Science.gov

Sample records for wave-sensitive lws opsins

  1. Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri

    PubMed Central

    2010-01-01

    Background Long wave-sensitive (LWS) opsin genes have undergone multiple lineage-specific duplication events throughout the evolution of teleost fishes. LWS repertoire expansions in live-bearing fishes (family Poeciliidae) have equipped multiple species in this family with up to four LWS genes. Given that color vision, especially attraction to orange male coloration, is important to mate choice within poeciliids, LWS opsins have been proposed as candidate genes driving sexual selection in this family. To date the genomic organization of these genes has not been described in the family Poeciliidae, and little is known about the mechanisms regulating the expression of LWS opsins in any teleost. Results Two BAC clones containing the complete genomic repertoire of LWS opsin genes in the green swordtail fish, Xiphophorus helleri, were identified and sequenced. Three of the four LWS loci identified here were linked in a tandem array downstream of two tightly linked short wave-sensitive 2 (SWS2) opsin genes. The fourth LWS opsin gene, containing only a single intron, was not linked to the other three and is the product of a retrotransposition event. Genomic and phylogenetic results demonstrate that the LWS genes described here share a common evolutionary origin with those previously characterized in other poeciliids. Using qualitative RT-PCR and MSP we showed that each of the LWS and SWS2 opsins, as well as three other cone opsin genes and a single rod opsin gene, were expressed in the eyes of adult female and male X. helleri, contributing to six separate classes of adult retinal cone and rod cells with average λmax values of 365 nm, 405 nm, 459 nm, 499 nm, 534 nm and 568 nm. Comparative genomic analysis identified two candidate teleost opsin regulatory regions containing putative CRX binding sites and hormone response elements in upstream sequences of LWS gene regions of seven teleost species, including X. helleri. Conclusions We report the first complete genomic

  2. LIA: LWS Interactive Analysis

    NASA Astrophysics Data System (ADS)

    Infrared Space Observatory (ISO) Development Team

    2014-08-01

    The Long Wavelength Spectrometer (LWS) was one of two complementary spectrometers on the Infrared Space Observatory (ISO). LIA (LWS Interactive Analysis) is used for processing data from the LWS. It provides access to the different processing steps, including visualization of intermediate products and interactive manipulation of the data at each stage.

  3. The opsins

    PubMed Central

    Terakita, Akihisa

    2005-01-01

    The photosensitive molecule rhodopsin and its relatives consist of a protein moiety - an opsin - and a non-protein moiety - the chromophore retinal. Opsins, which are G-protein-coupled receptors (GPCRs), are found in animals, and more than a thousand have been identified so far. Detailed molecular phylogenetic analyses show that the opsin family is divided into seven subfamilies, which correspond well to functional classifications within the family: the vertebrate visual (transducin-coupled) and non-visual opsin subfamily, the encephalopsin/tmt-opsin subfamily, the Gq-coupled opsin/melanopsin subfamily, the Go-coupled opsin subfamily, the neuropsin subfamily, the peropsin subfamily and the retinal photoisomerase subfamily. The subfamilies diversified before the deuterostomes (including vertebrates) split from the protostomes (most invertebrates), suggesting that a common animal ancestor had multiple opsin genes. Opsins have a seven-transmembrane structure similar to that of other GPCRs, but are distinguished by a lysine residue that is a retinal-binding site in the seventh helix. Accumulated evidence suggests that most opsins act as pigments that activate G proteins in a light-dependent manner in both visual and non-visual systems, whereas a few serve as retinal photoisomerases, generating the chromophore used by other opsins, and some opsins have unknown functions. PMID:15774036

  4. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish

    PubMed Central

    Frey, Ruth A.; Hunter, Samuel S.; Ashino, Ryuichi; Kawamura, Shoji; Stenkamp, Deborah L.

    2015-01-01

    The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array. PMID:26296154

  5. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution

    PubMed Central

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A.; Holland, Peter W.H.

    2016-01-01

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically. PMID:26865071

  6. A Fish Eye Out of Water: Ten Visual Opsins in the Four-Eyed Fish, Anableps anableps

    PubMed Central

    Owens, Gregory L.; Windsor, Diana J.; Mui, Justin; Taylor, John S.

    2009-01-01

    The “four-eyed” fish Anableps anableps has numerous morphological adaptations that enable above and below-water vision. Here, as the first step in our efforts to identify molecular adaptations for aerial and aquatic vision in this species, we describe the A. anableps visual opsin repertoire. We used PCR, cloning, and sequencing to survey cDNA using unique primers designed to amplify eight sequences from five visual opsin gene subfamilies, SWS1, SWS2, RH1, RH2, and LWS. We also used Southern blotting to count opsin loci in genomic DNA digested with EcoR1 and BamH1. Phylogenetic analyses confirmed the identity of all opsin sequences and allowed us to map gene duplication and divergence events onto a tree of teleost fish. Each of the gene-specific primer sets produced an amplicon from cDNA, indicating that A. anableps possessed and expressed at least eight opsin genes. A second PCR-based survey of genomic and cDNA uncovered two additional LWS genes. Thus, A. anableps has at least ten visual opsins and all but one were expressed in the eyes of the single adult surveyed. Among these ten visual opsins, two have key site haplotypes not found in other fish. Of particular interest is the A. anableps-specific opsin in the LWS subfamily, S180γ, with a SHYAA five key site haplotype. Although A. anableps has a visual opsin gene repertoire similar to that found in other fishes in the suborder Cyprinodontoidei, the LWS opsin subfamily has two loci not found in close relatives, including one with a key site haplotype not found in any other fish species. A. anableps opsin sequence data will be used to design in situ probes allowing us to test the hypothesis that opsin gene expression differs in the distinct ventral and dorsal retinas found in this species. PMID:19551143

  7. Rod Monochromacy and the Coevolution of Cetacean Retinal Opsins

    PubMed Central

    Meredith, Robert W.; Gatesy, John; Emerling, Christopher A.; York, Vincent M.; Springer, Mark S.

    2013-01-01

    Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the “coastal” hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among

  8. Rod monochromacy and the coevolution of cetacean retinal opsins.

    PubMed

    Meredith, Robert W; Gatesy, John; Emerling, Christopher A; York, Vincent M; Springer, Mark S

    2013-04-01

    Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the "coastal" hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among

  9. Short Wavelength Cone Opsin Is Not Expressed in the Retina of Arboreal African Pangolin (Manis tricuspis)

    PubMed Central

    Adekanmbi, Adejoke J.; Adekanmbi, Adefisayo A.; Akinola, Oluwole B.

    2016-01-01

    This paper reports a study of cone photoreceptors present in the retina of Manis tricuspis. Specifically, the LWS (L-) opsin expressed in longwave-sensitive cones and SWS1 (S-) opsin shortwave-sensitive cones were targeted. Vertical sections revealed reactivity to a cone marker, peanut agglutinin (PNA), and to an LWS antibody, but not to an SWS1 antibody. This suggests that the Manis tricuspis visual system is not able to discriminate shorter wavelengths from longer wavelengths because the short wavelength cones are not expressed in their retina. PMID:27242946

  10. Short Wavelength Cone Opsin Is Not Expressed in the Retina of Arboreal African Pangolin (Manis tricuspis).

    PubMed

    Adekanmbi, Adejoke J; Adekanmbi, Adefisayo A; Akinola, Oluwole B

    2016-01-01

    This paper reports a study of cone photoreceptors present in the retina of Manis tricuspis. Specifically, the LWS (L-) opsin expressed in longwave-sensitive cones and SWS1 (S-) opsin shortwave-sensitive cones were targeted. Vertical sections revealed reactivity to a cone marker, peanut agglutinin (PNA), and to an LWS antibody, but not to an SWS1 antibody. This suggests that the Manis tricuspis visual system is not able to discriminate shorter wavelengths from longer wavelengths because the short wavelength cones are not expressed in their retina. PMID:27242946

  11. Evolution of opsin expression in birds driven by sexual selection and habitat.

    PubMed

    Bloch, Natasha I

    2015-01-01

    Theories of sexual and natural selection predict coevolution of visual perception with conspecific colour and/or the light environment animals occupy. One way to test these theories is to focus on the visual system, which can be achieved by studying the opsin-based visual pigments that mediate vision. Birds vary greatly in colour, but opsin gene coding sequences and associated visual pigment spectral sensitivities are known to be rather invariant across birds. Here, I studied expression of the four cone opsin genes (Lws, Rh2, Sws2 and Sws1) in 16 species of New World warblers (Parulidae). I found levels of opsin expression vary both across species and between the sexes. Across species, female, but not male Sws2 expression is associated with an index of sexual selection, plumage dichromatism. This fits predictions of classic sexual selection models, in which the sensory system changes in females, presumably impacting female preference, and co-evolves with male plumage. Expression of the opsins at the extremes of the light spectrum, Lws and Uvs, correlates with the inferred light environment occupied by the different species. Unlike opsin spectral tuning, regulation of opsin gene expression allows for fast adaptive evolution of the visual system in response to natural and sexual selection, and in particular, sex-specific selection pressures. PMID:25429020

  12. RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - a species with color-based sexual selection and 11 visual-opsin genes

    PubMed Central

    2011-01-01

    Background PCR-based surveys have shown that guppies (Poecilia reticulata) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. However, this conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Here, we used RT-qPCR to survey visual-opsin gene expression in the eyes of males, females, and juveniles in order to further understand color-based sexual selection from the perspective of the visual system. Results Juvenile and adult (male and female) guppies express 10 visual opsins at varying levels in the eye. Two opsin genes in juveniles, SWS2B and RH2-2, accounted for >85% of all visual-opsin transcripts in the eye, excluding RH1. This relative abundance (RA) value dropped to about 65% in adults, as LWS-A180 expression increased from approximately 3% to 20% RA. The juvenile-to-female transition also showed LWS-S180 upregulation from about 1.5% to 7% RA. Finally, we found that expression in guppies' SWS2-LWS gene cluster is negatively correlated with distance from a candidate locus control region (LCR). Conclusions Selective pressures influencing visual-opsin gene expression appear to differ among age and sex. LWS upregulation in females is implicated in augmenting spectral discrimination of male coloration and courtship displays. In males, enhanced discrimination of carotenoid-rich food and possibly rival males are strong candidate selective pressures driving LWS upregulation. These developmental changes in expression suggest that adults possess better wavelength discrimination than juveniles. Opsin expression within the SWS2-LWS gene cluster appears to be regulated, in part, by a common LCR. Finally, by comparing our RT-qPCR data to MSP data, we were able to propose the

  13. Euarchontan Opsin Variation Brings New Focus to Primate Origins

    PubMed Central

    Melin, Amanda D.; Wells, Konstans; Moritz, Gillian L.; Kistler, Logan; Orkin, Joseph D.; Timm, Robert M.; Bernard, Henry; Lakim, Maklarin B.; Perry, George H.; Kawamura, Shoji; Dominy, Nathaniel J.

    2016-01-01

    Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. PMID:26739880

  14. Euarchontan Opsin Variation Brings New Focus to Primate Origins.

    PubMed

    Melin, Amanda D; Wells, Konstans; Moritz, Gillian L; Kistler, Logan; Orkin, Joseph D; Timm, Robert M; Bernard, Henry; Lakim, Maklarin B; Perry, George H; Kawamura, Shoji; Dominy, Nathaniel J

    2016-04-01

    Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. PMID:26739880

  15. Short- and long-wavelength-sensitive opsins are involved in photoreception both in the retina and throughout the central nervous system of crayfish.

    PubMed

    Kingston, Alexandra C N; Cronin, Thomas W

    2015-12-01

    Crayfish have two classes of photoreceptors in the retinas of their reflecting superposition eyes. Long-wavelength-sensitive photoreceptors, comprised of microvilli from R1-7 cells, make up the main rhabdoms. Eighth retinular cells, located distal to the main rhabdoms, house short-wavelength-sensitive photoreceptors. While the opsin involved in long-wavelength sensitivity has long been known, we present the first description of the short-wavelength-sensitive opsin in the retina of the red swamp crayfish, Procambarus clarkii. The expression patterns of these SWS and LWS opsin proteins in the retina are consistent with the previously described locations of SWS and LWS receptors. Crayfish also have a well-characterized extraocular photoreceptor, called the caudal photoreceptor, located in the sixth abdominal ganglion. To search for retinal opsins in the caudal photoreceptor (and elsewhere in the CNS), we used RT-PCR and immunohistochemical labeling. We found both SWS and LWS opsin transcripts not only in the sixth abdominal ganglion, but also in all ganglia of the nerve cord. Immunolabeling shows that both opsins are expressed in nerve fibers that extend from the brain through the entire length of the CNS. Thus, the same two photopigments are used both for vision in the retina and for extraocular functions throughout the CNS of crayfish. PMID:26445969

  16. In the four-eyed fish (Anableps anableps), the regions of the retina exposed to aquatic and aerial light do not express the same set of opsin genes

    PubMed Central

    Owens, Gregory L.; Rennison, Diana J.; Allison, W. Ted; Taylor, John S.

    2012-01-01

    The four-eyed fish, Anableps anableps, has eyes with unusual morphological adaptations for simultaneous vision above and below water. The retina, for example, is divided such that one region receives light from the aerial field and the other from the aquatic field. To understand better the adaptive value of this partitioned retina, we characterized photoreceptor distribution using in situ hybridization. Cones expressing sws1, sws2b and rh2-2 (i.e. UV, and short wavelength-sensitive) opsins were found throughout the retina, whereas cones expressing rh2-1 (middle wavelength-sensitive) were largely limited to the ventral retina and those expressing lws (long wavelength-sensitive) opsins were only expressed in the dorsal retina. We next asked when this pattern evolved relative to the ‘four-eyed’ morphology. We characterized opsin expression in Jenynsia onca, a member of the sister genus to Anableps with typical teleost eye morphology. In J. onca, sws1, sws2b, rh2-2 and rh2-1 opsins were expressed throughout the retina; while lws opsins were not expressed in the ventral retina. Thus, the change that coincides with the evolution of unusual anablepid eye morphology is the loss of rh2-1 expression in the dorsal retina, probably to accommodate increased lws opsin expression. The retinal area that samples aerial light appears not to have changed with respect to photoreceptor transcription. PMID:21775314

  17. Opsin expression in adult, developing, and regenerating newt retinas.

    PubMed

    Sakakibara, Shunsuke; Hiramatsu, Hidemasa; Takahashi, Yusuke; Hisatomi, Osamu; Kobayashi, Yuko; Sakami, Sanae; Saito, Takehiko; Tokunaga, Fumio

    2002-06-30

    Japanese common newts (Cynops pyrrhogaster) have an ability to regenerate their neural retina even as adults. Although extensive research has been carried out attempting to understand this retinal regeneration, the molecules characterized in newt retina are limited. We isolated cDNAs encoding three putative opsins (Cp-Rh, -LWS and -SWS1), in addition to Cp-SWS2 [Takahashi et al., FEBS Lett. 501 (2001) 151-155] from a cDNA library of adult newt retina. Our immunohistochemical and in situ hybridization studies demonstrated that Cp-Rh is selectively expressed in rods, whereas the other opsins are expressed in cones. The distribution of opsin mRNAs in normal and regenerated retinas is very similar. In both developing and regenerating retinas, Cp-Rh and its mRNA first appeared in immature rods at the beginning or just after the formation of plexiform layers. Cp-Rh was initially found isotropically in the plasma membrane, and then translocalized to the apical region along with the maturation of regenerating rods. This suggests that reorganization of the intracellular structure takes place during maturation of the regenerating newt photoreceptors. PMID:12106689

  18. Opsin evolution in the Ambulacraria.

    PubMed

    D'Aniello, S; Delroisse, J; Valero-Gracia, A; Lowe, E K; Byrne, M; Cannon, J T; Halanych, K M; Elphick, M R; Mallefet, J; Kaul-Strehlow, S; Lowe, C J; Flammang, P; Ullrich-Lüter, E; Wanninger, A; Arnone, M I

    2015-12-01

    Opsins--G-protein coupled receptors involved in photoreception--have been extensively studied in the animal kingdom. The present work provides new insights into opsin-based photoreception and photoreceptor cell evolution with a first analysis of opsin sequence data for a major deuterostome clade, the Ambulacraria. Systematic data analysis, including for the first time hemichordate opsin sequences and an expanded echinoderm dataset, led to a robust opsin phylogeny for this cornerstone superphylum. Multiple genomic and transcriptomic resources were surveyed to cover each class of Hemichordata and Echinodermata. In total, 119 ambulacrarian opsin sequences were found, 22 new sequences in hemichordates and 97 in echinoderms (including 67 new sequences). We framed the ambulacrarian opsin repertoire within eumetazoan diversity by including selected reference opsins from non-ambulacrarians. Our findings corroborate the presence of all major ancestral bilaterian opsin groups in Ambulacraria. Furthermore, we identified two opsin groups specific to echinoderms. In conclusion, a molecular phylogenetic framework for investigating light-perception and photobiological behaviors in marine deuterostomes has been obtained. PMID:26472700

  19. Catalogue of ISO LWS observations of asteroids

    NASA Astrophysics Data System (ADS)

    Hormuth, F.; Müller, T. G.

    2009-04-01

    Context: The long wavelength spectrometer (LWS) onboard the infrared space observatory (ISO) observed the four large main-belt asteroids (1) Ceres, (2) Pallas, (4) Vesta, and (10) Hygiea multiple times. The photometric and spectroscopic data cover the wavelength range between 43 and 197 μm, and are a unique dataset for future investigations and detailed characterisations of these bodies. Aims: The standard ISO archive products, produced through the last post-mission LWS pipeline, were still affected by instrument artefacts. Our goal was to provide the best possible data products to exploit the full scientific potential of these observations. Methods: For all asteroid observations we analysed in detail the dark current, the calibration reference flashes, the space environment effects (glitches), memory effects, tracking influences, and various other sources of uncertainty. We performed a refined reduction of all measurements, corrected for the various effects, and re-calibrated the data. We outline the data reduction process and give an overview of the available data and the quality of the observations. We apply a thermophysical model to the flux measurements to derive far-IR based diameter and albedo values of the asteroids. The measured thermal rotational lightcurve of (4) Vesta is compared to model predictions. Results: The catalogue of LWS (long wavelength spectrometer) observations of asteroids contains 57 manually reduced datasets, including seven non-standard observations, which as such did not have final pipeline products available before. In total, the archive now contains 11 spectral scans and 46 fixed grating measurements with a simultaneous observation at 10 key wavelengths distributed over the full LWS range. The new data products are now accessible via the ISO data archive as highly processed data products (HPDP). Conclusions: The quality of the data products was checked against state-of-the-art thermophysical model predictions and an excellent

  20. Molecular and functional characterization of opsins in barfin flounder (Verasper moseri).

    PubMed

    Kasagi, Satoshi; Mizusawa, Kanta; Murakami, Naoto; Andoh, Tadashi; Furufuji, Sumihisa; Kawamura, Shoji; Takahashi, Akiyoshi

    2015-02-10

    Green light irradiation facilitates the somatic growth of barfin flounder (Verasper moseri). However, the V. moseri visual system, which may be associated with somatic growth by acting on the endocrine system upon exposure to this particular wavelength, remains largely unexplored. Herein, we characterized the visual opsin repertoire of V. moseri to understand the molecular basis underlying this effect. The five types of visual opsins that are found in vertebrates were cloned from RNA that was extracted from the eyes of V. moseri. Notably, V. moseri possessed one pseudogene (RH2-A) and two intact (RH2-B and RH2-C) copies of "green-sensitive" opsin genes. The wavelengths of maximum absorption spectra (λmax) for each of the reconstituted photopigments were 552nm for "red-sensitive" LWS, 506nm for RH2-B, 490nm for RH2-C, 482nm and 416nm for "blue-sensitive" SWS2A and SWS2B, respectively, 367nm for "ultraviolet-sensitive" SWS1, and 494nm for "dim-light sensitive rhodopsin" RH1. The λmax of SWS2A was longer than that of any other reported vertebrate SWS2 opsin. By measuring the expression level of these opsin genes with quantitative RT-PCR in 3-, 15-, and 27-month-old fish, we found that RH2-B and SWS2A were expressed at a constant level, whereas the expression of LWS, RH2-C, SWS2B, and SWS1 opsin genes decreased, and that of RH1 increased with age. Barfin flounders inhabit inshore waters at a young age and expand their habitat to deep sea areas as they age, and green light is relatively abundant in deep water compared to the lights of other wavelengths in shallow water. Our results indicate that gene repertoire and expression profile of the opsin genes of barfin flounder are adaptive to their habitat shift that occurs during development, with some opsins acquiring a distinct λmax. PMID:25433330

  1. Spectral sensitivity of cone photoreceptors and opsin expression in two colour-divergent lineages of the lizard Ctenophorus decresii.

    PubMed

    Yewers, Madeleine S; McLean, Claire A; Moussalli, Adnan; Stuart-Fox, Devi; Bennett, Andrew T D; Knott, Ben

    2015-05-15

    Intraspecific differences in sensory perception are rarely reported but may occur when a species range extends across varying sensory environments, or there is coevolution between the sensory system and a varying signal. Examples in colour vision and colour signals are rare in terrestrial systems. The tawny dragon lizard Ctenophorus decresii is a promising candidate for such intraspecific variation, because the species comprises two geographically and genetically distinct lineages in which throat colour (a social signal used in intra- and inter-specific interactions) is locally adapted to the habitat and differs between lineages. Male lizards from the southern lineage have UV-blue throats, whereas males from the northern lineage are polymorphic with four discrete throat colours that all show minimal UV reflectance. Here, we determine the cone photoreceptor spectral sensitivities and opsin expression of the two lineages, to test whether they differ, particularly in the UV wavelengths. Using microspectrophotometry on retinal cone photoreceptors, we identified a long-wavelength-sensitive (LWS) visual pigment, a 'short' and 'long' medium-wavelength-sensitive (MWS) pigment and a short-wavelength-sensitive (SWS) pigment, all of which did not differ in λmax between lineages. Through transcriptome analysis of opsin genes we found that both lineages express four cone opsin genes, including the SWS1 opsin with peak sensitivity in the UV range, and that amino acid sequences did not differ between lineages with the exception of a single leucine to valine substitution in the RH2 opsin. Counts of yellow and transparent oil droplets associated with LWS+MWS and SWS+UVS cones, respectively, showed no difference in relative cone proportions between lineages. Therefore, contrary to predictions, we find no evidence of differences between lineages in single cone photoreceptor spectral sensitivity or opsin expression. However, we confirm the presence of four single cone classes

  2. Evolution and functional diversity of jellyfish opsins.

    PubMed

    Suga, Hiroshi; Schmid, Volker; Gehring, Walter J

    2008-01-01

    Cnidaria are the most basal animal phylum possessing complex eyes [1]. Their eyes predominantly use ciliary photoreceptor cells (c-PRCs) like vertebrates, whereas insect eyes use rhabdomeric photoreceptor cells (r-PRCs) [1-4]. These two cell types show not only different cytoarchitectures but distinct phototransduction cascades, which are triggered by the respective types of opsins (e.g., [5]), ciliary opsins (c-opsins) and rhabdomeric opsins (r-opsins) [6]. Recent reports suggested that the c- and r-PRCs and their respective opsins diverged at least before the deuterostome-protostome split [7-9]. To study the earlier evolution of animal PRCs and opsins, we investigated two hydrozoan jellyfishes. We report here the first-characterized cnidarian opsins. Molecular phylogeny revealed that the cloned 20 jellyfish opsins, together with all the opsins from a hydra and some from a sea anemone, are more closely related to the c-opsins than to any other major opsin subfamily, indicating that the divergence of c- and r-opsins antedates the Cnidaria-Bilateria split. Possible scenarios of animal PRC evolution are discussed. Furthermore, Cladonema opsins show several distinct tissue- and stage-specific expression patterns. The expression of specific opsins in the eyes suggests a role in vision, whereas that in the gonads suggests a role in light-controlled release of gametes. PMID:18160295

  3. Variable light environments induce plastic spectral tuning by regional opsin coexpression in the African cichlid fish, Metriaclima zebra

    PubMed Central

    Dalton, Brian E.; Lu, Jessica; Leips, Jeff; Cronin, Thomas W.; Carleton, Karen L.

    2015-01-01

    Critical behaviors such as predation and mate choice often depend on vision. Visual systems are sensitive to the spectrum of light in their environment, which can vary extensively both within and among habitats. Evolutionary changes in spectral sensitivity contribute to divergence and speciation. Spectral sensitivity of the retina is primarily determined by visual pigments, which are opsin proteins bound to a chromophore. We recently discovered that photoreceptors in different regions of the retina, which view objects against distinct environmental backgrounds, coexpress different pairs of opsins in an African cichlid fish, Metriaclima zebra. This coexpression tunes the sensitivity of the retinal regions to the corresponding backgrounds and may aid detection of dark objects, such as predators. Although intraretinal regionalization of spectral sensitivity in many animals correlates with their light environments, it is unknown whether variation in the light environment induces developmentally plastic alterations of intraretinal sensitivity regions. Here, we demonstrate with fluorescent in situ hybridization and qPCR that the spectrum and angle of environmental light both influence the development of spectral sensitivity regions by altering the distribution and level of opsins across the retina. Normally M. zebra coexpresses LWS opsin with RH2Aα opsin in double cones of the ventral but not the dorsal retina. However, when illuminated from below throughout development, adult M. zebra coexpressed LWS and RH2Aα in double cones both dorsally and ventrally. Thus, environmental background spectra alter the spectral sensitivity pattern that develops across the retina, potentially influencing behaviors and related evolutionary processes such as courtship and speciation. PMID:26175094

  4. Variable light environments induce plastic spectral tuning by regional opsin coexpression in the African cichlid fish, Metriaclima zebra.

    PubMed

    Dalton, Brian E; Lu, Jessica; Leips, Jeff; Cronin, Thomas W; Carleton, Karen L

    2015-08-01

    Critical behaviours such as predation and mate choice often depend on vision. Visual systems are sensitive to the spectrum of light in their environment, which can vary extensively both within and among habitats. Evolutionary changes in spectral sensitivity contribute to divergence and speciation. Spectral sensitivity of the retina is primarily determined by visual pigments, which are opsin proteins bound to a chromophore. We recently discovered that photoreceptors in different regions of the retina, which view objects against distinct environmental backgrounds, coexpress different pairs of opsins in an African cichlid fish, Metriaclima zebra. This coexpression tunes the sensitivity of the retinal regions to the corresponding backgrounds and may aid in detection of dark objects, such as predators. Although intraretinal regionalization of spectral sensitivity in many animals correlates with their light environments, it is unknown whether variation in the light environment induces developmentally plastic alterations of intraretinal sensitivity regions. Here, we demonstrate with fluorescent in situ hybridization and qPCR that the spectrum and angle of environmental light both influence the development of spectral sensitivity regions by altering the distribution and level of opsins across the retina. Normally, M. zebra coexpresses LWS opsin with RH2Aα opsin in double cones of the ventral but not the dorsal retina. However, when illuminated from below throughout development, adult M. zebra coexpressed LWS and RH2Aα in double cones both dorsally and ventrally. Thus, environmental background spectra alter the spectral sensitivity pattern that develops across the retina, potentially influencing behaviours and related evolutionary processes such as courtship and speciation. PMID:26175094

  5. LWS/SET Technology Experiment Carrier

    NASA Technical Reports Server (NTRS)

    Sherman, Barry; Giffin, Geoff

    2002-01-01

    This paper examines the approach taken to building a low-cost, modular spacecraft bus that can be used to support a variety of technology experiments in different space environments. It describes the techniques used and design drivers considered to ensure experiment independence from as yet selected host spacecraft. It describes the technology experiment carriers that will support NASA's Living With a Star Space Environment Testbed space missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The SET Project is highly budget constrained and must seek to take advantage of as yet undetermined partnering opportunities for access to space. SET will conduct technology validation experiments hosted on available flight opportunities. The SET Testbeds will be developed in a manner that minimizes the requirements for accommodation, and will be flown as flight opportunities become available. To access the widest range of flight opportunities, two key development requirements are to maintain flexibility with respect to accommodation constraints and to have the capability to respond quickly to flight opportunities. Experiments, already developed to the technology readiness level of needing flight validation in the variable Sun-Earth environment, will be selected on the basis of the need for the subject technology, readiness for flight, need for flight resources and particular orbit. Experiments will be

  6. Vision for the Future of Lws TR&T

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Mannucci, A. J.; Antiochos, S. K.; Bhattacharjee, A.; Gombosi, T. I.; Gopalswamy, N.; Kamalabadi, F.; Linker, J.; Pilewskie, P.; Pulkkinen, A. A.; Spence, H. E.; Tobiska, W. K.; Weimer, D. R.; Withers, P.; Bisi, M. M.; Kuznetsova, M. M.; Miller, K. L.; Moretto, T.; Onsager, T. G.; Roussev, I. I.; Viereck, R. A.

    2014-12-01

    The Living With a Star (LWS) program addresses acute societal needs for understanding the effects of space weather and developing scientific knowledge to support predictive capabilities. Our society's heavy reliance on technologies affected by the space environment, an enormous number of airline customers, interest in space tourism, and the developing plans for long-duration human exploration space missions are clear examples that demonstrate urgent needs for space weather models and detailed understanding of space weather effects and risks. Since its inception, the LWS program has provided a vehicle to innovate new mechanisms for conducting research, building highly effective interdisciplinary teams, and ultimately in developing the scientific understanding needed to transition research tools into operational models that support the predictive needs of our increasingly space-reliant society. The advances needed require broad-based observations that cannot be obtained by large missions alone. The Decadal Survey (HDS, 2012) outlines the nation's needs for scientific development that will build the foundation for tomorrow's space weather services. Addressing these goals, LWS must develop flexible pathways to space utilizing smaller, more diverse and rapid development of observational platforms. Expanding utilization of ground-based assets and shared launches will also significantly enhance opportunities to fulfill the growing LWS data needs. Partnerships between NASA divisions, national/international agencies, and with industry will be essential for leveraging resources to address increasing societal demand for space weather advances. Strengthened connections to user communities will enhance the quality and impact of deliverables from LWS programs. Thus, we outline the developing vision for the future of LWS, stressing the need for deeper scientific understanding to improve forecasting capabilities, for more diverse data resources, and for project deliverables that

  7. Opsin vs opsin: New materials for biotechnological applications

    SciTech Connect

    Alfinito, Eleonora; Reggiani, Lino

    2014-08-14

    The need of new diagnostic methods satisfying, as an early detection, a low invasive procedure and a cost-efficient value, is orienting the technological research toward the use of bio-integrated devices, in particular, bio-sensors. The set of know-why necessary to achieve this goal is wide, from biochemistry to electronics and is summarized in an emerging branch of electronics, called proteotronics. Proteotronics is here applied to state a comparative analysis of the electrical responses coming from type-1 and type-2 opsins. In particular, the procedure is used as an early investigation of a recently discovered family of opsins, the proteorhodopsins activated by blue light, BPRs. The results reveal some interesting and unexpected similarities between proteins of the two families, suggesting the global electrical response are not strictly linked to the class identity.

  8. Diversity of Active States in TMT Opsins

    PubMed Central

    Sakai, Kazumi; Yamashita, Takahiro; Imamoto, Yasushi; Shichida, Yoshinori

    2015-01-01

    Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions. PMID:26491964

  9. Analysis of the Opsin Repertoire in the Tardigrade Hypsibius dujardini Provides Insights into the Evolution of Opsin Genes in Panarthropoda

    PubMed Central

    Hering, Lars; Mayer, Georg

    2014-01-01

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an “arthropsin,” were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage. PMID:25193307

  10. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda.

    PubMed

    Hering, Lars; Mayer, Georg

    2014-09-01

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an "arthropsin," were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage. PMID:25193307

  11. The Microbial Opsin Family of Optogenetic Tools

    PubMed Central

    Zhang, Feng; Vierock, Johannes; Yizhar, Ofer; Fenno, Lief E.; Tsunoda, Satoshi; Kianianmomeni, Arash; Prigge, Matthias; Berndt, Andre; Cushman, John; Polle, Jürgen; Magnuson, Jon; Hegemann, Peter; Deisseroth, Karl

    2014-01-01

    The capture and utilization of light is an exquisitely evolved process. The single-component microbial opsins, although more limited than multicomponent cascades in processing, display unparalleled compactness and speed. Recent advances in understanding microbial opsins have been driven by molecular engineering for optogenetics and by comparative genomics. Here we provide a Primer on these light-activated ion channels and pumps, describe a group of opsins bridging prior categories, and explore the convergence of molecular engineering and genomic discovery for the utilization and understanding of these remarkable molecular machines. PMID:22196724

  12. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  13. Broad-Band Activatable White-Opsin

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Ha, Ji Hee; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Currently, the use of optogenetic sensitization of retinal cells combined with activation/inhibition has the potential to be an alternative to retinal implants that would require electrodes inside every single neuron for high visual resolution. However, clinical translation of optogenetic activation for restoration of vision suffers from the drawback that the narrow spectral sensitivity of an opsin requires active stimulation by a blue laser or a light emitting diode with much higher intensities than ambient light. In order to allow an ambient light-based stimulation paradigm, we report the development of a ‘white-opsin’ that has broad spectral excitability in the visible spectrum. The cells sensitized with white-opsin showed excitability at an order of magnitude higher with white light compared to using only narrow-band light components. Further, cells sensitized with white-opsin produced a photocurrent that was five times higher than Channelrhodopsin-2 under similar photo-excitation conditions. The use of fast white-opsin may allow opsin-sensitized neurons in a degenerated retina to exhibit a higher sensitivity to ambient white light. This property, therefore, significantly lowers the activation threshold in contrast to conventional approaches that use intense narrow-band opsins and light to activate cellular stimulation. PMID:26360377

  14. Metazoan opsin evolution reveals a simple route to animal vision.

    PubMed

    Feuda, Roberto; Hamilton, Sinead C; McInerney, James O; Pisani, Davide

    2012-11-13

    All known visual pigments in Neuralia (Cnidaria, Ctenophora, and Bilateria) are composed of an opsin (a seven-transmembrane G protein-coupled receptor), and a light-sensitive chromophore, generally retinal. Accordingly, opsins play a key role in vision. There is no agreement on the relationships of the neuralian opsin subfamilies, and clarifying their phylogeny is key to elucidating the origin of this protein family and of vision. We used improved methods and data to resolve the opsin phylogeny and explain the evolution of animal vision. We found that the Placozoa have opsins, and that the opsins share a common ancestor with the melatonin receptors. Further to this, we found that all known neuralian opsins can be classified into the same three subfamilies into which the bilaterian opsins are classified: the ciliary (C), rhabdomeric (R), and go-coupled plus retinochrome, retinal G protein-coupled receptor (Go/RGR) opsins. Our results entail a simple scenario of opsin evolution. The first opsin originated from the duplication of the common ancestor of the melatonin and opsin genes in a eumetazoan (Placozoa plus Neuralia) ancestor, and an inference of its amino acid sequence suggests that this protein might not have been light-sensitive. Two more gene duplications in the ancestral neuralian lineage resulted in the origin of the R, C, and Go/RGR opsins. Accordingly, the first animal with at least a C, an R, and a Go/RGR opsin was a neuralian progenitor. PMID:23112152

  15. Metazoan opsin evolution reveals a simple route to animal vision

    PubMed Central

    Feuda, Roberto; Hamilton, Sinead C.; McInerney, James O.; Pisani, Davide

    2012-01-01

    All known visual pigments in Neuralia (Cnidaria, Ctenophora, and Bilateria) are composed of an opsin (a seven-transmembrane G protein-coupled receptor), and a light-sensitive chromophore, generally retinal. Accordingly, opsins play a key role in vision. There is no agreement on the relationships of the neuralian opsin subfamilies, and clarifying their phylogeny is key to elucidating the origin of this protein family and of vision. We used improved methods and data to resolve the opsin phylogeny and explain the evolution of animal vision. We found that the Placozoa have opsins, and that the opsins share a common ancestor with the melatonin receptors. Further to this, we found that all known neuralian opsins can be classified into the same three subfamilies into which the bilaterian opsins are classified: the ciliary (C), rhabdomeric (R), and go-coupled plus retinochrome, retinal G protein-coupled receptor (Go/RGR) opsins. Our results entail a simple scenario of opsin evolution. The first opsin originated from the duplication of the common ancestor of the melatonin and opsin genes in a eumetazoan (Placozoa plus Neuralia) ancestor, and an inference of its amino acid sequence suggests that this protein might not have been light-sensitive. Two more gene duplications in the ancestral neuralian lineage resulted in the origin of the R, C, and Go/RGR opsins. Accordingly, the first animal with at least a C, an R, and a Go/RGR opsin was a neuralian progenitor. PMID:23112152

  16. The Living With a Star (LWS) Sentinels Mission

    NASA Technical Reports Server (NTRS)

    Szabo, A.

    2005-01-01

    The Sentinels Mission, the heliospheric element of the NASA Living With a Star (LWS) program, is still rapidly evolving, especially as the Sentinels Science and Technology Definition Team is progressing with its work. With the Solar Dynamics Observatory, the solar component, and the Geospace elements taking a more finalized form, it becomes clearer what scientific and measurement objectives will be necessary to establish the solar-geospace connection in order to achieve the goals of the LWS program. Possible, early formulation designs of the Sentinels mission will be presented that includes the Inner Heliospheric Mappers, a four spacecraft mission to observe the inner heliosphere between 0.25 and 1.0 AUs along with a Far Side Sentinel that will perform remote solar observations from nearly the opposite side of the Sun. Moreover, the complementarity of the various planned international missions (e.g., ESA Solar Orbiter, and Beppi Colombo) along with NASA planetary projects (e.g., Mars program and MESSENGER) will be discussed and how they can form a coherent system. Finally, the importance of already available heliospheric data will be emphasized.

  17. Opsin gene repertoires in northern archaic hominids.

    PubMed

    Taylor, John S; Reimchen, Thomas E

    2016-08-01

    The Neanderthals' northern distribution, hunting techniques, and orbit breadths suggest that they were more active in dim light than modern humans. We surveyed visual opsin genes from four Neanderthals and two other archaic hominids to see if they provided additional support for this hypothesis. This analysis was motivated by the observation that alleles responsible for anomalous trichromacy in humans are more common in northern latitudes, by data suggesting that these variants might enhance vision in mesopic conditions, and by the observation that dim light active species often have fewer opsin genes than diurnal relatives. We also looked for evidence of convergent amino acid substitutions in Neanderthal opsins and orthologs from crepuscular or nocturnal species. The Altai Neanderthal, the Denisovan, and the Ust'-Ishim early modern human had opsin genes that encoded proteins identical to orthologs in the human reference genome. Opsins from the Vindija Cave Neanderthals (three females) had many nonsynonymous substitutions, including several predicted to influence colour vision (e.g., stop codons). However, the functional implications of these observations were difficult to assess, given that "control" loci, where no substitutions were expected, differed from humans to the same extent. This left unresolved the test for colour vision deficiencies in Vindija Cave Neanderthals. PMID:27463216

  18. The Comb Jelly Opsins and the Origins of Animal Phototransduction

    PubMed Central

    Feuda, Roberto; Rota-Stabelli, Omar; Oakley, Todd H.; Pisani, Davide

    2014-01-01

    Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, different studies have investigated deep opsin evolution using alternative data sets and reached contradictory results. Here, we integrated the data and methods of three, key, recent studies to further clarify opsin evolution. We show that the opsin relationships are sensitive to outgroup choice; we generate new support for the existence of Rhabdomeric opsins in Cnidaria (e.g., corals and jellyfishes) and show that all comb jelly opsins belong to well-recognized opsin groups (the Go-coupled opsins or the Ciliary opsins), which are also known in Bilateria (e.g., humans, fruit flies, snails, and their allies) and Cnidaria. Our results are most parsimoniously interpreted assuming a traditional animal phylogeny where Ctenophora are not the sister group of all the other animals. PMID:25062921

  19. The comb jelly opsins and the origins of animal phototransduction.

    PubMed

    Feuda, Roberto; Rota-Stabelli, Omar; Oakley, Todd H; Pisani, Davide

    2014-08-01

    Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, different studies have investigated deep opsin evolution using alternative data sets and reached contradictory results. Here, we integrated the data and methods of three, key, recent studies to further clarify opsin evolution. We show that the opsin relationships are sensitive to outgroup choice; we generate new support for the existence of Rhabdomeric opsins in Cnidaria (e.g., corals and jellyfishes) and show that all comb jelly opsins belong to well-recognized opsin groups (the Go-coupled opsins or the Ciliary opsins), which are also known in Bilateria (e.g., humans, fruit flies, snails, and their allies) and Cnidaria. Our results are most parsimoniously interpreted assuming a traditional animal phylogeny where Ctenophora are not the sister group of all the other animals. PMID:25062921

  20. LWS/SET End-to-End Data System

    NASA Technical Reports Server (NTRS)

    Giffin, Geoff; Sherman, Barry; Colon, Gilberto (Technical Monitor)

    2002-01-01

    This paper describes the concept for the End-to-End Data System that will support NASA's Living With a Star Space Environment Testbed missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap.between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The End-to-end data system allows investigators to access the SET control center, command their experiments, and receive data from their experiments back at their home facility, using the Internet. The logical functioning of major components of the end-to-end data system are described, including the GSFC Payload Operations Control Center (POCC), SET Payloads, the GSFC SET Simulation Lab, SET Experiment PI Facilities, and Host Systems. Host Spacecraft Operations Control Centers (SOCC) and the Host Spacecraft are essential links in the end-to-end data system, but are not directly under the control of the SET Project. Formal interfaces will be established between these entities and elements of the SET Project. The paper describes data flow through the system, from PI facilities connecting to the SET operations center via the Internet, communications to SET carriers and experiments via host systems, to telemetry returns to investigators from their flight experiments. It also outlines the techniques that will be used to meet mission requirements, while holding development and operational costs to a minimum. Additional information is included in the original extended abstract.

  1. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications

    PubMed Central

    2013-01-01

    Background Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Results Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. Conclusions We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the

  2. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution.

    PubMed

    Liegertová, Michaela; Pergner, Jiří; Kozmiková, Iryna; Fabian, Peter; Pombinho, Antonio R; Strnad, Hynek; Pačes, Jan; Vlček, Čestmír; Bartůněk, Petr; Kozmik, Zbyněk

    2015-01-01

    Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans. PMID:26154478

  3. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds

    PubMed Central

    Nakane, Yusuke; Ikegami, Keisuke; Ono, Hiroko; Yamamoto, Naoyuki; Yoshida, Shosei; Hirunagi, Kanjun; Ebihara, Shizufumi; Kubo, Yoshihiro; Yoshimura, Takashi

    2010-01-01

    It has been known for many decades that nonmammalian vertebrates detect light by deep brain photoreceptors that lie outside the retina and pineal organ to regulate seasonal cycle of reproduction. However, the identity of these photoreceptors has so far remained unclear. Here we report that Opsin 5 is a deep brain photoreceptive molecule in the quail brain. Expression analysis of members of the opsin superfamily identified as Opsin 5 (OPN5; also known as Gpr136, Neuropsin, PGR12, and TMEM13) mRNA in the paraventricular organ (PVO), an area long believed to be capable of phototransduction. Immunohistochemistry identified Opsin 5 in neurons that contact the cerebrospinal fluid in the PVO, as well as fibers extending to the external zone of the median eminence adjacent to the pars tuberalis of the pituitary gland, which translates photoperiodic information into neuroendocrine responses. Heterologous expression of Opsin 5 in Xenopus oocytes resulted in light-dependent activation of membrane currents, the action spectrum of which showed peak sensitivity (λmax) at ∼420 nm. We also found that short-wavelength light, i.e., between UV-B and blue light, induced photoperiodic responses in eye-patched, pinealectomized quail. Thus, Opsin 5 appears to be one of the deep brain photoreceptive molecules that regulates seasonal reproduction in birds. PMID:20679218

  4. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.

    PubMed

    Jacobs, Gerald H

    2013-03-01

    All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance. PMID:23286388

  5. Carrier Plus: A Sensor Payload for Living With a Star Space Environment Testbed (LWS/SET)

    NASA Technical Reports Server (NTRS)

    Marshall, Cheryl; Moss, Steven; Howard, Regan; LaBel, Kenneth; Grycewicz, Tom; Barth, Janet; Brewer, Dana

    2003-01-01

    The paper discusses the following: 1. Living with a Star (LWS) program: space environment testbed (SET); natural space environment. 2. Carrier plus: goals and benefits. 3. ON-orbit sensor measurements. 4. Carrier plus architecture. 5. Participation in carrier plus.

  6. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: Evidence from visual opsin gene expression

    USGS Publications Warehouse

    Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  7. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J

    2016-01-27

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. PMID:26817768

  8. The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins.

    PubMed

    Henze, Miriam J; Oakley, Todd H

    2015-11-01

    Pancrustacea (Hexapoda plus Crustacea) display an enormous diversity of eye designs, including multiple types of compound eyes and single-chambered eyes, often with color vision and/or polarization vision. Although the eyes of some pancrustaceans are well-studied, there is still much to learn about the evolutionary paths to this amazing visual diversity. Here, we examine the evolutionary history of eyes and opsins across the principle groups of Pancrustacea. First, we review the distribution of lateral and median eyes, which are found in all major pancrustacean clades (Oligostraca, Multicrustacea, and Allotriocarida). At the same time, each of those three clades has taxa that lack lateral and/or median eyes. We then compile data on the expression of visual r-opsins (rhabdomeric opsins) in lateral and median eyes across Pancrustacea and find no evidence for ancient opsin clades expressed in only one type of eye. Instead, opsin clades with eye-specific expression are products of recent gene duplications, indicating a dynamic past, during which opsins often changed expression from one type of eye to another. We also investigate the evolutionary history of peropsins and r-opsins, which are both known to be expressed in eyes of arthropods. By searching published transcriptomes, we discover for the first time crustacean peropsins and suggest that previously reported odonate opsins may also be peropsins. Finally, from analyzing a reconciled, phylogenetic tree of arthropod r-opsins, we infer that the ancestral pancrustacean had four visual opsin genes, which we call LW2, MW1, MW2, and SW. These are the progenitors of opsin clades that later were variously duplicated or lost during pancrustacean evolution. Together, our results reveal a particularly dynamic history, with losses of eyes, duplication and loss of opsin genes, and changes in opsin expression between types of eyes. PMID:26319405

  9. Spectral Tuning of Phototaxis by a Go-Opsin in the Rhabdomeric Eyes of Platynereis.

    PubMed

    Gühmann, Martin; Jia, Huiyong; Randel, Nadine; Verasztó, Csaba; Bezares-Calderón, Luis A; Michiels, Nico K; Yokoyama, Shozo; Jékely, Gáspár

    2015-08-31

    Phototaxis is characteristic of the pelagic larval stage of most bottom-dwelling marine invertebrates. Larval phototaxis is mediated by simple eyes that can express various types of light-sensitive G-protein-coupled receptors known as opsins. Since opsins diversified early during metazoan evolution in the marine environment, understanding underwater light detection could elucidate this diversification. Opsins have been classified into three major families, the r-opsins, the c-opsins, and the Go/RGR opsins, a family uniting Go-opsins, retinochromes, RGR opsins, and neuropsins. The Go-opsins form an ancient and poorly characterized group retained only in marine invertebrate genomes. Here, we characterize a Go-opsin from the marine annelid Platynereis dumerilii. We found Go-opsin1 coexpressed with two r-opsins in depolarizing rhabdomeric photoreceptor cells in the pigmented eyes of Platynereis larvae. We purified recombinant Go-opsin1 and found that it absorbs in the blue-cyan range of the light spectrum. To characterize the function of Go-opsin1, we generated a Go-opsin1 knockout Platynereis line by zinc-finger-nuclease-mediated genome engineering. Go-opsin1 knockout larvae were phototactic but showed reduced efficiency of phototaxis to wavelengths matching the in vitro Go-opsin1 spectrum. Our results highlight spectral tuning of phototaxis as a potential mechanism contributing to opsin diversity. PMID:26255845

  10. Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)

    NASA Technical Reports Server (NTRS)

    Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana

    2003-01-01

    The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov

  11. Opsin clines in butterflies suggest novel roles for insect photopigments.

    PubMed

    Frentiu, Francesca D; Yuan, Furong; Savage, Wesley K; Bernard, Gary D; Mullen, Sean P; Briscoe, Adriana D

    2015-02-01

    Opsins are ancient molecules that enable animal vision by coupling to a vitamin-derived chromophore to form light-sensitive photopigments. The primary drivers of evolutionary diversification in opsins are thought to be visual tasks related to spectral sensitivity and color vision. Typically, only a few opsin amino acid sites affect photopigment spectral sensitivity. We show that opsin genes of the North American butterfly Limenitis arthemis have diversified along a latitudinal cline, consistent with natural selection due to environmental factors. We sequenced single nucleotide (SNP) polymorphisms in the coding regions of the ultraviolet (UVRh), blue (BRh), and long-wavelength (LWRh) opsin genes from ten butterfly populations along the eastern United States and found that a majority of opsin SNPs showed significant clinal variation. Outlier detection and analysis of molecular variance indicated that many SNPs are under balancing selection and show significant population structure. This contrasts with what we found by analysing SNPs in the wingless and EF-1 alpha loci, and from neutral amplified fragment length polymorphisms, which show no evidence of significant locus-specific or genome-wide structure among populations. Using a combination of functional genetic and physiological approaches, including expression in cell culture, transgenic Drosophila, UV-visible spectroscopy, and optophysiology, we show that key BRh opsin SNPs that vary clinally have almost no effect on spectral sensitivity. Our results suggest that opsin diversification in this butterfly is more consistent with natural selection unrelated to spectral tuning. Some of the clinally varying SNPs may instead play a role in regulating opsin gene expression levels or the thermostability of the opsin protein. Lastly, we discuss the possibility that insect opsins might have important, yet-to-be elucidated, adaptive functions in mediating animal responses to abiotic factors, such as temperature or photoperiod

  12. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    NASA Technical Reports Server (NTRS)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  13. VA opsin-based photoreceptors in the hypothalamus of birds.

    PubMed

    Halford, Stephanie; Pires, Susana S; Turton, Michael; Zheng, Lei; González-Menéndez, Irene; Davies, Wayne L; Peirson, Stuart N; García-Fernández, José M; Hankins, Mark W; Foster, Russell G

    2009-08-25

    Studies in the 1930s demonstrated that birds possess photoreceptors that are located within the hypothalamus and regulate photoperiodic responses to day length. Most recently, photoperiod has been shown to alter the activity of the pars tuberalis to release thyrotrophin, which ultimately drives a reproductive response. Despite these significant findings, the cellular and molecular identity of the hypothalamic photoreceptors has remained a mystery. Action spectra implicated an opsin-based photopigment system, but further identification based on rod- or cone-opsin probes failed, suggesting the utilization of a novel opsin. The vertebrate ancient (VA) opsin photopigments were isolated in 1997 but were thought to have a restricted taxonomic distribution, confined to the agnatha and teleost fish. Here, we report the isolation of VA opsin from chicken and show that the two isoforms spliced from this gene (cVAL and cVA) are capable of forming functional photopigments. Further, we show that VA opsin is expressed within a population of hypothalamic neurons with extensive projections to the median eminence. These results provide the most complete cellular and molecular description of a deep brain photoreceptor in any vertebrate and strongly implicate VA opsin in mediating the avian photoperiodic response. PMID:19664923

  14. Implications of the ISO LWS spectrum of the prototypical ultraluminous galaxy: ARP 220

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Satyapal, S.; Luhman, M. L.; Melnick, G.; Cox, P.; Cernicharo, J.; Stacey, G. J.; Smith, H. A.; Lord, S. D.; Greenhouse, M. A.

    1997-01-01

    The low resolution far infrared spectrum of the galaxy Arp 220, obtained with the low wavelength spectrometer (LWS) onboard the Infrared Space Observatory (ISO), is presented. The spectrum is dominated by the OH, H2O, CH, NH3 and O I absorption lines. The upper limits on the far infrared fine structure lines indicate a softer radiation in Arp 220 than in starburst galaxies.

  15. Extraordinary diversity of visual opsin genes in dragonflies

    PubMed Central

    Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema

    2015-01-01

    Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15–33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies. PMID:25713365

  16. Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock.

