 deg) at the surface, with smaller intervals at depth. Complementary depth-integrated approximations are also investigated and directional effects are similar with depth-dependent subsurface results. Furthermore, an optimized directional spread correction for the surface is nearly identical for global simulations and a buoy located at Ocean Weather Station P (50°N 145°W), and does not require directional wave spectrum data.
Covariant nucleon wave function with S, D, and P-state components
Franz Gross, G. Ramalho, M. T. Pena
2012-05-01
Expressions for the nucleon wave functions in the covariant spectator theory (CST) are derived. The nucleon is described as a system with a off-mass-shell constituent quark, free to interact with an external probe, and two spectator constituent quarks on their mass shell. Integrating over the internal momentum of the on-mass-shell quark pair allows us to derive an effective nucleon wave function that can be written only in terms of the quark and diquark (quark-pair) variables. The derived nucleon wave function includes contributions from S, P and D-waves.
Attosecond photoemission dynamics encoded in real-valued continuum wave functions
NASA Astrophysics Data System (ADS)
Gaillac, Romain; Vacher, Morgane; Maquet, Alfred; Taeb, Richard; Caillat, Jrmie
2016-01-01
The dynamics of photoemission is fully encoded in the continuum wave functions selected by the transitions. Using numerical simulations on simple benchmark models, we show how scattering phase shifts and photoemission delays can be retrieved from this unambiguously defined class of wave functions. In contrast with standard scattering waves inherited from collision theory, they are real-valued for one-photon transitions and provide a clear-cut interpretation of the delays recently discussed in the framework of attosecond science.
Impact of a coupled ocean wave-tide-circulation system on coastal modeling
NASA Astrophysics Data System (ADS)
Moon, Il-Ju
The impact of a coupled ocean wave-tide-circulation system on coastal modeling for wind waves, oceanic circulation, and water-mass simulation is investigated by coupling of two well-tested models: the third-generation wave model (WAVEWATCH-II) and the Princeton ocean model (POM). In this study, several numerical experiments in the Yellow and East China Sea (YECS) are performed for the ideal winter case and the typhoon Winnie case. In the coupled system, wind waves are influenced by both currents and sea level elevation induced by tides, storm surges, and oceanic circulation. Tides were the most influential factor in modulating mean wave characteristics in the YECS. The magnitude of the modulation of mean wave parameters at neap tides is found to be half that at spring tides. In the YECS the tides affect not only wind waves, but also seasonal circulation and water-mass distributions. Tides increase the bottom friction of the YECS significantly and this contributes to a change of winter current direction up to 60 °C in the YECS and a decrease of surface temperatures along the trough of the Yellow Sea up to 4 °C in winter. Tides in summer produce the strong vertical mixing in shallow regions. This leads to the formation of tidal fronts in a boundary between well-mixed and stratified regions and causes sea surface temperatures (SST) along the west coast of Korea decrease as much as 3 °C. Effects of ocean waves on coastal circulation and SST simulations are investigated considering wave-dependent stress, wave breaking parameterization, and Langmuir circulation under typhoon Winnie conditions. The results show that the wave-dependent stress, which is strongly dependent on wave age and relative position from storm center, as well as the wave breaking have the most significant impact on the SST distribution.
The Impact of Heat Waves on Mortality in Seven Major Cities in Korea
Son, Ji-Young; Lee, Jong-Tae; Anderson, G. Brooke
2012-01-01
Background: Understanding the health impacts of heat waves is important, especially given anticipated increases in the frequency, duration, and intensity of heat waves due to climate change. Objectives: We examined mortality from heat waves in seven major Korean cities for 2000 through 2007 and investigated effect modification by individual characteristics and heat wave characteristics (intensity, duration, and timing in season). Methods: Heat waves were defined as ? 2 consecutive days with daily mean temperature at or above the 98th percentile for the warm season in each city. We compared mortality during heat-wave days and non-heat-wave days using city-specific generalized linear models. We used Bayesian hierarchical models to estimate overall effects within and across all cities. In addition, we estimated effects of heat wave characteristics and effects according to cause of death and examined effect modification by individual characteristics for Seoul. Results: Overall, total mortality increased 4.1% [95% confidence interval (CI): 6.1%, 15.4%] during heat waves compared with non-heat-wave days, with an 8.4% increase (95% CI: 0.1%, 17.3%) estimated for Seoul. Estimated mortality was higher for heat waves that were more intense, longer, or earlier in summer, although effects were not statistically significant. Estimated risks were higher for women versus men, older versus younger residents, those with no education versus some education, and deaths that occurred out of hospitals in Seoul, although differences among strata of individual characteristics were not statistically significant. Conclusions: Our findings support evidence of mortality impacts from heat waves and have implications for efforts to reduce the public health burden of heat waves. PMID:22266672
Dynamical model for longitudinal wave functions in light-front holographic QCD
NASA Astrophysics Data System (ADS)
Chabysheva, Sophia S.; Hiller, John R.
2013-10-01
We construct a Schrdinger-like equation for the longitudinal wave function of a meson in the valence qq sector, based on the t Hooft model for large-N two-dimensional QCD, and combine this with the usual transverse equation from light-front holographic QCD, to obtain a model for mesons with massive quarks. The computed wave functions are compared with the wave function ansatz of Brodsky and de Tramond and used to compute decay constants and parton distribution functions. The basis functions used to solve the longitudinal equation may be useful for more general calculations of meson states in QCD.
Impact of Phase Transitions on P Wave Velocities
D Weidner; L Li
2011-12-31
In regions where a high pressure phase is in equilibrium with a low pressure phase, the bulk modulus defined by the P-V relationship is greatly reduced. Here we evaluate the effect of such transitions on the P wave velocity. A model, where cation diffusion is the rate limiting factor, is used to project laboratory data to the conditions of a seismic wave propagating in the two-phase region. We demonstrate that for the minimum expected effect there is a significant reduction of the seismic velocity, as large as 10% over a narrow depth range.
Efficient and Flexible Computation of Many-Electron Wave Function Overlaps
2016-01-01
A new algorithm for the computation of the overlap between many-electron wave functions is described. This algorithm allows for the extensive use of recurring intermediates and thus provides high computational efficiency. Because of the general formalism employed, overlaps can be computed for varying wave function types, molecular orbitals, basis sets, and molecular geometries. This paves the way for efficiently computing nonadiabatic interaction terms for dynamics simulations. In addition, other application areas can be envisaged, such as the comparison of wave functions constructed at different levels of theory. Aside from explaining the algorithm and evaluating the performance, a detailed analysis of the numerical stability of wave function overlaps is carried out, and strategies for overcoming potential severe pitfalls due to displaced atoms and truncated wave functions are presented. PMID:26854874
On Dissipation Function of Ocean Waves due to Whitecapping
Zakharov, V. E.; Korotkevich, A. O.; Prokofiev, A. O.
2009-09-09
The Hasselmann kinetic equation provides a statistical description of waves ensemble. Several catastrophic events are beyond statistical model. In the case of gravity waves on the surface of the deep fluid may be the most frequent and important events of such kind are whitecapping and wave breaking. It was shown earlier that such effects leads to additional dissipation in the energy contaning region around waves spectral peak, which can be simulated by means of empiric dissipative term in kinetic equation. In order to find dependence of this term with respect to nonlinearity in the system (steepness of the surface) we preformed two numerical experiments: weakly nonlinear one in the framework of 3D hydrodynamics and fully nonlinear one for 2D hydrodynamic. In spite of significantly different models and initial conditions, both these experiments yielded close results. Obtained data can be used to define analytical formula for dependence of the dissipative term of dissipation coefficient with respect to mean steepness of the surface.
Argonov, V. Yu.
2014-11-15
The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field can suppress packet splitting for some atoms whose specific velocities are in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. We also demonstrate that the modulated field can not only trap but also cool the atoms. We perform a numerical experiment with a large atomic ensemble having wide initial velocity and energy distributions. During the experiment, most of atoms leave the wave while the trapped atoms have a narrow energy distribution.
NASA Astrophysics Data System (ADS)
Hahn, Y. K.; Zerrad, E.
2011-08-01
The electron impact ionization of hydrogen, in the all-s-wave approximation, is treated by the improved distorted wave theory. The leading corrections to the distorted wave Born amplitude are calculated in the POST form, using simple variational trial functions. The localized virial conditions are imposed for the determination of nonlinear parameters, thus optimizing the scattering function of the initial state. It is shown that the singly differential cross section can be adequately described by including up to three linear parameters. The calculated cross sections agree with that of the PRIOR form, and also compare well with the existing theoretical data. Furthermore, the procedure for accuracy estimates based on the post-prior comparison is critically re-examined, showing that the DWBA comparison can lead to erroneous conclusion. The fully optimized, distorted wavefunctions are extremely simple, and should be suitable for various applications.
Wave propagation in graphite/epoxy laminates due to impact
NASA Technical Reports Server (NTRS)
Tan, T. M.; Sun, C. T.
1982-01-01
The low velocity impact response of graphite-epoxy laminates is investigated theoretically and experimentally. A nine-node isoparametric finite element in conjunction with an empirical contact law was used for the theoretical investigation. Flat laminates subjected to pendulum impact were used for the experimental investigation. Theoretical results are in good agreement with strain gage experimental data. The collective results of the investigation indicate that the theoretical procedure describes the impact response of the laminate up to about 150 in/sec. impact velocity.
IMPACTS OF URBANIZATION ON WATERSHED HYDROLOGIC FUNCTION
Technology Transfer Automated Retrieval System (TEKTRAN)
Although urbanization has a major impact on watershed hydrology, there have not been studies to quantify basic hydrological relationships are altered by the addition of impervious surfaces. The USDA-ARS and USEPA-ORD-NRMRL have initiated a pilot program to study the impacts of different extents and...
IMPACTS OF URBANIZATION ON WATERSHED HYDROLOGIC FUNCTION
Although urbanization has a major impact on watershed hydrology, there have not been studies to quantify basic hydrological relationships that are altered by the addition of impervious surfaces. The USDA-ARS and USEPA-ORD-NRMRL have initiated a pilot program to study the impacts...
Zhong, P; Chuong, C J; Preminger, G M
1993-07-01
To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience. PMID:8354759
NASA Astrophysics Data System (ADS)
Belov, E.; Blachman, M.; Britan, A.; Sadot, O.; Ben-Dor, G.
2015-11-01
A simple experimental technique, based on pressure transducers, capable of measuring the stress wave that propagates along the solid phase of a granular column after being hit head-on by a plane shock wave is presented. The technique is based on installing couples of gauges at different cross-sections along the granular column in such a way that one transducer measures the overall pressure acting on it while the other measures only the pressure exerted on it by the gaseous phase of the granular column. By means of the presented experimental technique the time histories of the stresses normal to the shock tube walls and data on the stress wave attenuation as it propagates downstream towards the shock tube end wall were obtained.
Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael
2015-01-21
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)(-), Gd(III)DTPA(H2O)(2-), and Gd(III)(H2O)8(3+) in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude. PMID:25612706
Khan, Shehryar Odelius, Michael; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef
2015-01-21
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup −}, Gd(III)DTPA(H{sub 2}O){sup 2−}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
NASA Astrophysics Data System (ADS)
Tsubonoya, Keisuke; Hu, Chunping; Watanabe, Kazuyuki
2014-07-01
Low-energy electron scattering with nanoflakes is investigated using a time-dependent density functional theory (TDDFT) simulation in real time and real space. By representing the incident electron as a finite-sized wave packet, we obtain diffraction patterns that show not only the regular features of conventional low-energy electron diffraction (LEED) for periodic structures but also special features resulting from the local atomic inhomogeneity. We have also found a signature of ? plasmon excitation upon electron impact on a graphene flake. The present study shows the remarkable potential of TDDFT for simulating the electron scattering process, which is important for clarifying the local and periodic atomic geometries as well as the electronic excitations in nanostructures.
NASA Astrophysics Data System (ADS)
Farin, Maxime; Mangeney, Anne; Rosny, Julien de; Toussaint, Renaud; Sainte-Marie, Jacques; Shapiro, Nikolaï M.
2016-02-01
Estimating the energy lost in elastic waves during an impact is an important problem in seismology and in industry. We propose three complementary methods to estimate the elastic energy radiated by bead impacts on thin plates and thick blocks from the generated vibration. The first two methods are based on the direct wave front and are shown to be equivalent. The third method makes use of the diffuse regime. These methods are tested for laboratory experiments of impacts and are shown to give the same results, with error bars of 40 percent and 300 percent for impacts on a smooth plate and on a rough block, respectively. We show that these methods are relevant to establish the energy budget of an impact. On plates of glass and PMMA, the radiated elastic energy increases from 2 percent to almost 100 percent of the total energy lost as the bead diameter approaches the plate thickness. The rest of the lost energy is dissipated by viscoelasticity. For beads larger than the plate thickness, plastic deformation occurs and reduces the amount of energy radiated in the form of elastic waves. On a concrete block, the energy dissipation during the impact is principally inelastic because only 0.2-2 percent of the energy lost by the bead is transported by elastic waves. The radiated elastic energy estimated with the presented methods is quantitatively validated by Hertz's model of elastic impact.
Impact of cosmic neutrinos on the gravitational-wave background
Mangilli, Anna; Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio
2008-10-15
We obtain the equation governing the evolution of the cosmological gravitational-wave background, accounting for the presence of cosmic neutrinos, up to second order in perturbation theory. In particular, we focus on the epoch during radiation dominance, after neutrino decoupling, when neutrinos yield a relevant contribution to the total energy density and behave as collisionless ultrarelativistic particles. Besides recovering the standard damping effect due to neutrinos, a new source term for gravitational waves is shown to arise from the neutrino anisotropic stress tensor. The importance of such a source term, so far completely disregarded in the literature, is related to the high velocity dispersion of neutrinos in the considered epoch; its computation requires solving the full second-order Boltzmann equation for collisionless neutrinos.
NASA Technical Reports Server (NTRS)
Bourgeois, Joanne; Wiberg, Patricia L.
1988-01-01
Impulse-generated waves (tsunamis) may be produced, at varying scales and global recurrence intervals (RI), by several processes. Meteorite-water impacts will produce tsunamis, and asteroid-scale impacts with associated mega-tsunamis may occur. A bolide-water impact would undoubtedly produce a major tsunami, whose sedimentological effects should be recognizable. Even a bolide-land impact might trigger major submarine landslides and thus tsunamis. In all posulated scenarios for the K/T boundary event, then, tsunamis are expected, and where to look for them must be determined, and how to distinguish deposits from different tsunamis. Also, because tsunamis decrease in height as they move away from their source, the proximal effects will differ by perhaps orders of magnitude from distal effects. Data on the characteristics of tsunamis at their origin are scarce. Some observations exist for tsunamis generated by thermonuclear explosions and for seismogenic tsunamis, and experimental work was conducted on impact-generated tsunamis. All tsunamis of interest have wave-lengths of 0(100) km and thus behave as shallow-water waves in all ocean depths. Typical wave periods are 0(10 to 100) minutes. The effect of these tsunamis can be estimated in the marine and coastal realm by calculating boundary shear stresses (expressed as U*, the shear velocity). An event layer at the K/T boundary in Texas occurs in mid-shelf muds. Only a large, long-period wave with a wave height of 0(50) m, is deemed sufficient to have produced this layer. Such wave heights imply a nearby volcanic explosion on the scale of Krakatau or larger, or a nearby submarine landslide also of great size, or a bolide-water impact in the ocean.
Giner, Emmanuel; Angeli, Celestino
2015-09-28
The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl2 and [CuCl4](2-) systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that each valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed. PMID:26429009
The impact of tropospheric planetary wave variability on stratospheric ozone
McElroy, Michael B.; Schneider, Hans R.
2002-06-25
The goal of this project was to improve understanding of the role of the stratosphere in inducing long-term variations of the chemical composition of the troposphere. Changes in stratospheric transport occur on decadel timescales in response to changes in the structure of planetary wave patterns, forced in the troposphere. For many important tracers, such as column amounts of ozone, this variability of the transport leads to changes with signatures very similar to those induced by anthropogenic releases of chemicals into the atmosphere. During this project, a new interactive two-dimensional model of the dynamics, chemistry and radiation of the stratosphere was developed. The model was used to interpret available data of tracers. It was found that a fairly coherent picture of tracer distributions is obtained when a layer of reduced gravity wave drag is assumed for the lower stratosphere. The results suggest that the power of models to predict variability in tracer transport in the upper troposphere and lower stratosphere is limited until current theories of gravity wave breaking have been refined.
Impact of wave action on the structure of material on the beach in Calypsobyen (Spitsbergen)
NASA Astrophysics Data System (ADS)
Mędrek, Karolina; Herman, Agnieszka; Moskalik, Mateusz; Rodzik, Jan; Zagórski, Piotr
2015-04-01
The research was conducted during the XXVI Polar Expedition of Maria Curie-Sklodowska University in Lublin on Spitsbergen. It involved recording water wave action in the Bellsund Strait, and taking daily photographs of the beach on its shore in Calypsobyen. The base of polar expeditions of UMCS, Calypsobyen, is located on the coast of Calypsostranda, developed by raised marine terraces. Weakly resistant Tertiary sandstones occur in the substrate, covered with glacigenic sediments and marine gravels. No skerries are encountered along this section of the accumulation coast. The shore is dominated by gravel deposits. The bottom slopes gently. The recording of wave action was performed from 8 July to 27 August 2014 by means of a pressure based MIDAS WTR Wave and Tide Recorder set at a depth of 10 m at a distance of about 1 km from the shore. The obtained data provided the basis for the calculation of the significant wave height, and the corresponding mean wave period . These parameters reflect wave energy and wave level, having a considerable impact on the dynamics of coastal processes and the type and grain size of sediments accumulated on the beach. Material consisting of medium gravel and seaweed appeared on the beach at high values of significant wave height and when the corresponding mean wave period showed average values. The contribution of fine, gravel-sandy material grew with an increase in mean period and a decrease in significant wave height. At maximum values of mean period and low values of significant wave height, the beach was dominated by well-sorted fine-grained gravel. The lowest mean periods resulted in the least degree of sorting of the sediment (from very coarse sand to medium gravel). The analysis of data from the wave and tide recorder set and their comparison with photographs of the beach suggest that wave action, and particularly wave energy manifested in significant wave height, has a considerable impact on the type and grain size of material occurring on the shore of the fjord. The mean period is mainly responsible for sorting out the sediment, and the size of gravels is associated with significant wave height. Project of National Science Centre no. DEC-2013/09/B/ST10/04141
Impacts of a spring heat wave on canopy processes in a northern hardwood forest.
Filewod, Ben; Thomas, Sean C
2014-02-01
Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests. PMID:24038752
Longitudinal wave function control in single quantum dots with an applied magnetic field
NASA Astrophysics Data System (ADS)
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
Coherent molecular transistor: Control through variation of the gate wave function
Ernzerhof, Matthias
2014-03-21
In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.
Longitudinal wave function control in single quantum dots with an applied magnetic field
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018
Location of an Aircraft Impact from Gravity Waves.
Amstutz, D E; Neshyba, S
1964-08-28
The energy released upon impact of an airliner that crashed into Lake Pontchartrain, Louisiana, on 25 February 1964 caused changes in water levels of sufficient duration and amplitude to be recorded by tide gages situated within the lake. Analysis of the recorded arrival times made it possible to locate the point of impact within an irregular area approximately 1500 feet (500 meters) in radius. PMID:17791823
Fouillet, Anne; Rey, Grgoire; Wagner, Vrne; Laaidi, Karine; Empereur-Bissonnet, Pascal; Le Tertre, Alain; Frayssinet, Philippe; Bessemoulin, Pierre; Laurent, Franoise; De Crouy-Chanel, Perrine; Jougla, Eric; Hmon, Denis
2008-01-01
Context In July 2006, a lasting and severe heat wave occurred in Western Europe. Since the2003 heat wave, several preventive measures and an alert system aiming at reducing the risks related to high temperatures have been set up in France by the health authorities and institutions. In order to evaluate the effectiveness of those measures, the observed excess mortality during the 2006 heat wave was compared to the expected excess mortality. Methods A Poisson regression model relating the daily fluctuations in summer temperature and mortality in France from 1975 to 2003 was used to estimate the daily expected number of deaths over the period 20042006 as a function of the observed temperatures. Results During the 2006 heat wave (from 11th to 28th July), about 2065 excess deaths occurred in France. Considering the observed temperatures and with the hypothesis that heat-related mortality had not changed since 2003, 6452 excess deaths were predicted for the period. The observed mortality during the 2006 heat wave was thus markedly less than the expected mortality (approximately 4400 less deaths). Conclusions The excess mortality during the 2006 heat wave, which was markedly lower than that predicted by the model, may be interpreted as a decrease in the populations vulnerability to heat, together with, since 2003, increased awareness of the risk related to extreme temperatures, preventive measures and the set-up of the warning system. PMID:18194962
Impact of complex blast waves on the human head: a computational study.
Tan, Long Bin; Chew, Fatt Siong; Tse, Kwong Ming; Chye Tan, Vincent Beng; Lee, Heow Pueh
2014-12-01
Head injuries due to complex blasts are not well examined because of limited published articles on the subject. Previous studies have analyzed head injuries due to impact from a single planar blast wave. Complex or concomitant blasts refer to impacts usually caused by more than a single blast source, whereby the blast waves may impact the head simultaneously or consecutively, depending on the locations and distances of the blast sources from the subject, their blast intensities, the sequence of detonations, as well as the effect of blast wave reflections from rigid walls. It is expected that such scenarios will result in more serious head injuries as compared to impact from a single blast wave due to the larger effective duration of the blast. In this paper, the utilization of a head-helmet model for blast impact analyses in Abaqus(TM) (Dassault Systemes, Singapore) is demonstrated. The model is validated against studies published in the literature. Results show that the skull is capable of transmitting the blast impact to cause high intracranial pressures (ICPs). In addition, the pressure wave from a frontal blast may enter through the sides of the helmet and wrap around the head to result in a second impact at the rear. This study recommended better protection at the sides and rear of the helmet through the use of foam pads so as to reduce wave entry into the helmet. The consecutive frontal blasts scenario resulted in higher ICPs compared with impact from a single frontal blast. This implied that blast impingement from an immediate subsequent pressure wave would increase severity of brain injury. For the unhelmeted head case, a peak ICP of 330?kPa is registered at the parietal lobe which exceeds the 235?kPa threshold for serious head injuries. The concurrent front and side blasts scenario yielded lower ICPs and skull stresses than the consecutive frontal blasts case. It is also revealed that the additional side blast would only significantly affect ICPs at the temporal and parietal lobes when compared with results from the single frontal blast case. By analyzing the pressure wave flow surrounding the head and correlating them with the consequential evolution of ICP and skull stress, the paper provides insights into the interaction mechanics between the concomitant blast waves and the biological head model. PMID:25132676
NASA Astrophysics Data System (ADS)
Wright, C. J.; Osprey, S. M.; Gille, J. C.
2013-10-01
Three years of gravity wave observations from the High Resolution Dynamics Limb Sounder instrument on NASA's Aura satellite are examined. We produce estimates of the global distribution of gravity wave momentum flux as a function of individual observed wave packets. The observed distribution at the 25 km altitude level is dominated by the small proportion of wave packets with momentum fluxes greater than 0.5 mPa. Depending on latitude and season, these wave packets only comprise 7-25% of observations, but are shown to be almost entirely responsible for the morphology of the observed global momentum flux distribution. Large-amplitude wave packets are found to be more important over orographic regions than over flat ocean regions, and to be especially high in regions poleward of 40S during austral winter. The momentum flux carried by the largest packets relative to the distribution mean is observed to decrease with height over orographic wave generation regions, but to increase with height at tropical latitudes; the mesospheric intermittency resulting is broadly equivalent in both cases. Consistent with previous studies, waves in the top 10% of the extratropical distribution are observed to carry momentum fluxes more than twice the mean and waves in the top 1% more than 10 the mean, and the Gini coefficient is found to characterize the observed distributions well. These results have significant implications for gravity wave modeling.
Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.
Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K
2016-02-01
This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices. PMID:26482393
Data synthesis and display programs for wave distribution function analysis
NASA Technical Reports Server (NTRS)
Storey, L. R. O.; Yeh, K. J.
1992-01-01
At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.
McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.
2015-05-21
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.
Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Certain, P. R.
1974-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.
Hartle Hawking Wave-Function for Flux Compactifications: the Entropic Principle
NASA Astrophysics Data System (ADS)
Ooguri, Hirosi; Vafa, Cumrun; Verlinde, Erik
2005-12-01
We argue that the topological string partition function, which has been known to correspond to a wave-function, can be interpreted as an exact wave-function of the universe in the mini-superspace sector of physical superstring theory. This realizes the idea of Hartle and Hawking in the context of string theory, including all loop quantum corrections. The mini-superspace approximation is justified as an exact description of BPS quantities. Moreover this proposal leads to a conceptual explanation of the recent observation that the black hole entropy is the square of the topological string wave-function. This wave-function can be interpreted in the context of flux compactification of all spatial dimensions as providing a physical probability distribution on the moduli space of string compactification. Euclidean time is realized holographically in this setup.
Non-Gaussian wave functionals in Coulomb gauge Yang-Mills theory
Campagnari, Davide R.; Reinhardt, Hugo
2010-11-15
A general method to treat non-Gaussian vacuum wave functionals in the Hamiltonian formulation of a quantum field theory is presented. By means of Dyson-Schwinger techniques, the static Green functions are expressed in terms of the kernels arising in the Taylor expansion of the exponent of the vacuum wave functional. These kernels are then determined by minimizing the vacuum expectation value of the Hamiltonian. The method is applied to Yang-Mills theory in Coulomb gauge, using a vacuum wave functional whose exponent contains up to quartic terms in the gauge field. An estimate of the cubic and quartic interaction kernels is given using as input the gluon and ghost propagators found with a Gaussian wave functional.
Application of the SPH method to solitary wave impact on an offshore platform
NASA Astrophysics Data System (ADS)
Pan, K.; IJzermans, R. H. A.; Jones, B. D.; Thyagarajan, A.; van Beest, B. W. H.; Williams, J. R.
2015-09-01
This paper investigates the interaction between large waves and floating offshore structures. Here, the fluid-structure interaction is considered using the weakly compressible smoothed particle hydrodynamics (SPH) method. To ensure the applicability of this method, we validate its prediction for fluid forces and rigid-body motion against two sets of experimental data. These are impact due to dam break, and wave induced motion of a floating cube. For the dam break problem, the SPH method is used to predict impact forces on a rectangular column located downstream. In the second case of a floating cube, the SPH method simulates the motion of a buoyant cube under the action of induced waves, where a wall placed upstream of the cube is displaced sinusoidally to induce waves. In both cases, the SPH framework implemented is able to accurately reproduce the experimental results. Following validation, we apply this framework to simulation of a toy model of a tension-leg platform upon impact of a large solitary wave. This analysis shows that the platform may be pulled into the water by stretched tension legs, where the extension of the tension legs also governs the rotational behavior of the platform. The result also indicates that a tension-leg platform is very unlikely to topple over during the arrival of an extreme wave.
Waves Generated by Asteroid Impacts and Their Hazard Consequences on The Shorelines
NASA Astrophysics Data System (ADS)
Ezzedine, S. M.; Miller, P. L.; Dearborn, D. S.
2014-12-01
We have performed numerical simulations of a hypothetical asteroid impact onto the ocean in support of an emergency preparedness, planning, and management exercise. We addressed the scenario from asteroid entry; to ocean impact (splash rim); to wave generation, propagation, and interaction with the shoreline. For the analysis we used GEODYN, a hydrocode, to simulate the impact and generate the source wave for the large-scale shallow water wave program, SWWP. Using state-of-the-art, high-performance computing codes we simulated three impact areas — two are located on the West Coast near Los Angeles's shoreline and the San Francisco Bay, respectively, and the third is located in the Gulf of Mexico, with a possible impact location between Texas and Florida. On account of uncertainty in the exact impact location within the asteroid risk corridor, we examined multiple possibilities for impact points within each area. Uncertainty in the asteroid impact location was then convolved and represented as uncertainty in the shoreline flooding zones. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and partially funded by the Laboratory Directed Research and Development Program at LLNL under tracking code 12-ERD-005.
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Ishii, Noriyoshi; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi
2013-07-01
We derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than two particles in quantum field theories. To deal with n particles in the center-of-mass frame coherently, we introduce the Jacobi coordinates of n particles and then combine their 3(n-1) coordinates into the one spherical coordinate in D=3(n-1) dimensions. We parametrize the on-shell T matrix for n scalar particles at low energy using the unitarity constraint of the S matrix. We then express asymptotic behaviors of the NBS wave function for n particles at low energy in terms of parameters of the T matrix and show that the NBS wave function carries information of the T matrix such as phase shifts and mixing angles of the n-particle system in its own asymptotic behavior, so that the NBS wave function can be considered as the scattering wave of n particles in quantum mechanics. This property is one of the essential ingredients of the HAL QCD scheme to define potential from the NBS wave function in quantum field theories such as QCD. Our results, together with an extension to systems with spin 1/2 particles, justify the HAL QCDs definition of potentials for three or more nucleons (or baryons) in terms of the NBS wave functions.
The impact of sea surface currents in wave power potential modeling
NASA Astrophysics Data System (ADS)
Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros
2015-11-01
The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.
Breaking Wave Impact on a Partially Submerged Rigid Cube in Deep Water
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Choquette, M.; Duncan, J. H.
2011-11-01
The impact of a plunging breaking wave on a partially submerged cube is studied experimentally. The experiments are performed in a wave tank that is 14.8 m long, 1.15 m wide and 2.2 m high with a water depth of 0.91 m. A single repeatable plunging breaker is generated from a dispersively focused wave packet (average frequency of 1.4 Hz) that is created with a programmable wave maker. The rigid (L = 30 . 5 cm) cube is centered in the width of the tank and mounted from above with one face oriented normal to the oncoming wave. The position of the center of the front face of the cube is varied from the breaker location (xb ~ 6 . 35 m) to xb + 0 . 05 m in the streamwise direction and from - 0 . 25 L to 0 . 25 L vertically relative to the mean water level. A high-speed digital camera is used to record both white-light and laser-induced fluorescence (LIF) movies of the free surface shape in front of the cube before and after the wave impact. When the wave hits the cube just as the plunging jet is formed, a high-velocity vertical jet is created and the trajectory and maximum height of the jet are strongly influenced by the vertical position of the cube. Supported by the Office of Naval Research, Contract Monitor R. D. Joslin.
Decreased impacts of the 2003 heat waves on mortality in the Czech Republic: an improved response?
NASA Astrophysics Data System (ADS)
Kysel, Jan; K?, Bohumr
2008-11-01
The paper examines impacts on mortality of heat waves in 2003, the hottest summer on record in the Czech Republic, and compares them with previous similar events. While most summer heat waves over the period since 1986 were associated with significantly elevated mortality, this was not the case for three out of the four heat waves in 2003. The relatively weak mortality response was particularly noteworthy for the most severe heat wave which occurred in the first 10 days of August 2003 and resulted in enormous excess mortality in some western European countries. A mortality displacement effect and short-term adaptation to heat contributed to the reduced mortality impacts of the heat waves that followed after previous relatively warm periods. However, the decreased mortality response of the 2003 heat waves compared to previous heat waves in the 1990s is also likely to have arisen from positive health-care and other socio-economic changes in the post-communist central European region over the past decade, as well as a better public awareness of heat-related risks due to enhanced media coverage and regular biometeorological forecast and warnings.
NASA Astrophysics Data System (ADS)
Yang, S. Y.; Liu, X.; Cao, D. F.; Mei, H.; Lei, Z. T.; Liu, L. S.
2013-03-01
The development of Functionally Graded Materials (FGM) for energy-absorbing applications requires understanding of stress wave propagation in these structures in order to optimize their resistance to failure. One-dimensional stress wave in FGM composites under elastic and plastic wave loading have been investigated. The stress distributions through the thickness and stress status have been analyzed and some comparisons have been done with the materials of sharp interfaces (two-layered material). The results demonstrate that the gradient structure design greatly decreases the severity of the stress concentrations at the interfaces and there are no clear differences in stress distribution in FGM composites under elastic and plastic wave loading.
Impact of alcohol use on thyroid function
Balhara, Yatan Pal Singh; Deb, Koushik Sinha
2013-01-01
Alcohol is one of the commonest illicit psychoactive substances consumed globally and is the world's third largest risk factor for disease and disability. It has been reported to have multiple effects on the hypothalamo-pituitary-thyroid axis and the functioning of the thyroid gland. It has been reported to cause direct suppression of thyroid function by cellular toxicity, and indirect suppression by blunting thyrotropin-releasing hormone response. It causes a decrease of peripheral thyroid hormones during chronic use and in withdrawal. Alcohol use may also confer some protective effect against thyroid nodularity, goiter, and thyroid cancer. This article presents a review of the clinically relevant effects of alcohol on the functioning of the thyroid gland and also discusses the effect of medication used in treatment of alcohol dependence on thyroid function. PMID:23961472
[Impact of thyroid function on fertility].
Gronier, H; Sonigo, C; Jacquesson, L
2015-03-01
Until recently, anovulation or recurrent miscarriages were the only situations for screening a thyroid dysfunction in an infertile patient. Recent U.S. guidelines published in 2011 identify infertile women as being at risk for thyroid dysfunction. This paper proposes, on the occasion of the new recommendations, a review of the literature data on the known impact of thyroid dysfunction on fertility, on the first trimester of pregnancy and on the way to treat them. PMID:25724447
NASA Astrophysics Data System (ADS)
Matsue, Kazuma; Arakawa, Masahiko; Yasui, Minami; Matsumoto, Rie; Tsujido, Sayaka; Takano, Shota; Hasegawa, Sunao
2015-08-01
Introduction: Recent spacecraft surveys clarified that asteroid surfaces were covered with regolith made of boulders and pebbles such as that found on the asteroid Itokawa. It was also found that surface morphologies of asteroids formed on the regolith layer were modified. For example, the high-resolution images of the asteroid Eros revealed the evidence of the downslope movement of the regolith layer, then it could cause the degradation and the erasure of small impact crater. One possible process to explain these observations is the regolith layer collapse caused by seismic vibration after projectile impacts. The impact-induced seismic wave might be an important physical process affecting the morphology change of regolith layer on asteroid surfaces. Therefore, it is significant for us to know the relationship between the impact energy and the impact-induced seismic wave. So in this study, we carried out impact cratering experiments in order to observe the seismic wave propagating through the target far from the impact crater.Experimental method: Impact cratering experiments were conducted by using a single stage vertical gas gun set at Kobe Univ and a two-stage vertical gas gun set at ISAS. We used quartz sands with the particle diameter of 500μm, and the bulk density of 1.48g/cm3. The projectile was a ball made of polycarbonate with the diameter of 4.75mm and aluminum, titan, zirconia, stainless steel, cupper, tungsten carbide projectile with the diameter of 2mm. These projectiles were launched at the impact velocity from 0.2 to 7km/s. The target was set in a vacuum chamber evacuated below 10 Pa. We measured the seismic wave by using a piezoelectric uniaxial accelerometer.Result: The impact-induced seismic wave was measured to show a large single peak and found to attenuate with the propagation distance. The maximum acceleration of the seismic wave was recognized to have a good relationship with the normalized distance x/R, where x is the propagation distance and R is the crater radius, irrespective of the impact velocities: gmax = 160(x/R)-2.98.
Failure Wave in DEDF and Soda-Lime Glass during Rod Impact
Orphal, D. L.; Behner, Th.; Hohler, V.; Anderson, C. E. Jr.; Templeton, D. W.
2006-07-28
Investigations of glass by planar, and classical and symmetric Taylor impact experiments reveal that failure wave velocity vF depends on impact velocity, geometry, and type of glass. vF typically increases with impact velocity vP to between cS and cL or to {radical}2cS (shear and longitudinal wave velocity). This paper reports initial results of an investigation of failure waves associated with gold rod impact on high-density (DEDF) glass and soda-lime glass. Data are obtained by visualizing simultaneously the failure propagation in the glass with a high-speed camera and the rod penetration velocity u with flash radiography. Results for DEDF glass are reported for vP between 1.2 and 2.0 km/s, those for soda-lime glass with vP {approx_equal}1.3 km/s. It is shown that vF > u, and that in the case of DEDF glass vF/u decreases from ; 1.38 to 1.13 with increasing vp. In addition, several Taylor tests were performed. For both DEDF and soda-lime glass the vF-values, found here as well as vF- data reported in the literature, reveal that--for equal pressures--the failure wave velocities determined from Taylor tests or planar-impact tests are distinctly greater than those observed during steady-state rod penetration.
Failure Wave in DEDF and Soda-Lime Glass during Rod Impact
NASA Astrophysics Data System (ADS)
Orphal, D. L.; Behner, Th.; Hohler, V.; Anderson, C. E.; Templeton, D. W.
2006-07-01
Investigations of glass by planar, and classical and symmetric Taylor impact experiments reveal that failure wave velocity vF depends on impact velocity, geometry, and type of glass. vF typically increases with impact velocity vP to between cS and cL or to ?2cS (shear and longitudinal wave velocity). This paper reports initial results of an investigation of failure waves associated with gold rod impact on high-density (DEDF) glass and soda-lime glass. Data are obtained by visualizing simultaneously the failure propagation in the glass with a high-speed camera and the rod penetration velocity u with flash radiography. Results for DEDF glass are reported for vP between 1.2 and 2.0 km/s, those for soda-lime glass with vP ?1.3 km/s. It is shown that vF > u, and that in the case of DEDF glass vF/u decreases from ; 1.38 to 1.13 with increasing vp. In addition, several Taylor tests were performed. For both DEDF and soda-lime glass the vF-values, found here as well as vF- data reported in the literature, reveal thatfor equal pressuresthe failure wave velocities determined from Taylor tests or planar-impact tests are distinctly greater than those observed during steady-state rod penetration.
