Science.gov

Sample records for wave velocity variation

  1. Shear-wave velocity variation in jointed rock: an attempt to measure tide-induced variations

    SciTech Connect

    Beem, L.I.

    1987-08-01

    The use of the perturbation of seismic wave velocities by solid earth tides as a possible method of exploration for fractured media is discussed. Velocity of compressional seismic waves in fractured homogeneous rock has been observed to vary through solid earth tide cycles by a significant 0.5-0.9%. This variation of seismic velocities may be attributed to the opening and closing of joints by tidal stresses. In an attempt to see if shear-wave velocities show a similar velocity variation, a pneumatic shear-wave generator was used for the source. The 5 receivers, 3-component, 2.0 Hz, moving-coil geophones, were connected to a GEOS digital recorder. The two receivers located 120 m and 110 m from the source showed large shear-to-compression amplitude ratio and a high signal-to-noise ratio. A glaciated valley was chosen for the experiment site, since topography is flat and the granodiorite is jointed by a set of nearly orthogonal vertical joints, with superimposed horizontal sheeting joints. A slight velocity variation was noted in the first 200 consecutive firings; after which, the amplitude of the shear-wave begun to increase. This increase has been attributed to the compacting of the soil beneath the shear-wave generator (SWG). In the future, the soil will be compacted prior to placing the SWG or the SWG will be coupled directly to the rock to alleviate the amplitude fluctuation problem. This research may have application in exploration for fracture permeability in the rock mass between existing wells, by measuring seismic velocities from well to well through the tidal cycle.

  2. Variation of wave velocity and porosity of sandstone after high temperature heating

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Zhang, ·Weiqiang; Su, Tianming; Zhu, Shuyun

    2016-05-01

    This paper reports the variations of mass, porosity, and wave velocity of sandstone after high temperature heating. The range of temperature to which the sandstone specimens have been exposed is 25-850°C, in a heating furnace. It has been shown that below 300°C, porosity and wave velocity change very little. Above 300°C, there is a rapid increase in porosity, but the wave velocity decreases significantly. The results of thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC) and mercury intrusion porosimetry (MIP) suggest that a series of changes occurred between 400 and 600°C in sandstone could be responsible for the different patterns of variation in porosity and wave velocity.

  3. Coda wave interferometry for the measurement of thermally induced ultrasonic velocity variations in CFRP laminates

    NASA Astrophysics Data System (ADS)

    Livings, Richard; Dayal, Vinay; Barnard, Dan

    2016-02-01

    Ultrasonic velocity measurement is a well-established method to measure properties and estimate strength as well as detect and locate damage. Determination of accurate and repeatable ultrasonic wave velocities can be difficult due to the influence of environmental and experimental factors. Diffuse fields created by a multiple scattering environment have been shown to be sensitive to homogeneous strain fields such as those caused by temperature variations, and Coda Wave Interferometry has been used to measure the thermally induced ultrasonic velocity variation in concrete, aluminum, and the Earth's crust. In this work, we analyzed the influence of several parameters of the experimental configuration on the measurement of thermally induced ultrasonic velocity variations in a carbon-fiber reinforced polymer plate. Coda Wave Interferometry was used to determine the relative velocity change between a baseline signal taken at room temperature and the signal taken at various temperatures. The influence of several parameters of the experimental configuration, such as the material type, the receiver aperture size, and fiber orientation on the results of the processing algorithm was evaluated in order to determine the optimal experimental configuration.---This work is supported by the NSF Industry/University Cooperative Research Program of the Center for Nondestructive Evaluation at Iowa State University.

  4. Variation of Fundamental Mode Surface Wave Group Velocity Dispersion in Iran and the Surrounding Region

    NASA Astrophysics Data System (ADS)

    Rham, D. J.; Preistley, K.; Tatar, M.; Paul, A.

    2006-12-01

    We present group velocity dispersion results from a study of regional fundamental mode Rayleigh and Love waves propagating across Iran and the surrounding region. Data for these measurements comes from field deployments within Iran by the University of Cambridge (GBR) and the Universite Joseph-Fourier (FRA) in conjunction with International Institute of Earthquake Engineering and Seismology (Iran), in addition to data from IRIS and Geofone. 1D path- averaged dispersion measurements have been made for ~5500 source-receiver paths using multiple filter analysis. We combine these observations in a tomographic inversion to produce group velocity images between 10 and 60 s period. Because of the dense path coverage, these images have substantially higher lateral resolution for this region than is currently available from global and regional group velocity studies. We observe variations in short-period wave group velocity which is consistent with the surface geology. Low group velocities (2.00-2.55 km/s) at short periods (10-20 s), for both Rayleigh and Love waves are observed beneath thick sedimentary deposits; The south Caspian Basin, Black Sea, the eastern Mediterranean, the Persian Gulf, the Makran, the southern Turan shield, and the Indus and Gangetic basins. Somewhat higher group velocity (2.80-3.15 km/s for Rayleigh, and 3.00-3.40 km/s for Love) at these periods occur in sediment poor regions, such as; the Turkish-Iranian plateau, the Arabian shield, and Kazakhstan. At intermediate periods (30-40 s) group velocities over most of the region are low (2.65-3.20 km/s for Rayleigh, and 2.80-3.45 km/s for love) compared to Arabia (3.40-3.70 km/s Rayleigh, 3.50-4.0 km/s Love). At longer periods (50-60 s) Love wave group velocities remain low (3.25-3.70 km/s) over most of Iran, but there are even lower velocities (2.80-3.00 km/s) still associated with the thick sediments of the south Caspian basin, the surrounding shield areas have much higher group velocities (3

  5. Variation of fundamental mode Rayleigh wave group velocity dispersion in Iran and the surrounding region

    NASA Astrophysics Data System (ADS)

    Rham, D.; Priestley, K.; Tatar, M.; Paul, A.; Hatzfeld, D.; Radjaee, A.; Nowrouzi, G.; Kaviani, A.; Tiberi, C.

    2005-12-01

    We present group velocity dispersion results from a study of regional fundamental mode Rayleigh waves propagating across Iran and the surrounding region. Data for these measurements come from field deployments within Iran by the University of Cambridge (UK) and the Universite Joseph-Fourier (FRA) in conjunction with International Institute of Earthquake Engineering and Seismology (Iran), within Oman by the Universite Pierre et Marie Curie-Paris (FRA), in addition to data from IRIS and Geofone. 1D path-averaged dispersion measurements have been made for ~800 source-receiver paths using multiple filter analysis. We combine these observations in a tomographic inversion to produce group velocity images between 15 and 60~s period. Because of the dense path coverage, these images have substantially higher lateral resolution for this region than is currently available from global and regional group velocity studies. We observe variations in short-period group velocity which is consistent with the surface geology. Low group velocity (2.45-2.55~km/s) at short periods (15-20~s) is observed beneath the south Caspian Basin, northern Iran, the Persian Gulf, the Zagros, the Makran, northern Afghanistan and southern Pakistan. Somewhat higher group velocity (2.60-2.70~km/s) at these periods occurs in central Iran. At intermediate periods (30-40~s) group velocities over most of the region are low (2.90-3.10~km/s) compared to Arabia. At longer periods (50-60~s) group velocities remain low (3.35-3.45~km/s) over most of Iran but there is a suggestion of higher group velocities beneath the northern and central Zagros.

  6. Variation of P-Wave Velocity before the Bear Valley, California, Earthquake of 24 February 1972.

    PubMed

    Robinson, R; Wesson, R L; Ellsworth, W L

    1974-06-21

    Residuals for P-wave traveltimes at a seismnograph station near Bear Valley, California, for small, precisely located local earthquakes at distances of 20 to 70 kilometers show a sharp increase of nearly 0.3 second about 2 months before a magnitude 5.0 earthquake that occurred within a few kilometers of the station. This indicates that velocity changes observed elsewhere premonitory to earthquakes, possibly related to dilatancy, occur along the central section of the San Andreas fault system. PMID:17784227

  7. Shear wave velocity variation across the Taupo Volcanic Zone, New Zealand, from receiver function inversion

    USGS Publications Warehouse

    Bannister, S.; Bryan, C.J.; Bibby, H.M.

    2004-01-01

    The Taupo Volcanic Zone (TVZ), New Zealand is a region characterized by very high magma eruption rates and extremely high heat flow, which is manifest in high-temperature geothermal waters. The shear wave velocity structure across the region is inferred using non-linear inversion of receiver functions, which were derived from teleseismic earthquake data. Results from the non-linear inversion, and from forward synthetic modelling, indicate low S velocities at ???6- 16 km depth near the Rotorua and Reporoa calderas. We infer these low-velocity layers to represent the presence of high-level bodies of partial melt associated with the volcanism. Receiver functions at other stations are complicated by reverberations associated with near-surface sedimentary layers. The receiver function data also indicate that the Moho lies between 25 and 30 km, deeper than the 15 ?? 2 km depth previously inferred for the crust-mantle boundary beneath the TVZ. ?? 2004 RAS.

  8. Thermospheric gravity waves near the source - Comparison of variations in neutral temperature and vertical velocity at Sondre Stromfjord

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.; Mayr, H. G.; Harris, I.; Varosi, F.; Meriwether, J. W., Jr.

    1984-01-01

    Theoretical predictions of thermospheric gravity wave oscillations are compared with observed neutral temperatures and velocities. The data were taken in February 1983 using a Fabry-Perot interferometer located on Greenland, close to impulse heat sources in the auroral oval. The phenomenon was modeled in terms of linearized equations of motion of the atmosphere on a slowly rotating sphere. Legendre polynomials were used as eigenfunctions and the transfer function amplitude surface was characterized by maxima in the wavenumber frequency plane. Good agreement for predicted and observed velocities and temperatures was attained in the 250-300 km altitude. The amplitude of the vertical velocity, however, was not accurately predicted, nor was the temperature variability. The vertical velocity did exhibit maxima and minima in response to corresponding temperature changes.

  9. Determination of Bedrock Variations and S-wave Velocity Structure in the NW part of Turkey for Earthquake Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Ozel, A. O.; Arslan, M. S.; Aksahin, B. B.; Genc, T.; Isseven, T.; Tuncer, M. K.

    2015-12-01

    Tekirdag region (NW Turkey) is quite close to the North Anatolian Fault which is capable of producing a large earthquake. Therefore, earthquake hazard mitigation studies are important for the urban areas close to the major faults. From this point of view, integration of different geophysical methods has important role for the study of seismic hazard problems including seismotectonic zoning. On the other hand, geological mapping and determining the subsurface structure, which is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards can be performed by integrated geophysical methods. This study has been performed in the frame of a national project, which is a complimentary project of the cooperative project between Turkey and Japan (JICA&JST), named as "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education". With this principal aim, this study is focused on Tekirdag and its surrounding region (NW of Turkey) where some uncertainties in subsurface knowledge (maps of bedrock depth, thickness of quaternary sediments, basin geometry and seismic velocity structure,) need to be resolved. Several geophysical methods (microgravity, magnetic and single station and array microtremor measurements) are applied and the results are evaluated to characterize lithological changes in the region. Array microtremor measurements with several radiuses are taken in 30 locations and 1D-velocity structures of S-waves are determined by the inversion of phase velocities of surface waves, and the results of 1D structures are verified by theoretical Rayleigh wave modelling. Following the array measurements, single-station microtremor measurements are implemented at 75 locations to determine the predominant frequency distribution. The predominant frequencies in the region range from 0.5 Hz to 8 Hz in study area. On the other hand, microgravity and magnetic measurements are performed on

  10. Study of stress-induced velocity variation in concrete under direct tensile force and monitoring of the damage level by using thermally-compensated Coda Wave Interferometry.

    PubMed

    Zhang, Yuxiang; Abraham, Odile; Grondin, Frédéric; Loukili, Ahmed; Tournat, Vincent; Le Duff, Alain; Lascoup, Bertrand; Durand, Olivier

    2012-12-01

    In this paper, we describe an experimental study of concrete behavior under a uniaxial tensile load by use of the thermally-compensated Coda Wave Interferometry (CWI) analysis. Under laboratory conditions, uniaxial tensile load cycles are imposed on a cylindrical concrete specimen, with continuous ultrasonic measurements being recorded within the scope of bias control protocols. A thermally-compensated CWI analysis of multiple scattering waves is performed in order to evaluate the stress-induced velocity variation. Concrete behavior under a tensile load can then be studied, along with CWI results from both its elastic performance (acoustoelasticity) and plastic performance (microcracking corresponding to the Kaiser effect). This work program includes a creep test with a sustained, high tensile load; the acoustoelastic coefficients are estimated before and after conducting the creep test and then used to demonstrate the effect of creep load. PMID:22989948

  11. Eurasian surface wave tomography: Group velocities

    NASA Astrophysics Data System (ADS)

    Ritzwoller, Michael H.; Levshin, Anatoli L.

    1998-03-01

    This paper presents the results of a study of the dispersion characteristics of broadband fundamental surface waves propagating across Eurasia. The study is broader band, displays denser and more uniform data coverage, and demonstrates higher resolution than previous studies of Eurasia performed on this scale. In addition, the estimated group velocity maps reveal the signatures of geological and tectonic features never before displayed in similar surface wave studies. We present group velocity maps from 20 s to 200 s period for Rayleigh waves and from 20 s to 125 s for Love waves. Broadband waveform data from about 600 events from 1988 through 1995 recorded at 83 individual stations across Eurasia have produced about 9000 paths for which individual dispersion curves have been estimated. Dispersion curves from similar paths are clustered to reduce redundancy, to identify outliers for rejection, and to assign uncertainty estimates. On average, measurement uncertainty is about 0.030-0.040 km/s and is not a strong function of frequency. Resolution is estimated from "checker-board" tests, and we show that average resolutions across Eurasia range from 5° to 7.5° but degrade at periods above about 100 s and near the periphery of the maps. The estimated maps produce a variance reduction relative to the Preliminary Reference Earth Model (PREM) of more than 90% for Rayleigh waves below 60 s period but reduce to about 70% between 80 and 200 s period. For Love waves, variance reductions are similar, being above 90% for most periods below 100 s and falling to 70% at 150 s. Synthetic experiments are presented to estimate the biases that theoretical approximations should impart to the group velocity maps, in particular source group time shifts, azimuthal anisotropy, and systematic event mislocations near subducting slabs. The most significant problems are probably caused by azimuthal anisotropy, but above 100 s the effect of source group time shifts may also be appreciable

  12. Wave Tank Studies of Phase Velocities of Short Wind Waves

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  13. Interval velocity analysis using wave field continuation

    SciTech Connect

    Zhusheng, Z. )

    1992-01-01

    In this paper, the author proposes a new interval velocity inversion method which, based on wave field continuation theory and fuzzy decision theory, uses CMP seismic gathers to automatically estimate interval velocity and two-way travel time in layered medium. The interval velocity calculated directly from wave field continuation is not well consistent with that derived from VSP data, the former is usually higher than the latter. Three major factors which influence the accuracy of interval velocity from wave field continuation are corrected, so that the two kinds of interval velocity are well consistent. This method brings better interval velocity, adapts weak reflection waves and resists noise well. It is a feasible method.

  14. Surface Wave Velocity of Crosslinked Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Matsuoka, Tatsuro; Kinouchi, Wataru; ShinobuKoda, ShinobuKoda; Nomura, Hiroyasu

    1999-05-01

    Surface wave velocities of crosslinked polyacrylate hydrogelswere measured as a function of water content with differentcompositions of sodium polyacrylate (NaPA) and polyacrylic acid (PAA).The water content and composition dependencies of the surface wavevelocity were discussed.

  15. Shear wave velocities in the earth's mantle.

    NASA Technical Reports Server (NTRS)

    Robinson, R.; Kovach, R. L.

    1972-01-01

    Direct measurement of the travel time gradient for S waves together with travel time data are used to derive a shear velocity model for the earth's mantle. In order to satisfy the data it is necessary to discard the usual assumption of lateral homogeneity below shallow depths. A shear velocity differential is proposed for a region between western North America and areas of the Pacific Ocean. Distinctive features of the velocity model for the upper mantle beneath western North America are a low-velocity zone centered at 100 km depth and zones of high velocity gradient beginning at 400, 650, and 900 km.

  16. Continuous subsurface velocity measurement with coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Baoshan; Zhu, Ping; Chen, Yong; Niu, Fenglin; Wang, Bin

    2008-12-01

    A 1-month field experiment was conducted near Kunming in Yunnan Province, China, to continuously monitor subsurface velocity variations along different baselines. The experiment site is located 10 km west to the seismically very active Xiaojiang fault zone. An electric hammer was used as a source to generate highly repeatable seismic waves, which were recorded by 5 short-period seismometers deployed at ˜10 m to 1.2 km away from the source. Velocity variation was estimated by using coda wave interferometry technique. The technique measures changes in differential time between the coda and the first arrival, which is in principal insensitive to timing errors. We obtained a fractional velocity perturbation (δv/v) of 10-3 to 10-2 with a precision of 10-4. The measured velocity variation is consistent among different components and stations and appears to well correlate with deep water level. The velocity variation is featured by a long-term linear trend and well-developed daily cycles. The latter is interpreted as the velocity response to the barometric pressure. A multivariate linear regression analysis of the data indicates that the velocity change exhibits a negative correlation with barometric pressure, with a stress sensitivity of 10-6/Pa at the experimental site.

  17. Elastic wave velocities of Apollo 14, 15, and 16 rocks

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Newbigging, D. F.

    1973-01-01

    Elastic wave velocities of two Apollo 14 rocks, 14053 and 14321, three Apollo 15 rocks, 15058, 15415, and 15545, and one Apollo 16 rock 60315 have been determined at pressures up to 10 kb. For sample 14321, the variation of the compressional wave velocities with temperature has been measured over the temperature range from 27 to 200 C. Overall elastic properties of these samples except sample 15415 are very similar to those of Apollo 11, 12, and 14 rocks and are concordant with Toksoz et al.'s (1972) interpretation that lunar upper crust is of basaltic composition. Temperature derivative of the P wave velocity for sample 14321 is a half to one order of magnitude larger than that for single crystalline minerals. This suggests that the seismic velocity in the lunar crust may be affected significantly by the temperature distribution.

  18. Wave Measurements Using GPS Velocity Signals

    PubMed Central

    Doong, Dong-Jiing; Lee, Beng-Chun; Kao, Chia Chuen

    2011-01-01

    This study presents the idea of using GPS-output velocity signals to obtain wave measurement data. The application of the transformation from a velocity spectrum to a displacement spectrum in conjunction with the directional wave spectral theory are the core concepts in this study. Laboratory experiments were conducted to verify the accuracy of the inversed displacement of the surface of the sea. A GPS device was installed on a moored accelerometer buoy to verify the GPS-derived wave parameters. It was determined that loss or drifting of the GPS signal, as well as energy spikes occurring in the low frequency band led to erroneous measurements. Through the application of moving average skill and a process of frequency cut-off to the GPS output velocity, correlations between GPS-derived, and accelerometer buoy-measured significant wave heights and periods were both improved to 0.95. The GPS-derived one-dimensional and directional wave spectra were in agreement with the measurements. Despite the direction verification showing a 10° bias, this exercise still provided useful information with sufficient accuracy for a number of specific purposes. The results presented in this study indicate that using GPS output velocity is a reasonable alternative for the measurement of ocean waves. PMID:22346618

  19. Latitudinal Variation of Solar Wind Velocity

    NASA Astrophysics Data System (ADS)

    Ananthakrishnan, S.; Balasubramanian, V.; Janardhan, P.

    1995-04-01

    Single station solar wind velocity measurements using the Ooty Radio Telescope (ORT) in India (operating at 327 MHz) are reported for the period August 1992 to August 1993. Interplanetary scintillation (IPS) observations on a large number of compact radio sources covering a latitudinal range of ±80° were used to derive solar wind velocities using the method of fitting a power law model to the observed IPS spectra. The data shows a velocity versus heliographic latitude pattern which is similar to that reported by Rickett and Coles (1991) for the 1981 1982 period. However, the average of the measured equatorial velocities are higher, being about 470 km s-1 compared to their value of 400 km s-1. The distribution of electron density variations (ΔN e ) between 50R⊙ and 90R⊙ was also determined and it was found that ΔN e was about 30% less at the poles as compared to the equator.

  20. Dependence of Body Wave Velocity on Borehole Stress Concentration

    NASA Astrophysics Data System (ADS)

    Tian, Jiayong; Man, Yuanpeng; Qi, Hui

    In order to develop ultrasonic method for the quantitative measurement of in-situ rock stresses, we investigate the influence of stress concentration on the body-wave velocities around a borehole. First, the acoustoelasticity theory of finite-deformation solids yields a direct and explicit quantitative borehole acoustoelasticity, which reveals that the orientations of the maximum and minimum wave-velocity shifts at the borehole surface coincide with the directions of the minimum and maximum far-field principal stresses, respectively. Second, pulse-echo measurement of wave-velocity variations at the borehole surface in the sandstone sample under the biaxial compressional loadings is performed to validate the quantitative borehole acoustoelasticity. The consistence of the experimental results with the theoretical prediction means that the ultrasonic method based on acoustoelasticity theory could be a promising noncontact and non-destructive method for the quantitative measurement of in-situ rock stresses.

  1. Lightning location with variable radio wave propagation velocity

    NASA Astrophysics Data System (ADS)

    Liu, Zhongjian; Koh, Kuang Liang; Mezentsev, Andrew; Sugier, Jacqueline; Fullekrug, Martin

    2016-04-01

    Lightning discharges can be located by triangulation of their broadband electromagnetic pulses in long-baseline (~500 km) radio receiver networks. Here we apply the time of arrival difference (TOA) method to electric field recordings with a low frequency radio receiver array consisting of four stations in western Europe. The electromagnetic wave propagation velocity at low radio frequencies is an important input parameter for the TOA calculation and it is normally assumed to be equal to the speed of light. However, the radio wave propagation depends for example on the frequency, ground conductivity and the ionospheric height and small variations can cause location differences from hundreds to thousands of meters, as demonstrated in this study. The radio wave propagation from two VLF transmissions at 20.9 kHz and 23.4 kHz are compared. The results show that the apparent phase velocities are 0.6% slower and 0.5% faster than the speed of light respectively. As a result, a variable velocity is implemented in the TOA method using continuously recorded data on the 8th August 2014, when a mesoscale convective system developed over central France. The lightning locations inferred with a variable wave propagation velocity are more clustered than those using a fixed velocity. The distribution of the lightning velocities in a given geographic area fits a normal distribution that is not centred at the speed of light. As a result, representative velocities can be calculated for smaller regions to generate a velocity map over a larger area of enhanced lightning activity. These results suggest a connection with the ground elevation and/or surface conductivity that might have an impact on the observed wave propagation velocities.

  2. Copernicus observations of Iota Herculis velocity variations

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.

    1984-01-01

    Observations of Iota Her at 109.61-109.67 nm obtained with the U1 channel of the Copernicus spectrophotometer at resolution 5 pm during 3.6 days in May, 1979, are reported. Radial-velocity variations are detected and analyzed as the sum of two sinusoids with frequencies 0.660 and 0.618 cycles/day and amplitudes 9.18 and 8.11 km/s, respectively. Weak evidence supporting the 13.9-h periodicity seen in line-profile variations by Smith (1978) is found.

  3. Lateral variations in lower mantle seismic velocity

    NASA Technical Reports Server (NTRS)

    Duffy, Thomas S.; Ahrens, Thomas J.

    1992-01-01

    To obtain a theoretical model which provides a rationale for the observed high values of velocity variations, the effect of a 0.1 to 0.2 percent partially molten volatile-rich material in various geometries which are heterogeneously dispersed in the lower mantle is examined. Data obtained indicate that, depending on aspect ratio and geometry, 0.1-0.2 percent partial melting in conjunction with about 100 K thermal anomalies can explain the seismic variations provided the compressibility of the melt differs by less than about 20 percent from the surrounding solid.

  4. Friction velocity scaling in wind wave generation

    NASA Astrophysics Data System (ADS)

    Janssen, Peter A. E. M.; Komen, Gerbrand J.; de Voogt, Willem J. P.

    1987-01-01

    This note is devoted to the problem of the appropriate scaling of parameters relevant for sea waves, such as wave height, peak frequency, duration, and fetch. In the past, the growth of sea waves has often been analysed in terms of the wind velocity at a fixed height, despite the fact that many authors have stressed the importance of scaling with the friction velocity. This problem would be immaterial if the ratio between the friction velocity and the wind speed at a fixed height were a constant. There is, however, ample evidence that this ratio increases with wind speed (Smith and Banke, 1975; Smith, 1980), in agreement with dimensional considerations by Charnock (1955) on the friction height. As a result, the scaling problem is an important one. In this note we conjecture that the correct procedure is to scale wave parameters with friction velocity, and we discuss experimental evidence for the correctness of this conjecture. Comparing two independent datasets (‘JONSWAP’ and ‘KNMI’), we find some evidence supporting our ideas. Further confirmation remains desirable, however, and suggestions are made as to how this might be obtained.

  5. Prediction of the Shear Wave Velocity from Compressional Wave Velocity for Gachsaran Formation

    NASA Astrophysics Data System (ADS)

    Parvizi, Saeed; Kharrat, Riyaz; Asef, Mohammad R.; Jahangiry, Bijan; Hashemi, Abdolnabi

    2015-10-01

    Shear and compressional wave velocities, coupled with other petrophysical data, are very important for hydrocarbon reservoir characterization. In situ shear wave velocity (Vs) is measured by some sonic logging tools. Shear velocity coupled with compressional velocity is vitally important in determining geomechanical parameters, identifying the lithology, mud weight design, hydraulic fracturing, geophysical studies such as VSP, etc. In this paper, a correlation between compressional and shear wave velocity is obtained for Gachsaran formation in Maroon oil field. Real data were used to examine the accuracy of the prediction equation. Moreover, the genetic algorithm was used to obtain the optimal value for constants of the suggested equation. Furthermore, artificial neural network was used to inspect the reliability of this method. These investigations verify the notion that the suggested equation could be considered as an efficient, fast, and cost-effective method for predicting Vs from Vp.

  6. Inter-laboratory comparison of wave velocity measures.

    USGS Publications Warehouse

    Waite, William F.; Santamarina, J.C.; Rydzy, M.; Chong, S.H.; Grozic, J.L.H.; Hester, K.; Howard, J.; Kneafsey, T.J.; Lee, J.Y.; Nakagawa, S.; Priest, J.; Reese, E.; Koh, H.; Sloan, E.D.; Sultaniya, A.

    2011-01-01

     This paper presents an eight-laboratory comparison of compressional and shear wave velocities measured in F110 Ottawa sand. The study was run to quantify the physical property variations one should expect in heterogeneous, multiphase porous materials by separately quantifying the variability inherent in the measurement techniques themselves. Comparative tests were run in which the sand was dry, water-saturated, partially water-saturated, partially ice-saturated and partially hydrate-saturated. Each test illustrates a collection of effects that can be classified as inducing either specimen-based or measurement-based variability. The most significant variability is due to void ratio variations between samples. Heterogeneous pore-fill distributions and differences in measurement techniques also contribute to the observed variability, underscoring the need to provide detailed sample preparation and system calibration information when reporting wave velocities in porous media. 

  7. Ultrasonic wave velocity in the restructuring of disperse media

    NASA Astrophysics Data System (ADS)

    Koltsova, I. S.; Khomutova, A. S.; Deinega, M. A.

    2016-03-01

    The ultrasonic wave velocities in the restructuring of disperse media were measured using interference and pulsed techniques and the coefficient of reflection in suspensions of starch, Al2O3, and SiO2 particles, glass bulbs, their porous sediments, and composites of Fe3O4 particles in 10% gelatin aqueous solution at a frequency of 3 MHz. The experiments showed alternating variation in the concentration velocity coefficient during the transition of the dispersed phase concentration from the subpercolation to percolation region. The minimum ultrasonic wave velocity in the region of discrete clusters correlates with the ratio between the particle and matrix densities. The results obtained are explained using the Isakovich, Chaban, Rytov, Biot, Hausdorff, and other theories.

  8. S-wave velocity structure of the North China from inversion of Rayleigh wave phase velocity

    NASA Astrophysics Data System (ADS)

    Chen, Hao-peng; Zhu, Liang-bao; Wang, Qing-dong; Zhang, Pan; Yang, Ying-hang

    2014-07-01

    We constructed the S-wave velocity structure of the crust and uppermost mantle (10-100 km) beneath the North China based on the teleseismic data recorded by 187 portable broadband stations deployed in this region. The traditional two-step inversion scheme was adopted. Firstly, we measured the interstation fundamental Rayleigh wave phase velocity of 10-60 s and imaged the phase velocity distributions using the Tarantola inversion method. Secondly, we inverted the 1-D S-wave velocity structure with a grid spacing of 0.25° × 0.25° and constructed the 3-D S-wave velocity structure of the North China. The 3-D S-wave velocity model provides valuable information about the destruction mechanism and geodynamics of the North China Craton (NCC). The S-wave velocity structures in the northwestern and southwestern sides of the North-South Gravity Lineament (NSGL) are obviously different. The southeastern side is high velocity (high-V) while the northeastern side is low velocity (low-V) at the depth of 60-80 km. The upwelling asthenosphere above the stagnated Pacific plate may cause the destruction of the Eastern Block and form the NSGL. A prominent low-V anomaly exists around Datong from 50 to 100 km, which may due to the upwelling asthenosphere originating from the mantle transition zone beneath the Western Block. The upwelling asthenosphere beneath the Datong may also contribute to the destruction of the Eastern Block. The Zhangjiakou-Penglai fault zone (ZPFZ) may cut through the lithosphere and act as a channel of the upwelling asthenosphere. A noticeable low-V zone also exists in the lower crust and upper mantle lid (30-50 km) beneath the Beijing-Tianjin-Tangshan (BTT) region, which may be caused by the upwelling asthenosphere through the ZPFZ.

  9. Nerve conduction velocity measurements: improved accuracy using superimposed response waves.

    PubMed

    Halar, E M; Venkatesh, B

    1976-10-01

    A new procedure of serial motor nerve conduction velocity (NCV) measurements with the use of "superimposed response waves" technique (or double stimulus technique) was performed on 29 normal subjects. Six peripheral nerves were tested once a week for four to six weeks. A total of 760 NCV measurements were thus obtained to try to assess the magnitude of error in serial NCV testings. With the double stimulus technique employed, a significant reduction in variations of serial NCV measurements was found. The overall standard deviation of four to six consecutive NCV measurements in the 34 subjects was 1.3 meters per second with a coefficient of variation of 2.4%. These findings obtained with the double stimulus technique have proven to be approximately three times more accurate than results obtained by investigators who studied nerve conduction velocity measurement variation with single stimulus standard NCV testing techniques. PMID:184754

  10. Unexpected tidal variation of the ocean-acoustic velocity

    NASA Astrophysics Data System (ADS)

    Sugioka, H.; Fukao, Y.; Hibiya, T.

    2004-12-01

    Ocean sound velocity significantly varies at tidal frequency in not only shallow but also deep pert. Unexpected largely semidiurnal fluctuation of ocean-acoustic waves (T-waves), which propagate through the SOFAR channel, is found on the ocean bottom seismometer records for the 1999 submarine volcanic swarm in northern Mariana. The amplitude is one order larger than any previous artificial experiments. Here we report the first in situ evidence that T-wave travel time provide information about vertical movement of seawater due to internal tides. Numerical 3-D modelling shows the internal tide excited by external tidal forcing is particularly large along the Izu-Bonin-Mariana Ridge because of rough topography. A semidiurnal up-and-down movement associated with the internal tide cause an undulation of the SOFAR channel on the order of 100 m, which causes T-wave travel time variations consistent with the observed ones. The results are consistent with the observed travel time variations both in amplitude and phase, demonstrating that T-waves from volcanic swarms can be used to detect oceanic internal tides. Generation of internal tides is an important sink of the external tidal energy so that accurate estimate of conversion of the external to internal tides is essential to close the global tidal energy budget and to understand the Earth-Moon system evolution.

  11. ML shear wave velocity tomography for the Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Maheri-Peyrov, Mehdi; Ghods, Abdolreza; Abbasi, Madjid; Bergman, Eric; Sobouti, Farhad

    2016-04-01

    Iranian Plateau reflects several different tectonic styles of collision, and large-scale strike-slip faults. We calculate a high-resolution 2-D ML shear velocity map for the Iranian Plateau to detect lateral crustal thickness changes associated with different tectonic boundaries. The ML velocity is very sensitive to strong lateral variations of crustal thickness and varies between the velocity of Lg and Sn phases. Our data set consists of 65 795 ML amplitude velocity measurements from 2531 precisely relocated events recorded by Iranian networks in the period 1996-2014. Using a constrained least-squares inversion scheme, we inverted the ML velocities for a 2-D shear velocity map of Iran. Our results show that the Zagros and South Caspian Basin (SCB) have shear wave velocities close to the Sn phase, and are thus Lg-blocking regions. High velocities in the High Zagros and the Simply Folded Belt imply significant crustal undulations within these zones. We note that in the central and south Zagros, the velocity border between the Zagros and central Iran is not coincident with the Zagros suture line that marks underthrusting of the Arabian plate beneath central Iran. The low plains of Gilan and Gorgan to the south of the Caspian Sea show high shear velocities similar to the SCB, implying that they are either underlain by an oceanic type crust or a transitional crust with a strong lateral crustal thickness gradient. The Lut block is an Lg-passing block implying that it is not surrounded by any sudden crustal thickness changes along its borders with central Iran. In the Alborz, NW Iran, Kopeh-Dagh, Binalud and most of the central Iran, low shear velocity near the Lg velocity is attributed to smooth or minor Moho undulations within these regions.