    PubMed

    Katti, C; Kempler, K; Porter, M L; Legg, A; Gonzalez, R; Garcia-Rivera, E; Dugger, D; Battelle, B-A

    2010-08-01

    A long-standing concept in vision science has held that a single photoreceptor expresses a single type of opsin, the protein component of visual pigment. However, the number of examples in the literature of photoreceptors from vertebrates and invertebrates that break this rule is increasing. Here, we describe a newly discovered Limulus opsin, Limulus opsin5, which is significantly different from previously characterized Limulus opsins, opsins1 and 2. We show that opsin5 is co-expressed with opsins1 and 2 in Limulus lateral and ventral eye photoreceptors and provide the first evidence that the expression of co-expressed opsins can be differentially regulated. We show that the relative levels of opsin5 and opsin1 and 2 in the rhabdom change with a diurnal rhythm and that their relative levels are also influenced by the animal's central circadian clock. An analysis of the sequence of opsin5 suggests it is sensitive to visible light (400-700 nm) but that its spectral properties may be different from that of opsins1 and 2. Changes in the relative levels of these opsins may underlie some of the dramatic day-night changes in Limulus photoreceptor function and may produce a diurnal change in their spectral sensitivity. PMID:20639420

  17. Evolutionary Dynamics of Rhodopsin Type 2 Opsins in Vertebrates

    PubMed Central

    Yokoyama, Shozo; Tada, Takashi

    2010-01-01

    Among the five groups of visual pigments in vertebrates, the rhodopsin type 2 (RH2) group shows the largest number of gene duplication events. We have isolated three intact and one nonfunctional RH2 opsin genes each from Northern lampfish (Stenobrachius leucopsarus) and scabbardfish (Lepidopus fitchi). Using the deduced amino acid sequences of these and other representative RH2 opsin genes in vertebrates, we have estimated the divergence times and evolutionary rates of amino acid substitution at various stages of RH2 opsin evolution. The results show that the duplications of the lampfish and scabbardfish RH2 opsins have occurred ∼60 and ∼30 million years ago (Ma), respectively. The evolutionary rates of RH2 opsins in the early vertebrate ancestors were ∼0.25 × 10−9/site/year, which increased to ∼1 × 10−9 to 3 × 10−9/site/year in euteleost lineages and to ∼0.3 × 10−9 to 0.5 × 10−9/site/year in coelacanth and tetrapods. PMID:19759234

  18. Evidence from opsin genes rejects nocturnality in ancestral primates

    PubMed Central

    Tan, Ying; Yoder, Anne D.; Yamashita, Nayuta; Li, Wen-Hsiung

    2005-01-01

    It is firmly believed that ancestral primates were nocturnal, with nocturnality having been maintained in most prosimian lineages. Under this traditional view, the opsin genes in all nocturnal prosimians should have undergone similar degrees of functional relaxation and accumulated similar extents of deleterious mutations. This expectation is rejected by the short-wavelength (S) opsin gene sequences from 14 representative prosimians. We found severe defects of the S opsin gene only in lorisiforms, but no defect in five nocturnal and two diurnal lemur species and only minor defects in two tarsiers and two nocturnal lemurs. Further, the nonsynonymous-to-synonymous rate ratio of the S opsin gene is highest in the lorisiforms and varies among the other prosimian branches, indicating different time periods of functional relaxation among lineages. These observations suggest that the ancestral primates were diurnal or cathemeral and that nocturnality has evolved several times in the prosimians, first in the lorisiforms but much later in other lineages. This view is further supported by the distribution pattern of the middle-wavelength (M) and long-wavelength (L) opsin genes among prosimians. PMID:16192351

  19. Plasticity of opsin gene expression in cichlids from Lake Malawi.

    PubMed

    Hofmann, Christopher M; O'Quin, Kelly E; Smith, Adam R; Carleton, Karen L

    2010-05-01

    Sensory systems play crucial roles in survival and reproduction. Therefore, sensory plasticity has important evolutionary implications. In this study, we examined retinal plasticity in five species of cichlid fish from Lake Malawi. We compared the cone opsin expression profiles of wild-caught fish to lab-reared F(1) that had been raised in a UV minus, reduced intensity light environment. All of the opsin genes that were expressed in wild-caught fish were also expressed in lab-reared individuals. However, we found statistically significant differences in relative opsin expression among all five species. The most consistent difference was in the SWS2B (violet) opsin, which was always expressed at higher levels in lab-reared individuals. Estimates of visual pigment quantum catch suggest that this change in expression would increase retinal sensitivity in the light environment of the lab. We also found that the magnitude of plasticity varied across species. These findings have important implications for understanding the genetic regulation of opsin expression and raise many interesting questions about how the cichlid visual system develops. They also suggest that sensory plasticity may have facilitated the ecological diversification of cichlids in Lake Malawi. PMID:20374487

  20. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts

    PubMed Central

    Hang, Chong Yee; Kitahashi, Takashi; Parhar, Ishwar S.

    2016-01-01

    Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish. PMID:27199680

  1. Making the gradient: Thyroid hormone regulates cone opsin expression in the developing mouse retina

    PubMed Central

    Roberts, Melanie R.; Srinivas, Maya; Forrest, Douglas; Morreale de Escobar, Gabriella; Reh, Thomas A.

    2006-01-01

    Most mammals have two types of cone photoreceptors, which contain either medium wavelength (M) or short wavelength (S) opsin. The number and spatial organization of cone types varies dramatically among species, presumably to fine-tune the retina for different visual environments. In the mouse, S- and M-opsin are expressed in an opposing dorsal–ventral gradient. We previously reported that cone opsin patterning requires thyroid hormone β2, a nuclear hormone receptor that regulates transcription in conjunction with its ligand, thyroid hormone (TH). Here we show that exogenous TH inhibits S-opsin expression, but activates M-opsin expression. Binding of endogenous TH to TRβ2 is required to inhibit S-opsin and to activate M-opsin. TH is symmetrically distributed in the retina at birth as S-opsin expression begins, but becomes elevated in the dorsal retina at the time of M-opsin onset (postnatal day 10). Our results show that TH is a critical regulator of both S-opsin and M-opsin, and suggest that a TH gradient may play a role in establishing the gradient of M-opsin. These results also suggest that the ratio and patterning of cone types may be determined by TH availability during retinal development. PMID:16606843

  2. A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site.

    PubMed

    Becker, Erin A; Yao, Andrew I; Seitzer, Phillip M; Kind, Tobias; Wang, Ting; Eigenheer, Rich; Shao, Katie S Y; Yarov-Yarovoy, Vladimir; Facciotti, Marc T

    2016-01-01

    Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade. PMID:27327432

  3. A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site

    PubMed Central

    Becker, Erin A.; Yao, Andrew I.; Seitzer, Phillip M.; Kind, Tobias; Wang, Ting; Eigenheer, Rich; Shao, Katie S. Y.; Yarov-Yarovoy, Vladimir; Facciotti, Marc T.

    2016-01-01

    Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade. PMID:27327432

  4. Restoration of Vision with Ectopic Expression of Human Rod Opsin.

    PubMed

    Cehajic-Kapetanovic, Jasmina; Eleftheriou, Cyril; Allen, Annette E; Milosavljevic, Nina; Pienaar, Abigail; Bedford, Robert; Davis, Katherine E; Bishop, Paul N; Lucas, Robert J

    2015-08-17

    Many retinal dystrophies result in photoreceptor loss, but the inner retinal neurons can survive, making them potentially amenable to emerging optogenetic therapies. Here, we show that ectopically expressed human rod opsin, driven by either a non-selective or ON-bipolar cell-specific promoter, can function outside native photoreceptors and restore visual function in a mouse model of advanced retinal degeneration. Electrophysiological recordings from retinal explants and the visual thalamus revealed changes in firing (increases and decreases) induced by simple light pulses, luminance increases, and naturalistic movies in treated mice. These responses could be elicited at light intensities within the physiological range and substantially below those required by other optogenetic strategies. Mice with rod opsin expression driven by the ON-bipolar specific promoter displayed behavioral responses to increases in luminance, flicker, coarse spatial patterns, and elements of a natural movie at levels of contrast and illuminance (≈50-100 lux) typical of natural indoor environments. These data reveal that virally mediated ectopic expression of human rod opsin can restore vision under natural viewing conditions and at moderate light intensities. Given the inherent advantages in employing a human protein, the simplicity of this intervention, and the quality of vision restored, we suggest that rod opsin merits consideration as an optogenetic actuator for treating patients with advanced retinal degeneration. PMID:26234216

  5. Restoration of Vision with Ectopic Expression of Human Rod Opsin

    PubMed Central

    Cehajic-Kapetanovic, Jasmina; Eleftheriou, Cyril; Allen, Annette E.; Milosavljevic, Nina; Pienaar, Abigail; Bedford, Robert; Davis, Katherine E.; Bishop, Paul N.; Lucas, Robert J.

    2015-01-01

    Summary Many retinal dystrophies result in photoreceptor loss, but the inner retinal neurons can survive, making them potentially amenable to emerging optogenetic therapies. Here, we show that ectopically expressed human rod opsin, driven by either a non-selective or ON-bipolar cell-specific promoter, can function outside native photoreceptors and restore visual function in a mouse model of advanced retinal degeneration. Electrophysiological recordings from retinal explants and the visual thalamus revealed changes in firing (increases and decreases) induced by simple light pulses, luminance increases, and naturalistic movies in treated mice. These responses could be elicited at light intensities within the physiological range and substantially below those required by other optogenetic strategies. Mice with rod opsin expression driven by the ON-bipolar specific promoter displayed behavioral responses to increases in luminance, flicker, coarse spatial patterns, and elements of a natural movie at levels of contrast and illuminance (≈50–100 lux) typical of natural indoor environments. These data reveal that virally mediated ectopic expression of human rod opsin can restore vision under natural viewing conditions and at moderate light intensities. Given the inherent advantages in employing a human protein, the simplicity of this intervention, and the quality of vision restored, we suggest that rod opsin merits consideration as an optogenetic actuator for treating patients with advanced retinal degeneration. PMID:26234216

  6. Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3

    PubMed Central

    Sugihara, Tomohiro; Nagata, Takashi; Mason, Benjamin; Koyanagi, Mitsumasa; Terakita, Akihisa

    2016-01-01

    Most animals possess multiple opsins which sense light for visual and non-visual functions. Here, we show spectral characteristics of non-visual opsins, vertebrate Opn3s, which are widely distributed among vertebrates. We successfully expressed zebrafish Opn3 in mammalian cultured cells and measured its absorption spectrum spectroscopically. When incubated with 11-cis retinal, zebrafish Opn3 formed a blue-sensitive photopigment with an absorption maximum around 465 nm. The Opn3 converts to an all-trans retinal-bearing photoproduct with an absorption spectrum similar to the dark state following brief blue-light irradiation. The photoproduct experienced a remarkable blue-shift, with changes in position of the isosbestic point, during further irradiation. We then used a cAMP-dependent luciferase reporter assay to investigate light-dependent cAMP responses in cultured cells expressing zebrafish, pufferfish, anole and chicken Opn3. The wild type opsins did not produce responses, but cells expressing chimera mutants (WT Opn3s in which the third intracellular loops were replaced with the third intracellular loop of a Gs-coupled jellyfish opsin) displayed light-dependent changes in cAMP. The results suggest that Opn3 is capable of activating G protein(s) in a light-dependent manner. Finally, we used this assay to measure the relative wavelength-dependent response of cells expressing Opn3 chimeras to multiple quantally-matched stimuli. The inferred spectral sensitivity curve of zebrafish Opn3 accurately matched the measured absorption spectrum. We were unable to estimate the spectral sensitivity curve of mouse or anole Opn3, but, like zebrafish Opn3, the chicken and pufferfish Opn3-JiL3 chimeras also formed blue-sensitive pigments. These findings suggest that vertebrate Opn3s may form blue-sensitive G protein-coupled pigments. Further, we suggest that the method described here, combining a cAMP-dependent luciferase reporter assay with chimeric opsins possessing the third

  7. Explaining the mobility of retinal in activated rhodopsin and opsin.

    PubMed

    Mertz, Blake; Feng, Jun; Corcoran, Conor; Neeley, Brandon

    2015-11-01

    Rhodopsin, the mammalian dim light photoreceptor, is the canonical model for G protein-coupled receptors. Activation of rhodopsin occurs when the covalently bound inverse agonist, retinal, absorbs a photon and undergoes an 11-cis to all-trans isomerization. Two critical components of the visual cycle occur with the (1) hydrolytic release of all-trans retinaldehyde and subsequent (2) uptake of 11-cis retinaldehyde to reform the Schiff base linkage in the apoprotein opsin. Two pores on the surface of opsin are connected via the retinal channel, as discovered upon solution of the X-ray crystal structure (Park et al., Nature, 2008), and could serve as potential entryways for uptake and release. Using molecular dynamics simulations, we examined the behavior of rhodopsin in the Meta-II conformation (active) under Meta-I conditions (inactive), and discovered that the retinal binding pocket is flexible enough to allow a 180° rotation along the long axis of the retinal polyene chain. This result reconciles a discrepancy between the known polyene chain orientation from crystallographic and spectroscopic studies and opens the door for further investigation into the intermolecular interactions between the retinal ligand and the apoprotein opsin. Subsequent docking studies of both isomers of retinal into the opsin channel were then conducted to identify the mechanism for uptake and release. Our results suggest that retinal undergoes unidirectional uptake through Pore A and release through Pore B, and that aromatic sidechain interactions play a key role in stabilizing retinal within the opsin channel. These findings are significant in developing our understanding of the retinoid cycle and how ligand-receptor interactions in rhodopsin relate to G protein-coupled receptor activation. PMID:26248892

  8. Characterisation and localisation of the opsin protein repertoire in the brain and retinas of a spider and an onychophoran

    PubMed Central

    2013-01-01

    Background Opsins have been found in the majority of animals and their most apparent functions are related to vision and light-guided behaviour. As an increasing number of sequences have become available it has become clear that many opsin-like transcripts are expressed in tissues other than the eyes. Opsins can be divided into three main groups: rhabdomeric opsins (r-opsins), ciliary opsins (c-opsins) and group 4 opsins. In arthropods, the main focus has been on the r-opsins involved in vision. However, with increased sequencing it is becoming clear that arthropods also possess opsins of the c-type, group 4 opsins and the newly discovered arthropsins but the functions of these opsins are unknown in arthropods and data on their localisation is limited or absent. Results We identified opsins from the spider Cupiennius salei and the onychophoran Euperipatoides kanangrensis and characterised the phylogeny and localisation of these transcripts. We recovered all known visual opsins in C. salei, and in addition found a peropsin, a c-opsin and an opsin resembling Daphnia pulex arthropsin. The peropsin was expressed in all eye types except the anterior median eyes. The arthropsin and the c-opsin were expressed in the central nervous system but not the eyes. In E. kanangrensis we found: a c-opsin; an opsin resembling D. pulex arthropsins; and an r-opsin with high sequence similarity to previously published onychophoran onychopsins. The E. kanangrensis c-opsin and onychopsin were expressed in both the eyes and the brain but the arthropsin only in the brain. Conclusion Our novel finding that opsins of both the ciliary and rhabdomeric type are present in the onychophoran and a spider suggests that these two types of opsins were present in the last common ancestor of the Onychophora and Euarthropoda. The expression of the c-opsin in the eye of an onychophoran indicates that c-opsins may originally have been involved in vision in the arthropod clade. The lack of c-opsin

  9. Surface wave sensitivity: mode summation versus adjoint SEM

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Liu, Qinya; Tromp, Jeroen

    2011-12-01

    We compare finite-frequency phase and amplitude sensitivity kernels calculated based on frequency-domain surface wave mode summation and a time-domain adjoint method. The adjoint calculations involve a forward wavefield generated by an earthquake and an adjoint wavefield generated at a seismic receiver. We determine adjoint sources corresponding to frequency-dependent phase and amplitude measurements made using a multitaper technique, which may be applied to any single-taper measurement, including box car windowing. We calculate phase and amplitude sensitivity kernels using an adjoint method based on wave propagation simulations using a spectral element method (SEM). Sensitivity kernels calculated using the adjoint SEM are in good agreement with kernels calculated based on mode summation. In general, the adjoint SEM is more computationally expensive than mode summation in global studies. The advantage of the adjoint SEM lies in the calculation of sensitivity kernels in 3-D earth models. We compare surface wave sensitivity kernels computed in 1-D and 3-D reference earth models and show that (1) lateral wave speed heterogeneities may affect the geometry and amplitude of surface wave sensitivity; (2) sensitivity kernels of long-period surface waves calculated in 1-D model PREM and 3-D models S20RTS+CRUST2.0 and FFSW1+CRUST2.0 do not show significant differences, indicating that the use of a 1-D reference model is adequate in global inversions of long-period surface waves (periods of 50 s and longer); and (3) the differences become significant for short-period Love waves when mode coupling is sensitive to large differences in reference crustal structure. Finally, we show that sensitivity kernels in anelastic earth models may be calculated in purely elastic earth models provided physical dispersion is properly accounted for.

  10. Modeling Active Region Evolution - A New LWS TR and T Strategic Capability Model Suite

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2012-01-01

    In 2006 the LWS TR&T Program funded us to develop a strategic capability model of slowly evolving coronal active regions. In this poster we report on the overall design, and status of our new modeling suite. Our design features two coronal field models, a non-linear force free field model and a global 3D MHD code. The suite includes supporting tools and a user friendly GUI which will enable users to query the web for relevant magnetograms, download them, process them to synthesize a sequence of photospheric magnetograms and associated photospheric flow field which can then be applied to drive the coronal model innner boundary, run the coronal models and finally visualize the results.

  11. Gas and dust in the Galactic Centre - ISO LWS, submillimetre line and continuum observations.

    NASA Astrophysics Data System (ADS)

    Etxaluze, M.; White, G. J.; Smith, H. A.; Gonzalez-Alfonso, E.; Stark, A. A.; Stacey, G. J.; Leeks, S. J.; Gatley, I.; Fisher, J.; Pierce-Price, D.; Richer, J. S.; Grundy, T. W.; Polehampton, E. T.

    2011-05-01

    The Infrared Space Observatory (ISO) Long wavelength Spectrometer (LWS) has been used to map distribution of the emission from a sample of 22 atomic, molecular and ionised lines toward the Circumnuclear Disk at the Galactic Centre. The circumnuclear disc is clearly seen in the maps of molecular lines such as CO and OH, whilst the central region dominates in other atomic and ionised lines such as [O III] and [N III]. The ISO-LWS spectrum toward Sgr A^* is best represented by the sum of three blackbody curves of 90, 44.5 and 16 K, superposed with 22 lines, including CO, OH, [O I], [O III], [N II], [C II] and H_2O. The CO 4.7 μm absorption band head observed with the ISO SWS spectrometer toward SgrA^* is modeled as having a cold component with Trot = 10 K, for which we estimate N(CO)=7.7× 1018 cm-2, N(13CO) = 1.7× 1017 cm-2 and N(C18O)= 2.1× 1016 cm-2, and a warm component by n(H_2) = 1× 10^5 cm-3, T_k = 70 K, N(CO) = 3.9× 1018 cm-2, N(13CO)= N(CO)/40, N(C18O)= N(CO). Observations of hydrogen recombination lines toward SgrA^* are moddeled as representing a line of sight extiction A_V˜ 24 -28 magnitudes. The SCUBA data at 450 and 850 μm are used in this paper in order to make an estimation of the CND mass of ˜ 2.3× 10^4 M⊙, after removal of the free-free contribution and the local background.

  12. ISO-LWS observations of Herbig Ae/Be stars. I. Fine structure lines

    NASA Astrophysics Data System (ADS)

    Lorenzetti, D.; Tommasi, E.; Giannini, T.; Nisini, B.; Benedettini, M.; Pezzuto, S.; Strafella, F.; Barlow, M.; Clegg, P. E.; Cohen, M.; di Giorgio, A. M.; Liseau, R.; Molinari, S.; Palla, F.; Saraceno, P.; Smith, H. A.; Spinoglio, L.; White, G. J.

    1999-06-01

    We present the results of the first spectrophotometric survey of a sample of eleven Herbig Ae/Be stars (HAEBE) obtained with the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO). The [OI] 63mu m and the [CII] 158mu m lines are observed in all the investigated sources, while the [OI] 145mu m transition, due to its relative faintness, sometimes remains undetected. By comparing line intensity ratios with model predictions, photodissociation, due to the UV photons from the central star, results the dominating excitation mechanism although contributions of C-shocks to the [OI] emission cannot be ruled out. A clear example for the presence of a photodissociation region (PDR) illuminated by an HAEBE is shown by LWS spectroscopic mapping of NGC 7129. Some diagnostic probes of the radiation field and density are provided for the objects in our sample: these substantially agree with the known characteristics of both the star and its circumstellar environment, although the observed ratio [OI]63/[OI]145 tends to be smaller than predicted by PDR models. The most likely explanation for this behaviour is self-absorption at 63mu m by cold atomic oxygen. Fine structure lines of the ionised species [OIII], [NII] were detected whenever the star had a spectral type of B0 or earlier; in particular, around the star CoD-42(deg) 11721, besides a compact HII region, evidence is given for an extended low electron density ionised region. Finally, molecular line emission is associated with stars powering a CO outflow, and clumpy PDR models, better than C-shock models, predict for them relative cooling (CO vs OI and CO vs OH) similar to the observed ones. Based on observations with ISO, an ESA project with instruments funded by ESA Member States and with the participation of ISAS and NASA}

  13. True blue: S-opsin is widely expressed in different animal species.

    PubMed

    Amann, B; Hirmer, S; Hauck, S M; Kremmer, E; Ueffing, M; Deeg, C A

    2014-02-01

    Colour vision in animals is an interesting, fascinating subject. In this study, we examined a wide variety of species for expression of S-opsin (blue sensitive) and M-/L-opsin (green-red sensitive) in retinal cones using two novel monoclonal antibodies specific for peptides from human opsins. Mouse, rat and hare did not express one of the investigated epitopes, but we could clearly prove existence of cones through peanut agglutinin labelling. Retinas of guinea pig, dog, wolf, marten, cat, roe deer, pig and horse were positive for S-opsin, but not for M-/L-opsin. Nevertheless all these species are clearly at least dichromats, because we could detect further S-opsin negative cones by labelling with cone arrestin specific antibody. In contrast, pheasant and char had M-/L-opsin positive cones, but no S-opsin expressing cones. Sheep, cattle, monkey, men, pigeon, duck and chicken were positive for both opsins. Visual acuity analyzed through density of retinal ganglion cells revealed least visual discrimination by horses and highest resolution in pheasant and pigeon. Most mammals studied are dichromats with visual perception similar to red-green blind people. PMID:23173557

  14. Coexpression of three opsins in cone photoreceptors of the salamander Ambystoma tigrinum.

    PubMed

    Isayama, Tomoki; Chen, Ying; Kono, Masahiro; Fabre, Eduard; Slavsky, Michael; DeGrip, Willem J; Ma, Jian-Xing; Crouch, Rosalie K; Makino, Clint L

    2014-07-01

    Although more than one type of visual opsin is present in the retina of most vertebrates, it was thought that each type of photoreceptor expresses only one opsin. However, evidence has accumulated that some photoreceptors contain more than one opsin, in many cases as a result of a developmental transition from the expression of one opsin to another. The salamander UV-sensitive (UV) cone is particularly notable because it contains three opsins (Makino and Dodd [1996] J Gen Physiol 108:27-34). Two opsin types are expressed at levels more than 100 times lower than the level of the primary opsin. Here, immunohistochemical experiments identified the primary component as a UV cone opsin and the two minor components as the short wavelength-sensitive (S) and long wavelength-sensitive (L) cone opsins. Based on single-cell recordings of 156 photoreceptors, the presence of three components in UV cones of hatchlings and terrestrial adults ruled out a developmental transition. There was no evidence for multiple opsin types within rods or S cones, but immunohistochemistry and partial bleaching in conjunction with single-cell recording revealed that both single and double L cones contained low levels of short wavelength-sensitive pigments in addition to the main L visual pigment. These results raise the possibility that coexpression of multiple opsins in other vertebrates was overlooked because a minor component absorbing at short wavelengths was masked by the main visual pigment or because the expression level of a component absorbing at long wavelengths was exceedingly low. PMID:24374736

  15. Co-expression of three opsins in cone photoreceptors of the salamander, Ambystoma tigrinum

    PubMed Central

    Isayama, Tomoki; Chen, Ying; Kono, Masahiro; Fabre, Eduard; Slavsky, Michael; DeGrip, Willem J.; Ma, Jian-Xing; Crouch, Rosalie K.; Makino, Clint L.

    2014-01-01

    Whereas more than one type of visual opsin is present in the retina of most vertebrates, it was thought that each type of photoreceptor expressed only one opsin. However, evidence has accumulated that some photoreceptors contain more than one opsin, in many cases as a result of a developmental transition from the expression of one opsin to another. The salamander UV-sensitive (UV) cone is particularly notable because it contains three opsins (Makino and Dodd, 1996; J Gen Physiol 108:27–34). Two opsin types are expressed at levels more than a hundred times lower than that of the primary opsin. Here, immunohistochemical experiments identified the primary component as a UV cone opsin and the two minor components as the short wavelength-sensitive (S) and long wavelength-sensitive (L) cone opsins. Based on single cell recordings of 156 photoreceptors, the presence of three components in UV cones of hatchlings and terrestrial adults ruled out a developmental transition. There was no evidence for multiple opsin types within rods or S cones. But immunohistochemistry and partial bleaching in conjunction with single cell recording revealed that both single and double L cones contained low levels of short wavelength-sensitive pigments in addition to the main L visual pigment. These results raise the possibility that co-expression of multiple opsins in other vertebrates was overlooked because a minor component absorbing at short wavelengths was masked by the main visual pigment or because the expression level of a component absorbing at long wavelengths was exceedingly low. PMID:24374736

  16. Ocular and Extraocular Expression of Opsins in the Rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa)

    PubMed Central

    Bielecki, Jan; Zaharoff, Alexander K.; Leung, Nicole Y.; Garm, Anders; Oakley, Todd H.

    2014-01-01

    A growing body of work on the neuroethology of cubozoans is based largely on the capabilities of the photoreceptive tissues, and it is important to determine the molecular basis of their light sensitivity. The cubozoans rely on 24 special purpose eyes to extract specific information from a complex visual scene to guide their behavior in the habitat. The lens eyes are the most studied photoreceptive structures, and the phototransduction in the photoreceptor cells is based on light sensitive opsin molecules. Opsins are photosensitive transmembrane proteins associated with photoreceptors in eyes, and the amino acid sequence of the opsins determines the spectral properties of the photoreceptors. Here we show that two distinct opsins (Tripedalia cystophora-lens eye expressed opsin and Tripedalia cystophora-neuropil expressed opsin, or Tc-leo and Tc-neo) are expressed in the Tripedalia cystophora rhopalium. Quantitative PCR determined the level of expression of the two opsins, and we found Tc-leo to have a higher amount of expression than Tc-neo. In situ hybridization located Tc-leo expression in the retinal photoreceptors of the lens eyes where the opsin is involved in image formation. Tc-neo is expressed in a confined part of the neuropil and is probably involved in extraocular light sensation, presumably in relation to diurnal activity. PMID:24901369

  17. Opsin evolution and expression in Arthropod compound Eyes and Ocelli: Insights from the cricket Gryllus bimaculatus

    PubMed Central

    2012-01-01

    Background Opsins are key proteins in animal photoreception. Together with a light-sensitive group, the chromophore, they form visual pigments which initiate the visual transduction cascade when photoactivated. The spectral absorption properties of visual pigments are mainly determined by their opsins, and thus opsins are crucial for understanding the adaptations of animal eyes. Studies on the phylogeny and expression pattern of opsins have received considerable attention, but our knowledge about insect visual opsins is still limited. Up to now, researchers have focused on holometabolous insects, while general conclusions require sampling from a broader range of taxa. We have therefore investigated visual opsins in the ocelli and compound eyes of the two-spotted cricket Gryllus bimaculatus, a hemimetabolous insect. Results Phylogenetic analyses place all identified cricket sequences within the three main visual opsin clades of insects. We assign three of these opsins to visual pigments found in the compound eyes with peak absorbances in the green (515 nm), blue (445 nm) and UV (332 nm) spectral range. Their expression pattern divides the retina into distinct regions: (1) the polarization-sensitive dorsal rim area with blue- and UV-opsin, (2) a newly-discovered ventral band of ommatidia with blue- and green-opsin and (3) the remainder of the compound eye with UV- and green-opsin. In addition, we provide evidence for two ocellar photopigments with peak absorbances in the green (511 nm) and UV (350 nm) spectral range, and with opsins that differ from those expressed in the compound eyes. Conclusions Our data show that cricket eyes are spectrally more specialized than has previously been assumed, suggesting that similar adaptations in other insect species might have been overlooked. The arrangement of spectral receptor types within some ommatidia of the cricket compound eyes differs from the generally accepted pattern found in holometabolous insect taxa and awaits a

  18. Three Different Cone Opsin Gene Array Mutational Mechanisms with Genotype–Phenotype Correlation and Functional Investigation of Cone Opsin Variants

    PubMed Central

    Gardner, Jessica C; Liew, Gerald; Quan, Ying-Hua; Ermetal, Burcu; Ueyama, Hisao; Davidson, Alice E; Schwarz, Nele; Kanuga, Naheed; Chana, Ravinder; Maher, Eamonn R; Webster, Andrew R; Holder, Graham E; Robson, Anthony G; Cheetham, Michael E; Liebelt, Jan; Ruddle, Jonathan B; Moore, Anthony T; Michaelides, Michel; Hardcastle, Alison J

    2014-01-01

    Mutations in the OPN1LW (L-) and OPN1MW (M-)cone opsin genes underlie a spectrum of cone photoreceptor defects from stationary loss of color vision to progressive retinal degeneration. Genotypes of 22 families with a range of cone disorders were grouped into three classes: deletions of the locus control region (LCR); missense mutation (p.Cys203Arg) in an L-/M-hybrid gene; and exon 3 single-nucleotide polymorphism (SNP) interchange haplotypes in an otherwise normal gene array. Moderate-to-high myopia was observed in all mutation categories. Individuals with LCR deletions or p.Cys203Arg mutations were more likely to have nystagmus and poor vision, with disease progression in some p.Cys203Arg patients. Three disease-associated exon 3 SNP haplotypes encoding LIAVA, LVAVA, or MIAVA were identified in our cohort. These patients were less likely to have nystagmus but more likely to show progression, with all patients over the age of 40 years having marked macular abnormalities. Previously, the haplotype LIAVA has been shown to result in exon 3 skipping. Here, we show that haplotypes LVAVA and MIAVA also result in aberrant splicing, with a residual low level of correctly spliced cone opsin. The OPN1LW/OPN1MW:c.532A>G SNP, common to all three disease-associated haplotypes, appears to be principally responsible for this mutational mechanism. PMID:25168334

  19. Variation in opsin genes correlates with signaling ecology in North American fireflies

    PubMed Central

    Sander, Sarah E.; Hall, David W.

    2015-01-01

    Genes underlying signal reception should evolve to maximize signal detection in a particular environment. In animals, opsins, the protein component of visual pigments, are predicted to evolve according to this expectation. Fireflies are known for their bioluminescent mating signals. The eyes of nocturnal species are expected to maximize detection of conspecific signal colors emitted in the typical low-light environment. This is not expected for species that have transitioned to diurnal activity in bright daytime environments. Here we test the hypothesis that opsin gene sequence plays a role in modifying firefly eye spectral sensitivity. We use genome and transcriptome sequencing in four firefly species, transcriptome sequencing in six additional species, and targeted gene sequencing in 28 other species to identify all opsin genes present in North American fireflies and to elucidate amino acid sites under positive selection. We also determine whether amino acid substitutions in opsins are linked to evolutionary changes in signal mode, signal color, and light environment. We find only two opsins, one long wavelength and one ultraviolet, in all firefly species and identify 25 candidate sites that may be involved in determining spectral sensitivity. In addition, we find elevated rates of evolution at transitions to diurnal activity, and changes in selective constraint on LW opsin associated with changes in light environment. Our results suggest that changes in eye spectral sensitivity are at least partially due to opsin sequence. Fireflies continue to be a promising system in which to investigate the evolution of signals, receptors, and signaling environments. PMID:26289828

  20. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field.

    PubMed

    Dalton, Brian E; Loew, Ellis R; Cronin, Thomas W; Carleton, Karen L

    2014-12-22

    Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions. PMID:25377457

  1. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field

    PubMed Central

    Dalton, Brian E.; Loew, Ellis R.; Cronin, Thomas W.; Carleton, Karen L.

    2014-01-01

    Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions. PMID:25377457

  2. Molecular expression of opsin gene in growing juvenile mackerel ( Scomber japonicus Houttuyn)

    NASA Astrophysics Data System (ADS)

    Kim, Eung-Oh; Yoon, Seong-Jong; Park, Kyoung-Hyun; Kim, Dae-Hyun; Do, Jeung-Wan; Cho, Eun-Seob

    2009-12-01

    Fish have developed color vision that is closely adapted to their photic environments, where both spectral sensitivity and the number of visual opsins are influenced. The mackerel used in this study is one of the most important fishery stocks in Korea. The opsin gene of the mackerel juveniles after 20 days in hatching was isolated and characterized based on the molecular study of visual photoreceptor. The full-length mackerel opsin gene was obtained by PCR amplification of genomic DNA, as well as cDNA synthesis. Sequence analysis of the opsin gene showed that it contained a 1,080 bp open reading frame encoding 360 amino acids. Based on Schiff’s base formation (S114, K119), glycosylation (E3, F37) and palmitoylation (S281, 282), the deduced amino acid sequence had a typical rod opsin. The mackerel and Gempylus serpens showed 73.7% DNA homology on opsin gene, which was higher than any other of investigated species. In the analysis of phylogenetic relationship, the genetic placement of the mackerel is closer to that of Scombroidei than Labroidei, with supporting somewhat strong bootstrap value. In the analysis of Northern and RT-PCR, the probed products were observed only in rapidly growing juveniles. These findings indicate that in mackerel opsin mRNA expression can be detected in day-20 hatching larvae. It may play an important role in stimulating growth hormone.

  3. Optogenetics: 10 years of microbial opsins in neuroscience

    PubMed Central

    Deisseroth, Karl

    2016-01-01

    Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005–2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition. PMID:26308982

  4. Gene conversion and purifying selection shape nucleotide variation in gibbon L/M opsin genes

    PubMed Central

    2011-01-01

    Background Routine trichromatic color vision is a characteristic feature of catarrhines (humans, apes and Old World monkeys). This is enabled by L and M opsin genes arrayed on the X chromosome and an autosomal S opsin gene. In non-human catarrhines, genetic variation affecting the color vision phenotype is reported to be absent or rare in both L and M opsin genes, despite the suggestion that gene conversion has homogenized the two genes. However, nucleotide variation of both introns and exons among catarrhines has only been examined in detail for the L opsin gene of humans and chimpanzees. In the present study, we examined the nucleotide variation of gibbon (Catarrhini, Hylobatidae) L and M opsin genes. Specifically, we focused on the 3.6~3.9-kb region that encompasses the centrally located exon 3 through exon 5, which encode the amino acid sites functional for the spectral tuning of the genes. Results Among 152 individuals representing three genera (Hylobates, Nomascus and Symphalangus), all had both L and M opsin genes and no L/M hybrid genes. Among 94 individuals subjected to the detailed DNA sequencing, the nucleotide divergence between L and M opsin genes in the exons was significantly higher than the divergence in introns in each species. The ratio of the inter-LM divergence to the intra-L/M polymorphism was significantly lower in the introns than that in synonymous sites. When we reconstructed the phylogenetic tree using the exon sequences, the L/M gene duplication was placed in the common ancestor of catarrhines, whereas when intron sequences were used, the gene duplications appeared multiple times in different species. Using the GENECONV program, we also detected that tracts of gene conversions between L and M opsin genes occurred mostly within the intron regions. Conclusions These results indicate the historical accumulation of gene conversions between L and M opsin genes in the introns in gibbons. Our study provides further support for the homogenizing

  5. Depth-dependent plasticity in opsin gene expression varies between damselfish (Pomacentridae) species.

    PubMed

    Stieb, Sara M; Carleton, Karen L; Cortesi, Fabio; Marshall, N Justin; Salzburger, Walter

    2016-08-01

    Phenotypic plasticity plays an important role in adapting the visual capability of many animal species to changing sensory requirements. Such variability may be driven by developmental change or may result from environmental changes in light habitat, thereby improving performance in different photic environments. In this study, we examined inter- and intraspecific plasticity of visual sensitivities in seven damselfish species, part of the species-rich and colourful fish fauna of the Great Barrier Reef in Australia. Our goal was to test whether the visual systems of damselfish were tuned to the prevailing light environment in different habitats and/or other aspects of their lifestyle. More specifically, we compared the opsin gene expression levels from individuals living in different photic habitats. We found that all species expressed rod opsin (RH1) used for dim-light vision, and primarily three cone opsins (SWS1, RH2B and RH2A) used for colour vision. While RH1 levels changed exclusively following a diurnal cycle, cone opsin expression varied with depth in four of the seven species. Estimates of visual pigment performance imply that changes in opsin expression adjust visual sensitivities to the dominant photic regime. However, we also discovered that some species show a more stable opsin expression profile. Further, we found indication that seasonal changes, possibly linked to changes in the photic environment, might also trigger opsin expression. These findings suggest that plasticity in opsin gene expression of damselfish is highly species-specific, possibly due to ecological differences in visual tasks or, alternatively, under phylogenetic constraints. PMID:27262029

  6. Cone opsins, colour blindness and cone dystrophy: Genotype-phenotype correlations.

    PubMed

    Gardner, J C; Michaelides, M; Hardcastle, A J

    2016-01-01

    X-linked cone photoreceptor disorders caused by mutations in the OPN1LW (L) and OPN1MW (M) cone opsin genes on chromosome Xq28 include a range of conditions from mild stable red-green colour vision deficiencies to severe cone dystrophies causing progressive loss of vision and blindness. Advances in molecular genotyping and functional analyses of causative variants, combined with deep retinal phenotyping, are unravelling genetic mechanisms underlying the variability of cone opsin disorders. PMID:27245533

  7. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration. PMID:26658483

  8. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata)

    PubMed Central

    Battelle, Barbara-Anne; Ryan, Joseph F.; Kempler, Karen E.; Saraf, Spencer R.; Marten, Catherine E.; Warren, Wesley C.; Minx, Patrick J.; Montague, Michael J.; Green, Pamela J.; Schmidt, Skye A.; Fulton, Lucinda; Patel, Nipam H.; Protas, Meredith E.; Wilson, Richard K.; Porter, Megan L.

    2016-01-01

    Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus. We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution. PMID:27189985

  9. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata).

    PubMed

    Battelle, Barbara-Anne; Ryan, Joseph F; Kempler, Karen E; Saraf, Spencer R; Marten, Catherine E; Warren, Wesley C; Minx, Patrick J; Montague, Michael J; Green, Pamela J; Schmidt, Skye A; Fulton, Lucinda; Patel, Nipam H; Protas, Meredith E; Wilson, Richard K; Porter, Megan L

    2016-01-01

    Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution. PMID:27189985

  10. Photochemistry of the primary event in short-wavelength visual opsins at low temperature.

    PubMed

    Vought, B W; Dukkipatti, A; Max, M; Knox, B E; Birge, R R

    1999-08-31

    Two short-wavelength cone opsins, frog (Xenopus laevis) violet and mouse UV, were expressed in mammalian COS1 cells, purified in delipidated form, and studied using cryogenic UV-vis spectrophotometry. At room temperature, the X. laevis violet opsin has an absorption maximum at 426 nm when generated with 11-cis-retinal and an absorption maximum of 415 nm when generated with 9-cis-retinal. The frog short-wavelength opsin has two different batho intermediates, one stable at 30 K (lambda(max) approximately 446 nm) and the other at 70 K (lambda(max) approximately 475 nm). Chloride ions do not affect the absorption maximum of the violet opsin. At room temperature, mouse UV opsin has an absorption maximum of 357 nm, while at 70 K, the pigment exhibits a bathochromic shift to 403 nm with distinct vibronic structure and a strong secondary vibronic band at 380 nm. We have observed linear relationships when analyzing the energy difference between the initial and bathochromic intermediates and the normalized difference spectra of the batho-shifted intermediates of rod and cone opsins. We conclude that the binding sites of these pigments change from red to green to violet via systematic shifts in the position of the primary counterion relative to the protonated Schiff base. The mouse UV cone opsin does not fit this trend, and we conclude that wavelength selection in this pigment must operate via a different molecular mechanism. We discuss the possibility that the mouse UV chromophore is initially unprotonated. PMID:10471278

  11. X-Linked Cone Dystrophy Caused by Mutation of the Red and Green Cone Opsins

    PubMed Central

    Gardner, Jessica C.; Webb, Tom R.; Kanuga, Naheed; Robson, Anthony G.; Holder, Graham E.; Stockman, Andrew; Ripamonti, Caterina; Ebenezer, Neil D.; Ogun, Olufunmilola; Devery, Sophie; Wright, Genevieve A.; Maher, Eamonn R.; Cheetham, Michael E.; Moore, Anthony T.; Michaelides, Michel; Hardcastle, Alison J.

    2010-01-01

    X-linked cone and cone-rod dystrophies (XLCOD and XLCORD) are a heterogeneous group of progressive disorders that solely or primarily affect cone photoreceptors. Mutations in exon ORF15 of the RPGR gene are the most common underlying cause. In a previous study, we excluded RPGR exon ORF15 in some families with XLCOD. Here, we report genetic mapping of XLCOD to Xq26.1-qter. A significant LOD score was detected with marker DXS8045 (Zmax = 2.41 [θ = 0.0]). The disease locus encompasses the cone opsin gene array on Xq28. Analysis of the array revealed a missense mutation (c. 529T>C [p. W177R]) in exon 3 of both the long-wavelength-sensitive (LW, red) and medium-wavelength-sensitive (MW, green) cone opsin genes that segregated with disease. Both exon 3 sequences were identical and were derived from the MW gene as a result of gene conversion. The amino acid W177 is highly conserved in visual and nonvisual opsins across species. We show that W177R in MW opsin and the equivalent W161R mutation in rod opsin result in protein misfolding and retention in the endoplasmic reticulum. We also demonstrate that W177R misfolding, unlike the P23H mutation in rod opsin that causes retinitis pigmentosa, is not rescued by treatment with the pharmacological chaperone 9-cis-retinal. Mutations in the LW/MW cone opsin gene array can, therefore, lead to a spectrum of disease, ranging from color blindness to progressive cone dystrophy (XLCOD5). PMID:20579627

  12. Binding of More Than One Retinoid to Visual Opsins

    PubMed Central

    Makino, Clint L.; Riley, Charles K.; Looney, James; Crouch, Rosalie K.; Okada, Tetsuji

    2010-01-01

    Visual opsins bind 11-cis retinal at an orthosteric site to form rhodopsins but increasing evidence suggests that at least some are capable of binding an additional retinoid(s) at a separate, allosteric site(s). Microspectrophotometric measurements on isolated, dark-adapted, salamander photoreceptors indicated that the truncated retinal analog, β-ionone, partitioned into the membranes of green-sensitive rods; however, in blue-sensitive rod outer segments, there was an enhanced uptake of four or more β-ionones per rhodopsin. X-ray crystallography revealed binding of one β-ionone to bovine green-sensitive rod rhodopsin. Cocrystallization only succeeded with extremely high concentrations of β-ionone and binding did not alter the structure of rhodopsin from the inactive state. Salamander green-sensitive rod rhodopsin is also expected to bind β-ionone at sufficiently high concentrations because the binding site is present on its surface. Therefore, both blue- and green-sensitive rod rhodopsins have at least one allosteric binding site for retinoid, but β-ionone binds to the latter type of rhodopsin with low affinity and low efficacy. PMID:20923672

  13. Shock-wave sensitivity of a TATB-based plasticized explosive

    SciTech Connect

    Aminov, Y.A.; Vershinin, A.V.; Es`kov, N.S.

    1995-07-01

    The results of numerical modelling of experiments on the investigation of shock-wave sensitivity of a TATB-based explosive are presented. A model for the macrokinetics of decomposition of the explosive has been constructed within the framework of a hypothesis of hot spots.

  14. The ISO-LWS map of the Serpens cloud core. I. The SEDs of the IR/SMM sources

    NASA Astrophysics Data System (ADS)

    Larsson, B.; Liseau, R.; Men'shchikov, A. B.; Olofsson, G.; Caux, E.; Ceccarelli, C.; Lorenzetti, D.; Molinari, S.; Nisini, B.; Nordh, L.; Saraceno, P.; Sibille, F.; Spinoglio, L.; White, G. J.

    2000-11-01

    Iso-Lws mapping observations of the Serpens molecular cloud core are presented. The spectral range is 50 - 200 μ m and the map size is 8',x 8'. These observations suffer from severe source confusion at Fir wavelengths and we employ a Maximum Likelihood Method for the spectro-spatial deconvolution. The strong and fairly isolated source SMM 1/FIRS 1 presented a test case, whose modelled spectral energy distribution (SED), within observational errors, is identical to the observed one. The model results for the other infrared and submillimetre sources are therefore likely to represent their correct SEDs. Simulations demonstrating the reliability and potential of the developed method support this view. It is found that some sources do not exhibit significant Fir emission and others are most likely not pointlike at long wavelengths. In contrast, the SEDs of a number of SMMs are well fit by modified single-temperature blackbodies over the entire accessible spectral range. For the majority of sources the peak of the SEDs is found within the spectral range of the Lws and derived temperatures are generally higher (>= 30 K) than have been found by earlier deconvolution attempts using Iras data. SMM sizes are found to be only a few arcsec in diameter. In addition, the SMMs are generally optically thick even at Lws wavelengths, i.e. estimated lambda (TAu=1) are in the range 160-270 μ m. The Rayleigh-Jeans tails are less steep than expected for optically thin dust emission. This indicates that the SMMs are optically thick out to longer wavelengths than previously assumed, an assertion confirmed by self-consistent radiative transfer calculations. Models were calculated for five sources, for which sufficient data were available, viz. SMM 1, 2, 3, 4 and 9. These models are optically thick out to millimetre wavelengths (wavelength of unit optical depth 900 to 1 400 μ m). Envelope masses for these SMMs are in the range 2-6 Msun, which is of course considerably more massive than

  15. Crepuscular Behavioral Variation and Profiling of Opsin Genes in Anopheles gambiae and Anopheles stephensi (Diptera: Culicidae)

    PubMed Central

    Jenkins, Adam M.; Muskavitch, Marc A. T.

    2015-01-01

    We understand little about photopreference and the molecular mechanisms governing vision-dependent behavior in vector mosquitoes. Investigations of the influence of photopreference on adult mosquito behaviors such as endophagy and exophagy and endophily and exophily will enhance our ability to develop and deploy vector-targeted interventions and monitoring techniques. Our laboratory-based analyses have revealed that crepuscular period photopreference differs between An. gambiae and An. stephensi. We employed qRT-PCR to assess crepuscular transcriptional expression patterns of long wavelength-, short wavelength-, and ultraviolet wavelength-sensing opsins (i.e., rhodopsin-class G-protein coupled receptors) in An. gambiae and in An. stephensi. Transcript levels do not exhibit consistent differences between species across diurnal cycles, indicating that differences in transcript abundances within this gene set are not correlated with these behavioral differences. Using developmentally staged and gender-specific RNAseq data sets in An. gambiae, we show that long wavelength-sensing opsins are expressed in two different patterns (one set expressed during larval stages, and one set expressed during adult stages), while short wavelength- and ultraviolet wavelength-sensing opsins exhibit increased expression during adult stages. Genomic organization of An. gambiae opsins suggests paralogous gene expansion of long wavelength-sensing opsins in comparison with An. stephensi. We speculate that this difference in gene number may contribute to variation between these species in photopreference behavior (e.g., visual sensitivity). PMID:26334802

  16. Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression.

    PubMed

    Beckmann, Holger; Hering, Lars; Henze, Miriam J; Kelber, Almut; Stevenson, Paul A; Mayer, Georg

    2015-03-01

    Onychophorans typically possess a pair of simple eyes, inherited from the last common ancestor of Panarthropoda (Onychophora+Tardigrada+Arthropoda). These visual organs are thought to be homologous to the arthropod median ocelli, whereas the compound eyes probably evolved in the arthropod lineage. To gain insights into the ancestral function and evolution of the visual system in panarthropods, we investigated phototactic behaviour, opsin gene expression and the spectral sensitivity of the eyes in two representative species of Onychophora: Euperipatoides rowelli (Peripatopsidae) and Principapillatus hitoyensis (Peripatidae). Our behavioural analyses, in conjunction with previous data, demonstrate that both species exhibit photonegative responses to wavelengths ranging from ultraviolet to green light (370-530 nm), and electroretinograms reveal that the onychophoran eye is maximally sensitive to blue light (peak sensitivity ∼480 nm). Template fits to these sensitivities suggest that the onychophoran eye is monochromatic. To clarify which type of opsin the single visual pigment is based on, we localised the corresponding mRNA in the onychophoran eye and brain using in situ hybridization. Our data show that the r-opsin gene (onychopsin) is expressed exclusively in the photoreceptor cells of the eye, whereas c-opsin mRNA is confined to the optic ganglion cells and the brain. Together, our findings suggest that the onychopsin is involved in vision, whereas c-opsin might have a photoreceptive, non-visual function in onychophorans. PMID:25617459

  17. Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish

    PubMed Central

    Johnson, Ashley M.; Stanis, Shannon; Fuller, Rebecca C.

    2013-01-01

    Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish. PMID:23698009

  18. Broad-band opsin for effective stimulation of cells by white light

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Cervenka, Gregory; Kim, Young-Tae; Mohanty, Samarendra

    2015-03-01

    Currently, use of optogenetic sensitization of retinal cells combined with activation/inhibition has potential as alternative to retinal implants that would have required electrodes inside every single neuron for high visual resolution. However, clinical translation of optogenetic activation for restoration of vision suffers from the drawback that narrow spectral sensitivity of opsin requires active stimulation by blue laser or LED having intensity much higher than ambient light. In order to allow ambient-light based stimulation paradigm, here we report development of broad-band opsin that has broad spectral excitability in the entire visible spectrum. The cells sensitized with the broad-band opsin showed order of magnitude higher excitability with white light as compared to that using only the narrow-band light components. The use of broad-band opsin construct will allow higher sensitivity of the opsin-sensitized neurons in degenerated retina to ambient white light, and therefore, significantly lower activation-threshold in contrast to conventional approach of intense, narrow-band light based active-stimulation.

  19. A spinal opsin controls early neural activity and drives a behavioral light response

    PubMed Central

    Friedmann, Drew; Hoagland, Adam; Berlin, Shai; Isacoff, Ehud Y.

    2014-01-01

    Non-visual detection of light by the vertebrate hypothalamus, pineal, and retina is known to govern seasonal and circadian behaviors [1]. However, the expression of opsins in multiple other brain structures [2–4] suggests a more expansive repertoire for light-regulation of physiology, behavior, and development. Translucent zebrafish embryos express extra-retinal opsins early on [5, 6], at a time when spontaneous activity in the developing central nervous system plays a role in neuronal maturation and circuit formation [7]. Though the presence of extra-retinal opsins is well documented, the function of direct photoreception by the central nervous system remains largely unknown. Here we show that early activity in the zebrafish spinal central pattern generator (CPG) and the earliest locomotory behavior are dramatically inhibited by physiological levels of environmental light. We find that the photo-sensitivity of this circuit is conferred by vertebrate ancient long opsin (VALopA), which we show to be a Gαi-coupled receptor that is expressed in the neurons of the spinal network. Sustained photo-activation of VALopA not only suppresses spontaneous activity but also alters the maturation of time-locked correlated network patterns. These results uncover a novel role for non-visual opsins and a mechanism for environmental regulation of spontaneous motor behavior and neural activity in a circuit previously thought to be governed only by intrinsic developmental programs. PMID:25484291

  20. Crepuscular Behavioral Variation and Profiling of Opsin Genes in Anopheles gambiae and Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Jenkins, Adam M; Muskavitch, Marc A T

    2015-05-01

    We understand little about photo-preference and the molecular mechanisms governing vision-dependent behavior in vector mosquitoes. Investigations of the influence of photo-preference on adult mosquito behaviors such as endophagy and exophagy and endophily and exophily will enhance our ability to develop and deploy vector-targeted interventions and monitoring techniques. Our laboratory-based analyses have revealed that crepuscular period photo-preference differs between An. gambiae and An. stephensi. We employed qRT-PCR to assess crepuscular transcriptional expression patterns of long wavelength-, short wavelength-, and ultraviolet wavelength-sensing opsins (i.e., rhodopsin-class G-protein coupled receptors) in An. gambiae and in An. stephensi. Transcript levels do not exhibit consistent differences between species across diurnal cycles, indicating that differences in transcript abundances within this gene set are not correlated with these behavioral differences. Using developmentally staged and gender-specific RNAseq data sets in An. gambiae, we show that long wavelength-sensing opsins are expressed in two different patterns (one set expressed during larval stages, and one set expressed during adult stages), while short wavelength- and ultraviolet wavelength-sensing opsins exhibit increased expression during adult stages. Genomic organization of An. gambiae opsins suggests paralogous gene expansion of long wavelength-sensing opsins in comparison with An. stephensi. We speculate that this difference in gene number may contribute to variation between these species in photo-preference behavior (e.g., visual sensitivity). PMID:26334802

  1. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes

    PubMed Central

    Battelle, Barbara-Anne; Kempler, Karen E.; Harrison, Alexandra; Dugger, Donald R.; Payne, Richard

    2014-01-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. PMID:24948643

  2. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Harrison, Alexandra; Dugger, Donald R; Payne, Richard

    2014-09-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. PMID:24948643

  3. Adaptive evolution of cone opsin genes in two colorful cyprinids, Opsariichthys pachycephalus and Candidia barbatus.

    PubMed

    Wang, Feng Yu; Chung, Wen Sung; Yan, Hong Young; Tzeng, Chyng Shyan

    2008-07-01

    Opsariichthys pachycephalus and Candidia barbatus are two phylogenetically related freshwater cyprinids that both exhibit colorful, yet quite different nuptial coloration. This study was designed to test the hypothesis that differences in nuptial coloration between two species could reflect differences in color perception ability and the opsin genes that coded for it. Genes encoding the visual pigments of these two species were cloned and sequenced, lambda(max) of cone photoreceptors and the reflectance spectra of their body coloration were measured to test the hypothesis. The 14-nm spectral shift between green-light-sensitive photoreceptors of these two cyprinids is found to correlate well with differences in their reflective spectra. The spectral shift could result from differential expression of opsin genes and the interactive effects of the amino acid replacements in various minor sites. These results support our hypothesis that nuptial coloration is tied to color perception ability and opsin genes. PMID:18571688

  4. The Microbial Opsin Homolog Sop1 is involved in Sclerotinia sclerotiorum Development and Environmental Stress Response

    PubMed Central

    Lyu, Xueliang; Shen, Cuicui; Fu, Yanping; Xie, Jiatao; Jiang, Daohong; Li, Guoqing; Cheng, Jiasen

    2016-01-01

    Microbial opsins play a crucial role in responses to various environmental signals. Here, we report that the microbial opsin homolog gene sop1 from the necrotrophic phytopathogenic fungus Sclerotinia sclerotiorum was dramatically up-regulated during infection and sclerotial development compared with the vegetative growth stage. Further, study showed that sop1 was essential for growth, sclerotial development and full virulence of S. sclerotiorum. Sop1-silenced transformants were more sensitive to high salt stress, fungicides and high osmotic stress. However, they were more tolerant to oxidative stress compared with the wild-type strain, suggesting that sop1 is involved in different stress responses and fungicide resistance, which plays a role in the environmental adaptability of S. sclerotiorum. Furthermore, a Delta blast search showed that microbial opsins are absent from the genomes of animals and most higher plants, indicating that sop1 is a potential drug target for disease control of S. sclerotiorum. PMID:26779159

  5. Opsin transcripts of predatory diving beetles: a comparison of surface and subterranean photic niches

    PubMed Central

    Tierney, Simon M.; Cooper, Steven J. B.; Saint, Kathleen M.; Bertozzi, Terry; Hyde, Josephine; Humphreys, William F.; Austin, Andrew D.