Impact of heat waves on mortality in Croatia
NASA Astrophysics Data System (ADS)
Zaninovi?, Ksenija; Matzarakis, Andreas
2014-08-01
The aim of this work was to determine the criteria for heat loads associated with an increase in mortality in different climatic regions of Croatia. The relationship between heat stress and mortality was analysed for the period 1983-2008. The input series is excess mortality defined as the deviations of mortality from expected values determined by means of a Gaussian filter of 183 days. The assessment of the thermal environment was performed by means of physiologically equivalent temperature (PET). The curve depicting the relationship between mortality and temperature has a U shape, with increased mortality in both the cold and warm parts of the scale but more pronounced in the warm part. The threshold temperature for increased mortality was determined using a scatter plot and fitting data by means of moving average of mortality; the latter is defined as the temperature at which excess mortality becomes significant. The values are higher in the continental part of Croatia than at the coast due to the refreshing influence of the sea during the day. The same analysis on a monthly basis shows that at the beginning of the warm season increased mortality occurs at a lower temperature compared with later on in the summer, and the difference is up to 15 C between August and April. The increase in mortality is highest during the first 3-5 days and after that it decreases and falls below the expected value. Long-lasting heat waves present an increased risk, but in very long heat waves the increase in mortality is reduced due to mortality displacement.
Wave functions of symmetry-protected topological phases from conformal field theories
NASA Astrophysics Data System (ADS)
Scaffidi, Thomas; Ringel, Zohar
2016-03-01
We propose a method for analyzing two-dimensional symmetry-protected topological (SPT) wave functions using a correspondence with conformal field theories (CFTs) and integrable lattice models. This method generalizes the CFT approach for the fractional quantum Hall effect wherein the wave-function amplitude is written as a many-operator correlator in the CFT. Adopting a bottom-up approach, we start from various known microscopic wave functions of SPTs with discrete symmetries and show how the CFT description emerges at large scale, thereby revealing a deep connection between group cocycles and critical, sometimes integrable, models. We show that the CFT describing the bulk wave function is often also the one describing the entanglement spectrum, but not always. Using a plasma analogy, we also prove the existence of hidden quasi-long-range order for a large class of SPTs. Finally, we show how response to symmetry fluxes is easily described in terms of the CFT.
Three-Body Continuum Wave Functions with a Box Boundary Condition
NASA Astrophysics Data System (ADS)
Garrido, E.
2015-12-01
In this work we investigate the connection between discretized three-body continuum wave functions, in particular via a box boundary condition, and the wave functions computed with the correct asymptotics. The three-body wave functions are in both cases obtained by means of the adiabatic expansion method. The information concerning all the possible incoming and outgoing channels, which appears naturally when the continuum is not discretized, seems to be lost when the discretization is implemented. In this work we show that both methods are fully equivalent, and the full information contained in the three-body wave function is actually preserved in the discrete spectrum. Therefore, in those cases when the asymptotic behaviour is not known analytically, i.e., when the Coulomb interaction is involved, the discretization technique can be safely used.
Racine, Julien; Hagebaum-Reignier, Denis; Carissan, Yannick; Humbel, Stphane
2016-03-30
A method is proposed to obtain coefficients and weights of valence bond (VB) determinants from multi configurational wave functions. This reading of the wave functions can apply to ground states as well as excited states. The method is based on projection operators. Both energetic and overlap-based criteria are used to assess the quality of the resulting VB wave function. The approach gives a simple access to a VB rewriting for low-lying states, and it is applied to the allyl cation, to the allyl radical and to the ethene (notably to the V-state). For these states, large overlap between VB and multi reference wave functions are easily obtained. The approach proves to be useful to propose an interpretation of the nature of the V-state of ethene. 2015 Wiley Periodicals, Inc. PMID:26786547
The Variation of Financial Arbitrage via the Use of an Information Wave Function
NASA Astrophysics Data System (ADS)
Haven, Emmanuel
2008-01-01
We define an information wave function, ?( q). We underline the role of risk-neutral probabilities in financial non-arbitrage. We argue how a change in the probabilities based on ?( q) can induce arbitrage.
A Study of Regional Wave Source Time Functions of Central Asian Earthquakes
NASA Astrophysics Data System (ADS)
Xie, J.; Perry, M. R.; Schult, F. R.; Wood, J.
2014-12-01
Despite the extensive use of seismic regional waves in seismic event identification and attenuation tomography, very little is known on how seismic sources radiate energy into these waves. For example, whether regional Lg wave has the same source spectrum as that of the local S has been questioned by Harr et al. and Frenkel et al. three decades ago; many current investigators assume source spectra in Lg, Sn, Pg, Pn and Lg coda waves have either the same or very similar corner frequencies, in contrast to local P and S spectra whose corner frequencies differ. The most complete information on how the finite source ruptures radiate energy into regional waves is contained in the time domain source time functions (STFs). To estimate the STFs of regional waves using the empirical Green's function (EGF) method, we have been substantially modifying a semi-automotive computer procedure to cope with the increasingly diverse and inconsistent naming patterns of new data files from the IRIS DMC. We are applying the modified procedure to many earthquakes in central Asia to study the STFs of various regional waves to see whether they have the same durations and pulse shapes, and how frequently source directivity occur. When applicable, we also examine the differences between STFs of local P and S waves and those of regional waves. The result of these analyses will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Hu, Dingzhu; Tian, Wenshou; Xie, Fei; Wang, Chunxiao; Zhang, Jiankai
2015-08-01
This paper uses a state-of-the-art general circulation model to study the impacts of the stratospheric ozone depletion from 1980 to 2000 and the expected partial ozone recovery from 2000 to 2020 on the propagation of planetary waves in December, January, and February. In the Southern Hemisphere (SH), the stratospheric ozone depletion leads to a cooler and stronger Antarctic stratosphere, while the stratospheric ozone recovery has the opposite effects. In the Northern Hemisphere (NH), the impacts of the stratospheric ozone depletion on polar stratospheric temperature are not opposite to that of the stratospheric ozone recovery; i.e., the stratospheric ozone depletion causes a weak cooling and the stratospheric ozone recovery causes a statistically significant cooling. The stratospheric ozone depletion leads to a weakening of the Arctic polar vortex, while the stratospheric ozone recovery leads to a strengthening of the Arctic polar vortex. The cooling of the Arctic polar vortex is found to be dynamically induced via modulating the planetary wave activity by stratospheric ozone increases. Particularly interesting is that stratospheric ozone changes have opposite effects on the stationary and transient wave fluxes in the NH stratosphere. The analysis of the wave refractive index and Eliassen-Palm flux in the NH indicates (1) that the wave refraction in the stratosphere cannot fully explain wave flux changes in the Arctic stratosphere and (2) that stratospheric ozone changes can cause changes in wave propagation in the northern midlatitude troposphere which in turn affect wave fluxes in the NH stratosphere. In the SH, the radiative cooling (warming) caused by stratospheric ozone depletion (recovery) produces a larger (smaller) meridional temperature gradient in the midlatitude upper troposphere, accompanied by larger (smaller) zonal wind vertical shear and larger (smaller) vertical gradients of buoyancy frequency. Hence, there are more (fewer) transient waves propagating into the stratosphere. The dynamical warming (cooling) caused by stratospheric ozone decreases (increases) partly offsets their radiative cooling (warming).
Projections of heat waves with high impact on human health in Europe
NASA Astrophysics Data System (ADS)
Amengual, A.; Homar, V.; Romero, R.; Brooks, H. E.; Ramis, C.; Gordaliza, M.; Alonso, S.
2014-08-01
Climate change will result in more intense, more frequent and longer lasting heat waves. The most hazardous conditions emerge when extreme daytime temperatures combine with warm night-time temperatures, high humidities and light winds for several consecutive days. Here, we assess present and future heat wave impacts on human health in Europe. Present daily physiologically equivalent temperatures (PET) are derived from the ERA-Interim reanalysis. PET allows to specifically focus on heat-related risks on humans. Regarding projections, a suite of high-resolution regional climate models - run under SRES A1B scenario - has been used. A quantile-quantile adjustment is applied to the daily simulated PET to correct biases in individual model climatologies and a multimodel ensemble strategy is adopted to encompass model errors. Two types of heat waves differently impacting human health - strong and extreme stress - are defined according to specified thresholds of thermal stress and duration. Heat wave number, frequency, duration and amplitude are derived for each type. Results reveal relatively strong correlations between the spatial distribution of strong and extreme heat wave amplitudes and mortality excess for the 2003 European summer. Projections suggest a steady increase and a northward extent of heat wave attributes in Europe. Strong stress heat wave frequencies could increase more than 40 days, lasting over 20 days more by 2075-2094. Amplitudes might augment up to 7 C per heat wave day. Important increases in extreme stress heat wave attributes are also expected: up to 40 days in frequency, 30 days in duration and 4 C in amplitude. We believe that with this information at hand policy makers and stakeholders on vulnerable populations to heat stress can respond more effectively to the future challenges imposed by climate warming.
Structure of the channeling electrons wave functions under dynamical chaos conditions
NASA Astrophysics Data System (ADS)
Shul'ga, N. F.; Syshchenko, V. V.; Tarnovsky, A. I.; Isupov, A. Yu.
2016-03-01
The stationary wave functions of fast electrons axially channeling in the silicon crystal near [1 1 0] direction have been found numerically for integrable and non-integrable cases, for which the classical motion is regular and chaotic, respectively. The nodal structure of the wave functions in the quasi-classical region, where the energy levels density is high, is agreed with quantum chaos theory predictions.
NASA Astrophysics Data System (ADS)
Francisco, E.; Pendás, A. Martín; Blanco, M. A.
2008-04-01
Given an N-electron molecule and an exhaustive partition of the real space ( R) into m arbitrary regions Ω,Ω,…,Ω ( ⋃i=1mΩ=R), the edf program computes all the probabilities P(n,n,…,n) of having exactly n electrons in Ω, n electrons in Ω,…, and n electrons ( n+n+⋯+n=N) in Ω. Each Ω may correspond to a single basin (atomic domain) or several such basins (functional group). In the later case, each atomic domain must belong to a single Ω. The program can manage both single- and multi-determinant wave functions which are read in from an aimpac-like wave function description ( .wfn) file (T.A. Keith et al., The AIMPAC95 programs, http://www.chemistry.mcmaster.ca/aimpac, 1995). For multi-determinantal wave functions a generalization of the original .wfn file has been introduced. The new format is completely backwards compatible, adding to the previous structure a description of the configuration interaction (CI) coefficients and the determinants of correlated wave functions. Besides the .wfn file, edf only needs the overlap integrals over all the atomic domains between the molecular orbitals (MO). After the P(n,n,…,n) probabilities are computed, edf obtains from them several magnitudes relevant to chemical bonding theory, such as average electronic populations and localization/delocalization indices. Regarding spin, edf may be used in two ways: with or without a splitting of the P(n,n,…,n) probabilities into α and β spin components. Program summaryProgram title: edf Catalogue identifier: AEAJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5387 No. of bytes in distributed program, including test data, etc.: 52 381 Distribution format: tar.gz Programming language: Fortran 77 Computer: 2.80 GHz Intel Pentium IV CPU Operating system: GNU/Linux RAM: 55 992 KB Word size: 32 bits Classification: 2.7 External routines: Netlib Nature of problem: Let us have an N-electron molecule and define an exhaustive partition of the physical space into m three-dimensional regions. The edf program computes the probabilities P(n,n,…,n)≡P({n}) of all possible allocations of n electrons to Ω, n electrons to Ω,…, and n electrons to Ω,{n} being integers. Solution method: Let us assume that the N-electron molecular wave function, Ψ(1,N), is a linear combination of M Slater determinants, Ψ(1,N)=∑rMCψ(1,N). Calling SΩrs the overlap matrix over the 3D region Ω between the (real) molecular spin-orbitals (MSO) in ψ(χ1r,…χNr) and the MSOs in ψ,(χ1s,…,χNs), edf finds all the P({n})'s by solving the linear system ∑{n}{∏kmtkn}P({n})=∑r,sMCCdet[∑kmtSΩrs], where t=1 and t,…,t are arbitrary real numbers. Restrictions: The number of {n} sets grows very fast with m and N, so that the dimension of the linear system (1) soon becomes very large. Moreover, the computer time required to obtain the determinants in the second member of Eq. (1) scales quadratically with M. These two facts limit the applicability of the method to relatively small molecules. Unusual features: Most of the real variables are of precision real*16. Running time: 0.030, 2.010, and 0.620 seconds for Test examples 1, 2, and 3, respectively. References: [1] A. Martín Pendás, E. Francisco, M.A. Blanco, Faraday Discuss. 135 (2007) 423-438. [2] A. Martín Pendás, E. Francisco, M.A. Blanco, J. Phys. Chem. A 111 (2007) 1084-1090. [3] A. Martín Pendás, E. Francisco, M.A. Blanco, Phys. Chem. Chem. Phys. 9 (2007) 1087-1092. [4] E. Francisco, A. Martín Pendás, M.A. Blanco, J. Chem. Phys. 126 (2007) 094102. [5] A. Martín Pendás, E. Francisco, M.A. Blanco, C. Gatti, Chemistry: A European Journal 113 (2007) 9362-9371.
Zhang, Y. S.; Cai, F.; Xu, W. M.
2011-09-28
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.
Pineal Function: Impact of Microarray Analysis
Klein, David C.; Bailey, Michael J.; Carter, David A.; Kim, Jong-so; Shi, Qiong; Ho, Anthony; Chik, Constance; Gaildrat, Pascaline; Morin, Fabrice; Ganguly, Surajit; Rath, Martin F.; Mller, Morten; Sugden, David; Rangel, Zoila G.; Munson, Peter J.; Weller, Joan L.; Coon, Steven L.
2009-01-01
Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-hour schedule. This effort has highlighted surprising similarity to the retina and has provided reason to explore new avenues of study including intracellular signaling, signal transduction, transcriptional cascades, thyroid/retinoic acid hormone signaling, metal biology, RNA splicing, and the role the pineal gland plays in the immune/inflammation response. The new foundation that microarray analysis has provided will broadly support future research on pineal function. PMID:19622385
NASA Astrophysics Data System (ADS)
Xie, J.; Schaff, D. P.; Chen, Y.; Schult, F.
2013-12-01
Reliably estimated source time functions (STFs) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection and discrimination, and minimization of parameter trade-off in attenuation studies. We have searched for candidate pairs of larger and small earthquakes in and around China that share the same focal mechanism but significantly differ in magnitudes, so that the empirical Green's function (EGF) method can be applied to study the STFs of the larger events. We conducted about a million deconvolutions using waveforms from 925 earthquakes, and screened the deconvolved traces to exclude those that are from event pairs that involved different mechanisms. Only 2,700 traces passed this screening and could be further analyzed using the EGF method. We have developed a series of codes for speeding up the final EGF analysis by implementing automations and user-graphic interface procedures. The codes have been fully tested with a subset of screened data and we are currently applying them to all the screened data. We will present a large number of deconvolved STFs retrieved using various phases (Lg, Pn, Sn and Pg and coda) with information on any directivities, any possible dependence of pulse durations on the wave types, on scaling relations for the pulse durations and event sizes, and on the estimated source static stress drops.
NASA Astrophysics Data System (ADS)
Van Raemdonck, Mario; Alcoba, Diego R.; Poelmans, Ward; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Van Neck, Dimitri; Bultinck, Patrick
2015-09-01
A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation.
Coordinated wave function for the ground state of liquid 4He
NASA Astrophysics Data System (ADS)
Lutsyshyn, Y.
2015-12-01
We present a variational ansatz for the ground state of a strongly correlated Bose system. This ansatz goes beyond the Jastrow-Feenberg functional form and explicitly enforces coordination shells in the structure of the wave function. We apply this ansatz to liquid helium-4 with a simple three-variable parametrization of the pair functions. The optimized wave function is found to give an excellent description of the mid-range correlations in the fluid. We also demonstrate the possibility to use this ansatz to study inhomogeneous systems. The phase separation and free surface emerge naturally in this wave function, even though it is constructed of short-range two-body functions and does not contain one-body terms. Because no explicit description of the surface is necessary, this provides a powerful description tool for cluster states.
Chen, Y.F.; Lu, T.H.; Su, K.W.; Huang, K.F.
2005-11-01
We investigate the quantum signatures of classical nonlinear resonances by making the analytic connection between the quantum wave functions and the classical periodic orbits for the uncoupled systems. It is found that the highly efficient extension of the localized coherent states within the classical caustics is an intriguing phenomenon in mesoscopic systems with nonlinear resonances. With the theoretical analysis, we experimentally demonstrate that the laser resonator with an intracavity saturable absorber can be employed to visualize the wave patterns analogous to the quantum wave functions associated with Fermi resonance.
Guided waves for the detection and classification of impact damage in composites
NASA Astrophysics Data System (ADS)
Murat, Bibi Intan Suraya; Khalili, Pouyan; Fromme, Paul
2015-03-01
Carbon fiber laminate composites, consisting of layers of polymer matrix reinforced with high strength carbon fibers, are widely employed for aircraft structures. For aerospace applications they offer a number of advantages including a good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, fiber and matrix breakage or delaminations can occur, reducing the load carrying capacity of the structure. Efficient nondestructive testing of composite panels can be achieved using guided ultrasonic waves propagating along the structure. The guided wave propagation in intact composite plates was measured using a noncontact laser interferometer, quantified, and compared to numerical predictions using full three-dimensional (3D) Finite Element (FE) simulations. Good agreement between experiments and predictions for the wave propagation was found. The guided wave scattering at delaminations was simulated using 3D FE models and the influence of the delamination modelling investigated. Limited influence of the material damping and the delamination shape on the scattering patterns was found, but the modelling of the specimen anisotropy was observed to have a significant influence. The effects of the delamination size and depth on the guided wave scattering were investigated in a systematic parametric study, in order to help building up information for an accurate interpretation of guided wave experiments.
Impact of the atmospheric climate modes on wave climate in the North Atlantic
NASA Astrophysics Data System (ADS)
Martnez-Asensio, Adrin; Tsimplis, Michael N.; Marcos, Marta; Feng, Xiangbo; Gomis, Dami; Jord, Gabriel; Josey, Simon
2014-05-01
This study establishes the relationships between the mean modes of atmospheric variability in the North Atlantic and present wave climate. The modes considered, namely the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic Western Russian pattern (EA/WR) and the Scandinavian pattern (SCAN), are obtained from the NOAA Climate Prediction Centre. The wave data sets used consist of buoy records and two high-resolution simulations of significant wave height (SWH), mean wave period (MWP) and mean wave direction (MWD) forced with ERA-40 (1958-2002) and ERA-INTERIM (1989-2008) wind fields. The results show the winter impact of each mode on wave parameters which are discussed regionally. The NAO and EA pattern increase winter SWH up to 1 m per unit index at the Scottish and Spanish coasts, respectively, during their positive phase; while EA pattern causes clockwise changes of winter MWD up to more than 60 degrees per unit index at the Bay of Biscay during its negative phase. EA/WR and SCAN patterns have a weaker impact.
Coherent time evolution of a single-electron wave function.
Kataoka, M; Astley, M R; Thorn, A L; Oi, D K L; Barnes, C H W; Ford, C J B; Anderson, D; Jones, G A C; Farrer, I; Ritchie, D A; Pepper, M
2009-04-17
Observation of coherent single-electron dynamics is severely limited by experimental bandwidth. We present a method to overcome this using moving quantum dots defined by surface acoustic waves. Each dot holds a single electron, and travels through a static potential landscape. When the dot passes abruptly between regions of different confinement, the electron is excited into a superposition of states, and oscillates unitarily from side to side. We detect these oscillations by using a weak, repeated measurement of the current across a tunnel barrier, and find close agreement with simulations. PMID:19518665
Coherent Time Evolution of a Single-Electron Wave Function
NASA Astrophysics Data System (ADS)
Kataoka, M.; Astley, M. R.; Thorn, A. L.; Oi, D. K. L.; Barnes, C. H. W.; Ford, C. J. B.; Anderson, D.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.; Pepper, M.
2009-04-01
Observation of coherent single-electron dynamics is severely limited by experimental bandwidth. We present a method to overcome this using moving quantum dots defined by surface acoustic waves. Each dot holds a single electron, and travels through a static potential landscape. When the dot passes abruptly between regions of different confinement, the electron is excited into a superposition of states, and oscillates unitarily from side to side. We detect these oscillations by using a weak, repeated measurement of the current across a tunnel barrier, and find close agreement with simulations.
Biogeochemical impact of tropical instability waves in the equatorial Pacific
NASA Astrophysics Data System (ADS)
Gorgues, T.; Menkes, C.; Aumont, O.; Vialard, J.; Dandonneau, Y.; Bopp, L.
2005-12-01
Tropical Instability Waves (TIW) have been suggested to fertilize the equatorial Pacific in iron leading to enhanced ecosystem productivity. Using a coupled dynamical-biogeochemical model, we show that contrary to this suggestion, TIWs induce a decrease of iron concentration by 10% at the equator and by about 3% over the Wyrtki box [90W-180, 5N-5S]. Chlorophyll decreases by 10% at the equator and 1% over the Wyrtki box. This leads to a decrease of new production up to 10% at the equator (4% over the Wyrtki box). TIW-induced horizontal advection exports iron-rich equatorial water to the north, but also brings iron-depleted water to the equator leading to a net decrease in iron. Additional iron decrease is caused by TIW-induced iron vertical diffusion. These two mechanisms are partly counter balanced by a decrease of iron biological uptake, driven by lower phytoplankton concentrations, and to a lesser extent by TIW-induced iron vertical advection.
In situ measurements of impact-induced pressure waves in sandstone targets
NASA Astrophysics Data System (ADS)
Hoerth, Tobias; Schäfer, Frank; Nau, Siegfried; Kuder, Jürgen; Poelchau, Michael H.; Thoma, Klaus; Kenkmann, Thomas
2014-10-01
In the present study we introduce an innovative method for the measurement of impact-induced pressure waves within geological materials. Impact experiments on dry and water-saturated sandstone targets were conducted at a velocity of 4600 m/s using 12 mm steel projectiles to investigate amplitudes, decay behavior, and speed of the waves propagating through the target material. For this purpose a special kind of piezoresistive sensor capable of recording transient stress pulses within solid brittle materials was developed and calibrated using a Split-Hopkinson pressure bar. Experimental impact parameters (projectile size and speed) were kept constant and yielded reproducible signal curves in terms of rise time and peak amplitudes. Pressure amplitudes decreased by 3 orders of magnitude within the first 250 mm (i.e., 42 projectile radii). The attenuation for water-saturated sandstone is higher compared to dry sandstone which is attributed to dissipation effects caused by relative motion between bulk material and interstitial water. The proportion of the impact energy radiated as seismic energy (seismic efficiency) is in the order of 10-3. The present study shows the feasibility of real-time measurements of waves caused by hypervelocity impacts on geological materials. Experiments of this kind lead to a better understanding of the processes in the crater subsurface during a hypervelocity impact.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon
2014-01-01
Large-scale winter teleconnection of the East Atlantic - West Russia (EA-WR) over the Atlantic and surrounding regions is examined in order to quantify its impacts on temperature and precipitation and identify the physical mechanisms responsible for its existence. A rotated empirical orthogonal function (REOF) analysis of the upper-tropospheric monthly height field captures successfully the EA-WR pattern and its interannual variation, with the North Atlantic Oscillation as the first mode. EA-WRs climate impact extends from eastern North America to Eurasia. The positive (negative) EA-WR produces positive (negative) temperature anomalies over the eastern US, western Europe and Russia east of Caspian Sea, with negative (positive) anomalies over eastern Canada, eastern Europe including Ural Mountains and the Middle East. These anomalies are largely explained by lower-tropospheric temperature advections. Positive (negative) precipitation anomalies are found over the mid-latitude Atlantic and central Russia around 60E, where lower-level cyclonic (anticyclonic) circulation anomaly is dominant. The eastern Canada and the western Europe are characterized by negative (positive) precipitation anomalies.The EA-WR is found to be closely associated with Rossby wave propagation. Wave activity fluxes show that it is strongly tied to large-scale stationary waves. Furthermore, a stationary wave model (SWM) forced with vorticity transients in the mid-latitude Atlantic (approximately 40N) or diabatic heat source over the subtropical Atlantic near the Caribbean Sea produces well-organized EA-WR-like wave patterns, respectively. Sensitivity tests with the SWM indicate improvement in the simulation of the EA-WR when the mean state is modified to have a positive NAO component that enhances upper-level westerlies between 40-60N.
Satellite remote sensing data for urban heat waves assessment and human health impacts
NASA Astrophysics Data System (ADS)
Zoran, M. A.; Dida, M. R.
2012-10-01
Remote sensing is a key application in global-change science and urban climatology. Urbanization, the conversion of other types of land to uses associated with growth of populations and economy has a great impact on both micro-climate as well as macro-climate. By integrating high-resolution and medium-resolution satellite imagery with other geospatial information, have been investigated several land surface parameters including impervious surfaces and land surface temperatures for Bucharest metropolitan area in Romania. The aim of this study is to examine the changes in land use/cover pattern in a rapidly changing area of Bucharest in relation to urbanization since the 1990s till 2011 and then to investigate the impact of such changes on the intensity and spatial pattern of the UHI (Urban Heat Island) effect in the region in relation with heat waves assessment. Investigation of radiative properties, energy balance, heat fluxes and NDVI, EVI is based on satellite data provided by various sensors Landsat TM/ETM, ASTER, MODIS and IKONOS. A detailed analysis was done for summer 2003, 2007 and 2010 years heat wave events in and related impacts on human health. So called effect of "urban heat island" must be considered mostly for summer periods conditions and large European scale heat waves. As future climate trends have been predicted to increase the magnitude and negative impacts of urban heat waves in Bucharest metropolitan area, there is an urgent need to be developed adequate strategies for societal vulnerability reducing.
Electron-impact excitation-autoionization of helium in the S-wave limit
Horner, Daniel A.; McCurdy, C. William; Rescigno, Thomas N.
2004-10-01
Excitation of the autoionizing states of helium by electron impact is shown in calculations in the s-wave limit to leave a clear signature in the singly differential cross section for the (e,2e) process. It is suggested that such behavior should be seen generally in (e,2e) experiments on atoms that measure the single differential cross section.
Impact of large-scale atmospheric refractive structures on optical wave propagation
NASA Astrophysics Data System (ADS)
Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.
2014-10-01
Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.
Impact of assimilating altimeter data on wave predictions in the western Iberian coast
NASA Astrophysics Data System (ADS)
Rusu, Liliana; Guedes Soares, C.
2015-12-01
The present work describes the implementation of a methodology based on the optimal interpolation method for assimilating the altimeter data in a regional wave forecasting system. The main objective is to improve the wave predictions in the western Iberian coastal environment. The wave modelling system considered is based on WAM, for the wave generation, and on SWAN for the coastal transformation and delivers daily forecast products. An analysis scheme was first applied to the hindcast runs, when the observations and the simulations were blended within a time window of one day. The objective is to validate the methodology proposed and to evaluate the impact produced by this scheme on the accuracy of the wave predictions. Corrections are applied to the output of the SWAN model, and consequently, the data assimilation scheme is executed independently of the model simulations. As a second step, the data assimilation scheme is applied to operational runs, when the analysis fields are used as a first guess for the next simulations. The procedure considered uses the observations provided by the multi-satellite altimeter data. Both satellite data and in-situ observations are used for the quality assessment. The results show that the assimilation scheme works correctly and all the statistical parameters evaluated have better values in the case of the assimilated significant wave height scalar field. As expected, by increasing the amount of the data assimilated, the accuracy of the wave predictions is enhanced.
The effects of extracorporeal shock wave therapy on frozen shoulder patients pain and functions
Park, Chan; Lee, Sangyong; Yi, Chae-Woo; Lee, Kwansub
2015-01-01
[Purpose] The present study was conducted to examine the effects of extracorporeal shock wave therapy on frozen shoulder patients pain and functions. [Subjects] In the present study, 30 frozen shoulder patients were divided into two groups: an extracorporeal shock wave therapy group of 15 patients and a conservative physical therapy group of 15 patients. [Methods] Two times per week for six weeks, the extracorporeal shock wave therapy group underwent extracorporeal shock wave therapy, and the conservative physical therapy group underwent general physical therapy. Visual analog scales were used to measure frozen shoulder patients pain, and patient-specific functional scales were used to evaluate the degree of functional disorders. [Results] In intra-group comparisons, the two groups showed significant decreases in terms of visual analog scales and patient-specific functional scales, although the extracorporeal shock wave therapy group showed significantly lower scores than the conservative physical therapy group. [Conclusion] Extracorporeal shock wave therapy is considered an effective intervention for improving frozen shoulder patients pain and functions. PMID:26834326
Correlated Monte Carlo wave functions for the atoms He through Ne
Schmidt, K.E. ); Moskowitz, J.W. )
1990-09-15
We apply the variational Monte Carlo method to the atoms He through Ne. Our trial wave function is of the form introduced by Boys and Handy. We use the Monte Carlo method to calculate the first and second derivatives of an unreweighted variance and apply Newton's method to minimize this variance. We motivate the form of the correlation function using the local current conservation arguments of Feynman and Cohen. Using a self-consistent field wave function multiplied by a Boys and Handy correlation function, we recover a large fraction of the correlation energy of these atoms. We give the value of all variational parameters necessary to reproduce our wave functions. The method can be extended easily to other atoms and to molecules.
Scattering of impact wave by a crack in composite plate
NASA Technical Reports Server (NTRS)
Ju, T. H.; Datta, S. K.; Shah, A. H.
1990-01-01
The surface responses due to impact load on an infinite uniaxial graphite/epoxy plate with and without delamination cracks are investigated both in time and frequency domain by using a hybrid method combining the finite element discretization of the near-field with boundary integral representation of the field outside a contour enclosing completely the crack. This combined method leads to a set of linear unsymmetric complex matrix equations which are solved to obtain the response in the frequency domain by biconjugate gradient method. The time domain response is then obtained by using an FFT. In order to capture the time-domain characteristics accurately, high order finite elements have been used. Also, both the six node singular elements and eight node transition elements are used around the crack tips to model the crack-tip singularity. It is shown that from the numerical results for surface responses both depth and length of this crack can be identified.
Completeness of the Coulomb Wave Functions in Quantum Mechanics
ERIC Educational Resources Information Center
Mukunda, N.
1978-01-01
Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)
Impact of lightning strikes on hospital functions.
Mortelmans, Luc J M; Van Springel, Gert L J; Van Boxstael, Sam; Herrijgers, Jan; Hoflacks, Stefaan
2009-01-01
Two regional hospitals were struck by lightning during a one-month period. The first hospital, which had 236 beds, suffered a direct strike to the building. This resulted in a direct spread of the power peak and temporary failure of the standard power supply. The principle problems, after restoring standard power supply, were with the fire alarm system and peripheral network connections in the digital radiology systems. No direct impact on the hardware could be found. Restarting the servers resolved all problems. The second hospital, which had 436 beds, had a lightning strike on the premises and mainly experienced problems due to induction. All affected installations had a cable connection from outside in one way or another. The power supplies never were endangered. The main problem was the failure of different communication systems (telephone, radio, intercom, fire alarm system). Also, the electronic entrance control went out. During the days after the lightening strike, multiple software problems became apparent, as well as failures of the network connections controlling the technical support systems. There are very few ways to prepare for induction problems. The use of fiber-optic networks can limit damage. To the knowledge of the authors, these are the first cases of lightning striking hospitals in medical literature. PMID:20066646
Impact of topographic internal lee wave drag on an eddying global ocean model
NASA Astrophysics Data System (ADS)
Trossman, David S.; Arbic, Brian K.; Richman, James G.; Garner, Stephen T.; Jayne, Steven R.; Wallcraft, Alan J.
2016-01-01
The impact of topographic internal lee wave drag (wave drag hereafter) on several aspects of the low-frequency circulation in a high-resolution global ocean model forced by winds and air-sea buoyancy fluxes is examined here. The HYbrid Coordinate Ocean Model (HYCOM) is run at two different horizontal resolutions (one nominally 1/12° and the other 1/25°). Wave drag, which parameterizes both topographic blocking and the generation of lee waves arising from geostrophic flow impinging upon rough topography, is inserted into the simulations as they run. The parameterization used here affects the momentum equations and hence the structure of eddy kinetic energy. Lee waves also have implications for diapycnal mixing in the ocean, though the parameterization does not directly modify the density. Total near-bottom energy dissipation due to wave drag and quadratic bottom boundary layer drag is nearly doubled, and the energy dissipation due to quadratic bottom drag is reduced by about a factor of two, in simulations with an inserted wave drag compared to simulations having only quadratic bottom drag. With the insertion of wave drag, the kinetic energy is reduced in the abyss and in a three-dimensional global integral. Deflection by partial topographic blocking is inferred to be one reason why the near-bottom kinetic energy can increase in locations where there is little change in dissipation by quadratic bottom drag. Despite large changes seen in the abyss, the changes that occur near the sea surface are relatively small upon insertion of wave drag into the simulations. Both the sea surface height variance and geostrophic surface kinetic energy are reduced on global average by more than twice the seasonal variability in these diagnostics. Alterations in the intensified jet positions brought about by inserting wave drag are not distinguishable from the temporal variability of jet positions. Various statistical measures suggest that applying wave drag only within a fixed distance from the seafloor is not detrimental to the model performance relative to observations. However, the introduction of a novel diagnostic suggests that one way to improve the wave drag parameterization is to allow the vertical deposition of lee wave momentum flux to be spatially heterogeneous.
The impact of influenza on functional decline
Gozalo, Pedro L.; Pop-Vicas, Aurora; Feng, Zhanlian; Gravenstein, Stefan; Mor, Vincent
2012-01-01
OBJECTIVES Examine the relationship of influenza and activities of daily living (ADL) decline and other clinical indicators among nursing home (NH) residents. DESIGN retrospective, NH aggregated longitudinal study. SETTING 2,351 NHs in 122 US cities during years 19992005. PARTICIPANTS Long-stay (>90 days) NH residents. MEASUREMENTS Quarterly, city-level influenza mortality rate, state-level influenza severity. Quarterly incidence of MDS-derived ADL decline (? 4 points), weight loss, new or worsening pressure ulcers, and infections. Outcome variables chosen as clinical controls: antipsychotic use, restraint use, persistent pain. RESULTS City-level influenza mortality and state-level influenza severity were both associated with higher rates of large (4 points or more) ADL decline (mortality ?=0.20, p<.001; severity ?=0.18, p<.001), weight loss (?=0.19, p<.001; ?=0.24, p<.001), worsening pressure ulcers (?=0.04, p=0.08; ?=0.12, p<.001), and infections (?=0.41, p<.001; ?=0.47, p<.001), but not with restraints use, antipsychotic use, or persistent pain. NH influenza vaccination rates were very weakly associated with our outcomes (e.g. ?= ?0.009, p=0.03 for ADL decline, ?= 0.008, p=0.07 for infections). Compared to the summer quarter of lowest influenza activity, our results for the other quarters translate to an additional 12,284 NH residents experiencing large ADL decline annually, 15,168 experiencing significant weight loss, 6,284 new or worsening pressure ulcers, and 29,753 experiencing infections due to influenza. CONCLUSION Our results suggest a substantial and potentially costly impact of influenza on NH residents. The effect of influenza vaccination on preventing further ADL decline and other clinical outcomes in NH residents should be studied further. PMID:22724499
Impact of ozone depletion on immune function
Jeevan, A.; Kripke, M.L. . Dept. of Immunology)
1993-06-01
Depletion of stratospheric ozone is expected to lead to an increase in the amount of UV-B radiation present in sunlight. In addition to its well known ability to cause skin cancer, UV-B radiation has been shown to alter the immune system. The immune system is the body's primary defense mechanism against infectious diseases and protects against the development of certain types of cancer. Any impairment of immune function may jeopardize health by increasing susceptibility to infectious diseases, increasing the severity of infections, or delaying recovery for infections. In addition, impaired immune function can increase the incidence of certain cancers, particularly cancers of the skin. Research carried out with laboratory animals over the past 15 years has demonstrated that exposure of the skin to UV-B radiation can suppress certain types of immune responses. These include rejection of UV-induced skin cancers and melanomas, contact allergy reactions to chemicals, delayed-type hypersensitivity responses to microbial and other antigens, and phagocytosis and elimination of certain bacteria from lymphoid tissues. Recent studies with mycobacterial infection of mice demonstrated that exposure to UV-B radiation decreased the delayed hypersensitivity response to mycobacterial antigens and increased the severity of infection. In humans, UV-B radiation has also been shown to impair the contact allergy response. These studies demonstrate that UV radiation can decrease immune responses in humans and laboratory and raise the possibility that increased exposure to UV-B radiation could adversely affect human health by increasing the incidence or severity of certain infectious diseases.
Dual function mixer circuit for mm-wave transceiver applications
NASA Astrophysics Data System (ADS)
Chu, A.; Courtney, W. E.; Mahoney, L. J.; Manfra, M. J.; Calawa, R.
1985-08-01
A monolithic mixer circuit capable of performing either a receiver function or a transmitter function has been fabricated. The mode of operation is determined by applying either forward or reverse bias to a pair of mixer diodes. The circuit integrates Schottky barrier diodes, bias lines, Ta2O5 blocking and bypass capacitors, a radial line stub filter and a microstrip branch-line coupler. For the receiver function, the unit exhibits a conversion loss of 6.5 + or - 0.5 dB in the 34 to 36 GHz range. For the transmitter function, the circuit directs the signal from the local oscillator port to the antenna port on the chip with insertion losses of approximately 1 dB at 33.5 GHz over a bandwidth of 1 GHz.