  12. Monitoring seismic wave velocities in situ

    USGS Publications Warehouse

    McEvilly, T.V.; Clymer, R.

    1979-01-01

    Beginning in the early 1960's, reports from the Soviet Union described travel-time anomalies of 5 to 20 percent preceding large earthquakes. In the early 970's, similar observations began to be reported outside the U.S.S.R. The most convincing were anomalously low values of the velocity ration, Vp/Vs, before four earthquakes of magnitudes 2.5 to 3.3 at Blue Mountain Lake, N.Y.; the anomalies were based on large amounts of high-quality data. In Japan, significant decreases were observed in the travel-time ratio, ts/tp, before two thrust-type earthquakes of magnitudes 6. and 5.3. Finally, there is the much discussed report of an anomaly before the magnitude 6.4 San Fernando, Calif., earthquake of 1971 and the implication that the change was caused principally by a decrease in the velocity of the primary (P) wave.

  13. S-wave velocity structure in the SE Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Cai, Yan; Wu, Jianping; Wang, Weilai; Fang, Lihua; Fan, Liping

    2016-06-01

    We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surface waves. The two profiles cross West Yunnan block (WYB), the Central Yunnan sub-block (CYB), South China block (SCB), and Nanpanjiang basin (NPB). The profile at ~25°N shows that the Moho interface in the CYB is deeper than those in the WYB and the NPB, and the topography and Moho depth have clear correspondence. Beneath the Xiaojiang fault zone (XJF), there exists a crustal low-velocity zone (LVZ), crossing the XJF and expanding eastward into the SCB. The NPB is shown to be of relatively high velocity. We speculate that the eastward extrusion of the Tibetan plateau may pass through the XJF and affect its eastern region, and is resisted by the rigid NPB, which has high velocity. This may be the main cause of the crustal thickening and uplift of the topography. In the Tengchong volcanic area, the crust is shown to have alternate high- and low-velocity layers, and the upper mantle is shown to be of low velocity. We consider that the magma which exists in the crust is from the upper mantle and that the complex crustal velocity structure is related to magmatic differentiation. Between the Tengchong volcanic area and the XJF, the crustal velocity is relatively high. Combining these observations with other geophysical evidence, it is indicated that rock strength is high and deformation is weak in this area, which is why the level of seismicity is quite low. The profile at ~23°N shows that the variation of the Moho depth is small from the eastern rigid block to the western active block with a wide range of LVZs. We consider that deformation to the south of the SE Tibetan Plateau is weak.

  14. S-wave velocity structure in the SE Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Cai, Yan; Wu, Jianping; Wang, Weilai; Fang, Lihua; Fan, Liping

    2016-05-01

    We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surface waves. The two profiles cross West Yunnan block (WYB), the Central Yunnan sub-block (CYB), South China block (SCB), and Nanpanjiang basin (NPB). The profile at ~25°N shows that the Moho interface in the CYB is deeper than those in the WYB and the NPB, and the topography and Moho depth have clear correspondence. Beneath the Xiaojiang fault zone (XJF), there exists a crustal low-velocity zone (LVZ), crossing the XJF and expanding eastward into the SCB. The NPB is shown to be of relatively high velocity. We speculate that the eastward extrusion of the Tibetan plateau may pass through the XJF and affect its eastern region, and is resisted by the rigid NPB, which has high velocity. This may be the main cause of the crustal thickening and uplift of the topography. In the Tengchong volcanic area, the crust is shown to have alternate high- and low-velocity layers, and the upper mantle is shown to be of low velocity. We consider that the magma which exists in the crust is from the upper mantle and that the complex crustal velocity structure is related to magmatic differentiation. Between the Tengchong volcanic area and the XJF, the crustal velocity is relatively high. Combining these observations with other geophysical evidence, it is indicated that rock strength is high and deformation is weak in this area, which is why the level of seismicity is quite low. The profile at ~23°N shows that the variation of the Moho depth is small from the eastern rigid block to the western active block with a wide range of LVZs. We consider that deformation to the south of the SE Tibetan Plateau is weak.

  15. Compressional and shear wave velocities in granular materials to 2.5 kilobars

    NASA Technical Reports Server (NTRS)

    Talwani, P.; Nur, A.; Kovach, R. L.

    1973-01-01

    The velocities of seismic compressional waves and, for the first time, shear wave velocities in silica sand, volcanic ash, and basalt powder were determined under hydrostatic confining pressures to 2.5 kb. Simultaneously, the porosity of these materials was obtained as a function of confining pressure. The presented results have important implications for the self-compaction hypothesis that has been postulated to explain the lunar near-surface seismic velocity variation.

  16. Anisotropic Rayleigh-wave phase velocities beneath northern Vietnam

    NASA Astrophysics Data System (ADS)

    Legendre, Cédric P.; Zhao, Li; Huang, Win-Gee; Huang, Bor-Shouh

    2015-02-01

    We explore the Rayleigh-wave phase-velocity structure beneath northern Vietnam over a broad period range of 5 to 250 s. We use the two-stations technique to derive the dispersion curves from the waveforms of 798 teleseismic events recoded by a set of 23 broadband seismic stations deployed in northern Vietnam. These dispersion curves are then inverted for both isotropic and azimuthally anisotropic Rayleigh-wave phase-velocity maps in the frequency range of 10 to 50 s. Main findings include a crustal expression of the Red River Shear Zone and the Song Ma Fault. Northern Vietnam displays a northeast/southwest dichotomy in the lithosphere with fast velocities beneath the South China Block and slow velocities beneath the Simao Block and between the Red River Fault and the Song Da Fault. The anisotropy in the region is relatively simple, with a high amplitude and fast directions parallel to the Red River Shear Zone in the western part. In the eastern part, the amplitudes are generally smaller and the fast axis displays more variations with periods.

  17. Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Shan, Rui

    2016-06-01

    Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.

  18. Variation in ejecta size with ejection velocity

    NASA Technical Reports Server (NTRS)

    Vickery, Ann M.

    1987-01-01

    The sizes and ranges of over 25,000 secondary craters around twelve large primaries on three different planets were measured and used to infer the size-velocity distribution of that portion of the primary crater ejecta that produced the secondaries. The ballistic equation for spherical bodies was used to convert the ranges to velocities, and the velocities and crater sizes were used in the appropriate Schmidt-Holsapple scaling relation of estimate ejecta sizes, and the velocity exponent was determined. The latter are generally between -1 and -13, with an average value of about -1.9. Problems with data collection made it impossible to determine a simple, unique relation between size and velocity.

  19. Rayleigh-wave Phase-velocity Maps beneath Eastern China

    NASA Astrophysics Data System (ADS)

    Legendre, C. P.; Deschamps, F.; Zhao, L.; Lebedev, S.; Chen, Q.

    2013-12-01

    Eastern China is a geologically complex region with strong lateral changes in Moho depth. It is also a tectonically active region with active faults and protocratonic units. We investigated the variations of isotropic and anisotropic Rayleigh-wave phase velocity beneath eastern China using broadband records at 38 stations with roughly even distribution from the China National Seismic Network. Rayleigh-wave dispersion curves are manually measured by the two-station technique for a total of 741 inter-station paths from the vertical-component waveforms. We complemented this dataset with 599 automated inter-station measurements. When selecting the data, we imposed an upper bound of 10° for the angle between the great circle connecting a pair of stations and the great circle connecting the stations and the event. The inter-station distances are in the range 250-2500 km, enabling phase-velocity measurements over a broad period range, 8-200 s. We extracted 59306 records from 438 events with epicentral distances between 10° and 170°. These dispersion curves are then inverted using the LSQR algorithm for the high-resolution isotropic and azimuthally anisotropic phase-velocity maps at selected periods between 16 and 200 s. The isotropic as well as anisotropic models of Rayleigh-wave phase velocities we obtain are consistent with the tectonic features observed in this region. Furthermore, the anisotropic anomalies we observe are compatible with previous SKS splitting measurements. Interestingly, we observe different azimuthal anisotropy patterns in several distinct period ranges, suggesting both lateral and depth variations of azimuthal anisotropy in this region. At crustal depths, the isotropic structure exhibits a clear contrast between the Yangtze Craton in the southeast, which appears faster than regional average by up to 5%, and the northwest region, which is slower than average by about 3-4%. The Jiangnan Belt separates regions with different velocity expressions

  20. A simple method of predicting S-wave velocity

    USGS Publications Warehouse

    Lee, M.W.

    2006-01-01

    Prediction of shear-wave velocity plays an important role in seismic modeling, amplitude analysis with offset, and other exploration applications. This paper presents a method for predicting S-wave velocity from the P-wave velocity on the basis of the moduli of dry rock. Elastic velocities of water-saturated sediments at low frequencies can be predicted from the moduli of dry rock by using Gassmann's equation; hence, if the moduli of dry rock can be estimated from P-wave velocities, then S-wave velocities easily can be predicted from the moduli. Dry rock bulk modulus can be related to the shear modulus through a compaction constant. The numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agree well with measured velocities if differential pressure is greater than approximately 5 MPa. An advantage of this method is that there are no adjustable parameters to be chosen, such as the pore-aspect ratios required in some other methods. The predicted S-wave velocity depends only on the measured P-wave velocity and porosity. ?? 2006 Society of Exploration Geophysicists.

  1. Porosity estimation based on seismic wave velocity at shallow depths

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sub; Yoon, Hyung-Koo

    2014-06-01

    Seismic wave velocity and porosity are used for the estimation of dynamic behaviors in the Earth, including seismicity and liquefaction. To increase the resolution of subsurface observations, seismic wave velocity and porosity can be combined in a compound method. To this end, in this paper, we utilize and rearrange the Wood, Gassmann, and Foti methods - three techniques commonly used to estimate porosity based on seismic wave velocity at shallow depths. Seismic wave velocity is obtained by a field velocity probe using the horizontal transmission technique. Porosity calculated using the Gassmann method shows the highest reliability considering observed porosity criteria. The sensitivities of each method are compared using the error norm. Results show that the Gassmann method has low sensitivity for calculating porosity, whereas the Wood and Foti methods have high sensitivity. Consequently, the Gassmann method is recommended for estimating porosity at shallow depths when using measured elastic wave velocity.

  2. Theoretical relationship between elastic wave velocity and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sub; Yoon, Hyung-Koo

    2015-05-01

    Elastic wave velocity and electrical resistivity have been commonly applied to estimate stratum structures and obtain subsurface soil design parameters. Both elastic wave velocity and electrical resistivity are related to the void ratio; the objective of this study is therefore to suggest a theoretical relationship between the two physical parameters. Gassmann theory and Archie's equation are applied to propose a new theoretical equation, which relates the compressional wave velocity to shear wave velocity and electrical resistivity. The piezo disk element (PDE) and bender element (BE) are used to measure the compressional and shear wave velocities, respectively. In addition, the electrical resistivity is obtained by using the electrical resistivity probe (ERP). The elastic wave velocity and electrical resistivity are recorded in several types of soils including sand, silty sand, silty clay, silt, and clay-sand mixture. The appropriate input parameters are determined based on the error norm in order to increase the reliability of the proposed relationship. The predicted compressional wave velocities from the shear wave velocity and electrical resistivity are similar to the measured compressional velocities. This study demonstrates that the new theoretical relationship may be effectively used to predict the unknown geophysical property from the measured values.

  3. Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure

    NASA Astrophysics Data System (ADS)

    Maceira, Monica; Ammon, Charles J.

    2009-02-01

    We implement and apply a method to the jointly inverted of surface wave group velocities and gravity anomalies observations. Surface wave dispersion measurements are sensitive to seismic shear wave velocities, and the gravity measurements supply constraints on rock density variations. Our goal is to obtain a self-consistent three-dimensional shear velocity-density model with increased resolution of shallow geologic structures. We apply the method to investigate the structure of the crust and upper mantle beneath two large central Asian sedimentary basins: the Tarim and Junggar. The basins have thick sediment sections that produce substantial regional gravity variations (up to several hundred milligals). We used gravity observations extracted from the global gravity model derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. We combine the gravity anomalies with high-resolution surface wave slowness tomographic maps that provide group velocity dispersion values in the period range between 8 and 100 s for a grid of locations across central Asia. To integrate these data, we use a relationship between seismic velocity and density constructed through the combination of two empirical relations. One determined by Nafe and Drake, most appropriate for sedimentary rocks, and a linear Birch's law, more applicable to denser rocks (the basement). An iterative, damped least squares inversion including smoothing is used to jointly model both data sets, using shear velocity variations as the primary model parameters. Results show high upper mantle shear velocities beneath the Tarim basin and suggest differences in lower crust and upper mantle shear velocities between the eastern and western Tarim.

  4. Effects of horizontal velocity variations on ultrasonic velocity measurements in open channels

    USGS Publications Warehouse

    Swain, E.D.

    1992-01-01

    Use of an ultrasonic velocity meter to determine discharge in open channels involves measuring the velocity in a line between transducers in the stream and relating that velocity to the average velocity in the stream. The standard method of calculating average velocity in the channel assumes that the velocity profile in the channel can be represented by the one-dimensional von Karman universal velocity profile. However, the velocity profile can be described by a two-dimensional equation that accounts for the horizontal velocity variations induced by the channel sides. An equation to calculate average velocity accounts for the two-dimensional variations in velocity within a stream. The use of this new equation to calculate average velocity was compared to the standard method in theoretical trapezoidal cross sections and in the L-31N and Snapper Creek Extension Canals near Miami, Florida. These comparisons indicate that the two-dimensional variations have the most significant effect in narrow, deep channels. Also, the two-dimensional effects may be significant in some field situations and need to be considered when determining average velocity and discharge with an ultrasonic velocity meter.

  5. Surface wave phase-velocity tomography based on multichannel cross-correlation

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Gaherty, James B.

    2015-06-01

    We have developed a new method to retrieve seismic surface wave phase velocity using dense seismic arrays. The method measures phase variations between nearby stations based on waveform cross-correlation. The coherence in waveforms between adjacent stations results in highly precise relative phase estimates. Frequency-dependent phase variations are then inverted for spatial variations in apparent phase velocity via the Eikonal equation. Frequency-dependent surface wave amplitudes measured on individual stations are used to correct the apparent phase velocity to account for multipathing via the Helmholtz equation. By using coherence and other data selection criteria, we construct an automated system that retrieves structural phase-velocity maps directly from raw seismic waveforms for individual earthquakes without human intervention. The system is applied to broad-band seismic data from over 800 events recorded on EarthScope's USArray from 2006 to 2014, systematically building up Rayleigh-wave phase-velocity maps between the periods of 20 and 100 s for the entire continental United States. At the highest frequencies, the resulting maps are highly correlated with phase-velocity maps derived from ambient noise tomography. At all frequencies, we observe a significant contrast in Rayleigh-wave phase velocity between the tectonically active western US and the stable eastern US, with the phase velocity variations in the western US being 1-2 times greater. The Love wave phase-velocity maps are also calculated. We find that overtone contamination may produce systemic bias for the Love-wave phase-velocity measurements.

  6. P/n/ velocity and cooling of the continental lithosphere. [upper mantle compression waves in North America

    NASA Technical Reports Server (NTRS)

    Black, P. R.; Braile, L. W.

    1982-01-01

    The average upper mantle compressional wave velocity and heat flow figures presently computed for continental physiographic provinces in North America exhibit an inverse relationship, and possess a statistically significant correlation coefficient. A correlation is also demonstrated between compressional wave velocity and material temperature by estimating crust-mantle boundary temperatures from heat flow values. The dependency of compressional wave velocity on temperature implies that the observed geographical distribution in upper mantle seismic velocity may be due to the temperature effect character of upper mantle compressional wave velocity variation.

  7. The shear wave velocity underneath Bucharest city, Romania, from the analysis of Love waves

    NASA Astrophysics Data System (ADS)

    Sèbe, Olivier; Forbriger, Thomas; Ritter, Joachim R. R.

    2009-03-01

    From the dispersion of Love waves, we infer models of shear wave velocity structure underneath Bucharest (Romania) at depths down to 2km that can contribute to seismic hazard estimation. Waves from eight regional events recorded during 10months with a network of 34 seismic broad-band stations of the URban Seismology (URS) experiment are used. Although these events provide poor azimuthal coverage the data reliably constrain a shear wave velocity model with an interface between the Neogene and the Cretaceous sediments that is dipping northwards towards the Carpathian mountains. Array processing techniques that account for non-uniform wave propagation are used to estimate the dispersion of structural phase velocity. From this, we infer subsurface structure at three different latitudes. The Neogene sediments are represented by a gradient layer with no significant lateral variation. Shear wave velocity increases from approximately 400ms-1 near the surface to 1kms-1 at 1km depth and 5km in the south, and to 1.35kms-1 at 1.5km depth and 5km in the north from the centre of Bucharest, respectively. For the half-space representing the Cretaceous sediments, we obtain shear wave velocities of 2.7-2.9kms-1. The results are consistent with results from boreholes and shallow seismics for the near-surface structure and results from receiver function studies and crustal refraction seismic studies for the deeper structure. The details of the Neogene layer comprising a vertical gradient fill a gap in existing models of the subsurface structure of Bucharest and can contribute to modelling of seismic hazard for the city. Since the signal-to-noise ratio restricted useful data to the frequency range from 90 to 290mHz, the inversion could not constrain the near-surface velocity independently. Due to strong trade-off between near-surface velocity and depth of half-space, the latter had to be introduced as a priori data from previous studies.

  8. Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Benz, H.M.; Chouet, B.A.; Dawson, P.B.; Lahr, J.C.; Page, R.A.; Hole, J.A.

    1996-01-01

    The three-dimensional P and S wave structure of Redoubt Volcano, Alaska, and the underlying crust to depths of 7-8 km is determined from 6219 P wave and 4008 S wave first-arrival times recorded by a 30-station seismograph network deployed on and around the volcano. First-arrival times are calculated using a finite-difference technique, which allows for flexible parameterization of the slowness model and easy inclusion of topography and source-receiver geometry. The three-dimensional P wave velocity structure and hypocenters are determined simultaneously, while the three-dimensional S wave velocity model is determined using the relocated seismicity and an initial S wave velocity model derived from the P wave velocity model assuming an average Vp/Vs ratio of 1.78. Convergence is steady with approximately 73% and 52% reduction in P and S wave arrival time RMS, respectively, after 10 iterations. The most prominent feature observed in the three-dimensional velocity models derived for both P and S waves is a relative low-velocity, near-vertical, pipelike structure approximately 1 km in diameter that extends from 1 to 6 km beneath sea level. This feature aligns axially with the bulk of seismicity and is interpreted as a highly fractured and altered zone encompassing a magma conduit. The velocity structure beneath the north flank of the volcano between depths of 1 and 6 km is characterized by large lateral velocity variations. High velocities within this region are interpreted as remnant dikes and sills and low velocities as regions along which magma migrates. No large low-velocity body suggestive of a magma chamber is resolved in the the upper 7-8 km of the crust.

  9. Rayleigh Wave Phase Velocity in the Indian Ocean Upper Mantle

    NASA Astrophysics Data System (ADS)

    Godfrey, K. E.; Dalton, C. A.

    2015-12-01

    Current understanding of the seismic properties of the oceanic upper mantle is heavily weighted toward studies of the Pacific upper mantle. However, global seismic models indicate differences in upper-mantle properties beneath the Pacific, Atlantic, and Indian oceans. Furthermore, factors such as spreading rate, absolute plate motion, and the presence of intraplate volcanism vary between these regions. It is thus important to consider the broad range in parameters when forming ideas about mantle dynamics and lithosphere evolution within ocean basins. We are developing a high-resolution basin-wide seismic model of the Indian Ocean upper mantle. The Indian Ocean contains 16,000 km of mid-ocean ridge, with spreading rates ranging from approximately 14 mm/yr along the Southwest Indian Ridge to 55-75 mm/yr along the Southeast Indian Ridge. It also contains 12 volcanic hotspots, overlies a portion of a large low-shear-velocity province in the lower mantle, and is home to the Australian-Antarctic Discordance and a negative geoid anomaly just south of India, among other features. We measure phase velocity in the period range 30-130 seconds for fundamental-mode Rayleigh waves traversing the Indian Ocean; the data set includes 831 events that occurred between 1992 and 2014 and 769 stations. In order to isolate the signal of the oceanic upper mantle, paths with >30% of their length through continental upper mantle are excluded. Variations in phase velocity in the Indian Ocean upper mantle are explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Our preliminary results indicate a strong dependence of phase velocity on seafloor age, with higher velocity associated with older seafloor, and perturbations to the age-dependent trend in the vicinity of the Australian-Antarctic Discordance and the Marion and

  10. Shear wave velocity structures of the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Mokhtar, Talal A.; Al-Saeed, Mohammed M.

    1994-02-01

    The shear velocity structures of the different tectonic provinces of the Arabian Peninsula has been studied using surface wave data recorded by the RYD (Riyadh) station. The inversion of Rayleigh wave group velocities indicates that the Arabian shield can be modeled by two layers, each of which is 20 km thick with a shear velocity of 3.61 km/s in the upper crust and 3.88 km/s in the lower crust. The underlying upper mantle velocity is 4.61 km/s. Inversion of both Love and Rayleigh waves group velocities shows that the Arabian platform upper and lower crusts are comparable in their thicknesses to those of the shield, but with shear velocities of 3.4 and 4 km/s, respectively. The upper mantle velocity beneath the platform is 4.4 km/s and the average total thickness of the crust is 45 km.

  11. Velocities of guided ultrasonic waves in heterogeneous medium

    NASA Technical Reports Server (NTRS)

    Touratier, M.

    1984-01-01

    Experimental and theoretical examinations were performed of the longitudinal velocity characteristics of waves in trilaminar and encapsulated waveguides. The study was confined to waveguides with core material that featured transverse wave velocities much worse than the longitudinal wave velocities. The velocities were obtained using a dispersion equation, with consideration given to both the core and encapsulant. Asymptotic velocities were also calculated for bending and twisting in trilaminar waveguides. Trials were run with bimetallic waveguides for comparison with the theoretical predictions. Good agreement was found between the predicted velocity of the propagation of the fundamental mode and the measured velocities. The method was calculated valid for modes above four, confirming that the data were contained in either the core or outer layer, and were unsensitive to the encapsulant.

  12. Shallow Seismic Velocity Structure of the Betic Cordillera (Southern Spain) from Modelling of Rayleigh Wave Dispersion

    NASA Astrophysics Data System (ADS)

    Chourak, M.; Corchete, V.; Badal, J.; Gómez, F.; Serón, J.

    2005-07-01

    A detailed dispersion analysis of Rayleigh waves generated by local earthquakes and occasionally by blasts that occurred in southern Spain, was undertaken to obtain the shear-wave velocity structure of the region at shallow depth. Our database includes seismograms generated by 35 seismic events that were recorded by 15 single-component short-period stations from 1990 to 1995. All these events have focal depths less than 10 km and body-wave magnitudes between 3.0 and 4.0, and they were all recorded at distances between 40 and 300 km from the epicentre. We analysed a total of 90 source-station Rayleigh-wave paths. The collected data were processed by standard digital filtering techniques to obtain Rayleigh-wave group-velocity dispersion measurements. The path-averaged group velocities vary from 1.12 to 2.25 km/s within the 1.0-6.0 s period interval. Then, using a stochastic inversion approach we obtained 1-D shear-wave velocity depth models across the study area, which were resolved to a depth of circa 5 km. The inverted shear-wave velocities range approximately between 1.0 and 3.8 km/s with a standard deviation range of 0.05 0.16 km/s, and show significant variations from region to region. These results were combined to produce 3-D images via volumetric modelling and data visualization. We present images that show different shear velocity patterns for the Betic Cordillera. Looking at the velocity distribution at various depths and at vertical sections, we discuss of the study area in terms of subsurface structure and S-wave velocity distribution (low velocity channels, basement depth, etc.) at very shallow depths (0 5 km). Our results characterize the region sufficiently and lead to a correlation of shear-wave velocity with the different geological units features.

  13. Joint Inversion for Bulk Sound and Shear Wave Velocity Heterogeneity Beneath the Mediterranean Plate Boundary Region

    NASA Astrophysics Data System (ADS)

    Schmid, C.; van der Lee, S.; Giardini, D.

    2005-12-01

    We present new 3-D models for shear wave and compressional wave velocity anomalies for the mantle beneath the Mediterranean plate boundary region down to a depth of ~1500 km. These new models are based on a combined set of P and S body-wave arrival time data, which was measured by interstation cross-correlation. Stations used were from the MIDSEA deployment and permanent networks in the region. We invert these data jointly for bulk sound and shear wave velocity heterogeneity. The resulting models of P and S velocity heterogeneity are similar to each other. P wave velocity heterogeneity appears to be dominated by variations in shear modulus. We do not find evidence for large scale anti-correlation between bulk sound and shear wave velocity heterogeneity. We further constrain the mantle's S-velocity with regional S and surface waves and Moho detections. The Mediterranean region is substantially slower than the global average at shallow mantle depths and faster than average at transition zone depths. Our models show high velocities related to present and recent subduction northwards beneath the Hellenic trench, northwestwards beneath the Calabrian Arc, and a much shorter slab dipping southwestwards beneath the Apennines. Our models show somewhat surprising evidence of past subduction in the transition zone beneath the western Mediterranean and in the lower mantle beneath northeastern Africa. The only significantly slower region at transition zone depths is found beneath the Ionian Sea.

  14. Compression Wave Velocity of Cylindrical Rock Specimens: Engineering Modulus Interpretation

    NASA Astrophysics Data System (ADS)

    Cha, Minsu; Cho, Gye-Chun

    2007-07-01

    In this study, we experimentally assess which elastic modulus — Young’s modulus or the constraint modulus — is appropriate for application to the compression wave velocity of rock cores measured via an ultrasonic pulse technique and a point-source travel-time method. Experimental tests are performed at pulse frequencies between 50 kHz and 1 MHz, the ratio of diameter (D) to wavelength (λ) is between 0.6 and 25.6, and the specimen length is between 10 and 70 cm. It is found that compression wave velocities obtained from the two methods are constrained wave velocities, and thus the constraint modulus should be applied in the wave equation. Also, the effect of the frequency of the ultrasonic pulse, D/λ, and specimen length on compression wave velocity is negligble within the ranges explored in this study.

  15. Measuring Ultrasonic Shear-Wave Velocity

    NASA Technical Reports Server (NTRS)

    Nummelin, J.

    1983-01-01

    New technique improves accuracy of measurements of ultrasonic shearwave velocity. Technique eliminates need to measure incident sound angle. Technique contains groove in which steel sphere is placed. Sphere act as reference point for measuring path lengths and propagation times. Velocity measurements are within 1 percent of published data.

  16. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    NASA Astrophysics Data System (ADS)

    Aziman, M.; Hazreek, Z. A. M.; Azhar, A. T. S.; Haimi, D. S.

    2016-04-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data.

  17. Implications of elastic wave velocities for Apollo 17 rock powders

    NASA Technical Reports Server (NTRS)

    Talwani, P.; Nur, A.; Kovach, R. L.

    1974-01-01

    Ultrasonic P- and S-wave velocities of lunar rock powders 172701, 172161, 170051, and 175081 were measured at room temperature and to 2.5 kb confining pressure. The results compare well with those of terrestrial volcanic ash and powdered basalt. P-wave velocity values up to pressures corresponding to a lunar depth of 1.4 km preclude cold compaction alone as an explanation for the observed seismic velocity structure at the Apollo 17 site. Application of small amounts of heat with simultaneous application of pressure causes rock powders to achieve equivalence of seismic velocities for competent rocks.

  18. Convertion Shear Wave Velocity to Standard Penetration Resistance

    NASA Astrophysics Data System (ADS)

    Madun, A.; Tajuddin, S. A. A.; Abdullah, M. E.; Abidin, M. H. Z.; Sani, S.; Siang, A. J. L. M.; Yusof, M. F.

    2016-07-01

    Multichannel Analysis Surface Wave (MASW) measurement is one of the geophysics exploration techniques to determine the soil profile based on shear wave velocity. Meanwhile, borehole intrusive technique identifies the changes of soil layer based on soil penetration resistance, i.e. standard penetration test-number of blows (SPT-N). Researchers across the world introduced many empirical conversions of standard penetration test blow number of borehole data to shear wave velocity or vice versa. This is because geophysics test is a non-destructive and relatively fast assessment, and thus should be promoted to compliment the site investigation work. These empirical conversions of shear wave velocity to SPT-N blow can be utilised, and thus suitable geotechnical parameters for design purposes can be achieved. This study has demonstrated the conversion between MASW and SPT-N value. The study was conducted at the university campus and Sejagung Sri Medan. The MASW seismic profiles at the University campus test site and Sejagung were at a depth of 21 m and 13 m, respectively. The shear wave velocities were also calculated empirically using SPT-N value, and thus both calculated and measured shear wave velocities were compared. It is essential to note that the MASW test and empirical conversion always underestimate the actual shear wave velocity of hard layer or rock due to the effect of soil properties on the upper layer.

  19. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    NASA Astrophysics Data System (ADS)

    Wiberg, Patricia L.; Sherwood, Christopher R.

    2008-10-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the "effective" forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  20. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    USGS Publications Warehouse

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  1. Inversion of surface wave data for subsurface shear wave velocity profiles characterized by a thick buried low-velocity layer

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2016-08-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterized by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (traveltime average sear wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterized by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.

  2. Low Velocity Waves Inside and Outside of Plants

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2010-03-01

    I have been reporting organizing waves in plants for many years. In 1989 I reported wave travel between plants. The waves travel at near 25 m/s horizontally through air on earth. Recently I built my own transmitters and receivers and found that the waves will penetrate mountains. Monitoring plants suggest that there is constant communication between plants with the cacophony peaking during the summer months. The location of the sun has a direct influence. I hypothesize that the observed waves are waves in dark matter as well as the other media involved. Apparently dark matter not only interacts with gravity but has much to do with the organization of nature. The velocities of waves in plants peak vertically. For example in Ponderosa pine the ratio of the vertical to horizontal velocity is 3/1 making a tall spindly tree. In apple the ratio is 4/3 making a nearly round tree. The velocity anisotropy may suggest that dark matter interacts differently with respect to the gravity direction. The penetrating qualities of the waves may provide useful communication. There appears to be a rather large velocity distribution, however, when the waves travel far through dense matter.

  3. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  4. Temporal Changes in S-Wave Velocity at Different Depths Near Parkfield, CA

    NASA Astrophysics Data System (ADS)

    Wu, C.; Delorey, A. A.; Brenguier, F.; Guyer, R. A.; Gomberg, J. S.; Johnson, P. A.

    2014-12-01

    The 2003 Mw6.5 San Simeon earthquake and the 2004 Mw6.0 Parkfield earthquake have been found to cause significant seismic velocity decreases along the San Andreas Fault (SAF). However, the depth range of the velocity decreases is hard to constrain based on traditional approaches and is still inclusive. In this study, we used noise interferometry (MSNoise) and surface wave inversion to measure the S-wave velocity changes at different depths near Parkfield after the two large earthquakes. We processed continuous seismic recordings from 15 stations near Parkfield from 2001 to 2011 to obtain the noise cross-correlation functions, and measured the temporal variations in Rayleigh wave phase velocities at 6 different frequency bands. We then invert the Rayleigh wave phase velocity changes at different frequencies using a series of Rayleigh wave sensitivity kernels, for the S-wave velocity changes at different depths. Our results indicate that the S-wave velocity decreases caused by the San Simeon earthquake are relatively small (up to ~0.1%), and they access depths of at least 6 km in the region of Parkfield. On the other hand, the S-wave velocity decrease caused by the Parkfield earthquake is larger (up to ~0.3%), but is dominated by elastic changes in the top 1-2 km of the crust. Our ongoing work is focused on constraining and understanding the physical mechanisms for the different depth ranges of velocity changes cause by the two large earthquakes, and characterization of the recovery processes at different depths after the Parkfield earthquake.

  5. Elastic wave velocities of peridotite KLB-1 at mantle pressures and implications for mantle velocity modeling

    NASA Astrophysics Data System (ADS)

    Wang, Xuebing; Chen, Ting; Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng

    2015-05-01

    Compressional (VP) and shear (VS) wave velocities of a synthetic KLB-1 peridotite were measured for the first time up to 10 GPa using ultrasonic interferometry. Analysis of the P and S wave velocities yielded K0 = 123(1) GPa, K0' = 5.1(2), G0 = 75(1) GPa, and G0'= 1.3(1) for the bulk and shear moduli and their pressure derivatives. Comparison with Voigt-Reuss-Hill (VRH) calculations based on literature elasticity data for its constituent minerals indicates that the experimentally measured P and S wave velocities, densities, bulk sound velocities, and VP/VS ratios fall close to the lower limit of VRH averages associated with the uncertainties of the mineral elasticity data. A comparison with previous modeling of mantle compositions implies that the velocities for an aggregate with the pyrolitic composition of KLB-1 are in close agreement with seismic data at the depths of the Earth's upper mantle.

  6. The relationships between large-scale variations in shear velocity, density, and compressional velocity in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Ekström, G.