    2015-01-01

    The regressive evolution of eyes has long intrigued biologists yet the genetic underpinnings remain opaque. A system of discrete aquifers in arid Australia provides a powerful comparative means to explore trait regression at the genomic level. Multiple surface ancestors from two tribes of diving beetles (Dytiscidae) repeatedly invaded these calcrete aquifers and convergently evolved eye-less phenotypes. We use this system to assess transcription of opsin photoreceptor genes among the transcriptomes of two surface and three subterranean dytiscid species and test whether these genes have evolved under neutral predictions. Transcripts for UV, long-wavelength and ciliary-type opsins were identified from the surface beetle transcriptomes. Two subterranean beetles showed parallel loss of all opsin transcription, as expected under ‘neutral’ regressive evolution. The third species Limbodessus palmulaoides retained transcription of a long-wavelength opsin (lwop) orthologue, albeit in an aphotic environment. Tests of selection on lwop indicated no significant differences between transcripts derived from surface and subterranean habitats, with strong evidence for purifying selection acting on L. palmulaoides lwop. Retention of sequence integrity and the lack of evidence for neutral evolution raise the question of whether we have identified a novel pleiotropic role for lwop, or an incipient phase of pseudogene development. PMID:26064586

  6. Three opsin-encoding cDNAS from the compound eye of Manduca sexta.

    PubMed

    Chase, M R; Bennett, R R; White, R H

    1997-09-01

    Three distinct opsin-encoding cDNAs, designated MANOP1, MANOP2 and MANOP3, were isolated from the retina of the sphingid moth Manduca sexta. MANOP1 codes for a protein with 377 amino acid residues. It is similar in sequence to members of a phylogenetic group of long-wavelength-sensitive arthropod photopigments, most closely resembling the opsins of ants, a praying mantis, a locust and the honeybee. MANOP2 and MANOP3 opsins have 377 and 384 residues respectively. They belong to a related group of insect visual pigments that include the ultraviolet-sensitive rhodopsins of flies as well as other insect rhodopsins that are also thought to absorb at short wavelengths. The retina of Manduca sexta contains three rhodopsins, P520, P450 and P357, with absorbance peaks, respectively, at green, blue and ultraviolet wavelengths. There is evidence that MANOP1 encodes the opsin of P520. We suggest that MANOP2 encodes P357 and that MANOP3, representing a class of blue-sensitive insect photopigments, encodes P450. PMID:9343857

  7. The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium.

    PubMed

    Hao, W; Fong, H K

    1999-03-01

    The recent identification of nonvisual opsins has revealed an expanding family of vertebrate opsin genes. The retinal pigment epithelium (RPE) and Müller cells contain a blue and UV light-absorbing opsin, the RPE retinal G protein-coupled receptor (RGR, or RGR opsin). The spectral properties of RGR purified from bovine RPE suggest that RGR is conjugated in vivo to a retinal chromophore through a covalent Schiff base bond. In this study, the isomeric structure of the endogenous chromophore of RGR was identified by the hydroxylamine derivatization method. The retinaloximes derived from RGR in the dark consisted predominantly of the all-trans isomer. Irradiation of RGR with 470-nm monochromatic or near-UV light resulted in stereospecific isomerization of the bound all-trans-retinal to an 11-cis configuration. The stereospecificity of photoisomerization of the all-trans-retinal chromophore of RGR was lost by denaturation of the protein in SDS. Under the in vitro conditions, the photosensitivity of RGR is at least 34% that of bovine rhodopsin. These results provide evidence that RGR is bound in vivo primarily to all-trans-retinal and is capable of operating as a stereospecific photoisomerase that generates 11-cis-retinal in the pigment epithelium. PMID:10037690

  8. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Saraf, Spencer R; Marten, Catherine E; Dugger, Donald R; Speiser, Daniel I; Oakley, Todd H

    2015-02-01

    The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates. PMID:25524988

  9. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes

    PubMed Central

    Battelle, Barbara-Anne; Kempler, Karen E.; Saraf, Spencer R.; Marten, Catherine E.; Dugger, Donald R.; Speiser, Daniel I.; Oakley, Todd H.

    2015-01-01

    The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates. PMID:25524988

  10. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception

    PubMed Central

    Mallefet, Jérôme; Flammang, Patrick

    2016-01-01

    Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences

  11. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception.

    PubMed

    Delroisse, Jérôme; Mallefet, Jérôme; Flammang, Patrick

    2016-01-01

    Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences

  12. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels

    PubMed Central

    French, Andrew S.; Meisner, Shannon; Liu, Hongxia; Weckström, Matti; Torkkeli, Päivi H.

    2015-01-01

    Our current understanding of insect phototransduction is based on a small number of species, but insects occupy many different visual environments. We created the retinal transcriptome of a nocturnal insect, the cockroach, Periplaneta americana to identify proteins involved in the earliest stages of compound eye phototransduction, and test the hypothesis that different visual environments are reflected in different molecular contributions to function. We assembled five novel mRNAs: two green opsins, one UV opsin, and one each TRP and TRPL ion channel homologs. One green opsin mRNA (pGO1) was 100–1000 times more abundant than the other opsins (pGO2 and pUVO), while pTRPL mRNA was 10 times more abundant than pTRP, estimated by transcriptome analysis or quantitative PCR (qPCR). Electroretinograms were used to record photoreceptor responses. Gene-specific in vivo RNA interference (RNAi) was achieved by injecting long (596–708 bp) double-stranded RNA into head hemolymph, and verified by qPCR. RNAi of the most abundant green opsin reduced both green opsins by more than 97% without affecting UV opsin, and gave a maximal reduction of 75% in ERG amplitude 7 days after injection that persisted for at least 19 days. RNAi of pTRP and pTRPL genes each specifically reduced the corresponding mRNA by 90%. Electroretinogram (ERG) reduction by pTRPL RNAi was slower than for opsin, reaching 75% attenuation by 21 days, without recovery at 29 days. pTRP RNAi attenuated ERG much less; only 30% after 21 days. Combined pTRP plus pTRPL RNAi gave only weak evidence of any cooperative interactions. We conclude that silencing retinal genes by in vivo RNAi using long dsRNA is effective, that visible light transduction in Periplaneta is dominated by pGO1, and that pTRPL plays a major role in cockroach phototransduction. PMID:26257659

  13. Dysfunction of Heterotrimeric Kinesin-2 in Rod Photoreceptor Cells and the Role of Opsin Mislocalization in Rapid Cell Death

    PubMed Central

    Lopes, Vanda S.; Jimeno, David; Khanobdee, Kornnika; Song, Xiaodan; Chen, Bryan; Nusinowitz, Steven

    2010-01-01

    Due to extensive elaboration of the photoreceptor cilium to form the outer segment, axonemal transport (IFT) in photoreceptors is extraordinarily busy, and retinal degeneration is a component of many ciliopathies. Functional loss of heterotrimeric kinesin-2, a major anterograde IFT motor, causes mislocalized opsin, followed by rapid cell death. Here, we have analyzed the nature of protein mislocalization and the requirements for the death of kinesin-2-mutant rod photoreceptors. Quantitative immuno EM showed that opsin accumulates initially within the inner segment, and then in the plasma membrane. The light-activated movement of arrestin to the outer segment is also impaired, but this defect likely results secondarily from binding to mislocalized opsin. Unlike some other retinal degenerations, neither opsin–arrestin complexes nor photoactivation were necessary for cell loss. In contrast, reduced rod opsin expression provided enhanced rod and cone photoreceptor survival and function, as measured by photoreceptor cell counts, apoptosis assays, and ERG analysis. The cell death incurred by loss of kinesin-2 function was almost completely negated by Rho−/−. Our results indicate that mislocalization of opsin is a major cause of photoreceptor cell death from kinesin-2 dysfunction and demonstrate the importance of accumulating mislocalized protein per se, rather than specific signaling properties of opsin, stemming from photoactivation or arrestin binding. PMID:20926680

  14. Light-controlled inhibition of malignant glioma by opsin gene transfer

    PubMed Central

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P

    2013-01-01

    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  15. Conformational Selection and Equilibrium Governs the Ability of Retinals to Bind Opsin*

    PubMed Central

    Schafer, Christopher T.; Farrens, David L.

    2015-01-01

    Despite extensive study, how retinal enters and exits the visual G protein-coupled receptor rhodopsin remains unclear. One clue may lie in two openings between transmembrane helix 1 (TM1) and TM7 and between TM5 and TM6 in the active receptor structure. Recently, retinal has been proposed to enter the inactive apoprotein opsin (ops) through these holes when the receptor transiently adopts the active opsin conformation (ops*). Here, we directly test this “transient activation” hypothesis using a fluorescence-based approach to measure rates of retinal binding to samples containing differing relative fractions of ops and ops*. In contrast to what the transient activation hypothesis model would predict, we found that binding for the inverse agonist, 11-cis-retinal (11CR), slowed when the sample contained more ops* (produced using M257Y, a constitutively activating mutation). Interestingly, the increased presence of ops* allowed for binding of the agonist, all-trans-retinal (ATR), whereas WT opsin showed no binding. Shifting the conformational equilibrium toward even more ops* using a G protein peptide mimic (either free in solution or fused to the receptor) accelerated the rate of ATR binding and slowed 11CR binding. An arrestin peptide mimic showed little effect on 11CR binding; however, it stabilized opsin·ATR complexes. The TM5/TM6 hole is apparently not involved in this conformational selection. Increasing its size by mutagenesis did not enable ATR binding but instead slowed 11CR binding, suggesting that it may play a role in trapping 11CR. In summary, our results indicate that conformational selection dictates stable retinal binding, which we propose involves ATR and 11CR binding to different states, the latter a previously unidentified, open-but-inactive conformation. PMID:25451936

  16. Inherent Instability of the Retinitis Pigmentosa P23H Mutant Opsin*

    PubMed Central

    Chen, Yuanyuan; Jastrzebska, Beata; Cao, Pengxiu; Zhang, Jianye; Wang, Benlian; Sun, Wenyu; Yuan, Yiyuan; Feng, Zhaoyang; Palczewski, Krzysztof

    2014-01-01

    The P23H opsin mutation is the most common cause of autosomal dominant retinitis pigmentosa. Even though the pathobiology of the resulting retinal degeneration has been characterized in several animal models, its complex molecular mechanism is not well understood. Here, we expressed P23H bovine rod opsin in the nervous system of Caenorhabditis elegans. Expression was low due to enhanced protein degradation. The mutant opsin was glycosylated, but the polysaccharide size differed from that of the normal protein. Although P23H opsin aggregated in the nervous system of C. elegans, the pharmacological chaperone 9-cis-retinal stabilized it during biogenesis, producing a variant of rhodopsin called P23H isorhodopsin. In vitro, P23H isorhodopsin folded correctly, formed the appropriate disulfide bond, could be photoactivated but with reduced sensitivity, and underwent Meta II decay at a rate similar to wild type isorhodopsin. In worm neurons, P23H isorhodopsin initiated phototransduction by coupling with the endogenous Gi/o signaling cascade that induced loss of locomotion. Using pharmacological interventions affecting protein synthesis and degradation, we showed that the chromophore could be incorporated either during or after mutant protein translation. However, regeneration of P23H isorhodopsin with chromophore was significantly slower than that of wild type isorhodopsin. This effect, combined with the inherent instability of P23H rhodopsin, could lead to the structural cellular changes and photoreceptor death found in autosomal dominant retinitis pigmentosa. These results also suggest that slow regeneration of P23H rhodopsin could prevent endogenous chromophore-mediated stabilization of rhodopsin in the retina. PMID:24515108

  17. Atomistic design of microbial opsin-based blue-shifted optogenetics tools

    NASA Astrophysics Data System (ADS)

    Kato, Hideaki E.; Kamiya, Motoshi; Sugo, Seiya; Ito, Jumpei; Taniguchi, Reiya; Orito, Ayaka; Hirata, Kunio; Inutsuka, Ayumu; Yamanaka, Akihiro; Maturana, Andrés D.; Ishitani, Ryuichiro; Sudo, Yuki; Hayashi, Shigehiko; Nureki, Osamu

    2015-05-01

    Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein-chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources.

  18. Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin

    PubMed Central

    Carroll, Joseph; Baraas, Rigmor C.; Wagner-Schuman, Melissa; Rha, Jungtae; Siebe, Cory A.; Sloan, Christina; Tait, Diane M.; Thompson, Summer; Morgan, Jessica I. W.; Neitz, Jay; Williams, David R.; Foster, David H.; Neitz, Maureen

    2009-01-01

    Missense mutations in the cone opsins have been identified as a relatively common cause of red/green color vision defects, with the most frequent mutation being the substitution of arginine for cysteine at position 203 (C203R). When the corresponding cysteine is mutated in rhodopsin, it disrupts proper folding of the pigment, causing severe, early onset retinitis pigmentosa. While the C203R mutation has been associated with loss of cone function in color vision deficiency, it is not known what happens to cones expressing this mutant opsin. Here, we used high-resolution retinal imaging to examine the cone mosaic in two individuals with genes encoding a middle-wavelength sensitive (M) pigment with the C203R mutation. We found a significant reduction in cone density compared to normal and color-deficient controls, accompanying disruption in the cone mosaic in both individuals, and thinning of the outer nuclear layer. The C203R mosaics were different from that produced by another mutation (LIAVA) previously shown to disrupt the cone mosaic. Comparison of these mosaics provides insight into the timing and degree of cone disruption and has implications for the prospects for restoration of vision loss associated with various cone opsin mutations. PMID:19934058

  19. Differentially-expressed opsin genes identified in Sinocyclocheilus cavefish endemic to China

    PubMed Central

    Meng, Fanwei; Zhao, Yahui; Postlethwait, John H.; Zhang, Chunguang

    2013-01-01

    Eye degeneration is a common troglomorphic character of cave-dwelling organisms. Comparing the morphology and molecular biology of cave species and their close surface relatives is a powerful tool for studying regressive eye evolution and other adaptive phenotypes. We compared two co-occurring and closely-related species of the fish genus Sinocyclocheilus, which is endemic to China and includes both surface- and cave-dwelling species. Sinocyclocheilus tileihornes, a cave species, had smaller eyes than Sinocyclocheilus angustiporus, a surface species. Histological and immunohistochemical analyses revealed that the cavefish had shorter cones and more disorderly rods than did the surface-dwelling species. Using quantitative PCR and in situ hybridization, we found that rhodopsin and a long-wavelength sensitive opsin had significantly lower expression levels in the cavefish. Furthermore, one of two short-wavelength-sensitive opsins was expressed at significantly higher levels in the cavefish. Changes in the expression of opsin genes may have played a role in the degeneration of cavefish eyes PMID:24363664

  20. Mutational changes in S-cone opsin genes common to both nocturnal and cathemeral Aotus monkeys.

    PubMed

    Levenson, David H; Fernandez-Duque, Eduardo; Evans, Sian; Jacobs, Gerald H

    2007-07-01

    Aotus is a platyrrhine primate that has been classically considered to be nocturnal. Earlier research revealed that this animal lacks a color vision capacity because, unlike all other platyrrhine monkeys, Aotus has a defect in the opsin gene that is required to produce short-wavelength sensitive (S) cone photopigment. Consequently, Aotus retains only a single type of cone photopigment. Other mammals have since been found to show similar losses and it has often been speculated that such change is in some fashion tied to nocturnality. Although most species of Aotus are indeed nocturnal, recent observations show that Aotus azarai, an owl monkey species native to portions of Argentina and Paraguay, displays a cathemeral activity pattern being active during daylight hours as frequently as during nighttime hours. We have sequenced portions of the S-cone opsin gene in A. azarai and Aotus nancymaae, the latter a typically nocturnal species. The S-cone opsin genes in both species contain the same fatal defects earlier detected for Aotus trivirgatus. On the basis of the phylogenetic relationships of these three species these results imply that Aotus must have lost a capacity for color vision early in its history and they also suggest that the absence of color vision is not compulsively linked to a nocturnal lifestyle. PMID:17253622

  1. Differentially-expressed opsin genes identified in Sinocyclocheilus cavefish endemic to China.

    PubMed

    Meng, Fanwei; Zhao, Yahui; Postlethwait, John H; Zhang, Chunguang

    2013-04-01

    Eye degeneration is a common troglomorphic character of cave-dwelling organisms. Comparing the morphology and molecular biology of cave species and their close surface relatives is a powerful tool for studying regressive eye evolution and other adaptive phenotypes. We compared two co-occurring and closely-related species of the fish genus Sinocyclocheilus, which is endemic to China and includes both surface- and cave-dwelling species. Sinocyclocheilus tileihornes, a cave species, had smaller eyes than Sinocyclocheilus angustiporus, a surface species. Histological and immunohistochemical analyses revealed that the cavefish had shorter cones and more disorderly rods than did the surface-dwelling species. Using quantitative PCR and in situ hybridization, we found that rhodopsin and a long-wavelength sensitive opsin had significantly lower expression levels in the cavefish. Furthermore, one of two short-wavelength-sensitive opsins was expressed at significantly higher levels in the cavefish. Changes in the expression of opsin genes may have played a role in the degeneration of cavefish eyes. PMID:24363664

  2. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation.

    PubMed

    Berglund, Ken; Clissold, Kara; Li, Haofang E; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E; Lu, Dongye; Barter, Joseph W; Rossi, Mark A; Augustine, George J; Yin, Henry H; Hochgeschwender, Ute

    2016-01-19

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  3. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation

    PubMed Central

    Berglund, Ken; Clissold, Kara; Li, Haofang E.; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E.; Lu, Dongye; Barter, Joseph W.; Rossi, Mark A.; Augustine, George J.; Yin, Henry H.; Hochgeschwender, Ute

    2016-01-01

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  4. Atomistic design of microbial opsin-based blue-shifted optogenetics tools

    PubMed Central

    Kato, Hideaki E.; Kamiya, Motoshi; Sugo, Seiya; Ito, Jumpei; Taniguchi, Reiya; Orito, Ayaka; Hirata, Kunio; Inutsuka, Ayumu; Yamanaka, Akihiro; Maturana, Andrés D.; Ishitani, Ryuichiro; Sudo, Yuki; Hayashi, Shigehiko; Nureki, Osamu

    2015-01-01

    Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein–chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources. PMID:25975962

  5. Enhancer/Promoter Activities of the Long/Middle Wavelength-Sensitive Opsins of Vertebrates Mediated by Thyroid Hormone Receptor β2 and COUP-TFII

    PubMed Central

    Iida, Atsumi; Itoh, Toshio; Watanabe, Sumiko

    2013-01-01

    Cone photopigments (opsins) are crucial elements of, and the first detection module in, color vision. Individual opsins have different wavelength sensitivity patterns, and the temporal and spatial expression patterns of opsins are unique and stringently regulated. Long and middle wavelength-sensitive (L/M) opsins are of the same phylogenetic type. Although the roles of thyroid hormone/TRß2 and COUP-TFs in the transcriptional regulation of L/M opsins have been explored, the detailed mechanisms, including the target sequence in the enhancer of L/M opsins, have not been revealed. We aimed to reveal molecular mechanisms of L/M opsins in vertebrates. Using several human red opsin enhancer/promoter-luciferase reporter constructs, we found that TRß2 increased luciferase activities through the 5′-UTR and intron 3–4 region, whereas the presence of T3 affected only the intron 3–4 region-dependent luciferase activity. Furthermore, COUP-TFII suppressed intron 3–4 region-dependent luciferase activities. However, luciferase expression driven by the mouse M opsin intron 3–4 region was only slightly increased by TRß2, and rather enhanced by COUP-TFII. To determine whether these differential responses reflect differences between primates and rodents, we examined the enhancer/promoter region of the red opsin of the common marmoset. Interestingly, while TRß2 increased 5′-UTR- or intron 3–4 region-driven luciferase expression, as observed for the human red opsin, expression of the latter luciferase was not suppressed by COUP-TFII. In fact, immunostaining of common marmoset retinal sections revealed expression of COUP-TFII and red opsin in the cone cells. PMID:24058409

  6. Evolutionary renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline New World monkeys

    PubMed Central

    Matsumoto, Yoshifumi; Hiramatsu, Chihiro; Matsushita, Yuka; Ozawa, Norihiro; Ashino, Ryuichi; Nakata, Makiko; Kasagi, Satoshi; Di Fiore, Anthony; Schaffner, Colleen M; Aureli, Filippo; Melin, Amanda D; Kawamura, Shoji

    2014-01-01

    New World monkeys exhibit prominent colour vision variation due to allelic polymorphism of the long-to-middle wavelength (L/M) opsin gene. The known spectral variation of L/M opsins in primates is broadly determined by amino acid composition at three sites: 180, 277 and 285 (the ‘three-sites’ rule). However, two L/M opsin alleles found in the black-handed spider monkeys (Ateles geoffroyi) are known exceptions, presumably due to novel mutations. The spectral separation of the two L/M photopigments is 1.5 times greater than expected based on the ‘three-sites’ rule. Yet the consequence of this for the visual ecology of the species is unknown, as is the evolutionary mechanism by which spectral shift was achieved. In this study, we first examine L/M opsins of two other Atelinae species, the long-haired spider monkeys (A. belzebuth) and the common woolly monkeys (Lagothrix lagotricha). By a series of site-directed mutagenesis, we show that a mutation Y213D (tyrosine to aspartic acid at site 213) in the ancestral opsin of the two alleles enabled N294K, which occurred in one allele of the ateline ancestor and increased the spectral separation between the two alleles. Second, by modelling the chromaticity of dietary fruits and background leaves in a natural habitat of spider monkeys, we demonstrate that chromatic discrimination of fruit from leaves is significantly enhanced by these mutations. This evolutionary renovation of L/M opsin polymorphism in atelines illustrates a previously unappreciated dynamism of opsin genes in shaping primate colour vision. PMID:24612406

  7. Genetic deletion of S-opsin prevents rapid cone degeneration in a mouse model of Leber congenital amaurosis.

    PubMed

    Zhang, Tao; Enemchukwu, Nduka O; Jones, Alex; Wang, Shixian; Dennis, Emily; Watt, Carl B; Pugh, Edward N; Fu, Yingbin

    2015-03-15

    Mutations in RPE65 or lecithin-retinol acyltransferase (LRAT) disrupt 11-cis-retinal synthesis and cause Leber congenital amaurosis (LCA), a severe hereditary blindness occurring in early childhood. The pathology is attributed to a combination of 11-cis-retinal deficiency and photoreceptor degeneration. The mistrafficking of cone membrane-associated proteins including cone opsins (M- and S-opsins), cone transducin (Gαt2), G-protein-coupled receptor kinase 1 (GRK1) and guanylate cyclase 1 (GC1) has been suggested to play a role in cone degeneration. However, their precise role in cone degeneration is unclear. Here we investigated the role of S-opsin (Opn1sw) in cone degeneration in Lrat(-) (/-), a murine model for LCA, by genetic ablation of S-opsin. We show that deletion of just one allele of S-opsin from Lrat(-) (/-) mice is sufficient to prevent the rapid cone degeneration for at least 1 month. Deletion of both alleles of S-opsin prevents cone degeneration for an extended period (at least 12 months). This genetic prevention is accompanied by a reduction of endoplasmic reticulum (ER) stress in Lrat(-) (/-) photoreceptors. Despite cone survival in Opn1sw(-/-)Lrat(-) (/-) mice, cone membrane-associated proteins (e.g. Gαt2, GRK1 and GC1) continue to have trafficking problems. Our results suggest that cone opsins are the 'culprit' linking 11-cis-retinal deficiency to cone degeneration in LCA. This result has important implications for the current gene therapy strategy that emphasizes the need for a combinatorial therapy to both improve vision and slow photoreceptor degeneration. PMID:25416279

  8. 11-cis-retinal reduces constitutive opsin phosphorylation and improves quantum catch in retinoid-deficient mouse rod photoreceptors.

    PubMed

    Ablonczy, Zsolt; Crouch, Rosalie K; Goletz, Patrice W; Redmond, T Michael; Knapp, Daniel R; Ma, Jian-Xing; Rohrer, Barbel

    2002-10-25

    Rpe65(-/-) mice produce minimal amounts of 11-cis-retinal, the ligand necessary for the formation of photosensitive visual pigments. Therefore, the apoprotein opsin in these animals has not been exposed to its normal ligand. The Rpe65(-/-) mice contain less than 0.1% of wild type levels of rhodopsin. Mass spectrometric analysis of opsin from Rpe65(-/-) mice revealed unusually high levels of phosphorylation in dark-adapted mice but no other structural alterations. Single flash and flicker electroretinograms (ERGs) from 1-month-old animals showed trace rod function but no cone response. B-wave kinetics of the single-flash ERG are comparable with those of dark-adapted wild type mice containing a full compliment of rhodopsin. Application (intraperitoneal injection) of 11-cis-retinal to Rpe65(-/-) mice increased the rod ERG signal, increased levels of rhodopsin, and decreased opsin phosphorylation. Therefore, exogenous 11-cis-retinal improves photoreceptor function by regenerating rhodopsin and removes constitutive opsin phosphorylation. Our results indicate that opsin, which has not been exposed to 11-cis-retinal, does not generate the activity generally associated with the bleached apoprotein. PMID:12176991

  9. Metal Mesh Fabrication and Testing for Infrared Astronomy and ISO Science Programs; ISO GO Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Oliversen, Ronald J. (Technical Monitor)

    2001-01-01

    This research program addresses astrophysics research with the Infrared Space Observatory's Long Wavelength Spectrometer (ISO-LWS), including efforts to supply ISO-LWS with superior metal mesh filters. This grant has, over the years, enabled Dr. Smith in his role as a Co-Investigator on the satellite, the PI (Principal Investigator) on the Extragalactic Science Team, and a member of the Calibration and performance working groups. The emphasis of the budget in this proposal is in support of Dr. Smith's Infrared Space Observatory research. This program began (under a different grant number) while Dr. Smith was at the Smithsonian's National Air and Space Museum, and was transferred to SAO with a change in number. While Dr. Smith was a visiting Discipline Scientist at NASA HQ the program was in abeyance, but it has resumed in full since his return to SAO. The Infrared Space Observatory mission was launched in November, 1996, and since then has successfully completed its planned lifetime mission. Data are currently being calibrated to the 2% level.

  10. Travelling-wave Green tensor and near-field Rayleigh-wave sensitivity

    NASA Astrophysics Data System (ADS)

    Liu, Kui; Zhou, Ying

    2016-04-01

    Travelling-wave Green tensor has been widely used in calculations of synthetic seismograms and finite-frequency sensitivities of surface waves. The classic travelling-wave decomposition is based on a far-field approximation and may not be valid when applied to construct sensitivity kernels in regions close to the receiver. In this paper, we calculate synthetic seismograms and finite-frequency sensitivity kernels of Rayleigh waves based on travelling-wave representation of Green tensor that fully accounts for near-field effects. We show that far-field approximation is adequate for synthetic seismograms when the source-receiver epicentral distance is greater than the dominant wavelength. Errors in Rayleigh-wave sensitivity kernels introduced by far-field approximation are in general negligible for single-station measurements except for in a small region around the station, and the errors are more significant in sensitivity kernels for interstation measurements. In addition, interstation measurements are strongly sensitive to structures outside the region between the two stations, even for two stations along the same great circle path from the seismic source.

  11. Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods.

    PubMed

    Hering, Lars; Henze, Miriam J; Kohler, Martin; Kelber, Almut; Bleidorn, Christoph; Leschke, Maren; Nickel, Birgit; Meyer, Matthias; Kircher, Martin; Sunnucks, Paul; Mayer, Georg

    2012-11-01

    Multiple visual pigments, prerequisites for color vision, are found in arthropods, but the evolutionary origin of their diversity remains obscure. In this study, we explore the opsin genes in five distantly related species of Onychophora, using deep transcriptome sequencing and screening approaches. Surprisingly, our data reveal the presence of only one opsin gene (onychopsin) in each onychophoran species, and our behavioral experiments indicate a maximum sensitivity of onychopsin to blue-green light. In our phylogenetic analyses, the onychopsins represent the sister group to the monophyletic clade of visual r-opsins of arthropods. These results concur with phylogenomic support for the sister-group status of the Onychophora and Arthropoda and provide evidence for monochromatic vision in velvet worms and in the last common ancestor of Onychophora and Arthropoda. We conclude that the diversification of visual pigments and color vision evolved in arthropods, along with the evolution of compound eyes-one of the most sophisticated visual systems known. PMID:22683812

  12. Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates

    PubMed Central

    Melin, Amanda D.; Matsushita, Yuka; Moritz, Gillian L.; Dominy, Nathaniel J.; Kawamura, Shoji

    2013-01-01

    Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal–diurnal dichotomy that has long informed debate on the origin of anthropoid primates. PMID:23536597

  13. Effects of light-emitting diode spectra on the vertebrate ancient long opsin and gonadotropin hormone in the goldfish Carassius auratus.

    PubMed

    Song, Jin Ah; Kim, Na Na; Choi, Young Jae; Choi, Ji Yong; Kim, Bong-Seok; Choi, Cheol Young

    2016-08-01

    We determined the molecular mechanism underlying the environmental (photoperiodic) regulation of sexual maturation in fish, we examined the expression of sexual maturation-related hormones and vertebrate ancient long opsin (VAL-opsin) in goldfish (Carassius auratus) exposed to different light spectra (red and green light-emitting diodes). We further evaluated the effect of exogenous gonadotropin hormone (GTH) on the expression of VAL-opsin under different light conditions. Our results demonstrated that the expression of GTHs was higher in the fish exposed to green light, and VAL-opsin levels were increased in the fish receiving GTH injection. Therefore, we have uncovered a molecular mechanism underlying the environmental (light)-induced trigger for sexual maturation: VAL-opsin is activated by green light and GTH, which promotes the expression of sexual maturation genes. PMID:27255995

  14. Pharmacological Chaperone-mediated in Vivo Folding and Stabilization of the P23H-opsin Mutant Associated with Autosomal Dominant Retinitis Pigmentosa*

    PubMed Central

    Imanishi, Yoshikazu; Zhu, Li; Filipek, Sławomir; Palczewski, Krzysztof; Kaushal, Shalesh

    2006-01-01

    Protein conformational disorders, which include certain types of retinitis pigmentosa, are a set of inherited human diseases in which mutant proteins are misfolded and often aggregated. Many opsin mutants associated with retinitis pigmentosa, the most common being P23H, are misfolded and retained within the cell. Here, we describe a pharmacological chaperone, 11-cis-7-ring retinal, that quantitatively induces the in vivo folding of P23H-opsin. The rescued protein forms pigment, acquires mature glycosylation, and is transported to the cell surface. Additionally, we determined the temperature stability of the rescued protein as well as the reactivity of the retinal-opsin Schiff base to hydroxylamine. Our study unveils novel properties of P23H-opsin and its interaction with the chromophore. These properties suggest that 11-cis-7-ring retinal may be a useful therapeutic agent for the rescue of P23H-opsin and the prevention of retinal degeneration. PMID:12566452

  15. The evolution of irradiance detection: melanopsin and the non-visual opsins

    PubMed Central

    Peirson, Stuart N.; Halford, Stephanie; Foster, Russell G.

    2009-01-01

    Circadian rhythms are endogenous 24 h cycles that persist in the absence of external time cues. These rhythms provide an internal representation of day length and optimize physiology and behaviour to the varying demands of the solar cycle. These clocks require daily adjustment to local time and the primary time cue (zeitgeber) used by most vertebrates is the daily change in the amount of environmental light (irradiance) at dawn and dusk, a process termed photoentrainment. Attempts to understand the photoreceptor mechanisms mediating non-image-forming responses to light, such as photoentrainment, have resulted in the discovery of a remarkable array of different photoreceptors and photopigment families, all of which appear to use a basic opsin/vitamin A-based photopigment biochemistry. In non-mammalian vertebrates, specialized photoreceptors are located within the pineal complex, deep brain and dermal melanophores. There is also strong evidence in fish and amphibians for the direct photic regulation of circadian clocks in multiple tissues. By contrast, mammals possess only ocular photoreceptors. However, in addition to the image-forming rods and cones of the retina, there exists a third photoreceptor system based on a subset of melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). In this review, we discuss the range of vertebrate photoreceptors and their opsin photopigments, describe the melanopsin/pRGC system in some detail and then finally consider the molecular evolution and sensory ecology of these non-image-forming photoreceptor systems. PMID:19720649

  16. Evolution of color vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate.

    PubMed

    Awata, Hiroko; Wakakuwa, Motohiro; Arikawa, Kentaro

    2009-04-01

    This paper documents the molecular organization of the eye of the Eastern Pale Clouded Yellow butterfly, Colias erate (Pieridae). We cloned four cDNAs encoding visual pigment opsins, corresponding to one ultraviolet, two blue and one long wavelength-absorbing visual pigments. Duplication of the blue visual pigment class occurs also in another pierid species, Pieris rapae, suggesting that blue duplication is a general feature in the family Pieridae. We localized the opsin mRNAs in the Colias retina by in situ hybridization. Among the nine photoreceptor cells in an ommatidium, R1-9, we found that R3-8 expressed the long wavelength class mRNA in all ommatidia. R1 and R2 expressed mRNAs of the short wavelength opsins in three fixed combinations, corresponding to three types of ommatidia. While the duplicated blue opsins in Pieris are separately expressed in two subsets of R1-2 photoreceptors, one blue sensitive and another violet sensitive, those of Colias appear to be always coexpressed. PMID:19224222

  17. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes

    PubMed Central

    2012-01-01

    Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis

  18. Complex patterns of divergence among green-sensitive (RH2a) African cichlid opsins revealed by Clade model analyses

    PubMed Central

    2012-01-01

    Background Gene duplications play an important role in the evolution of functional protein diversity. Some models of duplicate gene evolution predict complex forms of paralog divergence; orthologous proteins may diverge as well, further complicating patterns of divergence among and within gene families. Consequently, studying the link between protein sequence evolution and duplication requires the use of flexible substitution models that can accommodate multiple shifts in selection across a phylogeny. Here, we employed a variety of codon substitution models, primarily Clade models, to explore how selective constraint evolved following the duplication of a green-sensitive (RH2a) visual pigment protein (opsin) in African cichlids. Past studies have linked opsin divergence to ecological and sexual divergence within the African cichlid adaptive radiation. Furthermore, biochemical and regulatory differences between the RH2aα and RH2aβ paralogs have been documented. It thus seems likely that selection varies in complex ways throughout this gene family. Results Clade model analysis of African cichlid RH2a opsins revealed a large increase in the nonsynonymous-to-synonymous substitution rate ratio (ω) following the duplication, as well as an even larger increase, one consistent with positive selection, for Lake Tanganyikan cichlid RH2aβ opsins. Analysis using the popular Branch-site models, by contrast, revealed no such alteration of constraint. Several amino acid sites known to influence spectral and non-spectral aspects of opsin biochemistry were found to be evolving divergently, suggesting that orthologous RH2a opsins may vary in terms of spectral sensitivity and response kinetics. Divergence appears to be occurring despite intronic gene conversion among the tandemly-arranged duplicates. Conclusions Our findings indicate that variation in selective constraint is associated with both gene duplication and divergence among orthologs in African cichlid RH2a opsins. At

  19. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.

    PubMed

    Fan, Jie; Woodruff, Michael L; Cilluffo, Marianne C; Crouch, Rosalie K; Fain, Gordon L

    2005-10-01

    Rpe65 knockout mice (Rpe65-/-) are unable to synthesize the visual pigment chromophore 11-cis retinal; however, if these animals are reared in complete darkness, the rod photoreceptors accumulate a small amount of 9-cis retinal and its corresponding visual pigment isorhodopsin. Suction-electrode recording of single rods from dark-reared Rpe65-/- mice showed that the rods were about 400 times less sensitive than wild-type control rods and that the maximum responses were much smaller in amplitude. Spectral sensitivity measurements indicated that Rpe65-/- rod responses were generated by isorhodopsin rather than rhodopsin. Sensitivity and pigment concentration were compared in the same mice by measuring light responses from rods of one eye and pigment concentration from the retina of the other eye. Retinas had 11-35% of the normal pigment level, but the rods were of the order of 20-30 times less sensitive than could be accounted for by the loss in quantum catch. This extra desensitization must be caused by opsin-dependent activation of the visual cascade, which leads to a state equivalent to light adaptation in the dark-adapted rod. By comparing the sensitivity of dark-reared Rpe65-/- rods to that produced in normal rods by background light, we estimate that Rpe65-/- opsin is of the order of 2.5x10(-5) as efficient in activating transduction as photoactivated rhodopsin (Rh*) in WT mice. Dark-reared Rpe65-/- rods are less desensitized than rods from cyclic light-reared Rpe65-/- mice, have about 50% more photocurrent and degenerate at a slower rate. Retinas sectioned after 9 months in darkness show a larger number of photoreceptor nuclei in dark-reared animals than in cyclic light-reared animals, though both have fewer nuclei than in cyclic light-reared wild-type retinas. Both also have shorter outer segments and a lower free-Ca2+ concentration. These experiments provide the first quantitative measurement of opsin activation in physiologically responding mammalian rods

  20. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2

    PubMed Central

    Liske, Holly; Qian, Xiang; Anikeeva, Polina; Deisseroth, Karl; Delp, Scott

    2013-01-01

    The effect of electrical stimulation on neuronal membrane potential is frequency dependent. Low frequency electrical stimulation can evoke action potentials, whereas high frequency stimulation can inhibit action potential transmission. Optical stimulation of channelrhodopsin-2 (ChR2) expressed in neuronal membranes can also excite action potentials. However, it is unknown whether optical stimulation of ChR2-expressing neurons produces a transition from excitation to inhibition with increasing light pulse frequencies. Here we report optical inhibition of motor neuron and muscle activity in vivo in the cooled sciatic nerves of Thy1-ChR2-EYFP mice. We also demonstrate all-optical single-wavelength control of neuronal excitation and inhibition without co-expression of inhibitory and excitatory opsins. This all-optical system is free from stimulation-induced electrical artifacts and thus provides a new approach to investigate mechanisms of high frequency inhibition in neuronal circuits in vivo and in vitro. PMID:24173561

  1. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception.

    PubMed

    Cavallari, Nicola; Frigato, Elena; Vallone, Daniela; Fröhlich, Nadine; Lopez-Olmeda, Jose Fernando; Foà, Augusto; Berti, Roberto; Sánchez-Vázquez, Francisco Javier; Bertolucci, Cristiano; Foulkes, Nicholas S

    2011-09-01

    The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway. PMID:21909239

  2. Photosensitivity of 10-substituted visual pigment analogues: detection of a specific secondary opsin-retinal interaction.

    PubMed

    Liu, R S; Crescitelli, F; Denny, M; Matsumoto, H; Asato, A E

    1986-11-01

    The photosensitivities of the bovine rhodopsin and gecko pigment 521 analogues regenerated from C-10-substituted analogues of 11-cis- and 9-cis-retinals were determined by two different methods. A similar reactivity trend was noted for both pigment systems as revealed in the photosensitivity of the gecko pigments and relative quantum yields of the bovine analogues. The 10-fluoro-11-cis photopigments had a photosensitivity less than, but approaching, that of the native (11-cis) visual pigment while the 10-fluoro-9-cis photopigments had a much lower photosensitivity than the parent 9-cis regenerated pigment. The results are interpreted in terms of recently described models of rhodopsin architecture and of the primary molecular reaction of visual pigments to light. The unusually low photoreactivity of the 10-fluoro-9-cis pigment molecule is viewed as the result of a regiospecific hydrogen-bonding interaction of the electronegative fluorine atom to the opsin. PMID:2948555

  3. Mapping the Moho with seismic surface waves: Sensitivity, resolution, and recommended inversion strategies

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; Adam, Joanne; Meier, Thomas

    2013-04-01

    Seismic surface waves have been used to study the Earth's crust since the early days of modern seismology. In the last decade, surface-wave crustal imaging has been rejuvenated by the emergence of new, array techniques (ambient-noise and teleseismic interferometry). The strong sensitivity of both Rayleigh and Love waves to the Moho is evident from a mere visual inspection of their dispersion curves or waveforms. Yet, strong trade-offs between the Moho depth and crustal and mantle structure in surface-wave inversions have prompted doubts regarding their capacity to resolve the Moho. Although the Moho depth has been an inversion parameter in numerous surface-wave studies, the resolution of Moho properties yielded by a surface-wave inversion is still somewhat uncertain and controversial. We use model-space mapping in order to elucidate surface waves' sensitivity to the Moho depth and the resolution of their inversion for it. If seismic wavespeeds within the crust and upper mantle are known, then Moho-depth variations of a few kilometres produce large (over 1 per cent) perturbations in phase velocities. However, in inversions of surface-wave data with no a priori information (wavespeeds not known), strong Moho-depth/shear-speed trade-offs will mask about 90 per cent of the Moho-depth signal, with remaining phase-velocity perturbations 0.1-0.2 per cent only. In order to resolve the Moho with surface waves alone, errors in the data must thus be small (up to 0.2 per cent for resolving continental Moho). If the errors are larger, Moho-depth resolution is not warranted and depends on error distribution with period, with errors that persist over broad period ranges particularly damaging. An effective strategy for the inversion of surface-wave data alone for the Moho depth is to, first, constrain the crustal and upper-mantle structure by inversion in a broad period range and then determine the Moho depth in inversion in a narrow period range most sensitive to it, with the

  4. The Expression of Three Opsin Genes from the Compound Eye of Helicoverpa armigera (Lepidoptera: Noctuidae) Is Regulated by a Circadian Clock, Light Conditions and Nutritional Status

    PubMed Central

    Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Zhang, Xinfang; Li, Zhen; Liu, Xiaoxia; Zhang, Qingwen

    2014-01-01

    Visual genes may become inactive in species that inhabit poor light environments, and the function and regulation of opsin components in nocturnal moths are interesting topics. In this study, we cloned the ultraviolet (UV), blue (BL) and long-wavelength-sensitive (LW) opsin genes from the compound eye of the cotton bollworm and then measured their mRNA levels using quantitative real-time PCR. The mRNA levels fluctuated over a daily cycle, which might be an adaptation of a nocturnal lifestyle, and were dependent on a circadian clock. Cycling of opsin mRNA levels was disturbed by constant light or constant darkness, and the UV opsin gene was up-regulated after light exposure. Furthermore, the opsin genes tended to be down-regulated upon starvation. Thus, this study illustrates that opsin gene expression is determined by multiple endogenous and exogenous factors and is adapted to the need for nocturnal vision, suggesting that color vision may play an important role in the sensory ecology of nocturnal moths. PMID:25353953

  5. Constraints on the Bulk Composition of Uranus from Herschel PACS and ISO LWS Photometry, SOFIA FORCAST Photometry and Spectroscopy, and Ground-Based Photometry of its Thermal Emission

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Mueller, Thomas; Burgdorf, Martin; Fletcher, Leigh; de Pater, Imke; Atreya, Sushil; Adams, Joseph; Herter, Terry; Keller, Luke; Sidher, Sunil; Sinclair, James; Fujiyoshi, Takuya

    2016-04-01

    We present thermal infrared observations of the disk of Uranus at 17-200 μm to deduce its global thermal structure and bulk composition. We combine 17-200 μm filtered photometric measurements by the Herschel PACS and ISO LWS instruments and 19-35 μm filtered photometry and spectroscopy by the SOFIA FORCAST instrument, supplemented by 17-25 μm ground-based photometric filtered imaging of Uranus. Previous analysis of infrared spectroscopic measurements of the disk of Uranus made by the Spitzer IRS instrument yielded a model for the disk-averaged temperature profile and stratospheric composition (Orton et al. 2014a Icarus 243,494; 2014b Icarus 243, 471) that were consistent with submillimeter spectroscopy by the Herschel SPIRE instrument (Swinyard et al. 2014, MNRAS 440, 3658). Our motivation to observe the 17-35 μm spectrum was to place more stringent constraints on the global para-H2 / ortho-H2 ratio in the upper troposphere and lower stratosphere than the ISO SWS results of Fouchet et al. (2003, Icarus 161, 127), who examined H2 quadrupole lines. We will discuss the consistency of these observations with a higher para-H2 fraction than implied by local thermal equilibrium, which would resolve a discrepancy between the Spitzer-based model and observations of HD lines by the Herschel PACS experiment (Feuchtgruber et al. 2013 Astron. & Astrophys. 551, A126). Constraints on the global para-H2 fraction allow for more precise analysis of the far-infrared spectrum, which is sensitive to the He:H2 ratio, a quantity that was not constrained by the Spitzer IRS spectra. The derived model, which assumed the ratio derived by the Voyager-2 IRIS/radio-science occultation experiment (Conrath et al. 1987 J. Geophys. Res. 92, 15003), is inconsistent with 70-200 μm PACS photometry (Mueller et al. 2016 Astron. & Astrophys. submittted) and ISO LWS photometric measurements. However, the model can be made consistent with the observations if the fraction of He relative to H2 were

  6. The effect of white light on normal and malignant murine melanocytes: A link between opsins, clock genes, and melanogenesis.

    PubMed

    de Assis, L V M; Moraes, M N; da Silveira Cruz-Machado, S; Castrucci, A M L

    2016-06-01

    The skin possesses a photosensitive system comprised of opsins whose function is not fully understood, and clock genes which exert an important regulatory role in skin biology. Here, we evaluated the presence of opsins in normal (Melan-a cells) and malignant (B16-F10 cells) murine melanocytes. Both cell lines express Opn2, Opn4--for the first time reported in these cell types--as well as S-opsin. OPN4 protein was found in a small area capping the cell nuclei of B16-F10 cells kept in constant dark (DD); twenty-four hours after the white light pulse (WLP), OPN4 was found in the cell membrane. Despite the fact that B16-F10 cells expressed less Opn2 and Opn4 than Melan-a cells, our data indicate that the malignant melanocytes exhibited increased photoresponsiveness. The clock gene machinery is also severely downregulated in B16-F10 cells as compared to Melan-a cells. Per1, Per2, and Bmal1 expression increased in B16-F10 cells in response to WLP. Although no response in clock gene expression to WLP was observed in Melan-a cells, gene correlational data suggest a minor effect of WLP. In contrast to opsins and clock genes, melanogenesis is significantly upregulated in malignant melanocytes in comparison to Melan-a cells. Tyrosinase expression increased after WLP only in B16-F10 cells; however no increase in melanin content after WLP was seen in either cell line. Our findings may prove useful in the treatment and the development of new pharmacological approaches of depigmentation diseases and skin cancer. PMID:26947915

  7. Characterization of Opsin Gene Alleles Affecting Color Vision in a Wild Population of Titi Monkeys (Callicebus brunneus)

    PubMed Central

    Bunce, John A.; Isbell, Lynne A.; Neitz, Maureen; Bonci, Daniela; Surridge, Alison K.; Jacobs, Gerald H.; Smith, David Glenn

    2011-01-01

    The color vision of most platyrrhine primates is determined by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- to long-wavelength (M/L) cone photopigment. Females who are heterozygous at the locus have trichromatic vision while homozygous females and all males are dichromatic. This study characterized the opsin alleles in a wild population of the socially monogamous platyrrhine monkey Callicebus brunneus (the brown titi monkey), a primate that an earlier study suggests may possess an unusual number of alleles at this locus and thus may be a subject of special interest in the study of primate color vision. Direct sequencing of regions of the M/L opsin gene using feces-, blood-, and saliva-derived DNA obtained from 14 individuals yielded evidence for the presence of three functionally distinct alleles, corresponding to the most common M/L photopigment variants inferred from a physiological study of cone spectral sensitivity in captive Callicebus. PMID:20938927

  8. Characterization of opsin gene alleles affecting color vision in a wild population of titi monkeys (Callicebus brunneus).

    PubMed

    Bunce, John A; Isbell, Lynne A; Neitz, Maureen; Bonci, Daniela; Surridge, Alison K; Jacobs, Gerald H; Smith, David Glenn

    2011-02-01

    The color vision of most platyrrhine primates is determined by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- to long-wavelength (M/L) cone photopigment. Females who are heterozygous at the locus have trichromatic vision, whereas homozygous females and all males are dichromatic. This study characterized the opsin alleles in a wild population of the socially monogamous platyrrhine monkey Callicebus brunneus (the brown titi monkey), a primate that an earlier study suggests may possess an unusual number of alleles at this locus and thus may be a subject of special interest in the study of primate color vision. Direct sequencing of regions of the M/L opsin gene using feces-, blood-, and saliva-derived DNA obtained from 14 individuals yielded evidence for the presence of three functionally distinct alleles, corresponding to the most common M/L photopigment variants inferred from a physiological study of cone spectral sensitivity in captive Callicebus. PMID:20938927

  9. Evolutionary dynamics of Rh2 opsins in birds demonstrate an episode of accelerated evolution in the New World warblers (Setophaga)

    PubMed Central

    Price, Trevor D.

    2015-01-01

    Low rates of sequence evolution associated with purifying selection can be interrupted by episodic changes in selective regimes. Visual pigments are a unique system in which we can investigate the functional consequences of genetic changes, therefore connecting genotype to phenotype in the context of natural and sexual selection pressures. We study the RH2 and RH1 visual pigments (opsins) across 22 bird species belonging to two ecologically convergent clades, the New World warblers (Parulidae) and Old World warblers (Phylloscopidae), and evaluate rates of evolution in these clades along with data from 21 additional species. We demonstrate generally slow evolution of these opsins: both Rh1 and Rh2 are highly conserved across Old World and New World warblers. However, Rh2 underwent a burst of evolution within the New World genus Setophaga, where it accumulated substitutions at 6 amino acid sites across the species we studied. Evolutionary analyses revealed a significant increase in dN/dS in Setophaga, implying relatively strong selective pressures to overcome long-standing purifying selection. We studied the effects of each substitution on spectral tuning and found they do not cause large spectral shifts. Thus substitutions may reflect other aspects of opsin function, such as those affecting photosensitivity and/or dark-light adaptation. Although it is unclear what these alterations mean for color perception, we suggest that rapid evolution is linked to sexual selection, given the exceptional plumage colour diversification in Setophaga. PMID:25827331

  10. Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6.

    PubMed

    Lesser, Michael P; Carleton, Karen L; Böttger, Stefanie A; Barry, Thomas M; Walker, Charles W

    2011-11-22

    All echinoderms have unique hydraulic structures called tube feet, known for their roles in light sensitivity, respiration, chemoreception and locomotion. In the green sea urchin, the most distal portion of these tube feet contain five ossicles arranged as a light collector with its concave surface facing towards the ambient light. These ossicles are perforated and lined with pigment cells that express a PAX6 protein that is universally involved in the development of eyes and sensory organs in other bilaterians. Polymerase chain reaction (PCR)-based sequencing and real time quantitative PCR (qPCR) also demonstrate the presence and differential expression of a rhabdomeric-like opsin within these tube feet. Morphologically, nerves that could serve to transmit information to the test innervate the tube feet, and the differential expression of opsin transcripts in the tube feet is inversely, and significantly, related to the amount of light that tube feet are exposed to depending on their location on the test. The expression of these genes, the differential expression of opsin based on light exposure and the unique morphological features at the distal portion of the tube foot strongly support the hypothesis that in addition to previously identified functional roles of tube feet they are also photosensory organs that detect and respond to changes in the underwater light field. PMID:21450733

  11. Inhibitory luminopsins: genetically-encoded bioluminescent opsins for versatile, scalable, and hardware-independent optogenetic inhibition.

    PubMed

    Tung, Jack K; Gutekunst, Claire-Anne; Gross, Robert E

    2015-01-01

    Optogenetic techniques provide an unprecedented ability to precisely manipulate neural activity in the context of complex neural circuitry. Although the toolbox of optogenetic probes continues to expand at a rapid pace with more efficient and responsive reagents, hardware-based light delivery is still a major hurdle that limits its practical use in vivo. We have bypassed the challenges of external light delivery by directly coupling a bioluminescent light source (a genetically encoded luciferase) to an inhibitory opsin, which we term an inhibitory luminopsin (iLMO). iLMO was shown to suppress action potential firing and synchronous bursting activity in vitro in response to both external light and luciferase substrate. iLMO was further shown to suppress single-unit firing rate and local field potentials in the hippocampus of anesthetized rats. Finally, expression of iLMO was scaled up to multiple structures of the basal ganglia to modulate rotational behavior of freely moving animals in a hardware-independent fashion. This novel class of optogenetic probes demonstrates how non-invasive inhibition of neural activity can be achieved, which adds to the versatility, scalability, and practicality of optogenetic applications in freely behaving animals. PMID:26399324

  12. The Transporter-Opsin-G protein-coupled receptor (TOG) Superfamily

    PubMed Central

    Yee, Daniel C.; Shlykov, Maksim A.; Västermark, Åke; Reddy, Vamsee S.; Arora, Sumit; Sun, Eric I.; Saier, Milton H.

    2013-01-01

    Visual Rhodopsins (VR) are recognized members of the large and diverse family of G protein-coupled receptors (GPCRs), but their evolutionary origin and relationships to other proteins, are not known. In an earlier publication (Shlykov et al., 2012), we characterized the 4-Toulene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins, showing that these 7 or 8 TMS proteins arose by intragenic duplication of a 4 TMS-encoding gene, sometimes followed by loss of a terminal TMS. In this study, we show that the TSUP, GPCR and Microbial Rhodopsin (MR) families are related to each other and to six other currently recognized transport protein families. We designate this superfamily the Transporter-Opsin-G protein-coupled receptor (TOG) Superfamily. Despite their 8 TMS origins, members of most constituent families exhibit 7 TMS topologies that are well conserved, and these arose by loss of either the N-terminal (more frequent) or the C-terminal (less frequent) TMS, depending on the family. Phylogenetic analyses revealed familial relationships within the superfamily and protein relationships within each of the nine families. The statistical analyses leading to the conclusion of homology were confirmed using HMMs, Pfam, and 3D superimpositions. Proteins functioning by dissimilar mechanisms (channels, primary active transporters, secondary active transporters, group translocators and receptors) are interspersed on a phylogenetic tree of the TOG superfamily, suggesting that changes in the transport and energy-coupling mechanisms occurred multiple times during the evolution of this superfamily. PMID:23981446

  13. Inhibitory luminopsins: genetically-encoded bioluminescent opsins for versatile, scalable, and hardware-independent optogenetic inhibition

    PubMed Central

    Tung, Jack K.; Gutekunst, Claire-Anne; Gross, Robert E.