A spectral Phase-Amplitude method for propagating a wave function to large distances
NASA Astrophysics Data System (ADS)
Rawitscher, George
2015-06-01
The phase and amplitude (Ph-A) of a wave function vary slowly with distance, in contrast to the wave function that can be highly oscillatory. Hence the Ph-A representation of a wave function requires far fewer computational mesh points than the wave function itself. In 1930 Milne presented an equation for the phase and the amplitude functions (which is different from the one developed by Calogero), and in 1962 Seaton and Peach solved these equations iteratively. The objective of the present study is to implement Seaton and Peach's iteration procedure with a spectral Chebyshev expansion method, and at the same time present a non-iterative analytic solution to an approximate version of the iterative equations. The iterations converge rapidly for the case of attractive potentials. Two numerical examples are given: (1) for a potential that decreases with distance as 1 /r3, and (2) a Coulomb potential ∝ 1 / r. In both cases the whole radial range of [0-2000] requires only between 25 and 100 mesh points and the corresponding accuracy is between 10-3 and 10-6. The 0th iteration (which is the WKB approximation) gives an accuracy of 10-2. This spectral method permits one to calculate a wave function out to large distances reliably and economically.
NASA Astrophysics Data System (ADS)
Balram, Ajit C.; Jain, J. K.
2016-02-01
The microscopic wave functions of the composite fermion theory can incorporate electron mass anisotropy by a trivial rescaling of the coordinates. These wave functions are very likely adiabatically connected to the actual wave functions of the anisotropic fractional quantum Hall states. We show in this paper that they possess the nice property that their energies can be analytically related to the previously calculated energies for the isotropic states through a universal scale factor, thus allowing an estimation of several observables in the thermodynamic limit for all fractional quantum Hall states as well as the composite fermion Fermi sea. The rather weak dependence of the scale factor on the anisotropy provides insight into why fractional quantum Hall effect and composite fermions are quite robust to electron mass anisotropy. We discuss how better, though still approximate, wave functions can be obtained by introducing a variational parameter, following Haldane [F. D. M. Haldane, Phys. Rev. Lett. 107, 116801 (2011), 10.1103/PhysRevLett.107.116801], but the resulting wave functions are not readily amenable to calculations. Our considerations are also applicable, with minimal modification, to the case where the dielectric function of the background material is anisotropic.
NASA Astrophysics Data System (ADS)
Gabs, P. M. M.; Errea, L. F.; Mndez, L.; Rabadn, I.
2012-01-01
Two simple ab initio methods based on one-electron wave functions are employed to calculate the single-electron capture and single ionization of H2O and CO molecules by ion impact. The anisotropy of the molecular targets is taken into account by using multicenter pseudopotentials to represent the interaction of the active electron with the ionic molecular core. These two methods are applied to the study of three collisional systems: H++H2O, He2++H2O, and C2++CO. Comparison with experiments and other theoretical works is presented when available.
Extracting a shape function for a signal with intra-wave frequency modulation.
Hou, Thomas Y; Shi, Zuoqiang
2016-04-13
In this paper, we develop an effective and robust adaptive time-frequency analysis method for signals with intra-wave frequency modulation. To handle this kind of signals effectively, we generalize our data-driven time-frequency analysis by using a shape function to describe the intra-wave frequency modulation. The idea of using a shape function in time-frequency analysis was first proposed by Wu (Wu 2013 Appl. Comput. Harmon. Anal. 35, 181-199. (doi:10.1016/j.acha.2012.08.008)). A shape function could be any smooth 2π-periodic function. Based on this model, we propose to solve an optimization problem to extract the shape function. By exploring the fact that the shape function is a periodic function with respect to its phase function, we can identify certain low-rank structure of the signal. This low-rank structure enables us to extract the shape function from the signal. Once the shape function is obtained, the instantaneous frequency with intra-wave modulation can be recovered from the shape function. We demonstrate the robustness and efficiency of our method by applying it to several synthetic and real signals. One important observation is that this approach is very stable to noise perturbation. By using the shape function approach, we can capture the intra-wave frequency modulation very well even for noise-polluted signals. In comparison, existing methods such as empirical mode decomposition/ensemble empirical mode decomposition seem to have difficulty in capturing the intra-wave modulation when the signal is polluted by noise. PMID:26953176
A test of a mechanical multi-impact shear-wave seismic source
Worley, David M.; Odum, Jack K.; Williams, Robert A.; Stephenson, William J.
2001-01-01
We modified two gasoline-engine-powered earth tampers, commonly used as compressional-(P) wave seismic energy sources for shallow reflection studies, for use as shear(S)-wave energy sources. This new configuration, termed ?Hacker? (horizontal Wacker?), is evaluated as an alternative to the manual sledgehammer typically used in conjunction with a large timber held down by the front wheels of a vehicle. The Hacker maximizes the use of existing equipment by a quick changeover of bolt-on accessories as opposed to the handling of a separate source, and is intended to improve the depth of penetration of S-wave data by stacking hundreds of impacts over a two to three minute period. Records were made with a variety of configurations involving up to two Hackers simultaneously then compared to a reference record made with a sledgehammer. Preliminary results indicate moderate success by the higher amplitude S-waves recorded with the Hacker as compared to the hammer method. False triggers generated by the backswing of the Hacker add unwanted noise and we are currently working to modify the device to eliminate this effect. Correlation noise caused by insufficient randomness of the Hacker impact sequence is also a significant noise problem that we hope to reduce by improving the coupling of the Hacker to the timber so that the operator has more control over the impact sequence.
Hormonal profile impact on female sexual function in young women
NASA Astrophysics Data System (ADS)
Stoian, Dana; Craciunescu, Mihalea; Craina, Marius; Pater, Liana; Pater, Flavius
2014-12-01
Female sexual function is dependent, in physiological milieu upon hormonal impulses: estradiol, testosterone, cortisol, progesterone, prolactin and TSH. Out study tries to appreciate the impact of testosterone, estradiol and prolactin, the major hormones involved in the sexual response, on the normal sexual function. This parameter is approximated by the value of the total FSFI score, a validated international structured interview.
Impact of weightlessness on muscle function
NASA Technical Reports Server (NTRS)
Tischler, M. E.; Slentz, M.
1995-01-01
The most studied skeletal muscles which depend on gravity, "antigravity" muscles, are located in the posterior portion of the legs. Antigravity muscles are characterized generally by a different fiber type composition than those which are considered nonpostural. The gravity-dependent function of the antigravity muscles makes them particularly sensitive to weightlessness (unweighting) resulting in a substantial loss of muscle protein, with a relatively greater loss of myofibrillar (structural) proteins. Accordingly alpha-actin mRNA decreases in muscle of rats exposed to microgravity. In the legs, the soleus seems particularly responsive to the lack of weight-bearing associated with space flight. The loss of muscle protein leads to a decreased cross-sectional area of muscle fibers, particularly of the slow-twitch, oxidative (SO) ones compared to fast-twitch glycolytic (FG) or oxidative-glycolytic (FOG) fibers. In some muscles, a shift in fiber composition from SO to FOG has been reported in the adaptation to spaceflight. Changes in muscle composition with spaceflight have been associated with decreased maximal isometric tension (Po) and increased maximal shortening velocity. In terms of fuel metabolism, results varied depending on the pathway considered. Glucose uptake, in the presence of insulin, and activities of glycolytic enzymes are increased by space flight. In contrast, oxidation of fatty acids may be diminished. Oxidation of pyruvate, activity of the citric acid cycle, and ketone metabolism in muscle seem to be unaffected by microgravity.
NASA Technical Reports Server (NTRS)
Baumeiste, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
Quantum group, Bethe ansatz equations, and Bloch wave functions in magnetic fields
NASA Astrophysics Data System (ADS)
Hatsugai, Yasuhiro; Kohmoto, Mahito; Wu, Yong-Shi
1996-04-01
The wave functions for a two-dimensional Bloch electron in uniform magnetic fields at the mid-band points are studied by exploiting a connection to the quantum group Uq(sl2): A linear combination of its generators gives the Hamiltonian. We apply both analytic and numerical methods to obtain and analyze the wave functions, by solving the functional Bethe ansatz equations first proposed by Wiegmann and Zabrodin on the basis of the above observation. The semiclassical case with the flux per plaquette ?=1/Q is analyzed in detail, by exploring a structure of the Bethe ansatz equations. We also reveal the multifractal structure of the solutions to Bethe ansatz equations and corresponding wave functions when ? is irrational, such as the golden or silver mean.
Effect of logarithmic terms on the energy level and wave function of a dt. mu. system
Zhen, Z. )
1990-01-01
The effect of the logarithmic terms on the ground-state energy level and wave function of a {ital dt}{mu} system is investigated. No significant contribution of the logarithmic terms on either the energy level or wave function is found. At the same time, we find the lowest upper bound of the ground-state energy ever obtained by the variational method using the Hylleraas-type trial function and that the corresponding wave function satisfies the cusp condition as {ital r}{sub {ital dt}}{r arrow}0 automatically to a reasonable accuracy for {ital r}{lt}3 (muonic a.u.), where {ital r} is the distance between the fused {ital dt} nuclear compound and the muon.
Shankar, R; Vishwanath, Ashvin
2011-09-01
For certain systems, the N-particle ground-state wave functions of the bulk happen to be exactly equal to the N-point spacetime correlation functions at the edge, in the infrared limit. We show why this had to be so for a class of topological superconductors, beginning with the p+ip state in D=2+1. Varying the chemical potential as a function of Euclidean time between weak and strong pairing states is shown to extract the wave function. Then a Euclidean rotation that exchanges time and space and approximate Lorentz invariance lead to the edge connection. This framework readily generalizes to other dimensions. We illustrate it with a D=3+1 example, superfluid 3He- B, and a p-wave superfluid in D=1+1. Our method works only when the particle number is not conserved, as in superconductors. PMID:21981520
Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer
NASA Astrophysics Data System (ADS)
Shrivastava, G.; Shrivastava, J.; Ahirwar, G.
2015-07-01
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio ? of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (Ti/Te), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.
Dynamical model for longitudinal wave functions in light-front holographic QCD
Chabysheva, Sophia S.; Hiller, John R.
2013-10-15
We construct a Schrödinger-like equation for the longitudinal wave function of a meson in the valence qq{sup -bar} sector, based on the ’t Hooft model for large-N two-dimensional QCD, and combine this with the usual transverse equation from light-front holographic QCD, to obtain a model for mesons with massive quarks. The computed wave functions are compared with the wave function ansatz of Brodsky and de Téramond and used to compute decay constants and parton distribution functions. The basis functions used to solve the longitudinal equation may be useful for more general calculations of meson states in QCD. -- Highlights: •Provide relativistic quark model based on light-front holographic QCD. •Incorporate dependence on quark mass. •Consistent with the Brodsky–de Téramond quark-wave-function ansatz. •Compute meson decay constants and parton distribution functions. •Illustrate use of basis functions that could be convenient for more general numerical calculations in light-front QCD.
Impact of heat waves on nonaccidental deaths in Jinan, China, and associated risk factors
NASA Astrophysics Data System (ADS)
Zhang, Jun; Liu, Shouqin; Han, Jing; Zhou, Lin; Liu, Yueling; Yang, Liu; Zhang, Ji; Zhang, Ying
2016-01-01
An ecological study and a case-crossover analysis were conducted to evaluate the impact of heat waves on nonaccidental deaths, and to identify contributing factors of population vulnerability to heat-related deaths in Jinan, China. Daily death data and meteorological data were collected for summer months (June to August) of 2012-2013. Excess mortality was calculated and multivariate linear regression models were used to assess the increased risk of heat waves on deaths. Univariate and multivariate logistic regression models were performed to estimate the odd ratios (ORs) of risk factors and their 95 % confidence intervals (CIs). Overall, heat waves were related to 24.88 % excess deaths of total nonaccidental deaths and 31.33 % excess deaths of circulatory diseases, with an OR of 16.07 (95 % CI 8.80-23.33) for total nonaccidental deaths and 12.46 (95 % CI 7.39-17.53) for deaths of circulatory diseases. The case-crossover analysis indicated that older people were more likely to die during heat waves (OR = 1.233, 95 % CI 1.076-1.413) and more deaths occurred outside a hospital during heat waves (OR = 1.142, 95 % CI 1.006-1.296). In conclusion, heat waves have caused excess deaths and significantly increased the risk of circulatory deaths. The risk factors identified in our study have implications for public health interventions to reduce heat-related mortality during extreme heat events.
NASA Astrophysics Data System (ADS)
Alvan, Lucie; Mathis, Stphane; Decressin, Thibaut
2014-02-01
Gravity waves, which propagate in radiation zones, can extract or deposit angular momentum by radiative and viscous damping. Another process, poorly explored in stellar physics, concerns their direct interaction with the differential rotation and the related turbulence. In this work, we thus study their corotation resonances, also called critical layers, that occur where the Doppler-shifted frequency of the wave approaches zero. First, we study the adiabatic and non-adiabatic propagation of gravity waves near critical layers. Next, we derive the induced transport of angular momentum. Finally, we use the dynamical stellar evolution code STAREVOL to apply the results to the case of a solar-like star. The results depend on the value of the Richardson number at the critical layer. In the first stable case, the wave is damped. In the other unstable and turbulent case, the wave can be reflected and transmitted by the critical layer with a coefficient larger than one: the critical layer acts as a secondary source of excitation for gravity waves. These new results can have a strong impact on our understanding of angular momentum transport processes in stellar interiors along stellar evolution where strong gradients of angular velocity can develop.
Power and frequency measurements from a uniform backward wave oscillator as a function of length
Moreland, L.D.; Roitman, A.M.; Schamiloglu, E.; Pegel, I.V.; Lemke, R.W.
1994-12-31
The authors describe results from an experiment where the number of ripple periods in the slow wave structure of a backward wave oscillator (BWO) is increased. Both microwave power and frequency measurements are made for each shot. For a given cathode voltage and beam current, the microwave peak power and frequency are plotted as a function of BWO length. In previous investigations, the observation of two power maxima as a function of length was explained by the interaction of the electron beam with the forward traveling wave and reflections at the transition from the slow wave structure into the output waveguide. However, recent numerical calculations using the phase dynamics of electron beam and electromagnetic modes suggest that the power maxima are due to the phase relationship between the electron beam density wave and the backward wave. Experiments were performed on the Sinus-6, a relativistic electron beam accelerator. By adjusting the pressure in the Sinus-6 spark gap switch, cathode voltages between 400 kV to 650 kV can be obtained. The experiment was repeated for different sets of beam parameters. In all cases, the magnetic field used for beam transport was longer than the length of the slow wave structure. The experimental results are compared with phase model calculations and PIC code simulations using KARAT and TWOQUICK.
Impact of ectonucleotidases in autonomic nervous functions.
Cardoso, Andria Machado; Schetinger, Maria Rosa Chitolina; Correia-de-S, Paulo; Svigny, Jean
2015-09-01
Adenine and uracil nucleotides play key functions in the autonomic nervous system (ANS). For instance, ATP acts as a neurotransmitter, co-transmitter and neuromodulator in the ANS. The purinergic system encompasses (1) receptors that respond to extracellular purines, which are designated as P1 and P2 purinoceptors, (2) purine release and uptake, and (3) a cascade of enzymes that regulate the concentration of purines near the cell surface. Ectonucleotidases and adenosine deaminase (ADA) are enzymes responsible for the hydrolysis of ATP (and other nucleotides such as ADP, UTP, UDP, AMP) and adenosine, respectively. Accordingly, these enzymes are expected to play an important role in the control of neuro-effector transmission in tissues innervated by both the sympathetic and parasympathetic divisions of the ANS. Indeed, ectonucleotidases have the ability to either terminate P2 receptor responses initiated by nucleoside triphosphates (ATP and UTP), and/or to favor the activation of ADP (e.g. P2Y1,12,13) and UDP (e.g. P2Y6) and/or adenosine (P1) specific receptors. In addition, ectonucleotidases can also importantly protect some P2 receptors from desensitization (e.g. P2X1, P2Y1). In this review, we present the (putative) roles of ectonucleotidases and ADA in the ANS with a focus on their regulatory activity at neuro-effector junctions in the following tissues: heart, vas deferens, urinary bladder, salivary glands, blood vessels and the intestine. We also present their implication in nociceptive transmission. PMID:26008223
Initial survey of the wave distribution functions for plasmaspheric hiss observed by ISEE 1
Storey, L.R.O. ); Lefeuvre, F.; Parrot, M.; Cairo, L. ); Anderson, R.R. )
1991-11-01
Multicomponent ELF/VLF wave data from the ISEE 1 satellite have been analyzed with the aim of identifying the generation mechanism of plasmaspheric hiss, and especially of determining whether it involves wave propagation of cyclic trajectories. The data were taken from four passes of the satellite, of which two were close to the geomagnetic equatorial plane and two were farther from it; all four occurred during magnetically quiet periods. The principal method of analysis was calculation of the wave distribution functions. The waves appear to have been generated over a wide range of altitudes within the plasmasphere, and most, though not all, of them were propagating obliquely with respect to the Earth's magnetic field. On one of the passes near the equator, some wave energy was observed at small wave normal angles, and these waves may have been propagating on cyclic trajectories. Even here, however, obliquely propagating waves were predominant, a finding that is difficult to reconcile with the classical quasi-linear generation mechanism or its variants. The conclusion is that another mechanism, probably nonlinear, must have been generating most of the hiss observed on these four passes.
NASA Astrophysics Data System (ADS)
Chen, Xie; Gu, Zheng-Cheng; Wen, Xiao-Gang
2010-10-01
Two gapped quantum ground states in the same phase are connected by an adiabatic evolution which gives rise to a local unitary transformation that maps between the states. On the other hand, gapped ground states remain within the same phase under local unitary transformations. Therefore, local unitary transformations define an equivalence relation and the equivalence classes are the universality classes that define the different phases for gapped quantum systems. Since local unitary transformations can remove local entanglement, the above equivalence/universality classes correspond to pattern of long-range entanglement, which is the essence of topological order. The local unitary transformation also allows us to define a wave function renormalization scheme, under which a wave function can flow to a simpler one within the same equivalence/universality class. Using such a setup, we find conditions on the possible fixed-point wave functions where the local unitary transformations have finite dimensions. The solutions of the conditions allow us to classify this type of topological orders, which generalize the string-net classification of topological orders. We also describe an algorithm of wave function renormalization induced by local unitary transformations. The algorithm allows us to calculate the flow of tensor-product wave functions which are not at the fixed points. This will allow us to calculate topological orders as well as symmetry-breaking orders in a generic tensor-product state.
NASA Astrophysics Data System (ADS)
Kysely, J.; Kim, J.
2010-03-01
The study deals with mortality impacts of the July-August 1994 heat wave in the population of South Korea, including the megacity of Seoul (with the population exceeding 10 million for the city and 20 million for the metropolitan area), and estimates recurrence probability of the heat wave in a changing climate in terms of simulations of daily temperature series with a stochastic model. The 1994 heat wave is found exceptional with respect to both climatological characteristics and the mortality effects: significantly elevated mortality occurred in all population groups, including children up to 14 years of age, and the total death toll exceeded 3000 in the Korean population, which ranks the 1994 heat wave among the worst weather-related disasters in East Asia. The estimate represents net excess mortality as no mortality displacement effect appeared. A comparison with other documented natural disasters shows that the death toll of the heat wave was much higher than those of the most disastrous floodings and typhoons over Korean Peninsula in the 20th century. The mortality response was stronger in males than females although males are found to be less vulnerable during average heat waves. A climatological analysis reveals that the July-August 1994 heat wave might be considered an extremely rare event with a return period in the order of hundreds of years if stationarity of temperature time series is assumed. However, under a more realistic assumption of gradual warming related to climate change, recurrence probability of an event analogous to the 1994 heat wave sharply rises for near-future time horizons. If warming of 0.04°C/year is assumed over 2001-2060, the recurrence interval of a very long spell of days with temperature exceeding a high threshold (as in the 1994 heat wave) is estimated to decrease to around 40 (10) years in the 2021-2030 (2041-2050) decade. This emphasizes the need for setting up an efficient heat-watch-warning system in this area in order to reduce human mortality impacts of heat waves.
Experimental study on impact-induced seismic wave propagation through granular materials
NASA Astrophysics Data System (ADS)
Yasui, Minami; Matsumoto, Eri; Arakawa, Masahiko
2015-11-01
Impact-induced seismic waves are supposed to cause movements of regolith particles, resulting in modifications of asteroidal surfaces. The imparted seismic energy is thus a key parameter to determining the scale and magnitude of this seismic shaking process. It is important to study the propagation velocity, attenuation rate, and vibration period of the impact-induced seismic wave to estimate the seismic energy. Hence, we conducted impact cratering experiments at Kobe University using a 200-μm glass beads target to simulate a regolith layer, and measured the impact-induced seismic wave using three accelerometers set on the target surface at differences ranging from 3.2 to 12.7 cm. The target was impacted with three kinds of projectiles at ˜100 m s-1 using a one-stage gas gun. The propagation velocity of the seismic wave in the beads target was 108.9 m s-1, and the maximum acceleration, gmax, in the unit of m s-2, measured by each accelerometer showed good correlation with the distance from the impact point normalized by the crater radius, x/R, irrespective of projectile type. They also were fitted by one power-law equation, gmax = 102.19 (x/R)-2.21. The half period of the first peak of the measured seismic waves was ˜0.72 ms, and this duration was almost consistent with the penetration time of each projectile into the target. According to these measurements, we estimated the impact seismic efficiency factor, that is, the ratio of seismic energy to kinetic energy of the projectile, to be almost constant, 5.7 × 10-4 inside the crater rim, while it exponentially decreased with distance from the impact point outside the crater rim. At a distance quadruple of the crater radius, the efficiency factors were 4.4 × 10-5 for polycarbonate projectile and 9.5 × 10-5 for alumina and stainless steel projectiles.
Electrostatic wave growth: secondary peaks in a measured auroral electron distribution function
Kaufmann, R.L.
1980-04-01
Small secondary peaks are frequently measured in energetic (25 eV
NASA Astrophysics Data System (ADS)
Lognonne, P.; Gudkova, T.; Le Feuvre, M.; Garcia, R. F.; Kawamura, T.; Banerdt, B.; Kobayashi, N.
2011-12-01
Natural Impacts occurring on the surface of telluric planets are important seismic sources for constraining the crustal and upper mantle structure, especially when their impact location and impacting time can be determined by other complementing experiments, such as Earth based flash detection for the Moon or differential orbital imaging of the surface for Mars. When these complementary data are not available, which was the case of Apollo with the exception of artificial impacts, the location of impact as compared to quake is easier, as only their geographical location must be determined from seismic data. We present recent results of the analysis of impact related seismic data gathered by the Apollo Lunar seismic network during the 70th. By using the artificial impact, we first develop a calibrated analysis for extracting the impulse (i.e. mass time impact velocity) from the amplitude of seismic waves, and point out the effect of the generation of ejecta in the seismic impulse. This approach not only allows to constrain the mass of the impacts, but also to constrain the impact frequency-impactor mass relation. By combining both the Apollo long period and short period data, further analysis can be made on the dynamic of the seismic source. The combination of these date provides indeed broadband seismic analysis have been made allowing to constraint the seismic cut-off frequency and source spectrum associated with both natural and artificial impacts. We show that the source cut-off is, as compared to moonquakes, relatively low and around a few Hz for remotely detected impacts. It is also depending not only on the impact size, but also on the impact location, as the seismic radiation of the shock wave depends on the most-upper regolith layers. We finally use our results and forward modeling to prepare the GEMS seismic mission to Mars, considered by NASA for a launch in 2016. In order to have a robust estimation of the rates of seismic detection of impacts, we analyze and model the differences of seismic propagation properties between Mars and the Moon, and use this modeling to estimate the seismic response of impacts on Mars, as a function of both the impactor characteristics (mass and velocity) and epicentral distance. We then use statistical models of impactors, confirmed by both the Apollo seismic observations and the Mars Orbiter impacts observations, to estimate the present flux on Mars and to constrain the rate of seismic impact detection, as well as the expected probability to further locale these events by differential remote sensing. This analysis is performed by taking into account both the expected performances of the VBB seismometer of GEMS and the expected environmental noise after its deployment on the Martian surface. The perspectives in terms of crustal and upper mantle seismic imaging are finally provided in conclusion for both GEMS on Mars and SELENE2 on the Moon.
Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model
NASA Astrophysics Data System (ADS)
Trossman, David S.; Arbic, Brian K.; Garner, Stephen T.; Goff, John A.; Jayne, Steven R.; Metzger, E. Joseph; Wallcraft, Alan J.
2013-12-01
The impact of parameterized topographic internal lee wave drag on the input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds and air-sea buoyancy fluxes is examined here. Wave drag, which parameterizes the generation of internal lee waves arising from geostrophic flow impinging upon rough topography, is included in the prognostic model, ensuring that abyssal currents and stratification in the model are affected by the wave drag. An inline mechanical (kinetic plus gravitational potential) energy budget including four dissipative terms (parameterized topographic internal lee wave drag, quadratic bottom boundary layer drag, vertical eddy viscosity, and horizontal eddy viscosity) demonstrates that wave drag dissipates less energy in the model than a diagnostic (offline) estimate would suggest, due to reductions in both the abyssal currents and stratification. The equator experiences the largest reduction in energy dissipation associated with wave drag in inline versus offline estimates. Quadratic bottom drag is the energy sink most affected globally by the presence of wave drag in the model; other energy sinks are substantially affected locally, but not in their global integrals. It is suggested that wave drag cannot be mimicked by artificially increasing the quadratic bottom drag because the energy dissipation rates associated with bottom drag are not spatially correlated with those associated with wave drag where the latter are small. Additionally, in contrast to bottom drag, wave drag is a non-local energy sink. All four aforementioned dissipative terms contribute substantially to the total energy dissipation rate of about one terawatt. The partial time derivative of potential energy (non-zero since the isopycnal depths have a long adjustment time), the surface advective fluxes of potential energy, the rate of change of potential energy due to diffusive mass fluxes, and the conversion between internal energy and potential energy also play a non-negligible role in the total mechanical energy budget. Reasons for the <10% total mechanical energy budget imbalance are discussed.
Harvey, E. Newton; McMillen, J. Howard
1947-01-01
The spark shadowgram method of studying shock waves is described. It has been used to investigate the properties of such waves produced by the impact of a high velocity missile on the surface of water. The method can be adapted for study of behavior of shock waves in tissue by placing the tissue on a water surface or immersing it in water. Spark shadowgrams then reveal waves passing from tissue to water or reflected from tissue surfaces. Reflection and transmission of shock waves from muscle, liver, stomach, and intestinal wall are compared with reflection from non-living surfaces such as gelatin gel, steel, plexiglas, cork, and air. Because of its heterogeneous structure, waves transmitted by tissue are dispersed and appear as a series of wavelets. When the accoustical impedance (density x wave velocity) of a medium is less than that in which the wave is moving, reflection will occur with inversion of the wave; i.e., a high pressure wave will become a low pressure wave. This inversion occurs at an air surface and is illustrated by shadowgrams of reflection from stomach wall, from a segment of colon filled with gas, and from air-filled rubber balloons. Bone (human skull and beef ribs) shows good reflection and some transmission of shock waves. When steel is directly hit by a missile, clearly visible elastic waves pass from metal to water, but a similar direct hit on bone does not result in elastic waves strong enough to be detected by a spark shadowgram. PMID:19871617
Using soil functional indices to assess wildfire impact
NASA Astrophysics Data System (ADS)
Lpez-Poma, Rosario; Mayor, ngeles G.; Bautista, Susana
2014-05-01
Disturbance impact on ecosystem are often based on functional indicators, which provide integrated and yet simple and affordable measures of key ecosystem functions. In this work, we studied the amount of change (resistance) and the recovery (resilience) of soil functions after fire as a function of vegetation type for a variety of Mediterranean shrublands. We used the Landscape Functional Analysis methodology to assess soil stability, water infiltration, and nutrient cycling functions for different types of vegetation patches and for bare-soil interpatches in repeatedly burned shrubland communities two weeks before, and two and nine months after experimental fires. We assessed the impact of fire on soil functions using resistance and resilience indices. The resistance and resilience of soil surface functions to fire was mediated by vegetation traits associated to the fuel structure and the post-fire regenerative strategy of the species. Resistance was higher in vegetation patches that accumulated low contents of fine dead fuel, whereas resilience was higher in patches of resprouter species. The variation in resistance and resilience of soil functions to fire in Mediterranean shrublands depends greatly on variation in fire-related plant structural and functional traits. Although originally designed for the assessment of dryland ecosystems LFA has proved to have great potential for the assessment of the soil functional status of recently burned areas.
Electronic structure and correlated wave functions of a few electron quantum dots
Sako, Tokuei; Ishida, Hiroshi; Fujikawa, Kazuo
2015-01-22
The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.
Casanova, David; Krylov, Anna I
2016-01-01
A new method for quantifying the contributions of local excitation, charge resonance, and multiexciton configurations in correlated wave functions of multichromophoric systems is presented. The approach relies on fragment-localized orbitals and employs spin correlators. Its utility is illustrated by calculations on model clusters of hydrogen, ethylene, and tetracene molecules using adiabatic restricted-active-space configuration interaction wave functions. In addition to the wave function analysis, this approach provides a basis for a simple state-specific energy correction accounting for insufficient description of electron correlation. The decomposition scheme also allows one to compute energies of the diabatic states of the local excitonic, charge-resonance, and multi-excitonic character. The new method provides insight into electronic structure of multichromophoric systems and delivers valuable reference data for validating excitonic models. PMID:26747796
Wave functions and two-electron probability distributions of the Hooke's-law atom and helium
O'Neill, Darragh P.; Gill, Peter M. W.
2003-08-01
The Hooke's-law atom (hookium) provides an exactly soluble model for a two-electron atom in which the nuclear-electron Coulombic attraction has been replaced by a harmonic one. Starting from the known exact position-space wave function for the ground state of hookium, we present the momentum-space wave function. We also look at the intracules, two-electron probability distributions, for hookium in position, momentum, and phase space. These are compared with the Hartree-Fock results and the Coulomb holes (the difference between the exact and Hartree-Fock intracules) in position, momentum, and phase space are examined. We then compare these results with analogous results for the ground state of helium using a simple, explicitly correlated wave function.
NASA Astrophysics Data System (ADS)
Casanova, David; Krylov, Anna I.
2016-01-01
A new method for quantifying the contributions of local excitation, charge resonance, and multiexciton configurations in correlated wave functions of multichromophoric systems is presented. The approach relies on fragment-localized orbitals and employs spin correlators. Its utility is illustrated by calculations on model clusters of hydrogen, ethylene, and tetracene molecules using adiabatic restricted-active-space configuration interaction wave functions. In addition to the wave function analysis, this approach provides a basis for a simple state-specific energy correction accounting for insufficient description of electron correlation. The decomposition scheme also allows one to compute energies of the diabatic states of the local excitonic, charge-resonance, and multi-excitonic character. The new method provides insight into electronic structure of multichromophoric systems and delivers valuable reference data for validating excitonic models.
Many-body localization transition in Rokhsar-Kivelson-type wave functions
NASA Astrophysics Data System (ADS)
Chen, Xiao; Yu, Xiongjie; Cho, Gil Young; Clark, Bryan K.; Fradkin, Eduardo
2015-12-01
We construct a family of many-body wave functions to study the many-body localization phase transition. The wave functions have a Rokhsar-Kivelson form, in which the weight for the configurations are chosen from the Gibbs weights of a classical spin glass model, known as the random energy model, multiplied by a random sign structure to represent a highly excited state. These wave functions show a phase transition into an MBL phase. In addition, we see three regimes of entanglement scaling with the subsystem size: scaling with the entanglement corresponding to an infinite temperature thermal phase, constant scaling, and a subextensive scaling between these limits. Near the phase transition point, the fluctuations of the Rényi entropies are non-Gaussian. We find that Rényi entropies with different Rényi index transition into the MBL phase at different points and have different scaling behavior, suggesting a multifractal behavior.
Application of Coulomb Wave Function DVR to Atomic Systems in Strong Laser Fields
NASA Astrophysics Data System (ADS)
Peng, Liang-You; Starace, Anthony F.
2006-05-01
We present an efficient and accurate grid method for solving the time-dependent Schr"odinger equation (TDSE) for atomic systems interacting with short laser pulses. The radial part of the wave function is expanded in a DVR (Discrete Variable Representation) basis constructed from the positive energy Coulomb wave function. The time propagation of the wave function is implemented using the well-known Arnoldi method. Compared with the usual finite difference (FD) discretization scheme for the radial coordinate, this method requires fewer grid points and handles naturally the Coulomb singularity at the origin. As examples, the method is shown to give accurate ionization rates for both H and H^- over a wide range of laser parameters.
Extracting the density profile of an electronic wave function in a quantum dot
NASA Astrophysics Data System (ADS)
Boyd, Erin E.; Westervelt, Robert M.
2011-11-01
We use a model of a one-dimensional nanowire quantum dot to demonstrate the feasibility of a scanning probe microscope (SPM) imaging technique that can extract both the energy of an electron state and the amplitude of its wave function using a single instrument. This imaging technique can probe electrons that are buried beneath the surface of a low-dimensional semiconductor structure and provide valuable information for the design of quantum devices. A conducting SPM tip, acting as a movable gate, measures the energy of an electron state using Coulomb blockade spectroscopy. When the tip is close to the nanowire dot, it dents the wave function ?(x) of the quantum state, changing the electron's energy by an amount proportional to |?(x)|2. By recording the change in energy as the SPM tip is moved along the length of the dot, the density profile of the electronic wave function can be found along the length of the quantum dot.
Kinetic correlation in the final-state wave function in photo-double-ionization of He
Otranto, S.; Garibotti, C. R.
2003-06-01
We evaluate the triply differential cross section (TDCS) for photo-double-ionization of helium. We use a final continuum wave function which correlates the motion of the three particles, through an expansion in products of two-body Coulomb functions. This function satisfies a set of appropriate physical conditions in the coalescence points, in addition to the correct asymptotic behavior condition. We analyze the effect of this correlation in the TDCS and compare our results with experimental data.
Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo.
Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia
2016-03-01
We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-cluster methods, which is here applied to the active space to select the orbitals to correlate and construct the important transitions. The excitations are further grouped into classes, which are ordered in importance and can be systematically included in the Jastrow-Slater wave function to ensure a balanced description of all states of interest. We assess the performance of the proposed wave function in the calculation of vertical excitation energies and excited-state geometry optimization of retinal models whose π → π* state has a strong intramolecular charge-transfer character. We find that our multiresonance wave functions recover the reference values of the total energies of the ground and excited states with only a small number of excitations and that the same expansion can be flexibly used at very different geometries. Furthermore, significant computational saving can also be gained in the orbital optimization step by selectively mixing occupied and virtual orbitals based on spatial considerations without loss of accuracy on the excitation energy. Our multiresonance wave functions are therefore compact, accurate, and very promising for the calculation of multiple excited states of different character in large molecules. PMID:26761421
Automatic determination of important mode-mode correlations in many-mode vibrational wave functions
NASA Astrophysics Data System (ADS)
Knig, Carolin; Christiansen, Ove
2015-04-01
We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.
Orthogonality of embedded wave functions for different states in frozen-density embedding theory
NASA Astrophysics Data System (ADS)
Zech, Alexander; Aquilante, Francesco; Wesolowski, Tomasz A.
2015-10-01
Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematical structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.
Orthogonality of embedded wave functions for different states in frozen-density embedding theory.
Zech, Alexander; Aquilante, Francesco; Wesolowski, Tomasz A
2015-10-28
Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles--embedded wave functions are only auxiliary objects used to obtain stationary densities--working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematical structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities. PMID:26520497
Atmospheric gravity waves from the impact of comet Shoemaker-Levy 9 with Jupiter
NASA Technical Reports Server (NTRS)
Ingersoll, A. P.; Kanamori, H.; Dowling, T. E.
1994-01-01
We study the effect of the Jovian water cloud on internal gravity waves generated by the impact of comet Shoemaker-Levy 9 (SL9). Vertical structure follows Voyager data to the 1-bar level, a moist adiabat from 1 to 5 bars, and a dry adiabat below the 5-bar level. The waves are trapped in the moist layer and propagate horizontally. Their speed is related to the vertical integral of the Brunt-Vaisala frequency, and varies as the square root of the water abundance (130 m/s for solar composition). The amplitudes are large, e.g., +/- 1 K at a distance of 8000 km for an energy of 10(exp 27) ergs. The circular ripples should be detectable one or two days after the impact in thermal infrared and visible images.
Relativistic plane-wave Born theory and its application to electron-impact excitation
Fontes, Christopher J.; Zhang Honglin
2007-10-15
An exact treatment of the relativistic plane-wave Born (RPWB) cross section for electron-impact excitation is provided for an arbitrary atom or ion. This result represents an improvement over the cross section obtained from the widely used Bethe high-energy theory developed in the 1930s. The results obtained from this RPWB approach can be applied to a broad class of problems in fundamental electron-impact scattering theory. As an illustration, the approach is used to approximate the high-l, partial-wave contribution in more accurate calculations of the excitation cross section, a problem which has been lacking a fully relativistic treatment for more than 20 years.
Spin and current correlation functions in the d-density wave state of the cuprates
NASA Astrophysics Data System (ADS)
Tewari, Sumanta; Kee, Hae-Young; Nayak, Chetan; Chakravarty, Sudip
2001-03-01
We expand on the recent proposal by Chakravarty et.al.*,that the pseudogap phase of the cuprates is an actual broken symmetry phase with d-density wave(DDW) order, by explicitly calculating two of it's correlation functions. The Hartee Fock, zero-temperature calculations presented here, justifiable by the presence of a symmetry-breaking order parameter, are extended to the case where the d-wave superconductivity(DSC) and the DDW coexist and compete.The spin and current correlation functions explain , on a qualitative basis, the existing inelastic-neutron, and superfluid density measurements. * S. Chakravarty et.al., in press(cond-mat/0005443)
Wave function collapses in a single spin magnetic resonance force microscopy
NASA Astrophysics Data System (ADS)
Berman, G. P.; Borgonovi, F.; Tsifrinovich, V. I.