    2016-04-01

    A large data set of surface wave phase anomalies, body wave travel times, normal-mode splitting functions, and long-period waveforms is used to investigate the scaling between shear velocity, density, and compressional velocity in the Earth's mantle. We introduce a methodology that allows construction of joint models with various levels of scaling complexity (ϱ = dlnρ/dlnvS, ν = dlnvS/dlnvP), in order to detect seismological signatures of chemical heterogeneity. We demonstrate that the data sets considered cannot be fit concurrently with a uniform ν or a positive and uniform ϱ throughout the mantle. The variance reductions to P wave travel times and vP-sensitive modes are up to 40% higher with our preferred model of anisotropic shear and compressional velocity than the recent anisotropic shear velocity model S362ANI+M, which was constructed assuming a uniform ν throughout the mantle. Several features reported in earlier tomographic studies persist after the inclusion of new and larger data sets; anticorrelation between bulk sound and shear velocities in the lowermost mantle as well as an increase in ν with depth in the lower mantle are largely independent of the regularization scheme. When correlations between density and shear velocity variations are imposed in the lowermost mantle, variance reductions of several spheroidal and toroidal modes deteriorate by as much as 40%. Recent measurements of the splitting of 0S2, in particular, are largely incompatible with perfectly correlated shear velocity and density heterogeneity throughout the mantle. A way to significantly improve the fits to various data sets is by allowing independent density perturbations in the lowermost mantle. Our preferred joint model consists of denser-than-average anomalies (˜1% peak to peak) at the base of the mantle roughly coincident with the low-velocity superplumes. The relative variation of shear velocity, density, and compressional velocity in our study disfavors a purely thermal

  7. Shear wave velocity structure in West Java, Indonesia as inferred from surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Anggono, Titi; Syuhada

    2016-02-01

    We investigated the crust and upper mantle of West Java, Indonesia by measuring the group velocity dispersion of surface waves. We analyzed waveform from four teleseismic earthquake recorded at three 3-component broadband seismometers. We analyzed fundamental mode of Rayleigh and Love waves from vertical, radial, and transverse components using multiple filter technique. We inverted the measured group velocity to obtain shear wave velocity profile down to 200 km depth. We observed low shear wave velocity zone at depth of about 20 km. Shear velocity reduction is estimated to be 18% compared to the upper and lower velocity layer. The low velocity zone might be associated with the subducting slab of Indo-Australian Plate as similar characteristics of low velocity zones also observed at other subducting regions.

  8. Rayleigh wave group velocity dispersion across Northern Africa, Southern Europe and the Middle East

    SciTech Connect

    McNamara, D.E.; Walter, W.R.

    1997-07-15

    THis report presents preliminary results from a large scale study of surface wave group velocity dispersion throughout Northern Africa, the Mediterranean, Southern Europe and the Middle East. Our goal is to better define the 3D lithospheric shear-wave velocity structure within this region by improving the resolution of global surface wave tomographic studies. We hope to accomplish this goal by incorporating regional data at relatively short periods (less than 40 sec), into the regionalization of lateral velocity variation. Due to the sparse distributions of stations and earthquakes throughout the region (Figure 1) we have relied on data recorded at both teleseismic and regions; distances. Also, to date we have concentrated on Rayleigh wave group velocity measurements since valuable measurements can be made without knowledge of the source. In order to obtain Rayleigh wave group velocity throughout the region, vertical component teleseismic and regional seismograms were gathered from broadband, 3-component, digital MEDNET, GEOSCOPE and IRIS stations plus the portable PASSCAL deployment in Saudi Arabia. Figure 1 shows the distribution of earthquakes (black circles) and broadband digital seismic stations (white triangles) throughout southern Europe, the middle east and northern Africa used in this study. The most seismicly active regions of northern Africa are the Atlas mountains of Morocco and Algeria as well as the Red Sea region to the east. Significant seismicity also occurs in the Mediterranean, southern Europe and throughout the high mountains and plateaus of the middle-east. To date, over 1300 seismograms have been analyzed to determine the individual group velocities of 10-150 second Rayleigh waves. Travel times, for each period, are then inverted in a back projection tomographic method in order to determine the lateral group velocity variation throughout the region. These results are preliminary, however, Rayleigh wave group velocity maps for a range of

  9. Middle and upper crust shear-wave velocity structure of the Chinese mainland

    NASA Astrophysics Data System (ADS)

    Feng, Mei; An, Mei-Jian

    2007-07-01

    In order to give a more reliable shallow crust model for the Chinese mainland, the present study collected many short-period surface wave data which are better sensitive to shallow earth structures. Different from traditional two-step surface wave tomography, we developed a new linearized surface wave dispersion inversion method to directly get a 3D S-wave velocity model in the second step instead of inverting for 1D S-velocity profile cell by cell. We convert all the regionalized dispersions into linear constraints for a 3D S-velocity model. Checkerboard tests show that this method can give reasonable results. The distribution of the middle-and upper-crust shear-wave velocity of the Chinese mainland in our model is strongly heterogeneous and related to different geotectonic terrains. Low-velocity anomalies delineated very well most of the major sedimentary basins of China. And the variation of velocities at different depths gives an indication of basement depth of the basins. The western Tethyan tectonic domain (on the west of the 95°E longitude) is characterized by low velocity, while the eastern Tethyan domain does not show obvious low velocity. Since petroleum resources often distribute in sedimentary basins where low-velocity anomaly appears, the low velocity anomalies in the western Tethyan domain may indicate a better petroleum prospect than in its eastern counterpart. Besides, low velocity anomaly in the western Tethyan domain and around the Xing’an orogenic belt may be partly caused by high crustal temperature. The weak low-velocity belt along ˜105°E longitude corresponds to the N-S strong seismic belt of central China.

  10. Upper crustal compressional wave velocity in the Garhwal Himalaya

    NASA Astrophysics Data System (ADS)

    Chander, Ramesh; Sarkar, I.; Khattri, K. N.; Gaur, V. K.

    1986-04-01

    A value of 5.2 km/s is obtained for compressional wave velocity in the upper crust in the vicinity of the Main Central Thrust where it crosses the Yamuna and Bhagirathi valleys in the Garhwal Himalaya. The data used consisted of the arrival times of compressional waves; recorded at five portable stations from nine earthquakes occurring in the region.

  11. Common Genetic Variation in the 3-BCL11B Gene Desert Is Associated With Carotid-Femoral Pulse Wave Velocity and Excess Cardiovascular Disease Risk The AortaGen Consortium

    PubMed Central

    Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Isaacs, Aaron; Smith, Albert V.; Yasmin; Rietzschel, Ernst R.; Tanaka, Toshiko; Liu, Yongmei; Parsa, Afshin; Najjar, Samer S.; O’Shaughnessy, Kevin M.; Sigurdsson, Sigurdur; De Buyzere, Marc L.; Larson, Martin G.; Sie, Mark P.S.; Andrews, Jeanette S.; Post, Wendy S.; Mattace-Raso, Francesco U.S.; McEniery, Carmel M.; Eiriksdottir, Gudny; Segers, Patrick; Vasan, Ramachandran S.; van Rijn, Marie Josee E.; Howard, Timothy D.; McArdle, Patrick F.; Dehghan, Abbas; Jewell, Elizabeth; Newhouse, Stephen J.; Bekaert, Sofie; Hamburg, Naomi M.; Newman, Anne B.; Hofman, Albert; Scuteri, Angelo; De Bacquer, Dirk; Ikram, Mohammad Arfan; Psaty, Bruce; Fuchsberger, Christian; Olden, Matthias; Wain, Louise V.; Elliott, Paul; Smith, Nicholas L.; Felix, Janine F.; Erdmann, Jeanette; Vita, Joseph A.; Sutton-Tyrrell, Kim; Sijbrands, Eric J.G.; Sanna, Serena; Launer, Lenore J.; De Meyer, Tim; Johnson, Andrew D.; Schut, Anna F.C.; Herrington, David M.; Rivadeneira, Fernando; Uda, Manuela; Wilkinson, Ian B.; Aspelund, Thor; Gillebert, Thierry C.; Van Bortel, Luc; Benjamin, Emelia J.; Oostra, Ben A.; Ding, Jingzhong; Gibson, Quince; Uitterlinden, André G.; Abecasis, Gonçalo R.; Cockcroft, John R.; Gudnason, Vilmundur; De Backer, Guy G.; Ferrucci, Luigi; Harris, Tamara B.; Shuldiner, Alan R.; van Duijn, Cornelia M.; Levy, Daniel; Lakatta, Edward G.; Witteman, Jacqueline C.M.

    2012-01-01

    Background Carotid-femoral pulse wave velocity (CFPWV) is a heritable measure of aortic stiffness that is strongly associated with increased risk for major cardiovascular disease events. Methods and Results We conducted a meta-analysis of genome-wide association data in 9 community-based European ancestry cohorts consisting of 20,634 participants. Results were replicated in 2 additional European ancestry cohorts involving 5,306 participants. Based on a preliminary analysis of 6 cohorts, we identified a locus on chromosome 14 in the 3′-BCL11B gene desert that is associated with CFPWV (rs7152623, minor allele frequency = 0.42, beta=−0.075±0.012 SD/allele, P = 2.8 x 10−10; replication beta=−0.086±0.020 SD/allele, P = 1.4 x 10−6). Combined results for rs7152623 from 11 cohorts gave beta=−0.076±0.010 SD/allele, P=3.1x10−15. The association persisted when adjusted for mean arterial pressure (beta=−0.060±0.009 SD/allele, P = 1.0 x 10−11). Results were consistent in younger (<55 years, 6 cohorts, N=13,914, beta=−0.081±0.014 SD/allele, P = 2.3 x 10−9) and older (9 cohorts, N=12,026, beta=−0.061±0.014 SD/allele, P=9.4x10−6) participants. In separate meta-analyses, the locus was associated with increased risk for coronary artery disease (hazard ratio [HR]=1.05, confidence interval [CI]=1.02 to 1.08, P=0.0013) and heart failure (HR=1.10, CI=1.03 to 1.16, P=0.004). Conclusions Common genetic variation in a locus in the BCL11B gene desert that is thought to harbor one or more gene enhancers is associated with higher CFPWV and increased risk for cardiovascular disease. Elucidation of the role this novel locus plays in aortic stiffness may facilitate development of therapeutic interventions that limit aortic stiffening and related cardiovascular disease events. PMID:22068335

  12. Longitudinal variation and waves in Jupiter's south equatorial wind jet

    NASA Astrophysics Data System (ADS)

    Simon-Miller, Amy A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael D.; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-04-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5°S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and increasing with distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of ˜140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7°N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 ± 0.7-day period. This oscillating motion has a wavelength of ˜20° and a speed of 101 ± 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7°N and 7.5°S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  13. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Choi, David; Rogers, John H.; Gierasch, Peter J.; Allison, Michael D.; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and accelerations over distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of approx 140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75 to 100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 +/- 0.7-day period. This oscillating motion has a wavelength of approx 20 and a speed of 101 +/- 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of mUltiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  14. Lithology and shear-wave velocity in Memphis, Tennessee

    USGS Publications Warehouse

    Gomberg, J.; Waldron, B.; Schweig, E.; Hwang, H.; Webbers, A.; Van Arsdale, R.; Tucker, K.; Williams, R.; Street, R.; Mayne, P.; Stephenson, W.; Odum, J.; Cramer, C.; Updike, R.; Hutson, S.; Bradley, M.

    2003-01-01

    We have derived a new three-dimensional model of the lithologic structure beneath the city of Memphis, Tennessee, and examined its correlation with measured shear-wave velocity profiles. The correlation is sufficiently high that the better-constrained lithologic model may be used as a proxy for shear-wave velocities, which are required to calculate site-amplification for new seismic hazard maps for Memphis. The lithologic model and its uncertainties are derived from over 1200 newly compiled well and boring logs, some sampling to 500 m depth, and a moving-least-squares algorithm. Seventy-six new shear-wave velocity profiles have been measured and used for this study, most sampling to 30 m depth or less. All log and velocity observations are publicly available via new web sites.

  15. Shear-wave velocity and site-amplification factors for 50 Australian sites determined by the spectral analysis of surface waves method

    USGS Publications Warehouse

    Kayen, Robert E.; Carkin, Bradley A.; Allen, Trevor; Collins, Clive; McPherson, Andrew; Minasian, Diane L.

    2015-01-01

    One-dimensional shear-wave velocity (VS ) profiles are presented at 50 strong motion sites in New South Wales and Victoria, Australia. The VS profiles are estimated with the spectral analysis of surface waves (SASW) method. The SASW method is a noninvasive method that indirectly estimates the VS at depth from variations in the Rayleigh wave phase velocity at the surface.

  16. Wave-induced velocities inside a model seagrass bed

    NASA Astrophysics Data System (ADS)

    Luhar, Mitul; Coutu, Sylvain; Infantes, Eduardo; Fox, Samantha; Nepf, Heidi

    2010-12-01

    Laboratory measurements reveal the flow structure within and above a model seagrass meadow (dynamically similar to Zostera marina) forced by progressive waves. Despite being driven by purely oscillatory flow, a mean current in the direction of wave propagation is generated within the meadow. This mean current is forced by a nonzero wave stress, similar to the streaming observed in wave boundary layers. The measured mean current is roughly four times that predicted by laminar boundary layer theory, with magnitudes as high as 38% of the near-bed orbital velocity. A simple theoretical model is developed to predict the magnitude of this mean current based on the energy dissipated within the meadow. Unlike unidirectional flow, which can be significantly damped within a meadow, the in-canopy orbital velocity is not significantly damped. Consistent with previous studies, the reduction of in-canopy velocity is a function of the ratio of orbital excursion and blade spacing.

  17. Local variations of seismic velocity in the Imperial Valley, California

    SciTech Connect

    Jackson, D.D.; Lee, W.B.

    1981-12-01

    The authors inverted local earthquake arrival times to estimate spatial variations of seismic velocity. Their model consisted of near-surface station corrections and local perturbations to a standard crustal velocity model. The authors found a zone of relatively high-velocity trending southeast from the Salton Sea. This zone corresponds to the region of thickest sediments. The authors compared results with those of teleseismic studies by Savino et al (1977). The agreement was excellent, suggesting that the teleseismic delays are caused primarily by crustal velocity variations. Residual delays between the teleseismic observations and predicted crustal delays imply crustal thinning of 3 or 4 km along the axis of the valley. Known geothermal resource areas at Salton Sea (or Obsidian Buttes), Brawley, and East Mesa, lie on the axis of a zone of thin crust, and they may be intimately related to the Brawley fault. Neither local earthquake nor teleseismic arrival times can discriminate between these hypotheses, but the issue might be resolved by combining both types of data. Known geothermal resource areas at Heber, Dunes, and Glamis, lie away from the projected trace of the Brawley fault. These areas are nearly aseismic, and overlie crust with apparent seismic velocities only mildly higher than the regional average. These apparent velocity anomalies could be related to crustal thinning, but because of the very mild Bouguer gravity anomalies in these areas, it seems more likely that the velocity anomalies occur entirely within the crust. 7 references, 6 figures, 3 tables.

  18. Uppermost mantle P wave velocities beneath Turkey and Iran

    SciTech Connect

    Chen, C.; Chen, W.; Molnar, P.

    1980-01-01

    The uppermost mantle P wave velocities beneath Turkey and Iran were estimated by applying the conventional travel time-distance relation method to arrival times of well located earthquakes recorded at a few stations. The average uppermost mantle P wave velocity under Turkey is estimated from two stations of the World Wide Standardized Seismograph Network (WWSSN), Istanbul and Tabriz. The data are consistent with a crust of uniform, but poorly determined, thickness and an uppermost mantle P wave velocity of 7.73 +- 0.08 km/s. This velocity is very similar to that for the Aegean Sea and suggests that its structure could be closely related to that beneath Turkey. For Iran, the results calculated from travel times to three WWSSN stations, Meshed, Shiraz, and Tabriz, can be explained by a crust dipping toward the south-southeast at about 1/sup 0/ with an uppermost mantle P wave velocity of 8.0 +- 0.1 km/s. If the crustal thickness were 34 km in the north it would reach about 49 km in the south. Based on these uppermost mantle velocities, the temperature at Moho beneath Turkey is probably close to the melting temperature of peridotite but that beneath Iran is probably lower.

  19. Anisotropic parameter estimation using velocity variation with offset analysis

    SciTech Connect

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A.

    2013-09-09

    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ε and δ, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter δ. The second method is inversion method using linear approach where vertical velocity, δ, and ε is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that δ value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ε value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  20. Group-Velocity-Matched Three Wave Mixing in Birefringent Crystals

    SciTech Connect

    SMITH,ARLEE V.

    2000-12-12

    We show that the combination of pulse-front slant, k-vector tilt, and crystal birefringence often permits exact matching of both phase and group velocities in three wave mixing in birefringent crystals. This makes possible more efficient mixing of short light pulses, and it permits efficient mixing of chirped or broad bandwidth light. We analyze this process and present examples. Differences in the group velocities of the three interacting waves in a nonlinear crystal often limits the effective interaction length. For example, in mixing very short pulses, temporal walk off can stretch the pulses in time unless the crystal is very short. Efficient mixing with such short crystals requires high irradiances, but the irradiances are limited by higher order nonlinear effects such as intensity-dependent refractive index and two-photon absorption. Improved matching of the group velocities can alleviate this problem, allowing longer crystal and lower irradiances. Similarly, for high energy pulses, practical limits on crystal apertures mandate temporally stretching the pulses to reduce irradiances. For the resulting chirped pulses, temporal walk off restricts the chirp range unless the group velocities are well matched. In addition to perfectly matching the group velocities of all three waves, it is sometimes useful to match two velocities, such as the signal and idler in parametric amplification, permitting broadband parametric amplification, or to arrange the velocities of two inputs to bracket the generated sum frequency pulse, giving pulse compression under suitable circumstances.

  1. Rayleigh-wave group velocity distribution in the Antarctic region

    NASA Astrophysics Data System (ADS)

    Kobayashi, Reiji; Zhao, Dapeng

    2004-03-01

    We determined 2D group velocity distribution of Rayleigh waves at periods of 20-150 s in the Antarctic region using a tomographic inversion technique. The data are recorded by both permanent networks and temporary arrays. In East Antarctica the velocities are high at periods of 90-150 s, suggesting that the root of East Antarctica is very deep. The velocities in West Antarctica are low at all periods, which may be related to the volcanic activity and the West Antarctic Rift System. Low velocity anomalies appear at periods of 40-140 s along the Southeastern Indian Ridge and the western part of the Pacific Antarctic Ridge. The velocities are only slightly low around the Atlantic Indian Ridge, Southwestern Indian Ridge, and the eastern part of the Pacific Antarctic Ridge, where the spreading rates are small. Around two hotspots, the Mount Erebus and Balleny Islands, the velocity is low at periods of 50-150 s.

  2. Variational modelling of nonlinear water waves

    NASA Astrophysics Data System (ADS)

    Kalogirou, Anna; Bokhove, Onno

    2015-11-01

    Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.

  3. Seismic waves velocity dispersion: An indicator of hydrocarbons

    SciTech Connect

    Rapoport, M.B.; Ryjkov, V.I.

    1994-12-31

    VSP data recorded in eleven wells located in different geological conditions were analyzed for studying the phase velocity dispersion of seismic waves. Strong positive dispersion (velocity increases with rising frequency) with the intensity of between 1.7 and 5.0% was obtained in all productive wells in depths of oil and gas pools. The close correlation between local increasing of velocity dispersion and absorption occurred in most cases. Background level of velocity dispersion with both signs (less then {+-}1.0%) which the authors consider as a level of mistakes was observed outside productive intervals and in ``dry`` wells. Modeling has shown that pseudodispersion caused by layered media may attain {+-}0.5% and, besides, curves of pseudodispersion and pseudoabsorption exhibit no correlation. Analysis of seismic waves dispersion together with the absorption may provide with reliable indicators of hydrocarbon pools.

  4. Elastic wave velocities and thermal diffusivities of Apollo 14 rocks.

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Fujii, N.; Hamano, Y.; Osako, M.

    1972-01-01

    The compressional- and shear-wave velocities of Apollo 14 lunar rocks 14311,50 and 14313,27 as functions of pressure up to 10 kb and the thermal diffusivity of sample 14311,50 over the temperature range 100 to 550 K have been measured. Both samples 14311 and 14313 are polymict fragmental rocks. The overall elastic and anelastic behavior of the Apollo 14 samples are similar to those of Apollo 11 and 12 samples; low velocity and low Q at pressures below 1 kb and rapid increase of velocity and Q with pressure are also typical of the Apollo 14 rocks. The available data of P- and S-wave velocities of lunar rocks show that Birch's law holds for the lunar rocks. The thermal diffusivity of a lunar rock in vacuum is found to be significantly lower than that in air at one atmospheric pressure.

  5. Imaging Rayleigh wave attenuation and phase velocity in the western and central United States

    NASA Astrophysics Data System (ADS)

    Bao, X.; Dalton, C. A.; Jin, G.; Gaherty, J. B.

    2013-12-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle at an unprecedented scale. The majority of mantle models derived from USArray data to date contain spatial variations in seismic-wave speed; however, little is known about the attenuation structure of the North American upper mantle. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity, and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. We jointly invert Rayleigh wave phase and amplitude observations for phase velocity and attenuation maps for the western and central United States using USArray data. This approach exploits the amplitudes' sensitivity to velocity and the phase delays' sensitivity to attenuation. The phase and amplitude data are measured in the period range 20--100 s using a new interstation cross-correlation approach, based on the Generalized Seismological Data Functional algorithm, that takes advantage of waveform similarity at nearby stations. The Rayleigh waves are generated from 670 large teleseismic earthquakes that occurred between 2006 and 2012, and measured from all available Transportable Array stations. We consider two separate and complementary approaches for imaging attenuation variations: (1) the Helmholtz tomography (Lin et al., 2012) and (2) two-station path tomography. Results obtained from the two methods are contrasted. We provide a preliminary interpretation based on the observed relationship between Rayleigh wave attenuation and phase velocity.

  6. Activity-Induced Radial Velocity Variation of M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Andersen, Jan Marie; Korhonen, Heidi

    2014-04-01

    Stellar magnetic activity manifests itself in a variety of ways including starspots-cool, dark regions on the stellar surface. Starspots can cause variations (`jitter') in spectral line-profiles which can mimic the radial velocity (RV) variations caused by an orbiting planet, or create RV noise that can drown out a planetary signature. Cool, low-mass M dwarf stars can be highly active, which can make detection of potentially habitable planets around these stars difficult. We investigate radial velocity variations caused by different activity (spot) patterns on M dwarf stars in order to determine the limits of detectability for small planets orbiting active M dwarfs. We report on our progress toward the aim of answering the following questions: What types of spot patterns are realistic for M dwarf stars? What effect will spots have on M dwarf RV measurements? Can jitter from M dwarf spots mimic planetary signals? What is the ideal observing wavelength to reduce M dwarf jitter?

  7. Performance of velocity sensor for flexural wave reduction

    SciTech Connect

    Ko, S.H.

    1996-04-01

    This paper presents the analysis (mathematical modeling) for the reduction of flexural wave (structure-borne) noise that is generated by a line force on a steel plate. The steel plate is covered with a baffle (elastomer layer) to reduce the flexural wave noise. The main objective is to evaluate the performance of a velocity sensor located at the outer surface of the baffle layer. Toward this objective, the transmissibility of the plate displacement (velocity) through the baffle structure has been evaluated. {copyright} {ital 1996 American Institute of Physics.}

  8. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    NASA Technical Reports Server (NTRS)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  9. Impact of Phase Transitions on P Wave Velocities

    SciTech Connect

    D Weidner; L Li

    2011-12-31

    In regions where a high pressure phase is in equilibrium with a low pressure phase, the bulk modulus defined by the P-V relationship is greatly reduced. Here we evaluate the effect of such transitions on the P wave velocity. A model, where cation diffusion is the rate limiting factor, is used to project laboratory data to the conditions of a seismic wave propagating in the two-phase region. We demonstrate that for the minimum expected effect there is a significant reduction of the seismic velocity, as large as 10% over a narrow depth range.

  10. Patterns of orofacial movement velocity across variations in speech rate.

    PubMed

    McClean, M D

    2000-02-01

    To understand the clinical aspects of speech rate control, a clearer picture is needed of how orofacial structures are coordinated across variations in speech rate. To address this problem, patterns of orofacial tangential velocity or speed were analyzed in a group of 9 normal speakers as they produced the utterance "a bad daba" at fast, normal, and slow speech rates. An electromagnetic system was used to record the movements of the upper lip, lower lip, jaw, and tongue. Measures of the magnitude of peak tangential velocities were obtained across the four structures. Orofacial velocities consistently decreased at slow rates relative to normal rates, whereas at fast rates increased and decreased velocities were observed in an equivalent number of cases. Significant correlations frequently were obtained across speech rate between lip, tongue, and jaw velocities. Upper and lower lip velocities showed consistent positive correlations with one another, whereas marked intersubject differences were observed in the sign of jaw-related correlations. Repeated testing on 3 subjects indicated a high degree of consistency within subjects in the overall patterns of mean velocity for the different structures. Results are discussed in relation to possible motor control differences underlying fast and slow speech, neural coupling of muscle systems, and jaw-related individual differences in speech motor coordination. PMID:10668663

  11. An inexpensive instrument for measuring wave exposure and water velocity

    USGS Publications Warehouse

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  12. Anisotropic changes in P-wave velocity and attenuation during deformation and fluid infiltration of granite

    USGS Publications Warehouse

    Stanchits, S.A.; Lockner, D.A.; Ponomarev, A.V.

    2003-01-01

    Fluid infiltration and pore fluid pressure changes are known to have a significant effect on the occurrence of earthquakes. Yet, for most damaging earthquakes, with nucleation zones below a few kilometers depth, direct measurements of fluid pressure variations are not available. Instead, pore fluid pressures are inferred primarily from seismic-wave propagation characteristics such as Vp/Vs ratio, attenuation, and reflectivity contacts. We present laboratory measurements of changes in P-wave velocity and attenuation during the injection of water into a granite sample as it was loaded to failure. A cylindrical sample of Westerly granite was deformed at constant confining and pore pressures of 50 and 1 MPa, respectively. Axial load was increased in discrete steps by controlling axial displacement. Anisotropic P-wave velocity and attenuation fields were determined during the experiment using an array of 13 piezoelectric transducers. At the final loading steps (86% and 95% of peak stress), both spatial and temporal changes in P-wave velocity and peak-to-peak amplitudes of P and S waves were observed. P-wave velocity anisotropy reached a maximum of 26%. Transient increases in attenuation of up to 483 dB/m were also observed and were associated with diffusion of water into the sample. We show that velocity and attenuation of P waves are sensitive to the process of opening of microcracks and the subsequent resaturation of these cracks as water diffuses in from the surrounding region. Symmetry of the orientation of newly formed microcracks results in anisotropic velocity and attenuation fields that systematically evolve in response to changes in stress and influx of water. With proper scaling, these measurements provide constraints on the magnitude and duration of velocity and attenuation transients that can be expected to accompany the nucleation of earthquakes in the Earth's crust.

  13. Coda wave interferometry for estimating nonlinear behavior in seismic velocity.

    PubMed

    Snieder, Roel; Grêt, Alexandre; Douma, Huub; Scales, John

    2002-03-22

    In coda wave interferometry, one records multiply scattered waves at a limited number of receivers to infer changes in the medium over time. With this technique, we have determined the nonlinear dependence of the seismic velocity in granite on temperature and the associated acoustic emissions. This technique can be used in warning mode, to detect the presence of temporal changes in the medium, or in diagnostic mode, where the temporal change in the medium is quantified. PMID:11910107

  14. On electromagnetic waves with a negative group velocity

    NASA Astrophysics Data System (ADS)

    Makarov, V. P.; Rukhadze, A. A.; Samokhin, A. A.

    2010-12-01

    Recent publications devoted to the electrodynamics of media in which waves with a negative group velocity can exist are discussed. The properties of such waves have been studied from the beginning of the past century, and the most important results in this field were obtained by Soviet physicists in the 1940s-1950s. However, in most recent publications, this circumstance has not been taken into account.

  15. On electromagnetic waves with a negative group velocity

    SciTech Connect

    Makarov, V. P.; Rukhadze, A. A.; Samokhin, A. A.

    2010-12-15

    Recent publications devoted to the electrodynamics of media in which waves with a negative group velocity can exist are discussed. The properties of such waves have been studied from the beginning of the past century, and the most important results in this field were obtained by Soviet physicists in the 1940s-1950s. However, in most recent publications, this circumstance has not been taken into account.

  16. Periodic variations in the vertical velocities of galactic masers

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.; Shirokova, K. S.

    We compiled published data on Galactic masers with VLBI-measured trigonometric parallaxes and determined the residual tangential, Δ Vcirc, and radial, Δ VR, velocities for 120 masers. We used these data to re-determine the parameters of the Galactic spiral density wave using the method of spectral analysis. The tangential and radial perturbation amplitudes are fθ =6.5±2.4 km s-1 and fR=8.1±2.1 km s-1, respectively; the perturbation wavelengths are λ θ =3.2±0.5 kpc and λR=3.0±0.6 kpc for a four-armed spiral model, m=4. The phase of the Sun χ⊙ in the spiral density wave is -80o±14o and -192o±16o if inferred from the residual tangential and radial velocities, respectively. The most interesting result of this study is the detection of wavelike oscillations of vertical spatial velocities (W) versus distance R from the Galactic rotation axis. Spectral analysis allowed us to determine the perturbation wavelength and the amplitude of this wave, which we found to be equal to λW=3.4±0.7 kpc and fW=4.9±1.2 km s-1, respectively.

  17. Drift-wave transport in the velocity shear layer

    NASA Astrophysics Data System (ADS)

    Rosalem, K. C.; Roberto, M.; Caldas, I. L.

    2016-07-01

    Particle drift driven by electrostatic wave fluctuations is numerically computed to describe the transport in a gradient velocity layer at the tokamak plasma edge. We consider an equilibrium plasma in large aspect ratio approximation with E × B flow and specified toroidal plasma velocity, electric field, and magnetic field profiles. A symplectic map, previously derived for infinite coherent time modes, is used to describe the transport dependence on the electric, magnetic, and plasma velocity shears. We also show that resonant perturbations and their correspondent islands in the Poincaré maps are much affected by the toroidal velocity profiles. Moreover, shearless transport barriers, identified by extremum values of the perturbed rotation number profiles of the invariant curves, allow chaotic trajectories trapped into the plasma. We investigate the influence of the toroidal plasma velocity profile on these shearless transport barriers.

  18. An Examination of Rayleigh Wave Phase Velocities, South Shetland Islands

    NASA Astrophysics Data System (ADS)

    Robertson Maurice, S. D.; Wiens, D. A.; Lawrence, J. F.

    2003-12-01

    We examine the crustal and upper mantle structure of Bransfield Strait, the South Shetland Islands, and the Antarctic Peninsula using data from the Seismic Experiment in Patagonia and Antarctica (SEPA). We use Rayleigh wave phase velocity dispersion measurements from 20 teleseismic events to determine the interstation phase velocities at periods between 16 and 120 seconds. Maps of the velocities indicate crust with continental properties beneath the South Shetland Islands, the Antarctic Peninsula, and the area southwest of the Hero Fracture Zone. Thinner crust (less than 20 km thick) with backarc spreading mantle velocities lies within the Bransfield Basin proper. The seismic velocities indicate more established spreading in the northeastern portion of Bransfield Strait, and we see no evidence of anisotropy within the mantle.

  19. Minimizers with discontinuous velocities for the electromagnetic variational method

    SciTech Connect

    De Luca, Jayme

    2010-08-15

    The electromagnetic two-body problem has neutral differential delay equations of motion that, for generic boundary data, can have solutions with discontinuous derivatives. If one wants to use these neutral differential delay equations with arbitrary boundary data, solutions with discontinuous derivatives must be expected and allowed. Surprisingly, Wheeler-Feynman electrodynamics has a boundary value variational method for which minimizer trajectories with discontinuous derivatives are also expected, as we show here. The variational method defines continuous trajectories with piecewise defined velocities and accelerations, and electromagnetic fields defined by the Euler-Lagrange equations on trajectory points. Here we use the piecewise defined minimizers with the Lienard-Wierchert formulas to define generalized electromagnetic fields almost everywhere (but on sets of points of zero measure where the advanced/retarded velocities and/or accelerations are discontinuous). Along with this generalization we formulate the generalized absorber hypothesis that the far fields vanish asymptotically almost everywhere and show that localized orbits with far fields vanishing almost everywhere must have discontinuous velocities on sewing chains of breaking points. We give the general solution for localized orbits with vanishing far fields by solving a (linear) neutral differential delay equation for these far fields. We discuss the physics of orbits with discontinuous derivatives stressing the differences to the variational methods of classical mechanics and the existence of a spinorial four-current associated with the generalized variational electrodynamics.

  20. SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth's mantle

    NASA Astrophysics Data System (ADS)

    Koelemeijer, P.; Ritsema, J.; Deuss, A.; van Heijst, H.-J.

    2016-02-01

    We present the new model SP12RTS of isotropic shear-wave (VS) and compressional-wave (VP) velocity variations in the Earth's mantle. SP12RTS is derived using the same methods as employed in the construction of the shear-wave velocity models S20RTS and S40RTS, and the same data types. SP12RTS includes additional traveltime measurements of P-waves and new splitting measurements: 33 normal modes with sensitivity to the compressional-wave velocity and 9 Stoneley modes with sensitivity primarily to the lowermost mantle. Contrary to S20RTS and S40RTS, variations in VS and VP are determined without invoking scaling relationships. Lateral velocity variations in SP12RTS are parametrised using spherical harmonics up to degree 12, to focus on long-wavelength features of VS and VP and their ratio R. Large-low-velocity provinces (LLVPs) are observed for both VS and VP. SP12RTS also features an increase of R up to 2500 km depth, followed by a decrease towards the core-mantle boundary. A negative correlation between the shear-wave and bulk-sound velocity variations is observed for both the LLVPs and the surrounding mantle. These characteristics can be explained by the presence of post-perovskite or large-scale chemical heterogeneity in the lower mantle.