    2015-01-01

    Optogenetic techniques provide an unprecedented ability to precisely manipulate neural activity in the context of complex neural circuitry. Although the toolbox of optogenetic probes continues to expand at a rapid pace with more efficient and responsive reagents, hardware-based light delivery is still a major hurdle that limits its practical use in vivo. We have bypassed the challenges of external light delivery by directly coupling a bioluminescent light source (a genetically encoded luciferase) to an inhibitory opsin, which we term an inhibitory luminopsin (iLMO). iLMO was shown to suppress action potential firing and synchronous bursting activity in vitro in response to both external light and luciferase substrate. iLMO was further shown to suppress single-unit firing rate and local field potentials in the hippocampus of anesthetized rats. Finally, expression of iLMO was scaled up to multiple structures of the basal ganglia to modulate rotational behavior of freely moving animals in a hardware-independent fashion. This novel class of optogenetic probes demonstrates how non-invasive inhibition of neural activity can be achieved, which adds to the versatility, scalability, and practicality of optogenetic applications in freely behaving animals. PMID:26399324

  14. Cloning and expression analysis of two opsin-like genes in the phytopathogenic fungus Bipolaris oryzae.

    PubMed

    Kihara, Junichi; Tanaka, Nozomi; Ueno, Makoto; Arase, Sakae

    2009-06-01

    Two opsin-like genes, OPS1 and OPS2, were identified from a subtracted cDNA library for the identification of near-UV (NUV) radiation-enhanced genes using suppression subtractive hybridization methods in the brown leaf spot fungus Bipolaris oryzae. The OPS1 and OPS2 genes encode predicted proteins of 306 and 304 amino acids, respectively. Real-time PCR analysis showed that the OPS1 transcript is expressed weakly in mycelia under dark conditions but shows enhanced expression after NUV irradiation. By contrast, the OPS2 transcript is constitutively expressed at a high level in mycelia under dark conditions but is only weakly enhanced after NUV irradiation. These enhancement patterns of OPS1 and OPS2 gene expression after NUV irradiation did not occur in the blue-light regulator 1 (BLR1)-deficient mutant, suggesting that NUV radiation-enhanced gene expression of OPS1 and OPS2 could be controlled by the BLR1 in B. oryzae. PMID:19456867

  15. The Effect of Cone Opsin Mutations on Retinal Structure and the Integrity of the Photoreceptor Mosaic

    PubMed Central

    Carroll, Joseph; Dubra, Alfredo; Gardner, Jessica C.; Mizrahi-Meissonnier, Liliana; Cooper, Robert F.; Dubis, Adam M.; Nordgren, Rick; Genead, Mohamed; Connor, Thomas B.; Stepien, Kimberly E.; Sharon, Dror; Hunt, David M.; Banin, Eyal; Hardcastle, Alison J.; Moore, Anthony T.; Williams, David R.; Fishman, Gerald; Neitz, Jay; Neitz, Maureen; Michaelides, Michel

    2012-01-01

    Purpose. To evaluate retinal structure and photoreceptor mosaic integrity in subjects with OPN1LW and OPN1MW mutations. Methods. Eleven subjects were recruited, eight of whom have been previously described. Cone and rod density was measured using images of the photoreceptor mosaic obtained from an adaptive optics scanning light ophthalmoscope (AOSLO). Total retinal thickness, inner retinal thickness, and outer nuclear layer plus Henle fiber layer (ONL+HFL) thickness were measured using cross-sectional spectral-domain optical coherence tomography (SD-OCT) images. Molecular genetic analyses were performed to characterize the OPN1LW/OPN1MW gene array. Results. While disruptions in retinal lamination and cone mosaic structure were observed in all subjects, genotype-specific differences were also observed. For example, subjects with “L/M interchange” mutations resulting from intermixing of ancestral OPN1LW and OPN1MW genes had significant residual cone structure in the parafovea (∼25% of normal), despite widespread retinal disruption that included a large foveal lesion and thinning of the parafoveal inner retina. These subjects also reported a later-onset, progressive loss of visual function. In contrast, subjects with the C203R missense mutation presented with congenital blue cone monochromacy, with retinal lamination defects being restricted to the ONL+HFL and the degree of residual cone structure (8% of normal) being consistent with that expected for the S-cone submosaic. Conclusions. The photoreceptor phenotype associated with OPN1LW and OPN1MW mutations is highly variable. These findings have implications for the potential restoration of visual function in subjects with opsin mutations. Our study highlights the importance of high-resolution phenotyping to characterize cellular structure in inherited retinal disease; such information will be critical for selecting patients most likely to respond to therapeutic intervention and for establishing a baseline for

  16. Color Vision Variation as Evidenced by Hybrid L/M Opsin Genes in Wild Populations of Trichromatic Alouatta New World Monkeys.

    PubMed

    Matsushita, Yuka; Oota, Hiroki; Welker, Barbara J; Pavelka, Mary S; Kawamura, Shoji

    2014-01-01

    Platyrrhine (New World) monkeys possess highly polymorphic color vision owing to allelic variation of the single-locus L/M opsin gene on the X chromosome. Most species consist of female trichromats and female and male dichromats. Howlers (genus Alouatta) are an exception; they are considered to be routinely trichromatic with L and M opsin genes juxtaposed on the X chromosome, as seen in catarrhine primates (Old World monkeys, apes, and humans). Yet it is not known whether trichromacy is invariable in howlers. We examined L/M opsin variation in wild howler populations in Costa Rica and Nicaragua (Alouatta palliata) and Belize (A. pigra), using fecal DNA. We surveyed exon 5 sequences (containing the diagnostic 277th and 285th residues for λmax) for 8 and 18 X chromosomes from Alouatta palliata and A. pigra, respectively. The wavelengths of maximal absorption (λmax) of the reconstituted L and M opsin photopigments were 564 nm and 532 nm, respectively, in both species. We found one M-L hybrid sequence with a recombinant 277/285 haplotype in Alouatta palliata and two L-M hybrid sequences in A. pigra. The λmax values of the reconstituted hybrid photopigments were in the range of 546~554 nm, which should result in trichromat phenotypes comparable to those found in other New World monkey species. Our finding of color vision variation due to high frequencies of L/M hybrid opsin genes in howlers challenges the current view that howlers are routine and uniform trichromats. These results deepen our understanding of the evolutionary significance of color vision polymorphisms and routine trichromacy and emphasize the need for further assessment of opsin gene variation as well as behavioral differences among subtypes of trichromacy. PMID:24523565

  17. Identification of G protein coupled receptors for opsines and neurohormones in Rhodnius prolixus. Genomic and transcriptomic analysis.

    PubMed

    Ons, Sheila; Lavore, Andrés; Sterkel, Marcos; Wulff, Juan Pedro; Sierra, Ivana; Martínez-Barnetche, Jesús; Rodriguez, Mario Henry; Rivera-Pomar, Rolando

    2016-02-01

    The importance of Chagas disease motivated the scientific effort to obtain the complete genomic sequence of the vector species Rhodnius prolixus, this information is also relevant to the understanding of triatomine biology in general. The central nervous system is the key regulator of insect physiology and behavior. Neurohormones (neuropeptides and biogenic amines) are the chemical messengers involved in the regulation and integration of neuroendocrine signals. In insects, this signaling is mainly mediated by the interaction of neurohormone ligands with G protein coupled receptors (GPCRs). The recently sequenced R. prolixus genome provides us with the opportunity to analyze this important family of genes in triatomines, supplying relevant information for further functional studies. Next-generation sequencing methods offer an excellent opportunity for transcriptomic exploration in key organs and tissues in the presence of a reference genome as well as when a reference genome is not available. We undertook a genomic analysis to obtain a genome-wide inventory of opsines and the GPCRs for neurohormones in R. prolixus. Furthermore, we performed a transcriptomic analysis of R. prolixus central nervous system, focusing on neuropeptide precursor genes and neurohormone and opsines GPCRs. In addition, we mined the whole transcriptomes of Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis - three sanitary relevant triatomine species - to identify neuropeptide precursors and GPCRs genes. Our study reveals a high degree of sequence conservation in the molecular components of the neuroendocrine system of triatomines. PMID:25976540

  18. Possible Involvement of Cone Opsins in Distinct Photoresponses of Intrinsically Photosensitive Dermal Chromatophores in Tilapia Oreochromis niloticus

    PubMed Central

    Chen, Shyh-Chi; Robertson, R. Meldrum; Hawryshyn, Craig W.

    2013-01-01

    Dermal specialized pigment cells (chromatophores) are thought to be one type of extraretinal photoreceptors responsible for a wide variety of sensory tasks, including adjusting body coloration. Unlike the well-studied image-forming function in retinal photoreceptors, direct evidence characterizing the mechanism of chromatophore photoresponses is less understood, particularly at the molecular and cellular levels. In the present study, cone opsin expression was detected in tilapia caudal fin where photosensitive chromatophores exist. Single-cell RT-PCR revealed co-existence of different cone opsins within melanophores and erythrophores. By stimulating cells with six wavelengths ranging from 380 to 580 nm, we found melanophores and erythrophores showed distinct photoresponses. After exposed to light, regardless of wavelength presentation, melanophores dispersed and maintained cell shape in an expansion stage by shuttling pigment granules. Conversely, erythrophores aggregated or dispersed pigment granules when exposed to short- or middle/long-wavelength light, respectively. These results suggest that diverse molecular mechanisms and light-detecting strategies may be employed by different types of tilapia chromatophores, which are instrumental in pigment pattern formation. PMID:23940562

  19. Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs.

    PubMed

    Veilleux, Carrie C; Louis, Edward E; Bolnick, Deborah A

    2013-06-01

    Although loss of short-wavelength-sensitive (SWS) cones and dichromatic color vision in mammals has traditionally been linked to a nocturnal lifestyle, recent studies have identified variation in selective pressure for the maintenance of the OPN1SW opsin gene (and thus, potentially dichromacy) among nocturnal mammalian lineages. These studies hypothesize that purifying selection to retain SWS cones may be associated with a selective advantage for nocturnal color vision under certain ecological conditions. In this study, we explore the effect of nocturnal light environment on OPN1SW opsin gene evolution in a diverse sample of nocturnal lemurs (106 individuals, 19 species, and 5 genera). Using both phylogenetic and population genetic approaches, we test whether species from closed canopy rainforests, which are impoverished in short-wavelength light, have experienced relaxed selection compared with species from open canopy forests. We identify clear signatures of differential selection on OPN1SW by habitat type. Our results suggest that open canopy species generally experience strong purifying selection to maintain SWS cones. In contrast, closed canopy species experience weaker purifying selection or a relaxation of selection on OPN1SW. We also found evidence of nonfunctional OPN1SW genes in all Phaner species and in Cheirogaleus medius, implying at least three independent losses of SWS cones in cheirogaleids. Our results suggest that the evolution of color vision in nocturnal lemurs has been influenced by nocturnal light environment. PMID:23519316

  20. High overexpression and purification of optimized bacterio-opsin from Halobacterium Salinarum R1 in E. coli.

    PubMed

    Kahaki, Fatemeh Abarghooi; Babaeipour, Valiollah; Memari, Hamid Rajabi; Mofid, Mohammad Reza

    2014-10-01

    The purple membrane of Halobacterium Salinarum carries out a protein, bacteriorhodopsin (bR), which is a model for structure-function studies of membrane proteins. The heterologous expression of integral membrane proteins (IMPS) is difficult. In this study, we reported the heterologous overexpression of bacterio-opsin (bO) in Escherichia coli BL21 (DE3). Bacterio-opsin expression is facilitated by using mistic, a membrane protein from Bacillus subtilis in E. coli BL21 (DE3) membranes. The optimized bO gene was cloned in fusion to the C-terminus of mistic in pET 30a (+) and contains an oct-histidine in C-terminal to facilitate purification. Different medium, temperature, and induction time were used to optimize protein overexpression. The highest expression was obtained from the Terrific Broth (TB) medium at 18 °C with an IPTG concentration of 0.1 mM. The final purified bR was 192 ± 1 mg/L which has an important value for the production of membrane proteins in E. coli. PMID:25123363

  1. Interspecific variation in Rx1 expression controls opsin expression and causes visual system diversity in African cichlid fishes.

    PubMed

    Schulte, Jane E; O'Brien, Conor S; Conte, Matthew A; O'Quin, Kelly E; Carleton, Karen L

    2014-09-01

    The mechanisms underlying natural phenotypic diversity are key to understanding evolution and speciation. Cichlid fishes are among the most speciose vertebrates and an ideal model for identifying genes controlling species differences. Cichlids have diverse visual sensitivities that result from species expressing subsets of seven cichlid cone opsin genes. We previously identified a quantitative trait locus (QTL) that tunes visual sensitivity by varying SWS2A (short wavelength sensitive 2A) opsin expression in a genetic cross between two Lake Malawi cichlid species. Here, we identify Rx1 (retinal and anterior neural fold homeobox) as the causative gene for the QTL using fine mapping and RNAseq in retinal transcriptomes. Rx1 is differentially expressed between the parental species and correlated with SWS2A expression in the F2 progeny. Expression of Rx1 and SWS2A is also correlated in a panel of 16 Lake Malawi cichlid species. Association mapping in this panel identified a 413-bp deletion located 2.5-kb upstream of the Rx1 translation start site that is correlated with decreased Rx1 expression. This deletion explains 62% of the variance in SWS2A expression across 53 cichlid species in 29 genera. The deletion occurs in both the sand and rock-dwelling cichlid clades, suggesting that it is an ancestral polymorphism. Our finding supports the hypothesis that mixing and matching of ancestral polymorphisms can explain the diversity of present day cichlid phenotypes. PMID:24859246

  2. Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations*♦

    PubMed Central

    Sakami, Sanae; Maeda, Tadao; Bereta, Grzegorz; Okano, Kiichiro; Golczak, Marcin; Sumaroka, Alexander; Roman, Alejandro J.; Cideciyan, Artur V.; Jacobson, Samuel G.; Palczewski, Krzysztof

    2011-01-01

    Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1–10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development. PMID:21224384

  3. X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene

    PubMed Central

    McClements, Michelle; Davies, Wayne I L; Michaelides, Michel; Carroll, Joseph; Rha, Jungate; Mollon, John D; Neitz, Maureen; MacLaren, Robert E; Moore, Anthony T; Hunt, David M

    2013-01-01

    In this report, we describe a male subject who presents with a complex phenotype of myopia associated with cone dysfunction and a protan vision deficiency. Retinal imaging demonstrates extensive cone disruption, including the presence of non-waveguiding cones, an overall thinning of the retina, and an irregular mottled appearance of the hyper reflective band associated with the inner segment ellipsoid portion of the photoreceptor. Mutation screening revealed a novel p.Glu41Lys missense mutation in a hybrid L/M opsin gene. Spectral analysis shows that the mutant opsin fails to form a pigment in vitro and fails to be trafficked to the cell membrane in transfected Neuro2a cells. Extensive sequence and quantitative PCR analysis identifies this mutant gene as the only gene present in the affected subject’s L/M opsin gene array, yet the presence of protanopia indicates that the mutant opsin must retain some activity in vivo. To account for this apparent contradiction, we propose that a limited amount of functional pigment is formed within the normal cellular environment of the intact photoreceptor, and that this requires the presence of chaperone proteins that promote stability and normal folding of the mutant protein. PMID:23337435

  4. Retrograde intraciliary trafficking of opsin during the maintenance of cone-shaped photoreceptor outer segments of Xenopus laevis.

    PubMed

    Tian, Guilian; Lodowski, Kerrie H; Lee, Richard; Imanishi, Yoshikazu

    2014-11-01

    Photoreceptor outer segments (OSs) are essential for our visual perception, and take either rod or cone forms. The cell biological basis for the formation of rods is well established; however, the mechanism of cone formation is ill characterized. While Xenopus rods are called rods, they exhibit cone-shaped OSs during the early process of development. To visualize the dynamic reorganization of disk membranes, opsin and peripherin/rds were fused to a fluorescent protein, Dendra2, and expressed in early developing rod photoreceptors, in which OSs are still cone-shaped. Dendra2 is a fluorescent protein which can be converted from green to red irreversibly, and thus allows spatiotemporal labeling of proteins. Using a photoconversion technique, we found that disk membranes are assembled at the base of cone-shaped OSs. After incorporation into disks, however, Opsin-Dendra2 was also trafficked from old to new disk membranes, consistent with the hypothesis that retrograde trafficking of membrane components contributes to the larger disk membrane observed toward the base of the cone-shaped OS. Such retrograde trafficking is cargo-specific and was not observed for peripherin/rds-Dendra2. The trafficking is unlikely mediated by diffusion, since the disk membranes have a closed configuration, as evidenced by CNGA1 labeling of the plasma membrane. Consistent with retrograde trafficking, the axoneme, which potentially mediates retrograde intraflagellar trafficking, runs through the entire axis of OSs. This study provides an insight into the role of membrane reorganization in developing photoreceptor OSs, and proves that retrograde trafficking of membrane cargoes can occur there. PMID:24855015

  5. Full-Quantum chemical calculation of the absorption maximum of bacteriorhodopsin: a comprehensive analysis of the amino acid residues contributing to the opsin shift

    PubMed Central

    Hayashi, Tomohiko; Matsuura, Azuma; Sato, Hiroyuki; Sakurai, Minoru

    2012-01-01

    Herein, the absorption maximum of bacteriorhodopsin (bR) is calculated using our recently developed method in which the whole protein can be treated quantum mechanically at the level of INDO/S-CIS//ONIOM (B3LYP/6-31G(d,p): AMBER). The full quantum mechanical calculation is shown to reproduce the so-called opsin shift of bR with an error of less than 0.04 eV. We also apply the same calculation for 226 different bR mutants, each of which was constructed by replacing any one of the amino acid residues of the wild-type bR with Gly. This substitution makes it possible to elucidate the extent to which each amino acid contributes to the opsin shift and to estimate the inter-residue synergistic effect. It was found that one of the most important contributions to the opsin shift is the electron transfer from Tyr185 to the chromophore upon excitation. We also indicate that some aromatic (Trp86, Trp182) and polar (Ser141, Thr142) residues, located in the vicinity of the retinal polyene chain and the β-ionone ring, respectively, play an important role in compensating for the large blue-shift induced by both the counterion residues (Asp85, Asp212) and an internal water molecule (W402) located near the Schiff base linkage. In particular, the effect of Trp86 is comparable to that of Tyr185. In addition, Ser141 and Thr142 were found to contribute to an increase in the dipole moment of bR in the excited state. Finally, we provide a complete energy diagram for the opsin shift together with the contribution of the chromophore-protein steric interaction. PMID:27493528

  6. Development of Lead Hammerhead Ribozyme Candidates against Human Rod Opsin mRNA for Retinal Degeneration Therapy

    PubMed Central

    Abdelmaksoud, Heba E.; Yau, Edwin H.; Zuker, Michael; Sullivan, Jack M.

    2011-01-01

    To identify lead candidate allele-independent hammerhead ribozymes (hhRz) for the treatment of autosomal dominant mutations in the human rod opsin (RHO) gene, we tested a series of hhRzs for potential to significantly knockdown human RHO gene expression in a human cell expression system. Multiple computational criteria were used to select target mRNA regions likely to be single stranded and accessible to hhRz annealing and cleavage. Target regions are tested for accessibility in a human cell culture expression system where the hhRz RNA and target mRNA and protein are coexpressed. The hhRz RNA is embedded in an adenoviral VAI RNA chimeric RNA of established structure and properties which are critical to the experimental paradigm. The chimeric hhRz-VAI RNA is abundantly transcribed so that the hhRzs are expected to be in great excess over substrate mRNA. HhRz-VAI traffics predominantly to the cytoplasm to colocalize with the RHO mRNA target. Colocalization is essential for second-order annealing reactions. The VAI chimera protects the hhRz RNA from degradation and provides for a long half life. With cell lines chosen for high transfection efficiency and a molar excess of hhRz plasmid over target plasmid, the conditions of this experimental paradigm are specifically designed to evaluate for regions of accessibility of the target mRNA in cellulo. Western analysis was used to measure the impact of hhRz expression on RHO protein expression. Three lead candidate hhRz designs were identified that significantly knockdown target protein expression relative to control (p < 0.05). Successful lead candidates (hhRz CUC↓ 266, hhRz CUC↓ 1411, hhRz AUA↓ 1414) targeted regions of human RHO mRNA that were predicted to be accessible by a bioinformatics approach, whereas regions predicted to be inaccessible supported no knockdown. The maximum opsin protein level knockdown is approximately 30% over a 48 hr paradigm of testing. These results validate a rigorous computational

  7. Estimating Neural Background Input with Controlled and Fast Perturbations: A Bandwidth Comparison between Inhibitory Opsins and Neural Circuits.

    PubMed

    Eriksson, David

    2016-01-01

    To test the importance of a certain cell type or brain area it is common to make a "lack of function" experiment in which the neuronal population of interest is inhibited. Here we review physiological and methodological constraints for making controlled perturbations using the corticothalamic circuit as an example. The brain with its many types of cells and rich interconnectivity offers many paths through which a perturbation can spread within a short time. To understand the side effects of the perturbation one should record from those paths. We find that ephaptic effects, gap-junctions, and fast chemical synapses are so fast that they can react to the perturbation during the few milliseconds it takes for an opsin to change the membrane potential. The slow chemical synapses, astrocytes, extracellular ions and vascular signals, will continue to give their physiological input for around 20 ms before they also react to the perturbation. Although we show that some pathways can react within milliseconds the strength/speed reported in this review should be seen as an upper bound since we have omitted how polysynaptic signals are attenuated. Thus the number of additional recordings that has to be made to control for the perturbation side effects is expected to be fewer than proposed here. To summarize, the reviewed literature not only suggests that it is possible to make controlled "lack of function" experiments, but, it also suggests that such a "lack of function" experiment can be used to measure the context of local neural computations. PMID:27574506

  8. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    PubMed

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined. PMID:27369448

  9. Estimating Neural Background Input with Controlled and Fast Perturbations: A Bandwidth Comparison between Inhibitory Opsins and Neural Circuits

    PubMed Central

    Eriksson, David

    2016-01-01

    To test the importance of a certain cell type or brain area it is common to make a “lack of function” experiment in which the neuronal population of interest is inhibited. Here we review physiological and methodological constraints for making controlled perturbations using the corticothalamic circuit as an example. The brain with its many types of cells and rich interconnectivity offers many paths through which a perturbation can spread within a short time. To understand the side effects of the perturbation one should record from those paths. We find that ephaptic effects, gap-junctions, and fast chemical synapses are so fast that they can react to the perturbation during the few milliseconds it takes for an opsin to change the membrane potential. The slow chemical synapses, astrocytes, extracellular ions and vascular signals, will continue to give their physiological input for around 20 ms before they also react to the perturbation. Although we show that some pathways can react within milliseconds the strength/speed reported in this review should be seen as an upper bound since we have omitted how polysynaptic signals are attenuated. Thus the number of additional recordings that has to be made to control for the perturbation side effects is expected to be fewer than proposed here. To summarize, the reviewed literature not only suggests that it is possible to make controlled “lack of function” experiments, but, it also suggests that such a “lack of function” experiment can be used to measure the context of local neural computations. PMID:27574506

  10. Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, Schistocerca gregaria.

    PubMed

    Schmeling, Fabian; Wakakuwa, Motohiro; Tegtmeier, Jennifer; Kinoshita, Michiyo; Bockhorst, Tobias; Arikawa, Kentaro; Homberg, Uwe

    2014-10-01

    For compass orientation many insects rely on the pattern of sky polarization, but some species also exploit the sky chromatic contrast. Desert locusts, Schistocerca gregaria, detect polarized light through a specialized dorsal rim area (DRA) in their compound eye. To better understand retinal mechanisms underlying visual navigation, we compared opsin expression, spectral and polarization sensitivities and response-stimulus intensity functions in the DRA and main retina of the locust. In addition to previously characterized opsins of long-wavelength-absorbing (Lo1) and blue-absorbing visual pigments (Lo2), we identified an opsin of an ultraviolet-absorbing visual pigment (LoUV). DRA photoreceptors exclusively expressed Lo2, had peak spectral sensitivities at 441 nm and showed high polarization sensitivity (PS 1.3-31.7). In contrast, ommatidia in the main eye co-expressed Lo1 and Lo2 in five photoreceptors, expressed Lo1 in two proximal photoreceptors, and Lo2 or LoUV in one distal photoreceptor. Correspondingly, we found broadband blue- and green-peaking spectral sensitivities in the main eye and one narrowly tuned UV peaking receptor. Polarization sensitivity in the main retina was low (PS 1.3-3.8). V-log I functions in the DRA were steeper than in the main retina, supporting a role in polarization vision. Desert locusts occur as two morphs, a day-active gregarious and a night-active solitarious form. In solitarious locusts, sensitivities in the main retina were generally shifted to longer wavelengths, particularly in ventral eye regions, supporting a nocturnal lifestyle at low light levels. The data support the role of the DRA in polarization vision and suggest trichromatic colour vision in the desert locust. PMID:25104757

  11. Age-related and light-induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectar-feeding ant Camponotus rufipes.

    PubMed

    Yilmaz, Ayse; Lindenberg, Annekathrin; Albert, Stefan; Grübel, Kornelia; Spaethe, Johannes; Rössler, Wolfgang; Groh, Claudia

    2016-09-01

    Camponotus rufipes workers are characterized by an age-related polyethism. In the initial weeks of adult life, young workers perform tasks inside the nest before they switch to multimodal foraging tasks outside. We tested the hypothesis that this transition is accompanied by profound adaptations in the peripheral and central visual systems. Our results show that C. rufipes workers of all tested ages (between 1 and 42 days) express three genes encoding for ultraviolet (UV), blue (BL), and long-wavelength (LW1) sensitive opsins in their retina, which are likely to provide the substrate for trichromatic color vision. Expression levels of all three opsin genes increased significantly within the first two weeks of adulthood and following light exposure. Interestingly, the volumes of all three optic neuropils (lamina, medulla, and lobula) showed corresponding volume increases. Tracing of connections to higher visual centers in the mushroom bodies (MBs) revealed only one optic pathway, the anterior superior optic tract, emerging from the medulla and sending segregated input to the MB-calyx collar. The MB collar volumes and densities of synaptic complexes (microglomeruli, MGs) increased with age. Exposure to light for 4 days induced a decrease in MG densities followed by an increase after extended light exposure. This shows that plasticity in retinal opsin gene expression and structural neuroplasticity in primary and secondary visual centers comprise both "experience-independent" and "experience-dependent" elements. We conclude that both sources of plasticity in the visual system represent important components promoting optimal timing of the interior-forager transition and flexibility of age-related division of labor. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1041-1057, 2016. PMID:26724470

  12. Temporal Resolution of ChR2 and Chronos in an Optogenetic-based Auditory Brainstem Implant Model: Implications for the Development and Application of Auditory Opsins

    PubMed Central

    Hight, A. E.; Kozin, Elliott D.; Darrow, Keith; Lehmann, Ashton; Boyden, Edward; Brown, M. Christian; Lee, Daniel J.

    2015-01-01

    The contemporary auditory brainstem implant (ABI) performance is limited by reliance on electrical stimulation with its accompanying channel cross talk and current spread to non-auditory neurons. A new generation ABI based on optogenetic-technology may ameliorate limitations fundamental to electrical neurostimulation. The most widely studied opsin is channelrhodopsin-2 (ChR2); however, its relatively slow kinetic properties may prevent the encoding of auditory information at high stimulation rates. In the present study, we compare the temporal resolution of light-evoked responses of a recently developed fast opsin, Chronos, to ChR2 in a murine ABI model. Viral mediated gene transfer via a posterolateral craniotomy was used to express Chronos or ChR2 in the mouse nucleus (CN). Following a four to six week incubation period, blue light (473 nm) was delivered via an optical fiber placed directly on the surface of the infected CN, and neural activity was recorded in the contralateral inferior colliculus (IC). Both ChR2 and Chronos evoked sustained responses to all stimuli, even at high driven rates. In addition, optical stimulation evoked excitatory responses throughout the tonotopic axis of the IC. Synchrony of the light-evoked response to stimulus rates of 14–448 pulses/s was higher in Chronos compared to ChR2 mice (p<0.05 at 56, 168, and 224 pulses/s). Our results demonstrate that Chronos has the ability to drive the auditory system at higher stimulation rates than ChR2 and may be a more ideal opsin for manipulation of auditory pathways in future optogenetic-based neuroprostheses. PMID:25598479

  13. Gravitational-wave sensitivity curves

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Cole, R. H.; Berry, C. P. L.

    2015-01-01

    There are several common conventions in use by the gravitational-wave community to describe the amplitude of sources and the sensitivity of detectors. These are frequently confused. We outline the merits of and differences between the various quantities used for parameterizing noise curves and characterizing gravitational-wave amplitudes. We conclude by producing plots that consistently compare different detectors. Similar figures can be generated on-line for general use at http://rhcole.com/apps/GWplotter.

  14. Opsin1-2, G(q)α and arrestin levels at Limulus rhabdoms are controlled by diurnal light and a circadian clock.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Parker, Alexander K; Gaddie, Cristina D

    2013-05-15

    Dark and light adaptation in photoreceptors involve multiple processes including those that change protein concentrations at photosensitive membranes. Light- and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white-eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild-caught Limulus polyphemus maintained in natural diurnal illumination and whether these changes are under circadian control. We found that rhabdomeral levels of opsins (Ops1-2), the G protein activated by rhodopsin (G(q)α) and arrestin change significantly from day to night and that nighttime levels of each protein at rhabdoms are significantly influenced by signals from the animal's central circadian clock. Clock input at night increases Ops1-2 and G(q)α and decreases arrestin levels at rhabdoms. Clock input is also required for a rapid decrease in rhabdomeral Ops1-2 beginning at sunrise. We found further that dark adaptation during the day and the night are not equivalent. During daytime dark adaptation, when clock input is silent, the increase of Ops1-2 at rhabdoms is small and G(q)α levels do not increase. However, increases in Ops1-2 and G(q)α at rhabdoms are enhanced during daytime dark adaptation by treatments that elevate cAMP in photoreceptors, suggesting that the clock influences dark-adaptive increases in Ops1-2 and G(q)α at Limulus rhabdoms by activating cAMP-dependent processes. The circadian regulation of Ops1-2 and G(q)α levels at rhabdoms probably has a dual role: to increase retinal sensitivity at night and to protect photoreceptors from light damage during the day. PMID:23393287

  15. Targeting the cyclophilin domain of Ran-binding protein 2 (Ranbp2) with novel small molecules to control the proteostasis of STAT3, hnRNPA2B1 and M-opsin.

    PubMed

    Cho, Kyoung-In; Orry, Andrew; Park, Se Eun; Ferreira, Paulo A

    2015-08-19

    Cyclophilins are peptidyl cis-trans prolyl isomerases (PPIases), whose activity is typically inhibited by cyclosporine A (CsA), a potent immunosuppressor. Cyclophilins are also chaperones. Emerging evidence supports that cyclophilins present nonoverlapping PPIase and chaperone activities. The proteostasis of the disease-relevant substrates, signal transducer and activator of transcription 3 and 5 (STAT3/STAT5), heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), and M-opsin, is regulated by nonoverlapping chaperone and PPIase activities of the cyclophilin domain (CY) of Ranbp2, a multifunctional and modular scaffold that controls nucleocytoplasmic shuttling and proteostasis of selective substrates. Although highly homologous, CY and the archetypal cyclophilin A (CyPA) present distinct catalytic and CsA-binding activities owing to unique structural features between these cylophilins. We explored structural idiosyncrasies between CY and CyPA to screen in silico nearly 9 million small molecules (SM) against the CY PPIase pocket and identify SMs with selective bioactivity toward STAT3, hnRNPA2B1, or M-opsin proteostasis. We found three classes of SMs that enhance the cytokine-stimulated transcriptional activity of STAT3 without changing latent and activated STAT3 levels, down-regulate hnRNPA2B1 or M-opsin proteostasis, or a combination of these. Further, a SM that suppresses hnRNPA2B1 proteostasis also inhibits strongly and selectively the PPIase activity of CY. This study unravels chemical probes for multimodal regulation of CY of Ranbp2 and its substrates, and this regulation likely results in the allosterism stemming from the interconversion of conformational substates of cyclophilins. The results also demonstrate the feasibility of CY in drug discovery against disease-relevant substrates controlled by Ranbp2, and they open new opportunities for therapeutic interventions. PMID:26030368

  16. The Reconnection and Microscale (RAM) Mission in the LWS Context

    NASA Astrophysics Data System (ADS)

    Golub, L.; Deluca, E.

    2005-12-01

    Hot magnetized plasmas are ubiquitous throughout the universe. The physics governing the dynamics of such plasmas takes place on remarkably small spatial and temporal scales, while both the cause of and the response to this activity occur on large spatial scales. Understanding the dynamics, energetics, and coupling between magnetic fields and plasmas are key focal points of research in astro-, space, and solar physics. Studying the Sun provides unique opportunities to examine these processes with unprecedented detail and scope unattainable for more remote objects. Few problems have proved as resistant to solution as the production of high-energy particles in hot magnetized plasmas. Theory and observations indicate that both magnetic reconnection and shocks can accelerate particles to high energies, involving small-scale structures that ultimately affect a much larger volume. Reconnection has been invoked to explain a wide range of explosive solar activity, from surges to coronal mass ejections, requiring the creation and dissipation of fine-scale currents. The Reconnection and Microscale (RAM) Mission is focused on understanding these key processes on the Sun, with particular emphasis on the production of high-energy particles and radiation. RAM obtains imaging and spectroscopic data with unprecedented resolution, and distinguishes among proposed energy-release and particle-acceleration mechanisms by determining the fine-scale structure of heated and cooling threads, and by observing the detailed evolution of multithermal plasmas using high-cadence spectroscopic imaging with broad temperature coverage. Lessons learned will also be applicable to both laboratory and non-solar magnetoplasmas, from the magnetosphere to active galaxies.

  17. ISO Guest Observer Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard

    2001-01-01

    The following is an interim annual report. Dr. Smith is currently on an extended TDY to the Istituto di Fisica dello Spazio Interplanetario (IFSI) at the Consilio Nazionale delle Richerche (CNR) in Rome, Italy, where he has been working on a related NASA grant in support of analysis of Infrared Space Observatory (ISO) data on star formation in Ultra Luminous Infrared Galaxies and our galaxy. Work emphasizes development of metal mesh grids for use in spacecraft, and the design and fabrication of test elements by the Naval Research Laboratory, Washington D.C. Work has progressed well, but slowly, on that program due to the departure of a key engineer. NASA has been advised of the delay, and granted a no-cost extension, whereby SAO has authorized a delay in the final report from NRL. Nevertheless NRL has continued to make progress. Two papers have been submitted to refereed journals related to this program, and a new design for mesh operating in the 20-40 micron region has been developed. Meetings continue through the summer on these items. A new technical scientist has been made a job offer and hopefully will be on board NRL shortly, although most of the present grant work is already completed. A more complete report, with copies of the submitted papers, designs, and other measures of progress, will be submitted to NASA in September when Dr. Smith returns from his current TDY.

  18. Extending the LWS Data Environment: Distributed Data Processing and Analysis

    NASA Technical Reports Server (NTRS)

    Narock, Thomas

    2005-01-01

    The final stages of this work saw changes to the original framework, as well as the completion and integration of several data processing services. Initially, it was thought that a peer-to-peer architecture was necessary to make this work possible. The peer-to-peer architecture provided many benefits including the dynamic discovery of new services that would be continually added. A prototype example was built and while it showed promise, a major disadvantage was seen in that it was not easily integrated into the existing data environment. While the peer-to-peer system worked well for finding and accessing distributed data processing services, it was found that its use was limited by the difficulty in calling it from existing tools and services. After collaborations with members of the data community, it was determined that our data processing system was of high value and that a new interface should be pursued in order for the community to take full advantage of it. As such; the framework was modified from a peer-to-peer architecture to a more traditional web service approach. Following this change multiple data processing services were added. These services include such things as coordinate transformations and sub setting of data. Observatory (VHO), assisted with integrating the new architecture into the VHO. This allows anyone using the VHO to search for data, to then pass that data through our processing services prior to downloading it. As a second attempt at demonstrating the new system, a collaboration was established with the Collaborative Sun Earth Connector (CoSEC) group at Lockheed Martin. This group is working on a graphical user interface to the Virtual Observatories and data processing software. The intent is to provide a high-level easy-to-use graphical interface that will allow access to the existing Virtual Observatories and data processing services from one convenient application. Working with the CoSEC group we provided access to our data processing tools from within their software. This now allows the CoSEC community to take advantage of our services and also demonstrates another means of accessing our system.

  19. ISO Guest Observer Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard

    2002-01-01

    This project was granted a no-cost extension prompted by the request of the major subcontractor, the Naval Research Laboratory, which had not yet completed its tasks. As of July 2002, they had made substantial progress. They have successfully fabricated a metal mesh grid on polyimide, and also successfully fabricated a 2-layer metal mesh infrared filter using stacks of these metal mesh grids on polyimide; the actual layering was done at SAO. Both warm and cold spectroscopic tests were done on these fabricated devices. The measurements were in good agreement with the theory, and also reasonable performance in absolute terms. NRL is now working on fabricating a 3-layer metal mesh infrared filter, and a prototype is expected in the next month. Testing should occur before the end of the fiscal year. Finally, NRL has preliminarily agreed to hire a new postdoctoral person to refine the modeling of the filters based on the new measurements. The person should arrive this fall. NRL has a new Fourier Transform Spectrometer which will be delivered in the next month, and which will be used to facilitate the testing which has up to now been done in collaboration with NASA Goddard Space Flight Space Center.

  20. ISO Guest Observer Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Smith, Howard A.

    2003-01-01

    We have designed and fabricated infrared filters for use at wavelengths greater than or equal to 15 microns. Unlike conventional dielectric filters used at the short wavelengths, ours are made from stacked metal grids, spaced at a very small fraction of the performance wavelengths. The individual lattice layers are gold, the spacers are polyimide, and they are assembled using integrated circuit processing techniques; they resemble some metallic photonic band-gap structures. We simulate the filter performance accurately, including the coupling of the propagating, near-field electromagnetic modes, using computer aided design codes. We find no anomalous absorption. The geometrical parameters of the grids are easily altered in practice, allowing for the production of tuned filters with predictable useful transmission characteristics. Although developed for astronomical instrumentation, the filters are broadly applicable in systems across infrared and terahertz bands.

  1. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity.

    PubMed

    Esquiva, Gema; Avivi, Aaron; Hannibal, Jens

    2016-01-01

    The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm(2)). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain. PMID:27375437

  2. Targeting of exon VI-skipping human RGR-opsin to the plasma membrane of pigment epithelium and co-localization with terminal complement complex C5b-9

    PubMed Central

    Kochounian, Harold; Zhang, Zhaoxia; Spee, Christine; Hinton, David R.

    2016-01-01

    Purpose Rare mutations in the human RGR gene lead to autosomal recessive retinitis pigmentosa or dominantly inherited peripapillary choroidal atrophy. Here, we analyze a common exon-skipping isoform of the human retinal G protein-coupled receptor opsin (RGR-d) to determine differences in subcellular targeting between RGR-d and normal RGR and possible association with abnormal traits in the human eye. Methods The terminal complement complex (C5b-9), vitronectin, CD46, syntaxin-4, and RGR-d were analyzed in human eye tissue from young and old donors or in cultured fetal RPE cells by means of immunofluorescent labeling and high-resolution confocal microscopy or immunohistochemical staining. Results We observed that RGR-d is targeted to the basolateral plasma membrane of the RPE. RGR-d, but not normal RGR, is expressed in cultured human fetal RPE cells in which the protein also trafficks to the plasma membrane. In young donors, the amount of RGR-d protein in the basolateral plasma membrane was much higher than that in the RPE cells of older subjects. In older donor eyes, the level of immunoreactive RGR-d within RPE cells was often low or undetectable, and immunostaining of RGR-d was consistently strongest in extracellular deposits in Bruch’s membrane. Double immunofluorescent labeling in the basal deposits revealed significant aggregate and small punctate co-localization of RGR-d with C5b-9 and vitronectin. Conclusions RGR-d may escape endoplasmic reticulum-associated degradation and in contrast to full-length RGR, traffick to the basolateral plasma membrane, particularly in younger subjects. RGR-d in the plasma membrane indicates that the protein is properly folded, as misfolded membrane proteins cannot otherwise sort to the plasma membrane. The close association of extracellular RGR-d with both vitronectin and C5b-9 suggests a potential role of RGR-d-containing deposits in complement activation. PMID:27011730

  3. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity

    PubMed Central

    Esquiva, Gema; Avivi, Aaron; Hannibal, Jens

    2016-01-01

    The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm2). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain. PMID:27375437

  4. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    PubMed

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-01-01

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising. PMID:26782460

  5. The visual pigments of the West Indian manatee (Trichechus manatus).

    PubMed

    Newman, Lucy A; Robinson, Phyllis R

    2006-10-01

    Manatees are unique among the fully aquatic marine mammals in that they are herbivorous creatures, with hunting strategies restricted to grazing on sea-grasses. Since the other groups of (carnivorous) marine mammals have been found to possess various visual system adaptations to their unique visual environments, it was of interest to investigate the visual capability of the manatee. Previous work, both behavioral (Griebel & Schmid, 1996), and ultrastructural (Cohen, Tucker, & Odell, 1982; unpublished work cited by Griebel & Peichl, 2003), has suggested that manatees have the dichromatic color vision typical of diurnal mammals. This study uses molecular techniques to investigate the cone visual pigments of the manatee. The aim was to clone and sequence cone opsins from the retina, and, if possible, express and reconstitute functional visual pigments to perform spectral analysis. Both LWS and SWS cone opsins were cloned and sequenced from manatee retinae, which, upon expression and spectral analysis, had lambda(max) values of 555 and 410 nm, respectively. The expression of both the LWS and SWS cone opsin in the manatee retina is unique as both pinnipeds and cetaceans only express a cone LWS opsin. PMID:16650454

  6. Multiple Genetic Mechanisms Contribute to Visual Sensitivity Variation in the Labridae.

    PubMed

    Phillips, Genevieve A C; Carleton, Karen L; Marshall, N Justin

    2016-01-01

    Coral reefs are one of the most spectrally diverse environments, both in terms of habitat and animal color. Species identity, sex, and camouflage are drivers of the phenotypic diversity seen in coral reef fishes, but how the phenotypic diversity is reflected in the genotype remains to be answered. The labrids are a large, polyphyletic family of coral reef fishes that display a diverse range of colors, including developmental color morphs and extensive behavioral ecologies. Here, we assess the opsin sequence and expression diversity among labrids from the Great Barrier Reef, Australia. We found that labrids express a diverse palette of visual opsins, with gene duplications in both RH2 and LWS genes. The majority of opsins expressed were within the mid-to-long wavelength sensitive classes (RH2 and LWS). Three of the labrid species expressed SWS1 (ultra-violet sensitive) opsins with the majority expressing the violet-sensitive SWS2B gene and none expressing SWS2A. We used knowledge about spectral tuning sites to calculate approximate spectral sensitivities (λmax) for individual species' visual pigments, which corresponded well with previously published λmax values for closely related species (SWS1: 356-370 nm; SWS2B: 421-451 nm; RH2B: 452-492 nm; RH2A: 516-528 nm; LWS1: 554-555 nm; LWS2: 561-562 nm). In contrast to the phenotypic diversity displayed via color patterns and feeding ecology, there was little amino acid diversity within the known opsin sequence tuning sites. However, gene duplications and differential expression provide alternative mechanisms for tuning visual pigments, resulting in variable visual sensitivities among labrid species. PMID:26464127

  7. Cone visual pigments of monotremes: filling the phylogenetic gap.

    PubMed

    Wakefield, Matthew J; Anderson, Mark; Chang, Ellen; Wei, Ke-Jun; Kaul, Rajinder; Graves, Jennifer A Marshall; Grützner, Frank; Deeb, Samir S

    2008-01-01

    We have determined the sequence and genomic organization of the genes encoding the cone visual pigment of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus), and inferred their spectral properties and evolutionary pathways. We prepared platypus and echidna retinal RNA and used primers of the middle-wave-sensitive (MWS), long-wave-sensitive (LWS), and short-wave sensitive (SWS1) pigments corresponding to coding sequences that are highly conserved among mammals; to PCR amplify the corresponding pigment sequences. Amplification from the retinal RNA revealed the expression of LWS pigment mRNA that is homologous in sequence and spectral properties to the primate LWS visual pigments. However, we were unable to amplify the mammalian SWS1 pigment from these two species, indicating this gene was lost prior to the echidna-platypus divergence (21 MYA). Subsequently, when the platypus genome sequence became available, we found an LWS pigment gene in a conserved genomic arrangement that resembles the primate pigment, but, surprisingly we found an adjacent (20 kb) SWS2 pigment gene within this conserved genomic arrangement. We obtained the same result after sequencing the echidna genes. The encoded SWS2 pigment is predicted to have a wavelength of maximal absorption of about 440 nm, and is paralogous to SWS pigments typically found in reptiles, birds, and fish but not in mammals. This study suggests the locus control region (LCR) has played an important role in the conservation of photo receptor gene arrays and the control of their spatial and temporal expression in the retina in all mammals. In conclusion, a duplication event of an ancestral cone visual pigment gene, followed by sequence divergence and selection gave rise to the LWS and SWS2 visual pigments. So far, the echidna and platypus are the only mammals that share the gene structure of the LWS-SWS2 pigment gene complex with reptiles, birds and fishes. PMID:18598396

  8. Exploring visual plasticity: dietary carotenoids can change color vision in guppies (Poecilia reticulata).

    PubMed

    Sandkam, Benjamin A; Deere-Machemer, Kerry A; Johnson, Ashley M; Grether, Gregory F; Helen Rodd, F; Fuller, Rebecca C

    2016-07-01

    Differences in color vision can play a key role in an organism's ability to perceive and interact with the environment across a broad range of taxa. Recently, species have been shown to vary in color vision across populations as a result of differences in regulatory sequence and/or plasticity of opsin gene expression. For decades, biologists have been intrigued by among-population variation in color-based mate preferences of female Trinidadian guppies. We proposed that some of this variation results from variation in color vision caused by plasticity in opsin expression. Specifically, we asked about the role of dietary carotenoid availability, because carotenoids (1) are the precursors for vitamin A, which is essential for the creation of photopigments and (2) have been linked to variation in female mate choice. We raised guppies on different carotenoid-level diets and measured opsin expression. Guppies raised on high-carotenoid diets expressed higher levels of long wavelength sensitive opsin (LWS) opsins than those raised on lower levels of carotenoids. These results suggest that dietary effects on opsin expression represent a previously unaccounted for mechanism by which ecological differences across populations could lead to mate choice differences. PMID:27283858

  9. Beauty in the eyes of the beholders: colour vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata).

    PubMed

    Sandkam, Benjamin; Young, C Megan; Breden, Felix

    2015-02-01

    A broad range of animals use visual signals to assess potential mates, and the theory of sensory exploitation suggests variation in visual systems drives mate preference variation due to sensory bias. Trinidadian guppies (Poecilia reticulata), a classic system for studies of the evolution of female mate choice, provide a unique opportunity to test this theory by looking for covariation in visual tuning, light environment and mate preferences. Female preference co-evolves with male coloration, such that guppy females from 'low-predation' environments have stronger preferences for males with more orange/red coloration than do females from 'high-predation' environments. Here, we show that colour vision also varies across populations, with 'low'-predation guppies investing more of their colour vision to detect red/orange coloration. In independently colonized watersheds, guppies expressed higher levels of both LWS-1 and LWS-3 (the most abundant LWS opsins) in 'low-predation' populations than 'high-predation' populations at a time that corresponds to differences in cone cell abundance. We also observed that the frequency of a coding polymorphism differed between high- and low-predation populations. Together, this shows that the variation underlying preference could be explained by simple changes in expression and coding of opsins, providing important candidate genes to investigate the genetic basis of female preference variation in this model system. PMID:25556876

  10. Cone visual pigments of aquatic mammals.

    PubMed

    Newman, Lucy A; Robinson, Phyllis R

    2005-01-01

    It has long been hypothesized that the visual systems of animals are evolutionarily adapted to their visual environment. The entrance many millions of years ago of mammals into the sea gave these new aquatic mammals completely novel visual surroundings with respect to light availability and predominant wavelengths. This study examines the cone opsins of marine mammals, hypothesizing, based on previous studies [Fasick et al. (1998) and Levenson & Dizon (2003)], that the deep-dwelling marine mammals would not have color vision because the pressure to maintain color vision in the dark monochromatic ocean environment has been relaxed. Short-wavelength-sensitive (SWS) and long-wavelength-sensitive (LWS) cone opsin genes from two orders (Cetacea and Sirenia) and an additional suborder (Pinnipedia) of aquatic mammals were amplified from genomic DNA (for SWS) and cDNA (for LWS) by PCR, cloned, and sequenced. All animals studied from the order Cetacea have SWS pseudogenes, whereas a representative from the order Sirenia has an intact SWS gene, for which the corresponding mRNA was found in the retina. One of the pinnipeds studied (harp seal) has an SWS pseudogene, while another species (harbor seal) appeared to have an intact SWS gene. However, no SWS cone opsin mRNA was found in the harbor seal retina, suggesting a promoter or splice site mutation preventing transcription of the gene. The LWS opsins from the different species were expressed in mammalian cells and reconstituted with the 11-cis-retinal chromophore in order to determine maximal absorption wavelengths (lambda(max)) for each. The deeper dwelling Cetacean species had blue shifted lambda(max) values compared to shallower-dwelling aquatic species. Taken together, these findings support the hypothesis that in the monochromatic oceanic habitat, the pressure to maintain color vision has been relaxed and mutations are retained in the SWS genes, resulting in pseudogenes. Additionally, LWS opsins are retained in the

  11. The LWS Geospace Storm Investigations Exploring the Extremes of Space Weather

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Geospace mission of the Living With a Star program is a family of investigations focusing on the compelling science questions that advance our ability to specify, understand, and predict the societal impact of solar variance. Two key areas have been identified as combining both importance to society and potential for scientific progress: 1) characterization and understanding of the acceleration, global distribution, and variability of energetic electrons and ions in the inner magnetosphere, and 2) characterization and understanding of the ionosphere and irregularities that affect communications, navigation and radar systems. Under these broad categories specific science questions have emerged as the priority science objectives for the first Geospace Investigations: How and why do relativistic electrons in the outer zone and slot region vary during geomagnetic storms? How does the long- and short-term variability of the Sun affect the global-scale behavior of the ionospheric electron density and irregularities, especially during magnetic storms and at mid-latitudes? The first Geospace mission will attempt to answer these questions.

  12. LWS Proposal to Provide Scientific Guidance and Modeling Support for the Ionospheric Mapping Mission. Part 1

    NASA Technical Reports Server (NTRS)

    Richmond, Arthur D.

    2005-01-01

    A data assimilation system for specifying the thermospheric density has been developed over the last several years. This system ingests GRACE/CHAMP-type in situ as well as SSULI/SSUSI remote sensing observations while making use of a physical model, the Coupled Thermosphere-Ionosphere Model (CTIM) (Fuller-Rowel1 et al., 1996). The Kalman filter was implemented as the backbone to the data assimilation system, which provides a statistically 'best' estimate as well as an estimate of the error in its state. The system was tested using a simulated thermosphere and observations. CHAMP data were then used to provide the system with a real data source. The results of this study are herein.

  13. Flight Experiments for Living With a Star Space Environment Testbed (LWS-SET): Relationship to Technology

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.

    2003-01-01

    This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.

  14. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch).

    PubMed

    Temple, Shelby E; Ramsden, Samuel D; Haimberger, Theodore J; Veldhoen, Kathy M; Veldhoen, Nik J; Carter, Nicolette L; Roth, Wolff-Michael; Hawryshyn, Craig W

    2008-07-01

    The role of exogenous thyroid hormone on visual pigment content of rod and cone photoreceptors was investigated in coho salmon (Oncorhynchus kisutch). Coho vary the ratio of vitamin A1- and A2-based visual pigments in their eyes. This variability potentially alters spectral sensitivity and thermal stability of the visual pigments. We tested whether the direction of shift in the vitamin A1/A2 ratio, resulting from application of exogenous thyroid hormone, varied in fish of different ages and held under different environmental conditions. Changes in the vitamin A1/A2 visual pigment ratio were estimated by measuring the change in maximum absorbance (lambda max) of rods using microspectrophotometry (MSP). Exogenous thyroid hormone resulted in a long-wavelength shift in rod, middle-wavelength-sensitive (MWS) and long-wavelength-sensitive (LWS) cone photoreceptors. Rod and LWS cone lambda max values increased, consistent with an increase in vitamin A2. MWS cone lambda max values increased more than predicted for a change in the vitamin A1/A2 ratio. To account for this shift, we tested for the expression of multiple RH2 opsin subtypes. We isolated and sequenced a novel RH2 opsin subtype, which had 48 amino acid differences from the previously sequenced coho RH2 opsin. A substitution of glutamate for glutamine at position 122 could partially account for the greater than predicted shift in MWS cone lambda max values. Our findings fit the hypothesis that a variable vitamin A1/A2 ratio provides seasonality in spectral tuning and/or improved thermal stability of visual pigments in the face of seasonal environmental changes, and that multiple RH2 opsin subtypes can provide flexibility in spectral tuning associated with migration-metamorphic events. PMID:18552303

  15. The Transcription Factor GTF2IRD1 Regulates the Topology and Function of Photoreceptors by Modulating Photoreceptor Gene Expression across the Retina

    PubMed Central

    Masuda, Tomohiro; Zhang, Xiaodong; Berlinicke, Cindy; Wan, Jun; Yerrabelli, Anitha; Conner, Elizabeth A.; Kjellstrom, Sten; Bush, Ronald; Thorgeirsson, Snorri S.; Swaroop, Anand; Chen, Shiming

    2014-01-01

    The mechanisms that specify photoreceptor cell-fate determination, especially as regards to short-wave-sensitive (S) versus medium-wave-sensitive (M) cone identity, and maintain their nature and function, are not fully understood. Here we report the importance of general transcription factor II-I repeat domain-containing protein 1 (GTF2IRD1) in maintaining M cone cell identity and function as well as rod function. In the mouse, GTF2IRD1 is expressed in cell-fate determined photoreceptors at postnatal day 10. GTF2IRD1 binds to enhancer and promoter regions in the mouse rhodopsin, M- and S-opsin genes, but regulates their expression differentially. Through interaction with the transcription factors CRX and thyroid hormone receptor β 2, it enhances M-opsin expression, whereas it suppresses S-opsin expression; and with CRX and NRL, it enhances rhodopsin expression. In an apparent paradox, although GTF2IRD1 is widely expressed in multiple cell types across the retina, knock-out of GTF2IRD1 alters the retinal expression of only a limited number of annotated genes. Interestingly, however, the null mutation leads to altered topology of cone opsin expression in the retina, with aberrant S-opsin overexpression and M-opsin underexpression in M cones. Gtf2ird1-null mice also demonstrate abnormal M cone and rod electrophysiological responses. These findings suggest an important role for GTF2IRD1 in regulating the level and topology of rod and cone gene expression, and in maintaining normal retinal function. PMID:25392503

  16. The transcription factor GTF2IRD1 regulates the topology and function of photoreceptors by modulating photoreceptor gene expression across the retina.