2004-10-01
We study the effects of wave function collapses in the oscillating cantilever driven adiabatic reversals (OSCAR) magnetic resonance force microscopy (MRFM) technique. The quantum dynamics of the cantilever tip (CT) and the spin is analyzed and simulated taking into account the magnetic noise on the spin. The deviation of the spin from the direction of the effective magnetic field causes a measurable shift of the frequency of the CT oscillations. We show that the experimental study of this shift can reveal the information about the average time interval between the consecutive collapses of the wave function.
When valence bond wave functions are analyzed through QTAIM: Conceptual incompatibilities in H2
NASA Astrophysics Data System (ADS)
Ferro-Costas, David; Mosquera, Ricardo A.
2015-01-01
Hydrogen molecule was chosen, for simplicity, to analyze its valence bond (VB) wave function with the Quantum Theory of Atoms in Molecules (QTAIM). We find that the usual association of its covalent and ionic contributions to individual Lewis structures does not agree with the localization and delocalization indices between both hydrogens defined within the QTAIM framework. Concretely, we analyzed the dependence of both indices with the internuclear distance and with different ionic/covalent relative weightings. The results indicate that QTAIM localization and delocalization indices should not be estimated from interpretations of the VB wave function in terms of the Lewis model.
Early heat waves over Italy and their impacts on durum wheat yields
NASA Astrophysics Data System (ADS)
Fontana, Giovanna; Toreti, Andrea
2015-04-01
In the last decades the Euro-Mediterranean region has experienced an increase in extreme temperature events such as warm spells and heat waves. These extreme weather conditions can strongly affect arable crop growth and final yields. Since the most sensitive period for winter wheat in the Italian Peninsula is May-June, early heat waves from 1985 to 2013 are here identified and characterised. Then, their impact on annual durum wheat yields from 1995 to 2013 is investigated by using durum wheat yield time series retrieved from the Italian National Institute of Statistics - ISTAT for the most important (in term of durum wheat production) 39 areas. Results confirm, as expected, the 2003 peak in the time series of heat wave intensities and highlight other significant events, for instance in 2006, 2007 and 2009. In 2003, the development and growth of durum wheat were greatly influenced by heat stress, as shown by the very low values of durum wheat yields, exceeding -52% in southern Italy. However, the negative peak of yield anomalies (-65%) is recorded in south-eastern Italy in 2009. Results also show a high percentage (w.r.t. the total number of years with significant negative yield anomaly) of concurrent early heat waves/significant negative yield anomaly in many of the investigated areas. In the other areas (e.g., Sicily), lower numbers of concurrent events could be caused by the late occurrence of the early heat waves, i.e., after durum wheat maturity.
Guided wave imaging for detection and evaluation of impact-induced delamination in composites
NASA Astrophysics Data System (ADS)
Tian, Zhenhua; Yu, Lingyu; Leckey, Cara; Seebo, Jeffrey
2015-10-01
In this paper, guided wavefield interactions with delamination damage in laminated composite panels are investigated. The frequency-wavenumber representations of the guided wavefields show that different wavenumbers are present in the delaminated plate, compared to a pristine case. The wavenumbers are correlated to trapped waves in the delamination region. Novel approaches for imaging the composite panels using guided waves are discussed and demonstrated for quantitative evaluation of the delamination damage. A filter reconstruction imaging method is shown to provide a rapid technique to locate delamination damage by showing where guided wave energy is trapped. A spatial wavenumber-based imaging algorithm is applied to calculate wavenumber values at each spatial location and highlights the delamination damage as regions with larger wavenumber values. The imaging approaches are demonstrated using experimental data from a plate with a simulated delamination (teflon insert) and from a plate containing impact-induced delamination damage. The methods are also applied to a multiple mode guided wave case to demonstrate application to complex wave cases.
NASA Astrophysics Data System (ADS)
Armstrong, B. N.; Warner, J. C.; He, R.
2008-12-01
We use a coupled ocean - wave (ROMS - SWAN) modeling system to investigate the impacts of storms on coastal environments. The models were run for the period from September 5 - 25, 2003 to simulate ocean conditions during hurricane Isabel. The model domain covered part of the western North Atlantic, including the entire east coast of the United States and the Gulf of Mexico. Boundary conditions were obtained from global models. Wind forcing combined NARR (North American Regional Reanalysis) and HRD (NOAA Hurricane Research Division of AOML) gridded surface wind. SWAN and ROMS were each run separately and then run as a coupled system to assess changes in the model output resulting from the simulation of a realistic scenario through exchange of current and wave information. Outputs from these models were compared with measured wave height, salinity, sea surface temperature (SST), and current time series data to assess improvements in prediction resulting from using a coupled modeling system. Results from the uncoupled models demonstrated good agreement with wave and current data series. Results from the coupled system showed increased wave heights in regions of strong currents such as the Gulf Stream. Coupled model wave heights decreased in the open ocean preceding tropical storm Fabian and Hurricane Isabel but showed a large increase in inlets when Isabel made landfall. Depth- averaged velocities showed improvement in the coupled model. Sea surface temperatures in the wake of the hurricane were more realistic for the coupled simulation because the ocean model used the wave heights in the surface roughness computation and this created an increased surface mixing.
A planetary ultra hypervelocity impact mechanics and shock wave science facility
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
1987-01-01
Using the concept of intercepting orbits from a pair of Space Station serviced free flyers, a class of impact and shock wave experiments pertinent to planetary science can be performed. One proposed free flying vehicle is an impactor dispensor, and the second is the impact laboratory. How collision is achieved by utilizing essentially twice orbital velocity is demonstrated. The impactor dispensor contains a series of small flyer plates or other projectiles which are launched into the trajectory of the impactor laboratory at appropriate positions. The impactor laboratory is a large impact tank similar to those in terrestrial gun laboratories, except that it contains a supply of targets and instrumentation such as high speed cameras, flash X-ray apparatus, and digital recorders. Shock and isentropic pressures of up to 20 Mbar are achievable with such a system which provides 15 km/sec impact velocities for precisely oriented projectiles.
A KINETIC ALFVEN WAVE AND THE PROTON DISTRIBUTION FUNCTION IN THE FAST SOLAR WIND
Li Xing; Lu Quanming; Chen Yao; Li Bo; Xia Lidong
2010-08-20
Using one-dimensional test particle simulations, the effect of a kinetic Alfven wave on the velocity distribution function (VDF) of protons in the collisionless solar wind is investigated. We first use linear Vlasov theory to numerically obtain the property of a kinetic Alfven wave (the wave propagates in the direction almost perpendicular to the background magnetic field). We then numerically simulate how the wave will shape the proton VDF. It is found that Landau resonance may be able to generate two components in the initially Maxwellian proton VDF: a tenuous beam component along the direction of the background magnetic field and a core component. The streaming speed of the beam relative to the core proton component is about 1.2-1.3 Alfven speed.
R wave amplitude during exercise. Relation to left ventricular function and coronary artery disease.
Baron, D W; Ilsley, C; Sheiban, I; Poole-Wilson, P A; Rickards, A F
1980-01-01
Change in R wave amplitude (mean delta R) was measured sequentially during and after 12 lead maximal treadmill exercise tests in 14 subjects with normal coronary arteries and 62 patients with coronary artery disease. In normal subjects mean delta R decreased maximally one minute after exercise and returned to control levels within three minutes. In contrast, mean delta R increased in patients with coronary artery disease, the greatest change occurring in patients with either triple vessel or left main disease or those with an akinetic region on the left ventriculogram. R wave amplitude returned to resting levels in five minutes. Increase in R wave amplitude was not directly related to changes in the ST segment. Changes in R wave amplitude during maximal treadmill exercise may improve the discrimination between patients with and without coronary artery disease and may help to identify those patients with abnormal left ventricular function. Images PMID:7437190
NASA Astrophysics Data System (ADS)
Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego
2010-05-01
The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 . On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present harbour protection, and installed at -10m depth (length=300 m) may produce about 2.7 GWh/y with a total costs of about 12,000,000 , where only the 50% of the amount are the costs of the SSG device. Obviously the environmental impact of the two solutions is quite different. Aim of this study is to provide a multicriteria decision support framework to evaluate the best WEC typology and location in the perspective of the environmental cost-benefit analysis. The general environmental aspects generated by wave power projects will be described. Colonisation patterns and biofouling will be discussed with particular reference to changes of the seabed and alterations due to new substrates. In addition, impacts for fish, fishery and marine mammals will be also considered. We suggest that wave power projects should be evaluated also on the basis of their environmental impacts in the perspective of the Strategic Environmental Assessment (SEA) analysis, as implemented by the European Commission (SEA Directive 2001/42/EC). The early incorporation of the environmental aspects involved in the evaluation of wave power projects will give the opportunity for early mitigations or design modifications, most likely making wave projects more acceptable in the long run and more suitable for the marine environment.
Influence of coastal vegetation on the 2004 tsunami wave impact in west Aceh
Laso Bayas, Juan Carlos; Marohn, Carsten; Dercon, Gerd; Dewi, Sonya; Piepho, Hans Peter; Joshi, Laxman; van Noordwijk, Meine; Cadisch, Georg
2011-01-01
In a tsunami event human casualties and infrastructure damage are determined predominantly by seaquake intensity and offshore properties. On land, wave energy is attenuated by gravitation (elevation) and friction (land cover). Tree belts have been promoted as bioshields against wave impact. However, given the lack of quantitative evidence of their performance in such extreme events, tree belts have been criticized for creating a false sense of security. This study used 180 transects perpendicular to over 100km on the west coast of Aceh, Indonesia to analyze the influence of coastal vegetation, particularly cultivated trees, on the impact of the 2004 tsunami. Satellite imagery; land cover maps; land use characteristics; stem diameter, height, and planting density; and a literature review were used to develop a land cover roughness coefficient accounting for the resistance offered by different land uses to the wave advance. Applying a spatial generalized linear mixed model, we found that while distance to coast was the dominant determinant of impact (casualties and infrastructure damage), the existing coastal vegetation in front of settlements also significantly reduced casualties by an average of 5%. In contrast, dense vegetation behind villages endangered human lives and increased structural damage. Debris carried by the backwash may have contributed to these dissimilar effects of land cover. For sustainable and effective coastal risk management, location of settlements is essential, while the protective potential of coastal vegetation, as determined by its spatial arrangement, should be regarded as an important livelihood provider rather than just as a bioshield. PMID:22065751
Influence of coastal vegetation on the 2004 tsunami wave impact in west Aceh.
Laso Bayas, Juan Carlos; Marohn, Carsten; Dercon, Gerd; Dewi, Sonya; Piepho, Hans Peter; Joshi, Laxman; van Noordwijk, Meine; Cadisch, Georg
2011-11-15
In a tsunami event human casualties and infrastructure damage are determined predominantly by seaquake intensity and offshore properties. On land, wave energy is attenuated by gravitation (elevation) and friction (land cover). Tree belts have been promoted as "bioshields" against wave impact. However, given the lack of quantitative evidence of their performance in such extreme events, tree belts have been criticized for creating a false sense of security. This study used 180 transects perpendicular to over 100 km on the west coast of Aceh, Indonesia to analyze the influence of coastal vegetation, particularly cultivated trees, on the impact of the 2004 tsunami. Satellite imagery; land cover maps; land use characteristics; stem diameter, height, and planting density; and a literature review were used to develop a land cover roughness coefficient accounting for the resistance offered by different land uses to the wave advance. Applying a spatial generalized linear mixed model, we found that while distance to coast was the dominant determinant of impact (casualties and infrastructure damage), the existing coastal vegetation in front of settlements also significantly reduced casualties by an average of 5%. In contrast, dense vegetation behind villages endangered human lives and increased structural damage. Debris carried by the backwash may have contributed to these dissimilar effects of land cover. For sustainable and effective coastal risk management, location of settlements is essential, while the protective potential of coastal vegetation, as determined by its spatial arrangement, should be regarded as an important livelihood provider rather than just as a bioshield. PMID:22065751
Influence of coastal vegetation on the 2004 tsunami wave impact in west Aceh.
TOXLINE Toxicology Bibliographic Information
Laso Bayas JC; Marohn C; Dercon G; Dewi S; Piepho HP; Joshi L; van Noordwijk M; Cadisch G
2011-11-15
In a tsunami event human casualties and infrastructure damage are determined predominantly by seaquake intensity and offshore properties. On land, wave energy is attenuated by gravitation (elevation) and friction (land cover). Tree belts have been promoted as "bioshields" against wave impact. However, given the lack of quantitative evidence of their performance in such extreme events, tree belts have been criticized for creating a false sense of security. This study used 180 transects perpendicular to over 100 km on the west coast of Aceh, Indonesia to analyze the influence of coastal vegetation, particularly cultivated trees, on the impact of the 2004 tsunami. Satellite imagery; land cover maps; land use characteristics; stem diameter, height, and planting density; and a literature review were used to develop a land cover roughness coefficient accounting for the resistance offered by different land uses to the wave advance. Applying a spatial generalized linear mixed model, we found that while distance to coast was the dominant determinant of impact (casualties and infrastructure damage), the existing coastal vegetation in front of settlements also significantly reduced casualties by an average of 5%. In contrast, dense vegetation behind villages endangered human lives and increased structural damage. Debris carried by the backwash may have contributed to these dissimilar effects of land cover. For sustainable and effective coastal risk management, location of settlements is essential, while the protective potential of coastal vegetation, as determined by its spatial arrangement, should be regarded as an important livelihood provider rather than just as a bioshield.
Probability Density Function for Waves Propagating in a Straight PEC Rough Wall Tunnel
Pao, H
2004-11-08
The probability density function for wave propagating in a straight perfect electrical conductor (PEC) rough wall tunnel is deduced from the mathematical models of the random electromagnetic fields. The field propagating in caves or tunnels is a complex-valued Gaussian random processing by the Central Limit Theorem. The probability density function for single modal field amplitude in such structure is Ricean. Since both expected value and standard deviation of this field depend only on radial position, the probability density function, which gives what is the power distribution, is a radially dependent function. The radio channel places fundamental limitations on the performance of wireless communication systems in tunnels and caves. The transmission path between the transmitter and receiver can vary from a simple direct line of sight to one that is severely obstructed by rough walls and corners. Unlike wired channels that are stationary and predictable, radio channels can be extremely random and difficult to analyze. In fact, modeling the radio channel has historically been one of the more challenging parts of any radio system design; this is often done using statistical methods. In this contribution, we present the most important statistic property, the field probability density function, of wave propagating in a straight PEC rough wall tunnel. This work only studies the simplest case--PEC boundary which is not the real world but the methods and conclusions developed herein are applicable to real world problems which the boundary is dielectric. The mechanisms behind electromagnetic wave propagation in caves or tunnels are diverse, but can generally be attributed to reflection, diffraction, and scattering. Because of the multiple reflections from rough walls, the electromagnetic waves travel along different paths of varying lengths. The interactions between these waves cause multipath fading at any location, and the strengths of the waves decrease as the distance between the transmitter and receiver increases.
Impact of boat generated waves over an estuarine intertidal zone of the Seine estuary (France)
NASA Astrophysics Data System (ADS)
Deloffre, Julien; Lafite, Robert
2015-04-01
Water movements in macrotidal estuaries are controlled by the tidal regime modulated seasonally by the fluvial discharge. Wind effect on hydrodynamics and sediment transport is also reported at the mouth. Besides estuaries are frequently man altered our knowledge on the human impact on hydrodynamics and sediment transport is less extended. As an example on the Seine estuary (France) port authorities have put emphasis on facilitating economic exchanges by means of embankment building and increased dredging activity over the last century. These developments led to secure sea vessel traffic in the Seine estuary but they also resulted in a change of estuarine hydrodynamics and sediment transport features. Consequences of boat generated waves are varied: increased water turbidity and sediment transfer, release of nutrient and contaminants in the water column, harmful to users, ecosystems and infrastructures generating important maintenance spending. The aim of this study is to analyse the impact of boat generated waves on sediment transport over an intertidal area. The studied site is located on the left bank in the fluvial part of the Seine estuary. On this site the maximum tidal range ranges between 1.25 and 3.5m respectively during neap and spring tide. The sampling strategy is based on continuous ADV acquisition at 4Hz coupled with turbidimeter and altimeter measurements (1 measurement every minute) in order to decipher sediment dynamics during one year. Our results indicate that sediment dynamics are controlled by river flow while medium term scale evolution is dependent on tidal range and short term dynamics on sea-vessels waves. 64% of boat passages generated significant sediment reworking (from few mm.min-1 to 3cm.min-1). This reworking rate is mainly controlled by two parameters: (i) water height on the site and (ii) vessels characteristics; in particular the distance between seabed and keel that generate a Bernoulli wave (with maximum amplitude of 0.6m). Simultaneous hydrodynamics and bed elevation measurements permit to quantify the impact of the boat generated wave. Measurements demonstrate that the sediment transport occurs during the Bernoulli wave (few mm up to 8cm). This mechanism induces mainly a long-shore transfer of particles over the interdal area. This study proves that the sediment transport generated by boat waves cannot be neglected in the Seine estuary case.
Davis, Edward D.
2004-09-01
Semiclassical transformation theory implies an integral representation for stationary-state wave functions {psi}{sub m}(q) in terms of angle-action variables ({theta},J). It is a particular solution of Schroedinger's time-independent equation when terms of order ({Dirac_h}/2{pi}){sup 2} and higher are omitted, but the preexponential factor A(q,{theta}) in the integrand of this integral representation does not possess the correct dependence on q. The origin of the problem is identified: the standard unitarity condition invoked in semiclassical transformation theory does not fix adequately in A(q,{theta}) a factor which is a function of the action J written in terms of q and {theta}. A prescription for an improved choice of this factor, based on successfully reproducing the leading behavior of wave functions in the vicinity of potential minima, is outlined. Exact evaluation of the modified integral representation via the residue theorem is possible. It yields wave functions which are not, in general, orthogonal. However, closed-form results obtained after Gram-Schmidt orthogonalization bear a striking resemblance to the exact analytical expressions for the stationary-state wave functions of the various potential models considered (namely, a Poeschl-Teller oscillator and the Morse oscillator)
Implications of the two nodal domains conjecture for ground state fermionic wave functions
NASA Astrophysics Data System (ADS)
Bressanini, Dario
2012-09-01
The nodes of many-body wave functions are mathematical objects important in many different fields of physics. They are at the heart of the quantum Monte Carlo methods but outside this field their properties are neither widely known nor studied. In recent years a conjecture, already proven to be true in several important cases, has been put forward related to the nodes of the fermionic ground state of a many-body system, namely that there is a single nodal hypersurface that divides configuration space into only two connected domains. While this is obviously relevant to the fixed node diffusion Monte Carlo method, its repercussions have ramifications in various fields of physics as diverse as density functional theory or Feynman and Cohen's backflow wave function formulation. To illustrate this we explicitly show that, even if we knew the exact Kohn-Sham exchange correlation functional, there are systems for which we would obtain the exact ground state energy and density but a wave function quite different from the exact one. This paradox is only apparent since the Hohenberg-Kohn theorem relates the energy directly to the density and the wave function is not guaranteed to be close to the exact one. The aim of this paper is to stimulate the investigation of the properties of the nodes of many-body wave functions in different fields of physics. Furthermore, we explicitly show that this conjecture is related to the phenomenon of avoided nodal crossing but it is not necessarily caused by electron correlation, as sometimes has been suggested in the literature. We explicitly build a many-body uncorrelated example whose nodal structure shows the same phenomenon.
Impact of Sedation on Cognitive Function in Mechanically Ventilated Patients.
Porhomayon, Jahan; El-Solh, Ali A; Adlparvar, Ghazaleh; Jaoude, Philippe; Nader, Nader D
2016-02-01
The practice of sedation dosing strategy in mechanically ventilated patient has a profound effect on cognitive function. We conducted a comprehensive review of outcome of sedation on mental health function in critically ill patients on mechanical ventilation in the intensive care unit (ICU). We specifically evaluated current sedative dosing strategy and the development of delirium, post-traumatic stress disorders (PTSDs) and agitation. Based on this review, heavy dosing sedation strategy with benzodiazepines contributes to cognitive dysfunction. However, outcome for mental health dysfunction is mixed in regard to newer sedatives agents such as dexmedetomidine and propofol. Moreover, studies that examine the impact of sedatives for persistence of PTSD/delirium and its long-term cognitive and functional outcomes for post-ICU patients are frequently underpowered. Most studies suffer from low sample sizes and methodological variations. Therefore, larger randomized controlled trials are needed to properly assess the impact of sedation dosing strategy on cognitive function. PMID:26559680
Electromagnetic wave emitting products and "Kikoh" potentiate human leukocyte functions.
Niwa, Y; Iizawa, O; Ishimoto, K; Jiang, X; Kanoh, T
1993-09-01
Tourmaline (electric stone, a type of granite stone), common granite stone, ceramic disks, hot spring water and human palmar energy (called "Kikoh" in Japan and China), all which emit electromagnetic radiation in the far infrared region (wavelength 4-14 microns). These materials were thus examined for effects on human leukocyte activity and on lipid peroxidation of unsaturated fatty acids. It was revealed that these materials significantly increased intracellular calcium ion concentration, phagocytosis, and generation of reactive oxygen species in neutrophils, and the blastogenetic response of lymphocytes to mitogens. Chemotactic activity by neutrophils was also enhanced by exposure to tourmaline and the palm of "Kikohshi" i.e., a person who heals professionally by the laying on of hands. Despite the increase in reactive oxygen species generated by neutrophils, lipid peroxidation from unsaturated fatty acid was markedly inhibited by these four materials. The results suggest that materials emitting electromagnetic radiation in the far infrared range, which are widely used in Japan for cosmetic, therapeutic, and preservative purposes, appear capable of potentiating leukocyte functions without promoting oxidative injury. PMID:8406976
Multi-functional Nanowire Evanescent Wave Optical Sensors
Sirbuly, Donald J.; Tao, Andrea; Law, Matt; Fan, Rong; Yang,Peidong
2006-10-18
Controlling the flow of photons through a fluidic media withsubwavelength optics is a major step towards the development of on-chipphotonic sensors. Central to this idea will be designing amulti-functional nanomaterial that can efficiently trap, route anddeliver light to various sensing channels, filters and detectors on aphotonic chip. Semiconductor nanowire waveguides offer an exceptionalsolution to the confinement of optical energy in solution and can bedirectly integrated into microfluidic devices. Here we demonstrate anovel optical sensing platform that utilizes the evanescent field of atin dioxide single crystalline waveguide to perform a wide array ofspectroscopic analyses including absorption, fluorescence and surfaceenhanced Raman on sub-picoliter probe volumes. Since the same waveguidecavity can transmit both broadband and monochromatic light it allowsmultiple modes of detection to be carried out on the same analyte. Tomove beyond less chemical specific optical techniques such as absorptionand fluorescence we exploit the amplified electric field around silvernanocubes to enhance the vibronic signatures of molecules present in theevanescent field. With excellent chemical resilience to strong acidicconditions, the waveguides can be completely cleaned from the attachedmetal nanoparticles making the devices fully reusable. These results openup the possibility of engineering self-contained, multiplexed photonicsensors that detect and identify chemical species in complex biologicaland environmental systems.
Molecular distorted-wave Born approximation for ionization of H2 by electron impact
NASA Astrophysics Data System (ADS)
Liu, Junbo; Liu, Dejun; Zhou, Yajun
2012-02-01
The molecular distorted-wave Born approximation is proposed to study the (e, 2e) reaction for H2 targets. The wave functions of the incoming and outgoing electrons are obtained by solving the Lippmann-Schwinger equations, and the T-matrix in the Lippmann-Schwinger equations is calculated in a momentum space static-exchange-optical model. Triple differential cross sections are computed for incident energies of 100 and 250 eV in coplanar asymmetric geometry. Comparison of the present calculated results with the available experimental data in the literature reveals that there is good agreement.
NASA Astrophysics Data System (ADS)
Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.
2013-12-01
Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (< 5 m) reefs as they drive most ecological and biogeochemical processes by exerting direct physical stress, directly mixing water (temperature and nutrients) and transporting sediments, nutrients and plankton. Reef flats are very effective at dissipating wave energy and providing an important ecosystem service by protecting highly valued shorelines. The effectiveness of reef flats to dissipate wave energy is related to the extreme hydraulic roughness of the benthos and substrate composition. Hydraulic roughness is usually obtained empirically from frictional-dissipation calculations, as detailed field measurements of bottom roughness (e.g. chain-method or profile gauges) is a very labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as global-scale degradation in coral reef health is causing a lowering of reef carbonate production that might lead to a decrease in reef structure and roughness.
NASA Astrophysics Data System (ADS)
Shalaby, A. M.
2016-01-01
Based on our previous work in PRD 89, 125023 (2014), we stress here (for the first time) the regularization of the spatial wave function for the ?-contact interaction within the relativistic Schrodinger equation. The D-dimensional inverse Fourier transform has been utilized to map the momentum-space wave function to the spatial one. To regularize the logarithmic blow up of the wave function as x ? 0, we employed the dimensional regularization technique. We assert that although the technique has been used here for the bound state only, the form of the scattering states in momentum space assures the reliability of the same technique to regularize the spatial scattering wave functions.
Scattering cluster wave functions on the lattice using the adiabatic projection method
NASA Astrophysics Data System (ADS)
Rokash, Alexander; Pine, Michelle; Elhatisari, Serdar; Lee, Dean; Epelbaum, Evgeny; Krebs, Hermann
2015-11-01
The adiabatic projection method is a general framework for studying scattering and reactions on the lattice. It provides a low-energy effective theory for clusters, which becomes exact in the limit of large Euclidean projection time. Previous studies have used the adiabatic projection method to extract scattering phase shifts from finite periodic-box energy levels using Lscher's method. In this paper we demonstrate that scattering observables can be computed directly from asymptotic cluster wave functions. For a variety of examples in one and three spatial dimensions, we extract elastic phase shifts from asymptotic cluster standing waves corresponding to spherical wall boundary conditions. We find that this approach of extracting scattering wave functions from the adiabatic Hamiltonian to be less sensitive to small stochastic and systematic errors as compared with using periodic-box energy levels.
More about the q-deformed H-atom wave functions: Normal and abnormal series
NASA Astrophysics Data System (ADS)
Song, Xing-Chang; Liao, Li
1994-01-01
The 3-dim quantum Euclidean space and the q-deformed Schroedinger equation are further investigated. The reality condition is taken into account by introducing the right derivatives as well as the left ones. It seems that from the properties of the q-derivatives, corresponding to a fixed 'energy level' there are infinitive numbers of q deformed wave functions. Among them only one belongs to the normal series, its radial wave function (rwf) has the same number of nodes as that of its classical counterpart. All others have more nodes in their rwf's, and then fall into the abnormal series. This is illustrated by solving the q-Schroedinger equation explicitly for the s-wave solutions.
Westermark, S; Nelson, E; Kinn, A C; Wiksell, H
1999-08-01
The aim of this study was to determine the impact of the aperture size of an electro-hydraulic lithotriptor on the fragmentation effect. We also wanted to investigate whether a potential change in the capacitance of the pulse forming network (PFN), at a certain energy level, might have an impact on fragmentation rate. Two different apertures with a diameter of 23 and 17 cm respectively were compared using two different values of total PFN capacitance: 50 nF and 80 nF. Model stones of similar size and weight were fragmented. The number of shots for complete fragmentation or the grade of fragmentation after a certain number of shots was measured. This study shows that for the shock wave system used, the 23-cm aperture seems to provide more effective fragmentation as function of the number of shots compared with the 17-cm aperture at the same energy level. Furthermore, a minor change in the PFN capacitance between reasonable limits does not affect the fragmentation efficiency. This article also highlights the fact that it is not relevant simply to compare the voltage level given in the shots in extracorporeal shock wave lithotripsy treatment between different lithotriptors. PMID:10460896
NASA Astrophysics Data System (ADS)
Engel, Max; Brckner, Helmut; Messenzehl, Karoline; Frenzel, Peter; May, Simon Matthias; Scheffers, Anja; Scheffers, Sander; Wennrich, Volker; Kelletat, Dieter
2012-10-01
Supralittoral coarse-clast deposits along the shores of Bonaire (Netherlands Antilles) as well as increased hurricane frequency during the past decade testify to the major hazard of high-energy wave impacts in the southern Caribbean. Since deducing certain events from the subaerial coarse-clast record involves major uncertainties and historical reports are restricted to the past 500 years, we use a new set of vibracore and push core data (i) to contribute to a more reliable Holocene history of regional extreme-wave events and (ii) to evaluate their impact on shoreline evolution. Multi-proxy palaeoenvironmental analyses (XRF, XRD, grain size distribution, carbonate, LOI, microfossils) were carried out using nearshore sedimentary archives from the sheltered western (leeward) side of Bonaire and its small neighbour Klein Bonaire. In combination with 14C-AMS age estimates the stratigraphy reflects a long-term coastal evolution controlled by relative sea level rise, longshore sediment transport, and short-term morphodynamic impulses by extreme wave action, all three of which may have significantly influenced the development of polyhaline lagoons and the demise of mangrove populations. Extreme wave events may be categorized into major episodic incidents (c. 3.6 ka [?] BP; 3.2-3.0 ka BP; 2.0-1.8 ka BP; post-1.3 ka [?] BP), which may correspond to tsunamis and periodic events recurring on the order of decades to centuries, which we interpret as severe tropical cyclones. Extreme wave events seem to control to a certain extent the formation of coastal ridges on Bonaire and, thus, to cause abrupt shifts in the long-term morphodynamic and ecological boundary conditions of the circumlittoral inland bays.
NASA Astrophysics Data System (ADS)
Hansen, Mikkel Bo; Christiansen, Ove; Httig, Christof
2009-10-01
Quadratic response functions are derived and implemented for a vibrational configuration interaction state. Combined electronic and vibrational quadratic response functions are derived using Born-Oppenheimer vibronic product wave functions. Computational tractable expressions are derived for determining the total quadratic response contribution as a sum of contributions involving both electronic and vibrational linear and quadratic response functions. In the general frequency-dependent case this includes a new and more troublesome type of electronic linear response function. Pilot calculations for the FH, H2O, CH2O, and pyrrole molecules demonstrate the importance of vibrational contributions for accurate comparison to experiment and that the vibrational contributions in some cases can be very large. The calculation of transition properties between vibrational states is combined with sum-over-states expressions for analysis purposes. On the basis of this some simple analysis methods are suggested. Also, a preliminary study of the effect of finite lifetimes on quadratic response functions is presented.
Functional Impacts of Adult Literacy Programme on Rural Women
ERIC Educational Resources Information Center
Mbah, Blessing Akaraka
2015-01-01
This study assessed the functional impacts of adult literacy programme among rural women participants in Ishielu Local Government Area (LGA) of Ebonyi State, Nigeria. Descriptive survey design was used for the study. The population of the study was made up of 115 adult instructors and 2,408 adult learners giving a total of 2,623. The sample…
Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media
Greens functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...
Three-Dimensional Visualization of Wave Functions for Rotating Molecule: Plot of Spherical Harmonics
ERIC Educational Resources Information Center
Nagaoka, Shin-ichi; Teramae, Hiroyuki; Nagashima, Umpei
2013-01-01
At an early stage of learning quantum chemistry, undergraduate students usually encounter the concepts of the particle in a box, the harmonic oscillator, and then the particle on a sphere. Rotational levels of a diatomic molecule can be well approximated by the energy levels of the particle on a sphere. Wave functions for the particle in a…
Alternative Form of the Hydrogenic Wave Functions for an Extended, Uniformly Charged Nucleus.
ERIC Educational Resources Information Center
Ley-Koo, E.; And Others
1980-01-01
Presented are forms of harmonic oscillator attraction and Coulomb wave functions which can be explicitly constructed and which lead to numerical results for the energy eigenvalues and eigenfunctions of the atomic system. The Schrodinger equation and its solution and specific cases of muonic atoms illustrating numerical calculations are included.…
Seniority number in spin-adapted spaces and compactness of configuration interaction wave functions.
Alcoba, Diego R; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Oa, Ofelia B
2013-08-28
This work extends the concept of seniority number, which has been widely used for classifying N-electron Slater determinants, to wave functions of N electrons and spin S, as well as to N-electron spin-adapted Hilbert spaces. We propose a spin-free formulation of the seniority number operator and perform a study on the behavior of the expectation values of this operator under transformations of the molecular basis sets. This study leads to propose a quantitative evaluation for the convergence of the expansions of the wave functions in terms of Slater determinants. The non-invariant character of the seniority number operator expectation value of a wave function with respect to a unitary transformation of the molecular orbital basis set, allows us to search for a change of basis which minimizes that expectation value. The results found in the description of wave functions of selected atoms and molecules show that the expansions expressed in these bases exhibit a more rapid convergence than those formulated in the canonical molecular orbital bases and even in the natural orbital ones. PMID:24006970
Adjustment of Born-Oppenheimer electronic wave functions to simplify close coupling calculations.
Buenker, Robert J; Liebermann, Heinz-Peter; Zhang, Yu; Wu, Yong; Yan, Lingling; Liu, Chunhua; Qu, Yizhi; Wang, Jianguo
2013-04-30
Technical problems connected with use of the Born-Oppenheimer clamped-nuclei approximation to generate electronic wave functions, potential energy surfaces (PES), and associated properties are discussed. A computational procedure for adjusting the phases of the wave functions, as well as their order when potential crossings occur, is presented which is based on the calculation of overlaps between sets of molecular orbitals and configuration interaction eigenfunctions obtained at neighboring nuclear conformations. This approach has significant advantages for theoretical treatments describing atomic collisions and photo-dissociation processes by means of ab initio PES, electronic transition moments, and nonadiabatic radial and rotational coupling matrix elements. It ensures that the electronic wave functions are continuous over the entire range of nuclear conformations considered, thereby greatly simplifying the process of obtaining the above quantities from the results of single-point Born-Oppenheimer calculations. The overlap results are also used to define a diabatic transformation of the wave functions obtained for conical intersections that greatly simplifies the computation of off-diagonal matrix elements by eliminating the need for complex phase factors. PMID:23345171
Wave functions and finite size effects in a two-dimensional lattice field theory
Thacker, H.B.
1985-06-01
A study of finite size corrections to the masses of fermions and bound states in the Baxter/massive Thirring/sine Gordon lattice field theory is discussed. It is shown that information on bound tate wave functions may be used to extrapolate Monte Carlo mass calculations to infinite volume. 10 refs., 4 figs.
Alternative Form of the Hydrogenic Wave Functions for an Extended, Uniformly Charged Nucleus.
ERIC Educational Resources Information Center
Ley-Koo, E.; And Others
1980-01-01
Presented are forms of harmonic oscillator attraction and Coulomb wave functions which can be explicitly constructed and which lead to numerical results for the energy eigenvalues and eigenfunctions of the atomic system. The Schrodinger equation and its solution and specific cases of muonic atoms illustrating numerical calculations are included.
NO EFFECT OF HYDRODYNAMIC SHOCK WAVE ON PROTEIN FUNCTIONALITY OF BEEF MUSCLE
Technology Transfer Automated Retrieval System (TEKTRAN)
The protein functionality of meat proteins after treatment with hydrodynamic shock wave was determined. Frankfurters (cooked to 71 deg C) were evaluated for cooking yield, CIE L*a*b*, nitrosylhemochrome, Texture Profile Analysis (hardness, cohesiveness), and stress and strain (torsion testing). Comp...
Muhlestein, Michael B; Gee, Kent L
2016-02-01
An exact formulation for the evolution of the probability density function of the time derivative of a waveform (slope density) propagating according to the one-dimensional inviscid Burgers equation is given. The formulation relies on the implicit Earnshaw solution and therefore is only valid prior to shock formation. As explicit examples, the slope density evolution of an initially sinusoidal plane wave, initially Gaussian-distributed planar noise, and an initially triangular wave are presented. The triangular wave is used to examine weak-shock limits without violating the theoretical assumptions. It is also shown that the moments of the slope density function as a function of distance may be written as an expansion in terms of the moments of the source slope density function. From this expansion, approximate expressions are presented for the above cases as well as a specific non-Gaussian noise case intended to mimic features of jet noise. Finally, analytical predictions of the propagation of initially Gaussian-distributed noise are compared favorably with plane-wave tube measurements. PMID:26936575
Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media
Green’s functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...
Three-Dimensional Visualization of Wave Functions for Rotating Molecule: Plot of Spherical Harmonics
ERIC Educational Resources Information Center
Nagaoka, Shin-ichi; Teramae, Hiroyuki; Nagashima, Umpei
2013-01-01
At an early stage of learning quantum chemistry, undergraduate students usually encounter the concepts of the particle in a box, the harmonic oscillator, and then the particle on a sphere. Rotational levels of a diatomic molecule can be well approximated by the energy levels of the particle on a sphere. Wave functions for the particle in a
NASA Astrophysics Data System (ADS)
Peng, Liang-You; Starace, Anthony F.
2006-10-01
We present an efficient and accurate grid method for solving the time-dependent Schrdinger equation for an atomic system interacting with an intense laser pulse. Instead of the usual finite difference (FD) method, the radial coordinate is discretized using the discrete variable representation (DVR) constructed from Coulomb wave functions. For an accurate description of the ionization dynamics of atomic systems, the Coulomb wave function discrete variable representation (CWDVR) method needs three to ten times fewer grid points than the FD method. The resultant grid points of the CWDVR are distributed unevenly so that one has a finer grid near the origin and a coarser one at larger distances. The other important advantage of the CWDVR method is that it treats the Coulomb singularity accurately and gives a good representation of continuum wave functions. The time propagation of the wave function is implemented using the well-known Arnoldi method. As examples, the present method is applied to multiphoton ionization of both the H atom and the H- ion in intense laser fields. The short-time excitation and ionization dynamics of H by an abruptly introduced static electric field is also investigated. For a wide range of field parameters, ionization rates calculated using the present method are in excellent agreement with those from other accurate theoretical calculations.