  1. Analysis of sediment particle velocity in wave motion based on wave flume experiments

    NASA Astrophysics Data System (ADS)

    Krupiński, Adam

    2012-10-01

    The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.

  2. Electrical instrument measures position and velocity of shock waves

    NASA Technical Reports Server (NTRS)

    Dannenberg, R. E.; Humphry, D. E.

    1971-01-01

    Instrument employs a sensor consisting of twin-electrode probe mounted in shock tube wall, with small dc voltage impressed across electrodes. Power supply, amplifier, and gate pulse generator complete the system. Instrument provides data for construction of wave diagrams, as well as measurement of shock velocity.

  3. Shear-wave velocity structure of the crust and uppermost mantle in the Shanxi rift zone

    NASA Astrophysics Data System (ADS)

    Song, Meiqing; Zheng, Yong; Liu, Chun; Li, Li; Wang, Xia

    2015-04-01

    The Shanxi rift zone is one of the largest and active Cenozoic grabens in the world, studying the velocity structure of the crust and upper mantle in this region may help us to understand the mechanisms of rift processes and the seismogenic environment of active seismicity in continental rifts. In this work, using the broadband seismic data of Shanxi, Hebei, Henan, Shaanxi provinces, and the Inner Mongolia Autonomous Region from February 2009 to November 2011, we have picked out 350 high-quality phase velocity dispersion curves of fundamental mode Rayleigh waves at periods from 8 to 75 s, and Rayleigh wave phase velocity maps have been constructed from 8 to 75 s period with horizontal resolution ranging from 40 to 50 km by two-station surface-wave tomography. Then, using a genetic algorithm, a 3D shear-wave speed model of the crust and uppermost mantle have been derived from these maps with a spatial resolution of 0.4° × 0.4°. Four characteristics can be outlined from the results: (1) Except in the Datong volcanic zone, in the depth range of 11-30 km, the location of a transition zone between the high- and low-velocity regions is in agreement with the seismicity pattern in the study region, and the earthquakes are mostly concentrated near this transition zone; (2) In the depth range of 31-40 km, shear-wave velocities are higher to the south of the Taiyuan Basin and lower to the north, which is similar to the distribution pattern of Moho depth variations in the Shanxi region; (3) The shear-wave velocity pattern of higher velocities to the south of 38°N and lower velocities to the north is found to be consistent with that from the upper crustal levels to depth of 70 km. At the deeper depths, the spatial scale of the low-velocity anomalies zone in the north is gradually shrinking with depth increasing, the low-velocity anomalies are gradually disappearing beneath the Datong volcanic zone at the depth of 151-200 km. We proposed that the root of the Datong volcano

  4. P- and S-wave velocity measurements on saturated siliceous conglomerates: determination of frame moduli

    NASA Astrophysics Data System (ADS)

    He, T.; Schmitt, D. R.

    2005-12-01

    Reservoir conditions, such as the pore pressure and the fluid saturation levels, will change during the production of fluids from the earth. These changes will also influence the seismic wave properties of the rock. In order to better understand its seismic response, compressional and shear wave velocities were measured on a series of low porosity (less than 10%) conglomerates under different confining and pore pressures under both dry and water saturated conditions. P- and S-wave velocities were simultaneously measured using standard pulse transmission methods. In all cases, the velocities increased dramatically with effective confining pressures to 60 MPa. As expected, saturated P-wave velocities were always greater than those under `dry' (i.e. pore space under vacuum) conditions. Conventional assumptions leading from Gassmann's relations suggest that the S-wave velocity would drop; however, in this study the S-wave velocity increased after saturation. The contradiction of the observed data with the theory has been attributed to a number of mechanisms, such as viscous coupling, the reduction in free surface energy, and frequency dispersion due to local flow of the fluid in the microcracks. The pore geometry, the microcracks and the clay content are among the most important factors influencing the seismic properties of these rocks. These geological factors are characterized though thin section, Scanning Electron Microscope (SEM), and Hg-porosimetry. The stress sensitive intra- and inter-grain cracks observed through these images play an important role in the velocity pressure relationship. The variation of the Vp/Vs and Poisson's ratios as functions of the effective pressure are also shown.

  5. High Precision Measurement of Stellar Radial Velocity Variations

    NASA Technical Reports Server (NTRS)

    Cochran, W. D.

    1984-01-01

    A prototype instrument for measurement of stellar radial velocity variations to a precision of a few meters per second is discussed. The instrument will be used to study low amplitude stellar non-radial oscillations, to search for binary systems with large mass ratios, and ultimately to search for extrasolar planetary systems. The instrument uses a stable Fabry-Perot etalon, in reflection, to impose a set of fixed reference absorption lines on the stellar spectrum before it enters the coude spectrograph of the McDonald Observatory 2.7-m telescope. The spectrum is recorded on the Octicon detector, which consists of eight Reticon arrays placed end to end. Radial velocity variations of the star are detected by measuring the shift of the stellar lines with respect the artificial Fabry-Perot lines, and correcting for the known motions in the solar system.

  6. Traveling waves in an optimal velocity model of freeway traffic.

    PubMed

    Berg, P; Woods, A

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137]. PMID:11308709

  7. Traveling waves in an optimal velocity model of freeway traffic

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  8. Wave induced velocities inside and outside a riparian seagrass bed.

    NASA Astrophysics Data System (ADS)

    El-Allaoui, N.; Serra, T.; Soler, M.

    2012-04-01

    Coastal wetlands landscapes, such as salt marshes and mangroves, form and evolve by dynamic feedbacks between vegetation establishment, flow hydrodynamics, and landforms changes. The vegetation-flow feedbacks make coastal vegetation very useful for coastal defense against storms and erosion, therefore importance of conservation of both aquatic and riparian vegetation is today commonly recognized. Experiments were carried out in order to study the flow structure within and outside a riparian seagrass bed in a laboratory flume subject to propagating waves. Different canopy densities, vegetation heights and wave frequencies were studied. Experiments were conducted in a 5m-long, 50cm-wide and 50 cm-deep flume equipped with a wave maker. Flow velocity measurements were undertaken with a microADV (Sontek, Inc) in two different points situated in the transversal section of the flume, one within the canopy and the other outside (in the centre of the flume). A mean return current was found in both regions studied (outside and within the vegetation) only for emergent vegetation. The mean current induced within the emergent vegetation was found larger for lower densities and found at the bottom layer of the flume (from the flume bottom to the half of the depth of the water). In contrast, this current was shifted to shallower depths for larger densities (from the half of the flume water up to 4 cm depth). On the other hand, induced current velocities outside the vegetation were found higher for emergent vegetation patterns than for submerged, decreasing the differences when the canopy density increases. For submerged vegetation of different densities similar values of the mean current velocity were found outside the canopy. Within the meadow horizontal wave velocity behavior is independent on both the vegetation density and height, but above the vegetation it appears a clear differentiation, becoming higher the wave velocity in the submerged vegetation case.

  9. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  10. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  11. Constant Group Velocity Ultrasonic Guided Wave Inspection for Corrosion and Erosion Monitoring in Pipes

    NASA Astrophysics Data System (ADS)

    Instanes, Geir; Pedersen, Audun; Toppe, Mads; Nagy, Peter B.

    2009-03-01

    This paper describes a novel ultrasonic guided wave inspection technique for the monitoring of internal corrosion and erosion in pipes, which exploits the fundamental flexural mode to measure the average wall thickness over the inspection path. The inspection frequency is chosen so that the group velocity of the fundamental flexural mode is essentially constant throughout the wall thickness range of interest, while the phase velocity is highly dispersive and changes in a systematic way with varying wall thickness in the pipe. Although this approach is somewhat less accurate than the often used transverse resonance methods, it smoothly integrates the wall thickness over the whole propagation length, therefore it is very robust and can tolerate large and uneven thickness variations from point to point. The constant group velocity (CGV) method is capable of monitoring the true average of the wall thickness over the inspection length with an accuracy of 1% even in the presence of one order of magnitude larger local variations. This method also eliminates spurious variations caused by changing temperature, which can cause fairly large velocity variations, but do not significantly influence the dispersion as measured by the true phase angle in the vicinity of the CGV point. The CGV guided wave CEM method was validated in both laboratory and field tests.

  12. Shear Wave Velocity Imaging Using Transient Electrode Perturbation: Phantom and ex vivo Validation

    PubMed Central

    Varghese, Tomy; Madsen, Ernest L.

    2011-01-01

    This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations. The feasibility of electrode vibration elastography is demonstrated using finite element models and ultrasound simulations, tissue-mimicking phantoms simulating fully (phantom 1) and partially ablated (phantom 2) regions, and an ex vivo bovine liver ablation experiment. In phantom experiments, good boundary delineation was observed. Shear wave velocity estimates were within 7% of mechanical measurements in phantom 1 and within 17% in phantom 2. Good boundary delineation was also demonstrated in the ex vivo experiment. The shear wave velocity estimates inside the ablated region were higher than mechanical testing estimates, but estimates in the untreated tissue were within 20% of mechanical measurements. A comparison of electrode vibration elastography and electrode displacement elastography showed the complementary information that they can provide. Electrode vibration elastography shows promise as an imaging modality that provides ablation boundary delineation and quantitative information during ablation procedures. PMID:21075719

  13. Hammering Yucca Flat, Part Two: Shear-Wave Velocity

    NASA Astrophysics Data System (ADS)

    Finlay, T. S.; Abbott, R. E.; Knox, H. A.; Tang, D. G.; James, S. R.; Haney, M. M.; Hampshire, J. B., II

    2015-12-01

    In preparation for the next phase of the Source Physics Experiment (SPE), we conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. Results from this survey will be used to inform the geologic models associated with the SPE project. For this study, we used a novel 13,000 kilogram weight-drop seismic source to interrogate an 18-km North-South transect of Yucca Flat. Source points were spaced every 200 meters and were recorded by 350 to 380 3-component 2-Hz geophones with variable spacings of 10, 20, and 100 meters. We utilized the Refraction-Microtremor (ReMi) technique to create multiple 1D dispersion curves, which were then inverted for shear-wave velocity profiles using the Dix inversion method (Tsai and Haney, 2015). Each of these 1D velocity models was subsequently stitched together to create a 2D profile over the survey area. The dispersion results indicate a general decrease in surface-wave phase velocity to the south. This result is supported by slower shear-wave velocity sediments and increasing basin depth towards the survey's southern extent. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. P-wave velocity structure beneath the northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Park, Y.; Kim, K.; Jin, Y.

    2010-12-01

    We have imaged tomographically the tree-dimensional velocity structure of the upper mantle beneath the northern Antarctic Peninsula using teleseismic P waves. The data came from the seven land stations of the Seismic Experiment in Patagonia and Antarctica (SEPA) campaigned during 1997-1999, a permanent IRIS/GSN station (PMSA), and 3 seismic stations installed at scientific bases, Esperanza (ESPZ), Jubany (JUBA), and King Sejong (KSJ), in South Shetland Islands. All of the seismic stations are located in coast area, and the signal to noise ratios (SNR) are very low. The P-wave model was inverted from 95 earthquakes resulting in 347 ray paths with P- and PKP-wave arrivals. The inverted model shows a strong low velocity anmaly beneath the Bransfield Strait, and a fast anomaly beneath the South Shetland Islands. The low velocity anomaly beneath the Bransfield might be due to a back arc extension, and the fast velocity anomaly beneath the South Shetland Islands could indicates the cold subducted slab.

  15. Wavefield Analysis of Rayleigh Waves for Near-Surface Shear-Wave Velocity

    NASA Astrophysics Data System (ADS)

    Zeng, Chong

    2011-12-01

    Shear (S)-wave velocity is a key property of near-surface materials and is the fundamental parameter for many environmental and engineering geophysical studies. Directly acquiring accurate S-wave velocities from a seismic shot gather is usually difficult due to the poor signal-to-noise ratio. The relationship between Rayleigh-wave phase velocity and frequency has been widely utilized to estimate the S-wave velocities in shallow layers using the multichannel analysis of surface waves (MASW) technique. Hence, Rayleigh wave is a main focus of most near-surface seismic studies. Conventional dispersion analysis of Rayleigh waves assumes that the earth is laterally homogeneous and the free surface is horizontally flat, which limits the application of surface-wave methods to only 1D earth models or very smooth 2D models. In this study I extend the analysis of Rayleigh waves to a 2D domain by employing the 2D full elastic wave equation so as to address the lateral heterogeneity problem. I first discuss the accurate simulation of Rayleigh waves through finite-difference method and the boundary absorbing problems in the numerical modeling with a high Poisson's ratio (> 0.4), which is a unique near-surface problem. Then I develop an improved vacuum formulation to generate accurate synthetic seismograms focusing on Rayleigh waves in presence of surface topography and internal discontinuities. With these solutions to forward modeling of Rayleigh waves, I evaluate the influence of surface topography to conventional dispersion analysis in 2D and 3D domains by numerical investigations. At last I examine the feasibility of inverting waveforms of Rayleigh waves for shallow S-wave velocities using a genetic algorithm. Results of the study show that Rayleigh waves can be accurately simulated in near surface using the improved vacuum formulation. Spurious reflections during the numerical modeling can be efficiently suppressed by the simplified multiaxial perfectly matched layers. The

  16. Estimation of seabed shear-wave velocity profiles using shear-wave source data.

    PubMed

    Dong, Hefeng; Nguyen, Thanh-Duong; Duffaut, Kenneth

    2013-07-01

    This paper estimates seabed shear-wave velocity profiles and their uncertainties using interface-wave dispersion curves extracted from data generated by a shear-wave source. The shear-wave source generated a seismic signature over a frequency range between 2 and 60 Hz and was polarized in both in-line and cross-line orientations. Low-frequency Scholte- and Love-waves were recorded. Dispersion curves of the Scholte- and Love-waves for the fundamental mode and higher-order modes are extracted by three time-frequency analysis methods. Both the vertically and horizontally polarized shear-wave velocity profiles in the sediment are estimated by the Scholte- and Love-wave dispersion curves, respectively. A Bayesian approach is utilized for the inversion. Differential evolution, a global search algorithm is applied to estimate the most-probable shear-velocity models. Marginal posterior probability profiles are computed by Metropolis-Hastings sampling. The estimated vertically and horizontally polarized shear-wave velocity profiles fit well with the core and in situ measurements. PMID:23862796

  17. Wave-equation migration velocity inversion using passive seismic sources

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2015-12-01

    Seismic monitoring at injection sites (e.g., CO2 sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits the fact that the P- and S-wave arrivals originate at the same time and location in the subsurface. We generate image volumes by back-propagating P- and S-wave data through initial Earth models and then applying a correlation-based extended-imaging condition. Energy focusing away from zero lag in the extended image volume is used as a (penalized) residual in an adjoint-state tomography scheme to update the P- and S-wave velocity models. We use an acousto-elastic approximation to greatly reduce the computational cost. Because the method requires neither an initial source location or origin time estimate nor picking of arrivals, it is suitable for low signal-to-noise datasets, such as microseismic data. Synthetic results show that with a realistic distribution of microseismic sources, P- and S-velocity perturbations can be recovered. Although demonstrated at an oil and gas reservoir scale, the technique can be applied to problems of all scales from geologic core samples to global seismology.

  18. Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses.

    PubMed

    Davies, Justine Ina; Struthers, Allan D

    2003-03-01

    The study of the pulse using the technique of applanation tonometry is undergoing a resurgence with the development of new computerized equipment. We aim here to present a critical review of the uses, potential uses, strengths and weaknesses of the technique of applanation tonometry for the assessment of augmentation index and pulse wave velocity. We will review the technique of applanation tonometry, the physiological factors affecting pulse wave velocity and pulse wave analysis, the changes in pulse wave velocity and pulse wave analysis with pharmacological interventions, and the use of the technique of applanation tonometry as a prognostic tool. We conclude that, although the technique of applanation tonometry initially seems promising, several pertinent issues need to be addressed before it can be used reliably as a clinical or research tool. Importantly, use of the technique of applanation tonometry to derive the central waveform from non-invasively acquired peripheral data needs to be validated prospectively. PMID:12640232

  19. Particle velocity non-uniformity and steady-wave propagation

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, Yu. I.

    2016-05-01

    A constitutive equation grounded in dislocation dynamics is shown to be incapable of describing the propagation of shock fronts in solids. Shock wave experiments and theoretical investigations motivate an additional collective mechanism of stress relaxation that should be incorporated into the model through the standard deviation of the particle velocity, which is found to be proportional to the strain rate. In this case, the governing equation system results in a second-order differential equation of square non-linearity. Solution to this equation and calculations for D16 aluminum alloy show a more precise coincidence of the theoretical and experimental velocity profiles.

  20. The impact of crustal density variations on seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Plonka, A.; Fichtner, A.

    2014-12-01

    Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convective motion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravity provide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling, making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct.We propose to develop a seismic tomography technique that directly inverts for density, using complete seismograms rather than arrival times of certain waves only. The first task in this challenge is to systematically study the imprints of density on synthetic seismograms.To compute the full seismic wavefield in a 3D heterogeneous medium without making significant approximations, we usenumerical wave propagation based on a spectral-element discretization of the seismic wave equation. We consider a 2000 by 1000 km wide and 500 km deep spherical section, with the 1D Earth model PREM (with 40 km crust thickness) as a background. Onto this (in the uppermost 40 km) we superimpose 3D randomly generated velocity and density heterogeneities of various magnitudes and correlation lenghts. We use different random realizations of heterogeneity distribution.We compare the synthetic seismograms for 3D velocity and density structure with 3D velocity structure and with the 1D background, calculating relative amplitude differences and timeshifts as functions of time and frequency.Our analyses indicate that reasonably sized density variations within the crust can leave a strong imprint on both traveltimes and amplitudes. This suggests (1) that crustal tomography can be significantly biased when density heterogeneities are not properly accounted for, and (2) that the solution of the seismic inverse problem for density may become feasible.

  1. Computational Modeling of Seismic Wave Propagation Velocity-Saturation Effects in Porous Rocks

    NASA Astrophysics Data System (ADS)

    Deeks, J.; Lumley, D. E.

    2011-12-01

    Compressional and shear velocities of seismic waves propagating in porous rocks vary as a function of the fluid mixture and its distribution in pore space. Although it has been possible to place theoretical upper and lower bounds on the velocity variation with fluid saturation, predicting the actual velocity response of a given rock with fluid type and saturation remains an unsolved problem. In particular, we are interested in predicting the velocity-saturation response to various mixtures of fluids with pressure and temperature, as a function of the spatial distribution of the fluid mixture and the seismic wavelength. This effect is often termed "patchy saturation' in the rock physics community. The ability to accurately predict seismic velocities for various fluid mixtures and spatial distributions in the pore space of a rock is useful for fluid detection, hydrocarbon exploration and recovery, CO2 sequestration and monitoring of many subsurface fluid-flow processes. We create digital rock models with various fluid mixtures, saturations and spatial distributions. We use finite difference modeling to propagate elastic waves of varying frequency content through these digital rock and fluid models to simulate a given lab or field experiment. The resulting waveforms can be analyzed to determine seismic traveltimes, velocities, amplitudes, attenuation and other wave phenomena for variable rock models of fluid saturation and spatial fluid distribution, and variable wavefield spectral content. We show that we can reproduce most of the published effects of velocity-saturation variation, including validating the Voigt and Reuss theoretical bounds, as well as the Hill "patchy saturation" curve. We also reproduce what has been previously identified as Biot dispersion, but in fact in our models is often seen to be wave multi-pathing and broadband spectral effects. Furthermore, we find that in addition to the dominant seismic wavelength and average fluid patch size, the

  2. Phase Velocity Method for Guided Wave Measurements in Composite Plates

    NASA Astrophysics Data System (ADS)

    Moreno, E.; Galarza, N.; Rubio, B.; Otero, J. A.

    Carbon Fiber Reinforced Polymer is a well-recognized material for aeronautic applications. Its plane structure has been widely used where anisotropic characteristics should be evaluated with flaw detection. A phase velocity method of ultrasonic guided waves based on a pitch-catch configuration is presented for this purpose. Both shear vertical (SV) and shear horizontal (SH) have been studied. For SV (Lamb waves) the measurements were done at different frequencies in order to evaluate the geometrical dispersion and elastic constants. The results for SV are discussed with an orthotropic elastic model. Finally experiments with lamination flaws are presented.

  3. Phase relationships between total electron content variations, Doppler velocity oscillations and geomagnetic pulsations

    SciTech Connect

    Liu, J.Y.; Berkey, F.T.

    1994-09-01

    The phase relationship between variations of ionospheric total electron content (TEC) and ground-level ULF geomagnetic pulsations has been examined for the advection and compression mechanisms. To determine the causal mechanism several earlier studies have examined the phase difference between oscillations of Doppler velocity in ionospherically reflected radio waves and simultaneous ULF geomagnetic pulsations. In most instances it was found that the phase relation varied from event to event. With the application of Euler`s formula this study shows that in low geomagnetic and midgeomagnetic latitudes the phase differences between variations of TEC and ULF pulsations in the northward component of the geomagnetic field due to the advection and compression mechanisms are 0{degrees} and 180{degrees}, respectively. The authors also found that TEC variations tend to lead ionospheric Doppler velocity oscillations by 90{degrees}. Furthermore, it is shown that the phase relationship between ionospheric Doppler velocity oscillations and ULF pulsations of the northward component of the geomagnetic field, caused by the advection and compression mechanisms, are functions of the scale length, frequency of ULF waves, and geomagnetic dip. 25 refs., 4 figs.

  4. Anisotropic shear-wave velocity structure of the Earth's mantle: A global model

    NASA Astrophysics Data System (ADS)

    Kustowski, B.; EkströM, G.; DziewońSki, A. M.

    2008-06-01

    We combine a new, large data set of surface wave phase anomalies, long-period waveforms, and body wave travel times to construct a three-dimensional model of the anisotropic shear wave velocity in the Earth's mantle. Our modeling approach is improved and more comprehensive compared to our earlier studies and involves the development and implementation of a new spherically symmetric reference model, simultaneous inversion for velocity and anisotropy, as well as discontinuity topographies, and implementation of nonlinear crustal corrections for waveforms. A comparison of our new three-dimensional model, S362ANI, with two other models derived from comparable data sets but using different techniques reveals persistent features: (1) strong, ˜200-km-thick, high-velocity anomalies beneath cratons, likely representing the continental lithosphere, underlain by weaker, fast anomalies extending below 250 km, which may represent continental roots, (2) weak velocity heterogeneity between 250 and 400 km depths, (3) fast anomalies extending horizontally up to 2000-3000 km in the mantle transition zone beneath subduction zones, (4) lack of strong long-wavelength heterogeneity below 650 km suggesting inhibiting character of the upper mantle-lower mantle boundary, and (5) slow-velocity superplumes beneath the Pacific and Africa. The shear wave radial anisotropy is strongest at 120 km depth, in particular beneath the central Pacific. Lateral anisotropic variations appreciably improve the fit to data that are predominantly sensitive to the uppermost and lowermost mantle but not to the waveforms that control the transition zone and midmantle depths. Tradeoffs between lateral variations in velocity and anisotropy are negligible in the uppermost mantle but noticeable at the bottom of the mantle.

  5. Whistler Waves Driven by Anisotropic Strahl Velocity Distributions: Cluster Observations

    NASA Technical Reports Server (NTRS)

    Vinas, A.F.; Gurgiolo, C.; Nieves-Chinchilla, T.; Gary, S. P.; Goldstein, M. L.

    2010-01-01

    Observed properties of the strahl using high resolution 3D electron velocity distribution data obtained from the Cluster/PEACE experiment are used to investigate its linear stability. An automated method to isolate the strahl is used to allow its moments to be computed independent of the solar wind core+halo. Results show that the strahl can have a high temperature anisotropy (T(perpindicular)/T(parallell) approximately > 2). This anisotropy is shown to be an important free energy source for the excitation of high frequency whistler waves. The analysis suggests that the resultant whistler waves are strong enough to regulate the electron velocity distributions in the solar wind through pitch-angle scattering

  6. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  7. Flow velocity measurement with the nonlinear acoustic wave scattering

    NASA Astrophysics Data System (ADS)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  8. Tomographic imaging of local earthquake delay times for three-dimensional velocity variation in western Washington

    SciTech Connect

    Lees, J.M.; Crosson, R.S. )

    1990-04-10

    Tomographic inversion is applied to delay times from local earthquakes to image three dimensional velocity variations in the Puget Sound region of western Washington. The 37,500 square km region is represented by nearly cubic blocks of 5 km per side. P-wave arrival time observations from 4,387 crustal earthquakes, with depths of 0 to 40 km, were used as sources producing 36,865 rays covering the target region. A conjugate gradient method (LSQR) is used to invert the large, sparse system of equations. To diminish the effects of noisy data, the Laplacian is constrained to be zero within horizontal layers, providing smoothing of the model. The resolution is estimated by calculating impulse responses at blocks of interest and estimates of standard errors are calculated by the jackknife statistical procedure. Results of the inversion are correlated with some known geologic features and independent geophysical measurements. High P-wave velocities along the eastern flank of the Olympic Peninsula are interpreted to reflect the subsurface extension of Crescent terrane. Low velocities beneath the Puget Sound further to the east are inferred to reflect thick sediment accumulations. The Crescent terrane appears to extend beneath Puget Sound, consistent with its interpretation as a major accretionary unit. In the southern Puget Sound basin, high velocity anomalies at depths of 10-20 km are interpreted as Crescent terrane and are correlated with a region of low seismicity. Near Mt. Ranier, high velocity anomalies may reflect buried plutons.

  9. P wave detection thresholds, Pn velocity estimates, and T wave location uncertainty from oceanic hydrophones

    NASA Astrophysics Data System (ADS)

    Slack, Philip D.; Fox, Christopher G.; Dziak, Robert P.

    1999-06-01

    P wave arrivals recorded by the U.S. Navy's SOund SUrveillance System (SOSUS) hydrophone arrays were used to estimate earthquake detection thresholds and Pn velocities in the northeast Pacific Ocean. The Navy hydrophones have been used successfully to detect and locate oceanic earthquakes using their waterborne acoustic tertiary (T) waves; however, use of these hydrophones for seismic body wave detection allows regional seismic analyses to be extended to the oceanic environment. The P wave detection threshold of the SOSUS hydrophones was quantified using the epicentral distance and magnitude of 250 northeast Pacific Ocean earthquakes. Earthquakes with body wave magnitudes as low as 2 have detectable P wave arrivals at epicentral distances of ≤500 km. Earthquakes with mb between 3.5 and 5 were detected ˜50% of the time at distances of 100-1500 km, while events with mb > 5 were all detected, even out to distances of 1000-1500 km. Both P and T wave hydrophone arrival times were used to estimate the epicenters of 100 earthquakes. The peak amplitude of the T wave coda and the onset of the P wave were used as the earthquake arrival times to estimate event locations. T wave arrival time residuals have a Gaussian distribution with zero mean, which implies that using T wave peak amplitude is consistent with using the P wave onset as the arrival time. There are typically ≤6 stations used to derive a T wave based location, hence location error ellipses are not well constrained. A Monte Carlo technique was employed to estimate T wave event location uncertainty. T wave locations have error bars of ˜1 km in latitude and longitude when >3 hydrophones are used for a location estimate. The detected P wave arrivals and earthquake locations were used to measure Pn velocities. Pn velocity values of 7.9 ± 0.1 and 8.0 ± 0.1 km/s were found for the Pacific and Juan de Fuca plates, respectively. A Pn velocity of 7.5 ± 0.1 km/s was measured for rays traveling northward from the

  10. The velocity field under breaking waves: coherent structures and turbulence

    NASA Astrophysics Data System (ADS)

    Melville, W. Kendall; Veron, Fabrice; White, Christopher J.

    2002-03-01

    Digital particle image velocimetry (DPIV) measurements of the velocity field under breaking waves in the laboratory are presented. The region of turbulent fluid directly generated by breaking is too large to be imaged in one video frame and so an ensemble-averaged representation of the flow is built up from a mosaic of image frames. It is found that breaking generates at least one coherent vortex that slowly propagates downstream at a speed consistent with the velocity induced by its image in the free surface. Both the kinetic energy of the flow and the vorticity decay approximately as t[minus sign]1. The Reynolds stress of the turbulence also decays as t[minus sign]1 and is, within the accuracy of the measurements, everywhere negative, consistent with downward transport of streamwise momentum. Estimates of the mometum flux from waves to currents based on the measurements of the Reynolds stress are consistent with earlier estimates. The implications of the measurements for breaking in the field are discussed. Based on geometrical optics and wave action conservation, we suggest that the presence of the breaking-induced vortex provides an explanation for the suppression of short waves by breaking. Finally, in Appendices, estimates of the majority of the terms in the turbulent kinetic energy budget are presented at an early stage in the evolution of the turbulence, and comparisons with independent acoustical measurements of breaking are presented.

  11. Relationship among shock-wave velocity, particle velocity, and adiabatic exponent for dry air

    NASA Astrophysics Data System (ADS)

    Kim, In H.; Hong, Sang H.; Jhung, Kyu S.; Oh, Ki-Hwan; Yoon, Yo K.

    1991-07-01

    Using the results of the detailed numerical calculations, it is shown that the relationship between the shock-wave velocity U sub s and the particle velocity U sub p for shock-compressed dry air can be represented accurately by the linear relation U sub s = a(P0) + b(P0)U sub p in a wide range of U sub p (U sub p = 2 to 9 ) km/s and initial pressure P0 = 10 to the -6th to 1 atm, where a and b are given by the cubic polynomials of log10P0. Based on the linear U sub s - U sub p relation, an analytic expression has been obtained for the adiabatic exponent gamma as a function of particle velocity.

  12. Near surface shear wave velocity in Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    von Steht, M.; Jaskolla, B.; Ritter, J. R. R.

    2008-12-01

    Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp) structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55 65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s) in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs30 varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45 0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.

  13. Shear-Wave Velocity Structure Around the Korean Peninsula Using the Rayleigh Wave Signature of the North Korea Underground Nuclear Explosion on May 25, 2009

    NASA Astrophysics Data System (ADS)

    Kim, G.; Shin, J.; Chi, H. C.; Sheen, D.; Park, J.; Cho, C.

    2011-12-01

    The crustal structure around the Korean Peninsula was investigated by analyzing the Rayleigh waves generated from the 2nd North Korea underground nuclear explosion on May 25, 2009. Group velocity dispersion curves were measured from vertical component waveforms of 20 broadband stations in the range of 194 to 1183 km from the test site. The measured dispersion curves were inverted to get shear-wave velocity models for depths from 0 to 50 km. The dispersion curves and the velocity models clearly show lateral variations in the crustal structure, which could be more clearly classified into the North Korea-Northeast China group, the Western Margin of the East Sea group, and the Japan Basin group. For each group, an averaged dispersion curve and an averaged velocity model were measured. The averaged shear-wave velocity model of the North Korea-Northeast China group shows that the mean shear-wave velocity of the Moho discontinuity, which is known to be located at approximately 35 km, is 4.37 km/s with a standard deviation of 0.15 km/s. The averaged shear-wave velocity model of the Japan Basin group shows a mean shear-wave velocity of 4.26 km/s with a standard deviation of 0.14 km/s in the layer between 16 and 22 km. The averaged shear-wave velocity model of the Western Margin of the East Sea group shows characteristics of a transition zone between the North Korea-Northeast China group, which represents continental crust, and the Japan Basin group, which represents oceanic crust. The mean shear-wave velocity in the layer between 16 and 22 km is 4.12 km/s with a standard deviation of 0.05 km/s.

  14. The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield

    NASA Astrophysics Data System (ADS)

    Tang, Zheng; Julià, Jordi; Mai, P. Martin

    2016-04-01

    We are utilizing receiver function and surface wave dispersion data to investigate the lithospheric shear-wave velocity structure of Saudi Arabia. The Arabian plate consists of the western Arabian shield and the eastern Arabian platform. The Arabian shield is a complicated mélange of several Proterozoic terrains, separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (so-called harrats). The Arabian platform is covered by thick Paleozoic, Mesozoic and Cenozoic sedimentary rocks. To understand the geo-dynamics and present-day geology in western Saudi Arabia, the origin and activity of the harrats needs to be investigated: are they controlled primarily by a local mantle plume underneath western Saudi Arabia or by lateral mantle flow from the Afar and (perhaps) Jordan hotspots? In our study, we first estimate Vp/Vs ratios by applying the H-κ stacking technique and construct local shear-wave velocity-depth profiles by jointly inverting teleseismic P-receiver functions and Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). Our results reveal significant lateral variations in crustal thickness, S-velocity, and bulk Vp/Vs ratio. The Arabian shield has, on average a ~34 km thick crust with Vs ~3.72 km/s and Vp/Vs ~1.73. Thinner crust (~25 - 32 km thick) with strong lateral variations is present along the Red Sea coast. In contrast, the Arabian platform reveals a ~41 km thick crust with Vs ~3.52 km/s and Vp/Vs ~1.77. We find anomalously high Vp/Vs ratios at Harrat Lunayyir, interpreted as solidified magma intrusions. Slow shear-velocities in the upper-mantle lid throughout the southernmost and northernmost Arabian shield suggest lateral heating from hot mantle upwellings centered beneath Afar and (perhaps) Jordan. Our findings on crustal S-velocity structures, Vp/Vs ratios, and upper-mantle lid velocities support the hypothesis of lateral mantle flow from the Afar and (perhaps

  15. Estimation of surface-wave phase velocity from microtremor observation using an array with a reference station

    NASA Astrophysics Data System (ADS)

    Yamanaka, Hiroaki; Kato, Kei; Chimoto, Kosuke; Tsuno, Seiji

    2015-09-01

    A procedure for estimation of Rayleigh wave phase velocities from microtremor observations, using an array with a reference station, is investigated in this study. Simultaneous observation of microtremors at a reference station and at a strong motion observation array in the Kanto Basin, Japan, was carried out. We first calculated cross correlations between records at the reference station and those at stations in the array using a seismic interferometric processing method on a 4300-h data series. After identifying dispersive Rayleigh waves from results of multiple filtering analysis of the cross correlations, semblance analysis of the cross correlations for different segments was carried out to estimate phase velocities for fundamental and higher-mode Rayleigh waves. The phase velocities from the proposed method are more appropriate than those from conventional methods at long periods as they avoid contamination by higher mode Rayleigh waves. The fundamental Rayleigh wave phase velocities were inverted to an S-wave velocity profile for deep sedimentary layers. We also examined the variations in the phase velocity with decreasing data duration. The phase velocities at periods less than 3 s from 6-h records are similar to those from 4300-h records, suggesting that our method is possibly applicable in microtremor exploration.