    PubMed

    Masuda, Tomohiro; Zhang, Xiaodong; Berlinicke, Cindy; Wan, Jun; Yerrabelli, Anitha; Conner, Elizabeth A; Kjellstrom, Sten; Bush, Ronald; Thorgeirsson, Snorri S; Swaroop, Anand; Chen, Shiming; Zack, Donald J

    2014-11-12

    The mechanisms that specify photoreceptor cell-fate determination, especially as regards to short-wave-sensitive (S) versus medium-wave-sensitive (M) cone identity, and maintain their nature and function, are not fully understood. Here we report the importance of general transcription factor II-I repeat domain-containing protein 1 (GTF2IRD1) in maintaining M cone cell identity and function as well as rod function. In the mouse, GTF2IRD1 is expressed in cell-fate determined photoreceptors at postnatal day 10. GTF2IRD1 binds to enhancer and promoter regions in the mouse rhodopsin, M- and S-opsin genes, but regulates their expression differentially. Through interaction with the transcription factors CRX and thyroid hormone receptor β 2, it enhances M-opsin expression, whereas it suppresses S-opsin expression; and with CRX and NRL, it enhances rhodopsin expression. In an apparent paradox, although GTF2IRD1 is widely expressed in multiple cell types across the retina, knock-out of GTF2IRD1 alters the retinal expression of only a limited number of annotated genes. Interestingly, however, the null mutation leads to altered topology of cone opsin expression in the retina, with aberrant S-opsin overexpression and M-opsin underexpression in M cones. Gtf2ird1-null mice also demonstrate abnormal M cone and rod electrophysiological responses. These findings suggest an important role for GTF2IRD1 in regulating the level and topology of rod and cone gene expression, and in maintaining normal retinal function. PMID:25392503

  17. Shedding light on serpent sight: the visual pigments of henophidian snakes.

    PubMed

    Davies, Wayne L; Cowing, Jill A; Bowmaker, James K; Carvalho, Livia S; Gower, David J; Hunt, David M

    2009-06-10

    The biologist Gordon Walls proposed his "transmutation" theory through the 1930s and the 1940s to explain cone-like morphology of rods (and vice versa) in the duplex retinas of modern-day reptiles, with snakes regarded as the epitome of his hypothesis. Despite Walls' interest, the visual system of reptiles, and in particular snakes, has been widely neglected in favor of studies of fishes and mammals. By analyzing the visual pigments of two henophidian snakes, Xenopeltis unicolor and Python regius, we show that both species express two cone opsins, an ultraviolet-sensitive short-wavelength-sensitive 1 (SWS1) (lambda(max) = 361 nm) pigment and a long-wavelength-sensitive (LWS) (lambda(max) = 550 nm) pigment, providing the potential for dichromatic color vision. They also possess rod photoreceptors which express the usual rod opsin (Rh1) pigment with a lambda(max) at 497 nm. This is the first molecular study of the visual pigments expressed in the photoreceptors of any snake species. The presence of a duplex retina and the characterization of LWS, SWS1, and Rh1 visual pigments in henophidian snakes implies that "lower" snakes do not provide support for Walls' transmutation theory, unlike some "higher" (caenophidian) snakes and other reptiles, such as geckos. More data from other snake lineages will be required to test this hypothesis further. PMID:19515920

  18. LWS FST: Determine and Quantify the Responses of Atmospheric/Ionospheric Composition and Temperature to Solar XUV Spectral Variability

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.; Fuller-Rowell, T. J.; Qian, L.; Richards, P. G.; Ridley, A. J.

    2010-12-01

    We present a summary of the research plans and preliminary results of our 2009 Living With a Star Focus Science Team. Focus Area Description: With the recent availability of comprehensive solar spectral measurements at X-ray and ultraviolet (XUV) wavelengths, together with upper atmospheric chemistry and transport models, quantification of the full range of solar effects on chemically active minor constituents and ion composition in the ionospherethermosphere- mesosphere (I-T-M) system is now possible. Additional solar-driven variation is caused by the energetic particle environment, ranging from auroral fluxes to galactic cosmic rays. These sources have important influences on the chemistry, energetics, and dynamics of the lower thermosphere and ionosphere (e.g., on nitric oxide and ozone) via direct energy deposition and modulation of ion-neutral frictional heating. Observations of neutral composition and temperature for different phases of the solar cycle and for sporadic events are available through NASA missions like the Upper Atmosphere Research Satellite (UARS) and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission (TIMED), as well as from other space- and groundbased instruments. Observations of ionospheric electron density are available through a variety of sources. In view of these advances, models of atmospheric/ionospheric composition and energetics that fully exploit the available estimates of external energetic inputs can now be developed to more accurately quantify solar effects in the middle and upper atmosphere. We seek to determine how well our understanding of atmospheric/ionospheric processes, as incorporated in state-of-the-art models, is able to explain observed compositional and temperature effects in the middle and upper atmosphere caused by external energetic inputs, in order to be able to predict these effects under both normal and extreme conditions.

  19. Modelling rock-avalanche induced impact waves: Sensitivity of the model chains to model parameters

    NASA Astrophysics Data System (ADS)

    Schaub, Yvonne; Huggel, Christian

    2014-05-01

    New lakes are forming in high-mountain areas all over the world due to glacier recession. Often they will be located below steep, destabilized flanks and are therefore exposed to impacts from rock-/ice-avalanches. Several events worldwide are known, where an outburst flood has been triggered by such an impact. In regions such as in the European Alps or in the Cordillera Blanca in Peru, where valley bottoms are densely populated, these far-travelling, high-magnitude events can result in major disasters. Usually natural hazards are assessed as single hazardous processes, for the above mentioned reasons, however, development of assessment and reproduction methods of the hazardous process chain for the purpose of hazard map generation have to be brought forward. A combination of physical process models have already been suggested and illustrated by means of lake outburst in the Cordillera Blanca, Peru, where on April 11th 2010 an ice-avalanche of approx. 300'000m3 triggered an impact wave, which overtopped the 22m freeboard of the rock-dam for 5 meters and caused and outburst flood which travelled 23 km to the city of Carhuaz. We here present a study, where we assessed the sensitivity of the model chain from ice-avalanche and impact wave to single parameters considering rock-/ice-avalanche modeling by RAMMS and impact wave modeling by IBER. Assumptions on the initial rock-/ice-avalanche volume, calibration of the friction parameters in RAMMS and assumptions on erosion considered in RAMMS were parameters tested regarding their influence on overtopping parameters that are crucial for outburst flood modeling. Further the transformation of the RAMMS-output (flow height and flow velocities on the shoreline of the lake) into an inflow-hydrograph for IBER was also considered a possible source of uncertainties. Overtopping time, volume, and wave height as much as mean and maximum discharge were considered decisive parameters for the outburst flood modeling and were therewith assumed dependent values. The resulting 54 runs were evaluated by an ANOVA-analysis for each dependent variable. Results show, that the model chain is able to correctly reproduce the 5m-overtopping wave. Further the dependency from the input parameters could be assessed for every dependent variable. It was e.g. shown, that RAMMS-calibration has the strongest influence on all variations, it is more crucial then the uncertainties introduced by assumptions on the initial rock-avalanche volume. The study shows, that from a hazard-assessment point of view, combinations of model chains are acceptable and permissible.

  20. Evolutionary loss of cone photoreception in balaenid whales reveals circuit stability in the mammalian retina.

    PubMed

    Schweikert, Lorian E; Fasick, Jeffry I; Grace, Michael S

    2016-10-01

    The classical understanding of mammalian vision is that it occurs through "duplex" retinae containing both rod and cone photoreceptors, the signals from which are processed through rod- and/or cone-specific signaling pathways. The recent discovery of rod monochromacy in some cetacean lineages provides a novel opportunity to investigate the effects of an evolutionary loss of cone photoreception on retinal organization. Sequence analysis of right whale (Eubalaena glacialis; family Balaenidae) cDNA derived from long-wavelength sensitive (LWS) cone opsin mRNA identified several mutations in the opsin coding sequence, suggesting the loss of cone cell function, but maintenance of non-photosensitive, cone opsin mRNA-expressing cells in the retina. Subsequently, we investigated the retina of the closely related bowhead whale (Balaena mysticetus; family Balaenidae) to determine how the loss of cone-mediated photoreception affects light signaling pathways in the retina. Anti-opsin immunofluorescence demonstrated the total loss of cone opsin expression in B. mysticetus, whereas light microscopy, transmission electron microscopy, and bipolar cell (protein kinase C-α [PKC-α] and recoverin) immunofluorescence revealed the maintenance of cone soma, putative cone pedicles, and both rod and cone bipolar cell types. These findings represent the first immunological and anatomical evidence of a naturally occurring rod-monochromatic mammalian retina, and suggest that despite the loss of cone-mediated photoreception, the associated cone signaling structures (i.e., cone synapses and cone bipolar cells) may be maintained for multichannel rod-based signaling in balaenid whales. J. Comp. Neurol. 524:2873-2885, 2016. © 2016 Wiley Periodicals, Inc. PMID:26972896

  1. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity.

    PubMed

    Ehlman, Sean M; Sandkam, Benjamin A; Breden, Felix; Sih, Andrew

    2015-12-01

    Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments. PMID:26427995

  2. Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics

    PubMed Central

    van Hazel, Ilke; Santini, Francesco; Müller, Johannes; Chang, Belinda SW

    2006-01-01

    Background Vertebrate SWS1 visual pigments mediate visual transduction in response to light at short wavelengths. Due to their importance in vision, SWS1 genes have been isolated from a surprisingly wide range of vertebrates, including lampreys, teleosts, amphibians, reptiles, birds, and mammals. The SWS1 genes exhibit many of the characteristics of genes typically targeted for phylogenetic analyses. This study investigates both the utility of SWS1 as a marker for inferring vertebrate phylogenetic relationships, and the characteristics of the gene that contribute to its phylogenetic utility. Results Phylogenetic analyses of vertebrate SWS1 genes produced topologies that were remarkably congruent with generally accepted hypotheses of vertebrate evolution at both higher and lower taxonomic levels. The few exceptions were generally associated with areas of poor taxonomic sampling, or relationships that have been difficult to resolve using other molecular markers. The SWS1 data set was characterized by a substantial amount of among-site rate variation, and a relatively unskewed substitution rate matrix, even when the data were partitioned into different codon sites and individual taxonomic groups. Although there were nucleotide biases in some groups at third positions, these biases were not convergent across different taxonomic groups. Conclusion Our results suggest that SWS1 may be a good marker for vertebrate phylogenetics due to the variable yet consistent patterns of sequence evolution exhibited across fairly wide taxonomic groups. This may result from constraints imposed by the functional role of SWS1 pigments in visual transduction. PMID:17107620

  3. Functional map of arrestin binding to phosphorylated opsin, with and without agonist.

    PubMed

    Peterhans, Christian; Lally, Ciara C M; Ostermaier, Martin K; Sommer, Martha E; Standfuss, Jörg

    2016-01-01

    Arrestins desensitize G protein-coupled receptors (GPCRs) and act as mediators of signalling. Here we investigated the interactions of arrestin-1 with two functionally distinct forms of the dim-light photoreceptor rhodopsin. Using unbiased scanning mutagenesis we probed the individual contribution of each arrestin residue to the interaction with the phosphorylated apo-receptor (Ops-P) and the agonist-bound form (Meta II-P). Disruption of the polar core or displacement of the C-tail strengthened binding to both receptor forms. In contrast, mutations of phosphate-binding residues (phosphosensors) suggest the phosphorylated receptor C-terminus binds arrestin differently for Meta II-P and Ops-P. Likewise, mutations within the inter-domain interface, variations in the receptor-binding loops and the C-edge of arrestin reveal different binding modes. In summary, our results indicate that arrestin-1 binding to Meta II-P and Ops-P is similarly dependent on arrestin activation, although the complexes formed with these two receptor forms are structurally distinct. PMID:27350090

  4. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup

    PubMed Central

    Lamb, Trevor D.; Collin, Shaun P.; Pugh, Edward N.

    2011-01-01

    Charles Darwin appreciated the conceptual difficulty in accepting that an organ as wonderful as the vertebrate eye could have evolved through natural selection. He reasoned that if appropriate gradations could be found that were useful to the animal and were inherited, then the apparent difficulty would be overcome. Here, we review a wide range of findings that capture glimpses of the gradations that appear to have occurred during eye evolution, and provide a scenario for the unseen steps that have led to the emergence of the vertebrate eye. PMID:18026166

  5. Functional map of arrestin binding to phosphorylated opsin, with and without agonist

    PubMed Central

    Peterhans, Christian; Lally, Ciara C. M.; Ostermaier, Martin K.; Sommer, Martha E.; Standfuss, Jörg

    2016-01-01

    Arrestins desensitize G protein-coupled receptors (GPCRs) and act as mediators of signalling. Here we investigated the interactions of arrestin-1 with two functionally distinct forms of the dim-light photoreceptor rhodopsin. Using unbiased scanning mutagenesis we probed the individual contribution of each arrestin residue to the interaction with the phosphorylated apo-receptor (Ops-P) and the agonist-bound form (Meta II-P). Disruption of the polar core or displacement of the C-tail strengthened binding to both receptor forms. In contrast, mutations of phosphate-binding residues (phosphosensors) suggest the phosphorylated receptor C-terminus binds arrestin differently for Meta II-P and Ops-P. Likewise, mutations within the inter-domain interface, variations in the receptor-binding loops and the C-edge of arrestin reveal different binding modes. In summary, our results indicate that arrestin-1 binding to Meta II-P and Ops-P is similarly dependent on arrestin activation, although the complexes formed with these two receptor forms are structurally distinct. PMID:27350090

  6. MODELING LARGE WOOD STRUCTURES IN SAND BED STREAMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-stream large wood structures (LWS) are becoming increasingly popular throughout the world. The LWS improve aquatic habitat quality and protect banks from erosion. While most reports describe the LWS in the Northwest as successful, LWS in one Mississippi sand-bed stream had an unacceptable failure...

  7. Eye spectral sensitivity in fresh- and brackish-water populations of three glacial-relict Mysis species (Crustacea): physiology and genetics of differential tuning.

    PubMed

    Donner, Kristian; Zak, Pavel; Viljanen, Martta; Lindström, Magnus; Feldman, Tatiana; Ostrovsky, Mikhail

    2016-04-01

    Absorbance spectra of single rhabdoms were studied by microspectrophotometry (MSP) and spectral sensitivities of whole eyes by electroretinography (ERG) in three glacial-relict species of opossum shrimps (Mysis). Among eight populations from Fennoscandian fresh-water lakes (L) and seven populations from the brackish-water Baltic Sea (S), L spectra were systematically red-shifted by 20-30 nm compared with S spectra, save for one L and one S population. The difference holds across species and bears no consistent adaptive relation to the current light environments. In the most extensively studied L-S pair, two populations of M. relicta (L(p) and S(p)) separated for less than 10,000 years, no differences translating into amino acid substitutions have been found in the opsin genes, and the chromophore of the visual pigments as analyzed by HPLC is pure A1. However, MSP experiments with spectrally selective bleaching show the presence of two rhodopsins (λ(max) ≈ 525-530 nm, MWS, and 565-570 nm, LWS) expressed in different proportions. ERG recordings of responses to "red" and "blue" light linearly polarized at orthogonal angles indicate segregation of the pigments into different cells differing in polarization sensitivity. We propose that the pattern of development of LWS and MWS photoreceptors is governed by an ontogenetic switch responsive to some environmental signal(s) other than light that generally differ(s) between lakes and sea, and that this reaction norm is conserved from a common ancestor of all three species. PMID:26984686

  8. Cell-specific DNA methylation patterns of retina-specific genes.

    PubMed

    Merbs, Shannath L; Khan, Miriam A; Hackler, Laszlo; Oliver, Verity F; Wan, Jun; Qian, Jiang; Zack, Donald J

    2012-01-01

    Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that

  9. RELAX: detecting relaxed selection in a phylogenetic framework.

    PubMed

    Wertheim, Joel O; Murrell, Ben; Smith, Martin D; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2015-03-01

    medium/long-wavelength sensitive opsin, M/LWS1, is found to be relaxed in all echolocating bats compared with nonecholocating bats. PMID:25540451

  10. The two-step development of a duplex retina involves distinct events of cone and rod neurogenesis and differentiation.

    PubMed

    Valen, Ragnhild; Eilertsen, Mariann; Edvardsen, Rolf Brudvik; Furmanek, Tomasz; Rønnestad, Ivar; van der Meeren, Terje; Karlsen, Ørjan; Nilsen, Tom Ole; Helvik, Jon Vidar

    2016-08-15

    Unlike in mammals, persistent postembryonic retinal growth is a characteristic feature of fish, which includes major remodeling events that affect all cell types including photoreceptors. Consequently, visual capabilities change during development, where retinal sensitivity to different wavelengths of light (photopic vision), -and to limited photons (scotopic vision) are central capabilities for survival. Differently from well-established model fish, Atlantic cod has a prolonged larval stage where only cone photoreceptors are present. Rods do not appear until juvenile transition (metamorphosis), a hallmark of indirect developing species. Previously we showed that whole gene families of lws (red-sensitive) and sws1 (UV-sensitive) opsins have been lost in cod, while rh2a (green-sensitive) and sws2 (blue-sensitive) genes have tandem duplicated. Here, we provide a comprehensive characterization of a two-step developing duplex retina in Atlantic cod. The study focuses on cone subtype dynamics and delayed rod neurogenesis and differentiation in all cod life stages. Using transcriptomic and histological approaches we show that different opsins disappear in a topographic manner during development where central to peripheral retina is a key axis of expressional change. Early cone differentiation was initiated in dorso-temporal retina different from previously described in fish. Rods first appeared during initiation of metamorphosis and expression of the nuclear receptor transcription factor nr2e3-1, suggest involvement in rod specification. The indirect developmental strategy thus allows for separate studies of cones and rods development, which in nature correlates with visual changes linked to habitat shifts. The clustering of key retinal genes according to life stage, suggests that Atlantic cod with its sequenced genome may be an important resource for identification of underlying factors required for development and function of photopic and scotopic vision. PMID:27374844

  11. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    PubMed

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015

  12. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    PubMed Central

    Jones, Gareth; Teeling, Emma C.; Rossiter, Stephen J.

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a “birth-and death” evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID

  13. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri

    PubMed Central

    Bailes, Helena J; Davies, Wayne L; Trezise, Ann EO; Collin, Shaun P

    2007-01-01

    Background One of the greatest challenges facing the early land vertebrates was the need to effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing is known about the visual pigments present in lungfish or the early tetrapods. Results Here we identify and characterise five visual pigments (rh1, rh2, lws, sws1 and sws2) expressed in the retina of N. forsteri. Phylogenetic analysis of the molecular evolution of lungfish and other vertebrate visual pigment genes indicates a closer relationship between lungfish and amphibian pigments than to pigments in teleost fishes. However, the relationship between lungfish, the coelacanth and tetrapods could not be absolutely determined from opsin phylogeny, supporting an unresolved trichotomy between the three groups. Conclusion The presence of four cone pigments in Australian lungfish suggests that the earliest tetrapods would have had a colorful view of their terrestrial environment. PMID:17961206

  14. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp

    PubMed Central

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W.; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-01-01

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s−1). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. PMID:26345128

  15. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

    PubMed

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-01-01

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. PMID:26345128

  16. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.

    PubMed Central

    Cowing, Jill A; Poopalasundaram, Subathra; Wilkie, Susan E; Robinson, Phyllis R; Bowmaker, James K; Hunt, David M

    2002-01-01

    The short-wave-sensitive (SWS) visual pigments of vertebrate cone photoreceptors are divided into two classes on the basis of molecular identity, SWS1 and SWS2. Only the SWS1 class are present in mammals. The SWS1 pigments can be further subdivided into violet-sensitive (VS), with lambda(max) (the peak of maximal absorbance) values generally between 400 and 430 nm, and ultraviolet-sensitive (UVS), with a lambda(max)<380 nm. Phylogenetic evidence indicates that the ancestral pigment was UVS and that VS pigments have evolved separately from UVS pigments in the different vertebrate lineages. In this study, we have examined the mechanism of evolution of VS pigments in the mammalian lineage leading to present day ungulates (cow and pig). Amino acid sequence comparisons of the UVS pigments of teleost fish, amphibia, reptiles and rodents show that site 86 is invariably occupied by Phe but is replaced in bovine and porcine VS pigments by Tyr. Using site-directed mutagenesis of goldfish UVS opsin, we have shown that a Phe-86-->Tyr substitution is sufficient by itself to shift the lambda(max) of the goldfish pigment from a wild-type value of 360 nm to around 420 nm, and the reverse substitution of Tyr-86-Phe into bovine VS opsin produces a similar shift in the opposite direction. The substitution of this single amino acid is sufficient to account therefore for the evolution of bovine and porcine VS pigments. The replacement of Phe with polar Tyr at site 86 is consistent with the stabilization of Schiff-base protonation in VS pigments and the absence of protonation in UVS pigments. PMID:12099889

  17. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna.

    PubMed

    Nakamura, Yoji; Mori, Kazuki; Saitoh, Kenji; Oshima, Kenshiro; Mekuchi, Miyuki; Sugaya, Takuma; Shigenobu, Yuya; Ojima, Nobuhiko; Muta, Shigeru; Fujiwara, Atushi; Yasuike, Motoshige; Oohara, Ichiro; Hirakawa, Hideki; Chowdhury, Vishwajit Sur; Kobayashi, Takanori; Nakajima, Kazuhiro; Sano, Motohiko; Wada, Tokio; Tashiro, Kosuke; Ikeo, Kazuho; Hattori, Masahira; Kuhara, Satoru; Gojobori, Takashi; Inouye, Kiyoshi

    2013-07-01

    Tunas are migratory fishes in offshore habitats and top predators with unique features. Despite their ecological importance and high market values, the open-ocean lifestyle of tuna, in which effective sensing systems such as color vision are required for capture of prey, has been poorly understood. To elucidate the genetic and evolutionary basis of optic adaptation of tuna, we determined the genome sequence of the Pacific bluefin tuna (Thunnus orientalis), using next-generation sequencing technology. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified five common fish visual pigment genes: red-sensitive (middle/long-wavelength sensitive; M/LWS), UV-sensitive (short-wavelength sensitive 1; SWS1), blue-sensitive (SWS2), rhodopsin (RH1), and green-sensitive (RH2) opsin genes. Sequence comparison revealed that tuna's RH1 gene has an amino acid substitution that causes a short-wave shift in the absorption spectrum (i.e., blue shift). Pacific bluefin tuna has at least five RH2 paralogs, the most among studied fishes; four of the proteins encoded may be tuned to blue light at the amino acid level. Moreover, phylogenetic analysis suggested that gene conversions have occurred in each of the SWS2 and RH2 loci in a short period. Thus, Pacific bluefin tuna has undergone evolutionary changes in three genes (RH1, RH2, and SWS2), which may have contributed to detecting blue-green contrast and measuring the distance to prey in the blue-pelagic ocean. These findings provide basic information on behavioral traits of predatory fish and, thereby, could help to improve the technology to culture such fish in captivity for resource management. PMID:23781100

  18. The Living with a Star Program Mission Plan

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Day, John (Technical Monitor)

    2001-01-01

    LWS (Living With a Star) is research science focused to facilitate enabling science for spacecraft design (specifically environment specification models) and spacecraft operations (specifically Space Weather research). The following topics are discussed: LWS goals and program, program architecture, the solar dynamic observer, the geospace plan, the space environment testbed concept, and the heliosphere missions.

  19. Design of Large Wood Structures in Sand-Bed Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large woody structures (LWS) are potentially an efficient and cost effective way to protect streambanks from erosion while enhancing aquatic habitat. While LWS have been successful in some cases in the Pacific Northwest when ballasted with rock, the failure rate in sand-bed streams typical of the mi...

  20. Photochemical Nature of Parietopsin

    PubMed Central

    Sakai, Kazumi; Imamoto, Yasushi; Su, Chih-Ying; Tsukamoto, Hisao; Yamashita, Takahiro; Terakita, Akihisa; Yau, King-Wai; Shichida, Yoshinori

    2012-01-01

    Parietopsin is a non-visual green-light-sensitive opsin closely related to vertebrate visual opsins, and was originally identified in lizard parietal-eye photoreceptor cells. To obtain insight into the functional diversity of opsins, we investigated by UV-visible absorption spectroscopy the molecular properties of parietopsin and its mutants exogenously expressed in cultured cells, and compared to vertebrate and invertebrate visual opsins. Our mutational analysis revealed that the counterion in parietopsin is the glutamic acid (Glu) in the second extracellular loop, corresponding to Glu181 in bovine rhodopsin. This arrangement is characteristic of invertebrate rather than vertebrate visual opsins. The photosensitivity and the molar extinction coefficient of parietopsin were also lower than those of vertebrate visual opsins, features likewise characteristic of invertebrate visual opsins. On the other hand, irradiation of parietopsin yielded meta-I, meta-II, and meta-III intermediates after batho- and lumi-intermediates, similar to vertebrate visual opsins. The pH-dependent equilibrium profile between meta-I and meta-II intermediates was, however, similar to that between acid and alkaline metarhodopsins in invertebrate visual opsins. Thus, parietopsin behaves as an “evolutionary intermediate” between invertebrate and vertebrate visual opsins. PMID:22303823

  1. Dimerization of visual pigments in vivo.

    PubMed

    Zhang, Tao; Cao, Li-Hui; Kumar, Sandeep; Enemchukwu, Nduka O; Zhang, Ning; Lambert, Alyssia; Zhao, Xuchen; Jones, Alex; Wang, Shixian; Dennis, Emily M; Fnu, Amrita; Ham, Sam; Rainier, Jon; Yau, King-Wai; Fu, Yingbin

    2016-08-01

    It is a deeply engrained notion that the visual pigment rhodopsin signals light as a monomer, even though many G protein-coupled receptors are now known to exist and function as dimers. Nonetheless, recent studies (albeit all in vitro) have suggested that rhodopsin and its chromophore-free apoprotein, R-opsin, may indeed exist as a homodimer in rod disk membranes. Given the overwhelmingly strong historical context, the crucial remaining question, therefore, is whether pigment dimerization truly exists naturally and what function this dimerization may serve. We addressed this question in vivo with a unique mouse line (S-opsin(+)Lrat(-/-)) expressing, transgenically, short-wavelength-sensitive cone opsin (S-opsin) in rods and also lacking chromophore to exploit the fact that cone opsins, but not R-opsin, require chromophore for proper folding and trafficking to the photoreceptor's outer segment. In R-opsin's absence, S-opsin in these transgenic rods without chromophore was mislocalized; in R-opsin's presence, however, S-opsin trafficked normally to the rod outer segment and produced functional S-pigment upon subsequent chromophore restoration. Introducing a competing R-opsin transmembrane helix H1 or helix H8 peptide, but not helix H4 or helix H5 peptide, into these transgenic rods caused mislocalization of R-opsin and S-opsin to the perinuclear endoplasmic reticulum. Importantly, a similar peptide-competition effect was observed even in WT rods. Our work provides convincing evidence for visual pigment dimerization in vivo under physiological conditions and for its role in pigment maturation and targeting. Our work raises new questions regarding a potential mechanistic role of dimerization in rhodopsin signaling. PMID:27462111

  2. Immunolocalization of Arthropsin in the Onychophoran Euperipatoides rowelli (Peripatopsidae)

    PubMed Central

    Schumann, Isabell; Hering, Lars; Mayer, Georg

    2016-01-01

    Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora – Euperipatoides rowelli – an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both. PMID:27540356

  3. A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin.

    PubMed Central

    Melia, T J; Cowan, C W; Angleson, J K; Wensel, T G

    1997-01-01

    Activation of the photoreceptor G protein transducin (Gt) by opsin, the ligand-free form of rhodopsin, was measured using rod outer segment membranes with densities of opsin and Gt similar to those found in rod cells. When GTPgammaS was used as the activating nucleotide, opsin catalyzed transducin activation with an exponential time course with a rate constant k(act) on the order of 2 x 10(-3)s(-1). Comparison under these conditions to activation by flash-generated metarhodopsin II (MII) revealed that opsin- and R*-catalyzed activation showed similar kinetics when MII was present at a surface density approximately 10(-6) lower than that of opsin. Thus, in contrast to some previous reports, we find that the catalytic potency of opsin is only approximately 10(-6) that of MII. In the presence of residual retinaldehyde-derived species present in membranes treated with hydroxylamine after bleaching, the apparent k(act) observed was much higher than that for opsin, suggesting a possible explanation for previous reports of more efficient activation by opsin. These results are important for considering the possible role of opsin in the diverse phenomena in which it has been suggested to play a key role, such as bleaching desensitization and retinal degeneration induced by continuous light or vitamin A deprivation. PMID:9414230

  4. Immunolocalization of Arthropsin in the Onychophoran Euperipatoides rowelli (Peripatopsidae).

    PubMed

    Schumann, Isabell; Hering, Lars; Mayer, Georg

    2016-01-01

    Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora - Euperipatoides rowelli - an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both. PMID:27540356

  5. [C II] 158-micrometer Observations of a Sample of Late-type Galaxies from the Virgo Cluster

    NASA Technical Reports Server (NTRS)

    Leech, K. J.; Volk, H. J.; Heinrichsen, I.; Hippelein, H.; Metcalfe, L.; Pierini, D.; Popescu, C. C.; Tuffs, R. J.; Xu, C.

    1998-01-01

    We have observed 19 Virgo cluster spiral galaxies with the Long Wavelength Spectrometer (LWS) onboard ESAs Infrared Space Observatory (ISO) obtaining spectral around the (C II) 157.741-micrometer fine structure line.

  6. C II 158 ??bservations of a Sample of Late-type Galaxies from the Virgo Cluster

    NASA Technical Reports Server (NTRS)

    Leech, K.; Volk, H.; Heinrichsen, I.; Hippelein, H.; Metcalfe, L.; Pierini, D.; Popescu, C.; Tuffs, R.; Xu, C.

    1999-01-01

    We have observed 19 Virgo cluster spiral galaxies with the Long Wavelength Spectrometer (LWS) onboard ESAs Infrared Space Observatory (ISO) obtaining spectra around the [CII] 157.741 ??ine structure line.

  7. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2003-01-01

    NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  8. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael

    2004-01-01

    Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  9. Bat Eyes Have Ultraviolet-Sensitive Cone Photoreceptors

    PubMed Central

    Müller, Brigitte; Glösmann, Martin; Peichl, Leo; Knop, Gabriel C.; Hagemann, Cornelia; Ammermüller, Josef

    2009-01-01

    Mammalian retinae have rod photoreceptors for night vision and cone photoreceptors for daylight and colour vision. For colour discrimination, most mammals possess two cone populations with two visual pigments (opsins) that have absorption maxima at short wavelengths (blue or ultraviolet light) and long wavelengths (green or red light). Microchiropteran bats, which use echolocation to navigate and forage in complete darkness, have long been considered to have pure rod retinae. Here we use opsin immunohistochemistry to show that two phyllostomid microbats, Glossophaga soricina and Carollia perspicillata, possess a significant population of cones and express two cone opsins, a shortwave-sensitive (S) opsin and a longwave-sensitive (L) opsin. A substantial population of cones expresses S opsin exclusively, whereas the other cones mostly coexpress L and S opsin. S opsin gene analysis suggests ultraviolet (UV, wavelengths <400 nm) sensitivity, and corneal electroretinogram recordings reveal an elevated sensitivity to UV light which is mediated by an S cone visual pigment. Therefore bats have retained the ancestral UV tuning of the S cone pigment. We conclude that bats have the prerequisite for daylight vision, dichromatic colour vision, and UV vision. For bats, the UV-sensitive cones may be advantageous for visual orientation at twilight, predator avoidance, and detection of UV-reflecting flowers for those that feed on nectar. PMID:19636375

  10. Anorexia is Associated with Stress-Dependent Orexigenic Responses to Exogenous Neuropeptide Y.

    PubMed

    Yi, J; Delp, M S; Gilbert, E R; Siegel, P B; Cline, M A

    2016-05-01

    Chicken lines that have been divergently selected for either low (LWS) or high (HWS) body weight at 56 days of age for more than 57 generations have different feeding behaviours in response to a range of i.c.v. injected neurotransmitters. The LWS have different severities of anorexia, whereas the HWS become obese. Previously, we demonstrated that LWS chicks did not respond, whereas HWS chicks increased food intake, after central injection of neuropeptide Y (NPY). The present study aimed to determine the molecular mechanisms underlying the loss of orexigenic function of NPY in LWS. Chicks were divided into four groups: stressed LWS and HWS on day of hatch, and control LWS and HWS. The stressor was a combination of food deprivation and cold exposure. On day 5 post-hatch, each chick received an i.c.v. injection of vehicle or 0.2 nmol of NPY. Only the LWS stressed group did not increase food intake in response to i.c.v. NPY. Hypothalamic mRNA abundance of appetite-associated factors was measured at 1 h post-injection. Interactions of genetic line, stress and NPY treatment were observed for the mRNA abundance of agouti-related peptide (AgRP) and synaptotagmin 1 (SYT1). Intracerebroventricular injection of NPY decreased and increased AgRP and SYT1 mRNA, respectively, in the stressed LWS and increased AgRP mRNA in stressed HWS chicks. Stress was associated with increased NPY, orexin receptor 2, corticotrophin-releasing factor receptor 1, melanocortin receptor 3 (MC3R) and growth hormone secretagogue receptor expression. In conclusion, the loss of responsiveness to exogenous NPY in stressed LWS chicks may be a result of the decreased and increased hypothalamic expression of AgRP and MC3R, respectively. This may induce an intensification of anorexigenic melanocortin signalling pathways in LWS chicks that block the orexigenic effect of exogenous NPY. These results provide insights onto the anorexic condition across species, and especially for forms of inducible anorexia

  11. Selection for divergent body size alters rates of embryonic skeletal muscle formation and muscle gene expression patterns.

    PubMed

    Lu, Yue; Bradley, Jennifer S; Siegel, Paul B; Yang, Ning; Johnson, Sally E

    2015-12-01

    The impact of divergent selection for body size on embryogenesis is poorly understood. The objective of this experiment was to document skeletal muscle development during embryogenesis in two lines of chickens that display divergent growth as adults. Results reveal that after 54 generations of opposing selection from a common founder population, the embryos from the low weight select (LWS) line develop more rapidly during early embryogenesis than those from the high weight select (HWS) line. Muscle formation during the late embryonic period is more rapid and extensive in the HWS embryo than in the LWS contemporary. Isolated muscle progenitors from embryonic day 10 HWS embryos proliferated more rapidly, forming fibers sooner with a larger size than the LWS cells. The limited myogenic capacity of the LWS progenitor cells is not attributed to altered patterns of expression of Pax7, Pax3 or the myogenic regulatory factor genes. Members of the fibroblast growth factor family are potent mitogens and inhibitors of myoblast differentiation. Transcript abundance of FGF2 and FGF4 was measured in cultures of HWS and LWS progenitors as a function of time. The pattern of expression of FGF4 was similar between HWS and LWS with a large increase between days 1 and 3 followed by a reduction at day 5 of culture. Expression of FGF2 in LWS muscle cells did not change while a significant reduction in FGF2 expression was observed by day 5 in the HWS. Our results indicate that divergent selection for postnatal growth has altered embryonic development. PMID:26660844

  12. Characterization of retinoic acid-induced neurobehavioral effects in developing zebrafish.

    PubMed

    Wang, Yujiang; Chen, Jiangfei; Du, Changchun; Li, Chunqi; Huang, Changjiang; Dong, Qiaoxiang

    2014-02-01

    Retinoic signaling plays an important role in cell proliferation and differentiation. Disruption of retinoic signaling via excessive or deficient retinoic acid can cause teratogenic effects on developing embryos. Similar to retinoic acid, many xenobiotic environmental pollutants have been found to disrupt retinoic signaling through binding and eliciting agonistic activity on retinoic acid receptors. Currently, studies of retinoic acid or retinoic acid-like compounds in aquatic organisms have mainly focused on teratogenicity and few studies have explored their neurobehavioral toxicity. In the present study, the authors used retinoic acid as an example to explore the neurobehavioral toxicity associated with developmental exposure of retinoic acid-like compounds in zebrafish. The findings confirmed retinoic acid's teratogenic effects such as bent spine, malformed tail, and pericardial edema in developing zebrafish with a median effective concentration of 2.47 nM. Retinoic acid-induced cell apoptosis at 24 h postfertilization was consistently found in the eye and tail regions of embryos. Spontaneous movement as characterized by tail bend frequency was significantly increased in zebrafish embryos following exposure to 2 nM and 8 nM retinoic acid. Relatively low-dose retinoic acid exposure of 2 nM led to fast locomotion behavior in the dark period and hyperactivity during light-dark photoperiod stimulation. The 2-nM retinoic acid exposure also led to alterations of neurobehavior- and optic nerve-related genes, with the transforming growth factor-β signal transduction inhibitor noggin (nog) and the spinal cord marker homeobox c3a (hox) being underexpressed and the retinal G protein-coupled receptor a (rgr), the photoreceptor cell marker rhodopsin (rho), and the short wave-sensitive cone pigment opsin 1 (opn1sw1) being overexpressed. Increased expression of opn1sw1 and rho was confirmed by whole-mount in situ hybridization. Whether the misexpression of these genes leads

  13. Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD

    PubMed Central

    Seko, Yuko; Azuma, Noriyuki; Kaneda, Makoto; Nakatani, Kei; Miyagawa, Yoshitaka; Noshiro, Yuuki; Kurokawa, Reiko; Okano, Hideyuki; Umezawa, Akihiro

    2012-01-01

    Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases. PMID:22558175

  14. Strategic Science to Address Current and Future Space Weather Needs

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Schwadron, N.; Antiochos, S. K.; Bhattacharjee, A.; Bisi, M. M.; Gopalswamy, N.; Kamalabadi, F.; Pulkkinen, A. A.; Tobiska, W. K.; Weimer, D. R.; Withers, P.

    2014-12-01

    NASA's Living With a Star (LWS) program has contributed a wealth of scientific knowledge that is relevant to space weather and user needs. A targeted approach to science questions has resulted in leveraging new scientific knowledge to improve not only our understanding of the Heliophysics domain, but also to develop predictive capabilities in key areas of LWS science. This fascinating interplay between science and applications promises to benefit both domains. Scientists providing feedback to the LWS program are now discussing an evolution of the targeted approach that explicitly considers how new science improves, or enables, predictive capability directly. Long-term program goals are termed "Strategic Science Areas" (SSAs) that address predictive capabilities in six specific areas: geomagnetically induced currents, satellite drag, solar energetic particles, ionospheric total electron content, radio frequency scintillation induced by the ionosphere, and the radiation environment. SSAs are organized around user needs and the impacts of space weather on society. Scientists involved in the LWS program identify targeted areas of research that reference (or bear upon) societal needs. Such targeted science leads to new discoveries and is one of the valid forms of exploration. In this talk we describe the benefits of targeted science, and how addressing societal impacts in an appropriate way maintains the strong science focus of LWS, while also leading to its broader impacts.

  15. Living With a Star, the Geospace Mission Definition Team and Aeronomy

    NASA Technical Reports Server (NTRS)

    Kintner, Paul M., Jr.; Meier, R. R.; Spann, Jim; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To gain an understanding of the Sun-Earth system, including how and why the sun varies, how the earth responds, and the impacts on humanity, research is needed that has a integrated and systematic approach. The Living With a Star (LWS) program represents an important element in this regard both to continued progress in space science in general and in Aeronomy in particular. A fundamental question in Aeronomy is how the variable sun affects the ionosphere, thermosphere, and mesosphere. The LWS program focuses on those areas of scientific understanding that promote progress in areas that have human impact and can be investigated with space borne instruments. The Geospace Mission Definition Team is charged with investigating the science priorities identified by the LWS Science Architecture Team and developing an approach to making the necessary measurements in concert with other missions and programs. An important aspect of this approach is that all LWS measurement programs are operating simultaneously for several years. We will review some of the areas that the LWS SAT have emphasized in Aeronomy, including understanding the effects of solar variability on ionospheric density and irregularities, the effects of solar variability on the mass density of the atmosphere at LEO altitudes, and the effects of solar variability on near-surface temperatures and on ozone distribution.

  16. Role of secondary long wavelength structures in the saturation of electron temperature gradient driven turbulence

    SciTech Connect

    Li Jiquan; Kishimoto, Y.

    2008-11-15

    The dynamics of secondary long wavelength structures (LWSs) in electron temperature gradient (ETG) driven turbulence are investigated by performing gyrofluid simulations and modeling analyses in a slab geometry with an emphasis of the underlying nonlinear interaction processes. It is shown that the back-reaction of the secondary LWS on the ambient fluctuations essentially contributes to saturating ETG instability and limiting the electron transport. The LWS is nonlinearly generated mainly through the beating of the most unstable ETG modes, even a weak modulation instability. The back-reaction is identified as the enhanced stabilization of the ETG modes due to the streamer-type feature of the LWS, which dominantly produces a local poloidal mode coupling among unstable and highly damped spectral components to form a global mode, besides the suppression effect of the LWS due to the radial shearing decorrelation and/or the radial mode coupling. Finally, the correspondence between the LWS in the slab model and the quasimode observed in toroidal ETG simulation [Z. Lin et al., Phys. Plasmas 12, 056125 (2005)] and the importance of the nonlinear mode coupling in the multiscale turbulence interaction are discussed.

  17. Total Land Water Storage Change over 2003 - 2013 Estimated from a Global Mass Budget Approach

    NASA Technical Reports Server (NTRS)

    Dieng, H. B.; Champollion, N.; Cazenave, A.; Wada, Y.; Schrama, E.; Meyssignac, B.

    2015-01-01

    We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS (the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to +0.30 +/- 0.18 mm/yr in sea level equivalent. This corresponds to a net decrease of -108 +/- 64 cu km/yr in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.

  18. Total land water storage change over 2003-2013 estimated from a global mass budget approach

    NASA Astrophysics Data System (ADS)

    Dieng, H. B.; Champollion, N.; Cazenave, A.; Wada, Y.; Schrama, E.; Meyssignac, B.

    2015-12-01

    We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS (the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to +0.30 ± 0.18 mm yr-1 in sea level equivalent. This corresponds to a net decrease of -108 ± 64 km3 yr-1 in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.

  19. Total land water storage change over 2003-2013 estimated from a global mass budget approach

    NASA Astrophysics Data System (ADS)

    Dieng, Habib B.; Champollion, Nicolas; Cazenave, Anny; Wada, Yoshihide; Schrama, Ernst; Meyssignac, Benoit

    2016-04-01

    We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS(the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to+0.30 ± 0.18mmyr‑1 in sea level equivalent. This corresponds to a net decrease of ‑108 ± 64 km3 yr‑1 in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.

  20. Breaking the Covalent Bond—A Pigment Property that Contributes to Desensitization in Cones

    PubMed Central

    Kefalov, Vladimir J.; Estevez, Maureen E.; Kono, Massahiro; Goletz, Patrice W.; Crouch, Rosalie K.; Cornwall, M. Carter; Yau, King-Wai

    2010-01-01

    Summary Retinal rod and cone pigments consist of an apoprotein, opsin, covalently linked to a chromophore, 11-cis retinal. Here we demonstrate that the formation of the covalent bond between opsin and 11-cis retinal is reversible in darkness in amphibian red cones, but essentially irreversible in red rods. This dissociation, apparently a general property of cone pigments, results in a surprisingly large amount of free opsin—about 10% of total opsin—in dark-adapted red cones. We attribute this significant level of free opsin to the low concentration of intracellular free 11-cis retinal, estimated to be only a tiny fraction (~0.1 %) of the pigment content in red cones. With its constitutive transducin-stimulating activity, the free cone opsin produces an ~2-fold desensitization in red cones, equivalent to that produced by a steady light causing 500 photoisomerizations s−1. Cone pigment dissociation therefore contributes to the sensitivity difference between rods and cones. PMID:15953417

  1. The photochemical determinants of color vision

    PubMed Central

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore. PMID:24323922

  2. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel.

    PubMed

    Archer, S; Hope, A; Partridge, J C

    1995-12-22

    When the European eel matures sexually and migrates back to deep sea breeding grounds the visual pigments in its rod photoreceptors change from being maximally sensitive to green light to being maximally sensitive to blue light. In part, this change in sensitivity is due to a change in the opsin component of the visual pigment molecule. We used hormone injection to induce these developmental changes in a group of eels and from these animals an opsin coding region was cloned and sequenced using cDNA made from retinal mRNA. From the retinae of hormone-injected eels and those not injected with hormones, distinct opsin mRNAs were isolated. These mRNAs encode two rod opsin proteins that are very similar but have significant amino acid substitutions in key positions that are likely to be involved in spectral tuning of the eel green and blue sensitive rod visual pigment molecules. PMID:8587887

  3. Seismic properties of subducting oceanic crust: Constraints from natural lawsonite-bearing blueschist and eclogite in Sivrihisar Massif, Turkey

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Jung, Haemyeong

    2016-01-01

    Investigating the seismic properties of natural lawsonite (Lws)-bearing blueschist and eclogite is particularly important for constraining the seismic interpretation of subducting oceanic crust based on seismological observations. To achieve this end, we analyzed in detail the mineral fabrics and seismic properties of foliated Lws-blueschist and Lws-eclogites from Sivrihisar Massif in Turkey. In both blueschists and eclogites, the lawsonite fabric is characterized by three different patterns: [0 0 1] axes aligning sub-normal to foliation, and [0 1 0] axes aligning sub-parallel to lineation (normal type); [0 0 1] axes aligning sub-parallel to lineation, and [1 0 0] axes aligning sub-normal to foliation with a girdle sub-normal to lineation (abnormal type); and [0 0 1] axes aligning both sub-normal to foliation and sub-parallel to lineation, [0 1 0] axes aligning sub-parallel to lineation, and [1 0 0] axes aligning sub-normal to foliation (transitional pattern). In contrast, glaucophane and omphacite mostly present consistent axial fabrics with the [0 0 1] axes aligning to lineation. These mineral fabrics produce whole-rock seismic anisotropies with similar patterns. However, the variations in seismic anisotropies are mainly controlled by the rock type, to a lesser extent are determined by the lawsonite fabric type, and to only a small extent are affected by mineral fabric strength. Despite the constructive abnormal-type lawsonite fabric on whole-rock seismic anisotropies, because of their weaker mineral fabric strength (or deformation degree), the abnormal-type Lws-blueschist still exhibit comparatively lower seismic anisotropies than those normal-type Lws-blueschist from other localities. Based on the calculated seismic anisotropies and velocities, we estimated that when oceanic crust transforms from Lws-blueschist to Lws-eclogite with increasing subduction depth, (1) P-wave and max. S-wave polarization anisotropies reduce about 70% and 40%, respectively; and (2

  4. NASA space shuttle lightweight seat

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

    1996-01-01

    The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

  5. The Living With a Star Program Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  6. Living with a Star Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet

    2003-01-01

    Summary of activities: (1) FYO1 NRA - Model development and data mining. (2) FY03 NRA - Flight investigations. (3) SET carrier development. (4) Study for accommodation of SET carrier to support advanced detectors. (5) Collaboration with other programs: LWS TR&T to maximize synergy between TR&T space environment research and SET space environment effects research. LWS Data System to optimize dissemination of SET data. NASA Electronic Parts and Packaging Program to leverage ground testing of technologies. Defense Threat Reduction Agency to leverage ground testing and common interests in advanced detectors. and Air Force Research Laboratory to leverage flight opportunities. (6) Education and Public Outreach.

  7. Activation of Transducin by Bistable Pigment Parapinopsin in the Pineal Organ of Lower Vertebrates

    PubMed Central

    Kawano-Yamashita, Emi; Koyanagi, Mitsumasa; Wada, Seiji; Tsukamoto, Hisao; Nagata, Takashi; Terakita, Akihisa

    2015-01-01

    Pineal organs of lower vertebrates contain several kinds of photosensitive molecules, opsins that are suggested to be involved in different light-regulated physiological functions. We previously reported that parapinopsin is an ultraviolet (UV)-sensitive opsin that underlies hyperpolarization of the pineal photoreceptor cells of lower vertebrates to achieve pineal wavelength discrimination. Although, parapinopsin is phylogenetically close to vertebrate visual opsins, it exhibits a property similar to invertebrate visual opsins and melanopsin: the photoproduct of parapinopsin is stable and reverts to the original dark states, demonstrating the nature of bistable pigments. Therefore, it is of evolutionary interest to identify a phototransduction cascade driven by parapinopsin and to compare it with that in vertebrate visual cells. Here, we showed that parapinopsin is coupled to vertebrate visual G protein transducin in the pufferfish, zebrafish, and lamprey pineal organs. Biochemical analyses demonstrated that parapinopsins activated transducin in vitro in a light-dependent manner, similar to vertebrate visual opsins. Interestingly, transducin activation by parapinopsin was provoked and terminated by UV- and subsequent orange-lights irradiations, respectively, due to the bistable nature of parapinopsin, which could contribute to a wavelength-dependent control of a second messenger level in the cell as a unique optogenetic tool. Immunohistochemical examination revealed that parapinopsin was colocalized with Gt2 in the teleost, which possesses rod and cone types of transducin, Gt1, and Gt2. On the other hand, in the lamprey, which does not possess the Gt2 gene, in situ hybridization suggested that parapinopsin-expressing photoreceptor cells contained Gt1 type transducin GtS, indicating that lamprey parapinopsin may use GtS in place of Gt2. Because it is widely accepted that vertebrate visual opsins having a bleaching nature have evolved from non-bleaching opsins

  8. Encephalic photoreception and phototactic response in the troglobiont Somalian blind cavefish Phreatichthys andruzzii

    PubMed Central

    Tarttelin, Emma E.; Frigato, Elena; Bellingham, James; Di Rosa, Viviana; Berti, Roberto; Foulkes, Nicholas S.; Lucas, Robert J.; Bertolucci, Cristiano

    2012-01-01

    SUMMARY Many physiological and behavioural responses to changes in environmental lighting conditions are mediated by extraocular photoreceptors. Here we investigate encephalic photoreception in Phreatichthys andruzzii, a typical cave-dwelling fish showing an extreme phenotype with complete anophthalmy and a reduction in size of associated brain structures. We firstly identified two P. andruzzii photopigments, orthologues of rod opsin and exo-rod opsin. In vitro, both opsins serve as light-absorbing photopigments with λmax around 500 nm when reconstituted with an A1 chromophore. When corrected for the summed absorption from the skin and skull, the spectral sensitivity profiles shifted to longer wavelengths (rod opsin: 521 nm; exo-rod opsin: 520 nm). We next explored the involvement of both opsins in the negative phototaxis reported for this species. A comparison of the spectral sensitivity of the photophobic response with the putative A2 absorbance spectra corrected for skin/skull absorbance indicates that the A2 versions of either or both of these pigments could explain the observed behavioural spectral sensitivity. PMID:22837464

  9. An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function.

    PubMed

    Davies, Wayne I L; Tamai, T Katherine; Zheng, Lei; Fu, Josephine K; Rihel, Jason; Foster, Russell G; Whitmore, David; Hankins, Mark W

    2015-11-01

    Light affects animal physiology and behavior more than simply through classical visual, image-forming pathways. Nonvisual photoreception regulates numerous biological systems, including circadian entrainment, DNA repair, metabolism, and behavior. However, for the majority of these processes, the photoreceptive molecules involved are unknown. Given the diversity of photophysiological responses, the question arises whether a single photopigment or a greater diversity of proteins within the opsin superfamily detect photic stimuli. Here, a functional genomics approach identified the full complement of photopigments in a highly light-sensitive model vertebrate, the zebrafish (Danio rerio), and characterized their tissue distribution, expression levels, and biochemical properties. The results presented here reveal the presence of 42 distinct genes encoding 10 classical visual photopigments and 32 nonvisual opsins, including 10 novel opsin genes comprising four new pigment classes. Consistent with the presence of light-entrainable circadian oscillators in zebrafish, all adult tissues examined expressed two or more opsins, including several novel opsins. Spectral and electrophysiological analyses of the new opsins demonstrate that they form functional photopigments, each with unique chromophore-binding and wavelength specificities. This study has revealed a remarkable number and diversity of photopigments in zebrafish, the largest number so far discovered for any vertebrate. Found in amphibians, reptiles, birds, and all three mammalian clades, most of these genes are not restricted to teleosts. Therefore, nonvisual light detection is far more complex than initially appreciated, which has significant biological implications in understanding photoreception in vertebrates. PMID:26450929

  10. A butterfly eye's view of birds.

    PubMed

    Frentiu, Francesca D; Briscoe, Adriana D

    2008-11-01

    The striking color patterns of butterflies and birds have long interested biologists. But how these animals see color is less well understood. Opsins are the protein components of the visual pigments of the eye. Color vision has evolved in butterflies through opsin gene duplications, through positive selection at individual opsin loci, and by the use of filtering pigments. By contrast, birds have retained the same opsin complement present in early-jawed vertebrates, and their visual system has diversified primarily through tuning of the short-wavelength-sensitive photoreceptors, rather than by opsin duplication or the use of filtering elements. Butterflies and birds have evolved photoreceptors that might use some of the same amino acid sites for generating similar spectral phenotypes across approximately 540 million years of evolution, when rhabdomeric and ciliary-type opsins radiated during the early Cambrian period. Considering the similarities between the two taxa, it is surprising that the eyes of birds are not more diverse. Additional taxonomic sampling of birds may help clarify this mystery. PMID:18937365

  11. Encephalic photoreception and phototactic response in the troglobiont Somalian blind cavefish Phreatichthys andruzzii.