McAleavey, Stephen A.
2014-01-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5?MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency. PMID:24815265
McAleavey, Stephen A
2014-05-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5?MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency. PMID:24815265
Single impact crater functions for ion bombardment of silicon
Kalyanasundaram, N.; Ghazisaeidi, M.; Freund, J. B.; Johnson, H. T.
2008-03-31
The average effect of a single 500 eV incident argon ion on a silicon surface is studied using molecular dynamics simulations. More than 10{sup 3} ion impacts at random surface points are averaged for each of seven incidence angles, from 0 deg. to 28 deg. off normal, to determine a local surface height change function, or a crater function. The crater shapes are mostly determined by mass rearrangement; sputtering has a relatively small effect. Analytical fitting functions are provided for several cases, and may serve as input into kinetic Monte Carlo calculations or stability analyses for surfaces subjected to ion bombardment.
Probability Distribution Functions of freak-waves: nonlinear vs linear model
NASA Astrophysics Data System (ADS)
Kachulin, Dmitriy; Dyachenko, Alexander; Zakharov, Vladimir
2015-04-01
No doubts that estimation of probability of freak-wave appearing at the surface of ocean has practical meaning. Among different mechanisms of this phenomenon linear dispersion and modulational instability are generally recognized. For linear equation of water waves Probability Distribution Functions (PDF) can be calculated analytically and it is nothing but normal Gaussian distribution for surface elevation. Or it is Rayleigh distribution for absolute values of elevations. For nonlinear waves one can expect something different. In this report we consider and compare these two mechanism for various levels of nonlinearity. We present results of numerical experiments on calculation of Probability Distribution Functions for surface elevations of waters waves both for nonlinear and linear models. Both model demonstrates Rayleigh distribution of surface elevations. However dispersion of PDF for nonlinear case is much larger than for linear case. This work was supported by the Grant "Wave turbulence: theory, numerical simulation, experiment" #14-22-00174 of Russian Science Foundation. Numerical simulation was performed on the Informational Computational Center of the Novosibirsk State University.
NASA Astrophysics Data System (ADS)
Likhachev, V. N.; Astakhova, T. Yu.; Vinogradov, G. A.
2013-08-01
Considering the problem of multiple reflections of a wave function from the ends of a lattice, we observe an interesting phenomenon: the wave function amplitude is concentrated on the impurity center after reflections. The solution obtained by expanding the total wave function a(t) on the impurity center in the partial amplitudes ak(t), whose contributions become essential only after the kth reflection from the lattice end, seems to agree very well with the results of numerical modeling. We solve the problem of the capture of the wave function by an acceptor. The obtained results can be used to explain experimental data on charge transfer in artificial oligonucleotides and polypeptides. We find expressions for the electron capture probability in some limit cases, which can be considered estimates of the quantum output of the charge transport.
Neuropsychological function, anxiety, depression and pain impact in fibromyalgia patients.
Cuevas-Toro, Ana M; Lpez-Torrecillas, Francisca; Daz-Batanero, M Carmen; Prez-Marfil, M Nieves
2014-01-01
Cognitive deficits have a significant impact on the daily performance of fibromyalgia patients. This paper analyzes executive functioning and decision-making performance, and the relationships between these functions and pain, anxiety, depression and medication in fibromyalgia patients. A group of fibromyalgia patients (FG) (n = 85) was compared with a healthy control group (CG) (n = 85) in their performance in the Wisconsin Card Sorting Test (WCST) and the Iowa Gambling Task (IGT). In the WCST, results showed a percentage of non-perseverative errors significantly higher in the CG than in the FG (p = .026), the other variables (percentage of perseverative errors, number of categories and failures to maintain set) showed no significant differences. In relation to decision-making (IGT), once the rules had been learnt, the FG made fewer advantageous choices than the CG, but these differences were not statistically significant (p = .325). In the FG, pain severity (p = .010) and impact on daily activities (p = .016) interfered with decision-making, unlike anxiety, depression or medication, which did no relate to it. In executive function, pain and impact on daily activities were associated with the percentage of perseverative errors (p = .051) and the number of categories (p = .031), whereas pain severity was related to failures to maintain set (p = .039), indicative of increased distractibility and poor attentional ability. In conclusion, FG showed normal performance in executive functioning and decision-making. Moreover, pain was associated with neuropsychological functioning whereas anxiety, depression and medication were not. PMID:26054236
ERIC Educational Resources Information Center
Kalbfleisch, M. Layne; Loughan, Ashlee R.
2012-01-01
We examined the impact of IQ discrepancy (IQD) within (1) and above (1+) one standard deviation on executive function in HFA using the BRIEF. We hypothesized that IQD would benefit executive function. IQD 1 is hallmarked by deficits in BRIEF indices and subscales inhibit, shift, initiate, working memory, planning and organization, and monitor…
ERIC Educational Resources Information Center
Kalbfleisch, M. Layne; Loughan, Ashlee R.
2012-01-01
We examined the impact of IQ discrepancy (IQD) within (1) and above (1+) one standard deviation on executive function in HFA using the BRIEF. We hypothesized that IQD would benefit executive function. IQD 1 is hallmarked by deficits in BRIEF indices and subscales inhibit, shift, initiate, working memory, planning and organization, and monitor
Radio-wave emission due to hypervelocity impacts and its correlation with optical observations
NASA Astrophysics Data System (ADS)
Takano, T.; Maki, K.; Yamori, A.
This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency spectrum because of the spiky waveforms. The emission of the radio-waves is delayed from the optical events by several micro seconds. The optical phenomena are said to be mostly attributed to Bremstrahlung. The radio-wave phenomena are esteemed to be partially due to Bremstrahlung, but mainly due to other causes such as the heating effects of the targets or energy release from broken lattices of the targets.
NASA Astrophysics Data System (ADS)
Menendez, Melisa; Perez, Jorge; Cid, Alba; Castanedo, Sonia; Losada, Inigo; Medina, Raul; Mendez, Fernando
2015-04-01
Despite their outstanding relevance in coastal processes, a study of the sea surface dynamics due to atmospheric wind and pressure variations are rather limited in comparison with the mean sea level rise. Data of waves and surges along the European region are scarce and in-homogeneous, not only in terms of spatial coverage but also in terms of temporal coverage. This study presents two databases focused on a historical reconstruction of: (i) the wind-generated waves (GOW) and (ii) the meteorological sea level component (GOS). The GOW and GOS datasets cover the whole European coast (North Atlantic, North Sea, Baltic Sea, Mediterranean Sea and Black Sea) at high-spatial resolution from 1979 to present. The meteorological sea level component (storm surge) has been generated by the Regional Ocean Model System (ROMS). To take into account non-linear interactions between tides and surges, both dynamics were simulated jointly. Final results of meteorological component of sea level were obtained by subtracting the astronomical tide from the simulated sea surface. The model was set-up for Europe using an orthogonal grid, with a horizontal resolution ranging between 3.5 to 11 km. A spatial domain of approximately 5 km was used for the Black Sea. Local coastal waves can be the integrated result of the ocean surface over a large region of influence. GOW-Europe is designed from a multigrid approach based on the overlapping of two-way nested domains. The coarser spatial resolution along the European coast of GOW is 15 km. The generation and propagation of the sea surface waves of GOW-Europe are simulated with the model WAVEWATCH III v4.18. Effects of non-linear wave-wave interactions, whitecapping and depth-induced refraction are considered in the propagation model. In order to validate GOW and GOS over Europe with available observations, an exhaustive comparison with in-situ and remote measurements was developed. In-situ buoys and tide-gauges are used to compare hourly time series of surge sea level component and waves (significant wave height, period and direction) at coastal locations. Altimeter observations are also considered for a spatial validation of surge and wave heights. Results obtained from this validation process show a general good agreement with observations for the European region. Finally, the hourly time series of surge and wave climate along the European coast grid-points are analyzed. Historical changes in the waves and storm surge provide a useful information for coastal impact studies since coastal flooding, beach erosion, coastal structures and physical damages in ecosystems can be affected by long-term changes in wave climate and sea levels. Reguero, B. G., Menéndez, M., Méndez, F. J. Mínguez, R. Losada, I. J. (2012). A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Engineering, 65, 38-55. Cid, A., Castanedo, S., Abascal, A. J., Menéndez, M., & Medina, R. (2014). A high resolution hindcast of the meteorological sea level component for Southern Europe: the GOS dataset. Climate Dynamics, 1-18.
NASA Astrophysics Data System (ADS)
Goldstein, Sheldon; Lebowitz, Joel L.; Mastrodonato, Christian; Tumulka, Roderich; Zanghì, Nino
2016-03-01
A quantum system (with Hilbert space {H}1) entangled with its environment (with Hilbert space {H}2) is usually not attributed to a wave function but only to a reduced density matrix {ρ1}. Nevertheless, there is a precise way of attributing to it a random wave function {ψ1}, called its conditional wave function, whose probability distribution {μ1} depends on the entangled wave function {ψ in H1 ⊗ H2} in the Hilbert space of system and environment together. It also depends on a choice of orthonormal basis of H2 but in relevant cases, as we show, not very much. We prove several universality (or typicality) results about {μ1}, e.g., that if the environment is sufficiently large then for every orthonormal basis of H2, most entangled states {ψ} with given reduced density matrix {ρ1} are such that {μ1} is close to one of the so-called GAP (Gaussian adjusted projected) measures, {GAP(ρ1)}. We also show that, for most entangled states {ψ} from a microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies in a narrow interval {[E, E+ δ E]}) and most orthonormal bases of H2, {μ1} is close to {GAP({tr}2 ρ_{mc})} with {ρ_{mc}} the normalized projection to the microcanonical subspace. In particular, if the coupling between the system and the environment is weak, then {μ1} is close to {GAP(ρ_β)} with {ρ_β} the canonical density matrix on H1 at inverse temperature {β=β(E)}. This provides the mathematical justification of our claim in Goldstein et al. (J Stat Phys 125: 1193-1221, 2006) that GAP measures describe the thermal equilibrium distribution of the wave function.
NASA Astrophysics Data System (ADS)
Goldstein, Sheldon; Lebowitz, Joel L.; Mastrodonato, Christian; Tumulka, Roderich; Zangh, Nino
2015-12-01
A quantum system (with Hilbert space {{H}1} ) entangled with its environment (with Hilbert space {{H}2} ) is usually not attributed to a wave function but only to a reduced density matrix {?1} . Nevertheless, there is a precise way of attributing to it a random wave function {?1} , called its conditional wave function, whose probability distribution {?1} depends on the entangled wave function {? in {H}1 ? {H}2} in the Hilbert space of system and environment together. It also depends on a choice of orthonormal basis of {{H}2} but in relevant cases, as we show, not very much. We prove several universality (or typicality) results about {?1} , e.g., that if the environment is sufficiently large then for every orthonormal basis of {{H}2} , most entangled states {?} with given reduced density matrix {?1} are such that {?1} is close to one of the so-called GAP (Gaussian adjusted projected) measures, {GAP(?1)} . We also show that, for most entangled states {?} from a microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies in a narrow interval {[E, E+ ? E]} ) and most orthonormal bases of {{H}2} , {?1} is close to {GAP({tr}2 ?_{mc})} with {?_{mc}} the normalized projection to the microcanonical subspace. In particular, if the coupling between the system and the environment is weak, then {?1} is close to {GAP(?_?)} with {?_?} the canonical density matrix on {{H}1} at inverse temperature {?=?(E)} . This provides the mathematical justification of our claim in Goldstein et al. (J Stat Phys 125: 1193-1221, 2006) that GAP measures describe the thermal equilibrium distribution of the wave function.
Russo, Cesare; Jin, Zhezhen; Palmieri, Vittorio; Homma, Shunichi; Rundek, Tatjana; Elkind, Mitchell S.V.; Sacco, Ralph L.; Di Tullio, Marco R.
2012-01-01
Increased arterial stiffness and wave reflection have been reported in heart failure with normal ejection fraction (HFNEF) and in asymptomatic left ventricular (LV) diastolic dysfunction, a precursor of HFNEF. It is unclear whether women, who have higher frequency of HFNEF, are more vulnerable than men to the deleterious effects of arterial stiffness on LV diastolic function. We investigated in a large community-based cohort, whether sex differences exist in the relationship between arterial stiffness, wave reflection and LV diastolic function. Arterial stiffness and wave reflection were assessed in 983 participants from the Cardiovascular Abnormalities and Brain Lesions (CABL) study using applanation tonometry. Central pulse pressure/stroke volume index (cPP/SVi), total arterial compliance, pulse pressure amplification and augmentation index were used as parameters of arterial stiffness and wave reflection. LV diastolic function was evaluated by two-dimensional echocardiography and tissue-Doppler imaging. Arterial stiffness and wave reflection were greater in women compared to men, independent of body size and heart rate (all p<0.01), and showed inverse relationships with parameters of diastolic function in both sexes. Further adjustment for cardiovascular risk factors attenuated these relationships; however, higher cPP/SVi predicted LV diastolic dysfunction in women [odds ratio (OR) 1.54, 95% confidence intervals (CI) 1.032.30] and men (OR: 2.09, 95% CI 1.303.39) independent of other risk factors. In conclusion, in our community-based cohort study, higher arterial stiffness was associated with worse LV diastolic function in men and women. Womens higher arterial stiffness, independent of body size, may contribute to their greater susceptibility to develop HFNEF. PMID:22753223
Cuypers, Yannis; Vinon-Leite, Brigitte; Groleau, Alexis; Tassin, Bruno; Humbert, Jean-Franois
2011-01-01
The vertical and horizontal distribution of the cyanobacterium, Planktothrix rubescens, was studied in a deep alpine lake (Lac du Bourget) in a 2-year monitoring program with 11 sampling points, and a 24-h survey at one sampling station. This species is known to proliferate in the metalimnic layer of numerous deep mesotrophic lakes in temperate areas, and also to produce hepatotoxins. When looking at the distribution of P. rubescens at the scale of the entire lake, we found large variations (up to 10?m) in the depth of the biomass peak in the water column. These variations were closely correlated to isotherm displacements. We also found significant variations in the distribution of the cyanobacterial biomass in the northern and southern parts of the lake. We used a physical modeling approach to demonstrate that two internal wave modes can explain these variations. Internal waves are generated by wind events, but can still be detected several days after the end of these events. Finally, our 24-h survey at one sampling point demonstrated that the V1H1 sinusoidal motion could evolve into nonlinear fronts. All these findings show that internal waves have a major impact on the distribution of P. rubescens proliferating in the metalimnic layer of a deep lake, and that this process could influence the growth of this species by a direct impact on light availability. PMID:21085197
Pedemonte, Marisa; Testa, Martn; Daz, Marcela; Surez-Bagnasco, Diego
2014-09-01
Based on the knowledge that sensory processing continues during sleep and that a relationship exists between sleep and learning, a new strategy for treatment of idiopathic subjective tinnitus, consisted of customized sound stimulation presented during sleep, was tested. It has been previously shown that this treatment induces a sustained decrease in tinnitus intensity; however, its effect on brain activity has not yet been studied. In this work, we compared the impact of sound stimulation in tinnitus patients in the different sleep stages. Ten patients with idiopathic tinnitus were treated with sound stimulation mimicking tinnitus during sleep. Power spectra and intra- and inter-hemispheric coherence of electroencephalographic waves from frontal and temporal electrodes were measured with and without sound stimulation for each sleep stage (stages N2 with sleep spindles; N3 with slow wave sleep and REM sleep with Rapid Eye Movements). The main results found were that the largest number of changes, considering both the power spectrum and wave?s coherence, occurred in stages N2 and N3. The delta and theta bands were the most changed, with important changes also in coherence of spindles during N2. All changes were more frequent in temporal areas. The differences between the two hemispheres do not depend, at least exclusively, on the side where the tinnitus is perceived and, hence, of the stimulated side. These results demonstrate that sound stimulation during sleep in tinnitus patients? influences brain activity and open an avenue for investigating the mechanism underlying tinnitus and its treatment. PMID:26483919
NASA Astrophysics Data System (ADS)
Nyblade, A.; Hansen, S. E.; Heeszel, D. S.; Wiens, D. A.; Shore, P.; Kanao, M.
2010-12-01
The Gamburtsev Subglacial Mountains (GSM), located in central East Antarctica, are one of the most enigmatic tectonic features on Earth. Buried beneath several kilometers of ice, the mountains are characterized by peak elevations reaching ~3000 m above sea level. Until recently, only limited constraints were available on the crustal and upper mantle structure of the GSM but new data from the Gamburtsev Antarctic Mountains Seismic Experiment (GAMSEIS) allows for more detailed investigations. In this study, we use S-wave receiver functions and Rayleigh wave phase velocities to analyze data from the GAMSEIS deployment and to improve estimates of crustal thickness beneath the East Antarctic craton and the GSM. Our results indicate that the cratonic crust surrounding the GSM is ~40-45 km thick, which agrees well with previous studies and is consistent with average Precambrian crustal thickness found globally. Beneath the GSM, the crust thickens to ~55-58 km and provides isostatic support for the high mountain elevations. It has been suggested that thicker crust beneath the GSM may reflect magmatic underplating associated with a mantle plume. However, considering our results with those from other previous and ongoing studies, we instead favor models in which the GSM are an old continental feature associated with either Proterozoic or Paleozoic tectonic events.
NASA Astrophysics Data System (ADS)
Hansen, Samantha E.; Nyblade, Andrew A.; Heeszel, David S.; Wiens, Douglas A.; Shore, Patrick; Kanao, Masaki
2010-12-01
The Gamburtsev Subglacial Mountains (GSM), located in central East Antarctica, are one of the most enigmatic tectonic features on Earth. Buried beneath several kilometers of ice, the mountains are characterized by peak elevations reaching ~ 3000 m above sea level. In this study, new data from the Gamburtsev Antarctic Mountains Seismic Experiment (GAMSEIS) are presented, which substantially improve constraints on the crustal and upper mantle structure in this region. S-wave receiver functions and Rayleigh wave phase velocities are used to analyze data from the GAMSEIS deployment and to improve estimates of crustal thickness beneath the East Antarctic craton and the GSM. Our results indicate that the cratonic crust surrounding the GSM is ~ 40-45 km thick. Beneath the GSM, the crust thickens to ~ 55-58 km and provides isostatic support for the high mountain elevations. It has been suggested that thicker crust beneath the GSM may reflect magmatic underplating associated with a mantle plume. However, considering our results with those from other previous and ongoing studies, we instead favor models in which the GSM are an old continental feature associated with either Proterozoic or Paleozoic tectonic events.
The impact of consecutive freshwater trimix dives at altitude on human cardiovascular function.
Lozo, Mislav; Madden, Dennis; Gunjaca, Grgo; Ljubkovic, Marko; Marinovic, Jasna; Dujic, Zeljko
2015-03-01
Self-contained underwater breathing apparatus (SCUBA) diving is regularly associated with numerous asymptomatic changes in cardiovascular function. Freshwater SCUBA diving presents unique challenges compared with open sea diving related to differences in water density and the potential for dive locations at altitude. The aim of this study was to evaluate the impact of freshwater trimix diving at altitude on human cardiovascular function. Ten divers performed two dives in consecutive days at 294 m altitude with the surface interval of 24 h. Both dives were at a depth of 45 m with total dive time 29 and 26 min for the first and second dive, respectively. Assessment of venous gas embolization, hydration status, cardiac function and arterial stiffness was performed. Production of venous gas emboli was low, and there were no significant differences between the dives. After the first dive, diastolic blood pressure was significantly reduced, which persisted up to 24 h. Left ventricular stroke volume decreased, and heart rate increased after both dives. Pulse wave velocity was unchanged following the dives. However, the central and peripheral augmentation index became more negative after both dives, indicating reduced wave reflection. Ejection duration and round trip travel time were prolonged 24 h after the first dive, suggesting longer-lasting suppression of cardiac and endothelial function. This study shows that freshwater trimix dives with conservative profiles and low venous gas bubble loads can result in multiple asymptomatic acute cardiovascular changes some of which were present up to 24 h after dive. PMID:24528802
Wave functions constructed from an invariant sum over histories satisfy constraints
NASA Astrophysics Data System (ADS)
Halliwell, Jonathan J.; Hartle, James B.
1991-02-01
Invariance of classical equations of motion under a group parametrized by functions of time implies constraints between canonical coordinates and momenta. In the Dirac formulation of quantum mechanics, invariance is normally imposed by demanding that physical wave functions are annihilated by the operator versions of these constraints. In the sum-over-histories quantum mechanics, however, wave functions are specified, directly, by appropriate functional integrals. It therefore becomes an interesting question whether the wave functions so specified obey the operator constraints of the Dirac theory. In this paper, we show for a wide class of theories, including gauge theories, general relativity, and first-quantized string theories, that wave functions constructed from a sum over histories are, in fact, annihilated by the constraints provided that the sum over histories is constructed in a manner which respects the invariance generated by the constraints. By this we mean a sum over histories defined with an invariant action, invariant measure, and an invariant class of paths summed over. We use this result to give three derivations of the Wheeler-DeWitt equation for the wave function of the universe starting from the sum-over-histories representation of it. The first uses Becchi-Rouet-Stora-Tyutin methods and the explicit path-integral construction of Batalin, Fradkin, and Vilkovisky. The second is a direct derivation from the gauge-fixed Hamiltonian path integral. The third exploits the embedding variables introduced by Isham and Kucha?, in terms of which the connection with the constraints representing the four-dimensional diffeomorphism group is most clearly seen. In each case it is found that the symmetry leading to the Wheeler-DeWitt equation is not in fact four-dimensional diffeomorphism invariance; rather, it is the closely connected but slightly larger canonical symmetry of the Hamiltonian form of the action of general relativity. By allowing our path-integral construction to be either Euclidean or Lorentzian, we show that the consequent Wheeler-DeWitt equation is independent of which one is taken as a starting point. Our results are general, in that they do not depend on a particular representation of the sum over histories, but they are also formal, in that we do not address such issues as the operator ordering of the derived constraints. Instead, we isolate those general features of a sum over histories which define an invariant construction of a wave function and show that these imply the operator constraints.
An expansion of continuum wave functions in terms of resonant states (II). Solvable models
NASA Astrophysics Data System (ADS)
Garcia-Calderon, Gaston; Rubio, Alberto
1986-10-01
This paper applies the formalism developed in part I which provides a purely discrete expansion for a continuum wave solution of the Schrdinger equation in terms of resonant states along the interior region of a finite range interaction. We consider two exactly solvable models for several values of the distance and momenta on and off resonance. Our results are compared with a recent approach by Bang and collaborators which involves subtraction terms. It is found that along the internal region the subtraction terms are not in general negligible. Our work substantiates an expression for the continuum wave function near resonance. We also obtain an equation for time delay in terms of resonant states.
Quantum diffusion wave-function approach to two-dimensional vibronic spectroscopy.
Wehner, Johannes; Falge, Mirjam; Strunz, Walter T; Engel, Volker
2014-10-01
We apply the quantum diffusion wavefunction approach to calculate vibronic two-dimensional (2D) spectra. As an example, we use a system consisting of two electronic states with harmonic oscillator potentials which are coupled to a bath and interact with three time-delayed laser pulses. The first- and second-order perturbative wave functions which enter into the expression for the third-order polarization are determined for a sufficient number of stochastic runs. The wave-packet approach, besides being an alternative technique to calculate the spectra, offers an intuitive insight into the dissipation dynamics and its relation to the 2D vibronic spectra. PMID:25296805
Quantum diffusion wave-function approach to two-dimensional vibronic spectroscopy
Wehner, Johannes; Falge, Mirjam; Engel, Volker; Strunz, Walter T.
2014-10-07
We apply the quantum diffusion wavefunction approach to calculate vibronic two-dimensional (2D) spectra. As an example, we use a system consisting of two electronic states with harmonic oscillator potentials which are coupled to a bath and interact with three time-delayed laser pulses. The first- and second-order perturbative wave functions which enter into the expression for the third-order polarization are determined for a sufficient number of stochastic runs. The wave-packet approach, besides being an alternative technique to calculate the spectra, offers an intuitive insight into the dissipation dynamics and its relation to the 2D vibronic spectra.
Quantum diffusion wave-function approach to two-dimensional vibronic spectroscopy
NASA Astrophysics Data System (ADS)
Wehner, Johannes; Falge, Mirjam; Strunz, Walter T.; Engel, Volker
2014-10-01
We apply the quantum diffusion wavefunction approach to calculate vibronic two-dimensional (2D) spectra. As an example, we use a system consisting of two electronic states with harmonic oscillator potentials which are coupled to a bath and interact with three time-delayed laser pulses. The first- and second-order perturbative wave functions which enter into the expression for the third-order polarization are determined for a sufficient number of stochastic runs. The wave-packet approach, besides being an alternative technique to calculate the spectra, offers an intuitive insight into the dissipation dynamics and its relation to the 2D vibronic spectra.
Preliminary Results for Crustal Structure in Southeastern Africa from P-wave Receiver Functions
NASA Astrophysics Data System (ADS)
Kachingwe, M.; Nyblade, A.; Mulibo, G. D.; Mulowezi, A.; Kunkuta, E.; De Magalhes, V.; Wiens, D. A.; Wysession, M. E.; Julia, J.
2013-12-01
The crustal structure of southeastern Africa is investigated by modeling P-wave receiver functions using H-k stacking and joint inversion methods. P-wave receiver functions are analyzed for 29 broadband seismic stations in Zambia, Malawi and Mozambique. Estimates for the Moho depth and Poisson's ratio are determined from H-k stacking, and estimates for the shear wave velocity are determined by the joint inversion of receiver functions and surface wave dispersion. Preliminary results show that Moho depths beneath southeastern Africa range from 32 km to 51 km. Thicker crust is found in Proterozoic terrains, such as the Irumide Belt, while thinner crust is found in reworked Archean terrains, such as the Bangweulu Block. These results are consistent with previous studies and global averages for Precambrian terrains. The preliminary results also show a range of Poisson's ratios from 0.2 to 0.3. These new results for southeastern Africa are being combined with similar results from elsewhere in eastern and southern Africa to improve our understanding of African crustal structure.
Preliminary Results for Crustal Structure in Southeastern Africa from P-wave Receiver Functions
NASA Astrophysics Data System (ADS)
Kachingwe, M.; Nyblade, A.; Mulibo, G.; Mulowezi, A.; Kunkuta, E.; De Magalhes, V.; Wysession, M. E.; Wiens, D. A.; Julia, J.
2012-12-01
The crustal structure of southeastern Africa is investigated by modeling P-wave receiver functions using H-k stacking and joint inversion methods. P-wave receiver functions are analyzed for 29 broadband seismic stations in Zambia, Malawi and Mozambique. Estimates for the Moho depth and Poisson's ratio are determined from H-k stacking, and estimates for the shear wave velocity are determined by the joint inversion of receiver functions and surface wave dispersion. Preliminary results show that Moho depths beneath southeastern Africa range from 32 km to 51 km. Thicker crust is found in Proterozoic terrains, such as the Irumide Belt, while thinner crust is found in reworked Archean terrains, such as the Bangweulu Block. These results are consistent with previous studies and global averages for Precambrian terrains. The preliminary results also show a range of Poisson's ratios from 0.2 to 0.3. These new results for southeastern Africa are being combined with similar results from elsewhere in eastern and southern Africa to improve our understanding of African crustal structure.
Short and Long Wave Radiative Forcing from Desert Dust and Impacts on Weather and Climate
NASA Astrophysics Data System (ADS)
Kallos, G.; Spyrou, C.; Mitsakou, C.
2009-04-01
The presence of desert dust in the atmosphere has considerable impacts on radiative transfer, clouds and precipitation. Desert dust is a considerable climate modifier. The impacts of desert dust to land and marine ecosystems are considerable as well in humans. Modeling tools have been developed for studying the dust cycle in both global and regional scales. The uncertainties associated with the dust production, transport and deposition processes are still high for various reasons. Most of them are associated with the surface properties and dust production as well as with the radiative forcing parameterization. Modeling the impacts on radiation and cloud is a complicated task that is either oversimplified or absent in most of the dust models. Radiative transfer corrections due to the presence of dust particles for the incoming solar radiation can be applied (shading effects) by utilizing look up tables in the calculation of Aerosol Optical Depth (AOD). The impacts of dust on long wave radiation transfer are more complicated. A new version of the SKIRON/Dust modeling system incorporates the Rapid Radiative Transfer Model - RRTM for both short and long wave radiation. The new radiative transfer scheme has many properties that allow the partitioning of both short and long wave radiation according to the dust concentration and size distribution. In this presentation we discuss the new model characteristics and especially the dust radiative properties as described by both: lookup tables and empirical formulation as well as the new approach by utilizing RRTM. Several cases with dust outbreaks in the Mediterranean and Europe have been analyzed. Heating rates of 2-10 degrees K/day (or even higher in cases of a strong episode) have been calulated within the dust layer. The model results are compared with soundings, lidar and AERONET observations. As it was found, the dust cloud has as a result the surface cooling of 50-80 Wm-2 in remote locations. Near the source areas is double or even triple to these amounts. The long wave radiation forcing below and above the dust cloud is considerable and results in mid and low tropospheric warming that has as impact the stabilization of the atmosphere and reduction of precipitation.
Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force
Akbaş, Şeref Doğuşcan
2014-01-01
This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050
Wave propagation analysis of edge cracked circular beams under impact force.
Akba?, ?eref Do?u?can
2014-01-01
This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin-Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050
Ptuskin, V.S.; Moskalenko, Igor V.; Jones, F.C.; Strong, A.W.; Zirakashvili, V.N.; /Troitsk, IZMIRAN /Heidelberg, Max Planck Inst. Astron.
2006-01-17
The physical processes involved in diffusion of Galactic cosmic rays in the interstellar medium are addressed. We study the possibility that the nonlinear MHD cascade sets the power-law spectrum of turbulence which scatters charged energetic particles. We find that the dissipation of waves due to the resonant interaction with cosmic ray particles may terminate the Kraichnan-type cascade below wavelengths 10{sup 13} cm. The effect of this wave dissipation has been incorporated in the GALPROP numerical propagation code in order to asses the impact on measurable astrophysical data. The energy-dependence of the cosmic-ray diffusion coefficient found in the resulting self-consistent model may explain the peaks in the secondary to primary nuclei ratios observed at about 1 GeV/nucleon.
Modeling the ionospheric impact of tsunami-driven gravity waves with SAMI3: Conjugate effects
NASA Astrophysics Data System (ADS)
Huba, J. D.; Drob, D. P.; Wu, T.-W.; Makela, J. J.
2015-07-01
The Naval Research Laboratory first-principles ionosphere model SAMI3 is used to study the ionospheric effects associated with tsunami-driven gravity waves. Specifically, the Tohoku-Oki tsunami of 11 March 2011 is modeled. It is shown that gravity wave-induced variations in the neutral wind lead to plasma velocity variations both perpendicular and parallel to the geomagnetic field. Moreover, the electric field induced by the neutral wind perturbations can map to the conjugate hemisphere. Thus, electron density variations can be generated in both hemispheres which impact the total electron content (TEC) and 6300 airglow emission. It is found that the TEC exhibits variations of ? 0.1 total electron content unit (1 TECU = 1016 el m-2) and the 6300 airglow emission variation is up to 2.5% relative to the unperturbed background airglow.
Closed Bosonic String Partition Function in Time Independent Exact pp-WAVE Background
NASA Astrophysics Data System (ADS)
Hatzinikitas, Agapitos; Smyrnakis, Ioannis
The modular invariance of the one-loop partition function of the closed bosonic string in four dimensions in the presence of certain homogeneous exact pp-wave backgrounds is studied. In the absence of an axion field, the partition function is found to be modular invariant and equal to the free field partition function. The partition function remains unchanged also in the presence of a fixed axion field. However, in this case, the covariant form of the action suggests summation over all possible twists generated by the axion field. This is shown to modify the partition function. In the light-cone gauge, the axion field generates twists only in the worldsheet ?-direction, so the resulting partition function is not modular invariant, hence wrong. To obtain the correct partition function one needs to sum over twists in the t-direction as well, as suggested by the covariant form of the action away from the light-cone gauge.
Dust heating by Alfvn waves using non-Maxwellian distribution function
NASA Astrophysics Data System (ADS)
Zubia, K.; Shah, H. A.; Yoon, P. H.
2015-08-01
Quasilinear theory is employed in order to evaluate the resonant heating rate by Alfvn waves, of multiple species dust particles in a hot, collisionless, and magnetized plasma, with the underlying assumption that the dust velocity distribution function can be modeled by a generalized (r, q) distribution function. The kinetic linear dispersion relation for the electromagnetic dust cyclotron Alfvn waves is derived, and the dependence of the heating rate on the magnetic field, mass, and density of the dust species is subsequently investigated. The heating rate and its dependence on the spectral indices r and q of the distribution function are also investigated. It is found that the heating is sensitive to negative value of spectral index r.
Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model
NASA Astrophysics Data System (ADS)
Kohmoto, Mahito; Sutherland, Bill; Tang, Chao
1987-01-01
The electronic properties of a tight-binding model which possesses two types of hopping matrix element (or on-site energy) arranged in a Fibonacci sequence are studied. The wave functions are either self-similar (fractal) or chaotic and show ``critical'' (or ``exotic'') behavior. Scaling analysis for the self-similar wave functions at the center of the band and also at the edge of the band is performed. The energy spectrum is a Cantor set with zero Lebesque measure. The density of states is singularly concentrated with an index αE which takes a value in the range [αminE,αmaxE]. The fractal dimensions f(αE) of these singularities in the Cantor set are calculated. This function f(αE) represents the global scaling properties of the Cantor-set spectrum.
The Phase-Amplitude (Ph-A) representation of a wave function, revisited
NASA Astrophysics Data System (ADS)
Rawitscher, George
2014-05-01
A very attractive feature of the Ph-A description ?(r) = y(r) sin(? (r)) is the slowly varying monotonic nature of both the amplitude y(r) and the phase ?(r) as a function of distance r, even though the wave function may be highly oscillatory. The solution of Milne's non-linear equation for y(r) is done iteratively, using a spectral representation for y in terms of Chebyshev polynomials. For an example with a long range potential of the form 1/r3, an accuracy of better than 1% is achieved over a radial interval from 0 to 3000 units of length, requiring only 64 mesh points. Advantages of the Ph-A representation are a) the storage memory compression, b) the calculation of a scattering wave function for very long range potentials, and c) the economy in the calculation of overlap matrix elements under certain conditions.
NASA Astrophysics Data System (ADS)
Bradlyn, Barry; Read, N.
2015-04-01
We show that the topological central charge of a topological phase can be directly accessed from the ground-state wave functions for a system on a surface as a Berry curvature produced by adiabatic variation of the metric on the surface, at least up to addition of another topological invariant that arises in some cases. For trial wave functions that are given by conformal blocks (chiral correlation functions) in a conformal field theory (CFT), we carry out this calculation analytically, using the hypothesis of generalized screening. The topological central charge is found to be that of the underlying CFT used in the construction, as expected. The calculation makes use of the gravitational anomaly in the chiral CFT. It is also shown that the Hall conductivity can be obtained in an analogous way from the U(1) gauge anomaly.
Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media
Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.
2009-01-01
Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.
Comparative study of different SPH schemes on simulating violent water wave impact flows
NASA Astrophysics Data System (ADS)
Zheng, Xing; Ma, Qing-wei; Duan, Wen-yang
2014-12-01
Free surface flows are of significant interest in Computational Fluid Dynamics (CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge for many CFD techniques. Smoothed Particle Hydrodynamics (SPH) has been reported as a robust and reliable method for simulating violent free surface flows. Weakly compressible SPH (WCSPH) uses an equation of state with a large sound speed, and the results of the WCSPH can induce a noisy pressure field and spurious oscillation of pressure in time history for wave impact problem simulation. As a remedy, the truly incompressible SPH (ISPH) technique was introduced, which uses a pressure Poisson equation to calculate the pressure. Although the pressure distribution in the whole field obtained by ISPH is smooth, the stability of the techniques is still an open discussion. In this paper, a new free surface identification scheme and solid boundary handling method are introduced to improve the accuracy of ISPH. This modified ISPH is used to study dam breaking flow and violent tank sloshing flows. On the comparative study of WCSPH and ISPH, the accuracy and efficiency are assessed and the results are compared with the experimental data.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves.
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-01-01
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206
Wave function of a microwave-driven Bose-Einstein magnon condensate
Rezende, Sergio M.
2010-01-01
It has been observed experimentally that a magnon gas in a film of yttrium-iron garnet at room temperature driven by a microwave field exhibits Bose-Einstein condensation (BEC) when the driving power exceeds a critical value. In a previous paper we presented a model for the dynamics of the magnon system in wave-vector space that provides firm theoretical support for the formation of the BEC. Here we show that the wave function of the magnon condensate in configuration space satisfies a Gross-Pitaevskii equation similarly to other BEC systems. The theory is consistent with the previous model in wave-vector space, and its results are in qualitative agreement with recent measurements of the spatial distribution of the magnon condensate driven by a nonuniform microwave field.
A Proton-cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind
NASA Astrophysics Data System (ADS)
Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Viñas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; Zurbuchen, T. H.
2016-03-01
We use audification of 0.092 s cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes \\gt 0.1 nT near the ion gyrofrequency (∼0.1 Hz) with duration longer than 1 hr during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.