  16. Potential Misidentification of Love-Wave Phase Velocity Based on Three-Component Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Xu, Zongbo; Xia, Jianghai; Luo, Yinhe; Cheng, Feng; Pan, Yudi

    2016-04-01

    People have calculated Rayleigh-wave phase velocities from vertical component of ambient seismic noise for several years. Recently, researchers started to extract Love waves from transverse component recordings of ambient noise, where "transverse" is defined as the direction perpendicular to a great-circle path or a line in small scale through observation sensors. Most researches assumed Rayleigh waves could be negligible, but Rayleigh waves can exist in the transverse component when Rayleigh waves propagate in other directions besides radial direction. In study of data acquired in western Junggar Basin near Karamay city, China, after processing the transverse component recordings of ambient noise, we obtain two energy trends, which are distinguished with Rayleigh-wave and Love-wave phase velocities, in the frequency-velocity domain using multichannel analysis of surface waves (MASW). Rayleigh waves could be also extracted from the transverse component data. Because Rayleigh-wave and Love-wave phase velocities are close in high frequencies (>0.1 Hz), two kinds of surface waves might be merged in the frequency-velocity domain. Rayleigh-wave phase velocities may be misidentified as Love-wave phase velocities. To get accurate surface-wave phase velocities from the transverse component data using seismic interferometry in investigating the shallow geology, our results suggest using MASW to calculate real Love-wave phase velocities.

  17. Hemispherical variations in seismic velocity at the top of the Earth's inner core.

    PubMed

    Niu, F; Wen, L

    2001-04-26

    Knowledge of the seismic velocity structure at the top of the Earth's inner core is important for deciphering the physical processes responsible for inner-core growth. Previous global seismic studies have focused on structures found 100 km or deeper within the inner core, with results for the uppermost 100 km available for only isolated regions. Here we present constraints on seismic velocity variations just beneath the inner-core boundary, determined from the difference in travel time between waves reflected at the inner-core boundary and those transmitted through the inner core. We found that these travel-time residuals-observed on both global seismograph stations and several regional seismic networks-are systematically larger, by about 0.8 s, for waves that sample the 'eastern hemisphere' of the inner core (40 degrees E to 180 degrees E) compared to those that sample the 'western hemisphere' (180 degrees W to 40 degrees E). These residuals show no correlation with the angle at which the waves traverse the inner core; this indicates that seismic anisotropy is not strong in this region and that the isotropic seismic velocity of the eastern hemisphere is about 0.8% higher than that of the western hemisphere. PMID:11323668

  18. Mapping Phase Velocities and Azimuthal Anisotropy of Rayleigh Waves in Iceland

    NASA Astrophysics Data System (ADS)

    Li, A.; Detrick, R. S.

    2002-05-01

    Using Rayleigh wave data recorded at both the HOTSPOT and the ICEMELT experiments in Iceland, we have applied the two-plane wave inversion technique and obtained phase velocities and azimuthal anisotropy from period 20 s to 100 s. The most striking feature is that the slow anomalies are generally confined beneath the Icelandic rift zones but not correlate with the plume center on the surface. Azimuthal anisotropy appears to be frequency dependent and also shows strong lateral variations especially between the western Iceland, the rift zones, and the eastern Iceland, as suggested by shear-wave splitting measurements. It is well known that tradeoffs exist between isotropic and anisotropic heterogeneity. We conducted resolution tests to estimate how robust the observed features of phase velocities and anisotropy are. Synthetic phase and amplitude data of Rayleigh waves were calculated from a typical phase velocity model that has low velocities beneath the Icelandic rift zones. Azimuthal anisotropy that uniformly distributes in the area or varies laterally by tectonic province was also included in the input models. The pattern of isotropic phase velocities with fast anomalies in the western and eastern Iceland and the slow in the rift zones is well recovered in both isotropic and anisotropic inversions. The azimuthal anisotropy larger than 1% in the input models can be largely retrieved. However, the amount of anisotropy when varying by tectonic province is not negligible in anisotropic solutions even for isotropic input models. Therefore, we suggest inverting synthetic data from the observed isotropic phase velocity models in order to detect whether the observed anisotropy reflects the real structure or the tradeoff with isotropic heterogeneity.

  19. Lanczos steps to improve variational wave functions

    NASA Astrophysics Data System (ADS)

    Becca, Federico; Hu, Wen-Jun; Iqbal, Yasir; Parola, Alberto; Poilblanc, Didier; Sorella, Sandro

    2015-09-01

    Gutzwiller-projected fermionic states can be efficiently implemented within quantum Monte Carlo calculations to define extremely accurate variational wave functions for Heisenberg models on frustrated two-dimensional lattices, not only for the ground state but also for low-energy excitations. The application of few Lanczos steps on top of these states further improves their accuracy, allowing calculations on large clusters. In addition, by computing both the energy and its variance, it is possible to obtain reliable estimations of exact results. Here, we report the cases of the frustrated Heisenberg models on square and Kagome lattices.

  20. Velocity gradients in the Earth's upper mantle: insights from higher mode surface waves

    NASA Astrophysics Data System (ADS)

    Fishwick, Stewart; Maupin, Valerie; Afonso, Juan Carlos

    2016-04-01

    The majority of seismic tomographic models of the uppermost mantle beneath Precambrian regions show a positive velocity gradient from the Moho to depths of around 100 km. It is becoming increasingly well recognised that this gradient is not readily compatible with simple models of a craton with constant composition and a steady-state geotherm and more complex compositional variations are invoked to explain this feature. At these depths most of the models are dominated by data from fundamental mode surface waves, and the combination of the sensitivity kernels alongside the choice of model parameterisation means that the velocity gradient could be an artefact of the particular inversion. Indeed, recent work using thermodynamically consistent velocity models suggests that in some cases there is not a requirement of this style of gradient. We investigate this aspect of the mantle structure further by returning to the Sa phase. This phase can be considered as the build up of a wave packet due to the overlapping group velocities of higher modes at periods of around 8 - 30 s. Using the Australian shield as a test-case we compare waveforms built from three different styles of velocity model. Firstly, the 1D model AU3 (Gaherty & Jordan, 1995) which did incorporate the Sa phase as part of the waveform in their modelling. Secondly, recent tomographic models of the Australian continent are used, which include no a priori information from the phase. Thirdly, a thermodynamically consistent velocity model that fits the broad dispersion characteristics of the tomography is tested. Finally, these synthetic waveforms are compared to real data crossing the Australian shield. The results illustrate small, but clear, variations in waveform dependent on the velocity structure. Complicating factors in any analysis involve the importance of having good knowledge of the crustal structure and a very accurate source depth (particularly if this is similar to the average crustal thickness).

  1. New Hybridized Surface Wave Approach for Geotechnical Modeling of Shear Wave Velocity at Strong Motion Recording Stations

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Carkin, B.; Minasian, D.

    2006-12-01

    Strong motion recording (SMR) networks often have little or no shear wave velocity measurements at stations where characterization of site amplification and site period effects is needed. Using the active Spectral Analysis of Surface Waves (SASW) method, and passive H/V microtremor method we have investigated nearly two hundred SMR sites in California, Alaska, Japan, Australia, China and Taiwan. We are conducting these studies, in part, to develop a new hybridized method of site characterization that utilizes a parallel array of harmonic-wave sources for active-source SASW, and a single long period seismometer for passive-source microtremor measurement. Surface wave methods excel in their ability to non-invasively and rapidly characterize the variation of ground stiffness properties with depth below the surface. These methods are lightweight, inexpensive to deploy, and time-efficient. They have been shown to produce accurate and deep soil stiffness profiles. By placing and wiring shakers in a large parallel circuit, either side-by-side on the ground or in a trailer-mounted array, a strong in-phase harmonic wave can be produced. The effect of arraying many sources in parallel is to increase the amplitude of waves received at far-away spaced seismometers at low frequencies so as to extend the longest wavelengths of the captured dispersion curve. The USGS system for profiling uses this concept by arraying between two and eight electro-mechanical harmonic-wave shakers. With large parallel arrays of vibrators, a dynamic force in excess of 1000 lb can be produced to vibrate the ground and produce surface waves. We adjust the harmonic wave through a swept-sine procedure to profile surface wave dispersion down to a frequency of 1 Hz and out to surface wave-wavelengths of 200-1000 meters, depending on the site stiffness. The parallel-array SASW procedure is augmented using H/V microtremor data collected with the active source turned off. Passive array microtremor data

  2. Arterial compliance probe for local blood pulse wave velocity measurement.

    PubMed

    Nabeel, P M; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Arterial compliance and vessel wall dynamics are significant in vascular diagnosis. We present the design of arterial compliance probes for measurement of local pulse wave velocity (PWV). Two designs of compliance probe are discussed, viz (a) a magnetic plethysmograph (MPG) based probe, and (b) a photoplethysmograph (PPG) based probe. The ability of the local PWV probes to consistently capture carotid blood pulse waves is verified by in-vivo trials on few volunteers. The probes could reliably perform repeatable measurements of local PWV from carotid artery along small artery sections less than 20 mm. Further, correlation between the measured values of local PWV using probes and various measures of blood pressure (BP) was also investigated. The study indicates that such arterial compliance probes have strong potential in cuff less BP monitoring. PMID:26737589

  3. Laboratory velocities and attenuation of p-waves in limestones during freeze-thaw cycles

    SciTech Connect

    Remy, J.M.; Bellanger, M.; Homand-Etienne, F. )

    1994-02-01

    The velocity and the attenuation of compressional P-waves, measured in the laboratory at ultrasonic frequencies during a series of freezing and thawing cycles, are used as a method for predicting frost damage in a bedded limestone. Pulse transmission and spectral ratio techniques are used to determine the P-wave velocities and the attenuation values relative to an aluminum reference samples with very low attenuation. Limestone samples were water saturated under vacuum conditions, jacketed with rubber sleeves, and immersed in an antifreeze bath (50 percent methanol solution). They were submitted to repeated 24-hour freezing and thawing cycles simulating natural environment conditions. During the freeze/thaw cycles, P-wave velocities and quality factor Q diminished rapidly in thawed rock samples, indicating modification of the pore space. Measurements of crack porosity were conducted by hydrostatic compression tests on cubic rock samples that had been submitted to these freeze/thaw cycles. These measurements are used as an index of crack formation. The hydrostatic compression tests confirmed the phases of rock damage that were shown by changes in the value of Q. Furthermore, comparison between Q values and crack porosity demonstrate that the variations of P-wave attenuation are caused by the creation of new cracks and not by the enlargement of pre-existing cracks.

  4. Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities

    SciTech Connect

    Schroeder, C.B.; Esarey, E.; Shadwick, B.A.

    2005-11-01

    A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities. The maximum amplitude is shown to increase in the presence of a laser field. These results set a limit to the achievable gradient in plasma-based accelerators.

  5. Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities.

    PubMed

    Schroeder, C B; Esarey, E; Shadwick, B A

    2005-11-01

    A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities. The maximum amplitude is shown to increase in the presence of a laser field. These results set a limit to the achievable gradient in plasma-based accelerators. PMID:16383678

  6. Correcting Radial Velocities for Long-Term Magnetic Activity Variations.

    PubMed

    Saar; Fischer

    2000-05-01

    We study stars in the Lick planetary survey for correlations between simultaneous measurements of high-precision radial velocities vr and magnetic activity (as measured in an SIR emission index from Ca ii lambda8662). We find significant correlations in approximately 30% of the stars. After removing linear trends between SIR and vr, we find that the dispersion in vr in these stars is decreased by an average of 17%, or approximately 45% of the dispersion above the measurement noise. F stars and less active stars with variable Ca ii H and K lines are the most successfully corrected. The magnitude of the slope of the SIR versus vr relations increases proportional to vsini and (excepting M dwarfs) tends to decrease with decreasing Teff. We argue that the main cause of these effects is modification of the mean line bisector shape brought on by long-term, magnetic activity-induced changes in the surface brightness and convective patterns. The correlations can be used to partially correct vr data for the effects of long-term activity variations, potentially permitting study of planets around some (higher mass) younger stars and planets producing smaller stellar reflex velocities. PMID:10790082

  7. Three dimensional P-wave velocity structure at Popocatépetl Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Berger, P.; Valdes-Gonzales, C. M.

    2009-12-01

    Popocatépetl Volcano is an active andesitic stratovolcano (5460m) of the Trans Mexican Volcanic Belt that has been erupting since December 1994. We used three-dimensional seismic tomography to detect variations in the P-wave velocity structure during three different volcanic cycles, which are separated by the two largest eruptions that occurred at Popocatépetl on June 30th, 1997 and January 22nd, 2001. The start of the first dataset is defined by the eruption in June 1996; the last dataset ends with the eruption in September 2003. The P-wave velocity structure of the volcano has been determined to 10 km depth below the summit using nearly 4000 P-arrival times from about 900 volcano tectonic events recorded on a local 10-station network. The Root Mean Square (RMS) of the arrival time residuals was reduced by 22% - 30% from the initial RMS of about 0.30 s, after running seven iterations of our tomography code. In the three eruption cycles, we observe velocity structures which complement the results of former studies, as well as image previously unrecognized velocity anomalies. We observe velocity changes of ~1km/s in certain areas before and after large eruptions. We compare the tomographic results with geologic, geophysical and geochemical investigations and interpret low velocity zones as fractured rock (SE-zone) or as thermally disturbed zones including hot rock and melt (below the crater region and north flank), from which unexpected future eruptions or flank collapses may occur. High velocity zones are interpreted as roofs of magma reservoirs, old dike systems or relicts of the ancient volcano. The observed changes in velocity anomalies before and after large eruptions, determined by four-dimensional tomography, indicate a change in the internal volcanic fluid-filled structures during volcanic eruptions and show the need for time-resolved geophysical techniques when investigating volcanic structures.

  8. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  9. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    NASA Astrophysics Data System (ADS)

    Pamuk, Eren; Özdaǧ, Özkan Cevdet; Akgün, Mustafa

    2016-04-01

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  10. The Study on S-Wave Velocity Structure of Upper Crust in Three Gorges Region of Yangtze River

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhu, P.; Zhou, Q.

    2014-12-01

    The profile of S-wave velocity structure along Badong-Maoping-Tumen is presented using the ambient noise data observed at 10 stations from mobile broadband seismic array which is located at Three Gorges Region. All of available vertical component time series during April and May,2011 have been cross-correlated to estimate the empirical Green functions. Group velocity dispersion curves were measured by applying multiple filtering technique. Using these dispersion curves,we obtain high resolution pure-path dispersions at 0.5-10 second periods. The S-wave velocity structure,which was reconstructed by inverting the pure-path dispersions,reveals the velocity variations of upper crust at Three Gorges Region. Main conclusions are as follows:(1)The velocity variations in the study region have a close relationship with the geological structure and the velocity profile suggests a anticline unit which core area is Huangling block;(2)The relative fast velocity variations beneath Jiuwanxi and its surrounding areas may correspond to the geological structure and earthquake activity there;(3) The high velocity of the upper crustal in Sandouping indicates that the Reservoir Dam of Three Gorges is located at a tectonic stable region.

  11. A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Gomberg, J.; Vidale, J. E.; Creager, K. C.

    2014-03-01

    In September 2004, Mount St. Helens volcano erupted after nearly 18 years of quiescence. However, it is unclear from the limited geophysical observations when or if the magma chamber replenished following the 1980-1986 eruptions in the years before the 2004-2008 extrusive eruption. We use coda wave interferometry with repeating earthquakes to measure small changes in the velocity structure of Mount St. Helens volcano that might indicate magmatic intrusion. By combining observations of relative velocity changes from many closely located earthquake sources, we solve for a continuous function of velocity changes with time. We find that seasonal effects dominate the relative velocity changes. Seismicity rates and repeating earthquake occurrence also vary seasonally; therefore, velocity changes and seismicity are likely modulated by snow loading, fluid saturation, and/or changes in groundwater level. We estimate hydrologic effects impart stress changes on the order of tens of kilopascals within the upper 4 km, resulting in annual velocity variations of 0.5 to 1%. The largest nonseasonal change is a decrease in velocity at the time of the deep Mw = 6.8 Nisqually earthquake. We find no systematic velocity changes during the most likely times of intrusions, consistent with a lack of observable surface deformation. We conclude that if replenishing intrusions occurred, they did not alter seismic velocities where this technique is sensitive due to either their small size or the finite compressibility of the magma chamber. We interpret the observed velocity changes and shallow seasonal seismicity as a response to small stress changes in a shallow, pressurized system.

  12. A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry

    USGS Publications Warehouse

    Hotovec-Ellis, Alicia J.; Gomberg, Joan S.; Vidale, John; Creager, Ken C.

    2014-01-01

    In September 2004, Mount St. Helens volcano erupted after nearly 18 years of quiescence. However, it is unclear from the limited geophysical observations when or if the magma chamber replenished following the 1980–1986 eruptions in the years before the 2004–2008 extrusive eruption. We use coda wave interferometry with repeating earthquakes to measure small changes in the velocity structure of Mount St. Helens volcano that might indicate magmatic intrusion. By combining observations of relative velocity changes from many closely located earthquake sources, we solve for a continuous function of velocity changes with time. We find that seasonal effects dominate the relative velocity changes. Seismicity rates and repeating earthquake occurrence also vary seasonally; therefore, velocity changes and seismicity are likely modulated by snow loading, fluid saturation, and/or changes in groundwater level. We estimate hydrologic effects impart stress changes on the order of tens of kilopascals within the upper 4 km, resulting in annual velocity variations of 0.5 to 1%. The largest nonseasonal change is a decrease in velocity at the time of the deep Mw = 6.8 Nisqually earthquake. We find no systematic velocity changes during the most likely times of intrusions, consistent with a lack of observable surface deformation. We conclude that if replenishing intrusions occurred, they did not alter seismic velocities where this technique is sensitive due to either their small size or the finite compressibility of the magma chamber. We interpret the observed velocity changes and shallow seasonal seismicity as a response to small stress changes in a shallow, pressurized system.

  13. Internal wave pressure, velocity, and energy flux from density perturbations

    NASA Astrophysics Data System (ADS)

    Allshouse, Michael R.; Lee, Frank M.; Morrison, Philip J.; Swinney, Harry L.

    2016-05-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field J =p u , which requires simultaneous measurements of the pressure and velocity perturbation fields p and u , respectively. We present a method for obtaining the instantaneous J (x ,z ,t ) from density perturbations alone: A Green's function-based calculation yields p ; u is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: The Green's function method is applied to the density perturbation field from the simulations and the result for J is found to agree typically to within 1% with J computed directly using p and u from the Navier-Stokes simulation. We also apply the Green's function method to density perturbation data from laboratory schlieren measurements of internal waves in a stratified fluid and the result for J agrees to within 6 % with results from Navier-Stokes simulations. Our method for determining the instantaneous velocity, pressure, and energy flux fields applies to any system described by a linear approximation of the density perturbation field, e.g., to small-amplitude lee waves and propagating vertical modes. The method can be applied using our matlab graphical user interface EnergyFlux.

  14. Phase velocity tomography of surface waves using ambient noise cross correlation and array processing

    NASA Astrophysics Data System (ADS)

    Boué, Pierre; Roux, Philippe; Campillo, Michel; Briand, Xavier

    2014-01-01

    Continuous recordings of ambient seismic noise across large seismic arrays allows a new type of processing using the cross-correlation technique on broadband data. We propose to apply double beamforming (DBF) to cross correlations to extract a particular wave component of the reconstructed signals. We focus here on the extraction of the surface waves to measure phase velocity variations with great accuracy. DBF acts as a spatial filter between two distant subarrays after cross correlation of the wavefield between each single receiver pair. During the DBF process, horizontal slowness and azimuth are used to select the wavefront on both subarray sides. DBF increases the signal-to-noise ratio, which improves the extraction of the dispersive wave packets. This combination of cross correlation and DBF is used on the Transportable Array (USArray), for the central U.S. region. A standard model of surface wave propagation is constructed from a combination of the DBF and cross correlations at different offsets and for different frequency bands. The perturbation (phase shift) between each beam and the standard model is inverted. High-resolution maps of the phase velocity of Rayleigh and Love waves are then constructed. Finally, the addition of azimuthal information provided by DBF is discussed, to construct curved rays that replace the classical great-circle path assumption.

  15. Relationship between macro-fracture density, P-wave velocity, and permeability of coal

    NASA Astrophysics Data System (ADS)

    Wang, Haichao; Pan, Jienan; Wang, Sen; Zhu, Haitao

    2015-06-01

    This study was undertaken to determine the quantitative relationship between macro-fracture density, P-wave velocity, porosity and permeability of different coal rank samples from mining areas in North China. The coal sample permeability shows an exponential growth with increasing fracture density. The relation between P-wave velocity and porosity is power function and P-wave velocity decreases with the increasing porosity. P-wave velocity linearly or nonlinearly decreases with the increase of fracture density in the selected coal samples (0.73-3.59% Ro). However, the overall trend is that P-wave velocity decreases with an increase in macro-fracture density. The permeability of coal samples linearly decreases with the increase of P-wave velocity. The quantitative relationship between P-wave velocity and permeability could provide reference for the further study of permeability predicting.

  16. Mapping Tectonic features beneath the Gulf of California using Rayleigh and Love Waves Group Velocities

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Di Luccio, F.; Clayton, R. W.

    2012-12-01

    This study contributes to our understanding of the Pacific-North America lithospheric structure beneath the Gulf of California and its western and eastern confining regions, by mapping fundamental mode surface wave group velocities. We measure the dispersion of Rayleigh and Love surface waves to create a series of 2D maps of group velocities, which provide important information on the earth structure beneath the study region. Although several surface waves studies were published in the last decade, all of them were done using phase velocity measurements based on the two stations method. Here we combine dispersion measurements at the regional scale with data at teleseismic distances to provide a more complete dataset for studies of earth structure. We also analyze group velocities from short to long periods in order to define structural features at both crustal and mantle scales. Our study uses earthquakes recorded by the Network of Autonomously Recording Seismographs (NARS-Baja), a set of 14 broadband seismic stations that flank the Gulf of California. From the NEIC bulletin we selected 140 events recorded by the NARS-Baja array. In order to have dispersion measurements in a wide range of periods, we used regional earthquakes with M > 4.2 and teleseismic events with M > 6.9. We first computed the dispersion curves for the surface wave paths crossing the region. Then, the along path group velocity measurements for multiple periods are converted into tomographic images using kernels which vary in off-path width with the square root of the period. Dispersion measurements show interesting and consistent features for both Rayleigh and Love waves. At periods equal to or shorter than 15 s, when surface waves are primarily sensitive to shear velocity in the upper 15 km of the crust, slow group velocities beneath the northern-central Gulf reveal the presence of a thick sedimentary layer, relative to the southern Gulf. Group velocities beneath the northwestern side of Baja

  17. Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Ben-Zion, Y.; Campillo, M.; Zigone, D.

    2015-08-01

    We observe seasonal seismic wave speed changes (dv/v) in the San Jacinto fault area and investigate several likely source mechanisms. Velocity variations are obtained from analysis of 6 yr data of vertical component seismic noise recorded by 10 surface and six borehole stations. We study the interrelation between dv/v records, frequency-dependent seismic noise properties, and nearby environmental data of wind speed, rain, ground water level, barometric pressure and atmospheric temperature. The results indicate peak-to-peak seasonal velocity variations of ˜0.2 per cent in the 0.5-2 Hz frequency range, likely associated with genuine changes of rock properties rather than changes in the noise field. Phase measurements between dv/v and the various environmental data imply that the dominant source mechanism in the arid study area is thermoelastic strain induced by atmospheric temperature variations. The other considered environmental effects produce secondary variations that are superimposed on the thermal-based changes. More detailed work with longer data on the response of rocks to various known external loadings can help tracking the evolving stress and effective rheology at depth.

  18. Imaging Rayleigh Wave Attenuation and Phase Velocity beneath North America with USArray

    NASA Astrophysics Data System (ADS)

    Bao, X.; Dalton, C. A.; Jin, G.; Gaherty, J. B.

    2014-12-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle of United States at a novel scale. The majority of mantle models derived from USArray data contain spatial variations in velocity; however, little is known about the attenuation structure of the North American upper mantle. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity, and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. In this study, Rayleigh wave travel time and amplitude are measured using an interstation cross-correlation version of the Generalized Seismological Data Functional algorithm, which takes advantage of waveform similarity at nearby stations. Our data are from 670 large teleseismic earthquakes that occurred from 2006 to 2014 and were recorded by 1,764 Transportable Array stations. More than 4.8 million measurements at periods between 20 and 100 s are collected into our database. Isolating the signal of attenuation in the amplitude observations is challenging because amplitudes are sensitive to a number of factors in addition to attenuation, such as focusing/defocusing and local site amplification. We generate several Rayleigh wave attenuation maps at each period, using several different approaches to account for source and receiver effects on amplitude. This suite of attenuation maps allows us to distinguish between the robust features in the maps and the features that are sensitive to the treatment of source and receiver effects. We apply Helmholtz surface-wave tomography (Lin et al., 2012) to determine velocity and attenuation maps. A significant contrast in velocity and attenuation is observed in the transition between the western and central United States along the Rocky Mountain front. We find low Q values in the western US, along the eastern coast, and the Gulf plain. These areas are also

  19. Magnetospheric electron-velocity-distribution function information from wave observations

    NASA Astrophysics Data System (ADS)

    Benson, Robert F.; ViñAs, Adolfo F.; Osherovich, Vladimir A.; Fainberg, Joseph; Purser, Carola M.; Adrian, Mark L.; Galkin, Ivan A.; Reinisch, Bodo W.

    2013-08-01

    The electron-velocity-distribution function was determined to be highly non-Maxwellian and more appropriate to a kappa distribution, with κ ≈ 2.0, near magnetic midnight in the low-latitude magnetosphere just outside a stable plasmasphere during extremely quiet geomagnetic conditions. The kappa results were based on sounder-stimulated Qn plasma resonances using the Radio Plasma Imager (RPI) on the IMAGE satellite; the state of the plasmasphere was determined from IMAGE/EUV observations. The Qn resonances correspond to the maximum frequencies of Bernstein-mode waves that are observed between the harmonics of the electron cyclotron frequency in the frequency domain above the upper-hybrid frequency. Here we present the results of a parametric investigation that included suprathermal electrons in the electron-velocity-distribution function used in the plasma-wave dispersion equation to calculate the Qn frequencies for a range of kappa and fpe/fce values for Qn resonances from Q1 to Q9. The Qn frequencies were also calculated using a Maxwellian distribution, and they were found to be greater than those calculated using a kappa distribution with the frequency differences increasing with increasing n for a fixed κ and with decreasing κ for a fixed n. The calculated fQn values have been incorporated into the RPI BinBrowser software providing a powerful tool for rapidly obtaining information on the nature of the magnetospheric electron-velocity-distribution function and the electron number density Ne. This capability enabled accurate (within a few percent) in situ Ne determinations to be made along the outbound orbital track as IMAGE moved away from the plasmapause. The extremely quiet geomagnetic conditions allowed IMAGE/EUV-extracted counts to be compared with the RPI-determined orbital-track Ne profile. The comparisons revealed remarkably similar Ne structures.

  20. Magnetospheric Electron-Velocity-Distribution Function Information from Wave Observations

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Vinas, A. F.; Osherovich, V. A.; Fainberg, J.; Purser, C. M.; Adrian, M. L.; Galkin, I. A.; Reinisch, B. W.

    2013-12-01

    The electron-velocity-distribution function was determined to be highly non-Maxwellian and more appropriate to a kappa distribution, with κ ≈ 2.0, near magnetic midnight in the low-latitude magnetosphere just outside a stable plasmasphere during extremely quiet geomagnetic conditions. The kappa results were based on sounder-stimulated Qn plasma resonances using the Radio Plasma Imager (RPI) on the IMAGE satellite; the state of the plasmasphere was determined from IMAGE/EUV observations. The Qn resonances correspond to the maximum frequencies of Bernstein-mode waves that are observed between the harmonics of the electron cyclotron frequency in the frequency domain above the upper-hybrid frequency. Here we present the results of a parametric investigation that included suprathermal electrons in the electron-velocity-distribution function used in the plasma-wave dispersion equation to calculate the Qn frequencies for a range of kappa and fpe/fce values for Qn resonances from Q1 to Q9. The Qn frequencies were also calculated using a Maxwellian distribution and they were found to be greater than those calculated using a kappa distribution with the frequency differences increasing with increasing n for a fixed κ and with decreasing κ for a fixed n. The calculated fQn values have been incorporated into the RPI BinBrowser software providing a powerful tool for rapidly obtaining information on the nature of the magnetospheric electron-velocity-distribution function and the electron number density Ne. This capability enabled accurate (within a few percent) in-situ Ne determinations to be made along the outbound orbital track as IMAGE moved away from the plasmapause. The extremely quiet geomagnetic conditions allowed IMAGE/EUV-extracted counts to be compared with the RPI-determined orbital-track Ne profile. The comparisons revealed remarkably similar Ne structures.

  1. Magnonic crystal wave guide with large spin-wave propagation velocity in CoFeB

    NASA Astrophysics Data System (ADS)

    Schwarze, T.; Grundler, D.

    2013-06-01

    Propagating spin-wave spectroscopy is reported for two-dimensional CoFeB antidot lattices (ADLs) with perpendicular-to-plane magnetization. The magnonic crystals consist of square lattices of 190 nm diameter holes with different periods p. At p = 600 nm, the velocity vg of long wavelength spin-waves is reduced compared to the unpatterned reference film by up to about 30%. However, a large vg is regained when we leave out a column of nanoholes in the ADLs. Such a magnonic crystal wave guide is found to support faster spin waves than a CoFeB stripe of the same geometrical width, making the finding interesting for spin-wave guiding in integrated magnonics.

  2. Robustness of waves with a high phase velocity

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Necas, A.

    2016-03-01

    Norman Rostoker pioneered research of (1) plasma-driven accelerators and (2) beam-driven fusion reactors. The collective acceleration, coined by Veksler, advocates to drive above-ionization plasma waves by an electron beam to accelerate ions. The research on this, among others, by the Rostoker group incubated the idea that eventually led to the birth of the laser wakefield acceleration (LWFA), by which a large and robust accelerating collective fields may be generated in plasma in which plasma remains robust and undisrupted. Besides the emergence of LWFA, the Rostoker research spawned our lessons learned on the importance of adiabatic acceleration of ions in collective accelerators, including the recent rebirth in laser-driven ion acceleration efforts in a smooth adiabatic fashion by a variety of ingenious methods. Following Rostoker's research in (2), the beam-driven Field Reversed Configuration (FRC) has accomplished breakthroughs in recent years. The beam-driven kinetic plasma instabilities have been found to drive the reactivity of deuteron-deuteron fusion beyond the thermonuclear yield in C-2U plasma that Rostoker started. This remarkable result in FRCs as well as the above mentioned LWFA may be understood with the aid of the newly introduced idea of the "robustness hypothesis of waves with a high phase velocity". It posits that when the wave driven by a particle beam (or laser pulse) has a high phase velocity, its amplitude is high without disrupting the supporting bulk plasma. This hypothesis may guide us into more robust and efficient fusion reactors and more compact accelerators.

  3. Lithospheric Velocity Structure Along the Dead Sea Transform From the Joint Inversion of P- and S-Wave Receiver Functions and Dispersion Velocities

    NASA Astrophysics Data System (ADS)

    Julia, J.; Nyblade, A.; Pasyanos, M. E.; Matzel, E.; Rodgers, A.; Al-Amri, A. M.

    2012-12-01

    The Dead Sea Transform (DST) is a ~1000 km long fault system that separates the Arabian and African plates and links the active spreading center of the Red Sea with the continental collision zone in the Zagros mountains. Independent thermo-mechanical modeling had suggested that a mantle plume intruding from the south might have eroded the lithosphere East of the DST, but recent results from a number of temporary seismic deployments in the area have found little variation in lithospheric thickness to support it and proposed that such geodynamic processes might have operated on both sides of the DST. Those lithospheric thickness estimates have been obtained through the stack and migration of Sp conversions in S-receiver functions, which assumes a global background velocity model to calibrate the depth-scale that might not represent mantle structure under the DST accurately. In this study, we obtain lithospheric and sub-lithospheric S-velocity structure under several permanent broadband stations along the DST from the joint inversion of P- and S-wave receiver functions and tomographic surface-wave dispersion velocities. The joint inversion approach simultaneously models S-P times and Ps amplitudes in P-receiver functions, P-S times and Sp amplitudes in S-receiver functions, and fundamental-mode, Rayleigh-wave group velocities, providing local 1D models of S-velocity under individual recording stations. Our velocity models display interesting variations in crustal thickness along the DST, with values under 40 km in the southern portions and values well over 40 km more to the North, near Lebanon. The models also display S-velocity values in the lithospheric mantle that are generally slow, in the 4.3-4.4 km/s range, sometimes overlaying a relatively shallow asthenospheric low velocity channel, above 150 km depth.