    PubMed

    Tarttelin, Emma E; Frigato, Elena; Bellingham, James; Di Rosa, Viviana; Berti, Roberto; Foulkes, Nicholas S; Lucas, Robert J; Bertolucci, Cristiano

    2012-08-15

    Many physiological and behavioural responses to changes in environmental lighting conditions are mediated by extraocular photoreceptors. Here we investigate encephalic photoreception in Phreatichthys andruzzii, a typical cave-dwelling fish showing an extreme phenotype with complete anophthalmy and a reduction in size of associated brain structures. We firstly identified two P. andruzzii photopigments, orthologues of rod opsin and exo-rod opsin. In vitro, both opsins serve as light-absorbing photopigments with λ(max) around 500 nm when reconstituted with an A(1) chromophore. When corrected for the summed absorption from the skin and skull, the spectral sensitivity profiles shifted to longer wavelengths (rod opsin: 521 nm; exo-rod opsin: 520 nm). We next explored the involvement of both opsins in the negative phototaxis reported for this species. A comparison of the spectral sensitivity of the photophobic response with the putative A(2) absorbance spectra corrected for skin/skull absorbance indicates that the A(2) versions of either or both of these pigments could explain the observed behavioural spectral sensitivity. PMID:22837464

  12. An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function

    PubMed Central

    Davies, Wayne I.L.; Tamai, T. Katherine; Zheng, Lei; Fu, Josephine K.; Rihel, Jason; Foster, Russell G.; Whitmore, David; Hankins, Mark W.

    2015-01-01

    Light affects animal physiology and behavior more than simply through classical visual, image-forming pathways. Nonvisual photoreception regulates numerous biological systems, including circadian entrainment, DNA repair, metabolism, and behavior. However, for the majority of these processes, the photoreceptive molecules involved are unknown. Given the diversity of photophysiological responses, the question arises whether a single photopigment or a greater diversity of proteins within the opsin superfamily detect photic stimuli. Here, a functional genomics approach identified the full complement of photopigments in a highly light-sensitive model vertebrate, the zebrafish (Danio rerio), and characterized their tissue distribution, expression levels, and biochemical properties. The results presented here reveal the presence of 42 distinct genes encoding 10 classical visual photopigments and 32 nonvisual opsins, including 10 novel opsin genes comprising four new pigment classes. Consistent with the presence of light-entrainable circadian oscillators in zebrafish, all adult tissues examined expressed two or more opsins, including several novel opsins. Spectral and electrophysiological analyses of the new opsins demonstrate that they form functional photopigments, each with unique chromophore-binding and wavelength specificities. This study has revealed a remarkable number and diversity of photopigments in zebrafish, the largest number so far discovered for any vertebrate. Found in amphibians, reptiles, birds, and all three mammalian clades, most of these genes are not restricted to teleosts. Therefore, nonvisual light detection is far more complex than initially appreciated, which has significant biological implications in understanding photoreception in vertebrates. PMID:26450929

  13. The contribution of IFSI (Istituto di Fisica dello Spazio Interplanetario) to the ISO project

    NASA Astrophysics Data System (ADS)

    Orfei, R.; Baldetti, P.; Ceccarelli, C.; Cerulli, P.; Lorenzetti, D.

    1990-02-01

    IFSI efforts in the development of the long-wavelength spectrometer (LWS) for the IR Space Observatory (ISO), scheduled for launch in 1993, are briefly reviewed. The LWS operates at 45-200 microns with resolution of about 200 (using a grating alone) or about 10,000 (using a grating with one of two Fabry-Perot etalons). Other LWS parameters include FOV 1.5 arcmin, sensitivity 1 x 10 to the -16th W/sq m, and SNR = 10 for a 10-sec high-resolution observation. Particular attention is given to the LWS data-processing unit (DPU), based on an 80C86 CPU and providing telecommand reception at 80 bps, data telemetry at 32,000 bps, detector sampling once every 0.5 msec, control of gratings and etalons, and continuous self-maintenance. Since the orbit of ISO exposes it to the earth radiation belts for about 2 h/day, the DPU is doubled, and the software is completely relocatable. An overview of the software design and a description of the low-noise dc-dc converter are included.

  14. Numerical analysis of effects of large wood structures on channel morphology and fish habitat suitability in Little Topashaw Creek

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A depth-averaged two dimensional (2D) model has been applied to simulate the effect of large wood structures (LWS) on flow, sediment transport, bed change, and fish habitat suitability in a deeply-incised sharp bend in the Little Topashaw Creek, North Central Mississippi. The hydrodynamic simulation...

  15. Numerical Analysis of Effects of Large Wood Structures on Channel Morphology and Fish Habitat Suitability in a Southern U.S. Sandy Creek

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A depth-averaged two-dimensional model was applied to simulate the effect of large wood structures (LWS) on flow, sediment transport, bed change, and fish habitat in a deeply-incised sharp bend in the Little Topashaw Creek, North Central Mississippi. The hydrodynamic simulation showed that the flow ...

  16. Internal P-T-t Structure of Subduction Complexes — Insights from Lu-Hf Geochronology on Garnet and Lawsonite (Halilbağı, Central Anatolia)

    NASA Astrophysics Data System (ADS)

    Pourteau, A.; Scherer, E. E.; Schmidt, A.; Bast, R.

    2014-12-01

    The subduction complex near Halilbağı (Central Anatolia) is among the best sites to investigate deep-seated tectonic, petrologic, and geochemical processes taking place in subduction zones. The Halilbağı Unit comprises slices of lawsonite- and/or epidote-bearing blueschist and eclogite, as well as meta-chert and marble. The unit is overlain by an ophiolitic slab and underlain by a HP/LT metamorphosed carbonate platform. Previous studies of the Halilbağı Unit suggested tectonic blocks were metamorphosed under diverse peak conditions, but shared a common exhumation P-T path marked by syn-decompression cooling (Davis and Whitney, 2006; Çetinkaplan et al., 2008). To better understand the internal structure and dynamics of this subduction complex, we carried out Lu-Hf geochronology on garnet (grt) and lawsonite (lws) from a variety of HP oceanic rocks, as well as the sub-ophiolitic metamorphic sole. Our results suggest that intra-oceanic subduction started at ~110 Ma (grt-amph isochron from a grt amphibolite). Less than 23 Myr later, the subduction interface was refrigerated enough to allow clockwise P-T loops (~87 Ma peak grt-matrix isochron for a lws+grt-bearing eclogitic blueschist) and syn-decompression cooling (~79 Ma retrograde lws-matrix isochron) of subducted oceanic rocks. We will present further results for several HP metamorphic sub-facies (e.g., epidote (ep) eclogite, lws+ep blueschist, lws blueschist, lws eclogite). Such data may allow unraveling whether the co-occurrence of "warm" (i.e., ep-bearing), and "cold" (i.e., lws-bearing) HP rocks in the same locality results from (a) sampling of distinct levels of the subduction slab, (b) thermal maturation of the juvenile subduction zone, or (c) inaccurate P-T estimates. Novel natural constraints are thus expected on the dynamics of the Halilbağı Unit and of subduction complexes in general. Çetinkaplan M., Candan O., Oberhänsli R. and Bousquet R., 2008. Pressure-Temperature Evolution of Lawsonite

  17. A Cluster Randomized Trial to Evaluate a Health Education Programme “Living with Sun at School”

    PubMed Central

    Sancho-Garnier, Hélène; Pereira, Bruno; Césarini, Pierre

    2012-01-01

    Over-exposure to sunlight increases the risk of skin cancers, particularly when exposure occurs during childhood. School teachers can play an active role in providing an education programme that can help prevent this. “Living with the Sun,” (LWS) is a sun safety education program for school children based on a handy guide for classroom activities designed to improve children’s knowledge, but moreover to positively modify their sun safety attitudes and behaviours. The goal of our study was to determine the effectiveness of this programme by examining children’s knowledge, attitude and sun exposure behaviours prior to and after the completion of the programme. We carried out a cluster randomised trial in which the classes were randomly assigned to one of two groups; one using the LWS programme and another that didn’t, serving as the control. Data was collected before completion of the programme and an additional three times in the year after completion. The 70 participating classes (1,365 schoolchildren) were distributed throughout France. Statistical analysis confirmed that knowledge of sun risk increased significantly in the LWS classes (p < 0.001). Both groups positively changed their attitudes when considering the best sun protection, but the LWS group proved to consistently be more convinced (p = 0.04). After the summer holidays, differences between the two groups decreased throughout the year but stayed globally significant. We also observed some significant behaviour modification during the holidays. For instance, the LWS group applied sunscreen more frequently than the control group, and were more likely to wear a hat (72% versus 59%) and use a sun umbrella on the beach (75% versus 64%). PMID:22851947

  18. Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula).

    PubMed

    Vlahos, Lisa M; Knott, Ben; Valter, Krisztina; Hemmi, Jan M

    2014-10-15

    Marsupials are believed to be the only non-primate mammals with both trichromatic and dichromatic color vision. The diversity of color vision systems present in marsupials remains mostly unexplored. Marsupials occupy a diverse range of habitats, which may have led to considerable variation in the presence, density, distribution, and spectral sensitivity of retinal photoreceptors. In this study we analyzed the distribution of photoreceptors in the common brushtail possum (Trichosurus vulpecula). Immunohistochemistry in wholemounts revealed three cone subpopulations recognized within two spectrally distinct cone classes. Long-wavelength sensitive (LWS) single cones were the largest cone subgroup (67-86%), and formed a weak horizontal visual streak (peak density 2,106 ± 435/mm2) across the central retina. LWS double cones were strongly concentrated ventrally (569 ± 66/mm2), and created a "negative" visual streak (134 ± 45/mm2) in the central retina. The strong regionalization between LWS cone topographies suggests differing visual functions. Short-wavelength sensitive (SWS) cones were present in much lower densities (3-10%), mostly located ventrally (179 ± 101/mm2). A minority population of cones (0-2.4%) remained unlabeled by both SWS- and LWS-specific antibodies, and may represent another cone population. Microspectrophotometry of LWS cone and rod visual pigments shows peak spectral sensitivities at 544 nm and 500 nm, respectively. Cone to ganglion cell convergences remain low and constant across the retina, thereby maintaining good visual acuity, but poor contrast sensitivity during photopic vision. Given that brushtail possums are so strongly nocturnal, we hypothesize that their acuity is set by the scotopic visual system, and have minimized the number of cones necessary to serve the ganglion cells for photopic vision. PMID:24737644

  19. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides

    PubMed Central

    Ramirez, M. Desmond; Oakley, Todd H.

    2015-01-01

    ABSTRACT Cephalopods are renowned for changing the color and pattern of their skin for both camouflage and communication. Yet, we do not fully understand how cephalopods control the pigmented chromatophore organs in their skin and change their body pattern. Although these changes primarily rely on eyesight, we found that light causes chromatophores to expand in excised pieces of Octopus bimaculoides skin. We call this behavior light-activated chromatophore expansion (or LACE). To uncover how octopus skin senses light, we used antibodies against r-opsin phototransduction proteins to identify sensory neurons that express r-opsin in the skin. We hypothesized that octopus LACE relies on the same r-opsin phototransduction cascade found in octopus eyes. By creating an action spectrum for the latency to LACE, we found that LACE occurred most quickly in response to blue light. We fit our action spectrum data to a standard opsin curve template and estimated the λmax of LACE to be 480 nm. Consistent with our hypothesis, the maximum sensitivity of the light sensors underlying LACE closely matches the known spectral sensitivity of opsin from octopus eyes. LACE in isolated preparations suggests that octopus skin is intrinsically light sensitive and that this dispersed light sense might contribute to their unique and novel patterning abilities. Finally, our data suggest that a common molecular mechanism for light detection in eyes may have been co-opted for light sensing in octopus skin and then used for LACE. PMID:25994633

  20. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides.

    PubMed

    Ramirez, M Desmond; Oakley, Todd H

    2015-05-15

    Cephalopods are renowned for changing the color and pattern of their skin for both camouflage and communication. Yet, we do not fully understand how cephalopods control the pigmented chromatophore organs in their skin and change their body pattern. Although these changes primarily rely on eyesight, we found that light causes chromatophores to expand in excised pieces of Octopus bimaculoides skin. We call this behavior light-activated chromatophore expansion (or LACE). To uncover how octopus skin senses light, we used antibodies against r-opsin phototransduction proteins to identify sensory neurons that express r-opsin in the skin. We hypothesized that octopus LACE relies on the same r-opsin phototransduction cascade found in octopus eyes. By creating an action spectrum for the latency to LACE, we found that LACE occurred most quickly in response to blue light. We fit our action spectrum data to a standard opsin curve template and estimated the λmax of LACE to be 480 nm. Consistent with our hypothesis, the maximum sensitivity of the light sensors underlying LACE closely matches the known spectral sensitivity of opsin from octopus eyes. LACE in isolated preparations suggests that octopus skin is intrinsically light sensitive and that this dispersed light sense might contribute to their unique and novel patterning abilities. Finally, our data suggest that a common molecular mechanism for light detection in eyes may have been co-opted for light sensing in octopus skin and then used for LACE. PMID:25994633

  1. Instream wood in a steep headwater channel: geomorphic significance of large and small wood

    NASA Astrophysics Data System (ADS)

    Galia, Tomáš; Šilhán, Karel; Ruiz-Villanueva, Virginia; Tichavský, Radek

    2016-04-01

    Besides the well-known significance of large wood (LW), also small woody pieces (SW; here defined as pieces with dimensions at least 0.5 m length and 0.05 m diameter), can play an important role in steep narrow headwaters. We inventoried instream wood in the 0.4 km long Mazák headwater channel, Moravskoslezské Beskydy Mts, Czech Republic (2LWs and 199 SWs. In addition, dendrogeomorphic dating of 36 LWs and 17 SWs was performed to obtain residence time of local instream wood and to provide some insights into its mobility. Practically all investigated pieces were European beeches (Fagus sylvatica L.); only two pieces were Norway spruces (Picea abies (L.) Karst.). First results showed an increase in the number of LWs in channel-reaches confined by the steepest adjacent hillslopes (especially at 0.15-0.20 km). Increasing downstream amount of SW most likely reflected transport processes in the stream, and the later deposition of SWs on the lowest channel gradients. Also LWs and SWs in the downstream channel-reaches were more decayed than wood presented in the upper reaches. The orientation of instream wood was connected with its length and stability, and LWs longer than 5 m were usually attached to adjacent hillslopes. Pieces longer than 2 m, which were unattached or were somehow stabilized in the channel bed, had often orientation of 0° or 337°. LWs were mostly unattached in the upstream channel-reaches, while often stabilized by adjacent hillslopes in the middle part. At 0.05-0.10 km, there were also many logs stabilized by

  2. Regulation by light in Fusarium.

    PubMed

    Avalos, Javier; Estrada, Alejandro F

    2010-11-01

    The genus Fusarium stands out as research model for pathogenesis and secondary metabolism. Light stimulates the production of some Fusarium metabolites, such as the carotenoids, and in many species it influences the production of asexual spores and sexual fruiting bodies. As found in other fungi with well-known photoresponses, the Fusarium genomes contain several genes for photoreceptors, among them a set of White Collar (WC) proteins, a cryptochrome, a photolyase, a phytochrome and two presumably photoactive opsins. The mutation of the opsin genes produced no apparent phenotypic alterations, but the loss of the only WC-1 orthologous protein eliminated the photoinduced expression of the photolyase and opsin genes. In contrast to other carotenogenic species, lack of the WC photoreceptor did not impede the light-induced accumulation of carotenoids, but produced alterations in conidiation, animal pathogenicity and nitrogen-regulated secondary metabolism. The regulation and functional role of other Fusarium photoreceptors is currently under investigation. PMID:20460165

  3. Molecular physiology of rhodopsin: Computer simulation

    NASA Astrophysics Data System (ADS)

    Fel'Dman, T. B.; Kholmurodov, Kh. T.; Ostrovsky, M. A.

    2008-03-01

    Computer simulation is used for comparative investigation of the molecular dynamics of rhodopsin containing the chromophore group (11- cis-retinal) and free opsin. Molecular dynamics is traced within a time interval of 3000 ps; 3 × 106 discrete conformational states of rhodopsin and opsin are obtained and analyzed. It is demonstrated that the presence of the chromophore group in the chromophore center of opsin influences considerably the nearest protein environment of 11- cis-retinal both in the region of the β-ionone ring and in the region of the protonated Schiff base bond. Based on simulation results, a possible intramolecular mechanism of keeping rhodopsin as a G-protein-coupled receptor in the inactive state, i.e., the chromophore function as an efficient ligand antagonist, is discussed.

  4. Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight.

    PubMed

    Mata, Nathan L; Radu, Roxana A; Clemmons, Richard C; Travis, Gabriel H

    2002-09-26

    The first step toward light perception is 11-cis to all-trans photoisomerization of the retinaldehyde chromophore in a rod or cone opsin-pigment molecule. Light sensitivity of the opsin pigment is restored through a multistep pathway called the visual cycle, which effects all-trans to 11-cis re-isomerization of the retinoid chromophore. The maximum throughput of the known visual cycle, however, is too slow to explain sustained photosensitivity in bright light. Here, we demonstrate three novel enzymatic activities in cone-dominant ground-squirrel and chicken retinas: an all-trans-retinol isomerase, an 11-cis-retinyl-ester synthase, and an 11-cis-retinol dehydrogenase. Together these activities comprise a novel pathway that regenerates opsin photopigments at a rate 20-fold faster than the known visual cycle. We suggest that this pathway is responsible for sustained daylight vision in vertebrates. PMID:12367507

  5. Isomerization and Oxidation of Vitamin A in Cone-Dominant Retinas: A Novel Pathway for Visual-Pigment Regeneration in Daylight

    PubMed Central

    Mata, Nathan L.; Radu, Roxana A.; Clemmons, Richard S.; Travis, Gabriel H.

    2010-01-01

    Summary The first step toward light perception is 11-cis to all-trans photoisomerization of the retinaldehyde chromophore in a rod or cone opsin-pigment molecule. Light sensitivity of the opsin pigment is restored through a multistep pathway called the visual cycle, which effects all-trans to 11-cis re-isomerization of the retinoid chromophore. The maximum throughput of the known visual cycle, however, is too slow to explain sustained photosensitivity in bright light. Here, we demonstrate three novel enzymatic activities in cone-dominant ground-squirrel and chicken retinas: an all-trans-retinol isomerase, an 11-cis-retinyl-ester synthase, and an 11-cis-retinol dehydrogenase. Together these activities comprise a novel pathway that regenerates opsin photopigments at a rate 20-fold faster than the known visual cycle. We suggest that this pathway is responsible for sustained daylight vision in vertebrates. PMID:12367507

  6. Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells

    PubMed Central

    Wang, Yanbin V.; Weick, Michael; Demb, Jonathan B.

    2011-01-01

    The retina uses two photoreceptor types to encode the wide range of light intensities in the natural environment. Rods mediate vision in dim light, whereas cones mediate vision in bright light. Mouse photoreceptors include only 3% cones, and the majority of these co-express two opsins (S, M), with peak sensitivity to either ultraviolet (360 nm) or green light (508 nm). The M:S opsin ratio varies across the retina but has not been characterized functionally, preventing quantitative study of cone-mediated vision. Furthermore, physiological and behavioral measurements suggested that mouse retina supports relatively slow temporal processing (peak sensitivity, ~2–5 Hz), compared to primates; however, past studies used visible wavelengths that are inefficient at stimulating mouse S opsin. Here, we measured the M:S opsin expression ratio across the mouse retina, as reflected by ganglion cell responses, in vitro, and probed cone-mediated ganglion cell temporal properties using ultraviolet light stimulation and linear systems analysis. From recordings in mice lacking rod function (Gnat1−/−, Rho−/−), we estimate ~70% M-opsin expression in far dorsal retina, dropping to <5% M-opsin expression throughout ventral retina. In mice lacking cone function (Gnat2cpfl3), light-adapted rod-mediated responses peaked at ~5–7 Hz. In wild-type mice, cone-mediated responses peaked at ~10 Hz, with substantial responsiveness up to ~30 Hz. Therefore, despite the small percentage of cones, cone-mediated responses in mouse ganglion cells are fast and robust, similar to those in primates. These measurements enable quantitative analysis of cone-mediated responses at all levels of the visual system. PMID:21613480

  7. The photobleaching sequence of a short-wavelength visual pigment.

    PubMed

    Kusnetzow, A; Dukkipati, A; Babu, K R; Singh, D; Vought, B W; Knox, B E; Birge, R R

    2001-07-01

    The photobleaching pathway of a short-wavelength cone opsin purified in delipidated form (lambda(max) = 425 nm) is reported. The batho intermediate of the violet cone opsin generated at 45 K has an absorption maximum at 450 nm. The batho intermediate thermally decays to the lumi intermediate (lambda(max) = 435 nm) at 200 K. The lumi intermediate decays to the meta I (lambda(max) = 420 nm) and meta II (lambda(max) = 388 nm) intermediates at 258 and 263 K, respectively. The meta II intermediate decays to free retinal and opsin at >270 K. At 45, 75, and 140 K, the photochemical excitation of the violet cone opsin at 425 nm generates the batho intermediate at high concentrations under moderate illumination. The batho intermediate spectra, generated via decomposing the photostationary state spectra at 45 and 140 K, are identical and have properties typical of batho intermediates of other visual pigments. Extended illumination of the violet cone opsin at 75 K, however, generates a red-shifted photostationary state (relative to both the dark and the batho intermediates) that has as absorption maximum at approximately 470 nm, and thermally reverts to form the normal batho intermediate when warmed to 140 K. We conclude that this red-shifted photostationary state is a metastable state, characterized by a higher-energy protein conformation that allows relaxation of the all-trans chromophore into a more planar conformation. FTIR spectroscopy of violet cone opsin indicates conclusively that the chromophore is protonated. A similar transformation of the rhodopsin binding site generates a model for the VCOP binding site that predicts roughly 75% of the observed blue shift of the violet cone pigment relative to rhodopsin. MNDO-PSDCI calculations indicate that secondary interactions involving the binding site residues are as important as the first-order chromophore protein interactions in mediating the wavelength maximum. PMID:11425310

  8. Characterization of Channelrhodopsin and Archaerhodopsin in Cholinergic Neurons of Cre-Lox Transgenic Mice

    PubMed Central

    Hedrick, Tristan; Danskin, Bethanny; Larsen, Rylan S.; Ollerenshaw, Doug; Groblewski, Peter; Valley, Matthew; Olsen, Shawn; Waters, Jack

    2016-01-01

    The study of cholinergic signaling in the mammalian CNS has been greatly facilitated by the advent of mouse lines that permit the expression of reporter proteins, such as opsins, in cholinergic neurons. However, the expression of opsins could potentially perturb the physiology of opsin-expressing cholinergic neurons or mouse behavior. Indeed, the published literature includes examples of cellular and behavioral perturbations in preparations designed to drive expression of opsins in cholinergic neurons. Here we investigate expression of opsins, cellular physiology of cholinergic neurons and behavior in two mouse lines, in which channelrhodopsin-2 (ChR2) and archaerhodopsin (Arch) are expressed in cholinergic neurons using the Cre-lox system. The two mouse lines were generated by crossing ChAT-Cre mice with Cre-dependent reporter lines Ai32(ChR2-YFP) and Ai35(Arch-GFP). In most mice from these crosses, we observed expression of ChR2 and Arch in only cholinergic neurons in the basal forebrain and in other putative cholinergic neurons in the forebrain. In small numbers of mice, off-target expression occurred, in which fluorescence did not appear limited to cholinergic neurons. Whole-cell recordings from fluorescently-labeled basal forebrain neurons revealed that both proteins were functional, driving depolarization (ChR2) or hyperpolarization (Arch) upon illumination, with little effect on passive membrane properties, spiking pattern or spike waveform. Finally, performance on a behavioral discrimination task was comparable to that of wild-type mice. Our results indicate that ChAT-Cre x reporter line crosses provide a simple, effective resource for driving indicator and opsin expression in cholinergic neurons with few adverse consequences and are therefore an valuable resource for studying the cholinergic system. PMID:27243816

  9. PyRhO: A Multiscale Optogenetics Simulation Platform.

    PubMed

    Evans, Benjamin D; Jarvis, Sarah; Schultz, Simon R; Nikolic, Konstantin

    2016-01-01

    Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences. PMID:27148037

  10. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor.

    PubMed

    McCulloch, Kyle J; Osorio, Daniel; Briscoe, Adriana D

    2016-08-01

    Most butterfly families expand the number of spectrally distinct photoreceptors in their compound eye by opsin gene duplications together with lateral filter pigments; however, most nymphalid genera have limited diversity, with only three or four spectral types of photoreceptor. Here, we examined the spatial pattern of opsin expression and photoreceptor spectral sensitivities in Heliconius erato, a nymphalid with duplicate ultraviolet opsin genes, UVRh1 and UVRh2 We found that the H. erato compound eye is sexually dimorphic. Females express the two UV opsin proteins in separate photoreceptors, but males do not express UVRh1. Intracellular recordings confirmed that females have three short wavelength-sensitive photoreceptors (λmax=356, ∼390 and 470 nm), while males have two (λmax=390 and ∼470 nm). We also found two long wavelength-sensitive photoreceptors (green, λmax∼555 nm, and red, λmax∼600 nm), which express the same LW opsin. The red cell's shifted sensitivity is probably due to perirhabdomal filtering pigments. Sexual dimorphism of the UV-absorbing rhodopsins may reflect the females' need to discriminate conspecifics from co-mimics. Red-green color vision may be used to detect differences in red coloration on Heliconius wings, or for host-plant identification. Among nymphalids so far investigated, only H. erato is known to possess five spectral classes of photoreceptor; sexual dimorphism of the eye via suppression of one class of opsin (here UVRh1 in males) has not - to our knowledge - been reported in any animal. PMID:27247318

  11. Expression of developmentally defined retinal phenotypes in the histogenesis of retinoblastoma.

    PubMed Central

    Gonzalez-Fernandez, F.; Lopes, M. B.; Garcia-Fernandez, J. M.; Foster, R. G.; De Grip, W. J.; Rosemberg, S.; Newman, S. A.; VandenBerg, S. R.

    1992-01-01

    Retinoblastoma, the most common intraocular tumor of childhood, is a malignant neoplasm that arises during retinal development. The embryonal cell target for neoplastic transformation is not yet clearly defined. To better understand the histogenetic potential of this tumor, the expression of photoreceptor and glial cell-associated proteins were examined in 22 primary retinoblastomas. Interphotoreceptor retinol-binding protein (IRBP), cone and rod opsins were selected as the photoreceptor specific proteins due to their different temporal patterns of expression during normal retinal development. Neoplastic Müller cell differentiation, and non-neoplastic reactive astrocytes were identified using cellular retinaldehyde binding-protein (CRAlBP), and glial fibrillary acidic protein (GFAP), respectively. Photoreceptor proteins were present in 16 cases and showed different cellular patterns of expression. IRBP and cone opsin were usually abundant. Although rod opsin was clearly identified in eight tumors, its expression was more restricted than either IRBP or cone opsin. This differential pattern of expression, opposite to the normal pattern of photoreceptor gene expression in the adult retina, corresponded to a marked decrease in mRNA for rod opsin. Cone opsin and IRBP colocalized in fleurettes demonstrating that neoplastic human cone cells are capable of IRBP synthesis. Müller cell differentiation was present in 12 of the 16 cases in which photoreceptor proteins were detected. In contrast, GFAP was only present in reactive, stromal astrocytes associated with blood vessels. Our data suggest that the retinoblastoma has the histogenetic potential of the immature neural retinal epithelium which can give rise to both photoreceptor and Müller cell lineages. The differential expression of cone and rod phenotypes in retinoblastoma is consistent with the "default" mechanism of cone cell differentiation. Images Figure 7 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID

  12. PyRhO: A Multiscale Optogenetics Simulation Platform

    PubMed Central

    Evans, Benjamin D.; Jarvis, Sarah; Schultz, Simon R.; Nikolic, Konstantin

    2016-01-01

    Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences. PMID:27148037

  13. Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator.

    PubMed

    Rajkumar, Premraj; Rollmann, Stephanie M; Cook, Tiffany A; Layne, John E

    2010-12-15

    Fiddler crabs are intertidal brachyuran crabs that belong to the genus Uca. Approximately 97 different species have been identified, and several of these live sympatrically. Many have species-specific body color patterns that may act as signals for intra- and interspecific communication. To understand the behavioral and ecological role of this coloration we must know whether fiddler crabs have the physiological capacity to perceive color cues. Using a molecular approach, we identified the opsin-encoding genes and determined their expression patterns across the eye of the sand fiddler crab, Uca pugilator. We identified three different opsin-encoding genes (UpRh1, UpRh2 and UpRh3). UpRh1 and UpRh2 are highly related and have similarities in their amino acid sequences to other arthropod long- and medium-wavelength-sensitive opsins, whereas UpRh3 is similar to other arthropod UV-sensitive opsins. All three opsins are expressed in each ommatidium, in an opsin-specific pattern. UpRh3 is present only in the R8 photoreceptor cell, whereas UpRh1 and UpRh2 are present in the R1-7 cells, with UpRh1 expression restricted to five cells and UpRh2 expression present in three cells. Thus, one photoreceptor in every ommatidium expresses both UpRh1 and UpRh2, providing another example of sensory receptor coexpression. These results show that U. pugilator has the basic molecular machinery for color perception, perhaps even trichromatic vision. PMID:21113005

  14. Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator

    PubMed Central

    Rajkumar, Premraj; Rollmann, Stephanie M.; Cook, Tiffany A.; Layne, John E.

    2010-01-01

    SUMMARY Fiddler crabs are intertidal brachyuran crabs that belong to the genus Uca. Approximately 97 different species have been identified, and several of these live sympatrically. Many have species-specific body color patterns that may act as signals for intra- and interspecific communication. To understand the behavioral and ecological role of this coloration we must know whether fiddler crabs have the physiological capacity to perceive color cues. Using a molecular approach, we identified the opsin-encoding genes and determined their expression patterns across the eye of the sand fiddler crab, Uca pugilator. We identified three different opsin-encoding genes (UpRh1, UpRh2 and UpRh3). UpRh1 and UpRh2 are highly related and have similarities in their amino acid sequences to other arthropod long- and medium-wavelength-sensitive opsins, whereas UpRh3 is similar to other arthropod UV-sensitive opsins. All three opsins are expressed in each ommatidium, in an opsin-specific pattern. UpRh3 is present only in the R8 photoreceptor cell, whereas UpRh1 and UpRh2 are present in the R1-7 cells, with UpRh1 expression restricted to five cells and UpRh2 expression present in three cells. Thus, one photoreceptor in every ommatidium expresses both UpRh1 and UpRh2, providing another example of sensory receptor coexpression. These results show that U. pugilator has the basic molecular machinery for color perception, perhaps even trichromatic vision. PMID:21113005

  15. Phototransduction Motifs and Variations

    PubMed Central

    Yau, King-Wai; Hardie, Roger C.

    2010-01-01

    Seeing begins in the photoreceptors, where light is absorbed and signaled to the nervous system. Throughout the animal kingdom, photoreceptors are diverse in design and purpose. Nonetheless, phototransduction—the mechanism by which absorbed photons are converted into an electrical response—is highly conserved and based almost exclusively on a single class of photoproteins, the opsins. In this Review, we survey the G protein-coupled signaling cascades downstream from opsins in photoreceptors across vertebrate and invertebrate species, noting their similarities as well as differences. PMID:19837030

  16. The Stroop effect in English-Japanese bilinguals: the effect of phonological similarity.

    PubMed

    Sumiya, Hiromi; Healy, Alice F

    2008-01-01

    English-Japanese bilinguals performed a Stroop color-word interference task with both English and Japanese stimuli and responded in both English and Japanese. The Japanese stimuli were either the traditional color terms (TCTs) written in Hiragana or loanwords (LWs) from English written in Katakana. Both within-language and between-language interference were found for all combinations of stimuli and responses. The between-language interference was larger for Katakana LWs (phonologically similar to English) than for Hiragana TCTs, especially with Japanese responses. The magnitude of this phonological effect increased with self-rated reading fluency in Japanese. Overall responding was slower and the Stroop effect larger with English than with Japanese stimuli. These results suggest that unintentional lexical access elicits automatic phonological processing even with intermediate-level reading proficiency. PMID:18444519

  17. NASA's Living with a Star Program: The Geospace Mission Concept

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Giles, Barbara; Zanetti, Lawrence; Spann, James; Day, John H. (Technical Monitor)

    2002-01-01

    NASA has initiated the Living with a Star Program (LWS) to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. Three program elements are the Science Missions; a Theory, Modeling, and Data Analysis program; and a Space Environment Testbeds program. Because many of the effects of solar variability on humanity are observed in Geospace regions of space, the science research for all three elements of the LWS Program have significant components in Geospace regions.

  18. The Living With a Star CDAW on the Solar and Geospace Connections of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Gopalswamy, Nat; Colon, Gilberto (Technical Monitor)

    2002-01-01

    The Living With a Star Program is sponsoring its first CDAW (Coordinated Data Analysis Workshop) to be held July 23-26, 2002 at a conference support location near the NASA Goddard Space Flight Center. This CDAW's topic is Solar Energetic Particle events. The topic was chosen due to the breadth of the impact of SEP's on the space environment and terrestrial climate. General goals of the LWS CDAW are a) Stimulate LWS Science on the near term, b) Facilitate cross-disciplinary interaction between the LWS scientific and space environment communities, c) Produce science products for all potential users, and d) Assist in the development of the LWS data system. The workshop will proceed similar to a previous CDAW held in 1999 on Interplanetary Type 11 Shocks. A list of target events has been compiled, which can be found at the workshop home page. The page lists all of the SEP events from 1996 January to 2001 December with energy > 10 MeV particle intensities exceeding 10 PFU. Preparation for the workshop consists of identifying relevant data from a wide variety of sources (solar, interplanetary, magnetospheric and climatary), accumulating the data (frequently this consists of both raw data, processed data and plots to ease perusal during the workshop) and gathering the software tools. Participants in the workshop are expected to complete their contributions of data or models prior to arriving at the workshop. Most of the CDAW consists of joint analysis of this data; only a few introductory talks are given at the beginning of the workshop, with the rest of the time being devoted to producing scientific results. Additional symposia may be scheduled at a later date, which will allow a venue for scientific talks on the CDAW results and associated science. The poster will list the scientific goals of the workshop, as well as a scientific discussion of the data which has been accumulated thus far.

  19. Wetland treatment of oil and gas well wastewaters. Quarterly technical report, November 25, 1993--March 24, 1994

    SciTech Connect

    Kadlec, R.H.; Srinivasan, K.R.

    1994-04-15

    In the third quarterly report, adsorption of heavy metals ions such as Cu(II) and Cr(VI) onto soils drawn from the laboratory-type wetland (LW) was shown to be weak. On the other hand, it was shown that modified-clays did adsorb Cr(VI) ions strongly at pH 4.5. Further, studies on the pH dependence of the adsorption of {beta}-naphthoic acid, (NA), a well-documented contaminant in many oil and gas well waste waters (4), onto modified-clays were undertaken and it was shown that uptake of NA by modified-clays was of the high affinity type at pH 4.5 and 7.0, but weak at pH 9.0. Adsorption of heavy metal ions, Cu{sup 2+}, and CR(VI) onto algae, a proposed wetland amendment, was carried out and the results were presented and discussed in the fourth quarterly report. Studies on the dynamics of uptake of phenol and NA by laboratory-type wetlands (LWs) were initiated and preliminary results indicated that both phenol and NA were sorbed onto components of LWs. A mass balance model has been developed to quantify the fate of phenol in LWs. The model is based on the postulate that the fate of phenol in LWs can be attributed to a combination of (1) evaporation of solute and solvent, (2) adsorption of phenol onto various components of LW and (3) its biodegradation, both in solution and at solid-liquid interface. As an initial approximation, the latter two processes have been lumped together and incorporated into the model as an unit operation. Both zero order and first order kinetics for the disappearance of phenol have been considered. Evaporative losses of water and phenol have also been taken into account and this model is presented and discussed in this quarterly report.

  20. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    SciTech Connect

    Jain, V.; Occhipinti, J.; Shah, H.; Wilmarth, B.; Edwards, R.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  1. Evaluation of mercury in liquid waste processing facilities - Phase I report

    SciTech Connect

    Jain, V.; Occhipinti, J. E.; Shah, H.; Wilmarth, W. R.; Edwards, R. E.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  2. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  3. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates.

    PubMed

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  4. Solar Sentinels: Report of the Science and Technology Definition Team

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The goal of NASA s Living With a Star (LWS) program is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun Earth system that directly affect life and society. Along with the other elements of LWS, Solar Sentinels aims to discover, understand, and model the heliospheric initiation, propagation, and solar connection of those energetic phenomena that adversely affect space exploration and life and society here on Earth. The Solar Sentinels mission will address the following questions: (1) How, where, and under what circumstances are solar energetic particles (SEPs) accelerated to high energies and how do they propagate through the heliosphere? And (2) How are solar wind structures associated with these SEPs, like CMEs, shocks, and high-speed streams, initiated, propagate, evolve, and interact in the inner heliosphere? The Sentinels STDT recommends implementing this mission in two portions, one optimized for inner heliospheric in-situ measurements and the other for solar remote observations. Sentinels will greatly enhance the overall LWS science return.

  5. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates

    PubMed Central

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect’s thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  6. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies.

    PubMed

    Briscoe, Adriana D; Bybee, Seth M; Bernard, Gary D; Yuan, Furong; Sison-Mangus, Marilou P; Reed, Robert D; Warren, Andrew D; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-02-23

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)-a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with lambda(max) = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate. PMID:20133601

  7. Diurnality and cone photopigment polymorphism in strepsirrhines: examination of linkage in Lemur catta.

    PubMed

    Jacobs, Gerald H; Deegan, Jess F

    2003-09-01

    Trichromatic color vision is routine among catarrhine primates, but occurs only as a variant form of color vision in some individuals in most platyrrhine genera. This arises from a fundamental difference in the organization of X-chromosome cone opsin genes in these two lineages: catarrhines have two opsin genes specifying middle- and long-wavelength-sensitive cone pigments, while platyrrhines have only a single gene. Some female platyrrhine monkeys achieve trichromacy because of a species polymorphism that allows the possibility of different opsin gene alleles on the two X-chromosomes. Recently, a similar opsin gene polymorphism was detected in some diurnal strepsirrhines, while at the same time appearing to be absent in any nocturnal genera. The aim of this study was to assess whether cone pigment polymorphism is inevitably linked to diurnality in strepsirrhines. Cone photopigments were measured in a species usually classified as diurnal, the ring-tailed lemur (Lemur catta), using electroretinogram flicker photometry, a noninvasive electrophysiological procedure. Each of 12 animals studied was found to have the same middle-wavelength cone pigment, with peak sensitivity at about 547 nm. In conjunction with earlier results, this implies that cone pigment polymorphism is unlikely to exist in this species and that, accordingly, such variation is not a consistently predictable feature of vision in diurnal strepsirrhines. PMID:12923905

  8. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies

    PubMed Central

    Briscoe, Adriana D.; Bybee, Seth M.; Bernard, Gary D.; Yuan, Furong; Sison-Mangus, Marilou P.; Reed, Robert D.; Warren, Andrew D.; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-01-01

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)—a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with λmax = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate. PMID:20133601

  9. Different Transmembrane Domains Associate with Distinct Endoplasmic Reticulum Components during Membrane Integration of a Polytopic Protein

    PubMed Central

    Meacock, Suzanna L.; Lecomte, Fabienne J.L.; Crawshaw, Samuel G.; High, Stephen

    2002-01-01

    We have been studying the insertion of the seven transmembrane domain (TM) protein opsin to gain insights into how the multiple TMs of polytopic proteins are integrated at the endoplasmic reticulum (ER). We find that the ER components associated with the first and second TMs of the nascent opsin polypeptide chain are clearly distinct. The first TM (TM1) is adjacent to the α and β subunits of the Sec61 complex, and a novel component, a protein associated with the ER translocon of 10 kDa (PAT-10). The most striking characteristic of PAT-10 is that it remains adjacent to TM1 throughout the biogenesis and membrane integration of the full-length opsin polypeptide. TM2 is also found to be adjacent to Sec61α and Sec61β during its membrane integration. However, TM2 does not form any adducts with PAT-10; rather, a transient association with the TRAM protein is observed. We show that the association of PAT-10 with opsin TM1 does not require the N-glycosylation of the nascent chain and occurs irrespective of the amino acid sequence and transmembrane topology of TM1. We conclude that the precise makeup of the ER membrane insertion site can be distinct for the different transmembrane domains of a polytopic protein. We find that the environment of a particular TM can be influenced by both the “stage” of nascent chain biosynthesis reached, and the TM's relative location within the polypeptide. PMID:12475939

  10. Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position.

    PubMed

    Bellingham, James; Whitmore, David; Philp, Alisdair R; Wells, Dominic J; Foster, Russell G

    2002-11-15

    Photoreception is best understood in retinal rods and cones, but it is not confined to these cells. In non-mammals, intrinsically photosensitive cells have been identified within several structures including the pineal, hypothalamus and skin. More recently novel light sensitive cells have been identified in the inner/basal retina of both teleosts and rodents. Melanopsin has been proposed as the photopigment mediating many of these non-rod, non-cone responses to light. However, much about the melanopsin gene family remains to be clarified including their potential role as photopigments, and taxonomic distribution. We have isolated the first orthologue of melanopsin from a teleost fish and show expression of this gene in a sub-set of retinal horizontal cells (type B). Zebrafish melanopsin, and orthologues of this gene, differ markedly from the vertebrate photopigment opsins. The putative counterion is not a glutamate but a tyrosine, the putative G-protein binding domain in the third cytoplasmic loop is not conserved, and they show low levels of amino acid identity (approximately 27%) to both the known photopigment opsins and to other members of the melanopsin family. Mouse melanopsin is only 58% identical to Xenopus, and 68% identical to zebrafish. By contrast, the photosensory opsin families show approximately 75% conservation. On the basis of their structure, genomic organisation, discrete evolutionary lineage, and their co-expression with other opsins, the melanopins are not obvious photosensory opsins. They might represent a separate branch of photopigment evolution in the vertebrates or they may have a non-direct photosensory function, perhaps as a photoisomerase, in non-rod, non-cone light detection. PMID:12487121

  11. Alouatta Trichromatic Color Vision: Cone Spectra and Physiological Responses Studied with Microspectrophotometry and Single Unit Retinal Electrophysiology

    PubMed Central

    Silveira, Luiz Carlos L.; Saito, Cézar A.; da Silva Filho, Manoel; Kremers, Jan; Bowmaker, James K.; Lee, Barry B.

    2014-01-01

    The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10–20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression. PMID:25405863

  12. The Living with a Star Radiation Belt Storm Probes Mission and Related Missions of Opportunity

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.; Mauk, Barry H.; Grebowsky, Joseph M.; Fox, Nicola J.

    2006-01-01

    This presentation provides an overview of the Living With a Star (LWS) Radiation Belt Storm Probes (RBSP) mission in the context of the broader Geospace program. Missions to Geospace offer an opportunity to observe in situ the fundamental processes that operate throughout the solar system and in particular those that generate hazardous space weather effects in the vicinity of Earth. The recently selected investigations on NASA's LWS program's RBSP will provide the measurements needed to characterize and quantify the processes that supply and remove energetic particles from the Earth's Van Allen radiation belts. Instruments on the RBSP spacecraft will observe charged particles that comprise the Earth's radiation belts over the full energy range from 1 eV to more than 10 MeV (including composition), the plasma waves which energize them, the electric fields which transport them, and the magnetic fields which guide their motion. The two-point measurements by the RBSP spacecraft will enable researchers to discriminate between spatial and temporal effects, and therefore between the various proposed mechanisms for particle acceleration and loss. The measurements taken by the RBSP spacecraft will be used in data modeling projects in order to improve the understanding of these fundamental processes and allow better predictions to be made. NASA's LWS program has also recently selected three teams to study concepts for Missions of Opportunity that will augment the RBSP program, by (1) providing an instrument for a Canadian spacecraft in the Earth's radiation belts, (2) quantifying the flux of particles precipitating into the Earth's atmosphere from the Earth's radiation belts, and (3) remotely sensing both spatial and temporal variations in the Earth's ionosphere and thermosphere.

  13. Effects of live weight at slaughter on fatty acid composition of Longissimus dorsi and Biceps femoris muscles of indigenous Lori goat.

    PubMed

    Kiani, Ali; Fallah, Rozbeh

    2016-01-01

    This study aimed to determine fatty acid (FA) composition of Longissimus dorsi (LD) and Biceps femoris (BF) muscles of an Iranian indigenous goat (Lori goat) at two live weights at slaughter (LWS). Twenty male Lori goats (5 to 8 months) raised in nomadic system were slaughtered either at LWS less than 20 kg (light) or LWS more than 30 kg (heavy). Carcass dressing and FA composition of intramuscular fat of LD and BF muscles as well as cholesterol content of LD muscle were determined. Heavy goats had higher dressing percentage than light ones (42.7vs.39.3%, P < 0.01). The predominant n-6 FA were C18:2, and C20:4 while C22:5, C20:5, C18:3, C20:3, and C22:6 were the n-3 FA detected. Polyunsaturated and saturated FA contributed 22% and 36% of the total FA in both muscles, respectively. Palmitic acid (C16:0) of LD was higher in heavy compared to the light goats (P < 0.05). BF muscle had higher α-linolenic acid (18:3 n-3) as percentage than LD muscle (P < 0.05). The ratio of n-6/n-3 FA and polyunsaturated/saturated FA were 3.8 and 0.6, respectively. Cholesterol content of LD muscle of light and heavy goats were 71.2 ± 16 and 59.5 ± 14 mg per 100 g fresh meat respectively. In conclusion, desirable PUFA/SFA (0.6) and n-3/n-6 ratio (3.8) found in indigenous Lori goat propose healthy source of lean meat for the consumers. PMID:26431711

  14. Impedance-matching analysis in IR leaky-wave antennas

    NASA Astrophysics Data System (ADS)

    Premkumar, Navaneeth; Xu, Yuancheng; Lail, Brian A.

    2015-08-01

    Planar leaky-wave antennas (LWA) that are capable of full-space scanning have long since been the pursuit for applications including, but not limited to, integration onto vehicles and into cameras for wide-angle of view beam-steering. Such a leaky-wave surface (LWS) was designed for long-wave infrared frequencies with frequency scanning capability. The LWS is based on a microstrip patch array design of a leaky-wave impedance surface and is made up of gold microstrip patches on a grounded zinc sulphide substrate. A 1D composite right/left-handed (CRLH) metamaterial made by periodically stacking a unit cell of the LWS in the longitudinal direction to form a LWA was designed. This paper deals with loading the LWA with a nickel bolometer to collect leaky-wave signals. The LWA radiates a backward leaking wave at 30 degrees at 28.3THz and scans through broadside for frequencies 20THz through 40THz. The paper deals with effectively placing the bolometer in order for the collected signal to exhibit the designed frequency regime. An effective way to maximize the power coupling into the load from the antenna is also explored. The benefit of such a metamaterial/holographic antennacoupled detector is its ability to provide appreciable capture cross-sections while delivering smart signals to subwavelength sized detectors. Due to their high-gain, low-profile, fast response time of the detector and ease of fabrication, this IR LWA-coupled bolometer harbors great potential in the areas of high resolution, uncooled, infrared imaging.

  15. A Basin-based Analysis of Global Lake Stress from Scarcity of Sustainable Water Resource

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sheng, Y.

    2010-12-01

    Lakes are a major storage of surface fresh water readily accessible to human. However, lake water resource is unequally distributed on Earth due to variations of lake abundance, human water demand, and availability of sustainable water supply (primarily, river discharge). This study aims at presenting a global view of contemporary lake stress through analyzing water availability and human demand at fine spatial resolutions. Two scientific questions are progressively explored: i) What is the geographic cross-tabulation of lake distribution vs. population and human water demand? and ii) What is the potential stress of lake water from the scarcity of river discharge? We begin with a straightforward analysis of the spatiotemporal pattern between lake and population distributions. Preliminary results indicate that excluding the extreme climatic zones such as the Pan-Arctic and Tibetan Plateau, lake densities exhibits an intrinsically positive correlation with population density and increase rate. Lake stresses on drainage basin levels are further quantified with integration of river discharge, lake volume, and water withdrawal data. Lake water per capita is computed for each basin. An index of lake water stress (LWS) is developed to characterize the pressure of unit lake/reservoir water exerted from the scarcity of river discharge due to water withdrawal. The revealed LWS pattern provides a spatial-explicit guideline with respect to how lake water is presently in stress and thus potentially redistributed under the baseline of sustainable water scarcity. Several major regions with high LWS values are highlighted to further compare the contributions of human demand and natural water availability to the local lake stress.

  16. Breeding objectives for pigs in Kenya. II: economic values incorporating risks in different smallholder production systems.

    PubMed

    Mbuthia, Jackson Mwenda; Rewe, Thomas Odiwuor; Kahi, Alexander Kigunzu

    2015-02-01

    This study estimated economic values for production traits (dressing percentage (DP), %; live weight for growers (LWg), kg; live weight for sows (LWs), kg) and functional traits (feed intake for growers (FEEDg), feed intake for sow (FEEDs), preweaning survival rate (PrSR), %; postweaning survival (PoSR), %; sow survival rate (SoSR), %, total number of piglets born (TNB) and farrowing interval (FI), days) under different smallholder pig production systems in Kenya. Economic values were estimated considering two production circumstances: fixed-herd and fixed-feed. Under the fixed-herd scenario, economic values were estimated assuming a situation where the herd cannot be increased due to other constraints apart from feed resources. The fixed-feed input scenario assumed that the herd size is restricted by limitation of feed resources available. In addition to the tradition profit model, a risk-rated bio-economic model was used to derive risk-rated economic values. This model accounted for imperfect knowledge concerning risk attitude of farmers and variance of input and output prices. Positive economic values obtained for traits DP, LWg, LWs, PoSR, PrSR, SoSR and TNB indicate that targeting them in improvement would positively impact profitability in pig breeding programmes. Under the fixed-feed basis, the risk-rated economic values for DP, LWg, LWs and SoSR were similar to those obtained under the fixed-herd situation. Accounting for risks in the EVs did not yield errors greater than ±50 % in all the production systems and basis of evaluation meaning there would be relatively little effect on the real genetic gain of a selection index. Therefore, both traditional and risk-rated models can be satisfactorily used to predict profitability in pig breeding programmes. PMID:25433647

  17. Two-Photon-Induced Selective Decarboxylation of Aspartic Acids D85 and D212 in Bacteriorhodopsin.

    PubMed

    Imhof, Martin; Rhinow, Daniel; Linne, Uwe; Hampp, Norbert

    2012-10-18

    The interest in microbial opsins stems from their photophysical properties, which are superior to most organic dyes. Microbial rhodopsins like bacteriorhodopsin (BR) from Halobacterium salinarum have an astonishingly high cross-section for two-photon-absorption (TPA), which is of great interest for technological applications such as data storage. Irradiation of BR with intense laser pulses at 532 nm leads to formation of a bathochromic photoproduct, which is further converted to a photochemical species absorbing in the UV range. As demonstrated earlier, the photochemical conversions are induced by resonant TPA. However, the molecular basis of these conversions remained unresolved. In this work we use mass spectroscopy to demonstrate that TPA of BR leads to selective decarboxylation of two aspartic acids in the vicinity of the retinal chromphore. These photochemical conversions are the basis of permanent two-photon data storage in BR and are of critical importance for application of microbial opsins in optogenetics. PMID:26292239

  18. G Protein-Coupled Receptor Rhodopsin: A Prospectus

    PubMed Central

    Filipek, Sławomir; Stenkamp, Ronald E.; Teller, David C.; Palczewski, Krzysztof

    2006-01-01

    Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on structural features of rhodopsin as revealed by many biochemical and structural investigations. In particular, the high-resolution structure of bovine rhodopsin provides a template for understanding how GPCRs work. We describe the sensitivity and complexity of rhodopsin that lead to its important role in vision. PMID:12471166

  19. Colour vision in marine organisms.

    PubMed

    Marshall, Justin; Carleton, Karen L; Cronin, Thomas

    2015-10-01

    Colour vision in the marine environment is on average simpler than in terrestrial environments with simple or no colour vision through monochromacy or dichromacy. Monochromacy is found in marine mammals and elasmobranchs, including whales and sharks, but not some rays. Conversely, there is also a greater diversity of colour vision in the ocean than on land, examples being the polyspectral stomatopods and the many colour vision solutions found among reef fish. Recent advances in sequencing reveal more opsin (visual pigment) types than functionally useful at any one time. This diversity arises through opsin duplication and conversion. Such mechanisms allow pick-and-mix adaptation that tunes colour vision on a variety of very short non-evolutionary timescales. At least some of the diversity in marine colour vision is best explained as unconventional colour vision or as neutral drift. PMID:25725325

  20. Differentiation of cones in cultured rabbit retina: effects of retinal pigment epithelial cell-conditioned medium.

    PubMed

    Mack, Andreas F; Uhlmann, Daniela; Germer, Angela; Szél, Agoston; Enzmann, Volker; Reichenbach, Andreas

    2003-04-24

    This study was aimed at investigating the postnatal differentiation of cone photoreceptors in the rabbit retina in an organotypic explant culture system. Both short wavelength (S) and middle wavelength (M) cone opsins were expressed in culture but M cones appeared only in retinal explants from the dorsal half of the eye. Stimulating the explants with retinal pigment epithelial cell (RPE) conditioned medium resulted in a suppression of opsin expression despite of an increase of the number of presumptive peanut agglutinin-labeled cones. These results suggest that at birth the immature cones are largely undetermined in terms of their final cone identity although some positional information ('dorsal' vs. 'ventral' retina) is present. Furthermore, factors from RPE may inhibit as well as stimulate different steps of cone cell differentiation. PMID:12676342

  1. WP1: transgenic opto-animals

    NASA Astrophysics Data System (ADS)

    UŻarowska, E.; Czajkowski, Rafał; Konopka, W.

    2014-11-01

    We aim to create a set of genetic tools where permanent opsin expression (ChR or NpHR) is precisely limited to the population of neurons that express immediate early gene c-fos during a specific temporal window of behavioral training. Since the c-fos gene is only expressed in neurons that form experience-dependent ensemble, this approach will result in specific labeling of a small subset of cells that create memory trace for the learned behavior. To this end we employ two alternative inducible gene expression systems: Tet Expression System and Cre/lox System. In both cases, the temporal window for opsin induction is controlled pharmacologically, by doxycycline or tamoxifen, respectively. Both systems will be used for creating lines of transgenic animals.