Delta shock waves with Dirac delta function in both components for systems of conservation laws
NASA Astrophysics Data System (ADS)
Yang, Hanchun; Zhang, Yanyan
2014-12-01
We study a class of non-strictly and weakly hyperbolic systems of conservation laws which contain the equations of geometrical optics as a prototype. The Riemann problems are constructively solved. The Riemann solutions include two kinds of interesting structures. One involves a cavitation where both state variables tend to zero forming a singularity, the other is a delta shock wave in which both state variables contain Dirac delta function simultaneously. The generalized Rankine-Hugoniot relation and entropy condition are proposed to solve the delta shock wave. Moreover, with the limiting viscosity approach, we show all of the existence, uniqueness and stability of solution involving the delta shock wave. The generalized Rankine-Hugoniot relation is also confirmed. Then our theory is successfully applied to two typical systems including the geometric optics equations. Finally, we present the numerical results coinciding with the theoretical analysis.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-01-01
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206
Full-wave Simulations of ICRF heating in toroidal plasma with non-Maxwellian distribution functions
NASA Astrophysics Data System (ADS)
Valeo, E. J.; Phillips, C. K.; Okuda, H.; Wright, J. C.; Bonoli, P. T.; Berry, L. A.
2006-10-01
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely, with consequent changes in wave propagation and the location and amount of absorption. As part of the RF SciDAC effort to achieve the capability to self-consistently compute wave-plasma interactions, the FLR, full-wave, hot-plasma, toroidal simulation code, TORIC has been extended to allow prescription of arbitrary distributions of the form f(v,,). Initial simulation results for several choices, including slowing-down distributions (v-3 for |v/vth| >> 1 ), bi-Maxwellians, and distributions with a plateau at high energy will be presented. M. Brambilla, Plasma Phys. Control. Fusion 41 (1999) 1-34
The Impact of Heat Islands on Mortality in Paris during the August 2003 Heat Wave
Zeghnoun, Abdelkrim; Dousset, Bndicte; Bretin, Philippe; Vandentorren, Stphanie; Giraudet, Emmanuel; Beaudeau, Pascal
2011-01-01
Background: Heat waves have a drastic impact on urban populations, which could increase with climate change. Objectives: We evaluated new indicators of elderly peoples exposure to heat in Paris, from a public health prevention perspective, using satellite thermal images. Methods: We used a time series of 61 images from the satellites of the National Oceanic and Atmospheric Administrations (NOAA) Advanced Very High Resolution Radiometer (AVHRR) taken from 1 to 13 August 2003 to produce thermal indicators of minimum, maximum, and mean surface temperatures and diurnal temperature amplitude, with different lags between the meteorological data and the health impact. Health data came from a casecontrol study involving 241 people ? 65 years of age who died in the city of Paris or the nearby suburban area of Val-de-Marne during the August 2003 heat wave, and 241 controls who were matched to cases on age, sex, and residential zone. For each person, we integrated the thermal indicators in a conditional logistic regression model, adjusted for age and other potential confounders. We computed odds ratios (ORs) comparing the 90th and 50th percentiles of the temperature differences between cases and controls for various indicators. Results: Mortality risk was significantly associated with exposure for two indicators: minimum temperatures averaged for 113 August [for a 0.41C increase, OR = 2.17; 95% confidence interval (CI): 1.14, 4.16] and minimum temperature averaged on the day of death and the 6 preceding days (for a 0.51C increase: OR = 2.24; 95% CI: 1.03, 4.87). Conclusions: Our results support the influence of night temperatures on the health impact of heat waves in urban areas. Urban heat exposure indicators based on satellite imagery have the potential to identify areas with higher risk of death, which could inform intervention decisions by key stakeholders. PMID:21885383
Exploration of Brueckner orbital trial wave functions in diffusion Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Deible, Michael J.; Jordan, Kenneth D.
2016-01-01
This study explores the utility of Brueckner orbitals as trial wave functions for diffusion Monte Carlo (DMC) calculations. Comparison is made with Hartree-Fock (HF) and density functional theory (DFT) orbitals allowing for an assessment of how well the three sets of orbitals describe the nodal surfaces. For the neutral test systems, PBE0 orbitals or Brueckner orbitals give DMC energies that are appreciably lower than those obtained using Hartree-Fock orbitals. For a CO2- anion test case, a significantly lower DMC energy is obtained when using Brueckner orbitals rather than DFT orbitals as the trial function.
Assessments of Arterial Stiffness and Endothelial Function Using Pulse Wave Analysis
Stoner, Lee; Young, Joanna M.; Fryer, Simon
2012-01-01
Conventionally, the assessments of endothelial function and arterial stiffness require different sets of equipment, making the inclusion of both tests impractical for clinical and epidemiological studies. Pulse wave analysis (PWA) provides useful information regarding the mechanical properties of the arterial tree and can also be used to assess endothelial function. PWA is a simple, valid, reliable, and inexpensive technique, offering great clinical and epidemiological potential. The current paper will outline how to measure arterial stiffness and endothelial function using this technique and include discussion of validity and reliability. PMID:22666595
Expansion of X-ray form factor for close shell using uncorrelated wave function
AL-Robayi, Enas M.
2013-12-16
The atomic scattering factor has been studied for Be+ve, and B+2ve ions using the uncorrelated wave function (Hartree-Fock (HF)) for inter particle electronic shells. The physical importance of this factor appears in its relation to several important atomic properties as, the coherent scattering intensity, the total scattering intensity, the incoherent scattering function, the coherent scattering cross section, the total incoherent cross section, the nuclear magnetic shielding constant, the geometrical structure factor. Also there is one atomic properties the one particle radial density distribution function D(r)has been studied using the partitioning technique.
Pathways and functions of gut microbiota metabolism impacting host physiology.
Krishnan, Smitha; Alden, Nicholas; Lee, Kyongbum
2015-12-01
The bacterial populations in the human intestine impact host physiological functions through their metabolic activity. In addition to performing essential catabolic and biotransformation functions, the gut microbiota produces bioactive small molecules that mediate interactions with the host and contribute to the neurohumoral axes connecting the intestine with other parts of the body. This review discusses recent progress in characterizing the metabolic products of the gut microbiota and their biological functions, focusing on studies that investigate the responsible bacterial pathways and cognate host receptors. Several key areas are highlighted for future development: context-based analysis targeting pathways; integration of analytical approaches; metabolic modeling; and synthetic systems for in vivo manipulation of microbiota functions. Prospectively, these developments could further our mechanistic understanding of host-microbiota interactions. PMID:26340103
Monti, J M; Tachino, C A; Hanssen, J; Fojn, O A; Galassi, M E; Champion, C; Rivarola, R D
2014-01-01
Distorted wave models are employed to investigate the electron loss process induced by bare ions on biological targets. The two main reactions which contribute to this process, namely, the single electron ionization as well as the single electron capture are here studied. In order to further assess the validity of the theoretical descriptions used, the influence of particular mechanisms are studied, like dynamic screening for the case of electron ionization and energy deposition on the target by the impacting projectile for the electron capture one. Results are compared with existing experimental data. PMID:23415107
Past analogs of recent climate anomalies and impacts in Portugal. Droughts, storms and heat waves
NASA Astrophysics Data System (ADS)
Alcoforado, M. J.; Nunes, M. F.
2009-09-01
An indexed reconstruction of precipitation variability, based on documentary and instrumental data, has been done for southern Portugal starting in 1675. The descriptions of the extreme events in the documentary sources have also supplied information about their impacts. We will compare past and recent extreme weather events in Portugal, their causes and their impacts on society. We have selected periods of winter droughts, of storms that triggered great floods and of heat waves. There are a number of documentary sources dating from 1693-94 indicating that that there was no rainfall from December 1693 to at least November 1694 with the exception of light showers in June. Several pro-pluvia rogations ceremonies took place all over the country, even in the Northwest that is generally rainy. There are numerous descriptions of the impact of droughts on agriculture, of shortage of cereals, of escalating prices and the subsequent generalised famine. An analogy will be made for the 20th century using the 1980-81 winter drought that lasted roughly the same time and which also had severe social and economic impacts. The decrease in production of hydroelectric energy (50% below average) between January and July 1981 is also pointed out. In both cases, the lack of rainfall was partly due to a ridge that stayed over the Eastern Atlantic and kept Iberia in aerologic shelter. Apart from urban flash floods there are two types of floods in Portugal: (i) floods from the big river basins (Tagus, Mondego and Douro) that are due to the frequent passage of westerly frontal depressions during days or weeks; and (ii) floods of the small river basins due to convective depressions that affect small areas. The December 1739 flood, caused by the overflow of the great rivers, will be compared with the ones that occurred in February 1978. Both were caused by intensive precipitation all over the country at a time when the soil was already saturated with water from previous rainfall. The damages were vast in both occasions including loss of life. Two poems and other documentary sources supply detailed and credible information on the 1739 flood that hit Portugal from North to South. A heat wave in June-July 1842 has been selected. There are already instrumental data available for the former (Franzini station), retrieved from medical journals as well as descriptions of impacts on several regions in the country. The 1842 heat wave will be compared with more recent heat waves like the June 1981 that had very serious impact on public health and on the country's economy. We will also analyse the heat waves of July 1991 and August 2003. The latter was particularly long-lasting with serious consequences ranging from extensive forest fires to losses in agriculture and impact on the population health, although the registered mortality was lower than in 1981 probably due to improved alert systems and Public Health Welfare State.
NASA Astrophysics Data System (ADS)
Langhamer, Olivia; Wilhelmsson, Dan; Engström, Jens
2009-04-01
Little is known about the effects of offshore energy installations on the marine environment, and further research could assist in minimizing environmental risks as well as in enhancing potential positive effects on the marine environment. While biofouling on marine energy conversion devices on one hand has the potential to be an engineering concern, these structures can also affect biodiversity by functioning as artificial reefs. The Lysekil Project is a test park for wave power located at the Swedish west coast. Here, buoys acting as point absorbers on the surface are connected to generators anchored on concrete foundations on the seabed. In this study we investigated the colonisation of foundations by invertebrates and fish, as well as fouling assemblages on buoys. We examined the influence of surface orientation of the wave power foundations on epibenthic colonisation, and made observations of habitat use by fish and crustaceans during three years of submergence. We also examined fouling assemblages on buoys and calculated the effects of biofouling on the energy absorption of the wave power buoys. On foundations we demonstrated a succession in colonisation over time with a higher degree of coverage on vertical surfaces. Buoys were dominated by the blue mussel Mytilus edulis. Calculations indicated that biofouling have no significant effect in the energy absorption on a buoy working as a point absorber. This study is the first structured investigation on marine organisms associated with wave power devices.
Non-dipolar Wilson links for transverse-momentum-dependent wave functions
NASA Astrophysics Data System (ADS)
Li, Hsiang-nan; Wang, Yu-Ming
2015-06-01
We propose a new definition of a transverse-momentum-dependent (TMD) wave function with simpler soft subtraction for k T factorization of hard exclusive processes. The un-subtracted wave function involves two pieces of non-light-like Wilson links oriented in different directions, so that the rapidity singularity appearing in usual k T factorization is regularized, and the pinched singularity from Wilson-link self-energy corrections is alleviated to a logarithmic one. In particular no soft function is needed, when the two pieces of Wilson links are orthogonal to each other. We show explicitly at one-loop level that the simpler definition with the non-dipolar Wilson links exhibits the same infrared behavior as the one with the dipolar Wilson links and complicated soft subtraction. It is pointed out that both definitions reduce to the naive TMD wave function as the non-light-like Wilson links approach to the light cone. Their equivalence is then extended to all orders by considering the evolution in the Wilson-link rapidity.
An Evans-function approach to spectral stability of internal solitary waves in stratified fluids
NASA Astrophysics Data System (ADS)
Klaiber, Andreas
2015-11-01
Frequently encountered in nature, internal solitary waves in stratified fluids have been investigated experimentally, theoretically, and numerically. Mathematically, these waves are exact solutions of the incompressible 2D Euler equations. Contrasting with a rich existence theory and the development of methods for their computation, their stability analysis has hardly received attention at a rigorous mathematical level. This paper proposes a new approach to the investigation of stability of internal solitary waves in a continuously stratified fluid and carries out the following four steps of this approach: (I) to formulate the eigenvalue problem as an infinite-dimensional spatial-dynamical system, (II) to introduce finite-dimensional truncations of the spatial-dynamics description, (III) to demonstrate that each truncation, of any order, permits a well-defined Evans function, (IV) to prove absence of small zeros of the Evans function in the small-amplitude limit. The latter notably implies the low-frequency spectral stability of small-amplitude waves to arbitrarily high truncation order.
NASA Astrophysics Data System (ADS)
Bordes, C.; Sénéchal, P.; Barrière, J.; Brito, D.; Normandin, E.; Jougnot, D.
2015-03-01
Seismic waves propagating in a porous medium, under favourable conditions, generate measurable electromagnetic fields due to electrokinetic effects. It has been proposed, following experimental and numerical studies, that these so-called `seismoelectromagnetic' couplings depend on pore fluid properties. The theoretical frame describing these phenomena are based on the original Biot's theory, assuming that pores are fluid-filled. We study here the impact of a partially saturated medium on amplitudes of those seismoelectric couplings by comparing experimental data to an effective fluid model. We have built a 1-m-length-scale experiment designed for imbibition and drainage of an homogeneous silica sand; the experimental set-up includes a seismic source, accelerometers, electric dipoles and capacitance probes in order to monitor seismic and seismoelectric fields during water saturation. Apparent velocities and frequency spectra (in the kiloHertz range) are derived from seismic and electrical measurements during experiments in varying saturation conditions. Amplitudes of seismic and seismoelectric waves and their ratios (i.e. transfer functions) are discussed using a spectral analysis performed by continuous wavelet transform. The experiments reveal that amplitude ratios of seismic to coseismic electric signals remain rather constant as a function of the water saturation in the Sw = [0.2-0.9] range, consistently with theoretically predicted transfer functions.
The Transfer Function Model (TFM) as a Tool for Simulating Gravity Wave Phenomena in the Mesosphere
NASA Astrophysics Data System (ADS)
Porter, H.; Mayr, H.; Moore, J.; Wilson, S.; Armaly, A.
2008-12-01
The Transfer Function Model (TFM) is semi-analytical and linear, and it is designed to describe the acoustic gravity waves (GW) propagating over the globe and from the ground to 600 km under the influence of vertical temperature variations. Wave interactions with the flow are not accounted for. With an expansion in terms of frequency-dependent spherical harmonics, the time consuming vertical integration of the conservation equations is reduced to computing the transfer function (TF). (The applied lower and upper boundary conditions assure that spurious wave reflections will not occur.) The TF describes the dynamical properties of the medium divorced from the complexities of the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source is then obtained in short order to simulate the GW propagating through the atmosphere over the globe. In the past, this model has been applied to study auroral processes, which produce distinct wave phenomena such as: (1) standing lamb modes that propagate horizontally in the viscous medium of the thermosphere, (2) waves generated in the auroral oval that experience geometric amplification propagating to the pole where constructive interference generates secondary waves that propagate equatorward, (3) ducted modes propagating through the middle atmosphere that leak back into the thermosphere, and (4) GWs reflected from the Earth's surface that reach the thermosphere in a narrow propagation cone. Well-defined spectral features characterize these wave modes in the TF to provide analytical understanding. We propose the TFM as a tool for simulating GW in the mesosphere and in particular the features observed in Polar Mesospheric Clouds (PMC). With present-day computers, it takes less than one hour to compute the TF, so that there is virtually no practical limitation on the source configurations that can be applied and tested in the lower atmosphere. And there is no limitation on the temporal and spatial resolutions the model simulations can provide. We shall discuss the concept and organization of the TFM and present samples of GW simulations that illustrate the capabilities of the model and its user interface. We shall discuss in particular the waves that leak into the mesopause from the thermosphere above and propagate into the region from tropospheric weather systems below.
Impact Wave Monitoring in Soil Using a Dynamic Fiber Sensor Based on Stimulated Brillouin Scattering
Cui, Qingsong; Pamukcu, Sibel; Pervizpour, Mesut
2015-01-01
The impact wave response of soil due to a ball drop is monitored on a 30.5 cm by 30.5 cm square soil box using a fiber sensor with dynamic strain sensing capability. The experiments are conducted in real time using a simple one-laser one-modulator configuration with stimulated Brillouin scattering. The embedded BOTDA sensor grid successfully monitored the distribution and evolution of the inner strains of a sand bed during a mass impact on its surface. The measurement of the distributed dynamic strains was possible in several milliseconds and with 1 cm actual location resolution. This paper presents a time-domain signal analysis utilized for determining the dynamic strains in embedded fiber sensor. The results demonstrate the method to be a promising one for detection of subsurface vibration and movement in geotechnical Structure Health Monitoring (SHM). PMID:25856327
Summary of the mortality impact assessment of the 2003 heat wave in France.
Pirard, P; Vandentorren, S; Pascal, M; Laaidi, K; Le Tertre, A; Cassadou, S; Ledrans, M
2005-07-01
France experienced a record-breaking heat wave between 2 and 15 August 2003. All the French regions were affected by this heat wave, which resulted in an excess of 14 800 deaths between 1 and 20 August. The increase in the number of excess deaths followed the same pattern as the increase in temperatures. No deviance from the normal death rate was observed in the month of August during the last third of the month, nor during the following three months. There was a clear discrepancy in the impact of the heat wave from city to city. If the effect of duration of consecutive days with high minimal temperatures and deviance with the seasonal normal temperature was patent, this could not explain all of the observed variability of the death incidence. The victims were mainly elderly women older than 75 years. In terms of relative risk and contribution to the global toll, deaths linked to heat were the most important. Based on these results, the French government developed a Heat Health Watch Warning System and set up a preventive action plan for each region in 2004. PMID:16088047
Investigation of dam-break induced shock waves impact on a vertical wall
NASA Astrophysics Data System (ADS)
Kocaman, Selahattin; Ozmen-Cagatay, Hatice
2015-06-01
In the present study, experimental tests and VOF-based CFD simulations concerning impact of dam-break induced shock waves on a vertical wall at downstream end were investigated. New laboratory experiments were carried out in a rectangular flume with a smooth horizontal wet bed for two different tailwater levels. Image processing was used for flow measurement and time evolutions of water levels were determined effectively by means of synchronous recorded video images of the flow. This study scrutinized formation and travelling of negative wave towards upstream direction, which was resulted from the reflection of flood wave against downstream end wall. In numerical simulation, two distinct approaches available in FLOW-3D were used: Reynolds- averaged Navier-Stokes equations (RANS) with the k-ε turbulence model and the Shallow Water Equations (SWEs). The measured results were then compared with those of numerical simulations and reasonable agreements were achieved. General agreement between laboratory measurements and RANS solution was better than that of SWE.
Development of a shock wave adhesion test for composite bonds by pulsed laser and mechanical impacts
NASA Astrophysics Data System (ADS)
Ecault, R.; Boustie, M.; Touchard, F.; Arrigoni, M.; Berthe, L.
2014-05-01
Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims to the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bonds. The resulting damage has been quantified using different methods such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test because of often fixed settings. That is why mechanical impacts on bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the generated tensile stresses by the shock wave propagation were moved toward the composite/bond interface. The made observations prove that the technique optimization is possible. The key parameters for the development of a bonding test using shock waves have been identified.
Development of a shock wave adhesion test for composite bonds by laser pulsed and mechanical impacts
NASA Astrophysics Data System (ADS)
Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Arrigoni, Michel; Berthe, Laurent; CNRS Collaboration
2013-06-01
Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bond without any mechanical contact. The resulting damage has been quantified using different method such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test since it has often fixed parameters. That is why mechanical impacts bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the tensile stresses generated by the shock wave propagation were moved toward the composite/bond interface. The observations made prove that the optimization of the technique is possible. The key parameters for the development of a bonding test using shock wave have been identified.
Second-order corrections to the wave function at the origin in muonic hydrogen and pionium
Ivanov, Vladimir G.; Korzinin, Evgeny Yu.; Karshenboim, Savely G.
2009-07-15
Nonrelativistic second-order corrections to the wave function at the origin in muonic and exotic atoms are considered. The corrections are due to the electronic vacuum polarization. Such corrections are of interest due to various effective approaches, which take into account QED and hadronic effects. The wave function at the origin plays a key role in the calculation of the pionium lifetime, various finite nuclear size effects, and the hyperfine splitting. The results are obtained for the 1s and 2s states in pionic and muonic hydrogen and deuterium and in pionium, a bound system of {pi}{sup +} and {pi}{sup -}. Applications to the hyperfine structure and the Lamb shift in muonic hydrogen are also considered.
Wave functions of the Q .Q interaction in terms of unitary 9-j coefficients
NASA Astrophysics Data System (ADS)
Zamick, Larry; Harper, Matthew
2015-03-01
We obtain wave functions for two protons and two neutrons in the g9 /2 shell expressed as column vectors with amplitudes D (Jp,Jn) . When we use a quadrupole-quadrupole interaction (Q .Q ) we get, in many cases, a very strong overlap with wave functions given by a single set of unitary 9-j coefficientsU 9 j =<(jj ) 2 j(jjJB|(jj ) Jp(jj ) Jn) I> . Here JB=9 for even I T =0 states. For both even and odd T =1 states we take JB equal to 8 whilst for odd I ,T =0 we take JB to be 7. We compare the Q .Q results with those of a more realistic interaction.
Velocity and attenuation of scalar and elastic waves in random media: a spectral function approach.
Calvet, Marie; Margerin, Ludovic
2012-03-01
This paper investigates the scattering of scalar and elastic waves in two-phase materials and single-mineral-cubic, hexagonal, orthorhombic-polycrystalline aggregates with randomly oriented grains. Based on the Dyson equation for the mean field, explicit expressions for the imaginary part of Green's function in the frequency-wavenumber domain (?, p), also known as the spectral function, are derived. This approach allows the identification of propagating modes with their relative contribution, and the computation of both attenuation and phase velocity for each mode. The results should be valid from the Rayleigh (low-frequency) to the geometrical optics (high-frequency) regime. Comparisons with other approaches are presented for both scalar and elastic waves. PMID:22423683
The Hartle–Hawking wave function in 2D causal set quantum gravity
NASA Astrophysics Data System (ADS)
Glaser, Lisa; Surya, Sumati
2016-03-01
We define the Hartle–Hawking no-boundary wave function for causal set theory (CST) over the discrete analogs of spacelike hypersurfaces. Using Markov Chain Monte Carlo and numerical integration methods we analyze the wave function in non-perturbative 2D CST. We find that in the low-temperature regime it is dominated by causal sets which have no continuum counterparts but possess physically interesting geometric properties. Not only do they exhibit a rapid spatial expansion with respect to the discrete proper time, but a high degree of spatial homogeneity. The latter is due to the extensive overlap of the causal pasts of the elements in the final discrete hypersurface and corresponds to high graph connectivity. Our results thus suggest new possibilities for the role of quantum gravity in the observable Universe.
Perturbations in vibrational diatomic spectra: Factorization of the molecular wave function
Lefebvre, R.
2015-02-21
The coupling between two electronic states of a diatomic molecule may lead to an erratic behaviour of the associated vibrational energies. An example is the homogeneous coupling between the valence b? state and the Rydberg c? state of the N{sub 2} molecule, both of symmetry {sup 1}?{sub u}{sup +}. The standard treatment of such a situation is to write the wave function as a sum of two Born-Oppenheimer products. It has recently been argued [L. S. Cederbaum, J. Chem. Phys. 138, 224110 (2013); N. I. Gidopoulos and E. K. U. Gross, Philos. Trans. R. Soc., A 372, 20130059 (2014)] that even in such a case the wave function should be representable as a single product, with an electronic factor depending parametrically on nuclear positions and a nuclear factor. We setup such a representation in the case of the perturbations in the N{sub 2} molecule.
Semiclassical wave functions and semiclassical dynamics for the Kepler/Coulomb problem
NASA Astrophysics Data System (ADS)
Neate, Andrew; Truman, Aubrey
2014-06-01
We investigate the semiclassical Kepler/Coulomb problem using the classical constants of the motion in the framework of Nelsons stochastic mechanics. This is done by considering the eigenvalue relations for a family of coherent states (known as the atomic elliptic states) whose wave functions are concentrated on the elliptical orbit corresponding to the associated classical problem. We show that these eigenvalue relations lead to identities for the semiclassical energy, angular momentum and Hamilton-Lenz-Runge vectors in the elliptical case. These identities are then extended to include the cases of circular, parabolic and hyperbolic motions. We show that in all cases the semiclassical wave function is determined by our identities and so our identities can be seen as defining a semiclassical Kepler/Coulomb problem. The results are interpreted in terms of two dynamical systems: one a complex valued solution to the classical mechanics for a Coulomb potential and the other the drift field for a semiclassical Nelson diffusion.
"Artificial atoms" in magnetic fields: wave-function shaping and phase-sensitive tunneling.
Lei, Wen; Notthoff, Christian; Peng, Jie; Reuter, Dirk; Wieck, Andreas; Bester, Gabriel; Lorke, Axel
2010-10-22
We demonstrate the possibility to influence the shape of the wave functions in semiconductor quantum dots by the application of an external magnetic field B(z). The states of the so-called p shell, which show distinct orientations along the crystal axes for B(z) = 0, can be modified to become more and more circularly symmetric with an increasing field. Their changing probability density can be monitored using magnetotunneling wave function mapping. Calculations of the magnetotunneling signals are in good agreement with the experimental data and explain the different tunneling maps of the p(+) and p? states as a consequence of the different sign of their respective phase factors. PMID:21231068
Calculations of properties of screened He-like systems using correlated wave functions.
Dai, S T; Solovyova, A; Winkler, P
2001-07-01
The purpose of the present study is twofold. First, the techniques of correlated wave functions for two-electron systems have been extended to obtain results for P and D states in a screening environment, and in particular for Debye screening. In these calculations, the satisfaction of both the quantum virial theorem and a related sum rule has been enforced and found to provide a high degree of stability of the solutions. Second, in order to facilitate the general use of correlated wave functions in combination with sum rule stability criteria, a rather systematic computational approach to this notoriously cumbersome method has been developed and thoroughly discussed here. Accurate calculations for few-electron systems are of interest to plasma diagnostics; in particular, when inaccuracies in binding energies are drastically magnified as they occur in exponents of Boltzmann factors. PMID:11461411
Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves.
Wen, Xiaonan; Yang, Weiqing; Jing, Qingshen; Wang, Zhong Lin
2014-07-22
We invented a triboelectric nanogenerator (TENG) that is based on a wavy-structured Cu-Kapton-Cu film sandwiched between two flat nanostructured PTFE films for harvesting energy due to mechanical vibration/impacting/compressing using the triboelectrification effect. This structure design allows the TENG to be self-restorable after impact without the use of extra springs and converts direct impact into lateral sliding, which is proved to be a much more efficient friction mode for energy harvesting. The working mechanism has been elaborated using the capacitor model and finite-element simulation. Vibrational energy from 5 to 500 Hz has been harvested, and the generator's resonance frequency was determined to be ∼100 Hz at a broad full width at half-maximum of over 100 Hz, producing an open-circuit voltage of up to 72 V, a short-circuit current of up to 32 μA, and a peak power density of 0.4 W/m(2). Most importantly, the wavy structure of the TENG can be easily packaged for harvesting the impact energy from water waves, clearly establishing the principle for ocean wave energy harvesting. Considering the advantages of TENGs, such as cost-effectiveness, light weight, and easy scalability, this approach might open the possibility for obtaining green and sustainable energy from the ocean using nanostructured materials. Lastly, different ways of agitating water were studied to trigger the packaged TENG. By analyzing the output signals and their corresponding fast Fourier transform spectra, three ways of agitation were evidently distinguished from each other, demonstrating the potential of the TENG for hydrological analysis. PMID:24964297
Pyper, N. C.; Kampp, Marco; Whelan, Colm T.
2005-05-15
The symmetry properties of the S matrix in a fully relativistic distorted-wave treatment of electron-impact ionization are investigated. It is shown that the square modulus of the scattering matrix element in which the spin states of all four electrons are determined is not invariant under the reversal of the direction of alignment of all spins. The largest of two contributions to this noninvariance originates from the relativistic modifications of the continuum wave functions induced by the distorting potential of the target atom. A second smaller contribution is manifested on reducing the eight-dimensional matrix elements of the QED covariant propagator to purely spatial two-electron integrals. The triple differential cross section (TDCS) exhibits a spin asymmetry unless the entire scattering process occurs in a single plane. There will be a difference in the TDCS between an (e,2e) event in which the initial beam is polarized parallel or antiparallel with respect to the beam direction even if the target is unpolarized and the final spin states are not determined. The TDCS will remain unchanged if, in addition to reversal of the direction of spin alignment, one appropriate momentum component of one of the two outgoing electrons is reversed.
Response functions for sine- and square-wave modulations of disparity.
NASA Technical Reports Server (NTRS)
Richards, W.
1972-01-01
Depth sensations cannot be elicited by modulations of disparity that are more rapid than about 6 Hz, regardless of the modulation amplitude. Vergence tracking also fails at similar modulation rates, suggesting that this portion of the oculomotor system is limited by the behavior of disparity detectors. For sinusoidal modulations of disparity between 1/2 to 2 deg of disparity, most depth-response functions exhibit a low-frequency decrease that is not observed with square-wave modulations of disparity.
Short range structure of hadron and nuclear wave functions at high x
Hoyer, P.; Brodsky, S.J.
1990-11-01
We discuss the short-range structure of hadronic and nuclear wave functions expected in QCD. In addition to the extrinsic'' contributions associated with radiation from single partons, there is an intrinsic'' hardness of the high-mass fluctuations of the wave function due to the spatial overlap of two or more partons. We argue that intrinsically-hard partons, having large mass and/or large transverse momentum, will dominate in the region of large Feynman x{sub F}. Their rescattering in nuclear targets is expected to be larger than for extrinsically-hard partons, leading to a suppressed production cross section for hadrons scattering on heavy nuclei. Experimental evidence for this exists for open chars. J/{psi}, and {gamma} production at large x{sub F}. The effects of intrinsic hardness may be particularly striking in nuclear wave functions, where the overlap of partons belonging to different nucleons can give rise to cumulative (x > 1) phenomena. The data on backward cumulative particle production from nuclei supports the existence of an intrinsically-hard component in nuclear wave functions. Partons at large x{sub F} may also be associated with the enhanced subthreshold production of particles observed in hadron-nucleus and nucleus-nucleus collisions. We discuss the evidence for anomalies in the large angle pp {yields} pp cross section near the charm threshold. Arguments are presented that chromium states may bind to nuclei through the QCD Van der Waals force. This would lead to a striking signal in charm production near threshold. 49 refs., 7 figs.
Counting Rules, Holographic Wave Functions, Meromorphization and Quark-Hadron Duality
Anatoly Radyushkin
2006-05-11
We start with study of the meson form factor F{sub M} (Q{sup 2}) constructed using recently proposed holographic light-front wave functions. We find that its asymptotic behavior is generated by soft Feynman mechanism rather than by short distance dynamics. In this scenario, both hard and soft contributions are present, and the ''observed'' quark counting rules for hadronic form factors is an approximate and transitional phenomenon resulting from long-distance dynamics, Feynman mechanism in its preasymptotic regime.
Stochastic quasiclassical wave function of the Universe from the third quantization procedure
NASA Astrophysics Data System (ADS)
Ivanov, P.; Chernov, S. V.
2015-09-01
We study quantized solutions of the Wheeler de Witt (WdW) equation describing a closed Friedmann-Robertson-Walker universe with a ? term and a set of massless scalar fields. We show that when ? ?1 in the natural units and the standard in-vacuum state is considered, either wave function of the universe, ? , or its derivative with respect to the scale factor, a , behave as random quasiclassical fields at sufficiently large values of a . The former case is realized when 1 ?a ?e2/3 ? , while the latter is valid when a ?e2/3 ? . The statistical rms value of the wave function is proportional to the Hartle-Hawking wave function for a closed universe with a ? term. Alternatively, the behavior of our system at large values of a can be described in terms of a density matrix corresponding to a mixed state, which is directly determined by statistical properties of ? . Similar to ? , the density matrix can be considered as a c-number valued in the position and momentum representations. The probability distribution to find a universe with particular values of the scale factor and field amplitudes following from this density matrix is again proportional to that of the Hartle-Hawking wave function, while the probability distribution over field velocities is nontrivial and different from what follows from the Hartle and Hawking formalism. We suppose that a similar behavior of ? can be found in all models exhibiting copious production of excitations with respect to the out-vacuum state associated with classical trajectories at large values of a . Thus, the third quantization procedure may provide a "boundary condition" for classical solutions of the WdW equation. Contrary to the previous proposals, in our case two equivalent descriptions of this classical solutions are possible. Either ? can be regarded as a stochastic classical quantity or the system can be viewed as being in a mixed state defined over classical solutions to the WdW equation.
Working With the Wave Equation in Aeroacoustics: The Pleasures of Generalized Functions
NASA Technical Reports Server (NTRS)
Farassat, F.; Brentner, Kenneth S.; Dunn, mark H.
2007-01-01
The theme of this paper is the applications of generalized function (GF) theory to the wave equation in aeroacoustics. We start with a tutorial on GFs with particular emphasis on viewing functions as continuous linear functionals. We next define operations on GFs. The operation of interest to us in this paper is generalized differentiation. We give many applications of generalized differentiation, particularly for the wave equation. We discuss the use of GFs in finding Green s function and some subtleties that only GF theory can clarify without ambiguities. We show how the knowledge of the Green s function of an operator L in a given domain D can allow us to solve a whole range of problems with operator L for domains situated within D by the imbedding method. We will show how we can use the imbedding method to find the Kirchhoff formulas for stationary and moving surfaces with ease and elegance without the use of the four-dimensional Green s theorem, which is commonly done. Other subjects covered are why the derivatives in conservation laws should be viewed as generalized derivatives and what are the consequences of doing this. In particular we show how we can imbed a problem in a larger domain for the identical differential equation for which the Green s function is known. The primary purpose of this paper is to convince the readers that GF theory is absolutely essential in aeroacoustics because of its powerful operational properties. Furthermore, learning the subject and using it can be fun.
Ex vivo Characterization of Blast Wave Impact and Spinal Cord Tissue Deformation
NASA Astrophysics Data System (ADS)
Chen, Jun; Gao, Jian; Connell, Sean; Shi, Riyi
2010-11-01
Primary blast injury on central nervous system is responsible for many of the war related casualties and mortalities. An ex vivo model system is developed to introduce a blast wave, generated from a shock tube, directly to spinal cord tissue sample. A high-speed shadowgraph system is utilized to visualize the development of the blast wave and its interaction with tissue sample. Surface deformation of the tissue sample is also measured for the analysis of internal stress and possible injury occurred within the tissue sample. Understanding the temporal development of the blast-tissue interaction provides valuable input for modeling blast-induced neurotrauma. Tracking the sample surface deformation as a function of time provides realistic boundary conditions for numerical simulation of injury process.
NASA Astrophysics Data System (ADS)
Zaslavsky, A.
2015-02-01
In situ observation of dust grains from various origins is routinely performed by space missions equipped with radio instruments. These measurements consist in observations of voltage pulses or their spectral signature. It has for long been proposed that one of the mechanisms able to produce these pulses is the collection by the spacecraft of electric charges generated by impact ionization. Here for the first time, a complete theoretical model of how pulses are generated by charge collection is proposed. In the solar wind at 1 AU, the pulses are shown to be shaped by local plasma and photoelectron parameters. However, the situation can be different in hotter or denser plasma environments. We use the data provided by the STEREO/WAVES (S/WAVES) radio instrument onboard the twin STEREO spacecraft to validate our model. We find that the observations indeed strongly support the theory. The proposed model is an important step forward, since it makes it possible to reproduce the shape, timescales, and amplitudes of pulses generated by dust impacts in various space environments. Such a model can be used to infer the dust detection abilities of radio instruments onboard different spacecraft and can help the design of dust detection optimized radio instruments for future missions.
NASA Astrophysics Data System (ADS)
Rodrigues, N. S.; Kulkarni, V.; Gao, J.; Chen, J.; Sojka, P. E.
2015-03-01
The current study focuses on experimentally and theoretically improving the characterization of the drop size and drop velocity for like-on-like doublet impinging jets. The experimental measurements were made using phase Doppler anemometry (PDA) at jet Weber numbers We j corresponding to the impact wave regime of impinging jet atomization. A more suitable dynamic range was used for PDA measurements compared to the literature, resulting in more accurate experimental measurements for drop diameters and velocities. There is some disagreement in the literature regarding the ability of linear stability analysis to accurately predict drop diameters in the impact wave regime. This work seeks to provide some clarity. It was discovered that the assumed uniform jet velocity profile was a contributing factor for deviation between diameter predictions based on models in the literature and experimental measurements. Analytical expressions that depend on parameters based on the assumed jet velocity profile are presented in this work. Predictions based on the parabolic and 1/7th power law turbulent profiles were considered and show better agreement with the experimental measurements compared to predictions based on the previous models. Experimental mean drop velocity measurements were compared with predictions from a force balance analysis, and it was observed that the assumed jet velocity profile also influences the predicted velocities, with the turbulent profile agreeing best with the experimental mean velocity. It is concluded that the assumed jet velocity profile has a predominant effect on drop diameter and velocity predictions.
Double-bound equivalent of the three-body Coulomb double-continuum wave function
NASA Astrophysics Data System (ADS)
Ancarani, L. U.; Gasaneo, G.