  4. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    USGS Publications Warehouse

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  5. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    NASA Astrophysics Data System (ADS)

    Alsina, D.; Woodward, R. L.; Snieder, R. K.

    1996-07-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the tectonically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  6. Ship waves on uniform shear current at finite depth: wave resistance and critical velocity

    NASA Astrophysics Data System (ADS)

    Li, Yan; Ellingsen, Simen Å.

    2016-03-01

    We present a comprehensive theory for linear gravity-driven ship waves in the presence of a shear current with uniform vorticity, including the effects of finite water depth. The wave resistance in the presence of shear current is calculated for the first time, containing in general a non-zero lateral component. While formally apparently a straightforward extension of existing deep water theory, the introduction of finite water depth is physically non-trivial, since the surface waves are now affected by a subtle interplay of the effects of the current and the sea bed. This becomes particularly pronounced when considering the phenomenon of critical velocity, the velocity at which transversely propagating waves become unable to keep up with the moving source. The phenomenon is well known for shallow water, and was recently shown to exist also in deep water in the presence of a shear current [Ellingsen, J.~Fluid Mech.\\ {\\bf 742} R2 (2014)]. We derive the exact criterion for criticality as a function of an intrinsic shear Froude number $S\\sqrt{b/g}$ ($S$ is uniform vorticity, $b$ size of source), the water depth, and the angle between the shear current and the ship's motion. Formulae for both the normal and lateral wave resistance force are derived, and we analyse its dependence on the source velocity (or Froude number $Fr$) for different amounts of shear and different directions of motion. The effect of the shear current is to increase wave resistance for upstream ship motion and decrease it for downstream motion. Also the value of $Fr$ at which $R$ is maximal is lowered for upstream and increased for downstream directions of ship motion. For oblique angles between ship motion and current there is a lateral wave resistance component which can amount to $10$-$20\\%$ of the normal wave resistance for side-on shear and $S\\sqrt{b/g}$ of order unity. (Continues...)

  7. Influence of body-wave velocity characteristic on the seismic data interpretation in TI media with arbitrary spatial orientation

    NASA Astrophysics Data System (ADS)

    Hao, C.; Yao, C.

    2007-12-01

    TI media with arbitrary spatial orientation (ATI) is the actual anisotropic model used to describe tilted PTL (period thin layers) and no vertical fractured rock. We devote our paper to study the Influence of body-wave velocity characteristic on the seismic data interpretation in the ATI media. Based on the method of coordinates transformation for the TI media with arbitrary strength of anisotropy and arbitrary spatial orientation, we present the characteristic of body-wave velocity with incident angle and azimuth variation in the ATI media. The result shows that patterns of body-wave velocity are fixed relative to the symmetry axis, and these fixed patterns are closely relative to Thomsen's anisotropic parameters. Body-wave velocity characteristic depends just on the angle between the propagation direction and the symmetry axis. Therefore, with variations of spatial orientation of the symmetry axis and the surveying line azimuth, patterns of body-wave velocity have a variety, and have some symmetries, gradual changes and repetitions. The result is useful to processing and explaining of seismic data.

  8. Shear wave velocity structure of the southern African upper mantle with implications for the uplift of southern Africa

    NASA Astrophysics Data System (ADS)

    Adams, Aubreya; Nyblade, Andrew

    2011-08-01

    Broad-band seismic data from the southern African seismic experiment and the AfricaArray network are used to investigate the seismic velocity structure of the upper mantle beneath southern Africa, and in particular beneath the Kaapvaal Craton. A two-plane approximation method that includes a finite frequency sensitivity kernel is employed to measure Rayleigh wave phase velocities, which are inverted to obtain a quasi-3-D shear wave velocity model of the upper mantle. We find phase velocities for the Kaapvaal Craton and surrounding mobile belts that are comparable to those reported by previous studies, and we find little evidence for variation from east to west across the Namaqua-Natal Belt, a region not well imaged in previous studies. A high-velocity upper-mantle lid is found beneath the Kaapvaal Craton and most of southern Africa. For the Kaapvaal Craton, the thickness of the lid (˜150-200 km) is consistent with the lid thicknesses reported in many previous studies. The cratonic lid is underlain by a ˜100-km thick low-velocity zone with a 3.9 per cent maximum velocity reduction. By comparing the velocity model to those published for other Archean cratons, we find few differences, and therefore conclude that there is little evidence in the shear wave velocity structure of the mantle to indicate that the southern African plateau is supported by an upper-mantle thermal anomaly.

  9. Variational wave functions for homogenous Bose systems

    SciTech Connect

    Sueto, Andras; Szepfalusy, Peter

    2008-02-15

    We study variational wave functions of the product form, factorizing according to the wave vectors k, for the ground state of a system of bosons interacting via positive pair interactions with a positive Fourier transform. Our trial functions are members of different orthonormal bases in Fock space. Each basis contains a quasiparticle vacuum state and states with an arbitrary finite number of quasiparticles. One of the bases is that of Valatin and Butler (VB), introduced fifty years ago and parametrized by an infinite set of variables determining Bogoliubov's canonical transformation for each k. In another case, inspired by Nozieres and Saint James the canonical transformation for k=0 is replaced by a shift in the creation/annihilation operators. For the VB basis we prove that the lowest energy is obtained in a state with {approx}{radical}(volume) quasiparticles in the zero mode. The number of k=0 physical particles is of the order of the volume and its fluctuation is anomalously large, resulting in an excess energy. The same fluctuation is normal in the second type of optimized bases, the minimum energy is smaller and is attained in a vacuum state. Associated quasiparticle theories and questions about the gap in their spectrum are also discussed.

  10. Surface-wave propagation and phase-velocity structure from observations on the USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Foster, Anna E.

    We address questions relating to the velocity structure of the Earth in three ways: mapping the phase-velocity structure of the western United States, examining deviations of wave paths due to lateral variations in velocity, and demonstrating that Love wave fundamental-mode phase measurements from array methods can be significantly contaminated by overtone interference, dependent on differences in fundamental-mode and first-overtone phase-velocity structure. All of the studies presented in this work use USArray Transportable Array data, which allow for dense, high-quality measurements at an unprecedented level. To image the uppermost mantle beneath the western US, we improve upon single-station phase measurements by differencing them to produce a baseline data set of phase measurements along inter-station paths, for both Love and Rayleigh waves from 25--100 s. Additional measurements of the arrival angle and local phase velocity are made using a mini-array method similar to beamforming. The arrival-angle measurements are used to correct the two-station baseline measurements and produce a corrected data set. Both the baseline and corrected data sets are separately inverted, producing phase-velocity maps on a 0.5°-by-0.5° grid. We select the corrected maps as the preferred models for Rayleigh waves, with better fits to the data and more consistent measurements. We find that arrival-angle measurements for Love waves may be biased by overtone interference, and hence select the baseline maps as the preferred models for Love waves. The final set of phase-velocity maps is consistent with expectations from known geologic features, and is useful for both calculation of phase for regional paths and studies of radial anisotropy within the region. We use the mini-array method to make observations of the deviations of waves from the great-circle path. Measured arrival angles vary from 0° to +/-15°. We compile results from earthquakes in small source regions, allowing the

  11. Wave velocity dispersion and attenuation in media exhibiting internal oscillations

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Steeb, Holger; Schmalholz, Stefan M.

    2010-05-01

    Understanding the dynamical and acoustical behavior of porous and heterogeneous rocks is of great importance in geophysics, e.g. earthquakes, and for various seismic engineering applications, e.g. hydrocarbon exploration. Within a heterogeneous medium oscillations with a characteristic resonance frequency, depending on the mass and internal length of the heterogeneity, can occur. When excited, heterogeneities can self-oscillate with their natural frequency. Another example of internal oscillations is the dynamical behavior of non-wetting fluid blobs or fluid patches in residually saturated pore spaces. Surface tension forces or capillary forces act as the restoring force that drives the oscillation. Whatever mechanism is involved, an oscillatory phenomena within a heterogeneous medium will have an effect on acoustic or seismic waves propagating through such a medium, i.e. wave velocity dispersion and frequency-dependent attenuation. We present two models for media exhibiting internal oscillations and discuss the frequency-dependent wave propagation mechanism. Both models give similar results: (1) The low-frequency (i.e. quasi-static) limit for the phase velocity is identical with the Gassmann-Wood limit and the high-frequency limit is larger than this value and (2) Around the resonance frequency a very strong phase velocity change and the largest attenuation occurs. (1) Model for a homogeneous medium exhibiting internal oscillations We present a continuum model for an acoustic medium exhibiting internal damped oscillations. The obvious application of this model is water containing oscillating gas bubbles, providing the material and model parameters for this study. Two physically based momentum interaction terms between the two inherent constituents are used: (1) A purely elastic term of oscillatory nature that scales with the volume of the bubbles and (2) A viscous term that scales with the specific surface of the bubble. The model is capable of taking into account

  12. Constraining depth range of S wave velocity decrease after large earthquakes near Parkfield, California

    NASA Astrophysics Data System (ADS)

    Wu, Chunquan; Delorey, Andrew; Brenguier, Florent; Hadziioannou, Celine; Daub, Eric G.; Johnson, Paul

    2016-06-01

    We use noise correlation and surface wave inversion to measure the S wave velocity changes at different depths near Parkfield, California, after the 2003 San Simeon and 2004 Parkfield earthquakes. We process continuous seismic recordings from 13 stations to obtain the noise cross-correlation functions and measure the Rayleigh wave phase velocity changes over six frequency bands. We then invert the Rayleigh wave phase velocity changes using a series of sensitivity kernels to obtain the S wave velocity changes at different depths. Our results indicate that the S wave velocity decreases caused by the San Simeon earthquake are relatively small (~0.02%) and access depths of at least 2.3 km. The S wave velocity decreases caused by the Parkfield earthquake are larger (~0.2%), and access depths of at least 1.2 km. Our observations can be best explained by material damage and healing resulting mainly from the dynamic stress perturbations of the two large earthquakes.

  13. Rayleigh wave phase velocities, shear wave structure and azimuthal anisotropy beneath southern California

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Forsyth, D. W.

    2003-12-01

    We use normal mode Rayleigh wave phase and amplitude data recorded at the TriNet network in southern California to invert for phase velocities at periods from 25 to 143 s. These phase velocities were used to obtain 3-D S-wave velocity structure in the upper mantle. Phase velocities on the Pacific plate side of the plate boundary are systematically higher than on the North American side, suggesting that seismic velocity contrast between these two plates extends to the upper mantle. In the upper mantle, there is a pronounced low velocity anomaly beneath the Long Valley/Mono Lake region, which has not been observed by previous tomographic studies. This low velocity anomaly is consistent with melting extending to the base of the crust beneath this part of the western Basin and Range province, as suggested based on the composition of late Cenozoic basalts (Wang et al., JGT, 2002). There is a high velocity anomaly under the Transverse Range and a slightly slow velocity anomaly under the Salton Trough, both of which have been observed in previous body and/or surface wave tomographic studies. Assuming uniform anisotropic structure in the whole study area, the strength of anisotropy is about 2.5% at all periods. However, the fast direction varies with period. The fast direction of apparent anisotropy is nearly W-E at periods less than 50 s, consistent with the fast polarization axis of SKS splitting measurements in Southern California. At periods larger than 67s, the fast direction changes to NW-SE, subparallel to the plate boundary. This two-layer azimuthal anisotropy structure is in contrast to the one-layer SKS splitting model for southern California, implying that lateral heterogeneity may affect the apparent anisotropy of long-period surface waves. If anisotropy is allowed to vary laterally in our models, we find a minimum in azimuthal anisotropy in the vicinity of the Transverse Range, suggesting possible more vertical alignment of the olivine a-axis in a region of

  14. Lateral Crustal Velocity Variations across the Andean Foreland in San Juan, Argentina from the JHD Analysis and 3D P and S Velocity inversion

    NASA Astrophysics Data System (ADS)

    Asmerom, B. B.; Chiu, J.; Pujol, J.; Smalley, R.

    2010-12-01

    Lateral crustal velocity variations across the Andean Foreland in San Juan Argentina are explored by joint hypocentral determination (JHD) analysis and 3D velocity inversion. JHD results show consistent positive station corrections beneath Precordillera and negative station corrections beneath Pie de Palo, corresponding to regions of low and high velocity, respectively. These observations are supported by the results from the 3D velocity inversion. A 20% increase in velocity is observed from the Precordilleras in the west to Pie de Palo in the east. The tomography result also reveals a narrow east dipping and NNE trending high velocity anomalous zone bisecting the southern half of Pie de Palo. This anomalous zone was previously identified by a magnetic study and was interpreted to represent the structure corresponding to the Grenvillian Precordillera-Pie de Palo tectonic boundary zone. Finally, P and S station corrections are calculated from the synthetic travel time obtained by using the resultant 3D P- and S- wave velocity model. The observed pattern and magnitude of the P- and S-wave station corrections are recovered successfully from the synthetic calculation, indicating that the resultant 3D velocity model is close to the real earth structure in the Andean Foreland region. Relocation of all intermediate events from the flat subducting slab using this newly acquired 3D velocity model shows a significant change in the slab geometry. The relocated hypocenter distribution is more clustered than previous studies obtained using a 1D model. The slab is simply flat and it resumes a normal subduction angle towards the east of the study area.

  15. Searching for Radial Velocity Variations in eta Carinae

    NASA Technical Reports Server (NTRS)

    Iping, R. C.; Sonneborn, G.; Gull, T. R.; Ivarsson, S.; Nielsen, K.

    2006-01-01

    A hot companion of eta Carinae has been detected using high resolution spectra (905 - 1180 A) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite (see poster by Sonneborn et al.). Analysis of the far-UV spectrum shows that eta Car B is a luminous hot star. The N II 1084-86 emission feature indicates that the star may be nitrogen rich. The FUV continuum and the S IV 1073 P-Cygni wind line suggest that the effective temperature of eta Car B is at least 25,000 K. FUV spectra of eta Carinae were obtained with the FUSE satellite at 9 epochs between 2000 February and 2005 July. The data consists of 12 observations taken with the LWRS aperture (30x30 arcsec), three with the HIRS aperture (1.25x20 arcsec), and one MRDS aperture (4x20 arcsec). In this paper we discuss the analysis of these spectra to search for radial velocity variations associated with the 5.54-year binary orbit of Eta Car AB.

  16. Probabilistic Seismic Hazard Maps of Seattle, Washington, Including 3D Sedimentary Basin Effects and Rupture Directivity: Implications of 3D Random Velocity Variations (Invited)

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Stephenson, W. J.; Carver, D.; Odum, J.; Williams, R. A.; Rhea, S.

    2010-12-01

    We have produced probabilistic seismic hazard maps of Seattle for 1 Hz spectral acceleration, using over five hundred 3D finite-difference simulations of earthquakes on the Seattle fault, Southern Whidbey Island fault, and Cascadia subduction zone, as well as for random deep and shallow earthquakes at various locations. The 3D velocity model was validated by modeling the observed waveforms for the 2001 M6.8 Nisqually earthquake and several smaller events in the region. At these longer periods (≥ 1 sec) that are especially important to the response of buildings of ten stories or higher, seismic waves are strongly influenced by sedimentary basins and rupture directivity. We are investigating how random spatial variations in the 3D velocity model affect the simulated ground motions for M6.7 earthquakes on the Seattle fault. A fractal random variation of shear-wave velocity with a Von Karman correlation function produces spatial variations of peak ground velocity with multiple scale lengths. We find that a 3D velocity model with a 10% standard deviation in shear-wave velocity in the top 1.5 km and 5% standard deviation from 1.5-10 km depth produces variations in peak ground velocities of as much as a factor of two, relative to the case with no random variations. The model with random variations generally reduces the peak ground velocity of the forward rupture directivity pulse for sites near the fault where basin-edge focusing of S-waves occurs. It also tends to reduce the peak velocity of localized areas where basin surface waves are focused. However, the medium with random variations also causes small-scale amplification of ground motions over distances of a few kilometers. We are also evaluating alternative methods of characterizing the aleatory uncertainty in the probabilistic hazard calculations.

  17. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    NASA Astrophysics Data System (ADS)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  18. Brachial-Ankle Pulse Wave Velocity: Myths, Misconceptions, and Realities

    PubMed Central

    Sugawara, Jun; Tanaka, Hirofumi

    2015-01-01

    A variety of techniques to evaluate central arterial stiffness have been developed and introduced. None of these techniques, however, have been implemented widely in regular clinical settings, except for brachial-ankle pulse wave velocity (baPWV). The most prominent procedural advantage of baPWV is its ease of use, since it only requires the wrapping of blood pressure cuffs on the 4 extremities. There is mounting evidence indicating the ability of baPWV to predict the risk of future cardiovascular events and total mortality. Additionally, the guidelines for the management of hypertension in Japan recommended the measurement of baPWV be included in the assessment of subclinical target organ damage. However, baPWV has not been fully accepted worldwide due to perceived theoretical and methodological issues. In this review, we address the most frequently mentioned questions and concerns regarding baPWV to shed some light on this simple and easy arterial stiffness measurement. PMID:26587459

  19. Temporal pattern of pulse wave velocity during brachial hyperemia reactivity

    NASA Astrophysics Data System (ADS)

    Graf, S.; Valero, M. J.; Craiem, D.; Torrado, J.; Farro, I.; Zócalo, Y.; Valls, G.; Bía, D.; Armentano, R. L.

    2011-09-01

    Endothelial function can be assessed non-invasively with ultrasound, analyzing the change of brachial diameter in response to transient forearm ischemia. We propose a new technique based in the same principle, but analyzing a continuous recording of carotid-radial pulse wave velocity (PWV) instead of diameter. PWV was measured on 10 healthy subjects of 22±2 years before and after 5 minutes forearm occlusion. After 59 ± 31 seconds of cuff release PWV decreased 21 ± 9% compared to baseline, reestablishing the same after 533 ± 65 seconds. There were no significant changes observed in blood pressure. When repeating the study one hour later in 5 subjects, we obtained a coefficient of repeatability of 4.8%. In conclusion, through analysis of beat to beat carotid-radial PWV it was possible to characterize the temporal profiles and analyze the acute changes in response to a reactive hyperemia. The results show that the technique has a high sensitivity and repeatability.

  20. Mineralization, crystallography, and longitudinal seismic wave velocity of speleothems

    SciTech Connect

    Williams, R.S.; Grant, S.K. . Dept. of Geology and Geophysics); Haas, C.J. . Dept. of Mining Engineering)

    1993-03-01

    Speleothems, or cave deposits, of Fisher Cave in Sullivan, Missouri, display unique arrangements of overlapping and interwoven crystals that provide the foundation for intricate shapes and patterns. Research has found that the deposition of such forms are affected by many variables associated with carbonate petrology. An active cave system having a consistent yearly rate of water flow will deposit trace, non-carbonate mineralization at locations of initial contact with the cave environment. Deposit specimens were tested using X-ray diffraction methods resulting in the identification of a manganese oxide coating of a psilomelane. Speleothems, considered a natural resource, are protected along with the cave from industrial advancements outside the cave environment. When the detonation of explosives during the construction of a highway near Crystal Cave in Springfield, Missouri threatened the speleothegenic decoration, a study of the damaging resonant frequency of the speleothems was instigated. To calculate this frequency, the longitudinal and transverse seismic wave velocity was measured by geophysical techniques.

  1. Anisotropic Shear-wave Velocity Structure of East Asian Upper Mantle from Waveform Tomography

    NASA Astrophysics Data System (ADS)

    Chong, J.; Yuan, H.; French, S. W.; Romanowicz, B. A.; Ni, S.

    2012-12-01

    East Asia is a seismically active region featuring active tectonic belts, such as the Himalaya collision zone, western Pacific subduction zones and the Tianshan- Baikal tectonic belt. In this study, we applied full waveform time domain tomography to image 3D isotropic, radially and azimuthally anisotropic upper mantle shear velocity structure of East Asia. High quality teleseismic waveforms were collected for both permanent and temporary stations in the target and its adjacent regions, providing good ray path coverage of the study region. Fundamental and overtone wave packets, filtered down to 60 sec, were inverted for isotropic and radially anisotropic shear wave structure using normal mode asymptotic coupling theory (NACT: Li and Romanowicz, 1995). Joint inversion of SKS measurements and seismic waveforms was then carried out following the methodology described in (Marone and Romanowicz, 2007). The 3D velocity model shows strong lateral heterogeneities in the target region, which correlate well with the surface geology in East Asia. Our model shows that Indian lithosphere has subducted beneath Tibet with a different northern reach from western to eastern Tibet,. We also find variations of the slab geometry in Western Pacific subduction zones. Old and stable regions, such as, Indian shield, Siberia platform, Tarim and Yangtze blocks are found to have higher shear wave velocity in the upper mantle. Lower velocity anomalies are found in regions like Baikal rift, Tienshan, Indochina block, and the regions along Japan island-Ryukyu Trench and Izu-bonin Trench. The dominant fast and slow velocity boundaries in the study region are well correlated with tectonic belts, such as the central Asian orogenic belt and Alty/Qilian-Qinling/Dabie orogenic belt. Our radially anisotropic model shows Vsh> Vsv in oceanic regions and at larger depths(>300km), and Vsv > Vsh in some orogenic zones.. We'll show preliminary results of azimuthally anisotropic joint inversion of SKS

  2. Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming

    SciTech Connect

    Daniel, R.G.; Boore, D.M.

    1982-04-10

    To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/d..delta... Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation.

  3. Surface wave tomography with USArray: Rayleigh wave phase velocity, ellipticity, and local amplification

    NASA Astrophysics Data System (ADS)

    Lin, F.; Schmandt, B.; Tsai, V. C.

    2012-12-01

    The deployment of the EarthScope/USArray Transportable Array allows detailed empirical study of the surface-wave wavefield on a large scale. In this presentation, we show that three local properties of Rayleigh waves, i.e. phase velocity, ellipticity (or H/V ratio), and local amplification, can be determined across the array in the western US between 24 and 100 sec period based on teleseismic measurements. More than 900 earthquakes are analyzed where phase velocity and local amplification are determined based on empirical phase travel time and amplitude mapping. The three Rayleigh wave properties, which are all sensitive to the 1D structure beneath each location, have very distinct depth sensitivity to Vs, Vp/Vs ratio, and density. Joint inversion of these quantities therefore reduces the trade-off between the three different parameters at different depths. Including the H/V ratio, in particular, allows the uppermost (0-3 km) crustal velocity and density structure to be constrained, and our new results are in excellent agreement with known surface features. Pronounced low Vs, low density, and high Vp/Vs anomalies are imaged in the locations of several major sedimentary basins including the Williston, Powder River, Green River, Denver, and San Juan basins. Preliminary results on the inverted 3D Vs, Vp/Vs ratio, and density structure in the crust and upper mantle will also be discussed. (a)-(c) 30-sec Rayleigh-wave phase velocity, local amplification, and H/V ratio observed across USArray in the western US. The red lines denote the tectonic boundaries and the triangles in (b)-(c) shown the stations used. The thick black lines indicate 3-km sediment contours for several major sedimentary basins (WB: Williston Basin; PR: Powder River Basin; GR: Green River Basin; DB: Denver Basin). (d)-(f) The Vs, density, and Vp/Vs ratio in the uppermost crust (0-3 km) inverted by phase velocity and H/V ratio measurements.

  4. Estimation of macro velocity models by wave field extrapolation

    NASA Astrophysics Data System (ADS)

    Cox, Hendricus Lambertus Hubertus

    A method to estimate accurate macro velocity models for prediction of traveltimes of seismic waves in the earth's subsurface is developed. The sensitivity of prestack migration is used to estimate the model and since model errors are expressed in the quality of the migration result, the migration process itself can be used to determine these errors. Using an initial model, shot records are downward extrapolated to grid points (depth points) in the subsurface. The extrapolated data can be reordered into so called common depth point (CDP) gathers, image gathers and focus panels. The deviation from horizontal alignment is used to quantify the errors in the model and to apply update corrections accordingly. The analysis can be done before or after stacking over all shot records (CDP stacking). the previously mentioned focus panels are generated by CDP stacking. The alignment analysis reduces then to a simple focusing analysis. The examples discussed show that horizontal alignment gives accurate macro velocity models for prestack depth migration. Focus panels can be difficult to interpret in complicated situations, where it is impossible to converge to the correct solution with focus panels only. The process should be guided by macrogeologic models of the area. In complicated situations, a layer stripping strategy is preferred.

  5. P Wave Velocity Structure Beneath the Baikal Rift Axis

    NASA Astrophysics Data System (ADS)

    Brazier, R. A.; Nyblade, A. A.; Boman, E. C.

    2001-12-01

    Over 100 p wave travel times from the 1500 km en echelon Baikal Rift system are used in this study.The events range 3 to 13 degrees from Talaya, Russia (TLY) along the axis of southwest northeast trending rift in East Siberia. A Herglotz Wiechert inversion of these events resolved a crust of 6.4 km/s and a gradient in the mantle starting at 35 km depth and 7.7 km/s down to 200 km depth and 8.2 km/s. This is compatible with Gao et al,1994 cross sectional structure which cuts the rift at about 400km from TLY. The Baikal Rift hosts the deepest lake and is the most seismically active rift in the world. It is one of the few continental rifts, it separates the Siberian craton and the Syan-Baikal mobile fold belt. Two events, the March 21 1999 magnitude 5.7 earthquake 638 km from TLY and the November 13th 1995 magnitude 5.9 earthquake 863 km from TLY were modeled for there PnL wave structure using the discrete wavenumber method and the Harvard CMT solutions with adjusted depths from p-pP times. The PnL signals match well. A genetic algorithm will used to perturb the velocity structure and compare to a selection of the events between 3 and 13 degrees many will require moment tensor solutions.

  6. Gas hydrate and P-Wave Velocity Distribution in the Yaquina Basin at the Peruvian margin

    NASA Astrophysics Data System (ADS)

    Huebscher, C.; Gajewski, D.; Grobys, J.; Kukowski, N.; Netzeband, G.; Wagner, M.; Bialas, J.

    2003-04-01

    The lower boundary of the methane hydrate stability zone in continental margin sediments is often marked by a strong, phase reversed reflection subparallel to the seafloor, called the bottom simulating reflector (BSR). High resolution multichannel seismic (MCS) data from the Yaquina Basin offshore Peru at 8 deg S show a BSR that is varying laterally in amplitude as well as in continuity. The amplitudes of the reflections above the BSR also vary with the appearance of the BSR. Where the BSR is strong, the reflections above it are weaker compared to areas where the BSR is weak. And although the strong part of the BSR is underlain immediately by strong reflections, reflections several hundred meters beneath the BSR appear weaker than those where the BSR is weak. This variation indicates significant heterogeneity in the distribution of gas and gas hydrate in this area. Chemoherms observed at the Yaquina Basin sea floor indicate the presence of free gas in the sediments up to the seafloor. The presence of gas and gas hydrate within the sediment sequence significantly influences the P-wave velocity in the affected layers. Therefore a detailed analysis of velocity variations enables to understand the apparently different conditions for the formation of gas hydrate along the BSR and the migration paths of the free gas. Ocean bottom seismometer (OBS) data from profiles coincident with the MCS data can provide such detailed velocity depth information. Velocity analysis from OBS data included 2D-ray tracing and 1D-interval-velocity analysis by means of DIX-inversion. In order to find a trade-off between vertical resolution and minimization of errors caused by the sensitivity of the DIX' formula to velocity variations in thin layers, the data have undergone a Kirchhoff wave-equation datuming and adjacent coherence filtering was applied to the data to eliminate the one sided travel path through the water column of the OBS-observations. The derived velocity structure confirms

  7. Rayleigh wave azimuthally anisotropic phase velocity maps beneath western Canada

    NASA Astrophysics Data System (ADS)

    Bao, Xuewei; Eaton, David W.; Gu, Yu Jeffrey

    2016-03-01

    The lithospheric evolution of western Laurentia spans several billion years of Earth history and provides an exceptional opportunity for investigating continental deformation during Archean and Proterozoic assembly of the craton and subsequent Phanerozoic orogenic processes along its western margin. In this study we present fundamental-mode Rayleigh wave azimuthal anisotropy in the period range 20-150 s for western Laurentia and the southern Canadian Cordillera. The surface wave phase velocity maps offer new constraints on the depth distribution of seismic anisotropy in this region. At short periods (20-25 s), strong anisotropy with an orogen-parallel fast direction is evident in the Cordillera and neighboring foreland belt, suggesting pervasive ductile deformation in the lower crust during Laramide orogenesis. At periods of 70 s and higher, a zone of low-to-null azimuthal anisotropy is evident in the southern part of the Cordillera. This apparent null region is interpreted to reflect complex asthenospheric flow due to the combined effects of the Juan de Fuca slab window, lithospheric delamination, and small-scale edge-driven convection. Depth-variant azimuthal anisotropy is evident beneath the cratonic part of the study region. The dominant direction of fast wave propagation in the southeastern part of the craton changes from N-S at periods of <120 s to NE-SW at 150 s period. This depth dependence is inferred to arise from different origins of the observed anisotropy, with "frozen" anisotropy within cratonic lithosphere underlain by flow-driven anisotropy in the asthenosphere. The frozen N-S trending fabrics in the middle to lower cratonic lithosphere most likely reflect processes of Paleoproterozoic assembly of western Laurentia.

  8. Inversion of surface-wave data for subsurface shear-wave velocity profiles characterised by a thick buried low-velocity layer

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2016-05-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterised by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (travel-time average shear-wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterised by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation (ESAC) technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.

  9. Constraints on Crustal Shear Wave Velocity Structure beneath Central Tibet from 3-D Multi-scale Finite-frequency Rayleigh Wave Travel-time Tomography

    NASA Astrophysics Data System (ADS)

    Jheng, Y.; Hung, S.; Zhou, Y.; Chang, Y.

    2012-12-01

    Surface wave travel-time tomography has been widely used as a powerful strategy to image shear wave velocity structure of the Earth's crust and upper mantle, providing comparable information other than body wave tomography. Traditionally, lateral variations of dispersive phase velocities are first obtained at multiple frequencies and then used to invert for shear wave velocity with 1-D depth-dependent sensitivity kernels. However, this approach runs short on considering the directional- and depth-dependence of scattering while surface wave propagating through laterally heterogeneous Earth. To refrain from these shortcomings, we here provide a fully 3-D finite-frequency method based on the Born scattering theory formulated with surface wave mode summation, and apply it to regional fundamental Rayleigh wave travel-time tomography in central Tibet. Our data were collected from Project Hi-CLIMB, which deployed an N-S trending linear array of over 100 broadband seismic stations with a large aperture of 800 km and very dense spacing of ~3-8 km across the Lhasa and Qiangtang terranes during 2004-2005. We follow a standard procedure of ambient noise cross correlation to extract empirical Green's functions of fundamental Rayleigh waves at 10-33 s between station pairs. A multi-taper method is employed to measure the phase differences as a function of period between observed and synthetic Rayleigh waves as well as the corresponding sensitivity kernels for the measured phase delays to 3-D shear wave velocity perturbations in a spherically-symmetric model suitable for central Tibet. A wavelet-based, multi-scale parameterization is invoked in the tomographic inversion to deal with the intrinsically multi-scale nature of unevenly distributed data and resolve the structure with data-adaptive spectral and spatial resolutions. The preliminary result shows that to the north of the Banggong-Nujiang suture (BNS), the crustal shear wave velocity beneath the Qiangtang terrane is

  10. Analysis of Surface Wave Phase Velocity and Azimuth Anomalies using Wave Gradiometry for USArray

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Langston, C. A.

    2014-12-01

    We investigate the phase velocity and surface wave arrival angle anomalies observed on the US Array Transportable Array (TA) incorporating wave gradiometry (WG) and frequency wavenumber (fk) methods. For WG, there are two crucial points: computing the spatial gradient over a subarray and acquiring an accurate reference station amplitude. In order to get a stable spatial gradient with small error we use up to a fifth order Taylor's series expansion of the wavefield for subarrays of 22 stations or more. Reference station amplitudes are regularized using a beam forming method to increase the SNR. Synthetic surface waves are generated using the SPECFEM3D globe algorithm with models S362ANI and CRUST2.0 with additional random ambient noise added as input. Stability in WG parameters are tested assuming different reducing sloweness. Stability of phase velocity estimates is improved by incorporating the higher order Taylor series terms. In application to stations of the TA, outcomes from WG and fk all show similar arrival angle anomalies. However, phase velocity determined from fk is higher and is spatially coarser than results from WG. Performance of WG improves with decreasing frequency as expected. Using this analysis flow, WG gives stable results for waves generated by earthquakes from different directions. Comparison of synthetic and observed maps of azimuth and phase velocity anomaly shows general agreement although some important local differences are observed. These differences will provide invaluable information for improving understanding of Earth structure. An approach for using WG parameters in Earth model inversion is outlined based on our stability analysis.

  11. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    USGS Publications Warehouse

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  12. Effects of neutral interactions on velocity-shear-driven plasma waves

    SciTech Connect

    Enloe, C. L.; Tejero, E. M.; Amatucci, W. E.; Crabtree, C.; Ganguli, G.; Sotnikov, V.