  2. Connecting the navigational clock to sun compass input in monarch butterfly brain.

    PubMed

    Sauman, Ivo; Briscoe, Adriana D; Zhu, Haisun; Shi, Dingding; Froy, Oren; Stalleicken, Julia; Yuan, Quan; Casselman, Amy; Reppert, Steven M

    2005-05-01

    Migratory monarch butterflies (Danaus plexippus) use a time-compensated sun compass to navigate to their overwintering grounds in Mexico. Although polarized light is one of the celestial cues used for orientation, the spectral content (color) of that light has not been fully explored. We cloned the cDNAs of three visual pigment-encoding opsins (ultraviolet [UV], blue, and long wavelength) and found that all three are expressed uniformly in main retina. The photoreceptors of the polarization-specialized dorsal rim area, on the other hand, are monochromatic for the UV opsin. Behavioral studies support the importance of polarized UV light for flight orientation. Next, we used clock protein expression patterns to identify the location of a circadian clock in the dorsolateral protocerebrum of butterfly brain. To provide a link between the clock and the sun compass, we identified a CRYPTOCHROME-staining neural pathway that likely connects the circadian clock to polarized light input entering brain. PMID:15882645

  3. Inhibiting the Activity of CA1 Hippocampal Neurons Prevents the Recall of Contextual Fear Memory in Inducible ArchT Transgenic Mice

    PubMed Central

    Sakaguchi, Masanori; Kim, Karam; Yu, Lily Mae Yee; Hashikawa, Yoshiko; Sekine, Yukiko; Okumura, Yuki; Kawano, Masako; Hayashi, Masanobu; Kumar, Deependra; Boyden, Edward S.; McHugh, Thomas J.; Hayashi, Yasunori

    2015-01-01

    The optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins) can reversibly activate or suppress neuronal activity with precise temporal control. Therefore, optogenetic techniques hold great potential to establish causal relationships between specific neuronal circuits and their function in freely moving animals. Due to the critical role of the hippocampal CA1 region in memory function, we explored the possibility of targeting an inhibitory opsin, ArchT, to CA1 pyramidal neurons in mice. We established a transgenic mouse line in which tetracycline trans-activator induces ArchT expression. By crossing this line with a CaMKIIα-tTA transgenic line, the delivery of light via an implanted optrode inhibits the activity of excitatory CA1 neurons. We found that light delivery to the hippocampus inhibited the recall of a contextual fear memory. Our results demonstrate that this optogenetic mouse line can be used to investigate the neuronal circuits underlying behavior. PMID:26075894

  4. Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea

    PubMed Central

    Buhr, Ethan D.; Yue, Wendy W. S.; Ren, Xiaozhi; Jiang, Zheng; Liao, Hsi-Wen Rock; Mei, Xue; Vemaraju, Shruti; Nguyen, Minh-Thanh; Reed, Randall R.; Lang, Richard A.; Yau, King-Wai; Van Gelder, Russell N.

    2015-01-01

    The molecular circadian clocks in the mammalian retina are locally synchronized by environmental light cycles independent of the suprachiasmatic nuclei (SCN) in the brain. Unexpectedly, this entrainment does not require rods, cones, or melanopsin (OPN4), possibly suggesting the involvement of another retinal photopigment. Here, we show that the ex vivo mouse retinal rhythm is most sensitive to short-wavelength light but that this photoentrainment requires neither the short-wavelength–sensitive cone pigment [S-pigment or cone opsin (OPN1SW)] nor encephalopsin (OPN3). However, retinas lacking neuropsin (OPN5) fail to photoentrain, even though other visual functions appear largely normal. Initial evidence suggests that OPN5 is expressed in select retinal ganglion cells. Remarkably, the mouse corneal circadian rhythm is also photoentrainable ex vivo, and this photoentrainment likewise requires OPN5. Our findings reveal a light-sensing function for mammalian OPN5, until now an orphan opsin. PMID:26392540

  5. UV wavelengths experienced during development affect larval newt visual sensitivity and predation efficiency.

    PubMed

    Martin, Mélissa; Théry, Marc; Rodgers, Gwendolen; Goven, Delphine; Sourice, Stéphane; Mège, Pascal; Secondi, Jean

    2016-02-01

    We experimentally investigated the influence of developmental plasticity of ultraviolet (UV) visual sensitivity on predation efficiency of the larval smooth newt, Lissotriton vulgaris. We quantified expression of SWS1 opsin gene (UV-sensitive protein of photoreceptor cells) in the retinas of individuals who had developed in the presence (UV+) or absence (UV-) of UV light (developmental treatments), and tested their predation efficiency under UV+ and UV- light (testing treatments). We found that both SWS1 opsin expression and predation efficiency were significantly reduced in the UV- developmental group. Larvae in the UV- testing environment displayed consistently lower predation efficiency regardless of their developmental treatment. These results prove for the first time, we believe, functional UV vision and developmental plasticity of UV sensitivity in an amphibian at the larval stage. They also demonstrate that UV wavelengths enhance predation efficiency and suggest that the magnitude of the behavioural response depends on retinal properties induced by the developmental lighting environment. PMID:26843556

  6. The Living With a Star Space Environment Testbed Experiments

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  7. The Living With a Star Space Environment Testbed Program

    NASA Technical Reports Server (NTRS)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  8. ISM Parameters in the Normal Galaxy NGC 5713

    NASA Technical Reports Server (NTRS)

    Lord, S. D.; Malhotra, S.; Lim, T.; Helou, G.; Beichman, C. A.; Dinerstein, H.; Hollenbach, D. J.; Hunter, D. A.; Lo, K. Y.; Lu, N. Y.; Rubin, R. H.; Stacey, G. J.; Thronson, H. A., Jr.; Werner, M. W.

    1996-01-01

    We report ISO Long Wavelength Spectrometer (LWS) observations fo the Sbc(s) pec galaxy NGC 5713. We have obtained strong detections of the fine-structure forbidden transitions [C(sub ii)] 158(micro)m, [O(sub i)]63(micro)m, and [O(sub iii)] 88(micro)m, and significant upper limits for[N(sub ii)]122(micro)m, [O(sub iii)] 52(micro)m, and [N(sub iii)] 57(micro)m. We also detect the galaxy's dust continuum emission between 43 and 197 microns.

  9. Thermal Evolution of Juvenile Subduction Zones ' New Constraints from Lu-Hf Geochronology on HP oceanic rocks (Halilbaǧi, Central Anatolia)

    NASA Astrophysics Data System (ADS)

    Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca

    2015-04-01

    The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit

  10. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  11. WASTE CERTIFICATION PROGRAM PLAN - REVISION 7

    SciTech Connect

    MORGAN, LK

    2002-01-08

    The primary changes that have been made to this revision reflect the relocation of the Waste Certification Official (WCO) organizationally from the Quality Services Division (QSD) into the Laboratory Waste Services (LWS) Organization. Additionally, the responsibilities for program oversight have been differentiated between the QSD and LWS. The intent of this effort is to ensure that those oversight functions, which properly belonged to the WCO, moved with that function; but retain an independent oversight function outside of the LWS Organization ensuring the potential for introduction of organizational bias, regarding programmatic and technical issues, is minimized. The Waste Certification Program (WCP) itself has been modified to allow the waste certification function to be performed by any of the personnel within the LWS Waste Acceptance/Certification functional area. However, a single individual may not perform both the technical waste acceptance review and the final certification review on the same 2109 data package. Those reviews must be performed by separate individuals in a peer review process. There will continue to be a designated WCO who will have lead programmatic responsibility for the WCP and will exercise overall program operational oversite as well as determine the overall requirements of the certification program. The quality assurance organization will perform independent, outside oversight to ensure that any organizational bias does not degrade the integrity of the waste certification process. The core elements of the previous WCP have been retained, however, the terms and process structure have been modified.. There are now two ''control points,'' (1) the data package enters the waste certification process with the signature of the Generator Interface/Generator Interface Equivalent (GI/GIE), (2) the package is ''certified'', thus exiting the process. The WCP contains three steps, (1) the technical review for waste acceptance, (2) a review of the

  12. VizieR Online Data Catalog: VY CMa molecular line spectra (Matsuura+, 2014)

    NASA Astrophysics Data System (ADS)

    Matsuura, M.; Yates, J. A.; Barlow, M. J.; Swinyard, B. M.; Royer, P.; Cernicharo, J.; Decin, L.; Wesson, R.; Polehampton, E. T.; Blommaert, J. A. D. L.; Groenewegen, M. A. T.; van de Steene, G. C.; van Hoof, P. A. M.

    2015-03-01

    The Herschel Space Observatory (hereafter Herschel) was launched in 2009 May with three instruments on board: SPIRE, PACS and HIFI . We report here observations made with the SPIRE Fourier Transform Spectrometer (FTS) and with the PACS grating spectrometer, which together cover the wavelength range from 55 to 650um. The SPIRE FTS covers the 190-650um wavelength range, simultaneously, while the PACS spectrometer covers the 55-210um spectral range, similar to that covered by the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO), although with higher spectral resolution and greater sensitivity. (2 data files).

  13. Common Transcriptional Mechanisms for Visual Photoreceptor Cell Differentiation among Pancrustaceans

    PubMed Central

    Mahato, Simpla; Morita, Shinichi; Tucker, Abraham E.; Liang, Xulong; Jackowska, Magdalena; Friedrich, Markus; Shiga, Yasuhiro; Zelhof, Andrew C.

    2014-01-01

    A hallmark of visual rhabdomeric photoreceptors is the expression of a rhabdomeric opsin and uniquely associated phototransduction molecules, which are incorporated into a specialized expanded apical membrane, the rhabdomere. Given the extensive utilization of rhabdomeric photoreceptors in the eyes of protostomes, here we address whether a common transcriptional mechanism exists for the differentiation of rhabdomeric photoreceptors. In Drosophila, the transcription factors Pph13 and Orthodenticle (Otd) direct both aspects of differentiation: rhabdomeric opsin transcription and rhabdomere morphogenesis. We demonstrate that the orthologs of both proteins are expressed in the visual systems of the distantly related arthropod species Tribolium castaneum and Daphnia magna and that their functional roles are similar in these species. In particular, we establish that the Pph13 homologs have the ability to bind a subset of Rhodopsin core sequence I sites and that these sites are present in key phototransduction genes of both Tribolium and Daphnia. Furthermore, Pph13 and Otd orthologs are capable of executing deeply conserved functions of photoreceptor differentiation as evidenced by the ability to rescue their respective Drosophila mutant phenotypes. Pph13 homologs are equivalent in their ability to direct both rhabdomere morphogenesis and opsin expression within Drosophila, whereas Otd paralogs demonstrate differential abilities to regulate photoreceptor differentiation. Finally, loss-of-function analyses in Tribolium confirm the conserved requirement of Pph13 and Otd in regulating both rhabdomeric opsin transcription and rhabdomere morphogenesis. Taken together, our data identify components of a regulatory framework for rhabdomeric photoreceptor differentiation in Pancrustaceans, providing a foundation for defining ancestral regulatory modules of rhabdomeric photoreceptor differentiation. PMID:24991928

  14. Unique system of photoreceptors in sea urchin tube feet

    PubMed Central

    Ullrich-Lüter, Esther M; Dupont, Sam; Arboleda, Enrique; Hausen, Harald; Arnone, Maria Ina

    2011-01-01

    Different sea urchin species show a vast variety of responses to variations in light intensity; however, despite this behavioral evidence for photosensitivity, light sensing in these animals has remained an enigma. Genome information of the recently sequenced purple sea urchin (Strongylocentrotus purpuratus) allowed us to address this question from a previously unexplored molecular perspective by localizing expression of the rhabdomeric opsin Sp-opsin4 and Sp-pax6, two genes essential for photoreceptor function and development, respectively. Using a specifically designed antibody against Sp-Opsin4 and in situ hybridization for both genes, we detected expression in two distinct groups of photoreceptor cells (PRCs) located in the animal's numerous tube feet. Specific reactivity of the Sp-Opsin4 antibody with sea star optic cushions, which regulate phototaxis, suggests a similar visual function in sea urchins. Ultrastructural characterization of the sea urchin PRCs revealed them to be of a microvillar receptor type. Our data suggest that echinoderms, in contrast to chordates, deploy a microvillar, r-opsin–expressing PRC type for vision, a feature that has been so far documented only in protostome animals. Surprisingly, sea urchin PRCs lack any associated screening pigment. Indeed, one of the tube foot PRC clusters may account for directional vision by being shaded through the opaque calcite skeleton. The PRC axons connect to the animal internal nervous system, suggesting an integrative function beyond local short circuits. Because juveniles display no phototaxis until skeleton completion, we suggest a model in which the entire sea urchin, deploying its skeleton as PRC screening device, functions as a huge compound eye. PMID:21536888

  15. Contrasting modes of evolution of the visual pigments in Heliconius butterflies.

    PubMed

    Yuan, Furong; Bernard, Gary D; Le, Jennifer; Briscoe, Adriana D

    2010-10-01

    The adult compound eyes of passion-vine butterflies in the genus Heliconius contain one more UV opsin than other butterflies. Together with an 11-cis-3-hydroxyretinal chromophore, their four opsin genes UVRh1, UVRh2, BRh, and LWRh produce four rhodopsins that are UV-, blue-, or long wavelength absorbing. One of the Heliconius UV opsin genes, UVRh2, was found to have evolved under positive selection following recent gene duplication, using the branch-site test of selection. Using a more conservative test, the small-sample method, we confirm our prior finding of positive selection of UVRh2 and provide new statistical evidence of episodic evolution, that is, positive selection followed by purifying selection. We also newly note that one of the positively selected amino acid sites contains substitutions with known spectral tuning effects in avian ultraviolet- and violet-sensitive visual pigments. As this is one of a handful of described examples of positive selection of any specific gene in any butterfly where functional variation between copies has been characterized, we were interested in examining the molecular and physiological context of this adaptive event by examining the UV opsin genes in contrast to the other visual pigment genes. We cloned BRh and LWRh from 13 heliconiine species and UVRh1 and UVRh2 from Heliconius elevatus. In parallel, we performed in vivo epi-microspectrophotometric experiments to estimate the wavelength of peak absorbance, λ(max), of several rhodopsins in seven heliconiine species. In contrast to UVRh2, we found both physiological and statistical evidence consistent with purifying selection on UVRh1, BRh, and LWRh along the branch leading to the common ancestor of Heliconius. These results underscore the utility of combining molecular and physiological experiments in a comparative context for strengthening evidence for adaptive evolution at the molecular level. PMID:20478921

  16. Nonlinear polarization interaction in bacteriorhodopsin films with anisotropically saturating absorption

    NASA Astrophysics Data System (ADS)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Stepanchikov, Dmitriy A.; Druzhko, Anna B.; Dyukova, Tatyana V.

    1996-06-01

    The effect of protein and matrix modifications on the photoanisotropic properties is studied for developing the concept of impact upon the main optical properties of the dynamic optical material based on bacteriorhodopsin (BR) both interaction of transmembrane protein--chromophore complex BR with matrix and interaction of protein opsin with chromophore retinal. Also possibility of the application of BR-films for the light polarization modulator is proposed.

  17. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes

    PubMed Central

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Saadane, Aicha; Tonade, Deoye; Samuels, Ivy; Veenstra, Alex; Palczewski, Krzysztof; Kern, Timothy S.

    2016-01-01

    Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration. PMID:27548901

  18. Rhodopsin in the rod surface membrane regenerates more rapidly than bulk rhodopsin in the disc membranes in vivo.

    PubMed

    Kessler, Christopher; Tillman, Megan; Burns, Marie E; Pugh, Edward N

    2014-07-01

    Sustained vertebrate vision requires that opsin chromophores isomerized by light to the all-trans form be replaced with 11-cis retinal to regenerate the visual pigment. We have characterized the early receptor potential (ERP), a component of the electroretinogram arising from photoisomerization-induced charge displacements in plasma membrane visual pigment, and used it to measure pigment bleaching and regeneration in living mice. The mouse ERP was characterized by an outward 'R2' charge displacement with a time constant of 215 μs that discharged through a membrane with an apparent time constant of ∼0.6 ms. After complete bleaching of rhodopsin, the ERP recovered in two phases. The initial, faster phase had a time constant of ∼1 min, accounted for ∼20% of the total, and was not dependent on the level of expression of the retinal pigment epithelium isomerase, Rpe65. The slower, complementary phase had a time constant of 23 min in wild-type (WT) mice (C57Bl/6) and was substantially slowed in Rpe65(+/-) mice. Comparison of the ERPs of a mouse line expressing 150% of the normal level of cone M-opsin with those of WT mice revealed that M-opsin contributed 26% of the total WT ERP in these experiments, with the remaining 74% arising from rhodopsin. Thus, the fast regenerating fraction (20%) corresponds approximately to the fraction of the total ERP independently estimated to arise from M-opsin. Because both phases of the ERP recover substantially faster than previous measurements of bulk rhodopsin regeneration in living mice, we conclude that delivery of the highly hydrophobic 11-cis retinal to the interior of rod photoreceptors appears to be retarded by transit across the cytoplasmic gap between plasma and disc membranes. PMID:24801306

  19. Death by color: differential cone loss in the aging mouse retina.

    PubMed

    Cunea, Alexander; Powner, Michael B; Jeffery, Glen

    2014-11-01

    Differential cell death is a common feature of aging and age-related disease. In the retina, 30% of rod photoreceptors are lost over life in humans and rodents. However, studies have failed to show age-related cell death in mouse cone photoreceptors, which is surprising because cone physiological function declines with age. Moreover in human, differential loss of short wavelength cone function is an aspect of age-related retinal disease. Here, cones are examined in young (3-month-old) and aged (12-month-old) C57 mice and also in complement factor H knock out mice (CFH-/-) that have been proposed as a murine model of age-related macular degeneration. In vivo imaging showed significant age-related reductions in outer retinal thickness in both groups over this period. Immunostaining for opsins revealed a specific significant decline of >20% for the medium/long (M/L)-wavelength cones but only in the periphery. S cones numbers were not significantly affected by age. This differential cell loss was backed up with quantitative real-time polymerase chain reaction for the 2 opsins, again showing S opsin was unaffected, but that M/L opsin was reduced particularly in CFH-/- mice. These results demonstrate aged cone loss, but surprisingly, in both genotypes, it is only significant in the peripheral ventral retina and focused on the M/L population and not S cones. We speculate that there may be fundamental differences in differential cone loss between human and mouse that may question the validity of mouse models of human outer retinal aging and pathology. PMID:24929970

  20. The Giant Mottled Eel, Anguilla marmorata, Uses Blue-Shifted Rod Photoreceptors during Upstream Migration

    PubMed Central

    Wang, Feng-Yu; Fu, Wen-Chun; Wang, I-Li

    2014-01-01

    Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2) revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292) and four putative (S124, V189, V286, I290) tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice. PMID:25101636

  1. Rpe65 Isomerase Associates with Membranes through an Electrostatic Interaction with Acidic Phospholipid Headgroups*

    PubMed Central

    Yuan, Quan; Kaylor, Joanna J.; Miu, Anh; Bassilian, Sara; Whitelegge, Julian P.; Travis, Gabriel H.

    2010-01-01

    Opsins are light-sensitive pigments in the vertebrate retina, comprising a G protein-coupled receptor and an 11-cis-retinaldehyde chromophore. Absorption of a photon by an opsin pigment induces isomerization of its chromophore to all-trans-retinaldehyde. After a brief period of activation, opsin releases all-trans-retinaldehyde and becomes insensitive to light. Restoration of light sensitivity to the apo-opsin involves the conversion of all-trans-retinaldehyde back to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle. The critical isomerization step in this pathway is catalyzed by Rpe65. Rpe65 is strongly associated with membranes but contains no membrane-spanning segments. It was previously suggested that the affinity of Rpe65 for membranes is due to palmitoylation of one or more Cys residues. In this study, we re-examined this hypothesis. By two independent strategies involving mass spectrometry, we show that Rpe65 is not palmitoylated nor does it appear to undergo other post-translational modifications at significant stoichiometry. Instead, we show that Rpe65 binds the acidic phospholipids, phosphatidylserine, phosphatidylglycerol, and cardiolipin, but not phosphatidic acid. No binding of Rpe65 to basic phospholipids or neutral lipids was observed. The affinity of Rpe65 to acidic phospholipids was strongly pH-dependent, suggesting an electrostatic interaction of basic residues in Rpe65 with negatively charged phospholipid headgroups. Binding of Rpe65 to liposomes containing phosphatidylserine or phosphatidylglycerol, but not the basic or neutral phospholipids, allowed the enzyme to extract its insoluble substrate, all-trans-retinyl palmitate, from the lipid bilayer for synthesis of 11-cis-retinol. The interaction of Rpe65 with acidic phospholipids is therefore biologically relevant. PMID:19892706

  2. Rhodopsin in the rod surface membrane regenerates more rapidly than bulk rhodopsin in the disc membranes in vivo

    PubMed Central

    Kessler, Christopher; Tillman, Megan; Burns, Marie E; Pugh, Edward N

    2014-01-01

    Sustained vertebrate vision requires that opsin chromophores isomerized by light to the all-trans form be replaced with 11-cis retinal to regenerate the visual pigment. We have characterized the early receptor potential (ERP), a component of the electroretinogram arising from photoisomerization-induced charge displacements in plasma membrane visual pigment, and used it to measure pigment bleaching and regeneration in living mice. The mouse ERP was characterized by an outward ‘R2’ charge displacement with a time constant of 215 μs that discharged through a membrane with an apparent time constant of ∼0.6 ms. After complete bleaching of rhodopsin, the ERP recovered in two phases. The initial, faster phase had a time constant of ∼1 min, accounted for ∼20% of the total, and was not dependent on the level of expression of the retinal pigment epithelium isomerase, Rpe65. The slower, complementary phase had a time constant of 23 min in wild-type (WT) mice (C57Bl/6) and was substantially slowed in Rpe65+/− mice. Comparison of the ERPs of a mouse line expressing 150% of the normal level of cone M-opsin with those of WT mice revealed that M-opsin contributed 26% of the total WT ERP in these experiments, with the remaining 74% arising from rhodopsin. Thus, the fast regenerating fraction (20%) corresponds approximately to the fraction of the total ERP independently estimated to arise from M-opsin. Because both phases of the ERP recover substantially faster than previous measurements of bulk rhodopsin regeneration in living mice, we conclude that delivery of the highly hydrophobic 11-cis retinal to the interior of rod photoreceptors appears to be retarded by transit across the cytoplasmic gap between plasma and disc membranes. PMID:24801306

  3. Beyond spectral tuning: human cone visual pigments adopt different transient conformations for chromophore regeneration.

    PubMed

    Srinivasan, Sundaramoorthy; Cordomí, Arnau; Ramon, Eva; Garriga, Pere

    2016-03-01

    Human red and green visual pigments are seven transmembrane receptors of cone photoreceptor cells of the retina that mediate color vision. These pigments share a very high degree of homology and have been assumed to feature analogous structural and functional properties. We report on a different regeneration mechanism among red and green cone opsins with retinal analogs using UV-Vis/fluorescence spectroscopic analyses, molecular modeling and site-directed mutagenesis. We find that photoactivated green cone opsin adopts a transient conformation which regenerates via an unprotonated Schiff base linkage with its natural chromophore, whereas red cone opsin forms a typical protonated Schiff base. The chromophore regeneration kinetics is consistent with a secondary retinal uptake by the cone pigments. Overall, our findings reveal, for the first time, structural differences in the photoactivated conformation between red and green cone pigments that may be linked to their molecular evolution, and support the proposal of secondary retinal binding to visual pigments, in addition to binding to the canonical primary site, which may serve as a regulatory mechanism of dark adaptation in the phototransduction process. PMID:26387074

  4. Rhodopsin Photoactivation Dynamics Revealed by Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchhithranga M. C. D.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael; Chu, Xiang-Qiang

    2015-03-01

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision. During photoactivation, the chromophore retinal dissociates from protein yielding the opsin apoprotein. What are the changes in protein dynamics that occur during the photoactivation process? Here, we studied the microscopic dynamics of dark-state rhodopsin and the ligand-free opsin using quasielastic neutron scattering (QENS). The QENS technique tracks individual hydrogen atom motion because of the much higher neutron scattering cross-section of hydrogen than other atoms. We used protein with CHAPS detergent hydrated with heavy water. The activation of proteins is confirmed at low temperatures up to 300 K by mean-square displacement (MSD) analysis. The QENS experiments at temperatures ranging from 220 K to 300 K clearly indicate an increase in protein dynamic behavior with temperature. The relaxation time for the ligand-bound protein rhodopsin is faster compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which unlike protein, manifests localized motions.

  5. Melanopsin mediates light-dependent relaxation in blood vessels

    PubMed Central

    Sikka, Gautam; Hussmann, G. Patrick; Pandey, Deepesh; Cao, Suyi; Hori, Daijiro; Park, Jong Taek; Steppan, Jochen; Kim, Jae Hyung; Barodka, Viachaslau; Myers, Allen C.; Santhanam, Lakshmi; Nyhan, Daniel; Halushka, Marc K.; Koehler, Raymond C.; Snyder, Solomon H.; Shimoda, Larissa A.; Berkowitz, Dan E.

    2014-01-01

    Melanopsin (opsin4; Opn4), a non-image-forming opsin, has been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. We report a physiological role for Opn4 in regulating blood vessel function, particularly in the context of photorelaxation. Using PCR, we demonstrate that Opn4 (a classic G protein-coupled receptor) is expressed in blood vessels. Force-tension myography demonstrates that vessels from Opn4−/− mice fail to display photorelaxation, which is also inhibited by an Opn4-specific small-molecule inhibitor. The vasorelaxation is wavelength-specific, with a maximal response at ∼430–460 nm. Photorelaxation does not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling but is associated with vascular hyperpolarization, as shown by intracellular membrane potential measurements. Signaling is both soluble guanylyl cyclase- and phosphodiesterase 6-dependent but protein kinase G-independent. β-Adrenergic receptor kinase 1 (βARK 1 or GRK2) mediates desensitization of photorelaxation, which is greatly reduced by GRK2 inhibitors. Blue light (455 nM) regulates tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. This endogenous opsin-mediated, light-activated molecular switch for vasorelaxation might be harnessed for therapy in diseases in which altered vasoreactivity is a significant pathophysiologic contributor. PMID:25404319

  6. Diversity of Color Vision: Not All Australian Marsupials Are Trichromatic

    PubMed Central

    Ebeling, Wiebke; Natoli, Riccardo C.; Hemmi, Jan M.

    2010-01-01

    Color vision in marsupials has recently emerged as a particularly interesting case among mammals. It appears that there are both dichromats and trichromats among closely related species. In contrast to primates, marsupials seem to have evolved a different type of trichromacy that is not linked to the X-chromosome. Based on microspectrophotometry and retinal whole-mount immunohistochemistry, four trichromatic marsupial species have been described: quokka, quenda, honey possum, and fat-tailed dunnart. It has, however, been impossible to identify the photopigment of the third cone type, and genetically, all evidence so far suggests that all marsupials are dichromatic. The tammar wallaby is the only Australian marsupial to date for which there is no evidence of a third cone type. To clarify whether the wallaby is indeed a dichromat or trichromatic like other Australian marsupials, we analyzed the number of cone types in the “dichromatic” wallaby and the “trichromatic” dunnart. Employing identical immunohistochemical protocols, we confirmed that the wallaby has only two cone types, whereas 20–25% of cones remained unlabeled by S- and LM-opsin antibodies in the dunnart retina. In addition, we found no evidence to support the hypothesis that the rod photopigment (rod opsin) is expressed in cones which would have explained the absence of a third cone opsin gene. Our study is the first comprehensive and quantitative account of color vision in Australian marsupials where we now know that an unexpected diversity of different color vision systems appears to have evolved. PMID:21151905

  7. Virally mediated optogenetic excitation and inhibition of pain in freely moving non-transgenic mice

    PubMed Central

    Iyer, Shrivats Mohan; Montgomery, Kate L.; Towne, Chris; Lee, Soo Yeun; Ramakrishnan, Charu; Deisseroth, Karl; Delp, Scott L.

    2014-01-01

    Primary nociceptors are the first neurons involved in the complex processing system that regulates normal and pathological pain1. Our ability to excite and inhibit these neurons has been limited by pharmacological and electrical stimulation constraints; non-invasive excitation and inhibition of these neurons in freely moving non-transgenic animals has not been possible. Here we use an optogenetic2 strategy to bidirectionally control nociceptors of non-transgenic mice. Intra-sciatic nerve injection of adeno-associated viruses encoding an excitatory opsin enabled light-inducible stimulation of acute pain, place aversion, and optogenetically mediated reductions in withdrawal thresholds to mechanical and thermal stimuli. In contrast, viral delivery of an inhibitory opsin enabled light-inducible inhibition of acute pain perception, and reversed mechanical allodynia and thermal hyperalgesia in a model of neuropathic pain. Light was delivered transdermally enabling these behaviors to be induced in freely moving animals. This approach may have utility in basic and translational pain research, and enable rapid drug screening and testing of newly engineered opsins. PMID:24531797

  8. Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies

    PubMed Central

    Davidoff, Candice; Neitz, Maureen; Neitz, Jay

    2016-01-01

    Purpose The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. Methods We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Results Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red–green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. Conclusions The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. Translational Relevance The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects. PMID:27622081

  9. Spectral sensitivity of the ctenid spider Cupiennius salei.

    PubMed

    Zopf, Lydia M; Schmid, Axel; Fredman, David; Eriksson, Bo Joakim

    2013-11-01

    The spectral sensitivity of adult male Cupiennius salei Keys, a nocturnal hunting spider, was studied in a behavioural test. As known from earlier behavioural tests, C. salei will walk towards a black target presented in front of a white background. In this study, a black target (size 42×70 cm) was presented in a white arena illuminated by monochromatic light in the range 365-695 nm using 19 monochromatic filters (half-width in the range 6-10 nm). In the first trial, the transmission of the optical filters was between 40% and 80%. In the second trial, the transmission was reduced to 5% using a neutral density filter. At the high intensity, the spiders showed a spectral sensitivity in the range 380-670 nm. In the second trial, the animals only showed directed walks if the illumination was in the range 449-599 nm, indicating a lower sensitivity at the margins of the spectral sensitivity. In previous intracellular recordings, the measured spectral sensitivity was between 320 and 620 nm. Interestingly, these results do not completely match the behaviourally tested spectral sensitivity of the photoreceptors, where the sensitivity range is shifted to longer wavelengths. In order to investigate the molecular background of spectral sensitivity, we searched for opsin genes in C. salei. We found three visual opsins that correspond to UV and middle to long wavelength sensitive opsins as described for jumping spiders. PMID:23948480

  10. [Phototransduction mediated by melanopsin in intrinsically photosensitive retinal ganglion cells].

    PubMed

    Domínguez-Solís, Carlos Augusto; Pérez-León, Jorge Alberto

    2015-01-01

    Melanopsin is the most recent photopigment described. As all the other opsins, it attaches in the retina as chromophore. Its amino acid sequence resembles more invertebrate opsins than those of vertebrates. The signal transduction pathway of opsins in vertebrates is based on the coupling to the G protein transducin, triggering a signaling cascade that results in the hyperpolarization of the plasma membrane. On the contrary, the photoreceptors of invertebrates activate the Gq protein pathway, which leads to depolarizing responses. Phototransduction mediated by melanopsin leads to the depolarization of those cells where it is expressed, the intrinsically photosensitive retinal ganglion cells; the cellular messengers and the ion channel type(s) responsible for the cells´ response is still unclear. Studies to elucidate the signaling cascade of melanopsin in heterologous expression systems, in retina and isolated/cultured intrinsically photosensitive retinal ganglion cells, have provided evidence for the involvement of protein Gq and phospholipase C together with the likely participation of an ion channel member of the transient receptor potential-canonical family, a transduction pathway similar to invertebrate photopigments, particularly Drosophila melanogaster. The intrinsically photosensitive retinal ganglion cells are the sole source of retinal inferences to the suprachiasmatic nucleus; thus, clarifying completely the melanopsin signaling pathway will impact the chronobiology field, including the clinical aspects. PMID:26581535

  11. Spectral Sensitivity of the ctenid spider Cupiennius salei Keys

    PubMed Central

    Zopf, Lydia M.; Schmid, Axel; Fredman, David; Eriksson, Bo Joakim

    2014-01-01

    Summary The spectral sensitivity of adult male Cupiennius salei Keys, a nocturnal hunting spider, was studied in a behavioural test. As known from earlier behavioural tests, C. salei walks towards a black target presented in front of a white background. In this study a black target (size 42 × 70 cm) was presented in a white arena illuminated by monochromatic light in the range of 365 to 695 nm using 19 monochromatic filters (HW in the range of 6 – 10 nm). In the first trial, the transmission of the optical filters was between 40 % and 80%. In a second trial the transmission was reduced to 5%, using a neutral density filter. At the high intensity the spiders showed a spectral sensivity in the range from 380 to 670 nm. In the second trial the animals only showed directed walks if the illumination was in the range of 449 to 599 nm, indicating a lower sensitivity at the margins of the spectral sensitivity. In previous intracellular recordings, the measured spectral sensitivity was between 320 and 620 nm. Interestingly, these results do not completely match the behaviourally tested spectral sensitivity of the photoreceptors, where the sensitivity range is shifted to longer wavelengths. In order to investigate the molecular background of spectral sensitivity, we searched for opsin genes in C. salei. We found three visual opsins that correspond to UV and middle to long wavelength sensitive opsins as described for jumping spiders. PMID:23948480

  12. Visual pigments in a palaeognath bird, the emu Dromaius novaehollandiae: implications for spectral sensitivity and the origin of ultraviolet vision.

    PubMed

    Hart, Nathan S; Mountford, Jessica K; Davies, Wayne I L; Collin, Shaun P; Hunt, David M

    2016-07-13

    A comprehensive description of the spectral characteristics of retinal photoreceptors in palaeognaths is lacking. Moreover, controversy exists with respect to the spectral sensitivity of the short-wavelength-sensitive-1 (SWS1) opsin-based visual pigment expressed in one type of single cone: previous microspectrophotometric (MSP) measurements in the ostrich (Struthio camelus) suggested a violet-sensitive (VS) SWS1 pigment, but all palaeognath SWS1 opsin sequences obtained to date (including the ostrich) imply that the visual pigment is ultraviolet-sensitive (UVS). In this study, MSP was used to measure the spectral properties of visual pigments and oil droplets in the retinal photoreceptors of the emu (Dromaius novaehollandiae). Results show that the emu resembles most other bird species in possessing four spectrally distinct single cones, as well as double cones and rods. Four cone and a single rod opsin are expressed, each an orthologue of a previously identified pigment. The SWS1 pigment is clearly UVS (wavelength of maximum absorbance [λmax] = 376 nm), with key tuning sites (Phe86 and Cys90) consistent with other vertebrate UVS SWS1 pigments. Palaeognaths would appear, therefore, to have UVS SWS1 pigments. As they are considered to be basal in avian evolution, this suggests that UVS is the most likely ancestral state for birds. The functional significance of a dedicated UVS cone type in the emu is discussed. PMID:27383819

  13. Signatures of Selection and Gene Conversion Associated with Human Color Vision Variation

    PubMed Central

    Verrelli, Brian C.; Tishkoff, Sarah A.

    2004-01-01

    Trichromatic color vision in humans results from the combination of red, green, and blue photopigment opsins. Although color vision genes have been the targets of active molecular and psychophysical research on color vision abnormalities, little is known about patterns of normal genetic variation in these genes among global human populations. The current study presents nucleotide sequence analyses and tests of neutrality for a 5.5-kb region of the X-linked long-wave “red” opsin gene (OPN1LW) in 236 individuals from ethnically diverse human populations. Our analysis of the recombination landscape across OPN1LW reveals an unusual haplotype structure associated with amino acid replacement variation in exon 3 that is consistent with gene conversion. Compared with the absence of OPN1LW amino acid replacement fixation since divergence from chimpanzee, the human population exhibits a significant excess of high-frequency OPN1LW replacements. Our results suggest that subtle changes in L-cone opsin wavelength absorption may have been adaptive during human evolution. PMID:15252758

  14. Differential Light-induced Responses in Sectorial Inherited Retinal Degeneration*

    PubMed Central

    Ramon, Eva; Cordomí, Arnau; Aguilà, Mònica; Srinivasan, Sundaramoorthy; Dong, Xiaoyun; Moore, Anthony T.; Webster, Andrew R.; Cheetham, Michael E.; Garriga, Pere

    2014-01-01

    Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations. PMID:25359768

  15. Signatures of selection and gene conversion associated with human color vision variation.

    PubMed

    Verrelli, Brian C; Tishkoff, Sarah A

    2004-09-01

    Trichromatic color vision in humans results from the combination of red, green, and blue photopigment opsins. Although color vision genes have been the targets of active molecular and psychophysical research on color vision abnormalities, little is known about patterns of normal genetic variation in these genes among global human populations. The current study presents nucleotide sequence analyses and tests of neutrality for a 5.5-kb region of the X-linked long-wave "red" opsin gene (OPN1LW) in 236 individuals from ethnically diverse human populations. Our analysis of the recombination landscape across OPN1LW reveals an unusual haplotype structure associated with amino acid replacement variation in exon 3 that is consistent with gene conversion. Compared with the absence of OPN1LW amino acid replacement fixation since divergence from chimpanzee, the human population exhibits a significant excess of high-frequency OPN1LW replacements. Our results suggest that subtle changes in L-cone opsin wavelength absorption may have been adaptive during human evolution. PMID:15252758

  16. Optogenetics in Mice Performing a Visual Discrimination Task: Measurement and Suppression of Retinal Activation and the Resulting Behavioral Artifact

    PubMed Central

    Danskin, Bethanny; Denman, Daniel; Valley, Matthew; Ollerenshaw, Douglas; Williams, Derric; Groblewski, Peter; Reid, Clay; Olsen, Shawn; Waters, Jack

    2015-01-01

    Optogenetic techniques are used widely to perturb and interrogate neural circuits in behaving animals, but illumination can have additional effects, such as the activation of endogenous opsins in the retina. We found that illumination, delivered deep into the brain via an optical fiber, evoked a behavioral artifact in mice performing a visually guided discrimination task. Compared with blue (473 nm) and yellow (589 nm) illumination, red (640 nm) illumination evoked a greater behavioral artifact and more activity in the retina, the latter measured with electrical recordings. In the mouse, the sensitivity of retinal opsins declines steeply with wavelength across the visible spectrum, but propagation of light through brain tissue increases with wavelength. Our results suggest that poor retinal sensitivity to red light was overcome by relatively robust propagation of red light through brain tissue and stronger illumination of the retina by red than by blue or yellow light. Light adaptation of the retina, via an external source of illumination, suppressed retinal activation and the behavioral artifact without otherwise impacting behavioral performance. In summary, long wavelength optogenetic stimuli are particularly prone to evoke behavioral artifacts via activation of retinal opsins in the mouse, but light adaptation of the retina can provide a simple and effective mitigation of the artifact. PMID:26657323

  17. Ablation of Chop Transiently Enhances Photoreceptor Survival but Does Not Prevent Retinal Degeneration in Transgenic Mice Expressing Human P23H Rhodopsin

    PubMed Central

    Chiang, Wei-Chieh; Joseph, Victory; Matthes, Michael T.; Lewin, Alfred S.; Gorbatyuk, Marina S.; Ahern, Kelly; LaVail, Matthew M.

    2016-01-01

    RHO (Rod opsin) encodes a G-protein coupled receptor that is expressed exclusively by rod photoreceptors of the retina and forms the essential photopigment, rhodopsin, when coupled with 11-cis-retinal. Many rod opsin disease mutations cause rod opsin protein misfolding and trigger endoplasmic reticulum (ER) stress, leading to activation of the Unfolded Protein Response (UPR) signal transduction network. Chop is a transcriptional activator that is induced by ER stress and promotes cell death in response to chronic ER stress. Here, we examined the role of Chop in transgenic mice expressing human P23H rhodopsin (hP23H Rho Tg) that undergo retinal degeneration. With the exception of one time point, we found no significant induction of Chop in these animals and no significant change in retinal degeneration by histology and electrophysiology when hP23H Rho Tg animals were bred into a Chop−/− background. Our results indicate that Chop does not play a significant causal role during retinal degeneration in these animals. We suggest that other modules of the ER stress-induced UPR signaling network may be involved photoreceptor disease induced by P23H rhodopsin. PMID:26427410

  18. Diversity of color vision: not all Australian marsupials are trichromatic.

    PubMed

    Ebeling, Wiebke; Natoli, Riccardo C; Hemmi, Jan M

    2010-01-01

    Color vision in marsupials has recently emerged as a particularly interesting case among mammals. It appears that there are both dichromats and trichromats among closely related species. In contrast to primates, marsupials seem to have evolved a different type of trichromacy that is not linked to the X-chromosome. Based on microspectrophotometry and retinal whole-mount immunohistochemistry, four trichromatic marsupial species have been described: quokka, quenda, honey possum, and fat-tailed dunnart. It has, however, been impossible to identify the photopigment of the third cone type, and genetically, all evidence so far suggests that all marsupials are dichromatic. The tammar wallaby is the only Australian marsupial to date for which there is no evidence of a third cone type. To clarify whether the wallaby is indeed a dichromat or trichromatic like other Australian marsupials, we analyzed the number of cone types in the "dichromatic" wallaby and the "trichromatic" dunnart. Employing identical immunohistochemical protocols, we confirmed that the wallaby has only two cone types, whereas 20-25% of cones remained unlabeled by S- and LM-opsin antibodies in the dunnart retina. In addition, we found no evidence to support the hypothesis that the rod photopigment (rod opsin) is expressed in cones which would have explained the absence of a third cone opsin gene. Our study is the first comprehensive and quantitative account of color vision in Australian marsupials where we now know that an unexpected diversity of different color vision systems appears to have evolved. PMID:21151905

  19. The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus).

    PubMed Central

    Wilkie, S E; Vissers, P M; Das, D; Degrip, W J; Bowmaker, J K; Hunt, D M

    1998-01-01

    Microspectrophotometric (msp) studies have shown that the colour-vision system of many bird species is based on four pigments with absorption peaks in the red, green, blue and UV regions of the spectrum. The existence of a fourth pigment (UV) is the major difference between the trichromacy of humans and the tetrachromacy of such birds, and recent studies have shown that it may play a determining role in such diverse aspects of behaviour as mate selection and detection of food. Avian visual pigments are composed of an opsin protein covalently bound via a Schiff-base linkage to the chromophore 11-cis-retinal. Here we report the cDNA sequence of a UV opsin isolated from an avian species, Melopsittacus undulatus (budgerigar or small parakeet). This sequence has been expressed using the recombinant baculovirus system; the pigment generated from the expressed protein on addition of 11-cis-retinal yielded an absorption spectrum typical of a UV photopigment, with lambdamax 365+/-3 nm. This is the first UV opsin from an avian species to be sequenced and expressed in a heterologous system. In situ hybridization of this sequence to budgerigar retinas selectively labelled a sub-set of UV cones, representing approx. 9% of the total cone population, that are distributed in a semi-regular pattern across the entire retina. PMID:9461554

  20. Making Sense of Optogenetics

    PubMed Central

    Guru, Akash; Post, Ryan J; Ho, Yi-Yun

    2015-01-01

    This review, one of a series of articles, tries to make sense of optogenetics, a recently developed technology that can be used to control the activity of genetically-defined neurons with light. Cells are first genetically engineered to express a light-sensitive opsin, which is typically an ion channel, pump, or G protein–coupled receptor. When engineered cells are then illuminated with light of the correct frequency, opsin-bound retinal undergoes a conformational change that leads to channel opening or pump activation, cell depolarization or hyperpolarization, and neural activation or silencing. Since the advent of optogenetics, many different opsin variants have been discovered or engineered, and it is now possible to stimulate or inhibit neuronal activity or intracellular signaling pathways on fast or slow timescales with a variety of different wavelengths of light. Optogenetics has been successfully employed to enhance our understanding of the neural circuit dysfunction underlying mood disorders, addiction, and Parkinson’s disease, and has enabled us to achieve a better understanding of the neural circuits mediating normal behavior. It has revolutionized the field of neuroscience, and has enabled a new generation of experiments that probe the causal roles of specific neural circuit components. PMID:26209858

  1. Transcriptome profiling of developing photoreceptor subtypes reveals candidate genes involved in avian photoreceptor diversification

    PubMed Central

    Enright, Jennifer M.; Lawrence, Karen A.; Hadzic, Tarik; Corbo, Joseph C.

    2015-01-01

    Avian photoreceptors are a diverse class of neurons, comprised of four single cones, the two members of the double cone, and rods. The signaling events and transcriptional regulators driving the differentiation of these diverse photoreceptors are currently unknown. In addition, many distinctive features of photoreceptor subtypes, including spectral tuning, oil droplet size and pigmentation, synaptic targets and spatial patterning, have been well characterized, but the molecular mechanisms underlying these attributes have not been explored. To identify genes specifically expressed in distinct chicken (Gallus gallus) photoreceptor subtypes, we developed fluorescent reporters that label photoreceptor subpopulations, isolated these subpopulations using fluorescence-activated cell sorting and subjected them to next-generation sequencing. By comparing the expression profiles of photoreceptors labeled with rhodopsin, red opsin, green opsin, and violet opsin reporters, we have identified hundreds of differentially expressed genes that may underlie the distinctive features of these photoreceptor subtypes. These genes are involved in a variety of processes, including phototransduction, transcriptional regulation, cell adhesion, maintenance of intra- and extra-cellular structure, and metabolism. Of particular note are a variety of differentially expressed transcription factors, which may drive and maintain photoreceptor diversity, and cell adhesion molecules that may mediate spatial patterning of photoreceptors and act to establish retinal circuitry. These analyses provide a framework for future studies that will dissect the role of these various factors in the differentiation of avian photoreceptor subtypes. PMID:25349106

  2. Non-invasive activation of optogenetic actuators

    NASA Astrophysics Data System (ADS)

    Birkner, Elisabeth; Berglund, Ken; Klein, Marguerita E.; Augustine, George J.; Hochgeschwender, Ute

    2014-03-01

    The manipulation of genetically targeted neurons with light (optogenetics) continues to provide unprecedented avenues into studying the function of the mammalian brain. However, potential translation into the clinical arena faces a number of significant hurdles, foremost among them the need for insertion of optical fibers into the brain to deliver light to opsins expressed on neuronal membranes. In order to overcome these hardware-related problems, we have developed an alternative strategy for delivering light to opsins which does not involve fiber implants. Rather, the light is produced by a protein, luciferase, which oxidizes intravenously applied substrate, thereby emitting bioluminescence. In proof-ofprinciple studies employing a fusion protein of a light-generating luciferase to a light-sensing opsin (luminopsin), we showed that light emitted by Gaussia luciferase is indeed able to activate channelrhodopsin, allowing modulation of neuronal activity when expressed in cultured neurons. Here we assessed applicability of the concept in vivo in mice expressing luminopsins from viral vectors and from genetically engineered transgenes. The experiments demonstrate that intravenously applied substrate reaches neurons in the brain, causing the luciferase to produce bioluminescence which can be imaged in vivo, and that activation of channelrhodopsin by bioluminescence is sufficient to affect behavior. Further developments of such technology based on combining optogenetics with bioluminescence - i.e. combining lightsensing molecules with biologically produced light through luciferases - should bring optogenetics closer to clinical applications.

  3. Photosensitivities of rhodopsin mutants with a displaced counterion.

    PubMed

    Tsutsui, Kei; Shichida, Yoshinori

    2010-11-30

    Visual pigments consist of a protein moiety opsin and an 11-cis-retinal chromophore that is covalently bound to the opsin via a Schiff base linkage. They have a high photosensitivity, which can be attributed to the high probability of photon absorption and the high photoisomerization quantum yield of the retinal chromophore. Both of these parameters are regulated by the opsin, though the precise mechanism is unknown. We previously found that counterion residue E113, which stabilizes the proton on the Schiff base, is involved in the efficient photoisomerization in vertebrate visual pigments. To test the positional effect of the counterion on the photon absorption and the photoisomerization, we measured the photosensitivities of a set of mutants of bovine rhodopsin in which the counterion was displaced to position 90, 94, 117, or 292. The molar extinction coefficient was reduced in many of the mutants, leading to reductions in the photosensitivity for monochromatic lights. However, the oscillator strength, the probability of photon absorption integrated over the entire wavenumber range of the absorption band, was relatively similar among the mutants and the wild type. In addition, the quantum yields of the mutants were not markedly different from that of the wild type. These results indicate that the counterion does not need to be located at position 113 for a high photosensitivity for natural light. Interestingly, all of the mutants exhibited greatly increased hydroxylamine sensitivity. This result suggests that the counterion in vertebrate visual pigments is optimally located for the stability of the Schiff base linkage. PMID:21038858

  4. Identification of DES1 as a Vitamin A Isomerase in Müller Glial Cells of the Retina

    PubMed Central

    Kaylor, Joanna J.; Yuan, Quan; Cook, Jeremy; Sarfare, Shanta; Makshanoff, Jacob; Miu, Anh; Kim, Anita; Kim, Paul; Habib, Samer; Roybal, C. Nathaniel; Xu, Tongzhou; Nusinowitz, Steven; Travis, Gabriel H.

    2012-01-01

    Absorption of a light particle by an opsin-pigment causes photoisomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the resulting apo-opsin requires chemical re-isomerization of the photobleached chromophore. This is carried out by a multistep enzyme pathway called the visual cycle. Accumulating evidence suggests the existence of an alternate visual cycle for regenerating opsins in daylight. Here, we identified dihydroceramide desaturase-1 (DES1) as a retinol isomerase and an excellent candidate for isomerase-2 in this alternate pathway. DES1 is expressed in retinal Müller cells where it co-immunoprecipitates with cellular retinaldehyde binding protein (CRALBP). Adenoviral gene therapy with DES1 partially rescued the biochemical and physiological phenotypes in rpe65 −/− mice lacking isomerohydrolase (isomerase-1). Knockdown of DES1 expression by RNA-interference concordantly reduced isomerase-2 activity in cultured Müller cells. Purified DES1 possessed very high isomerase-2 activity in the presence of appropriate cofactors, suggesting that DES1 by itself is sufficient for isomerase activity. PMID:23143414

  5. Transcriptome profiling of developing photoreceptor subtypes reveals candidate genes involved in avian photoreceptor diversification.

    PubMed

    Enright, Jennifer M; Lawrence, Karen A; Hadzic, Tarik; Corbo, Joseph C

    2015-03-01

    Avian photoreceptors are a diverse class of neurons, comprised of four single cones, the two members of the double cone, and rods. The signaling events and transcriptional regulators driving the differentiation of these diverse photoreceptors are largely unknown. In addition, many distinctive features of photoreceptor subtypes, including spectral tuning, oil droplet size and pigmentation, synaptic targets, and spatial patterning, have been well characterized, but the molecular mechanisms underlying these attributes have not been explored. To identify genes specifically expressed in distinct chicken (Gallus gallus) photoreceptor subtypes, we developed fluorescent reporters that label photoreceptor subpopulations, isolated these subpopulations by using fluorescence-activated cell sorting, and subjected them to next-generation sequencing. By comparing the expression profiles of photoreceptors labeled with rhodopsin, red opsin, green opsin, and violet opsin reporters, we have identified hundreds of differentially expressed genes that may underlie the distinctive features of these photoreceptor subtypes. These genes are involved in a variety of processes, including phototransduction, transcriptional regulation, cell adhesion, maintenance of intra- and extracellular structure, and metabolism. Of particular note are a variety of differentially expressed transcription factors, which may drive and maintain photoreceptor diversity, and cell adhesion molecules, which may mediate spatial patterning of photoreceptors and act to establish retinal circuitry. These analyses provide a framework for future studies that will dissect the role of these various factors in the differentiation of avian photoreceptor subtypes. PMID:25349106

  6. Identification and characterization of visual pigments in caecilians (Amphibia: Gymnophiona), an order of limbless vertebrates with rudimentary eyes.

    PubMed

    Mohun, S M; Davies, W L; Bowmaker, J K; Pisani, D; Himstedt, W; Gower, D J; Hunt, D M; Wilkinson, M

    2010-10-15

    In comparison with the other amphibian orders, the Anura (frogs) and Urodela (salamanders), knowledge of the visual system of the snake-like Gymnophiona (caecilians) is relatively sparse. Most caecilians are fossorial with, as far as is known any surface activity occurring mainly at night. They have relatively small, poorly developed eyes and might be expected to possess detectable changes in the spectral sensitivity of their visual pigments. Microspectrophotometry was used to determine the spectral sensitivities of the photoreceptors in three species of caecilian, Rhinatrema bivittatum, Geotrypetes seraphini and Typhlonectes natans. Only rod opsin visual pigment, which may be associated with scotopic (dim light) vision when accompanied by other 'rod-specific' components of the phototransduction cascade, was found to be present. Opsin sequences were obtained from the eyes of two species of caecilian, Ichthyophis cf. kohtaoensis and T. natans. These rod opsins were regenerated in vitro with 11-cis retinal to give pigments with spectral sensitivity peaks close to 500 nm. No evidence for cone photoreception, associated with diurnal and colour vision, was detected using molecular and physiological methods. Additionally, visual pigments are short-wavelength shifted in terms of the maximum absorption of light when compared with other amphibian lineages. PMID:20889838

  7. Arrestin 1 and Cone Arrestin 4 Have Unique Roles in Visual Function in an All-Cone Mouse Retina

    PubMed Central

    Deming, Janise D.; Pak, Joseph S.; Shin, Jung-a; Brown, Bruce M.; Kim, Moon K.; Aung, Moe H.; Lee, Eun-Jin; Pardue, Machelle T.; Craft, Cheryl Mae

    2015-01-01

    Purpose Previous studies discovered cone phototransduction shutoff occurs normally for Arr1−/− and Arr4−/−; however, it is defective when both visual arrestins are simultaneously not expressed (Arr1−/−Arr4−/−). We investigated the roles of visual arrestins in an all-cone retina (Nrl−/−) since each arrestin has differential effects on visual function, including ARR1 for normal light adaptation, and ARR4 for normal contrast sensitivity and visual acuity. Methods We examined Nrl−/−, Nrl−/−Arr1−/−, Nrl−/−Arr4−/−, and Nrl−/−Arr1−/−Arr4−/− mice with photopic electroretinography (ERG) to assess light adaptation and retinal responses, immunoblot and immunohistochemical localization analysis to measure retinal expression levels of M- and S-opsin, and optokinetic tracking (OKT) to measure the visual acuity and contrast sensitivity. Results Study results indicated that Nrl−/− and Nrl−/−Arr4−/− mice light adapted normally, while Nrl−/−Arr1−/− and Nrl−/−Arr1−/−Arr4−/− mice did not. Photopic ERG a-wave, b-wave, and flicker amplitudes followed a general pattern in which Nrl−/−Arr4−/− amplitudes were higher than the amplitudes of Nrl−/−, while the amplitudes of Nrl−/−Arr1−/− and Nrl−/−Arr1−/−Arr4−/− were lower. All three visual arrestin knockouts had faster implicit times than Nrl−/− mice. M-opsin expression is lower when ARR1 is not expressed, while S-opsin expression is lower when ARR4 is not expressed. Although M-opsin expression is mislocalized throughout the photoreceptor cells, S-opsin is confined to the outer segments in all genotypes. Contrast sensitivity is decreased when ARR4 is not expressed, while visual acuity was normal except in Nrl−/−Arr1−/−Arr4−/−. Conclusions Based on the opposite visual phenotypes in an all-cone retina in the Nrl−/−Arr1−/− and Nrl−/−Arr4−/− mice, we conclude that ARR1 and ARR4 perform unique

  8. The Living With a Star Space Environment Testbeds

    NASA Astrophysics Data System (ADS)

    Brewer, D.; Barth, J.; Label, K.