2007-03-01
In cross-section calculations of electron or photon double ionization processes of two-electron atoms, it is desirable to have a symmetric description of initial and final states. In this contribution, we search the doubly bound analog, for S states, of the well-known and widely used three-body Coulomb (C3) double-continuum wave function. This is performed with two alternative approaches: through an analytic continuation of the C3 continuum and through a C3 approach of the Hylleraas equation for S bound states. The double-bound analog consists of the product of two Coulomb bound states (one for each electron-nucleus interaction) multiplied by a Coulomb distortion factor which describes the electron-electron correlation. Our result differs from Pluvinages wave function which is commonly misbelieved to be the bound counterpart of the C3 double continuum. With a rigorous treatment of the analytic continuation of the distortion factor, the double-bound equivalent of the C3 model is also found. Though the purpose is not to obtain good two-electron bound states, the found bound wave functions are tested, in the case of helium, through various local and mean quantities which probe different regions of the configuration space, in particular those close to the two-particle coalescence points.
The energy levels and the corresponding normalized wave functions for a model of a compressed atom
NASA Astrophysics Data System (ADS)
Frman, Per Olof; Yngve, Staffan; Frman, Nanny
1987-08-01
In the model of a compressed atom (or ion) considered in the present paper the boundary condition associated with the corresponding uncompressed atom, i.e., the condition that the radial wave function must vanish at r=?, is replaced by the boundary condition that the radial wave function must have a node at the finite distance r=a. The treatment of the problem of obtaining the energy shift due to the compression is based on the phase-integral method developed by Frman and Frman, an essential feature of which is that one can use exact formulas in the calculations and make all approximations in the final stage. The treatment of the problem of obtaining the relative change of the wave function due to the compression is based on the rigorous evaluation of the normalization integral developed by Furry [Phys. Rev. 71, 360 (1947)] and Yngve [J. Math. Phys. 13, 324 (1972)], in which one also uses exact formulas in the calculations and makes all approximations in the final stage. Since compression of an atom gives rise to very subtle effects, rigorous methods are indispensible for obtaining accurate and reliable analytical final formulas. As an application, the resulting general formulas are particularized to the case of a hydrogenic atom, and a numerical illustration of the accuracy of the formulas is given.
Emergence of complex and spinor wave functions in scale relativity. I. Nature of scale variables
Nottale, Laurent; Célérier, Marie-Noëlle
2013-11-15
One of the main results of scale relativity as regards the foundation of quantum mechanics is its explanation of the origin of the complex nature of the wave function. The scale relativity theory introduces an explicit dependence of physical quantities on scale variables, founding itself on the theorem according to which a continuous and non-differentiable space-time is fractal (i.e., scale-divergent). In the present paper, the nature of the scale variables and their relations to resolutions and differential elements are specified in the non-relativistic case (fractal space). We show that, owing to the scale-dependence which it induces, non-differentiability involves a fundamental two-valuedness of the mean derivatives. Since, in the scale relativity framework, the wave function is a manifestation of the velocity field of fractal space-time geodesics, the two-valuedness of velocities leads to write them in terms of complex numbers, and yields therefore the complex nature of the wave function, from which the usual expression of the Schrödinger equation can be derived.
Uniform semiclassical wave function for coherent two-dimensional electron flow
NASA Astrophysics Data System (ADS)
Van?ek, Ji?; Heller, Eric J.
2003-01-01
We find a uniform semiclassical (SC) wave function describing coherent branched flow through a two-dimensional electron gas (2DEG), a phenomenon recently discovered by direct imaging of the current using scanned probed microscopy [M.A. Topinka, B.J. LeRoy, S.E.J. Shaw, E.J. Heller, R.M. Westervelt, K.D. Maranowski, and A.C. Gossard, Science 289, 2323 (2000)]. The formation of branches has been explained by classical arguments [M.A. Topinka, B.J. LeRoy, R.M. Westervelt, S.E.J. Shaw, R. Fleischmann, E.J. Heller, K.D. Maranowski, and A.C. Gossard, Nature (London) 410, 183 (2001)], but the SC simulations necessary to account for the coherence are made difficult by the proliferation of catastrophes in the phase space. In this paper, expansion in terms of replacement manifolds is used to find a uniform SC wave function for a cusp singularity. The method is then generalized and applied to calculate uniform wave functions for a quantum-map model of coherent flow through a 2DEG. Finally, the quantum-map approximation is dropped and the method is shown to work for a continuous-time model as well.
Impact of kudzu and puerarin on sperm function.
Gray, Sandra L; Lackey, Brett R; Boone, William R
2015-06-01
The goal of this study was to investigate the impact of kudzu (Pueraria mirifica) and the isoflavone puerarin in functional toxicological tests on spermatozoa and to assess the affinity of extracts and pure isoflavones for estrogen receptor (ER)-alpha and -beta (ER?, ER?) in receptor binding assays. Capacitation, acrosome reaction and chromatin decondensation in spermatozoa were analyzed using microscopic analysis. Kudzu, but not puerarin, reduced motility of sperm. Puerarin reduced the percent spontaneous acrosome reaction in spermatozoa. The pathways used by kudzu that affect sperm function are not fully mirrored by puerarin. Puerarin, kudzu and its other phytoestrogenic components displayed preferential affinity for ER?, however the diverse effects of kudzu and puerarin on sperm function implicate the involvement of multiple signaling systems. PMID:25828059
Crustal Structure Beneath China Inferred from Receiver Function and Apparent SS wave Splitting
NASA Astrophysics Data System (ADS)
Niu, F.; Mooney, W. D.
2005-12-01
Global crustal models have traditionally been compiled mainly based on active-source refraction and reflection profiles. However, such profiles are usually not evenly distributed. In addition, S-wave velocities are poorly constrained due to the lack of shear wave energy in active sources. Ideally, information on both the P- and S-wave velocities (or P-wave velocity and the Poissons ratio) is preferred in order to infer the crustal composition. In this study, we demonstrate how earthquake data can improve the global coverage of crustal models. Two types of data, receiver function and apparent SS waveform splitting data have been compiled to obtain the desired information. As a feasibility test, we have chosen China as our starting point. We have analyzed receiver function data at more than 270 stations, deployed largely by previous PASSCAL experiments. Very large variations in crustal structure are observed in the study region. The crustal thickness varies from ~25 km to about 90 km and shows a good correlation with geologic terranes, as observed in many previous studies. The crust beneath the extended crust of eastern China and the North China Craton is about 35 km thick. Large P to S conversions are observed at stations in these regions, which suggests a sharp Moho-discontinuity with a large velocity and density contrast. This is suggestive of the lack of a high-velocity mafic layer in the lowermost crust. In contrast, the crust beneath the deformed regions tends to be thick with a diffuse Moho boundary. At large epicentral distance the transverse component of the SS wave always appears to be leading the radial component by a few to tens of seconds. This apparent splitting is produced by several arrivals that include the precursory reflection/conversion at the Moho, followed by several later Moho reverberations. From synthetic data we confirmed that the reflection/conversion series, when filtered to the low-frequency band, produce a large apparent SS splitting. We also found that the apparent splitting time is proportional to the crustal thickness. Our preliminary analysis of several locations in China with the SS data yield very consistent crustal thickness with the receiver function results. The teleseismic SS dataset, which has a very good global coverage, thus could be very useful in developing global crustal models. Crustal Structure beneath China Inferred from Receiver Function and Apparent SS wave Splitting.
NASA Astrophysics Data System (ADS)
Xiao, Longfei; Yang, Jianmin; Peng, Tao; Tao, Longbin
2016-02-01
The meshless Numerical Wave Tank (NWT) has been developed based on the collocation method and the radial basis function. For simulating short waves, a free surface interpolation approach is proposed in this study in order to mitigate numerical dissipation and accelerate the simulation. A number of fundamental free surface nodes are employed in the procedure of solving algebraic equations with a full coefficient matrix, while many more free surface nodes are utilized in the time-stepping and smoothing procedure by applying the interpolation technique between each adjacent fundamental nodes. The NWT with the free surface interpolation approach is applied to simulate regular waves and irregular waves, and is then validated by both analytical solutions and experimental results. The numerical results are significantly improved by using the approach to increase the number of free surface boundary nodes, whilst the time consumption increases proportionally. For shorter waves, more interpolation nodes need be used. The good agreement between the present numerical results and the analytical and experimental results indicates that the free surface interpolation approach succeeds in rapidly and accurately simulating the propagation of short waves and irregular waves, covering a wide range of wave frequencies.
Catastrophic impact of typhoon waves on coral communities in the Ryukyu Islands under global warming
NASA Astrophysics Data System (ADS)
Hongo, Chuki; Kawamata, Hideki; Goto, Kazuhisa
2012-06-01
Typhoon-generated storm waves generally cause mechanical damage to coral communities on present-day reefs, and the magnitude and extent of damage is predicted to increase in the near future as a result of global warming. Therefore, a comprehensive understanding of potential future scenarios of reef ecosystems is of prime interest. This study assesses the current status of coral communities on Ibaruma reef, Ryukyu Islands, on the basis of field observations, engineering and fluid dynamic models, and calculations of wave motion, and predicts the potential effects of a super-extreme typhoon (incident wave height,H = 20 m; wave period, T = 20 s) on the reef. On the present-day reef, massive corals occur in shallow lagoons and tabular corals occur from the reef crest to the reef slope. The observed distribution of corals, which is frequently attacked by moderate (H = 10 m, T = 10 s) and extreme (H = 10 m, T = 15 s) typhoons, is consistent with the predictions of engineering models. Moreover, this study indicates that if a super-extreme typhoon attacks the reef in the near future, massive corals will survive in the shallow lagoons but tabular corals on the reef crest and reef slope will be severely impacted. The findings imply that super-extreme typhoons will cause a loss of species diversity, as the tabular corals are important reef builders and are critical to the maintenance of reef ecosystems. Consequently, reef restoration is a key approach to maintaining reef ecosystems in the wake of super-extreme typhoons.
NASA Astrophysics Data System (ADS)
Sarout, Jol.
2012-04-01
For the first time, a comprehensive and quantitative analysis of the domains of validity of popular wave propagation theories for porous/cracked media is provided. The case of a simple, yet versatile rock microstructure is detailed. The microstructural parameters controlling the applicability of the scattering theories, the effective medium theories, the quasi-static (Gassmann limit) and dynamic (inertial) poroelasticity are analysed in terms of pores/cracks characteristic size, geometry and connectivity. To this end, a new permeability model is devised combining the hydraulic radius and percolation concepts. The predictions of this model are compared to published micromechanical models of permeability for the limiting cases of capillary tubes and penny-shaped cracks. It is also compared to published experimental data on natural rocks in these limiting cases. It explicitly accounts for pore space topology around the percolation threshold and far above it. Thanks to this permeability model, the scattering, squirt-flow and Biot cut-off frequencies are quantitatively compared. This comparison leads to an explicit mapping of the domains of validity of these wave propagation theories as a function of the rock's actual microstructure. How this mapping impacts seismic, geophysical and ultrasonic wave velocity data interpretation is discussed. The methodology demonstrated here and the outcomes of this analysis are meant to constitute a quantitative guide for the selection of the most suitable modelling strategy to be employed for prediction and/or interpretation of rocks elastic properties in laboratory-or field-scale applications when information regarding the rock's microstructure is available.
NASA Astrophysics Data System (ADS)
Gusarov, Sergey; Malmqvist, Per-ke; Lindh, Roland
2004-01-01
The value of the two-particle density function at coalescence is frequently used as an additional variable for formulating approximate exchange-correlation or correlation functionals. Here, its applications as one of the key variables for the construction of new DFT (preferably multi-determinant) functionals is investigated. The basic formalism is presented and it is shown that this replacement avoids some difficulty to construct a Fock matrix in a ROKS (restricted open-shell Kohn-Sham) method and also to reduce the 'double counting' of correlation energy in CASDFT (complete active space density functional theory) calculations. Calculations of excitation energies for transition metals and dissociation curves for diatomic molecules are presented as an example.
[The stimulating impact of light on brain cognition function].
Vandewalle, Gilles
2014-10-01
Light regulates multiple non-visual circadian, neuroendocrine, and neurobehavioral functions, and conveys a strong stimulating signal for alert-ness and cognition. This review summarizes a series of neuroimaging studies investigating the brain mechanisms underlying the latter stimulating impact of light. Results of these studies are compatible with a scenario where light would first hit subcortical areas involved in arousal regulation before affecting cortical areas involved in the ongoing non-visual cognitive process, and then cognitive performance. Recent data demonstrated that the non-visual impact of light is most likely triggered via outputs from intrinsically photosensitive retinal ganglion cells (ipRGC) expressing the photopigment melanopsin, which are maximally sensitive to blue light. In addition, the stimulating impact of light is intimately related to wakefulness regulation as it changes with circadian phase and sleep pressure. Finally, markers of inter-individual difference have also been described: age, PERIOD3 genotype, and psychiatric status. This review emphasizes the importance of light for human brain cognitive function and for cognition in general. PMID:25311026
NASA Astrophysics Data System (ADS)
Lu, Lu; Wang, Zhiqiang; Zhang, Pengfei; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Ji, Xiaoling
2015-08-01
Based on the characteristics of a hypergeometric function, the analytical expressions for the phase structure function and angle-of-arrival (AOA) fluctuations of plane and spherical waves propagating through oceanic turbulence are derived. The results are verified by comparing them with the numerical calculations of the definitions using four important parameters (i.e., the rate of dissipation of mean-squared temperature {? }T, the rate of dissipation of kinetic energy per unit mass of fluid \\varepsilon , the ratio of temperature to salinity contribution to the refractive index spectrum w, and the Kolmogorov microscale ? ). The relation between AOA fluctuations and the spatial coherence radius {? }0 is also investigated.
Mitri, Farid
2014-11-01
The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent. PMID:25389166
Acute effect of alcohol intake on sine-wave Cartesian and polar contrast sensitivity functions
Cavalcanti-Galdino, M.K.; da Silva, J.A.; Mendes, L.C.; dos Santos, N.A.; Simas, M.L.B.
2014-01-01
The aim of this study was to assess contrast sensitivity for angular frequency stimuli as well as for sine-wave gratings in adults under the effect of acute ingestion of alcohol. We measured the contrast sensitivity function (CSF) for gratings of 0.25, 1.25, 2.5, 4, 10, and 20 cycles per degree of visual angle (cpd) as well as for angular frequency stimuli of 1, 2, 4, 24, 48, and 96 cycles/360°. Twenty adults free of ocular diseases, with normal or corrected-to-normal visual acuity, and no history of alcoholism were enrolled in two experimental groups: 1) no alcohol intake (control group) and 2) alcohol ingestion (experimental group). The average concentration of alcohol in the experimental group was set to about 0.08%. We used a paradigm involving a forced-choice method. Maximum sensitivity to contrast for sine-wave gratings in the two groups occurred at 4 cpd sine-wave gratings and at 24 and 48 cycles/360° for angular frequency stimuli. Significant changes in contrast sensitivity were observed after alcohol intake compared with the control condition at spatial frequency of 4 cpd and 1, 24, and 48 cycles/360° for angular frequency stimuli. Alcohol intake seems to affect the processing of sine-wave gratings at maximum sensitivity and at the low and high frequency ends for angular frequency stimuli, both under photopic luminance conditions. PMID:24676473
NASA Technical Reports Server (NTRS)
Leyva, Ivett A.; Clifford, Stephen M.
1993-01-01
Aquifer dilation from shock waves produced by the 8.4 magnitude Alaskan earthquake of 1964 led to water and sediment ejection from the ground up to 400 km away from the earthquake's epicenter. Groundwater disturbances were observed as far away as Perry, Florida (approximately 5500 km), where well water fluctuations with an amplitude of as much as 2.3 m were reported. The martian cratering record provides evidence that the planet has experienced numerous seismic events of a similar, and often much greater, magnitude. Given this fact, and the photogeologic evidence for abundant water in the early crust, the response of a basalt aquifer to the propagation of compressional waves (P-waves) produced by impacts in the 33-1000 km diameter size range were investigated. The resulting one-dimensional changes in effective stress and pore pressure were calculated - as a function of both distance and time - based on the following assumptions: (1) that all of the seismic energy radiated by an impact is transmitted as a single compressional wave; (2) that both the host rock and groundwater are compressible; and (3) that there is no net flow between the water-filled pores.
Waves generated by Asteroid impacts and their effects on US shorelines
NASA Astrophysics Data System (ADS)
Ezzedine, S. M.; Miller, P. L.; Dearborn, D. S.; Dennison, D. S.; Glascoe, L. G.; Antoun, T.
2013-12-01
On February 15, 2013 an undetected ~17-20-m diameter asteroid entered earth's atmosphere and, due to its large entry speed of 18.6 km/s and its shallow entry angle, the asteroid exploded in an airburst over Chelyabinsk, Russia, generating a bright flash, producing many small fragment meteorites and causing a powerful shock wave which released the equivalent of ~440 kt TNT of energy. About 16 hours after the Chelyabinsk asteroid, the elongated ~20m by ~40m (~30 m diameter) NEA 2012 DA14 with an estimated mass of 40 kt neared the earth surface at ~28,100km, ~2.2 earth's diameter. These two consecutive events, which were unrelated and had drastically different orbits, generated considerable attention and awareness from the public, confusion among the local residents, and raised the issue of emergency response and preparedness of local, state and government agencies. LLNL and other government agencies have performed numerical simulations of a postulated asteroid impact onto the ocean and generated data to support an emergency preparedness exercise. We illustrate the exercise through the application of several codes from source (asteroid entry) to ocean impact (splash rim) to wave generation, propagation and interaction with the shoreline. Using state-of-the-art high performance computing codes we simulate three impact sites; one site is located off the eat coat by Maryland's shoreline and two other sites on the west coast: the San Francisco bay and the Los Angeles bay shorelines, respectively. Simulations were conducted not only under deterministic conditions but also under conditions of uncertainty. Uncertainty assessment of flood hazards zones and structural integrity of infrastructures will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and partially funded by the Laboratory Directed Research and Development Program at LLNL under tracking code 12-ERD-005.
Progress at the interface of wave-function and density-functional theories
Gidopoulos, Nikitas I.
2011-04-15
The Kohn-Sham (KS) potential of density-functional theory (DFT) emerges as the minimizing effective potential in a variational scheme that does not involve fixing the unknown single-electron density. Using Rayleigh Schroedinger (RS) perturbation theory (PT), we construct ab initio approximations for the energy difference, the minimization of which determines the KS potential directly - thereby bypassing DFT's traditional algorithm to search for the density that minimizes the total energy. From second-order RS PT, we obtain variationally stable energy differences to be minimized, solving the severe problem of variational collapse of orbital-dependent exchange-correlation functionals based on second-order RS PT.
Reduction of Electronic Wave Functions to Kohn-Sham Effective Potentials
NASA Astrophysics Data System (ADS)
Ryabinkin, Ilya G.; Kohut, Sviataslau V.; Staroverov, Viktor N.
2015-08-01
A method for calculating the Kohn-Sham exchange-correlation potential vXC(r ) from a given electronic wave function is devised and implemented. It requires on input one- and two-electron reduced density matrices and involves construction of the generalized Fock matrix. The method is free from numerical limitations and basis-set artifacts of conventional schemes for constructing vXC(r ) in which the potential is recovered from a given electron density, and is simpler than various many-body techniques. The chief significance of this development is that it allows one to directly probe the functional derivative of the true exchange-correlation energy functional and to rigorously test and improve various density-functional approximations.
NASA Astrophysics Data System (ADS)
Katsuki, Hiroyuki; Kayanuma, Yosuke; Ohmori, Kenji
2013-07-01
Local excitations of indistinguishable particles in a solid are quantum-mechanically superposed to give delocalized wave functions. Their interference is often so short-lived that it eludes observation and manipulation. Here we have actively controlled interference of delocalized vibrational wave functions in solid para-hydrogen produced by a pair of ultrashort laser pulses. The ultrafast evolution of their interference changes from almost completely constructive (amplification by a factor of 4) to destructive when we change the timing of those two laser pulses by only 4 fs. This active control serves as an experimental tool to investigate the spatiotemporal evolution of a wave function in a bulk solid.
The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system
NASA Technical Reports Server (NTRS)
Yeon, Kyu Hwang; Um, Chung IN; George, T. F.
1994-01-01
The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.
[Impact of maternal obesity and diabetes on placental function].
Gabory, Anne; Chavatte-Palmer, Pascale; Vambergue, Anne; Tarrade, Anne
2016-01-01
Located at the feto-maternal interface, the placenta is involved in exchange, endocrine and immune functions, which impact fetal development. In contact with the maternal environment, this organ is sensitive to metabolic disorders as over-nutrition, obesity or diabetes. The alteration of blood parameters associated with these pathologies affects placental histology, vascularization and nutrient transfers and, according to the types of troubles, induces local inflammation or hypoxia. These placental changes lead to disturbance of development and fetal growth, which increase the risk of pathologies in offspring in adulthood. The placenta thus appears as a crucial player in the fetal programming. PMID:26850609
Time Reversal Mirrors and Cross Correlation Functions in Acoustic Wave Propagation
NASA Astrophysics Data System (ADS)
Fishman, Louis; Jonsson, B. Lars G.; de Hoop, Maarten V.
2009-03-01
In time reversal acoustics (TRA), a signal is recorded by an array of transducers, time reversed, and then retransmitted into the configuration. The retransmitted signal propagates back through the same medium and retrofocuses on the source that generated the signal. If the transducer array is a single, planar (flat) surface, then this configuration is referred to as a planar, one-sided, time reversal mirror (TRM). In signal processing, for example, in active-source seismic interferometry, the measurement of the wave field at two distinct receivers, generated by a common source, is considered. Cross correlating these two observations and integrating the result over the sources yield the cross correlation function (CCF). Adopting the TRM experiments as the basic starting point and identifying the kinematically correct correspondences, it is established that the associated CCF signal processing constructions follow in a specific, infinite recording time limit. This perspective also provides for a natural rationale for selecting the Green's function components in the TRM and CCF expressions. For a planar, one-sided, TRM experiment and the corresponding CCF signal processing construction, in a three-dimensional homogeneous medium, the exact expressions are explicitly calculated, and the connecting limiting relationship verified. Finally, the TRM and CCF results are understood in terms of the underlying, governing, two-way wave equation, its corresponding time reversal invariance (TRI) symmetry, and the absence of TRI symmetry in the associated one-way wave equations, highlighting the role played by the evanescent modal contributions.
NASA Astrophysics Data System (ADS)
Brning, C.; Schmidt, R.; Alpers, W.
1994-05-01
Estimates of the ocean wave-radar modulation transfer function (MTF) are derived from synthetic aperture radar (SAR) imagery acquired by the American Naval Air Development Center airborne three-frequency SAR over the North Sea during the U.S./German SAR and X Band Ocean Nonlinearities-Forschungsplattform Nordsee experiment in November 1990. This is achieved by comparing measured and simulated SAR image spectra. The simulated SAR image spectra are computed from ocean wave height spectra measured by a pitch and roll buoy and by applying the generalized velocity-bunching model. First, SAR simulations are carried out by using the theoretical MTF which contains the tilt and range-bunching MTFs as well as the hydrodynamic MTF calculated from the relaxation time model. Second, SAR simulations are carried out by taking the modulus and phase of the MTF as free parameters. For waves traveling toward the radar antenna, best agreement is achieved when using the following values for the modulus |M0| and phase ? of the nondimensional MTF defined by (5) and (10): |M0| = 8 - 13 for VV polarization and |M0| = 12 - 15 for HH polarization; ? = 60 - 90 past the long-wave crest when the wind is blowing downwave, and ? = 0 - 60 past the long-wave crest when the wind is blowing upwave. The values derived for the modulus of the MTF are in good agreement with values obtained from tower-based radar backscatter measurements. However, for the downwave case the phase of the MTF disagrees with the phase obtained from tower-based measurements, where usually values between 20 and 60 are found.
An integrated perspective and functional impact of the mitochondrial acetylome.
Amado, Francisco M; Barros, António; Azevedo, Ana Lúcia; Vitorino, Rui; Ferreira, Rita
2014-06-01
Growing evidence suggests that a range of reversible protein post-translational modifications such as acetylation regulates mitochondria signalling, impacting cellular homeostasis. However, the extent of this type of regulation in the control of mitochondria functionality is just beginning to be discovered, aided by the availability of high-resolution mass spectrometers and bioinformatic tools. Data mining from literature on protein acetylation profiling focused on mitochondria isolated from tissues retrieved more than 1395 distinct proteins, corresponding to more than 4858 acetylation sites. ClueGo analysis of identified proteins highlighted oxidative phosphorylation, tricarboxylic acid cycle, fatty acid oxidation and amino acid metabolism as the biological processes more prone to regulation through acetylation. This review also examines the physiological relevance of protein acetylation on the molecular pathways harbored in mitochondria under distinct pathophysiological conditions as caloric restriction and alcohol-induced liver damage. This integrative perspective will certainly help to envisage future studies targeting the regulation of mitochondrial functionality. PMID:24661243
Evers, Joerg; Qamar, Shahid; Zubairy, M. Suhail
2007-05-15
We discuss localization and center-of-mass wave-function measurement of a quantum particle using multiple simultaneous dispersive interactions of the particle with different standing-wave fields. In particular, we consider objects with an internal structure consisting of a single ground state and several excited states. The transitions between ground and the corresponding excited states are coupled to the light fields in the dispersive limit, thus giving rise to a phase shift of the light field during the interaction. We show that multiple simultaneous measurements allow both an increase in the measurement or localization precision in a single direction and the performance of multidimensional measurements or localization. Further, we show that multiple measurements may relax the experimental requirements for each individual measurement.
Fattebert, J
2008-07-29
We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.
NASA Technical Reports Server (NTRS)
Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.
1990-01-01
Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.
Functionally Univentricular Hearts: Impact of Pre-Natal Diagnosis
Corno, Antonio Francesco
2015-01-01
Within the last few decades the pre-natal echocardiographic diagnosis of congenital heart defects has made substantial progresses, particularly for the identification of complex malformation. Functionally univentricular hearts categorize a huge variety of heart malformations. Since no one of the patients with these congenital heart defects can ever undergo a bi-ventricular type of repair, early recognition and decision-making from the neonatal period are required in order to allow for appropriate multiple-step diagnostic and treatment procedures, either of interventional cardiology and/or surgery, on the pathway of univentricular heart. In the literature strong disagreements exist about the potential impact of the pre-natal diagnosis on the early and late outcomes of complex congenital heart defects. This review of the recent reports has been undertaken to better understand the impact of pre-natal diagnosis in functionally univentricular hearts taking into consideration the following topics: pre-natal screening, outcomes and survival, general morbidity, neurologic and developmental consequences, pregnancy management and delivery planning, resources utilization and costs/benefits issues, ethical implications, parents counseling, and interruption of pregnancy versus treatment. PMID:25774365
"Functionally" univentricular hearts: impact of pre-natal diagnosis.
Corno, Antonio Francesco
2015-01-01
Within the last few decades the pre-natal echocardiographic diagnosis of congenital heart defects has made substantial progresses, particularly for the identification of complex malformation. "Functionally" univentricular hearts categorize a huge variety of heart malformations. Since no one of the patients with these congenital heart defects can ever undergo a bi-ventricular type of repair, early recognition and decision-making from the neonatal period are required in order to allow for appropriate multiple-step diagnostic and treatment procedures, either of interventional cardiology and/or surgery, on the pathway of "univentricular" heart. In the literature strong disagreements exist about the potential impact of the pre-natal diagnosis on the early and late outcomes of complex congenital heart defects. This review of the recent reports has been undertaken to better understand the impact of pre-natal diagnosis in "functionally" univentricular hearts taking into consideration the following topics: pre-natal screening, outcomes and survival, general morbidity, neurologic and developmental consequences, pregnancy management and delivery planning, resources utilization and costs/benefits issues, ethical implications, parents counseling, and interruption of pregnancy versus treatment. PMID:25774365
The impact of heat, cold, and heat waves on hospital admissions in eight cities in Korea
NASA Astrophysics Data System (ADS)
Son, Ji-Young; Bell, Michelle L.; Lee, Jong-Tae
2014-01-01
Although the impact of temperature on mortality is well documented, relatively fewer studies have evaluated the associations of temperature with morbidity outcomes such as hospital admissions, and most studies were conducted in North America or Europe. We evaluated weather and hospital admissions including specific causes (allergic disease, asthma, selected respiratory disease, and cardiovascular disease) in eight major cities in Korea from 2003 to 2008. We also explored potential effect modification by individual characteristics such as sex and age. We used hierarchical modeling to first estimate city-specific associations between heat, cold, or heat waves and hospitalizations, and then estimated overall effects. Stratified analyses were performed by cause of hospitalization, sex, and age (0-14, 15-64, 65-74, and ≥75 years). Cardiovascular hospitalizations were significantly associated with high temperature, whereas hospitalizations for allergic disease, asthma, and selected respiratory disease were significantly associated with low temperature. The overall heat effect for cardiovascular hospitalization was a 4.5 % (95 % confidence interval 0.7, 8.5 %) increase in risk comparing hospitalizations at 25 to 15 °C. For cold effect, the overall increase in risk of hospitalizations comparing 2 with 15 °C was 50.5 (13.7, 99.2 %), 43.6 (8.9, 89.5 %), and 53.6 % (9.8, 114.9 %) for allergic disease, asthma, and selected respiratory disease, respectively. We did not find statistically significant effects of heat waves compared with nonheat wave days. Our results suggest susceptible populations such as women and younger persons. Our findings provide suggestive evidence that both high and low ambient temperatures are associated with the risk of hospital admissions, particularly in women or younger person, in Korea.
The impact of soil degradation on soil functioning in Europe
NASA Astrophysics Data System (ADS)
Montanarella, Luca
2010-05-01
The European Commission has presented in September 2006 its Thematic Strategy for Soil Protection.The Thematic Strategy for Soil Protection consists of a Communication from the Commission to the other European Institutions, a proposal for a framework Directive (a European law), and an Impact Assessment. The Communication (COM(2006) 231) sets the frame. It defines the relevant soil functions for Europe and identifies the major threats. It explains why further action is needed to ensure a high level of soil protection, sets the overall objective of the Strategy and explains what kind of measures must be taken. It establishes a ten-year work program for the European Commission. The proposal for a framework Directive (COM(2006) 232) sets out common principles for protecting soils across the EU. Within this common framework, the EU Member States will be in a position to decide how best to protect soil and how use it in a sustainable way on their own territory. The Impact Assessment (SEC (2006) 1165 and SEC(2006) 620) contains an analysis of the economic, social and environmental impacts of the different options that were considered in the preparatory phase of the strategy and of the measures finally retained by the Commission. Since 2006 a large amount of new evidence has allowed to further document the extensive negative impacts of soil degradation on soil functioning in Europe. Extensive soil erosion, combined with a constant loss of soil organic carbon, have raised attention to the important role soils are playing within the climate change related processes. Other important processes are related to the loss of soil biodiversity, extensive soil sealing by housing and infrastructure, local and diffuse contamination by agricultural and industrial sources, compaction due to unsustainable agricultural practices and salinization by unsustainable irrigation practices. The extended impact assessment by the European Commission has attempted to quantify in monetary terms the actual economic impact of soil degradation in Europe.The total costs of soil degradation that could be assessed for erosion, organic matter decline, salinisation, landslides and contamination on the basis of available data, would be up to 38 billion annually for EU25. These estimates are necessarily wide ranging due to the lack of sufficient quantitative and qualitative data. Future research activities will have to address, in multidisciplinary teams, the social and economic aspects of soil degradation in Europe, in order to come up with more reliable estimates of the economic impact of soil degradation. A more reliable and updated system of indicators needs to be developed in order to cover the full cycle of the Driving forces-Pressures-State-Impact-Response (DPSIR) framework. Recent developments towards a new soil monitoring system for Europe will be presented as well as some of the recent outputs of the European Soil Data Centre (ESDAC).
Constraining the Lithospheric Structure of the Central Andes Using P- and S- wave Receiver Functions
NASA Astrophysics Data System (ADS)
Ryan, J. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.
2014-12-01
The Central Andean Plateau (CAP) has elevations in excess of 3 km, and is part of the Andean Cordillera that resulted in part from shortening along the western edge of South America as it was compressed between the subducting Nazca plate and underthrusting Brazilian cratonic lithosphere. We calculated P- and S-wave receiver functions for the Central Andean Uplift and Geodynamics of High Topography (CAUGHT) temporary deployment of broadband seismometers in the Bolivian orocline (12°-20°S) region to investigate crustal thickness and lithospheric structure. Migration of the receiver functions is done using common conversion point (CCP) stacks through a 3D shear velocity model from ambient noise tomography (Ward et al., 2013). The P- and S-wave receiver functions provide similar estimates of the depth to Moho under the CAP. Crustal thicknesses include 60-65 km thick crust underneath the Bolivian Altiplano, crust that varies from ~70 km to ~50 km underneath the Eastern Cordillera and Interandean zone, and thins to 50 to 40 km crust in the Subandes and the edge of the foreland. The variable crustal thickness of the Eastern Cordillera and Interandean zone ranges from >70 km associated with the Los Frailes volcanic field at 19°-20°S to ~55 km beneath the 6 km peaks of the Cordillera Real at ~16°S. From our S-wave receiver functions, that have no multiples that can interfere with deeper structure, we also identify structures below the Moho. Along a SW-NE line that runs near La Paz where we have our highest station density, the S-wave CCP receiver-function stacks show a strong negative polarity arrival at a depth of ~120 km from the eastern edge of the Altiplano to the Subandean zone. We suggest this may be a good candidate for the base of the CAP lithosphere. In addition, above this depth the mantle is strongly layered, suggesting that there is not a simple high velocity mantle lithosphere associated with the continental lithosphere underthrusting the Andean orogen from the east.
Impact of wave propagation delay on latency in optical communication systems
NASA Astrophysics Data System (ADS)
Kawanishi, Tetsuya; Kanno, Atsushi; Yoshida, Yuki; Kitayama, Ken-ichi
2012-12-01
Latency is an important figure to describe performance of transmission systems for particular applications, such as data transfer for earthquake early warning, transaction for financial businesses, interactive services such as online games, etc. Latency consists of delay due to signal processing at nodes and transmitters, and of signal propagation delay due to propagation of electromagnetic waves. The lower limit of the latency in transmission systems using conventional single mode fibers (SMFs) depends on wave propagation speed in the SMFs which is slower than c. Photonic crystal fibers, holly fibers and large core fibers can have low effective refractive indices, and can transfer light faster than in SMFs. In free-space optical systems, signals propagate with the speed c, so that the latency could be smaller than in optical fibers. For example, LEO satellites would transmit data faster than optical submarine cables, when the transmission distance is longer than a few thousand kilometers. This paper will discuss combination of various transmission media to reduce negative impact of the latency, as well as applications of low-latency systems.
NASA Astrophysics Data System (ADS)
Tataru, Dragos; Grecu, Bogdan; Zaharia, Bogdan
2014-05-01
Variations in crustal thickness in Romania where determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group velocity dispersion. We present new models of shear wave velocity structure of the crust beneath Romanian broad band stations. The data set consist in more than 500 teleseismic earthquake with epicentral distance between 30 and 95, magnitude greater than 6 and a signal-to-noise ratio greater than 3 for the P-wave pulse. Most epicenters are situated along the northern Pacific Rim and arrive with backazimuths (BAZs) between 0 and 135 at the Romanian seismic network. We combine receiver functions with fundamental-mode of the Rayleigh wave group velocities to further constrain the shear-wave velocity structure.To extract the group velocities we applied the Multiple Filter Technique analysis to the vertical components of the earthquakes recordings. This technique allowed us to identify the Rayleigh wave fundamental mode and to compute the dispersion curves of the group velocities at periods between 10 and 150 s allowing us to resolve shear wave velocities to a depth of 100 km. The time-domain iterative deconvolution procedure of Ligorr?a and Ammon (1999) was employed to deconvolve the vertical component of the teleseismic P waveforms from the corresponding horizontal components and obtain radial and transverse receiver functions at each broadband station. The data are inverted using a joint, linearized inversion scheme (Hermann, 2002) which accounts for the relative influence of each set of observations, and allows a trade-off between fitting the observations, constructing a smooth model, and matching a priori constraints. The results show a thin crust for stations located inside the Pannonian basin (28-30 km) and a thicker crust for those in the East European Platform (36-40 km). The stations within the Southern and Central Carpathian Orogen are characterized by crustal depths of ~35 km. For stations located in the Northern part of the Eastern Carpathians we found a crustal depth of 32 km. For two station located in the Apuseni Mountains the Moho discontinuity is replace by a transition zone extended between 36 to 40 km depth. For a station located in the Carpathians bent area we identify a double Moho (32 respectively 44 km depth) possible due to the Vrancea subduction process. For the crust of Moesian Platform we get higher values (~35 km) compare to those obtained from seismic refraction profile (VRANCEA'2001). The North Dobrogea crust reaches a thickness of about 44-46 km. For most of the stations the crust-mantle transition zone has a significant gradient, with velocity values varying from 3.8 to 4.7 km/s. Our results are compatible with results from previous studies.
NASA Astrophysics Data System (ADS)
Strassburger, E.; Patel, P.; McCauley, J. W.; Templeton, D. W.
2006-07-01
An Edge-on Impact (EOI) technique, developed at the Ernst-Mach-Institute (EMI), coupled with a Cranz-Schardin high-speed camera, has been successfully utilized to visualize dynamic fracture in many brittle materials. In a typical test, the projectile strikes one edge of a specimen and damage formation and fracture propagation is recorded during the first 20 ?s after impact. In the present study, stress waves and damage propagation in fused silica and AlON were examined by means of two modified Edge-on Impact arrangements. In one arrangement, fracture propagation was observed simultaneously in side and top views of the specimens by means of two Cranz-Schardin cameras. In another arrangement, the photographic technique was modified by placing the specimen between crossed polarizers and using the photo-elastic effect to visualize the stress waves. Pairs of impact tests at approximately equivalent velocities were carried out in transmitted plane (shadowgraphs) and crossed polarized light.