    2014-06-15

    In a laboratory experiment, we demonstrate the substantial effects that collisions between charged and neutral particles have on low-frequency (Ω{sub i} ≪ ω ≪ Ω{sub e}) shear-driven electrostatic lower hybrid waves in a plasma. We establish a strong (up to 2.5 kV/m) highly localized electric field with a length scale shorter than the ion gyroradius, so that the ions in the plasma, unlike the electrons, do not develop the full E × B drift velocity. The resulting shear in the particle velocities initiates the electron-ion hybrid (EIH) instability, and we observe the formation of strong waves in the vicinity of the shear with variations in plasma densities of 10% or greater. Our experimental configuration allows us to vary the neutral background density by more than a factor of two while holding the charged particle density effectively constant. Not surprisingly, increasing the neutral density decreases the growth rate/saturation amplitude of the waves and increases the threshold electric field necessary for wave formation, but the presence of neutrals affects the dominant wave frequency as well. We show that a 50% increase in the neutral density decreases the wave frequency by 20% while also suppressing the electric field dependence of the frequency that is observed when fewer neutrals are present. The majority of these effects, as well as the values of the frequencies we observe, closely match the predictions of previously developed linear EIH instability theory, for which we present the results of a numerical solution.

  13. The correlations between the saturated and dry P-wave velocity of rocks.

    PubMed

    Kahraman, S

    2007-11-01

    Sometimes engineers need to estimate the wet-rock P-wave velocity from the dry-rock P-wave velocity. An estimation equation embracing all rock classes will be useful for the rock engineers. To investigate the predictability of wet-rock P-wave velocity from the dry-rock P-wave velocity, P-wave velocity measurements were performed on 41 different rock types, 11 of which were igneous, 15 of which were sedimentary and 15 of which was metamorphic. In addition to the dry- and wet-rock P-wave velocity measurements, the P-wave velocity changing as a function of saturation degree was studied. Moreover, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theory and it was seen that the measured data did not fit the theories. The unconformity is due to the fact that the theories are valid for high-porosity unconsolidated sediments at low frequencies. Gassmann's equation was modified for the rocks except high-porosity unconsolidated sediments. The dry- and wet-rock P-wave velocity values were evaluated using regression analysis. A strong linear correlation between the dry- and wet-rock P-wave velocities was found. Regression analyses were repeated for the rock classes and it was shown that correlation coefficients were increased. Concluding remark is that the derived equations can be used for the prediction of wet-rock P-wave velocity from the dry-rock P-wave velocity. PMID:17624388

  14. Shear wave velocity models retrieved using Rg wave dispersion data in shallow crust in some regions of southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Ma, Shutian; Motazedian, Dariush; Corchete, Victor

    2013-04-01

    Many crucial tasks in seismology, such as locating seismic events and estimating focal mechanisms, need crustal velocity models. The velocity models of shallow structures are particularly important in the simulation of ground motions. In southern Ontario, Canada, many small shallow earthquakes occur, generating high-frequency Rayleigh ( Rg) waves that are sensitive to shallow structures. In this research, the dispersion of Rg waves was used to obtain shear-wave velocities in the top few kilometers of the crust in the Georgian Bay, Sudbury, and Thunder Bay areas of southern Ontario. Several shallow velocity models were obtained based on the dispersion of recorded Rg waves. The Rg waves generated by an m N 3.0 natural earthquake on the northern shore of Georgian Bay were used to obtain velocity models for the area of an earthquake swarm in 2007. The Rg waves generated by a mining induced event in the Sudbury area in 2005 were used to retrieve velocity models between Georgian Bay and the Ottawa River. The Rg waves generated by the largest event in a natural earthquake swarm near Thunder Bay in 2008 were used to obtain a velocity model in that swarm area. The basic feature of all the investigated models is that there is a top low-velocity layer with a thickness of about 0.5 km. The seismic velocities changed mainly within the top 2 km, where small earthquakes often occur.

  15. Imaging the Anisotropic Shear-wave Velocity in the Earth's Mantle using Free Oscillations, Body Waves, Surface Waves and Long-period Waveforms

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Ekstrom, G.

    2013-12-01

    We incorporate normal-mode splitting functions into a framework containing surface-wave phase anomalies, long-period waveforms, and body-wave travel times to investigate the three-dimensional structure of anisotropic shear-wave velocity in the Earth's mantle. In contrast with earlier studies, our modeling approach spans a wider spectrum (0.3-50 mHz) of seismological observables, jointly inverts for velocity and anisotropy apart from the discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the nonlinear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+, an update to S362ANI, gives better fits to the recently measured splitting functions of spheroidal and toroidal modes that are modeled in this study. The splitting functions require additional isotropic variations in the transition zone and the mid mantle that are geographically distributed in the southern hemisphere. The level of agreement in the isotropic shear-velocity structure is higher between S362ANI+ and other recent studies than in the earlier generation of models. The anisotropic part of S362ANI+ is similar to S362ANI and is restricted to the upper 300 km in the mantle since only small improvements in fits are observed on adding anisotropy at depth. We also show that modeling the splitting functions reduces the tradeoffs between lateral variations in velocity and anisotropy in the lowermost mantle. Therefore, more data should be included to constrain any radial anisotropy in the transition zone and in the lower mantle.

  16. Estimation of Shear Wave Velocity in Seafloor Sediment by Seismo-Acoustic Interface Waves:. a Case Study for Geotechnical Application

    NASA Astrophysics Data System (ADS)

    Dong, Hefeng; Hovem, Jens M.; Frivik, Svein Arne

    2006-10-01

    Estimates of shear wave velocity profiles in seafloor sediments can be obtained from inversion of measured dispersion relations of seismo-acoustic interface waves propagating along the seabed. The interface wave velocity is directly related to shear wave velocity with value of between 87-96% of the shear wave velocity, dependent on the Poission ratio of the sediments. In this paper we present two different techniques to determine the dispersion relation: a single-sensor method used to determine group velocity and a multi-sensor method used to determine the phase velocity of the interface wave. An inversion technique is used to determine shear wave velocity versus depth and it is based on singular value decomposition and regularization theory. The technique is applied to data acquired at Steinbåen outside Horten in the Oslofjorden (Norway) and compared with the result from independent core measurements taken at the same location. The results show good agreement between the two ways of determining shear wave velocity.

  17. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  18. Use Your Own Computer Timer: Velocity of Stress Waves in a Solid Rod.

    ERIC Educational Resources Information Center

    Russell, David

    1997-01-01

    Describes how to measure the penultimate laboratory speed, a stress wave velocity in a solid rod. Also includes background information on stress waves, apparatus, and procedures. Employs a homemade interface for the IBM platform. (DDR)

  19. Spatial correlation of shear-wave velocity within San Francisco Bay Sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2006-01-01

    Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.

  20. P-Wave Velocity Structure beneath Eastern Eurasia from Finite Frequency Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Yang, T.; Shen, Y.; Yang, X.

    2006-05-01

    Despite the recent extensive seismic studies, the detailed lithospheric structure and deep mantle dynamic processes beneath eastern Eurasia remain poorly constrained. In this study, we applied the Finite Frequency Seismic Tomography (FFST) method, which utilizes the 3D Fréchet sensitivity kernels of the travel times of finite frequency seismic waves to account for wavefront healing and off-ray scattering, to eastern Eurasia. Taking advantage of the broadband feature of seismic records, we measured P wave relative delays times by waveform cross-correlation in three frequency bands (0.03-0.1Hz, 0.1-0.5 Hz and 0.5 to 2.0 Hz), which were inverted jointly to constrain velocity heterogeneities with different distances from the central geometric rays. The effect of strong variations in crustal structure beneath this region on travel time data was removed by conducting a frequency dependent crustal correction. A comprehensive dataset, including waveforms from the publicly accessible sources and other seismic networks in the region, were collected for this study. Our preliminary results are consistent with the velocity models obtained in previous tomographic studies. A more complete dataset will further improve the resolution of the velocity structure beneath eastern Eurasia.

  1. Advantages of using multichannel analysis of Love waves (MALW) in determining near-surface shear-wave velocity

    NASA Astrophysics Data System (ADS)

    Xia, J.; Xu, Y.; Luo, Y.; Miller, R. D.; Cakir, R.

    2011-12-01

    Surface-wave techniques have been given increasingly more attention by the near-surface community with applications to a variety of problems. Studies on high-frequency surface-wave techniques have been focused primarily on Rayleigh waves. There is much less attention on utilizing Love waves than Rayleigh waves in the near-surface community. Recent improvements in data-acquisition techniques and development of software make SH-wave data acquisition and processing easier. In addition, Love-wave analysis only results in SH-wave velocities, which suggests that we may benefit from analyzing SH-wave data using Love-wave inversion. Numerical results of SH waves and data from Kansas, Wyoming, Arizona, Washington, and Wuhan, China demonstrated three advantages of analyzing SH-wave data using multichannel analysis of Love waves (MALW). 1) Generally images of Love-wave energy are cleaner and sharper than those generated from Rayleigh waves. Owing to a long geophone spread commonly used in an SH-wave refraction survey, images of Love-wave energy are even much cleaner and sharper, which makes picking phase velocities of Love waves easier and more accurate. 2) Numerical results showed that because Love waves are independent of P-wave velocity, dispersion curves of Love waves are simpler than Rayleigh waves. "Mode kissing" (suggested by Robert Stewart) is an undesired and frequently occurred phenomenon in Rayleigh-wave analysis that causes mode misidentification. Fortunately, this phenomenon is less common in images of Love-wave energy than Rayleigh waves. 3) Real-world examples showed that inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. This is because of being independent of P-wave velocity fewer unknowns in the MALW method not only make dispersion curves of Love waves simpler also reduces the degree of nonuniqueness, which leads to more stable inversion of Love-wave dispersion curves. Results also demonstrated

  2. Interferometric methods for measurement of ultrasonic wave velocity: Classification, characteristics and basic defects

    NASA Technical Reports Server (NTRS)

    Kozlowski, Z.

    1974-01-01

    Interferometric methods may be considered to include all methods in which the time necessary for a signal to pass through a medium is determined on the basis of the period of oscillation of which the signal consists, while the distance is determined by noting the coincidence between (1) interference between the measured signal and its reflection and ultrasonic interference, or between another signal serving as a reference and electrical interference in the electronic part of the device. In general, all interferometric methods are relatively simple and permit a high degree of accuracy. Theoretically 48 different variations may be distinguished, about 30 of which are capable of practical application. For liquids, where transverse waves do not exist, the number of possible variations is limited to 40, assuming that absolute velocity measurement is desired.

  3. Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT

    NASA Astrophysics Data System (ADS)

    Manapuram, Ravi Kiran; Aglyamov, S.; Menodiado, F. M.; Mashiatulla, M.; Wang, Shang; Baranov, S. A.; Li, Jiasong; Emelianov, S.; Larin, K. V.

    2012-09-01

    We report a method for measuring shear wave velocity in soft materials using phase stabilized swept source optical coherence tomography (PhS-SSOCT). Wave velocity was measured in phantoms with various concentrations of gelatin and therefore different stiffness. Mechanical waves of small amplitudes (˜10 μm) were induced by applying local mechanical excitation at the surface of the phantom. Using the phase-resolved method for displacement measurement described here, the wave velocity was measured at various spatially distributed points on the surface of the tissue-mimicking gelatin-based phantom. The measurements confirmed an anticipated increase in the shear wave velocity with an increase in the gelatin concentrations. Therefore, by combining the velocity measurements with previously reported measurements of the wave amplitude, viscoelastic mechanical properties of the tissue such as cornea and lens could potentially be measured.

  4. Stochastic simulation for the propagation of high-frequency acoustic waves through a random velocity field

    NASA Astrophysics Data System (ADS)

    Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.

    2012-05-01

    In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.

  5. Elastic wave velocities in anorthosite and anorthositic gabbros from Apollo 15 and 16 landing sites

    NASA Technical Reports Server (NTRS)

    Chung, D. H.

    1973-01-01

    Laboratory measurements of ultrasonic velocities in lunar samples 15065, 15555, 15415, 60015, and 61016 as well as in synthetic materials corresponding to compositions of anorthositic gabbros are presented as a function of hydrostatic pressure to about 7 kb. The author examined the seismic velocity distributions in the moon with reference to the variations to be expected in a homogeneous medium. The lunar mantle begins about 60 km, and the velocity of P waves in this area is about 7.7 km/sec. Variation of the seismic parameter with depth in the upper crust (about 20 km thick) is much too rapid to be explained by compression of a uniform material and the departure from expectation is so great that no reasonable adjustment of the material parameters can bring agreement; therefore, this author concludes that this result in this region of the moon is not due to self-compression but to textural gradients. In the lower crust (about 40 km thick), the region is shown to be relatively homogeneous, consisting probably of anorthositic rocks.

  6. Stochastic simulation for the propagation of high-frequency acoustic waves through a random velocity field

    SciTech Connect

    Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.

    2012-05-17

    In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.

  7. Rayleigh and Love wave phase velocity maps of Iceland from combined ambient noise and teleseismic surface wave analysis.

    NASA Astrophysics Data System (ADS)

    Harmon, N.

    2014-12-01

    Iceland is one of the few regions where ridge-plume interaction can be examined with a terrestrial seismic array. Velocity structure from broadband surface wave dispersion measurements can be used to constrain the complicated crustal and upper mantle structure caused by the plume enhanced rifting activity. Here I use data from the ICEMELT and HOTSPOT arrays on Iceland to generate phase velocity dispersion maps of both Rayleigh and Love waves from ambient noise cross correlation and teleseismic events. I invert Rayleigh and Love wave dispersion observed from ambient noise for tomographic velocity structure. For teleseismic Rayleigh waves I use the two-plane wave approximation array-based method of Forsyth and Li [2005]. I also develop and adapt this method for teleseismic Love waves. This requires additional preprocessing of the data to estimate the amplitude and phase for teleseismic Love waves. Specifically, for each station, the vertical component phase observation of the fundamental mode Rayleigh is used to predict and remove the horizontal components of Rayleigh waves. Then I invert for the maximum amplitude and apparent back azimuth at each period of interest of the Love wave from the transverse and radial components. The amplitude and phase measurement is then inverted for phase velocity structure using a modified version of the two plane-wave approximation. Preliminary results indicate a low velocity region at short periods (8-15 s) in both the Rayleigh and Love wave phase velocity maps beneath the active volcanic centers in the middle of the island. At longer periods (20-125 s) a low velocity region is visible beneath central Iceland. The velocity minimum is located to the north of Iceland in the Rayleigh wave maps. These observations are consistent with previous studies in the region.

  8. Shear wave velocities of unconsolidated shallow sediments in the Gulf of Mexico

    USGS Publications Warehouse

    Lee, Myung W.

    2013-01-01

    Accurate shear-wave velocities for shallow sediments are important for a variety of seismic applications such as inver-sion and amplitude versus offset analysis. During the U.S. Department of Energy-sponsored Gas Hydrate Joint Industry Project Leg II, shear-wave velocities were measured at six wells in the Gulf of Mexico using the logging-while-drilling SonicScope acoustic tool. Because the tool measurement point was only 35 feet from the drill bit, the adverse effect of the borehole condition, which is severe for the shallow unconsolidated sediments in the Gulf of Mexico, was mini-mized and accurate shear-wave velocities of unconsolidated sediments were measured. Measured shear-wave velocities were compared with the shear-wave velocities predicted from the compressional-wave velocities using empirical formulas and the rock physics models based on the Biot-Gassmann theory, and the effectiveness of the two prediction methods was evaluated. Although the empirical equation derived from measured shear-wave data is accurate for predicting shear-wave velocities for depths greater than 500 feet in these wells, the three-phase Biot-Gassmann-theory -based theory appears to be optimum for predicting shear-wave velocities for shallow unconsolidated sediments in the Gulf of Mexico.

  9. Effect of gravity wave temperature variations on homogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Dinh, Tra; Podglajen, Aurélien; Hertzog, Albert; Legras, Bernard; Plougonven, Riwal

    2015-04-01

    Observations of cirrus clouds in the tropical tropopause layer (TTL) have shown various ice number concentrations (INC) (e.g., Jensen et al. 2013), which has lead to a puzzle regarding their formation. In particular, the frequently observed low numbers of ice crystals seemed hard to reconcile with homogeneous nucleation knowing the ubuquity of gravity waves with vertical velocity of the order of 0.1 m/s. Using artificial time series, Spichtinger and Krämer (2013) have illustrated that the variation of vertical velocity during a nucleation event could terminate it and limit the INC. However, their study was limited to constructed temperature time series. Here, we carry out numerical simulations of homogeneous ice nucleation forced by temperature time series data collected by isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency (30 s), so gravity wave signals are well resolved in the temperature time series. With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentrations (INC) as previously observed in the tropical upper troposphere. The simulations confirm that the dynamical time scale of temperature variations (as seen from observations) can be shorter than the nucleation time scale. They show the existence of two regimes for homogeneous ice nucleation : one limited by the depletion of water vapor by the nucleated ice crystals (those we name vapor events) and one limited by the reincrease of temperature after its initial decrease (temperature events). Low INC may thus be obtained for temperature events when the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result for temperature events is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This

  10. Hammering Yucca Flat, Part One: P-Wave Velocity

    NASA Astrophysics Data System (ADS)

    Tang, D. G.; Abbott, R. E.; Preston, L. A.; Hampshire, J. B., II

    2015-12-01

    Explosion-source phenomenology is best studied when competing signals (such as instrument, site, and propagation effects), are well understood. The second phase of the Source Physics Experiments (SPE), is moving from granite geology to alluvium geology at Yucca Flat, Nevada National Security Site. To improve subsurface characterization of Yucca Flat (and therefore better understand propagation and site effects), an active-source seismic survey was conducted using a novel 13,000-kg impulsive hammer source. The source points, spaced 200 m apart, covered a N-S transect spanning 18 km. Three component, 2-Hz geophones were used to record useable signals out to 10 km. We inverted for P-wave velocity by computing travel times using a finite-difference 3D eikonal solver, and then compared that to the picked travel times using a linearized iterative inversion scheme. Preliminary results from traditional reflection processing methods are also presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Weight Loss, Dietary Intake and Pulse Wave Velocity.

    PubMed

    Petersen, Kristina; Blanch, Natalie; Keogh, Jennifer; Clifton, Peter

    2015-09-01

    We have recently conducted a meta-analysis to determine the effect of weight loss achieved by an energy-restricted diet with or without exercise, anti-obesity drugs or bariatric surgery on pulse wave velocity (PWV) measured at all arterial segments. Twenty studies, including 1,259 participants, showed that modest weight loss (8% of the initial body weight) caused a reduction in PWV measured at all arterial segments. However, due to the poor methodological design of the included studies, the results of this meta-analysis can only be regarded as hypothesis generating and highlight the need for further research in this area. In the future, well-designed randomised controlled trials are required to determine the effect of diet-induced weight loss on PWV and the mechanisms involved. In addition, there is observational evidence that dietary components such as fruit, vegetables, dairy foods, sodium, potassium and fatty acids may be associated with PWV, although evidence from well-designed intervention trials is lacking. In the future, the effect of concurrently improving dietary quality and achieving weight loss should be assessed in randomised controlled trials. PMID:26587462

  12. Weight Loss, Dietary Intake and Pulse Wave Velocity

    PubMed Central

    Petersen, Kristina; Blanch, Natalie; Keogh, Jennifer; Clifton, Peter

    2015-01-01

    We have recently conducted a meta-analysis to determine the effect of weight loss achieved by an energy-restricted diet with or without exercise, anti-obesity drugs or bariatric surgery on pulse wave velocity (PWV) measured at all arterial segments. Twenty studies, including 1,259 participants, showed that modest weight loss (8% of the initial body weight) caused a reduction in PWV measured at all arterial segments. However, due to the poor methodological design of the included studies, the results of this meta-analysis can only be regarded as hypothesis generating and highlight the need for further research in this area. In the future, well-designed randomised controlled trials are required to determine the effect of diet-induced weight loss on PWV and the mechanisms involved. In addition, there is observational evidence that dietary components such as fruit, vegetables, dairy foods, sodium, potassium and fatty acids may be associated with PWV, although evidence from well-designed intervention trials is lacking. In the future, the effect of concurrently improving dietary quality and achieving weight loss should be assessed in randomised controlled trials. PMID:26587462

  13. Variations and healing of the seismic velocity (Beno Gutenberg Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Snieder, Roel

    2016-04-01

    Scattering of waves leads to a complexity of waveforms that is often seen by seismologists as a nuisance. And indeed, the complicated wave paths of multiple scattered waves makes it difficult to use these waves for imaging. Yet, the long wave paths of multiple scattered waves makes these waves an ideal tool for measuring minute velocity changes. This has led to the development of coda wave interferometry as a tool for measuring small velocity changes in the laboratory and with field data. Combined with the use of noise cross correlations - seismic interferometry - this method is even more useful because it follows for a quasi-continuous measurement of velocity changes. I will show examples of detecting velocity changes in the laboratory, the earth's near surface, and in engineered structures. Perhaps surprisingly, the seismic velocity is not constant at all, and varies with the seasons, temperature, precipitation, as the weather does. In addition, the seismic velocity usually drops as a result of deformation. Most of these changes likely occur in the near surface or the region of deformation, and a drawback of using strongly scattered waves is that it is difficult to localize the spatial area of the velocity change. I will present laboratory measurements that show that a certain spatial localization of the velocity change can be achieved. One of the intriguing observations is that after deformation the seismic velocity recovers logarithmically with time. The reason for this particular time-dependence is the presence of healing mechanisms that operate at different time scales. Since this is feature of many physical systems, the logarithmic healing is a widespread behavior and is akin in its generality to the Gutenberg-Richter law.

  14. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles

    USGS Publications Warehouse

    Liu, Hsi-Ping; Boore, David M.; Joyner, William B.; Oppenheimer, David H.; Warrick, Richard E.; Zhang, Wenbo; Hamilton, John C.; Brown, Leo T.

    2000-01-01

    Shear-wave velocities (VS) are widely used for earthquake ground-motion site characterization. VS data are now largely obtained using borehole methods. Drilling holes, however, is expensive. Nonintrusive surface methods are inexpensive for obtaining VS information, but not many comparisons with direct borehole measurements have been published. Because different assumptions are used in data interpretation of each surface method and public safety is involved in site characterization for engineering structures, it is important to validate the surface methods by additional comparisons with borehole measurements. We compare results obtained from a particular surface method (array measurement of surface waves associated with microtremor) with results obtained from borehole methods. Using a 10-element nested-triangular array of 100-m aperture, we measured surface-wave phase velocities at two California sites, Garner Valley near Hemet and Hollister Municipal Airport. The Garner Valley site is located at an ancient lake bed where water-saturated sediment overlies decomposed granite on top of granite bedrock. Our array was deployed at a location where seismic velocities had been determined to a depth of 500 m by borehole methods. At Hollister, where the near-surface sediment consists of clay, sand, and gravel, we determined phase velocities using an array located close to a 60-m deep borehole where downhole velocity logs already exist. Because we want to assess the measurements uncomplicated by uncertainties introduced by the inversion process, we compare our phase-velocity results with the borehole VS depth profile by calculating fundamental-mode Rayleigh-wave phase velocities from an earth model constructed from the borehole data. For wavelengths less than ~2 times of the array aperture at Garner Valley, phase-velocity results from array measurements agree with the calculated Rayleigh-wave velocities to better than 11%. Measurement errors become larger for wavelengths 2

  15. The influence of temperature variations on ultrasonic guided waves in anisotropic CFRP plates.

    PubMed

    Putkis, O; Dalton, R P; Croxford, A J

    2015-07-01

    Carbon Fibre Reinforced Polymer (CFRP) materials are lightweight and corrosion-resistant and therefore are increasingly used in aerospace, automotive and construction industries. In Structural Health Monitoring (SHM) applications of CFRP materials, ultrasonic guided waves potentially offer large area inspection or inspection from a remote location. This paper addresses the effect of temperature variation on guided wave propagation in highly anisotropic CFRP materials. Temperature variations cause changes in guided wave velocity that can in turn compromise the baseline subtraction procedures employed by many SHM systems for damage detection. A simple model that describes the dependence of elastic properties of the CFRP plates on temperature is presented in this paper. The model can be used to predict anisotropic velocity changes and baseline subtraction performance under varying thermal conditions. The results produced by the model for unidirectional and 0/90 CFRP plates are compared with experimental measurements. PMID:25812468

  16. P-wave velocity in granulites from South India: implications for the continental crust

    NASA Astrophysics Data System (ADS)

    Ramachandran, C.

    1992-01-01

    P-wave velocities ( Vp) were measured in 160 high-grade metamorphic rocks from the South Indian granulite terrain (SGT). The wide variations observed in the Vp of charnockites and gneisses could be due to the complex prograde and retrograde metamorphic histories of the two major rock types of the SGT. The velocity-density relation showed distinct trends for charnockites and gneisses. Initial stages of retrograde metamorphism in charnockites significantly affected their magnetic properties, however, its effect on velocity and density is not diagnostic. Contrasting physical properties on either side of the Palghat-Cauvery (P-C) shear zone lends support for the contention that the P-C shear zone is a major paleosuture. The laboratory mean Vpof the rocks from the northern SGT are comparable with the mid-crustal DSS velocity in the adjacent granite greenstone terrain (GGT), suggesting that the GGT is possibly underlain by a felsic granulite basement. The physical properties of the high-grade metamorphic rocks from SGT are significantly lower than that of the lower crust. The physical properties and tectonic considerations show that the granulites of South India may not be of lower crustal origin and hence not representative of the lower crust, as generally thought. A simplified two-layer crustal model with a predominantly felsic granulite upper crust and a mafic granulite lower crust, is suggested for the SGT.

  17. ITRF2014 GNSS vertical velocities and global Earth figure variations

    NASA Astrophysics Data System (ADS)

    Métivier, Laurent; Rouby, Hélène; Rebischung, Paul; Altamimi, Zuheir

    2016-04-01

    We investigate the GNSS station vertical velocities provided by the new solution of the International Terrestrial Reference Frame, the ITRF2014. Constructed from a global network of approximately 1500 stations of the different space geodetic techniques, this new solution provides two times more GNSS station velocities than the ITRF2008, and shows a global pattern of vertical velocities very homogeneous regionally. As in the ITRF2008 solution, large vertical velocities can be seen over North America, Northern Europe, or Antarctica, probably induced predominantly by the Glacial Isostatic Adjustment (GIA) still occurring today since the last deglaciation. But the ITRF2014 solution shows also large vertical velocities over regions such as Greenland and Alaska clearly larger than in the ITRF2008, probably related to last decadal ice melting and its possible acceleration. We investigate different methods to calculate low degree spherical harmonics coefficient from ITRF2014 GNSS vertical velocities. We particularly focus on the components related to the geocenter motion, the ellipticity of the solid Earth, and the J2 rate, and we present time tendencies with respect to different GIA and recent ice melting models.

  18. Coseismic and postseismic wave velocity changes caused by large crustal earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Hobiger, Manuel; Wegler, Ulrich; Shiomi, Katsuhiko; Nakahara, Hisashi

    2014-05-01

    Using Passive Image Interferometry (PII), we analyzed coseismic and postseismic changes of seismic wave velocities caused by the following earthquakes which occurred in Japan between 2004 and 2011: The 2005 Fukuoka (MW6.6), 2007 Noto Hant¯o (MW6.6) and 2008 Iwate-Miyagi Nairiku (MW6.9) earthquakes, three earthquakes in Niigata Prefecture (2004 Mid-Niigata, MW6.8; 2007 Ch¯u etsu Offshore, MW6.6; 2011 Nagano/Niigata, MW6.2), as well as the 2011 Tohoku earthquake (MW9.0) in the four regions of the other earthquakes. The time series of ambient noise used for the different earthquakes spanned from at least half a year before the respective earthquake until three months after the Tohoku earthquake. Cross-correlations and single-station cross-correlations of several years of ambient seismic noise, which was recorded mainly by Hi-net sensors in the surrounding areas of the respective earthquakes, are calculated in different frequency ranges between 0.125 and 4.0 Hz. Between 10 and 20 seismometers were used in the different areas. The cross-correlations are calculated for all possible station pairs. Using a simple tomography algorithm, the resulting velocity variations can be reprojected on the actual station locations. The cross-correlation and single-station cross-correlation techniques give compatible results, the former giving more reliable results for frequencies below 0.5 Hz, the latter for higher frequencies. Our analysis yields significant coseismic velocity drops for all analyzed earthquakes, which are strongest close to the fault zones and exceed 1 % for some stations. The coseismic velocity drops are larger at higher frequencies and recover on a time scale of several years, but the coseismic velocity drops do not completely recover during our observation time. Velocity drops are also visible in all areas at the time of the Tohoku earthquake. Furthermore, we measured seasonal velocity variations of the order of 0.1 % in all areas which are, at least for

  19. A new method for estimating shear-wave velocity in marine sediments from radiation impedance measurements

    NASA Astrophysics Data System (ADS)

    Kimura, Masao

    2005-11-01

    Shear-wave velocity is one of the important parameters that characterize the physical properties of marine sediments. In this study, a new method is proposed for measuring shear-wave velocity in marine sediments by using radiation impedance. Shear-wave velocities for three kinds of urethane rubber with different Japanese Industrial Standards hardness values were obtained by radiation impedance and time-of-flight measurement techniques. It was shown that the values of the shear-wave velocity measured by the radiation impedance method were consistent with those of time-of-flight measurements. It was then shown that the shear-wave velocities for air- and water-saturated beach sands are different. It was also found that the indicated shear-wave velocity is dependent on the vibrating plate radius because the instrument measures an average shear-wave velocity within a depth window beneath the plate; the larger the plate radius, the deeper the averaging window. Finally, measurements were made on two-layered media in which air-saturated beach sand or urethane rubber was covered with air-saturated clay, and the relationship between the thickness of the clay layer and the indicated shear-wave velocity was investigated.

  20. Investigation of coseismic and postseismic processes using in situ measurements of seismic velocity variations in an underground mine

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Roux, P.; Shapiro, N. M.; Lynch, R.

    2015-11-01

    The in situ mechanical response of a rock mass to a sudden dynamic and static stress change is still poorly known. To tackle this question, we conducted an experiment in an underground mine to examine (1) the influence of dynamic and static stress perturbations on seismic velocities, (2) elastic static stress changes, and (3) induced earthquake activity associated with the blast and removal of a portion of hard rock. We accurately (0.01%) measured seismic velocity variations with ambient seismic noise correlations, located aftershock activity, and performed elastic static stress modeling. Overall, we observe that the blast induced a sudden decrease in seismic velocities over the entire studied area, which we interpreted as the damage due to the passing of strong seismic waves. This sudden process is followed by a slow relaxation lasting up to 5 days, while seismic activity returns to its background level after 2 days. In some locations, after the short-term effects of the blast have subsided, the seismic velocities converge to new baseline levels and permanent changes in seismic velocity become visible. After comparing the spatial pattern of permanent seismic velocity changes with elastic static stress modeling, we infer that the permanent seismic velocity changes are due to the change in the static volumetric stress induced by the removal of a solid portion of rock by the blast. To our knowledge, this is the first observation of noise-based permanent seismic velocity changes associated with static stress changes.

  1. Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods

    NASA Astrophysics Data System (ADS)

    Xia, Jianghai

    2014-04-01

    This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.

  2. Radial velocity variations in the young eruptive star EX Lupi

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Mohler-Fischer, M.; Sicilia-Aguilar, A.; Ábrahám, P.; Curé, M.; Henning, Th.; Kiss, Cs.; Launhardt, R.; Moór, A.; Müller, A.

    2014-01-01

    Context. EX Lup-type objects (EXors) are low-mass pre-main sequence objects characterized by optical and near-infrared outbursts attributed to highly enhanced accretion from the circumstellar disk onto the star. Aims: The trigger mechanism of EXor outbursts is still debated. One type of theory requires a close (sub)stellar companion that perturbs the inner part of the disk and triggers the onset of the enhanced accretion. Here, we study the radial velocity (RV) variations of EX Lup, the prototype of the EXor class, and test whether they can be related to a close companion. Methods: We conducted a five-year RV survey, collecting 54 observations with HARPS and FEROS. We analyzed the activity of EX Lup by checking the bisector, the equivalent width of the Ca 8662 Å line, the asymmetry of the Ca II K line, the activity indicator SFEROS, the asymmetry of the cross-correlation function, the line depth ratio of the VI/FeI lines, and the TiO, CaH 2, CaH 3, CaOH, and Hα indices. We complemented the RV measurements with a 14-day optical/infrared photometric monitoring to look for signatures of activity or varying accretion. Results: We found that the RV of EX Lup is periodic (P = 7.417 d), with stable period, semi-amplitude (2.2 km s-1), and phase over at least four years of observations. This period is not present in any of the above-mentioned activity indicators. However, the RVs of narrow metallic emission lines suggest the same period, but with an anti-correlating phase. The observed absorption line RVs can be fitted with a Keplerian solution around a 0.6 M⊙ central star with msini = (14.7 ± 0.7) MJup and eccentricity of e = 0.24. Alternatively, we attempted to model the observations with a cold or hot stellar spot as well. We found that in our simple model, the spot parameters needed to reproduce the RV semi-amplitude are in contradiction with the photometric variability, making the spot scenario unlikely. Conclusions: We qualitatively discuss two possibilities to

  3. Parameterization and simulation of near bed orbital velocities under irregular waves in shallow water

    USGS Publications Warehouse

    Elfrink, B.; Hanes, D.M.; Ruessink, B.G.

    2006-01-01

    A set of empirical formulations is derived that describe important wave properties in shallow water as functions of commonly used parameters such as wave height, wave period, local water depth and local bed slope. These wave properties include time varying near-bed orbital velocities and statistical properties such as the distribution of wave height and wave period. Empirical expressions of characteristic wave parameters are derived on the basis of extensive analysis of field data using recently developed evolutionary algorithms. The field data covered a wide range of wave conditions, though there were few conditions with wave periods greater than 15 s. Comparison with field measurements showed good agreement both on a time scale of a single wave period as well as time averaged velocity moments.

  4. Three dimensional Rayleigh wave velocity model using multimode surface wave tomography of Eastern Asia

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Yuan, X.; Debayle, E.; Priestley, K. F.; Kind, R.; Li, X.

    2010-12-01

    The collision of the Eurasian plate, Indian plate and Philippine sea plate resulted in the tectonic feature of todays; like mountain ranges, fold belts, sedimentary basins and high plateaus in China and the surrounding region. In the Northern part this region is supposed to get some resistance from the Siberian shield. But the collision of Indian plate has left its major imprints and the consequence of this was the uplift of Himalayan Mountain and Tibetan Plateau. This triple junction scenario is the main cause for many inter and intra-plate earthquake in this region. It is generally agreed that the lithosphere is thick in west China while much of the lithospheric root was lost beneath some cratons in east China. Still it's an open debate whether the lithosphere beneath the Tibetan plateau has doubled its thickness as did the crust above or much of the thickened lithosphere was removed by mantle convection and delamination. In our study we try to determine the three dimensional Sv wave speed and azimuthal anisotropy model by analyzing the vertical component multimode Rayleigh wave seismogram. The data which we used are from broadband stations from in and around China. We construct the three dimensional model in two step procedure. In the first step we use the automated version of the Cara and Leveque [1987] waveform inversion technique in terms of secondary observables for modeling each multimode Rayleigh waveform to determine the path-average mantle Sv wave speed structure. In the second stage we combine the 1-D velocity models in a tomographic inversion to obtain the three dimensional Sv wave speed structure and the azimuthal anisotropy as a function of depth. We have taken a source region specific velocity structure from the three dimensional model 3SMAC to improve the source excitation computation. We analyzed the seismograms using a modified (smoothed) version of PREM for the upper mantle velocity structure both for the reference model used in extracting the

  5. Assessment of local pulse wave velocity in arteries using 2D distension waveforms.

    PubMed

    Meinders, J M; Kornet, L; Brands, P J; Hoeks, A P

    2001-10-01

    The reciprocal of the arterial pulse wave velocity contains crucial information about the mechanical characteristics of the arterial wall but is difficult to assess noninvasively in vivo. In this paper, a new method to assess local pulse wave velocity (PWV) is presented. To this end, multiple adjacent distension waveforms are determined simultaneously along a short arterial segment, using a single 2D-vessel wall tracking system with a high frame rate (651 Hz). Each B-mode image consists of 16 echo lines spanning a total width of 15.86 mm. Dedicated software has been developed to extract the end-diastolic diameter from the B-mode image and the distension waveforms from the underlying radiofrequency (rf) information for each echo-line. The PWV is obtained by determining the ratio of the temporal and spatial gradient of adjacent distension velocity waveforms. The proposed method is verified in a phantom and in the common carotid artery (CCA) of humans. Phantom experiments show a high concordance between the PWV obtained from 2D distension velocity waveforms (4.21 +/- 0.02 m/s) and the PWV determined using two pressure catheters (4.26 +/- 0.02 m/s). Assuming linear spatial gradients, the PWV can also be obtained in vivo for CCA and averages to 5.5 +/- 1.5 m/s (intersubject variation, n = 23), which compares well to values found in literature. Furthermore, intrasubject PWV compares well with those calculated using the Bramwell-Hill equation. It can be concluded that the PWV can be obtained from the spatial and temporal gradient if the spatial gradient is linear over the observed length of the artery, i.e. the artery should be homogenous in diameter and distension and the influence of reflections must be small. PMID:12051275

  6. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The

  7. The shear wave velocity of the upper mantle beneath the Bay of Bengal, Northeast Indian Ocean from interstation phase velocities of surface waves

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S. N.; Mitra, Supriyo; Suresh, G.

    2013-06-01

    The Bay of Bengal evolved along the eastern margin of the Indian subcontinent about 130 Ma with the breakup of India from eastern Gondwanaland. Since then the Indian lithospheric Plate has moved northward, along with the Bay of Bengal, and eventually collided with the Eurasian Plate. The age of the lithosphere beneath the central Bay of Bengal is ˜110 Ma. We evaluate the shear wave velocity structure of the upper mantle beneath the central Bay through inversion of phase velocities of fundamental mode Rayleigh and Love waves along two wave paths: (i) between Port Blair (PBA) and VIS (Visakhapatnam) and (ii) between DGPR (Diglipur) and VIS. The seismological observatories PBA and DGPR are located on the Andaman Island and to the east of the Bay and the observatory at VIS in located on the eastern coast of India to the west of the Bay. Using broad-band records of earthquakes, which lie along the great circle arc joining each pair of observatories, we obtain phase velocities between 20 and 240 s periods for Rayleigh waves and between 23 and 170 s for Love waves. These phase velocities are inverted to find the S-wave velocity structure of the upper mantle down to 400 km. The crustal structure is based on previous studies of the Bay and kept fixed in the inversion. We obtain a radially anisotropic upper-mantle structure, where the SH-wave velocity (VSH) is greater than the SV-wave velocity (VSV) down to 400 km. The S-wave velocity decreases sharply by ˜4.5 per cent for VSV and ˜1.5 per cent for VSH at a depth 110 km, which is considered as the Lithosphere-Asthenosphere boundary (LAB), that is, the bottom of the mantle lid. Based on recent studies, such sharp fall of S-wave velocity below the mantle lid appears to indicate a partially molten thin layer (G-discontinuity) at this depth. The thickness of the mantle lid is intermediate between oceanic and continental regions. The lid is also characterized

  8. Validation of recent shear wave velocity models in the United States with full-wave simulation

    NASA Astrophysics Data System (ADS)

    Gao, Haiying; Shen, Yang

    2015-01-01

    Interpretations of dynamic processes and the thermal and chemical structure of the Earth depend on the accuracy of Earth models. With the growing number of velocity models constructed with different tomographic methods and seismic data sets, there is an increasing need for a systematic way to validate model accuracy and resolution. This study selects five shear wave velocity models in the U.S. and simulates full-wave propagation within the 3-D structures. Surface-wave signals extracted from ambient seismic noise and regional earthquakes are compared with synthetic waveforms at multiple-frequency bands. Phase delays and cross-correlation coefficients between observed and synthetic waveforms allow us to compare and validate these models quantitatively. In general, measurements from regional earthquakes are consistent with ambient noise results, but appear more scattered, which may result from uncertainty of the earthquake source location, origin time, and moment tensor. Our results show the improvement of model prediction with the increase of seismic data sets and implement of advanced methods. There exists a positive linear trend between phase delay and interstation distance for three models, indicating that on average, these models are faster than the real Earth structure. The phase delays from the jointly inverted model of ambient noise and receiver function have negative means at all periods while without obvious dependence on the interstation distance. The full-wave ambient noise tomographic model predicts more accurate phase arrivals compared to other models. This study suggests a need for an integrated model constructed with multiple seismic waveforms and consideration of anisotropy and attenuation.

  9. 3D P-Wave Velocity Structure of the Deep Galicia Rifted Margin

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Minshull, Timothy; Davy, Richard; Sawyer, Dale; Klaeschen, Dirk; Papenberg, Cord; Reston, Timothy; Shillington, Donna; Ranero, Cesar

    2015-04-01

    The combined wide-angle reflection-refraction and multi-channel seismic (MCS) experiment, Galicia 3D, was carried out in 2013 at the Galicia rifted margin in the northeast Atlantic Ocean, west of Spain. The main geological features within the 64 by 20 km (1280 km²) 3D box investigated by the survey are the peridotite ridge (PR), the fault bounded, rotated basement blocks and the S reflector, which has been interpreted to be a low angle detachment fault. 44 short period four-component ocean bottom seismometers and 28 ocean bottom hydrophones were deployed in the 3D box. 3D MCS profiles sampling the whole box were acquired with two airgun arrays of 3300 cu.in. fired alternately every 37.5 m. We present the results from 3D first-arrival time tomography that constrains the P-wave velocity in the 3D box, for the entire depth sampled by reflection data. Results are validated by synthetic tests and by the comparison with Galicia 3D MCS lines. The main outcomes are as follows: 1- The 3.5 km/s iso-velocity contour mimics the top of the acoustic basement observed on MCS profiles. Block bounding faults are imaged as velocity contrasts and basement blocks exhibit 3D topographic variations. 2- On the southern profiles, the top of the PR rises up to 5.5 km depth whereas, 20 km northward, its basement expression (at 6.5 km depth) nearly disappears. 3- The 6.5 km/s iso-velocity contour matches the topography of the S reflector where the latter is visible on MCS profiles. Within a depth interval of 0.6 km (in average), velocities beneath the S reflector increase from 6.5 km/s to 7 km/s, which would correspond to a decrease in the degree of serpentinization from ~45 % to ~30 % if these velocity variations are caused solely by variations in hydration. At the intersections between the block bounding normal faults and the S reflector, this decrease happens over a larger depth interval (> 1 km), suggesting that faults act as conduit for the water flow in the upper mantle.

  10. Surface acoustic wave velocity and elastic constants of cubic GaN

    NASA Astrophysics Data System (ADS)

    Jiménez Riobóo, Rafael J.; Cuscó, Ramon; Prieto, Carlos; Kopittke, Caroline; Novikov, Sergei V.; Artús, Luis

    2016-06-01

    We present high-resolution surface Brillouin scattering measurements on cubic GaN layers grown on GaAs substrate. By using a suitable scattering geometry, scattering by surface acoustic waves is recorded for different azimuthal angles, and the surface acoustic wave velocities are determined. A comparison of experimental results with numerical simulations of the azimuthal dependence of the surface wave velocity shows good agreement and allows a consistent set of elastic constants for c-GaN to be determined.

  11. Comparision between crustal density and velocity variations in Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hauksson, E.

    2001-01-01

    We predict gravity from a three-dimensional Vp model of the upper crust and compare it to the observed isostatic residual gravity field. In general this comparison shows that the isostatic residual gravity field reflects the density variations in the upper to middle crust. Both data sets show similar density variations for the upper crust in areas such as the Peninsular Ranges and the Los Angeles basin. Both show similar variations across major faults, such as the San Andreas and Garlock faults in the Mojave Desert. The difference between the two data sets in regions such as the Salton Trough, the Eastern California Shear Zone, and the eastern Ventura basin (where depth to Moho is <30 km), however, suggests high-density middle to lower crust beneath these regions. Hence the joint interpretation of these data sets improves the depth constraints of crustal density variations.

  12. Crustal shear-wave velocity structure beneath Sumatra from receiver function modeling

    NASA Astrophysics Data System (ADS)

    Bora, Dipok K.; Borah, Kajaljyoti; Goyal, Ayush

    2016-05-01

    We estimated the shear-wave velocity structure and Vp/Vs ratio of the crust beneath the Sumatra region by inverting stacked receiver functions from five three-component broadband seismic stations, located in diverse geologic setting, using a well known non-linear direct search approach, Neighborhood Algorithm (NA). Inversion results show significant variation of sediment layer thicknesses from 1 km beneath the backarc basin (station BKNI and PMBI) to 3-7 km beneath the coastal part of Sumatra region (station LHMI and MNAI) and Nias island (station GSI). Average sediment layer shear velocity (Vss) beneath all the stations is observed to be less (∼1.35 km/s) and their corresponding Vp/Vs ratio is very high (∼2.2-3.0). Crustal thickness beneath Sumatra region varies between 27 and 35 km, with exception of 19 km beneath Nias island, with average crustal Vs ∼3.1-3.4 km/s (Vp/Vs ∼1.8). It is well known that thick sediments with low Vs (and high Vp/Vs) amplify seismic waves even from a small-magnitude earthquake, which can cause huge damage in the zone. This study can provide the useful information of the crust for the Sumatra region. Since, Sumatra is an earthquake prone zone, which suffered the strong shaking of Great Andaman-Sumatra earthquake; this study can also be helpful for seismic hazard assessment.

  13. Discussion on origin of Pn velocity variation in China and adjacent region

    NASA Astrophysics Data System (ADS)

    Pei, Shun-Ping; Xu, Zhong-Huai; Wang, Su-Yun

    2004-01-01

    Pn velocity lateral variation and anisotropy images were reconstructed by adding about 50 000 travel times from the regional seismic networks to the datum set of near 40 000 travel times from National Seismic Network of China used by WANG, et al. We discussed the relation of Pn velocity variation to Moho depth, Earth’s heat flow, distribution of Cenozoic volcanic rock and the result of rock experiment under high pressure and high temperature. The result of quantitative analysis indicates that Pn velocity is positively correlated with the crust thickness and negatively correlated with the Earth’s heat flow. Two linear regression equations, one between Pn velocity and crust thickness, and the other between Pn velocity and heat flow, were obtained. The rate of variation of Pn velocity ν p with pressure P, ∂ ν p/∂ P, estimated from the velocity variation with crust thickness, ∂ ν p/∂ H is close to the result obtained from the rock experiment under high pressure and high temperature. If the effect of crust thickness on Pn velocity is deducted from the velocity variation, then the low Pn velocity beneath Qinghai-Xizang plateau is more notable. The low Pn velocity regions well agree with the Cenozoic volcanic rock. In the several regions with significant anisotropy, the direction of fast Pn velocity is consistent with the orientation of maximum principal crustal compressive stress, and also with the direction of present-day crustal movement. It indicates that the fast Pn velocity direction may be related to the deformation or flow of top mantle material along the direction of maximum pressure.

  14. Compressional and shear-wave velocity versus depth relations for common rock types in northern California

    USGS Publications Warehouse

    Brocher, T.M.

    2008-01-01

    This article presents new empirical compressional and shear-wave velocity (Vp and Vs) versus depth relationships for the most common rock types in northern California. Vp versus depth relations were developed from borehole, laboratory, seismic refraction and tomography, and density measurements, and were converted to Vs versus depth relations using new empirical relations between Vp and Vs. The relations proposed here account for increasing overburden pressure but not for variations in other factors that can influence velocity over short distance scales, such as lithology, consolidation, induration, porosity, and stratigraphic age. Standard deviations of the misfits predicted by these relations thus provide a measure of the importance of the variability in Vp and Vs caused by these other factors. Because gabbros, greenstones, basalts, and other mafic rocks have a different Vp and Vs relationship than sedimentary and granitic rocks, the differences in Vs between these rock types at depths below 6 or 7 km are generally small. The new relations were used to derive the 2005 U.S. Geological Survey seismic velocity model for northern California employed in the broadband strong motion simulations of the 1989 Loma Prieta and 1906 San Francisco earthquakes; initial tests of the model indicate that the Vp model generally compares favorably to regional seismic tomography models but that the Vp and Vs values proposed for the Franciscan Complex may be about 5% too high.

  15. A lithospheric velocity model for the flat slab region of Argentina from joint inversion of Rayleigh wave phase velocity dispersion and teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Ammirati, Jean-Baptiste; Alvarado, Patricia; Beck, Susan

    2015-07-01

    In the central Andes, the Nazca plate displays large along strike variations in dip with a near horizontal subduction angle between 28 and 32°S referred to the Pampean flat slab segment. The upper plate above the Pampean flat slab has high rates of crustal seismicity and active basement cored uplifts. The SIEMBRA experiment, a 43-broad-band-seismic-station array was deployed to better characterize the Pampean flat slab region around 31°S. In this study, we explore the lithospheric structure above the flat slab as a whole and its relation to seismicity. We use the SIEMBRA data to perform a joint inversion of teleseismic receiver functions and Rayleigh wave phase velocity dispersion to constrain the shear wave velocity variations in the lithosphere. Our joint inversion results show: (1) the presence of several upper-plate mid-crustal discontinuities and their lateral extent that are probably related to the terrane accretion history; (2) zones of high shear wave velocity in the upper-plate lower crust associated with a weak Moho signal consistent with the hypothesis of partial eclogitization in the lower crust; (3) the presence of low shear-wave velocities at ˜100 km depth interpreted as the subducting oceanic crust. Finally, in order to investigate the relation of the lithospheric structure to seismicity, we determine an optimal velocity-depth model based on the joint inversion results and use it to perform regional moment tensor inversions (SMTI) of crustal and slab earthquakes. The SMTI for 18 earthquakes that occurred between 2007 and 2009 in the flat slab region below Argentina, indicates systematically shallower focal depths for slab earthquakes (compared with inversions using previous velocity models). This suggests that the slab seismicity is concentrated mostly between 90 and 110 km depths within the subducting Nazca plate's oceanic crust and likely related to dehydration. In addition, the slab earthquakes exhibit extensional focal mechanisms suggesting

  16. Laboratory coda wave interferometry for the monitoring of rock property variations

    NASA Astrophysics Data System (ADS)

    Schmittbuhl, Jean; Chaintreuil, Marie; Lengliné, Olivier; Griffiths, Luke; Heap, Mike; Baud, Patrick

    2016-04-01

    A significant effort is on-going in the community to continuously monitor deep geothermal reservoirs using ambient seismic noise tomography (e.g. Calo et al, 2013; Lehujeur et al, 2015). It is a method that determines the Green's function between a pair of receivers by correlating sufficiently long seismic noise records. Very small changes of the medium are accessible using this new monitoring technique (significantly smaller than those deduced from direct arrivals). In particular, very small variations of seismic velocities are shown to appear both in time and space during the stimulation of the reservoir. A central question is how to interpret these transient or lateral variations of the seismic velocities for a precise 4D tomography of the reservoir properties. In this study, we address the direct problem of monitoring small variations in seismic velocities when small variations in stress or temperature are slowly applied to the sample. We use a network of piezo-electric sensors on laboratory samples (sandstone and granite from Soultz-sous-Forêts core samples) to perform coda wave interferometry from the multiple scattering of well-controlled seismic pulses (Grêt et al, 2006). The data collected are estimates of the relative variation of travel time. We combine acoustic measurements and strain gauges to differentiate between travel time variations due to seismic velocity changes and those due to deformation effects. We expect this approach to provide useful information for large scale seismic tomography despite the significant difference of considered wavelengths.

  17. Estimation of friction velocity from the wind-wave spectrum at extremely high wind speeds

    NASA Astrophysics Data System (ADS)

    Takagaki, N.; Komori, S.; Suzuki, N.

    2016-05-01

    The equilibrium range of wind-waves at normal and extremely high wind speeds was investigated experimentally using a high-speed wind-wave tank together with field measurements at normal wind speeds. Water level fluctuations at normal and extremely high wind speeds were measured with resistance-type wave gauges, and the wind-wave spectrum and significant phase velocity were calculated. The equilibrium range constant was estimated from the wind-wave spectrum and showed the strong relationship with inverse wave age at normal and extremely high wind speeds. Using the strong relation between the equilibrium range constant and inverse wave age, a new method for estimating the wind speed at 10-m height (U 10) and friction velocity (u*) was proposed. The results suggest that U 10 and u* can be estimated from wave measurements alone at extremely high wind speeds in oceans under tropical cyclones.

  18. LITHOSTRATIGRAPHY AND SHEAR-WAVE VELOCITY IN THE CRYSTALLIZED TOPOPAH SPRING TUFF, YUCCA MOUNTAIN, NEVADA

    SciTech Connect

    D. BUESCH; K.H. STOKOE; M. SCHUHEN

    2006-03-20

    Evaluation of the seismic response of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities, rims on lithophysae and some fractures, spots (which are similar to rims but without an associated cavity or aperture), amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization, and fractures. Seismic properties, including shear-wave velocity (V{sub s}), have been measured on 38 pieces of core, and there is a good ''first order'' correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger V{sub s} values compared to samples from lithophysal zones. Some samples have V{sub s} values that are beyond the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, ''large'' lithophysal cavities, or ''missing pieces'' relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as V{sub s} data from small-scale samples (typical and ''flawed'' core) to larger scale traverses in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties.

  19. Variational Water Wave Modelling: from Continuum to Experiment

    NASA Astrophysics Data System (ADS)

    Bokhove, Onno; Kalogirou, Anna

    2015-04-01

    Variational methods are investigated asymptotically and numerically to model water waves in tanks with wave generators. A modified Benney-Luke model is derived using variational techniques including a time-dependent gravitional potential mimicking a removable "sluice gate". As a validation, our modelling results using (dis)continuous Galerkin finite elements will be compared to a soliton splash event resulting after a sluice gate is removed during a finite time in a long water channel with a contraction at its end. Future work will explore these methods for wave-energy devices and ships in modest to heavy seas.

  20. Simultaneous realization of negative group velocity, fast and slow acoustic waves in a metamaterial

    NASA Astrophysics Data System (ADS)

    Li, Xiao-juan; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Chen, Zhe; Ding, Jin; Zhang, Hui

    2016-06-01

    An acoustic metamaterial is designed based on a simple and compact structure of one string of side pipes arranged along a waveguide, in which diverse group velocities are achieved. Owing to Fabry-Perot resonance of the side pipes, a negative phase time is achieved, and thus, acoustic waves transmitting with negative group velocities are produced near the resonant frequency. In addition, both fast and slow acoustic waves are also observed in the vicinity of the resonance frequency. The extraordinary group velocities can be explained based on spectral rephasing induced by anomalous dispersion on the analogy of Lorentz dispersion in electromagnetic waves.

  1. Shear-wave velocity structure of young Atlantic Lithosphere from dispersion analysis and waveform modelling of Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Lange, Dietrich; Schippkus, Sven

    2016-04-01

    The lithosphere is the outermost solid layer of the Earth and includes the brittle curst and brittle uppermost mantle. It is underlain by the asthenosphere, the weaker and hotter portion of the mantle. The boundary between the brittle lithosphere and the asthenosphere is call the lithosphere-asthenosphere boundary, or LAB. The oceanic lithosphere is created at spreading ridges and cools and thickens with age. Seismologists define the LAB by the presence of a low shear wave velocity zone beneath a high velocity lid. Surface waves from earthquakes occurring in young oceanic lithosphere should sample lithospheric structure when being recorded in the vicinity of a mid-ocean ridge. Here, we study group velocity and dispersion of Rayleigh waves caused by earthquakes occurring at transform faults in the Central Atlantic Ocean. Earthquakes were recorded either by a network of wide-band (up to 60 s) ocean-bottom seismometers (OBS) deployed at the Mid-Atlantic Ridge near 15°N or at the Global Seismic Network (GSN) Station ASCN on Ascension Island. Surface waves sampling young Atlantic lithosphere indicate systematic age-dependent changes of group velocities and dispersion of Rayleigh waves. With increasing plate age maximum group velocity increases (as a function of period), indicating cooling and thickening of the lithosphere. Shear wave velocity is derived inverting the observed dispersion of Rayleigh waves. Further, models derived from the OBS records were refined using waveform modelling of vertical component broadband data at periods of 15 to 40 seconds, constraining the velocity structure of the uppermost 100 km and hence in the depth interval of the mantle where lithospheric cooling is most evident. Waveform modelling supports that the thickness of lithosphere increases with age and that velocities in the lithosphere increase, too.

  2. Variations of seismic velocities in the Kachchh rift zone, Gujarat, India, during 2001-2013

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik

    2016-03-01

    We herein study variations of seismic velocities in the main rupture zone (MRZ) of the Mw 7.7 2001 Bhuj earthquake for the time periods [2001-05, 2006-08, 2009-10 and 2011-13], by constructing dVp(%), dVs(%) and d(Vp/Vs)(%) tomograms using high-quality arrival times of 28,902 P- and 28,696 S-waves from 4644 precise JHD (joint hypocentral determination) relocations of local events. Differential tomograms for 2001-05 reveal a marked decrease in seismic velocities (low dVp, low dVs and high d(Vp/Vs)) in the MRZ (at 5-35 km depths) during 2001-10, which is attributed to an increase in crack/fracture density (higher pore fluid pressure) resulted from the intense fracturing that occurred during the mainshock and post-seismic periods. While we observe a slight recovery or increase in seismic velocities 2011-13, this could be related to the healing process (lower pore fluid pressure due to sealing of cracks) of the causative fault zone of the 2001 Bhuj mainshock. The temporal reduction in seismic velocities is observed to be higher at deeper levels (more fluid enrichment under near-lithostatic pressure) than that at shallower levels. Fluid source for low velocity zone (LVZ) at 0-10 km depths (with high d(Vp/Vs)) could be attributed to the presence of meteoric water or soft alluvium sediments with higher water content, while fluid source for LVZ at 10-35 km depths could be due to the presence of brine fluids (released from the metamorphic dewatering) and volatile CO2 (emanating from the crystallization of carbonatite melts in the asthenosphere), in fractures and pores. We also imaged two prominent LVZs associated with the Katrol Hill fault zone and Island Belt fault zone, extending from shallow upper-crust to sub-crustal depth, which might be facilitating the deeper circulation of metamorphic fluids/volatile CO2, thereby, the generation of lower crustal earthquakes occurring in the Kachchh rift zone.

  3. On the latitude dependence of drift velocity of the geomagnetic main field and its secular variation

    NASA Astrophysics Data System (ADS)

    Yukutake, Takesi; Shimizu, Hisayoshi

    2016-08-01

    There is an apparent difference in the westward drift between the geomagnetic main field and its time derivative, secular variation. The drift velocity of the main field is about 0.2°/year, definitely lower than that of the secular variation, 0.3°/year. The drift velocity of the main field appears to change with latitude, being low at high latitudes and higher at low latitudes, whereas the velocity of the secular variation is nearly constant irrespective of latitude. This paper examines what causes this difference by adopting the drifting and standing field model that assumes the geomagnetic field consists of the field steadily drifting westwards and the field remaining at nearly the same location. In this study, we confirm that the existence of the non-drifting standing field significantly affects the estimate of the drift velocity of the total field (i.e., the main field), and makes it slower than that of the secular variation. The drifting field is intense in low latitudes with its maximum at the equator, while the standing field dominates in higher latitudes. As a consequence, reduction of the apparent drifting velocity of the total field by the standing field is conspicuous in higher latitudes and less so in low latitudes. This creates the observed latitudinal structure of the drift velocity of the main field. On the other hand, the drift velocity of the secular variation is less affected by existence of the standing field, and mostly reflects the velocity of the drifting field that is almost constant with latitude. The velocity of the secular variation thus becomes almost uniform independent of latitude. The observed difference between the main field and the secular variation is naturally derived from the drifting and standing field model. This implies that physical mechanisms to generate the drifting and standing fields can be considered independently.

  4. Rayleigh wave phase velocity maps from the ambient noise tomography in central Mongolia

    NASA Astrophysics Data System (ADS)

    Pan, J.; Wu, Q.; Gao, M.; Li, Y.; Demberel, S. G.; Munkhuu, U.

    2013-12-01

    periods shorter than 10 s, the phase velocity variations are well correlated with the principal geological units, with low-speed anomalies corresponding to the sedimentary basins and high-speed anomalies coinciding with the main mountain ranges. Within the period range from 20 s to 30 s, phase velocity distribution is correlated to the crust thickness. However, the value of phase velocities have little lateral changes with ~0.15km/s on each map for the whole period band ranging from 5 s to 30 s, indicating that it doesn't have big lateral heterogeneity for shear wave structure in the crust and upper mantle in the study region.This study was supported by the international cooperation project of the Ministry of Science and Technology of China (2011DFB20120) and NSFC (41104029)

  5. Shock Velocity Variations in Supernova Remnant Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Drake, R. P.; Carroll, J. J., III; Smith, T. B.; Reisig, H. N.; Glendinning, S. G.; Estabrook, K.; Remington, B. A.; Wallace, R.; McCray, R.

    1998-11-01

    We are studying the hydrodynamic behavior of a laboratory system that is a good scaled model of young supernova remnants. The hydrodynamic effects are driven by a supersonic flow, produced by the Nova laser. It does this by driving a strong shock, produced by x-ray ablation, out the back of a plastic slab. The ejecta expand, accelerate, cool, and then impact a low-density foam. There the ejecta stagnate and form a reverse shock while driving a strong shock forward through the foam. We observe this hydrodynamic assembly by x-ray radiography. The shock velocities in one case agree with those found by a computer simulation, while in another case they do not. We will report our investigation of this discrepancy. (Work supported by the US Department of Energy under LLNL LDRD-ER Grant No. 97-ERD-022 and by the University of Michigan.)

  6. Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection.

    PubMed

    Nagy, Peter B; Simonetti, Francesco; Instanes, Geir

    2014-09-01

    Recent improvements in tomographic reconstruction techniques generated a renewed interest in short-range ultrasonic guided wave inspection for real-time monitoring of internal corrosion and erosion in pipes and other plate-like structures. Emerging evidence suggests that in most cases the fundamental asymmetric A0 mode holds a distinct advantage over the earlier market leader fundamental symmetric S0 mode. Most existing A0 mode inspections operate at relatively low inspection frequencies where the mode is highly dispersive therefore very sensitive to variations in wall thickness. This paper examines the potential advantages of increasing the inspection frequency to the so-called constant group velocity (CGV) point where the group velocity remains essentially constant over a wide range of wall thickness variation, but the phase velocity is still dispersive enough to allow accurate wall thickness assessment from phase angle measurements. This paper shows that in the CGV region the crucial issue of temperature correction becomes especially simple, which is particularly beneficial when higher-order helical modes are also exploited for tomography. One disadvantage of working at such relatively high inspection frequency is that, as the slower A0 mode becomes faster and less dispersive, the competing faster S0 mode becomes slower and more dispersive. At higher inspection frequencies these modes cannot be separated any longer based on their vibration polarization only, which is mostly tangential for the S0 mode while mostly normal for the A0 at low frequencies, as the two modes become more similar as the frequency increases. Therefore, we propose a novel method for suppressing the unwanted S0 mode based on the Poisson effect of the material by optimizing the angle of inclination of the equivalent transduction force of the Electromagnetic Acoustic Transducers (EMATs) used for generation and detection purposes. PMID:24582555

  7. Estimating wave orbital velocity through the azimuth cutoff from space-borne satellites

    NASA Astrophysics Data System (ADS)

    Stopa, Justin E.; Ardhuin, Fabrice; Chapron, Bertrand; Collard, Fabrice

    2015-11-01

    It has been long accepted that ocean wave conditions recorded from synthetic aperture radar (SAR) aboard satellites resolve large scale swells. SARs make use of its displacement to achieve fine resolution; however the random surface motions can reduce its nominal azimuthal resolution. Accordingly, the SAR spectral azimuth response mirrors the probability distribution of the radial velocity component of the scatters. This effect, quantified in a measure called the azimuth cutoff, is estimated by defining a scale based on the fitting of a Gaussian function to the radar cross section azimuth spectrum. The independent measure provides additional sea state information related to the root mean square surface orbital wave velocity. We use data recorded from the European Space Agency's ENVISAT advanced SAR in the C-band spanning its lifetime 2003-2012. Our purpose is to first establish the validity of the azimuth cutoff using both colocated buoys and modeled wave data. Some systematic biases are corrected using other SAR derived parameters, improving the accuracy of the estimate. Despite our efforts, errors exist in the presence of swell, extreme wind waves, and related to the wave direction. Under the majority of the sea states the parameter is well behaved. As a final point, applications using the wave orbital velocities are described in terms of diagnosing a spectral wave model and the wave climate. As illustrated, the returned radar signal provides useful sea state information that resolves wind speeds, wave orbital velocities from the wind waves, and swells.

  8. P-wave velocity structure offshore central Sumatra: implications for compressional and strike-slip faulting

    NASA Astrophysics Data System (ADS)

    Karplus, M.; Henstock, T.; McNeill, L. C.; Vermeesch, P. M. T.; Barton, P. J.

    2014-12-01

    The Sunda subduction zone features significant along-strike structural variability including changes in accretionary prism and forearc morphology. Some of these changes have been linked to changes in megathrust faulting styles, and some have been linked to other thrust and strike-slip fault systems across this obliquely convergent margin (~54-58 mm/yr convergence rate, 40-45 mm/yr subduction rate). We examine these structural changes in detail across central Sumatra, from Siberut to Nias Island, offshore Indonesia. In this area the Investigator Fracture Zone and the Wharton Fossil Ridge, features with significant topography, are being subducted, which may affect sediment thickness variation and margin morphology. We present new seismic refraction P-wave velocity models using marine seismic data collected during Sonne cruise SO198 in 2008. The experiment geometry consisted of 57 ocean bottom seismometers, 23 land seismometers, and over 10,000 air gun shots recorded along ~1750 km of profiles. About 130,000 P-wave first arrival refractions were picked, and the picks were inverted using FAST (First Arrivals Refraction Tomography) 3-D to give a velocity model, best-resolved in the top 25 km. Moho depths, crustal composition, prism geometry, slab dip, and upper and lower plate structures provide insight into the past and present tectonic processes at this plate boundary. We specifically examine the relationships between velocity structure and faulting locations/ styles. These observations have implications for strain-partitioning along the boundary. The Mentawai Fault, located west of the forearc basin in parts of Central Sumatra, has been interpreted variably as a backthrust, strike-slip, and normal fault. We integrate existing data to evaluate these hypotheses. Regional megathrust earthquake ruptures indicate plate boundary segmentation in our study area. The offshore forearc west of Siberut is almost aseismic, reflecting the locked state of the plate interface, which

  9. A Variational Property of the Velocity Distribution in a System of Material Particles

    ERIC Educational Resources Information Center

    Siboni, S.

    2009-01-01

    A simple variational property concerning the velocity distribution of a set of point particles is illustrated. This property provides a full characterization of the velocity distribution which minimizes the kinetic energy of the system for prescribed values of linear and angular momentum. Such a characterization is applied to discuss the kinetic…

  10. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2007-01-01

    Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.