NASA Astrophysics Data System (ADS)
Sereika, Raimundas; Bondarenka, Vladimiras; Rimeika, Romualdas; Sereika, Albertas; ?iplys, Daumantas
2014-11-01
The impact of ambient humidity on surface acoustic wave (SAW) propagation in the structure consisting of vanadium pentoxide xerogel (V2O5nH2O) layer deposited on a piezoelectric lithium niobate (LiNbO3) substrate has been studied. Thin V2O5nH2O layers were synthesized using sol-gel method and employed as humidity sensing materials. Freshly prepared layer drastically reduced the transmitted SAW signal, which later increased with time reaching saturation after more than 120 h at the level well below the free-surface value. The experimental observations of SAW behaviour were discussed and found related to the variations in resistance and dielectric permittivity of the V2O5nH2O.
Micron-sized particle impacts detected near Uranus by the Voyager 2 plasma wave instrument
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Kurth, W. S.; Scarf, K. L.; Burns, J. A.; Cuzzi, J. N.
1987-01-01
The characteristics and distribution of the small particles detected by the plasma-wave and radio-astronomy instruments during the Voyager 2 encounter with Uranus in January 1986 are examined. The nature of the observational data and the analysis techniques employed are discussed, and the results are presented in graphs. Particles of rms mass about 2.6 ng and radii of a few microns were found in an impact region of thickness 3840 km, with a maximum number density of 1600/cu m about 280 km from the equatorial plane, shortly after Voyager 2 crossed the plane of the Uranian rings. The possible origin of the particles in the rings or in small satellites outside the rings is considered.
Fernandez-Ramirez, C.; Bernstein, A. M.; Donnelly, T. W.
2009-12-15
Contributions of D waves to physical observables for neutral pion photoproduction from the proton in the near-threshold region are studied and means to isolate them are proposed. Various approaches to describe the multipoles are employed--a phenomenological one, a unitary one, and heavy baryon chiral perturbation theory. The results of these approaches are compared and found to yield essentially the same answers. D waves are seen to enter together with S waves in a way that any means which attempt to obtain the E{sub 0+} multipole accurately must rely on knowledge of D waves and that consequently the latter cannot be dismissed in analyses of low-energy pion photoproduction. It is shown that D waves have a significant impact on double-polarization observables that can be measured. This importance of D waves is due to the soft nature of the S wave and is a direct consequence of chiral symmetry and the Nambu-Goldstone nature of the pion. F-wave contributions are shown to be negligible in the near-threshold region.
Standing waves of a weakly coupled Schrödinger system with distinct potential functions
NASA Astrophysics Data System (ADS)
Wang, Jun; Shi, Junping
2016-01-01
The standing wave solutions of a weakly coupled nonlinear Schrödinger system with distinct trapping potential functions in RN (1 ≤ N ≤ 3) are considered. This type of system arises from models in Bose-Einstein condensates theory and nonlinear optics. The existence of a positive ground state solution is shown when the coupling constant is larger than a sharp threshold value, which is explicitly defined in terms of potential functions and system parameters. It is also shown that such solutions concentrate near the minimum points of potential functions, and multiple positive concentration solutions exist when the topological structure of the set of minimum points satisfies certain condition. Variational approach is used for the existence and concentration of positive solutions.
Efficient calculation of 1-D periodic Green's functions for leaky-wave applications.
Baccarelli, Paolo; Johnson, William Arthur; Paulotto, Simone; Jackson, David R.; Wilton, Donald R.; Galli, A.; Valero, G.; Celepcikay, F. T.
2010-08-01
In this paper an approach is described for the efficient computation of the mixed-potential scalar and dyadic Green's functions for a one-dimensional periodic (periodic along x direction) array of point sources embedded in a planar stratified structure. Suitable asymptotic extractions are performed on the slowly converging spectral series. The extracted terms are summed back through the Ewald method, modified and optimized to efficiently deal with all the different terms. The accelerated Green's functions allow for complex wavenumbers, and are thus suitable for application to leaky-wave antennas analysis. Suitable choices of the spectral integration paths are made in order to account for leakage effects and the proper/improper nature of the various space harmonics that form the 1-D periodic Green's function.
Bannister, S.; Bryan, C.J.; Bibby, H.M.
2004-01-01
The Taupo Volcanic Zone (TVZ), New Zealand is a region characterized by very high magma eruption rates and extremely high heat flow, which is manifest in high-temperature geothermal waters. The shear wave velocity structure across the region is inferred using non-linear inversion of receiver functions, which were derived from teleseismic earthquake data. Results from the non-linear inversion, and from forward synthetic modelling, indicate low S velocities at ???6- 16 km depth near the Rotorua and Reporoa calderas. We infer these low-velocity layers to represent the presence of high-level bodies of partial melt associated with the volcanism. Receiver functions at other stations are complicated by reverberations associated with near-surface sedimentary layers. The receiver function data also indicate that the Moho lies between 25 and 30 km, deeper than the 15 ?? 2 km depth previously inferred for the crust-mantle boundary beneath the TVZ. ?? 2004 RAS.
Crack detection in a wheel end spindle using wave propagation via modal impacts and piezo actuation
NASA Astrophysics Data System (ADS)
Ackers, Spencer; Evans, Ronald; Johnson, Timothy; Kess, Harold; White, Jonathan; Adams, Douglas E.; Brown, Pam
2006-03-01
This research demonstrates two methodologies for detecting cracks in a metal spindle housed deep within a vehicle wheel end assembly. First, modal impacts are imposed on the hub of the wheel in the longitudinal direction to produce broadband elastic wave excitation spectra out to 7000 Hz. The response data on the flange is collected using 3000 Hz bandwidth accelerometers. It is shown using frequency response analysis that the crack produces a filter, which amplifies the elastic response of the surrounding components of the wheel assembly. Experiments on wheel assemblies mounted on the vehicle with the vehicle lifted off the ground are performed to demonstrate that the modal impact method can be used to nondestructively evaluate cracks of varying depths despite sources of variability such as the half shaft angular position relative to the non-rotating spindle. Second, an automatic piezo-stack actuator is utilized to excite the wheel hub with a swept sine signal extending from 20 kHz. Accelerometers are then utilized to measure the response on the flange. It is demonstrated using frequency response analysis that the crack filters waves traveling from the hub to the flange. A simple finite element model is used to interpret the experimental results. Challenges discussed include variability from assembly to assembly, the variability in each assembly, and the high amount of damping present in each assembly due to the transmission gearing, lubricant, and other components in the wheel end. A two-channel measurement system with a graphical user interface for detecting cracks was also developed and a procedure was created to ensure that operators properly perform the test.
The impact of solar thermal tides on the propagation and dissipation of gravity waves
NASA Astrophysics Data System (ADS)
Senf, Fabian; Achatz, Ulrich
Gravity waves (GWs) and thermal tides are important phenomena in middle-atmosphere dy-namics. Breaking GWs have a major impact on the mean circulation in the middle atmosphere (MA). Due to the limitations in computational power most complex MA circulation models have to incorporate the effect of unresolved GWs via an efficient parametrization. Typically, these are of vertical column type and ignore horizontal and temporal variations in the background fields. However, highly transient tidal perturbations are always present and dominate diurnal variations in the MA through which the GWs propagate. Even in studies of the interaction between GWs and these thermal tides, a possibly important aspect of tidal dynamics, columnar parametrizations of GWs have been applied which do not account for the time dependence of thermal tides. A ray tracing technique is used to illuminate the impact of horizontal gradients of the back-ground (including the tides) and its time dependence on the propagation and dissipation of GWs. It is shown that tidal transience leads to a modulation of the absolute, or sometimes called ground-based, frequency of slowly propagating GWs. Due to large tidal wind variations in the upper mesosphere most parts of the assumed GW spectrum are slowed down in critical layer type regions. Then, the combined action of horizontal wave number refraction and fre-quency modulation induce changes in the horizontal phase speed which may exceed the initial phase speed by orders of magnitude. The phase speed variations have the tendency to follow the shape of the tidal background wind. This effect leads to less critical layer filtering of GWs and therefore decreased periodic background flow forcing due to momentum flux divergences as compared to a classical vertical column parametrization of instantaneously adjusting GW trains.
Spatial impacts of heat waves in mortality. Evaluating current risks and future threats
NASA Astrophysics Data System (ADS)
Andrade, H.; Canario, P.; Nogueira, H.
2009-09-01
Impacts of heat waves in morbidity and mortality are largely known. Climate Change is expected to increase the climate health impacts in summer while the winter will be probably favored. The health impacts of extreme thermal events are mainly studied at a national or regional level, considering macro or mesoscale thermal features. But it can be assumed that local variations in mortality must exist, associated, in one hand, with local climatic differences, due to features such as land use and urbanization and, in other hand, with vulnerability factors (depending on demographic and socioeconomic characteristics of populations). A model of hazard - vulnerability - risk was developed, to analyze the spatial variations of mortality in extreme thermal events, at the level of city district, in the Lisbon metropolitan area (Portugal). In that model, risk is considered as the product of hazard and vulnerability. Daily mortality data by sex, age and cause of death was supplied by the Health National Authority. The research is yet on-going. In our model, hazard is represented mainly by temperature and air pollution (the influence of other atmospheric variables that affect the human energy balance, such as solar radiation and wind speed should be tested too). Small scale variation of meteorological features, in extreme thermal events, were simulated with a Regional Atmospheric Model (Brazilian Regional Atmospheric Modeling System) and the results were validated and calibrated using observation data from an urban network of termo-higrometers placed in sites with different urban characteristics. Vulnerability is a result on personal sensitivity and exposure. Personal sensitivity is assessed considering individual constitutional and demographic factors as well as socio, cultural and economic variables. Daily mobility determines the population exposure to heat. Since many of these variables are redundant, a set of indicators, including a multiple deprivation index, was used. A first step consists in the modelling of the current relationship between hazard factors, vulnerability and mortality with the aim to explain the variations in mortality, at the city-district scale. In a second step, changes in hazard and vulnerability factors will be simulated. In the changes in meteorological conditions, IPCC and SIAM II scenarios were considered, as well as previsions of urban development and land use changes in the studied area. Demographic and socioeconomic changes should be simulated too. The pretended result with this risk assessment methodology is a prevision of future impacts (intensity and patterns) of the heat waves on mortality.
Antidepressants Impact Connexin 43 Channel Functions in Astrocytes
Jeanson, Tiffany; Pondaven, Audrey; Ezan, Pascal; Mouthon, Franck; Charvériat, Mathieu; Giaume, Christian
2016-01-01
Glial cells, and in particular astrocytes, are crucial to maintain neuronal microenvironment by regulating energy metabolism, neurotransmitter uptake, gliotransmission, and synaptic development. Moreover, a typical feature of astrocytes is their high expression level of connexins, a family of membrane proteins that form gap junction channels allowing intercellular exchanges and hemichannels that provide release and uptake pathways for neuroactive molecules. Interestingly, several studies have revealed unexpected changes in astrocytes from depressive patients and rodent models of depressive-like behavior. Moreover, changes in the expression level of the astroglial connexin 43 (Cx43) have been reported in a depressive context. On the other hand, antidepressive drugs have also been shown to impact the expression of this connexin in astrocytes. However, so far there is little information concerning the functional consequence of these changes, i.e., the status of gap junctional communication and hemichannel activity in astrocytes exposed to antidepressants. In the present work we focused our attention on the action of seven antidepressants from four different therapeutic classes and tested their effects on Cx43 expression and on the two connexin-based channels functions studied in cultured astrocytes. We here report that when used at non-toxic and clinically relevant concentrations they have no effects on Cx43 expression but differential effects on Cx43 gap junction channels. Moreover, all tested antidepressants inhibit Cx43 hemichannel with different efficiency depending on their therapeutic classe. By studying the impact of antidepressants on the functional status of astroglial connexin channels, contributing to dynamic neuroglial interactions, our observations should help to better understand the mechanism by which these drugs provide their effect in the brain. PMID:26778961
Bobrov, V B; Trigger, S A; van Heijst, G J F; Schram, P P J M
2010-07-01
On the basis of the stationary Schrdinger equation, the virial theorem in an inhomogeneous external field for the canonical ensemble is proved. It is shown that the difference in the form of virial theorem is conditioned by the value of the wave-function derivative on the surface of the volume, surrounding the system under consideration. The stress tensor in such a system is determined by the average values of the wave-function space derivatives. PMID:20866550
Role of the bound-state wave function in capture-loss rates: Slow proton in an electron gas
Alducin, M.; Nagy, I.
2003-07-01
Capture and loss rates for protons moving in an electron gas are calculated using many-body perturbation theory. The role of the form of the bound-state wave function for weakly bound states around the proton is analyzed. We find significant differences (up to a factor of 2 higher) in the values of Auger capture and loss rates when using Hulthen-type instead of hydrogenic wave functions. Its relevance in stopping power is briefly discussed.
Big bounce as the scattering of the wave function at the big crunch
NASA Astrophysics Data System (ADS)
Amemiya, Fumitoshi; Koike, Tatsuhiko
2010-11-01
A gauge-invariant quantum theory of the Friedmann-Robertson-Walker (FRW) universe with dust is studied in terms of the Ashtekar variables. We use the reduced phase space quantization which has following advantages: (i) fundamental variables are all gauge invariant, (ii) there exists a physical time evolution of gauge-invariant quantities, so that the problem of time is absent, and (iii) the reduced phase space can be quantized in the same manner as in ordinary quantum mechanics. In the FRW model, the dynamical components of the Ashtekar variables are given by a single quantity p and its conjugate momentum, where p is related to the scale factor a as a?|p| and its sign gives the orientation of triads. We solve a scattering problem in terms of ingoing and outgoing energy eigenstates. We show that the incident wave is reflected in rate 1/4 and transmitted in rate 3/4 at the classical singularity p=0. Analyzing the dynamics of a wave packet, we show that the classical initial singularity is replaced by a big bounce in quantum theory. A possible interpretation of the result is that the wave function of the universe has been in a superposition of states representing right-handed and left-handed systems before the big bounce.
Diverging probability-density functions for flat-top solitary waves.
Peleg, Avner; Chung, Yeojin; Dohnal, Toms; Nguyen, Quan M
2009-08-01
We investigate the statistics of flat-top solitary wave parameters in the presence of weak multiplicative dissipative disorder. We consider first propagation of solitary waves of the cubic-quintic nonlinear Schrdinger equation (CQNLSE) in the presence of disorder in the cubic nonlinear gain. We show by a perturbative analytic calculation and by Monte Carlo simulations that the probability-density function (PDF) of the amplitude eta exhibits loglognormal divergence near the maximum possible amplitude eta(m), a behavior that is similar to the one observed earlier for disorder in the linear gain [A. Peleg, Phys. Rev. E 72, 027203 (2005)]. We relate the loglognormal divergence of the amplitude PDF to the superexponential approach of eta to eta(m) in the corresponding deterministic model with linear/nonlinear gain. Furthermore, for solitary waves of the derivative CQNLSE with weak disorder in the linear gain both the amplitude and the group velocity beta become random. We therefore study analytically and by Monte Carlo simulations the PDF of the parameter p, where p = eta/(1-epsilon(s)beta/2) and epsilon(s) is the self-steepening coefficient. Our analytic calculations and numerical simulations show that the PDF of p is loglognormally divergent near the maximum p value. PMID:19792267
Convergence to equilibrium for solutions of an abstract wave equation with general damping function
NASA Astrophysics Data System (ADS)
Brta, Tom; Faangov, Eva
2016-02-01
We prove convergence to a stationary solution as time goes to infinity of solutions to abstract nonlinear wave equation with general damping term and gradient nonlinearity, provided the trajectory is precompact. The energy is supposed to satisfy a Kurdyka-?ojasiewicz gradient inequality. Our aim is to formulate conditions on the function g as general as possible when the damping is a scalar multiple of the velocity, and this scalar depends on the norm of the velocity, g (|ut |)ut. These turn out to be estimates and a coupling condition with the energy but not global monotonicity. When the damping is more general, we need an angle condition.
NASA Astrophysics Data System (ADS)
Tye, S.-H. Henry; Wong, Sam S. C.
2015-08-01
For the periodic sphaleron potential in the electroweak theory, we find the one-dimensional time-independent Schrdinger equation with the Chern-Simons number as the coordinate, construct the Bloch wave function and determine the corresponding conducting (pass) band structure. We show that the baryon-lepton number violating processes can take place without the exponential tunneling suppression (at zero temperature) at energies around and above the barrier height (sphaleron energy) at 9.0 TeV. Phenomenologically, probable detection of such processes at the LHC is discussed.
Extracting elements of molecular structure from the all-particle wave function
Matyus, Edit; Reiher, Markus; Hutter, Juerg; Mueller-Herold, Ulrich
2011-11-28
Structural information is extracted from the all-particle (non-Born-Oppenheimer) wave function by calculating radial and angular densities derived from n-particle densities. As a result, one- and two-dimensional motifs of classical molecular structure can be recognized in quantum mechanics. Numerical examples are presented for three- (H{sup -}, Ps{sup -}, H{sub 2}{sup +}), four- (Ps{sub 2}, H{sub 2}), and five-particle (H{sub 2}D{sup +}) systems.
Thomas, Edward Jr.; Williams, Jeremiah
2006-05-15
Two-dimensional particle image velocimetry (2D-PIV) techniques have been applied to dusty plasmas for the past 5 years. During that time, 2D-PIV has been used to provide detailed measurements of microparticle transport in dusty plasmas. However, a measurement of the third velocity vector direction is necessary to fully understand the microparticle transport. In this paper, stereoscopic particle image velocimetry (stereo-PIV) is used as a technique for obtaining all three-velocity vector components. This paper discusses the application of stereo-PIV techniques to measurements of dust acoustic waves and velocity space distribution functions in dusty plasmas.
Symmetric tensor decomposition description of fermionic many-body wave functions.
Uemura, Wataru; Sugino, Osamu
2012-12-21
The configuration interaction (CI) is a versatile wave function theory for interacting fermions, but it involves an extremely long CI series. Using a symmetric tensor decomposition method, we convert the CI series into a compact and numerically tractable form. The converted series encompasses the Hartree-Fock state in the first term and rapidly converges to the full-CI state, as numerically tested by using small molecules. Provided that the length of the symmetric tensor decomposition CI series grows only moderately with the increasing complexity of the system, the new method will serve as one of the alternative variational methods to achieve full CI with enhanced practicability. PMID:23368456
NASA Astrophysics Data System (ADS)
Zhu, Jia-Min; Lu, Zhi-Ming; Liu, Yu-Lu
2008-06-01
One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some unknown parameters. The Jaulent Miodek equations are used to illustrate effectiveness and convenience of this method, some new explicit exact travelling wave solutions have been obtained, which include bell-type soliton solution, kink-type soliton solutions, solitary wave solutions, and doubly periodic wave solutions.
The 1, 2, 3 of the Van Allen Radiation Belts: Impacts of Dynamics Driven by Observed ULF Wave Power
NASA Astrophysics Data System (ADS)
Mann, I. R.; Ozeke, L.; Murphy, K. R.; Claudepierre, S. G.; Turner, D. L.; Rae, J.; Milling, D. K.; Kale, A.; Fennell, J.; Baker, D. N.
2014-12-01
We present the impacts of a properly characterised time-series of ULF wave power on the dynamics of ultra-relativistic electrons in the Van Allen belts. We compare results derived from observed wave power with those from statistical characterisations based on geomagnetic indices such as Kp through the course of the main and recovery phases of storm-time Van Allen radiation belt dynamics. We find using the observed ULF wave power presents a remarkable explanation for the overall dynamics of the belts in terms of the impacts of inward and outward radial diffusion in association with plasmasheet sources and magnetopause shadowing. At ultra-relativistic energies the resulting dynamics demonstrate a remarkable simplicity which is controlled by the ULF wave power. ULF wave power can explain all of the morphologies of the Van Allen belts at ultra-relativistic energies in the form of either one, two or three belts. Overall, our results reveal that ULF waves truly provide an explanation for the 1,2,3 of ultra-relativistic radiation belt dynamics.
NASA Astrophysics Data System (ADS)
Yasui, M.; Matsumoto, E.; Arakawa, M.; Matsue, K.; Kobayashi, N.
2014-07-01
Introduction: A seismic wave survey is a direct method to investigate the sub-surface structures of solid bodies, so we measured and analyzed these seismic waves propagating through these interiors. Earthquake and Moonquake are the only two phenomena that have been observed to explore these interiors until now, while the future surveys on the other bodies, (solid planets and/or asteroids) are now planned. To complete a seismic wave survey during the mission period, an artificial method that activates the seismic wave is necessary and one candidate is a projectile collision on the target body. However, to utilize the artificial seismic wave generated on the target body, the relationship between the impact energy and the amplitude and the decay process of the seismic wave should be examined. If these relationships are clarified, we can estimate the required sensitivity of seismometers installed on the target body and the possible distance from the seismic origin measurable for the seismometer. Furthermore, if we can estimate the impact energy from the observed seismic wave, we expect to be able to estimate the impact flux of impactors that collided on the target body. McGarr et al. (1969) did impact experiments by using the lexan projectile and two targets, quartz sand and sand bonded by epoxy cement, at 0.8-7 km/s. They found a difference of seismic wave properties between the two targets, and calculated the conversion efficiency to discuss the capability of detection of seismic waves on the Moon. However, they did not examine the excitation and propagation properties of the seismic waves in detail. In this study, we carried out impact experiments in the laboratory to observe the seismic waves by accelerometers, and examined the effects of projectile properties on the excitation and propagation properties of the seismic waves. Experimental methods: We made impact experiments by using a one-stage gas gun at Kobe University. Projectiles were a polycarbonate cylinder with a diameter of 10 mm and a height of 10 mm, and stainless steel and alumina balls with a diameter of 3 mm. The stainless steel and alumina projectiles were accelerated with a sabot made of polyethylene. The impact velocity was from 20 to 100 m/s. The target was a non-cohesive glass bead with a mean particle diameter of 200 μ m prepared by putting the particles into a container with a diameter of 300 mm and a height of 100 mm, up to 80 mm depth. The target porosity was about 40%. A chamber that we set the target in was evacuated below 1000 Pa. Three accelerometers (response frequency < 10 kHz) were set on the target surface at different distances from the impact point. The observed seismic waves were recorded on a data logger (A/D conversion rate 100 kHz). Experimental results: First, we examined the propagation velocity of the seismic wave by using the traveling time from the impact point to the site of the accelerometer, then the impact velocity was obtained to be 105 ± 15 m/s. Next, we discovered that the maximum acceleration, g_max, had a good relationship to the normalized distance, x/R (x: distance from impact point, R: crater radius) and it was fitted by the following equation, g_max=268(x/R)^{-2.8}, irrespective of projectile types. These results mean that the seismic wave attenuates with a similar waveform scaled by the crater radius on the same target. The duration keeping the maximum acceleration was measured to have a half width of g_max peak on the waveform, and it was estimated to be ˜0.3 ms. This value is almost consistent with the penetration time of projectiles estimated by the model proposed by Niimi et al. (2011). McGarr et al. (1969) studied the momentum conversion efficiency from the projectile momentum to the target momentum transferred by the seismic wave and obtained it as the ratio of the momentum calculated by the particle motion, I, to the projectile momentum, I_p. In our study, the I/I_p was obtained to be 0.23-1.56. This range was almost consistent with that of McGarr et al. (1969), 0.39-1.62. We can conclude that I/I_p is independent of the impact velocity. Implications for planetary exploration: According to the previous results, we can discuss the sensitivity of the seismometer to detect the seismic wave induced by an artificial impactor on asteroids. We calculated the maximum acceleration on asteroids with two different sizes, such as the sizes of Eros and 1999JU3, by assuming that the projectile made of copper with a mass of 2 kg impacted at 2 km/s. In this calculation, we used the crater scaling law and the attenuation equation of g_max obtained in our study. As a result, the seismometer could detect the seismic wave only around the crater cavity on an Eros-sized asteroid while it could detect the wave globally on a 1999JU3-sized asteroid.
Surveillance of Summer Mortality and Preparedness to Reduce the Health Impact of Heat Waves in Italy
Michelozzi, Paola; de Donato, Francesca K.; Bargagli, Anna Maria; DIppoliti, Daniela; De Sario, Manuela; Marino, Claudia; Schifano, Patrizia; Cappai, Giovanna; Leone, Michela; Kirchmayer, Ursula; Ventura, Martina; di Gennaro, Marta; Leonardi, Marco; Oleari, Fabrizio; De Martino, Annamaria; Perucci, Carlo A.
2010-01-01
Since 2004, the Italian Department for Civil Protection and the Ministry of Health have implemented a national program for the prevention of heat-health effects during summer, which to-date includes 34 major cities and 93% of the residents aged 65 years and over. The Italian program represents an important example of an integrated approach to prevent the impact of heat on health, comprising Heat Health Watch Warning Systems, a mortality surveillance system and prevention activities targeted to susceptible subgroups. City-specific warning systems are based on the relationship between temperature and mortality and serve as basis for the modulation of prevention measures. Local prevention activities, based on the guidelines defined by the Ministry of Health, are constructed around the infrastructures and services available. A key component of the prevention program is the identification of susceptible individuals and the active surveillance by General Practitioners, medical personnel and social workers. The mortality surveillance system enables the timely estimation of the impact of heat, and heat waves, on mortality during summer as well as to the evaluation of warning systems and prevention programs. Considering future predictions of climate change, the implementation of effective prevention programs, targeted to high risk subjects, become a priority in the public health agenda. PMID:20623023
The ecology of seamounts: structure, function, and human impacts.
Clark, Malcolm R; Rowden, Ashley A; Schlacher, Thomas; Williams, Alan; Consalvey, Mireille; Stocks, Karen I; Rogers, Alex D; O'Hara, Timothy D; White, Martin; Shank, Timothy M; Hall-Spencer, Jason M
2010-01-01
In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research. PMID:21141665
NASA Astrophysics Data System (ADS)
Katsuki, Hiroyuki; Ohmori, Kenzo; Horie, Toru; Yanagi, Hisao; Ohmori, Kenji
2015-09-01
Solid parahydrogen, which is known to have an exceptionally long vibrational coherence lifetime as a molecular solid, offers an ideal testbed to perform coherent control experiments in the condensed phase. Here we demonstrate the spatial manipulation and visualization of the relative phase of vibrational wave functions in solid parahydrogen. Spatial distribution of vibrational excitation is generated by femtosecond impulsive Raman excitation. It is shown that the imprinted initial phase can be manipulated by wave-front modulation of the excitation laser pulses with a spatial light modulator. An interferometric measurement is used to convert the spatial phase distribution of the vibrational wave functions to the amplitude distribution. We have confirmed that the spatial profile of the scattered anti-Stokes pulse reveals the spatial phase distribution of the wave functions. The read-and-write scheme demonstrated in this experiment is applicable to a broad range of Raman memory systems accessible by Λ -type transitions.
Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells
Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.
2014-01-01
The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction. PMID:24458018
Characterization of a setup to test the impact of high-amplitude pressure waves on living cells.
Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O
2014-01-01
The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction. PMID:24458018
Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells
NASA Astrophysics Data System (ADS)
Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.
2014-01-01
The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction.
System and Method for Measuring the Transfer Function of a Guided Wave Device
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)
2002-01-01
A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.
NASA Astrophysics Data System (ADS)
Slob, E. C.; Grobbe, N.
2014-12-01
The theory of coupled elastic waves and electromagnetic fields in porous media exists for two decades. Several modeling codes have been developed and some field work has been carried out with mixed success. Modeling the so-called electroseismic and seismo-electromagnetic wavefields is tricky because of the strong elastic fields generated by mechanical sources and strong electromagnetic fields generated by electromagnetic sources, while the coupled fields have relatively small amplitudes. A second difficulty is the fact that the elastic field is essentially a wavefield, while the electromagnetic field is a diffusive field. The slow P-wave is usually also a diffusive field depending on the frequency bandwidth of the data. On the other hand, for porous soils and rocks, laboratory measurements have been carried out to experimentally validate the current theoretical model and to some extent this has been successful. To be able to understand measured data it is crucially important that we have good control on the accuracy of modeled data. Today we don't have this control, which makes it hard to judge the quality of the modeled data and trust the experimental validation of the theory. It is therefore important that exact solutions are found to validate modeling codes in simple configurations. These modeling codes can then numerically validate the theory by matching the results obtained in laboratory or field experiments. The simplest configuration is the homogeneous space and we show exact solutions for the governing equations for point sources and point receivers. These Green's functions are obtained for any type of point source and any type of receiver. We reduce the coupled equations to two scalar equations for the electric field and the particle velocity vectors. Solutions for longitudinal and transverse waves are obtained separately and these are combined to obtain the Green's functions for the electric field and the particle velocity, from which the solutions for all other fields are found. We show numerical examples of the fields that can be measured in the field.
Harris, Jamie; Timofeeva, Yulia
2010-11-01
Calcium is a crucial component in a plethora of cellular processes involved in cell birth, life, and death. Intercellular calcium waves that can spread through multiple cells provide one form of cellular communication mechanism between various parts of cell tissues. Here we introduce a simple, yet biophysically realistic model for the propagation of intercellular calcium waves based on the fire-diffuse-fire type model for calcium dynamics. Calcium release sites are considered to be discretely distributed along individual linear cells that are connected by gap junctions and a solution of this model can be found in terms of the Green's function for this system. We develop the "sum-over-trips" formalism that takes into account the boundary conditions at gap junctions providing a generalization of the original sum-over-trips approach for constructing the response function for branched neural dendrites. We obtain the exact solution of the Green's function in the Laplace (frequency) domain for an infinite array of cells and show that this Green's function can be well approximated by its truncated version. This allows us to obtain an analytical traveling wave solution for an intercellular calcium wave and analyze the speed of solitary wave propagation as a function of physiologically important system parameters. Periodic and irregular traveling waves can be also sustained by the proposed model. PMID:21230503
NASA Astrophysics Data System (ADS)
Sadoff, N.; Weber, S.; Zell, E. R.; de Sherbinin, A. M.
2014-12-01
Climate-induced heat waves have been increasing globally in the past 5-10 years and are projected to continue increasing throughout the 21st century. In urban areas, heat waves are exacerbated by the non-climate stressor of urban heat islands (UHIs). The vulnerability of a city's population to heat waves reflects exposure to extreme heat events, sensitivity of the population to impacts, such as adverse health effects, and adaptive capacity to prepare for and respond to heat waves. Socially and economically vulnerable populations are especially at risk to the impacts of heat waves, due to increasing energy costs, air pollution, and heat-related illness and mortality. NASA earth science datasets, combined with socioeconomic data, can be used to create indicators that characterize vulnerability to urban heat events and address the effectiveness of adaptation measures designed to reduce local temperatures. The indicator development process should include engagement from local stakeholders and end users from the onset to ensure local relevance and, ultimately, indicator uptake and sustainability. This presentation will explore the process of working with urban stakeholders in Philadelphia to develop a set of policy-relevant, interdisciplinary vulnerability indicators focused on extreme heat events in urban areas. Ambient and land surface temperature, land cover classifications, NDVI, and US Census data are used to create a basket of indicators that reflect urban heat wave duration and intensity, UHI exposure, socioeconomic vulnerability, and adaptation effectiveness. These indicators can be assessed at the city level and also comparatively among different parts of a city to help quantify and track heat wave impacts on vulnerable populations and the effectiveness of adaptation measures.
Kalbfleisch, M Layne; Loughan, Ashlee R
2012-03-01
We examined the impact of IQ discrepancy (IQD) within (1) and above (1+) one standard deviation on executive function in HFA using the BRIEF. We hypothesized that IQD would benefit executive function. IQD 1 is hallmarked by deficits in BRIEF indices and subscales inhibit, shift, initiate, working memory, planning and organization, and monitor (MANCOVA, p<.003, corrected). As IQD increases to 1+, deficits are fewer, corresponding to subscales inhibit, shift, and initiate. Pearson correlations (p<.004, corrected) identify significant relationships for FSIQ and BRIEF Global Composite (r=-.66, p=.002) and Metacognition subscales plan/organize (r=-.64, p=.003) and monitor (r=-.63, p=.004). Results suggest IQD 1+ favoring verbal IQ may support these aspects of executive function in HFA. PMID:21503796
Bruckmann, Falk; Gattringer, Christof; Kloiber, Thomas; Sulejmanpasic, Tin
2015-12-01
We show that information about scattering data of a quantum field theory can be obtained from studying the system at finite density and low temperatures. In particular we consider models formulated on the lattice that can be exactly dualized to theories of conserved charge fluxes on lattice links. Apart from eliminating the complex action problem at nonzero chemical potential ?, these dualizations allow for a particle world line interpretation of the dual fluxes from which one can extract data about the two-particle wave function. As an example we perform dual MonteCarlo simulations of the two-dimensional O(3) model at nonzero ? and finite volume, whose nonperturbative spectrum consists of a massive triplet of particles. At nonzero ? particles are induced in the system, which at sufficiently low temperature give rise to sectors of fixed particle number. We show that the scattering phase shifts can be obtained either from the critical chemical potential values separating the sectors or directly from the wave function in the two-particle sector. We find that both methods give excellent agreement with the exact result. We discuss the applicability and generality of the new approaches. PMID:26684109
Crustal Structure of Iraq from Receiver Functions and Surface Wave Dispersion
Gok, R; Mahdi, H; Al-Shukri, H; Rodgers, A J
2006-08-31
We report the crustal structure of Iraq, located in the northeastern Arabian plate, estimated by joint inversion of P-wave receiver functions and surface wave group velocity dispersion. Receiver functions were computed from teleseismic recordings at two temporary broadband seismic stations in Mosul (MSL) and Baghdad (BHD), separated by approximately 360 km. Group velocity dispersion curves at the sites were derived from continental-scale tomography of Pasyanos (2006). The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km at station MSL and 7 km at BHD, agreeing well with the existing models. Ignoring the sediments, the crustal velocities and thicknesses are remarkably similar between the two stations, suggesting that the crustal structure of the proto-Arabian Platform in northern Iraq was uniform before subsidence and deposition of the sediments in the Cenozoic. Deeper low velocity sediments at BHD are expected to result in higher ground motions for earthquakes.
Pixel level optical-transfer-function design based on the surface-wave-interferometry aperture
Zheng, Guoan; Wang, Yingmin; Yang, Changhuei
2010-01-01
The design of optical transfer function (OTF) is of significant importance for optical information processing in various imaging and vision systems. Typically, OTF design relies on sophisticated bulk optical arrangement in the light path of the optical systems. In this letter, we demonstrate a surface-wave-interferometry aperture (SWIA) that can be directly incorporated onto optical sensors to accomplish OTF design on the pixel level. The whole aperture design is based on the bull’s eye structure. It composes of a central hole (diameter of 300 nm) and periodic groove (period of 560 nm) on a 340 nm thick gold layer. We show, with both simulation and experiment, that different types of optical transfer functions (notch, highpass and lowpass filter) can be achieved by manipulating the interference between the direct transmission of the central hole and the surface wave (SW) component induced from the periodic groove. Pixel level OTF design provides a low-cost, ultra robust, highly compact method for numerous applications such as optofluidic microscopy, wavefront detection, darkfield imaging, and computational photography. PMID:20721038
Grand Canonical Ensembles, Multiparticle Wave Functions, Scattering Data, and Lattice Field Theories
NASA Astrophysics Data System (ADS)
Bruckmann, Falk; Gattringer, Christof; Kloiber, Thomas; Sulejmanpasic, Tin
2015-12-01
We show that information about scattering data of a quantum field theory can be obtained from studying the system at finite density and low temperatures. In particular we consider models formulated on the lattice that can be exactly dualized to theories of conserved charge fluxes on lattice links. Apart from eliminating the complex action problem at nonzero chemical potential ? , these dualizations allow for a particle world line interpretation of the dual fluxes from which one can extract data about the two-particle wave function. As an example we perform dual Monte Carlo simulations of the two-dimensional O(3) model at nonzero ? and finite volume, whose nonperturbative spectrum consists of a massive triplet of particles. At nonzero ? particles are induced in the system, which at sufficiently low temperature give rise to sectors of fixed particle number. We show that the scattering phase shifts can be obtained either from the critical chemical potential values separating the sectors or directly from the wave function in the two-particle sector. We find that both methods give excellent agreement with the exact result. We discuss the applicability and generality of the new approaches.
Ergodicity breaking and wave-function statistics in disordered interacting systems
De Luca, Andrea
2014-08-20
We present the study of the structure of many-body eigenfunctions in a one-dimensional disordered spin chain. We discuss the choice of an appropriate basis in the Hilbert space, where the problem can be seen as an Anderson model defined on a high-dimensional non-trivial graph, determined by the many-body Hamiltonian. The comparison with the usual behavior of wave-functions in finite dimensional Anderson localization allows us to put in light the main differences of the many-body case. At high disorder, the typical eigenfunctions do not seem to localize though they occupy a infinitesimal portion of the Hilbert space in the thermodynamic limit. We perform a detailed analysis of the distribution of the wave-function coefficients and their peculiar scaling in the small and large disorder phase. We propose a criterion to identify the position of the transition by looking at the long tails of these distributions. The results coming from exact diagonalization show signs of breaking of ergodicity when the disorder reaches a critical value that agrees with the estimation of the many-body localization transition in the same model.
Variational study of vacancies in solid 4He with shadow wave functions
NASA Astrophysics Data System (ADS)
Pederiva, F.; Chester, G. V.; Fantoni, S.; Reatto, L.
1997-09-01
We employ the shadow wave function (SWF) formalism to obtain estimates of the energy of formation of a vacancy in hcp, fcc, and bcc 4He crystal at T=0 K. We find that this energy is a strong function of density, in agreement with experiment. The use of a more efficient sampling with a smart Monte Carlo technique, allowed us to observe the motion of the vacancy through the crystal. We also present data on the occupation of the Wigner-Seitz cells. The occupation of the cells changes along the run, showing the mobility of the particles and of the vacancy. As a byproduct of this study we present results for the energy of perfect hcp and bcc crystals described by a SWF.