    The Living With a Star (LWS) Space Environment Testbeds (SET) are a series of projects that contain investigations that collect data in space and use it to provide products that improve the engineering approach to accommodate and/or mitigate the effects of solar variability on spacecraft design and operations. The improvements reduce requirements for design and operations margins to account for the uncertainties in the space environment and its effects. Reducing the requirements will increase the payload fraction, permit the use of a smaller launch vehicle (thereby reducing mission cost), and/or enable routine operations in new segments of the environment (such as middle Earth orbit, the region from 2000 km to 10,000 km) at costs similar to those for operations below 2000 km. A new SET project starts about very two years when investigations are selected. Five categories of investigations included in SET projects are: (1) Characterization of the space environment in the presence of a spacecraft; (2) Definition of the mechanisms for materials' degradation and the performance characterization of materials designed for shielding from ionizing radiation; (3) Accommodation and/or mitigation of space environment effects for detectors/sensors; (4) Performance improvement methodology for microelectronics used in space; and, (5) Accommodation and/or mitigation of charging/discharging effects on spacecraft and spacecraft components. All SET projects use secondary access to space and partnering to leverage resources. An overview of the SET segment of the LWS program will be presented.

  9. [Current views on vision of mammals].

    PubMed

    Khokhlova, T V

    2012-01-01

    In the review, research data are presented on mammals' vision including visual pigments, color and contrast vision, and visual behaviour in different species. It is shown that in course of evolution mammals were gradually losing the elements of daylight cone vision system that are typical of other vertebrates. In monotremes, visual pigments SWS2 (cone blue-sensitive 2) and MWS/LWS (green/red-sensitive) are still present, as well as rod RH1. Theria, except some primates, also have two cone visual pigments: SWS1 (ultraviolet/violet or blue-sensitive 1) and MWS/LWS along with rod RH1. Humans and some other higher primates evolved the new visual pigment, MWS, and acquired trichromatic vision. Marine mammals (cetaceans and pinnipeds) and some species of other orders have lost also the visual pigment SWS1, probably due to specificity of processing the information received by these cones. Current view on mammals' vision with two cone pigments and rods is presented. Data on maximum spectral sensitivity of visual pigments in different species and orders are given along with data on spatial contrast sensation. High visual acuity has been acquired by ungulates, artiodactyls, and primates, while the highest one--by humans with their specialized fovea. PMID:23330397

  10. Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet.

    PubMed

    Destgeer, Ghulam; Ha, Byunghang; Park, Jinsoo; Sung, Hyung Jin

    2016-04-01

    We demonstrate an acoustofluidic device using Lamb waves (LWs) to manipulate polystyrene (PS) microparticles suspended in a sessile droplet of water. The LW-based acoustofluidic platform used in this study is advantageous in that the device is actuated over a range of frequencies without changing the device structure or electrode pattern. In addition, the device is simple to operate and cheap to fabricate. The LWs, produced on a piezoelectric substrate, attenuate inside the fluid and create acoustic streaming flow (ASF) in the form of a poloidal flow with toroidal vortices. The PS particles experience direct acoustic radiation force (ARF) in addition to being influenced by the ASF, which drive the concentration of particles to form a ring. This phenomenon was previously attributed to the ASF alone, but the present experimental results confirm that the ARF plays an important role in forming the particle ring, which would not be possible in the presence of only the ASF. We used a range of actuation frequencies (45-280 MHz), PS particle diameters (1-10 μm), and droplet volumes (5, 7.5, and 10 μL) to experimentally demonstrate this phenomenon. PMID:26937678

  11. Draft Science Topics for ROSES 2017 NASA Living with a Star Targeted Research and Technology Program

    NASA Astrophysics Data System (ADS)

    Linton, Mark; Zesta, Eftyhia

    2016-05-01

    The NASA Living with a Star Targeted Research and Technology (LWS TR&T) steering committee would like to present a draft of the TR&T science topics being developed for ROSES 2017 to the science community for comment at this conference. These topics will be drafted before this conference at the May 2016 steering committee meeting, based on community input and LWS TR&T goals. The committee is seeking community comment on these draft topics before the topics are finalized at the committee's summer meeting and sent to NASA in the committee's 2016 report. The full text of these draft topics will be presented at this poster, and we aim to hold a town hall for community discussion of these topics during this conference. Please see http://lwstrt.gsfc.nasa.gov for more information on the TR&T program, the steering committee and the draft topics.This work was supported by the NASA Living with a Star program.

  12. The Objectives of NASA's Living with a Star Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; LaBel, Kenneth A.; Brewer, Dana; Kauffman, Billy; Howard, Regan; Griffin, Geoff; Day, John H. (Technical Monitor)

    2001-01-01

    NASA is planning to fly a series of Space Environment Testbeds (SET) as part of the Living With A Star (LWS) Program. The goal of the testbeds is to improve and develop capabilities to mitigate and/or accommodate the affects of solar variability in spacecraft and avionics design and operation. This will be accomplished by performing technology validation in space to enable routine operations, characterize technology performance in space, and improve and develop models, guidelines and databases. The anticipated result of the LWS/SET program is improved spacecraft performance, design, and operation for survival of the radiation, spacecraft charging, meteoroid, orbital debris and thermosphere/ionosphere environments. The program calls for a series of NASA Research Announcements (NRAs) to be issued to solicit flight validation experiments, improvement in environment effects models and guidelines, and collateral environment measurements. The selected flight experiments may fly on the SET experiment carriers and flights of opportunity on other commercial and technology missions. This paper presents the status of the project so far, including a description of the types of experiments that are intended to fly on SET-1 and a description of the SET-1 carrier parameters.

  13. Influence of molecular weight of chemically sulfated citrus pectin fractions on their antithrombotic and bleeding effects.

    PubMed

    Cipriani, Thales R; Gracher, Ana Helena P; de Souza, Lauro M; Fonseca, Roberto J C; Belmiro, Celso L R; Gorin, Philip A J; Sassaki, Guilherme L; Iacomini, Marcello

    2009-05-01

    Evaluated were the anticoagulant and antithrombotic activities, and bleeding effect of two chemically sulfated polysaccharides, obtained from citric pectin, with different average molar masses. Both low-molecular-weight (Pec-LWS, 3,600 g/mol) and high-molecular-weight sulfated pectins (Pec-HWS, 12,000 g/mol) had essentially the same structure, consisting of a (1-->4)-linked alpha-D-GalpA chain with almost all its HO-2 and HO-3 groups substituted by sulfate. Both polysaccharides had anticoagulant activity in vitro, although Pec-HWS was a more potent antithrombotic agent in vivo, giving rise to total inhibition of venous thrombosis at a dose of 3.5 mg/kg body weight. Surprisingly, in contrast with heparin, Pec-HWS and Pec-LWS are able to directly inhibit alpha-thrombin and factor Xa by a mechanism independent of antithrombin (AT) and/or heparin co-factor II (HCII). Moreover, Pec-HWS provided a lower risk of bleeding than heparin at a dose of 100% effectiveness against venous thrombosis, indicating it to be a promising antithrombotic agent. PMID:19404539

  14. Dust processing in the Carina nebula region

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Mori, Tamami I.; Okada, Yoko

    2015-10-01

    Dust processing in the Carina nebula is investigated based on mid- to far-infrared spectroscopy with Infrared Space Observatory (ISO). Mapping observations over a central 40‧ ×20‧ area of the nebula with PHT-S, SWS, and LWS onboard ISO not only reveal spectroscopically that the mid-infrared unidentified infrared (UIR) bands at 6.2, 7.7, 8.6, and 11.3 μm are absent in the ionized region, but also indicate that the 11.3 μm may behave differently from the other three UIR bands near the edge of the ionized region, suggesting a variation either in the size distribution or in the ionization fraction of the band carriers. The correlation of [NII]122 μm and [SiII]35 μm line emissions observed with SWS and LWS is reinvestigated based on the recent atomic data as well as the latest cosmic abundance, suggesting that a large fraction (> 70%), if not all, of silicon returns to the gas phase in the Carina nebula, suggesting that silicates cannot survive under harsh conditions, such as massive star-forming regions. The present observations clearly show dust processing taking place in active regions in the Galaxy.

  15. O-bearing Molecules in Carbon-rich Proto-Planetary Objects: Study of CRL 618

    NASA Astrophysics Data System (ADS)

    Herpin, F.; Cernicharo, J.

    2001-08-01

    We present ISO LWS observations of the proto-planetary nebula CRL 618, AFGL 618 a star evolving very fast to the planetary nebula stage. In addition to the lines of COd, COt, HCN and HNC, we report on the detection of water and OH emission together with the fine structure lines of [OI] at 63 and 145 microns. We suggest that O-bearing species other than CO are produced in the innermost region of the circumstellar envelope. The UV photons from the central star photodissociate most of the molecular species produced in the AGB phase and allow a chemistry dominated by standard ion-neutral reactions. Not only allow these reactions the formation of O-bearing species, but they also modify the abundances of C-rich molecules like HCN and HNC for which we found an abundance ratio of ≍ 1, much lower than in AGB stars. The molecular abundances in the different regions of the circumstellar envelope have been derived from radiative transfer models and our knowledge of its physical structure. Furthermore, we compare ISO LWS observations of three C-rich objects typical of each step of the fast transition of an AGB star to the Planetay Nebula stage: CRL 2688, AFGL 2688 a very young Proto-Planetary Nebula, CRL 618 a Proto-Planetary Nebula, and NGC 7027 a young Planetary Nebula.

  16. Evolution of the stimulated Raman scattering instability in two-dimensional particle-in-cell simulations

    SciTech Connect

    Masson-Laborde, P. E.; Casanova, M.; Loiseau, P.; Rozmus, W.; Peng, Z.; Pesme, D.; Hueller, S.; Chapman, T.; Bychenkov, V. Yu.

    2010-09-15

    In the following work, we analyze one-dimensional (1D) and two-dimensional (2D) full particle-in-cell simulations of stimulated Raman scattering (SRS) and study the evolution of Langmuir waves (LWs) in the kinetic regime. It is found that SRS reflectivity becomes random due to a nonlinear frequency shift and that the transverse modulations of LWs are induced by (i) the Weibel instability due to the current of trapped particles and (ii) the trapped particle modulational instability (TPMI) [H. Rose, Phys. Plasmas 12, 12318 (2005)]. Comparisons between 1D and 2D cases indicate that the nonlinear frequency shift is responsible for the first saturation of SRS. After this transient interval of first saturation, 2D effects become important: a strong side-scattering of the light, caused by these transverse modulations of the LW and the presence of a nonlinear frequency shift, is observed together with a strong transverse diffusion. This leads to an increase of the Landau damping rate of the LW, contributing to the limiting of Raman backscattering. A model is developed that reproduces the transverse evolution of the magnetic field due to trapped particles. Based on a simple 1D hydrodynamic model, the growth rate for the Weibel instability of the transverse electrostatic mode and magnetic field is estimated and found to be close to the TPMI growth rate [H. Rose et al., Phys. Plasmas 15, 042311 (2008)].

  17. Current Status on NASA's Living With a Star Program

    NASA Astrophysics Data System (ADS)

    Guhathakurta, M.; Stcyr, O. C.

    Living With a Star is a space weather-focused and application-driven research program. Its goal is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun-Earth system that directly affect life and society. This program is part of the Sun-Earth Connection (SEC) theme within the office of Space Science. Living With a Star is a cross-cutting program whose goals and objectives have the following links to each of the four NASA Strategic Enterprises: Space Science: LWS quantifies the physics, dynamics, and behavior of the only stellar/planetary system we can see at a close distance. Earth Science: LWS improves understanding of the effects of solar variability and disturbances on terrestrial climate change. Human Space Flight: LWS provides data and scientific understanding required for advanced warning of energetic particle events that affect the safety of humans in space. Aeronautics and Space Transportation: LWS provides detailed characterization of radiation environments useful in the design of more reliable electronic components for air and space transportation system. LWS Program is implemented by a sequence of inter-related science missions, space environment test bed and targeted research and technology. 1) A space weather research network of spacecraft will provide continuous observations of the Sun-Earth system for interlocking, dual use, scientific and applications research. Flight of a Solar Dynamics Observatory (launch 2008) to: - Probe solar interior, especially region where the dynamo is located, vs time to unravel physics of ``engine'' driving solar variability. -Track, for first time, solar active regions/solar storm regions simultaneously above and below solar surface to understand development and triggering of explosive events (Flares, Coronal Mass Ejections). Flight of Solar Sentinels, launch before and around next solar max to provide global view of the heliosphere, track solar active regions over

  18. Southern White English: The Changing Verb Phrase.

    ERIC Educational Resources Information Center

    Feagin, Louise Crawford

    In a sociolinguistic study of the verb phrase in Southern White English, a pattern of change in progress was observed. The 14 variables studied showed that certain variants were increasing, others decreasing, and yet others stable across time within the community, and that each variable's change was progressing in a wave sensitive to age, social…

  19. Ciliary photoreceptors in the cerebral eyes of a protostome larva

    PubMed Central

    2011-01-01

    Background Eyes in bilaterian metazoans have been described as being composed of either ciliary or rhabdomeric photoreceptors. Phylogenetic distribution, as well as distinct morphologies and characteristic deployment of different photopigments (ciliary vs. rhabdomeric opsins) and transduction pathways argue for the co-existence of both of these two photoreceptor types in the last common bilaterian ancestor. Both receptor types exist throughout the Bilateria, but only vertebrates are thought to use ciliary photoreceptors for directional light detection in cerebral eyes, while all other invertebrate bilaterians studied utilize rhabdomeric photoreceptors for this purpose. In protostomes, ciliary photoreceptors that express c-opsin have been described only from a non-visual deep-brain photoreceptor. Their homology with vertebrate rods and cones of the human eye has been hypothesized to represent a unique functional transition from non-visual to visual roles in the vertebrate lineage. Results To test the hypothesis that protostome cerebral eyes employ exclusively rhabdomeric photoreceptors, we investigated the ultrastructure of the larval eyes in the brachiopod Terebratalia transversa. We show that these pigment-cup eyes consist of a lens cell and a shading pigment cell, both of which are putative photoreceptors, deploying a modified, enlarged cilium for light perception, and have axonal connections to the larval brain. Our investigation of the gene expression patterns of c-opsin, Pax6 and otx in these eyes confirms that the larval eye spots of brachiopods are cerebral eyes that deploy ciliary type photoreceptors for directional light detection. Interestingly, c-opsin is also expressed during early embryogenesis in all potential apical neural cells, becoming restricted to the anterior neuroectoderm, before expression is initiated in the photoreceptor cells of the eyes. Coincident with the expression of c-opsin in the presumptive neuroectoderm, we found that middle

  20. Infra-red rubidium atomic resonant filters for low wavenumber scattering

    NASA Astrophysics Data System (ADS)

    Tang, Zhen

    2001-07-01

    This dissertation presents new approaches for low wavenumber scattering (LWS) based on infra-red rubidium filters, including blocking filters, dispersion filters, and passband filters. LWS is scattering of light with a small frequency change, such as rotational Raman scattering and Thomson scattering, which enables the measurement of species specific properties. The rubidium filters are used in conjunction with a tunable, pulsed Ti:sapphire laser to suppress background scattering and to achieve high resolution at low wavenumbers. The blocking filter is demonstrated to capture backward Thomson scattering as a single-ended diagnostic tool. The density gradient dispersion filter represents a new approach which is very promising for high dispersion, high collection efficiency Raman measurements. The passband filter extends recent work for high resolution Raman spectroscopy in the ultra-violet into the infra- red. The Ti:sapphire laser employs a grazing incidence cavity and a quadruple amplifier. It produces 10 nsec, 40 mJ/ pulse, 5~10 GHz linewidth, tunable output around 780 nm with less than 10-5 of amplified spontaneous emission. Wavelength calibration is achieved by newly obtained one and two photon optogalvanic spectroscopy of argon and neon. The first diagnostic approach uses a rubidium notch blocking filter to suppress elastic scattering from the laser. The filter application is demonstrated by capturing LWS from oxygen gas and solid sulfur, and backward Thomson scattering from an argon plasma in the infra-red region. Electron temperature and electron density in the plasma have been obtained by fitting to a theoretical model. The second approach introduces a new density gradient dispersion filter, designed for simultaneously rejecting the stray light and capturing multiple rotational Raman lines. This filter, which is based on the variation of refractive index near resonance, has a higher dispersion power than gratings at low wavenumbers. Pure rotational Raman

  1. Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue.

    PubMed

    Koyanagi, Mitsumasa; Takada, Eiichiro; Nagata, Takashi; Tsukamoto, Hisao; Terakita, Akihisa

    2013-03-26

    Most opsins selectively bind 11-cis retinal as a chromophore to form a photosensitive pigment, which underlies various physiological functions, such as vision and circadian photoentrainment. Recently, opsin 3 (Opn3), originally called encephalopsin or panopsin, and its homologs were identified in various tissues including brain, eye, and liver in both vertebrates and invertebrates, including human. Because Opn3s are mainly expressed in tissues that are not considered to contain sufficient amounts of 11-cis retinal to form pigments, the photopigment formation ability of Opn3 has been of interest. Here, we report the successful expression of Opn3 homologs, pufferfish teleost multiple tissue opsin (PufTMT) and mosquito Opn3 (MosOpn3) and show that these proteins formed functional photopigments with 11-cis and 9-cis retinals. The PufTMT- and MosOpn3-based pigments have absorption maxima in the blue-to-green region and exhibit a bistable nature. These Opn3 homolog-based pigments activate Gi-type and Go-type G proteins light dependently, indicating that they potentially serve as light-sensitive Gi/Go-coupled receptors. We also demonstrated that mammalian cultured cells transfected with the MosOpn3 or PufTMT became light sensitive without the addition of 11-cis retinal and the photosensitivity retained after the continuous light exposure, showing a reusable pigment formation with retinal endogenously contained in culture medium. Interestingly, we found that the MosOpn3 also acts as a light sensor when constituted with 13-cis retinal, a ubiquitously present retinal isomer. Our findings suggest that homologs of vertebrate Opn3 might function as photoreceptors in various tissues; furthermore, these Opn3s, particularly the mosquito homolog, could provide a promising optogenetic tool for regulating cAMP-related G protein-coupled receptor signalings. PMID:23479626

  2. The role of retinal and extra-retinal photostimulation in reproductive activity in broiler breeder hens.

    PubMed

    Mobarkey, N; Avital, N; Heiblum, R; Rozenboim, I

    2010-05-01

    Photostimulation of retinal photoreceptors, which are sensitive to green light, appears to inhibit reproductive activity in birds, whereas photostimulation of extra-retinal photoreceptors, which are sensitive to red light, accelerates it. The objective of this study was to determine the effect of either retinal or extra-retinal photostimulation on reproductive activities of broiler breeder hens. At 23 wk of age, Cobb hens (N=135) were divided into 9 rooms with individual cages (n=15). At 24 wk of age, 3 rooms were photostimulated (14L:10D) with white light (Control, n=45). Six rooms had 2 parallel lighting systems, red (660 nm) and green (560 nm), which were both on during 6 out of 14 h of the light period. Then, in 3 of these rooms, the green light was turned off and hens were exposed to a total of 14 h of red light (Red, n=45), and in the other 3, the red light was turned off and green lighting continued for a total of 14 h (Green, n=45). The Green group had reduced egg production; reduced plasma concentrations of ovarian steroids; reduced luteinizing hormone (LH)-beta, vasoactive intestinal peptide (VIP), and prolactin mRNA expression; and greater retinal green opsin mRNA expression (P < or = 0.05). The Red group had greater egg production; greater gonadotropin-releasing hormone-I (GnRH-I) and red opsin gene expression in the hypothalamus; and lesser green opsin gene expression in the retina (P < or = 0.05). We suggest that selective photostimulation of extra-retinal photostimulation as opposed to retinal photostimulation is a key factor in the determination of successful reproduction of broiler breeder hens. PMID:20022445

  3. Quantum mechanical/molecular mechanical structure, enantioselectivity, and spectroscopy of hydroxyretinals and insights into the evolution of color vision in small white butterflies.

    PubMed

    Sekharan, Sivakumar; Yokoyama, Shozo; Morokuma, Keiji

    2011-12-29

    Since Vogt's discovery of A(3)-retinal or 3-hydroxyretinal in insects in 1983 and Matsui's discovery of A(4)-retinal or 4-hydroxyretinal in firefly squid in 1988, hydroxyretinal-protein interactions mediating vision have remained largely unexplored. In the present study, A(3)- and A(4)-retinals are theoretically incorporated into squid and bovine visual pigments by use of the hybrid quantum mechanics/molecular mechanics [SORCI+Q//B3LYP/6-31G(d):Amber96] method, and insights into structure, enantioselectivity, and spectroscopy are gathered and presented for the first time. Contrary to general perception, our findings rule out the formation of a hydrogen bond between the hydroxyl-bearing β-ionone ring portion of retinal and opsin. Compared to A(1)-pigments, A(3)- and A(4)-pigments exhibit slightly blue-shifted absorption maxima due to increase in bond-length alternation of the hydroxyretinal. We suggest that (i) the binding site of firefly squid (Watasenia scintillans) opsin is very similar to that of the Japanese common squid (Todarodes pacificus) opsin; (ii) the molecular mechanism of spectral tuning in small white butterflies involve sites S116 and T185 and breaking of a hydrogen bond between sites E180 and T185; and finally (iii) A(3)-retinal may have occurred during the conversion of A(1)- to A(2)-retinal and insects may have acquired them, in order to absorb light in the blue-green wavelength region and to speed up the G-protein signaling cascade. PMID:22087641

  4. Considering the Influence of Nonadaptive Evolution on Primate Color Vision.

    PubMed

    Jacobs, Rachel L; Bradley, Brenda J

    2016-01-01

    Color vision in primates is variable across species, and it represents a rare trait in which the genetic mechanisms underlying phenotypic variation are fairly well-understood. Research on primate color vision has largely focused on adaptive explanations for observed variation, but it remains unclear why some species have trichromatic or polymorphic color vision while others are red-green color blind. Lemurs, in particular, are highly variable. While some species are polymorphic, many closely-related species are strictly dichromatic. We provide the first characterization of color vision in a wild population of red-bellied lemurs (Eulemur rubriventer, Ranomafana National Park, Madagascar) with a sample size (87 individuals; NX chromosomes = 134) large enough to detect even rare variants (0.95 probability of detection at ≥ 3% frequency). By sequencing exon 5 of the X-linked opsin gene we identified opsin spectral sensitivity based on known diagnostic sites and found this population to be dichromatic and monomorphic for a long wavelength allele. Apparent fixation of this long allele is in contrast to previously published accounts of Eulemur species, which exhibit either polymorphic color vision or only the medium wavelength opsin. This unexpected result may represent loss of color vision variation, which could occur through selective processes and/or genetic drift (e.g., genetic bottleneck). To indirectly assess the latter scenario, we genotyped 55 adult red-bellied lemurs at seven variable microsatellite loci and used heterozygosity excess and M-ratio tests to assess if this population may have experienced a recent genetic bottleneck. Results of heterozygosity excess but not M-ratio tests suggest a bottleneck might have occurred in this red-bellied lemur population. Therefore, while selection may also play a role, the unique color vision observed in this population might have been influenced by a recent genetic bottleneck. These results emphasize the need to

  5. Effect of 11-Cis 13-Demethylretinal on Phototransduction in Bleach-Adapted Rod and Cone Photoreceptors

    PubMed Central

    Corson, D.Wesley; Kefalov, Vladimir J.; Cornwall, M. Carter; Crouch, Rosalie K.

    2000-01-01

    We used 11-cis 13-demethylretinal to examine the physiological consequences of retinal's noncovalent interaction with opsin in intact rod and cone photoreceptors during visual pigment regeneration. 11-Cis 13-demethylretinal is an analog of 11-cis retinal in which the 13 position methyl group has been removed. Biochemical experiments have shown that it is capable of binding in the chromophore pocket of opsin, forming a Schiff-base linkage with the protein to produce a pigment, but at a much slower rate than the native 11-cis retinal (Nelson, R., J. Kim deReil, and A. Kropf. 1970. Proc. Nat. Acad. Sci. USA. 66:531–538). Experimentally, this slow rate of pigment formation should allow separate physiological examination of the effects of the initial binding of retinal in the pocket and the subsequent formation of the protonated Schiff-base linkage. Currents from solitary rods and cones from the tiger salamander were recorded in darkness before and after bleaching and then after exposure to 11-cis 13-demethylretinal. In bleach-adapted rods, 11-cis 13-demethylretinal caused transient activation of phototransduction, as evidenced by a decrease of the dark current and sensitivity, acceleration of the dim flash responses, and activation of cGMP phosphodiesterase and guanylyl cyclase. The steady state of phototransduction activity was still higher than that of the bleach-adapted rod. In contrast, exposure of bleach-adapted cones to 11-cis 13-demethylretinal resulted in an immediate deactivation of transduction as measured by the same parameters. These results extend the validity of a model for the effects of the noncovalent binding of a retinoid in the chromophore pockets of rod and cone opsins to analogs capable of forming a Schiff-base and imply that the noncovalent binding by itself may play a role for the dark adaptation of photoreceptors. PMID:10919871

  6. Characterization of the primary photointermediates of Drosophila rhodopsin.

    PubMed

    Vought, B W; Salcedo, E; Chadwell, L V; Britt, S G; Birge, R R; Knox, B E

    2000-11-21

    Invertebrate opsins are unique among the visual pigments because the light-activated conformation, metarhodopsin, is stable following exposure to light in vivo. Recovery of the light-activated pigment to the dark conformation (or resting state) occurs either thermally or photochemically. There is no evidence to suggest that the chromophore becomes detached from the protein during any stage in the formation or recovery processes. Biochemical and structural studies of invertebrate opsins have been limited by the inability to express and purify rhodopsins for structure-function studies. In this study, we used Drosophila to produce an epitope-tagged opsin, Rh1-1D4, in quantities suitable for spectroscopic and photochemical characterization. When expressed in Drosophila, Rh1-1D4 is localized to the rhabdomere membranes, has the same spectral properties in vivo as wild-type Rh1, and activates the phototransduction cascade in a normal manner. Purified Rh1-1D4 visual pigment has an absorption maximum of the dark-adapted state of 474 nm, while the metarhodopsin absorption maximum is 572 nm. However, the metarhodopsin state is not stable as purified in dodecyl maltoside but decays with kinetics that require a double-exponential fit having lifetimes of 280 and 2700 s. We investigated the primary properties of the pigment at low temperature. At 70 K, the pigment undergoes a temperature-induced red shift to 486 nm. Upon illumination with 435 nm light, a photostationary state mixture is formed consisting of bathorhodopsin (lambda(max) = 545 nm) and isorhodopsin (lambda(max) = 462 nm). We also compared the spectroscopic and photochemical properties of this pigment with other vertebrate pigments. We conclude that the binding site of Drosophila rhodopsin is similar to that of bovine rhodopsin and is characterized by a protonated Schiff base chromophore stabilized via a single negatively charged counterion. PMID:11087361

  7. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.

    PubMed

    Hight, Ariel Edward; Kozin, Elliott D; Darrow, Keith; Lehmann, Ashton; Boyden, Edward; Brown, M Christian; Lee, Daniel J

    2015-04-01

    Contemporary auditory brainstem implant (ABI) performance is limited by reliance on electrical neurostimulation with its accompanying channel cross talk and current spread to non-auditory neurons. A new generation ABI based on optogenetic technology may ameliorate limitations fundamental to electrical stimulation. The most widely studied opsin is channelrhodopsin-2 (ChR2); however, its relatively slow kinetic properties may prevent the encoding of auditory information at high stimulation rates. In the present study, we compare the temporal resolution of light-evoked responses of ChR2 to a recently developed fast opsin, Chronos, to ChR2 in a murine ABI model. Viral mediated gene transfer via a posterolateral craniotomy was used to express Chronos or ChR2 in the cochlear nucleus (CN). Following a four to eight week incubation period, blue light (473 nm) was delivered via an optical fiber placed directly on the surface of the infected CN, and neural activity was recorded in the contralateral inferior colliculus (IC). Both ChR2 and Chronos evoked sustained responses to all stimuli, even at high pulse rates. In addition, optical stimulation evoked excitatory responses throughout the tonotopic axis of the IC. Synchrony of the light-evoked response to stimulus rates of 14-448 pulses/s was higher in Chronos compared to ChR2 mice (p < 0.05 at 56, 168, and 224 pulses/s). Our results demonstrate that Chronos has the ability to drive the auditory system at higher stimulation rates than ChR2 and may be a more ideal opsin for manipulation of auditory pathways in future optogenetic-based neuroprostheses. This article is part of a Special Issue entitled "Lasker Award". PMID:25598479

  8. Considering the Influence of Nonadaptive Evolution on Primate Color Vision

    PubMed Central

    Jacobs, Rachel L.; Bradley, Brenda J.

    2016-01-01

    Color vision in primates is variable across species, and it represents a rare trait in which the genetic mechanisms underlying phenotypic variation are fairly well-understood. Research on primate color vision has largely focused on adaptive explanations for observed variation, but it remains unclear why some species have trichromatic or polymorphic color vision while others are red-green color blind. Lemurs, in particular, are highly variable. While some species are polymorphic, many closely-related species are strictly dichromatic. We provide the first characterization of color vision in a wild population of red-bellied lemurs (Eulemur rubriventer, Ranomafana National Park, Madagascar) with a sample size (87 individuals; NX chromosomes = 134) large enough to detect even rare variants (0.95 probability of detection at ≥ 3% frequency). By sequencing exon 5 of the X-linked opsin gene we identified opsin spectral sensitivity based on known diagnostic sites and found this population to be dichromatic and monomorphic for a long wavelength allele. Apparent fixation of this long allele is in contrast to previously published accounts of Eulemur species, which exhibit either polymorphic color vision or only the medium wavelength opsin. This unexpected result may represent loss of color vision variation, which could occur through selective processes and/or genetic drift (e.g., genetic bottleneck). To indirectly assess the latter scenario, we genotyped 55 adult red-bellied lemurs at seven variable microsatellite loci and used heterozygosity excess and M-ratio tests to assess if this population may have experienced a recent genetic bottleneck. Results of heterozygosity excess but not M-ratio tests suggest a bottleneck might have occurred in this red-bellied lemur population. Therefore, while selection may also play a role, the unique color vision observed in this population might have been influenced by a recent genetic bottleneck. These results emphasize the need to

  9. Functional and Anatomic Consequences of Subretinal Dosing in the Cynomolgus Macaque

    PubMed Central

    Nork, T. Michael; Murphy, Christopher J.; Kim, Charlene B. Y.; Hoeve, James N. Ver; Rasmussen, Carol A.; Miller, Paul E.; Wabers, Hugh D.; Neider, Michael W.; Dubielzig, Richard R.; McCulloh, Ryan J.; Christian, Brian J.

    2011-01-01

    Objectives To characterize functional and anatomic sequelae of a bleb induced by subretinal injection. Methods Subretinal injections (100 μl) of balance salt solution (BSS) were placed in the superotemporal macula of one eye in 3 cynomolgus macaques. Fellow eyes received intravitreal injections (100 μl) of BSS. Fundus photography, ocular coherence tomography (OCT) and multifocal electroretinography (mfERG) were obtained before and immediately after injection and again at intervals up to 3 months post injection. Histopathologic analyses included transmission electron microscopy (TEM) and immunohistochemistry (IHC) for glial fibrillary acidic protein (GFAP), rhodopsin, M/L-cone opsin and S-cone opsin. Results Retinas were re-attached by 2 days post-injection (by OCT). mfERG was suppressed post-subretinal injection within the subretinal injection bleb and surprisingly, also in regions far peripheral to this region. mfERG amplitudes were nearly completely recovered by 90 days. The spectral domain (SD)-OCT inner segment/outer segment (IS/OS) line had decreased reflectivity at 92 days. GFAP and S-cone staining were unaffected. Rhodopsin and M/L-cone opsins were partially displaced into the inner segments. TEM revealed disorganization of the outer segment rod (but not cone) disks. At all post-injection intervals, eyes with intravitreal injection were similar to baseline. Conclusions Subretinal injection is a promising route for drug delivery to the eye. Three months post subretinal injection, retinal function was nearly recovered, although reorganization of the outer segment rod disk remained disrupted. Understanding the functional and anatomic effects of subretinal injection per se is important for interpretation of the effects of compounds delivered to the subretinal space. Clinical relevance Subretinal injection is a new potential route for drug delivery to the eye. Separating drug effects from the procedural effects per se is critical. PMID:21911651

  10. Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution

    PubMed Central

    Backfisch, Benjamin; Veedin Rajan, Vinoth Babu; Fischer, Ruth M.; Lohs, Claudia; Arboleda, Enrique; Tessmar-Raible, Kristin; Raible, Florian

    2013-01-01

    Research in eye evolution has mostly focused on eyes residing in the head. In contrast, noncephalic light sensors are far less understood and rather regarded as evolutionary innovations. We established stable transgenesis in the annelid Platynereis, a reference species for evolutionary and developmental comparisons. EGFP controlled by cis-regulatory elements of r-opsin, a characteristic marker for rhabdomeric photoreceptors, faithfully recapitulates known r-opsin expression in the adult eyes, and marks a pair of pigment-associated frontolateral eyelets in the brain. Unexpectedly, transgenic animals revealed an additional series of photoreceptors in the ventral nerve cord as well as photoreceptors that are located in each pair of the segmental dorsal appendages (notopodia) and project into the ventral nerve cord. Consistent with a photosensory function of these noncephalic cells, decapitated animals display a clear photoavoidance response. Molecular analysis of the receptors suggests that they differentiate independent of pax6, a gene involved in early eye development of many metazoans, and that the ventral cells may share origins with the Hesse organs in the amphioxus neural tube. Finally, expression analysis of opn4×-2 and opn4m-2, two zebrafish orthologs of Platynereis r-opsin, reveals that these genes share expression in the neuromasts, known mechanoreceptors of the lateral line peripheral nervous system. Together, this establishes that noncephalic photoreceptors are more widespread than assumed, and may even reflect more ancient aspects of sensory systems. Our study marks significant advance for the understanding of photoreceptor cell (PRC) evolution and development and for Platynereis as a functional lophotrochozoan model system. PMID:23284166

  11. Immuno-Histochemical Analysis of Rod and Cone Reaction to RPE65 Deficiency in the Inferior and Superior Canine Retina

    PubMed Central

    Klein, Daniela; Mendes-Madeira, Alexandra; Schlegel, Patrice; Rolling, Fabienne; Lorenz, Birgit; Haverkamp, Silke; Stieger, Knut

    2014-01-01

    Mutations in the RPE65 gene are associated with autosomal recessive early onset severe retinal dystrophy. Morphological and functional studies indicate early and dramatic loss of rod photoreceptors and early loss of S-cone function, while L and M cones remain initially functional. The Swedish Briard dog is a naturally occurring animal model for this disease. Detailed information about rod and cone reaction to RPE65 deficiency in this model with regard to their location within the retina remains limited. The aim of this study was to analyze morphological parameters of cone and rod viability in young adult RPE65 deficient dogs in different parts of the retina in order to shed light on local disparities in this disease. In retinae of affected dogs, sprouting of rod bipolar cell dendrites and horizontal cell processes was dramatically increased in the inferior peripheral part of affected retinae, while central inferior and both superior parts did not display significantly increased sprouting. This observation was correlated with photoreceptor cell layer thickness. Interestingly, while L/M cone opsin expression was uniformly reduced both in the superior and inferior part of the retina, S-cone opsin expression loss was less severe in the inferior part of the retina. In summary, in retinae of young adult RPE65 deficient dogs, the degree of rod bipolar and horizontal cell sprouting as well as of S-cone opsin expression depends on the location. As the human retinal pigment epithelium (RPE) is pigmented similar to the RPE in the inferior part of the canine retina, and the kinetics of photoreceptor degeneration in humans seems to be similar to what has been observed in the inferior peripheral retina in dogs, this area should be studied in future gene therapy experiments in this model. PMID:24466015

  12. Gene Therapy Rescues Cone Structure and Function in the 3-Month-Old rd12 Mouse: A Model for Midcourse RPE65 Leber Congenital Amaurosis

    PubMed Central

    Li, Xia; Li, Wensheng; Dai, Xufeng; Kong, Fansheng; Zheng, Qinxiang; Zhou, Xiangtian; Lü, Fan; Chang, Bo; Rohrer, Bärbel; Hauswirth, William. W.; Qu, Jia; Pang, Ji-jing

    2011-01-01

    Purpose. RPE65 function is necessary in the retinal pigment epithelium (RPE) to generate chromophore for all opsins. Its absence results in vision loss and rapid cone degeneration. Recent Leber congenital amaurosis type 2 (LCA with RPE65 mutations) phase I clinical trials demonstrated restoration of vision on RPE65 gene transfer into RPE cells overlying cones. In the rd12 mouse, a naturally occurring model of RPE65-LCA early cone degeneration was observed; however, some peripheral M-cones remained. A prior study showed that AAV-mediated RPE65 expression can prevent early cone degeneration. The present study was conducted to test whether the remaining cones in older rd12 mice can be rescued. Methods. Subretinal treatment with the scAAV5-smCBA-hRPE65 vector was initiated at postnatal day (P)14 and P90. After 2 months, electroretinograms were recorded, and cone morphology was analyzed by using cone-specific peanut agglutinin and cone opsin–specific antibodies. Results. Cone degeneration started centrally and spread ventrally, with cells losing cone-opsin staining before that for the PNA-lectin–positive cone sheath. Gene therapy starting at P14 resulted in almost wild-type M- and S-cone function and morphology. Delaying gene-replacement rescued the remaining M-cones, and most important, more M-cone opsin–positive cells were identified than were present at the onset of gene therapy, suggesting that opsin expression could be reinitiated in cells with cone sheaths. Conclusions. The results support and extend those of the previous study that gene therapy can stop early cone degeneration, and, more important, they provide proof that delayed treatment can restore the function and morphology of the remaining cones. These results have important implications for the ongoing LCA2 clinical trials. PMID:21169527

  13. QM/MM Structure, Enantioselectivity and Spectroscopy of HydroxyRetinals and Insights into the Evolution of Color Vision in Small White Butterflies

    PubMed Central

    Sekharan, Sivakumar; Yokoyama, Shozo

    2011-01-01

    Since Vogt’s discovery of A3-retinal or 3-hydroxyretinal in insects in 1983 and Matsui’s discovery of A4-retinal or 4-hydroxyretinal in firefly squid in 1988, hydroxyretinal-protein interactions mediating vision remains largely unexplored. In the present study, A3- and A4-retinals are theoretically incorporated into squid and bovine visual pigments using the hybrid quantum mechanics/molecular mechanics (SORCI+Q//B3LYP/6-31G(d):Amber96) method and insights into the structure, enantioselectivity and spectroscopy are gathered and presented for the first time. Contrary to general perception, our findings rule out the formation of hydrogen bond between the hydroxyl-bearing β-ionone ring part of retinal and opsin. Compared to A1-pigments, A3- and A4-pigments exhibit slightly blue-shifted absorption maxima due to increase in bond-length alternation of the hydroxyretinal. We suggest that, (i) The binding site of firefly squid (Watasenia scintillians) opsin is very similar to that of the Japanese common squid (Todarodes pacificus) opsin, (ii) Molecular mechanism of spectral tuning in the small white butterflies involve sites S116, T185 and breaking of hydrogen bond between sites E180 and T185; and finally, (iii) A3-retinal may have occurred during the conversion of A1- to A2-retinal and insects may have acquired them, in order to absorb light in the blue-green wavelength region and to speed up the G-protein signaling cascade. PMID:22087641

  14. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway

    PubMed Central

    Plachetzki, David C.; Fong, Caitlin R.; Oakley, Todd H.

    2010-01-01

    The evolutionary histories of complex traits are complicated because such traits are comprised of multiple integrated and interacting components, which may have different individual histories. Phylogenetic studies of complex trait evolution often do not take this into account, instead focusing only on the history of whole, integrated traits; for example, mapping eyes as simply present or absent through history. Using the biochemistry of animal vision as a model, we demonstrate how investigating the individual components of complex systems can aid in elucidating both the origins and diversification of such systems. Opsin-based phototransduction underlies all visual phenotypes in animals, using complex protein cascades that translate light information into changes in cyclic nucleotide gated (CNG) or canonical transient receptor potential (TRPC) ion-channel activity. Here we show that CNG ion channels play a role in cnidarian phototransduction. Transcripts of a CNG ion channel co-localize with opsin in specific cell types of the eyeless cnidarian Hydra magnipapillata. Further, the CNG inhibitor cis-diltiazem ablates a stereotypical photoresponse in the hydra. Our findings in the Cnidaria, the only non-bilaterian lineage to possess functional opsins, allow us to trace the history of CNG-based photosensitivity to the very origin of animal phototransduction. Our general analytical approach, based on explicit phylogenetic analysis of individual components, contrasts the deep evolutionary history of CNG-based phototransduction, today used in vertebrate vision, with the more recent assembly of TRPC-based systems that are common to protostome (e.g. fly and mollusc) vision. PMID:20219739

  15. Functional diversity of melanopsins and their global expression in the teleost retina.

    PubMed

    Davies, Wayne I L; Zheng, Lei; Hughes, Steven; Tamai, T Katherine; Turton, Michael; Halford, Stephanie; Foster, Russell G; Whitmore, David; Hankins, Mark W

    2011-12-01

    Melanopsin (OPN4) is an opsin photopigment that, in mammals, confers photosensitivity to retinal ganglion cells and regulates circadian entrainment and pupil constriction. In non-mammalian species, two forms of opn4 exist, and are classified into mammalian-like (m) and non-mammalian-like (x) clades. However, far less is understood of the function of this photopigment family. Here we identify in zebrafish five melanopsins (opn4m-1, opn4m-2, opn4m-3, opn4x-1 and opn4x-2), each encoding a full-length opsin G protein. All five genes are expressed in the adult retina in a largely non-overlapping pattern, as revealed by RNA in situ hybridisation and immunocytochemistry, with at least one melanopsin form present in all neuronal cell types, including cone photoreceptors. This raises the possibility that the teleost retina is globally light sensitive. Electrophysiological and spectrophotometric studies demonstrate that all five zebrafish melanopsins encode a functional photopigment with peak spectral sensitivities that range from 470 to 484 nm, with opn4m-1 and opn4m-3 displaying invertebrate-like bistability, where the retinal chromophore interchanges between cis- and trans-isomers in a light-dependent manner and remains within the opsin binding pocket. In contrast, opn4m-2, opn4x-1 and opn4x-2 are monostable and function more like classical vertebrate-like photopigments, where the chromophore is converted from 11-cis to all-trans retinal upon absorption of a photon, hydrolysed and exits from the binding pocket of the opsin. It is thought that all melanopsins exhibit an invertebrate-like bistability biochemistry. Our novel findings, however, reveal the presence of both invertebrate-like and vertebrate-like forms of melanopsin in the teleost retina, and indicate that photopigment bistability is not a universal property of the melanopsin family. The functional diversity of these teleost melanopsins, together with their widespread expression pattern within the retina

  16. Cone photopigment variations in Cebus apella monkeys evidenced by electroretinogram measurements and genetic analysis

    PubMed Central

    Soares, Juliana G.M.; Fiorani, Mario; Araujo, Eduardo A.; Zana, Yossi; Bonci, Daniela M.O.; Neitz, Maureen; Ventura, Dora F.; Gattass, Ricardo

    2011-01-01

    We investigated the color vision pattern in male and female Cebus apella monkeys by means of electroretinogram measurements and genetic analysis. Our objective was to establish a simple, fast and efficient protocol in order to determine the chromatic vision pattern in Cebus monkeys. We found five among ten possible different phenotypes, two trichromats and three dichromats. We also found that Cebus present a new allele with spectral peak near 552 nm, with the amino acid combination SFT at positions 180, 277 and 285 of the opsin gene, in addition to the previously described SYT, AFT and AFA alleles. PMID:19883678

  17. Seeing the light: a photonic visual prosthesis for the blind

    NASA Astrophysics Data System (ADS)

    Degenaar, Patrick; Grossman, Nir; McGovern, Brian; Neil, Mark; Drakakis, Emmanuel; Nikolic, Konstantin

    2009-02-01

    This paper highlights how the genetic incorporation of artificial opsins into the retina can lead to a new class of retinal prosthesis. We demonstrate the efficacy of incorporating channelrhodopsin into neuron cells in-vitro and show how that can be scaled to in-vivo. We show that we need typically 100mW/cm2 of instantaneous light intensity on the neuron in order to stimulate action potentials which results in 10W/cm2 required from the light source. We thus use GaN LED arrays to provide spatially controlled stimulation which is of sufficient brightness to stimulate the cells.

  18. Optobionic vision—a new genetically enhanced light on retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Degenaar, Patrick; Grossman, Nir; Memon, Muhammad Ali; Burrone, Juan; Dawson, Martin; Drakakis, Emmanuel; Neil, Mark; Nikolic, Konstantin

    2009-06-01

    The recent discovery that neurons can be photostimulated via genetic incorporation of artificial opsins is creating a revolution in the field of neural stimulation. In this paper we show its potential in the field of retinal prosthesis. We show that we need typically 100 mW cm-2 in instantaneous light intensity on the neuron in order to stimulate action potentials. We also show how this can be reduced down to safe levels in order to negate thermal and photochromic damage to the eye. We also describe a gallium nitride LED light source which is also able to generate patterns of the required intensity in order to transfer reliable images.

  19. The ecoresponsive genome of Daphnia pulex

    SciTech Connect

    Colbourne, John K.; Pfrender, Michael E.; Gilbert, Donald; Thomas, W. Kelley; Tucker, Abraham; Oakley, Todd H.; Tokishita, Shinichi; Aerts, Andrea; Arnold, Georg J.; Basu, Malay Kumar; Bauer, Darren J.; Caceres, Carla E.; Carmel, Liran; Casola, Claudio; Choi, Jeong-Hyeon; Detter, John C.; Dong, Qunfeng; Dusheyko, Serge; Eads, Brian D.; Frohlich, Thomas; Geiler-Samerotte, Kerry A.; Gerlach, Daniel; Hatcher, Phil; Jogdeo, Sanjuro; Krijgsveld, Jeroen; Kriventseva, Evgenia V; Kültz, Dietmar; Laforsch, Christian; Lindquist, Erika; Lopez, Jacqueline; Manak, Robert; Muller, Jean; Pangilinan, Jasmyn; Patwardhan, Rupali P.; Pitluck, Samuel; Pritham, Ellen J.; Rechtsteiner, Andreas; Rho, Mina; Rogozin, Igor B.; Sakarya, Onur; Salamov, Asaf; Schaack, Sarah; Shapiro, Harris; Shiga, Yasuhiro; Skalitzky, Courtney; Smith, Zachary; Souvorov, Alexander; Sung, Way; Tang, Zuojian; Tsuchiya, Dai; Tu, Hank; Vos, Harmjan; Wang, Mei; Wolf, Yuri I.; Yamagata, Hideo; Yamada, Takuji; Ye, Yuzhen; Shaw, Joseph R.; Andrews, Justen; Crease, Teresa J.; Tang, Haixu; Lucas, Susan M.; Robertson, Hugh M.; Bork, Peer; Koonin, Eugene V.; Zdobnov, Evgeny M.; Grigoriev, Igor V.; Lynch, Michael; Boore, Jeffrey L.

    2011-02-04

    This document provides supporting material related to the sequencing of the ecoresponsive genome of Daphnia pulex. This material includes information on materials and methods and supporting text, as well as supplemental figures, tables, and references. The coverage of materials and methods addresses genome sequence, assembly, and mapping to chromosomes, gene inventory, attributes of a compact genome, the origin and preservation of Daphnia pulex genes, implications of Daphnia's genome structure, evolutionary diversification of duplicated genes, functional significance of expanded gene families, and ecoresponsive genes. Supporting text covers chromosome studies, gene homology among Daphnia genomes, micro-RNA and transposable elements and the 46 Daphnia pulex opsins. 36 figures, 50 tables, 183 references.

  20. Emission of CO, CI, and CII in the spiral arms of M83 and M51

    NASA Astrophysics Data System (ADS)

    Kramer, C.; Mookerjea, B.; Garcia-Burillo, S.; Bayet, E.; Gerin, M.; Israel, F.; Stutzki, J.; Wouterloot, J.

    2005-01-01

    We present a detailed study of photon dominated regions at several spiral arm positions and the centers of the nearby spiral galaxies M51 and M83. For this, we combine all important cooling lines: [CI] 609μm taken at the JCMT with 12CO and 13CO 1-0 and 2-1 lines taken at the IRAM 30m MRT. These transitions are combined with data taken from the literature: ISO/LWS [CII] 158μm, [OI] 63μm, 146μm, and [NII] (122μm) data (Brauher, J., et al. 2004) and mid-J CO lines from (Bayet, E., et al., Dumke, M., et al. 2003, Israel, F., Baas, F., 2002).

  1. Fluxon Modeling of Eruptive Events With and Without Reconnection

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Rachmeler, L.; Davey, A.; Kankelborg, C.

    2007-05-01

    Fluxon MHD models represent the coronal magnetic field as a "skeleton" of discretized field lines. This quasi-Lagrangian approach eliminates numerical resistivity and allows 3-D time-dependent plasma simulation in a desktop workstation.Using our fluxon code, FLUX, we have demonstrated that ideal MHD instabilities can drive fast eruptive events even in the complete absence of magnetic reconnection. The mechanism ("herniation") is probably not the main driver of fast CMEs but may be applicable to microjets, macrospicules, or other small scale events where vortical flows are present in the solar atmosphere. In this presentation, we use time-dependent simulations to demonstrate energy release in several idealized plasma systems with and without magnetic reconnection.This work was funded by NASA's LWS and SHP-SR&T programs.

  2. The NIRSPEC Data Reduction Pipeline for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Tran, Hien D.; Cohen, R.; Mader, J. A.; Colson, A.; Berriman, G. Bruce; Gelino, Christopher R.; KOA Team

    2016-01-01

    The Keck Observatory Archive (KOA), a collaboration between the NASA Exoplanet Science Institute and the W. M. Keck Observatory, serves science and calibration data for all current and retired instruments from the twin Keck Telescopes. In addition to the raw data, we publicly serve quick-look, reduced data products for four instruments (HIRES, LWS, NIRC2 and OSIRIS), so that KOA users can easily assess the quality and scientific content of the data. In this paper we present the design and implementation of the data reduction pipeline (DRP) for the NIRSPEC instrument for use with KOA. We discuss the publicly available reduction packages for NIRSPEC, the challenges encountered when designing this fully automated DRP and the algorithm used to determine wavelength calibration from sky lines. The reduced data products from the NIRSPEC DRP are expected to be available in KOA by mid-2016.

  3. Solar EUV Variability from FISM and SDO/EVE During Solar Minimum, Active, and Flaring Time Periods

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    The Living With a Star (LWS) Focus Science Team has identified three periods of different solar activity levels for which they will be determining the Earth's Ionosphere and Thermosphere response. Not only will the team be comparing individual models (e.g. FLIP, T1MEGCM, GLOW) outcome driven by the various levels of solar activity, but the models themselves will also be compared. These models all rely on the input solar EUV (0.1 -190 nm) irradiance to drive the variability. The Flare Irradiance Spectral Model (FISM) and the EUV Variability Experiment (EVE) onboard provide the Solar Dynamics Observatory (SDO) provide the most accurate quantification of these irradiances. Presented and discussed are how much the solar EUV irradiance changes during these three scenarios, both as a function of activity and wavelength.

  4. Long-wavelength infrared camera (LWIRC): a 10 micron camera for the Keck telescope

    NASA Astrophysics Data System (ADS)

    Wishnow, Edward H.; Danchi, William C.; Tuthill, Peter G.; Wurtz, Ronald E.; Jernigan, J. G.; Arens, John F.

    1998-08-01

    The long wavelength IR camera is a facility instrument for the Keck Observatory designed to operate at the f/25 forward Cassegrain focus of the Keck I telescope. The camera operates over the wavelength band 7-13 micrometers using ZnSe transmissive optics. A set of filters, a circular variable filter, and a mid-IR polarizer are available, as are three plate scales: 0.05 inch, 0.10 inch, 0.12 inch per pixel. The camera focal plane array and optics are cooled using liquid helium. The system has been refurbished with a 128 X 128 pixel Si:As detector array. The electronics readout system used to clock the array is compatible wit both the hardware and software of the other Keck IR instruments NIRC and LWS. A new pre-amplifier/A-D converter has been designed and constructed which decreases greatly the system susceptibility to noise.

  5. Development of a long wavelength spectrometer for the 24-channel multispectral scanner: Instructions for installation, start-up, and adjustment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The basic information is presented, which is required for start-up and operation of two long-wavelength focal-plane and cooler assemblies, including the amplifiers and temperature control systems. The focal plane systems, referred to as the long wavelength spectrometer (LWS) were developed for direct replacement of Arrays 3 and 4 into the multispectral scanner presently being operated by the NASA Manned Spacecraft Center Facility, and Laboratory Support Branch. The equipment is comprised of two major sub-assemblies: Array 3 with three indium antimonide detector channels and Array 4 with seven mercury doped Germanium detector channels. Each array is mounted on a cryogenic cooler and includes the vacuum housings, mounting hardware (x, y, z translation and rotation stages) and detector signal conditioning, temperature control and monitoring electronics. The two arrays were designed to operate independently and do not share common equipment (viz power supplies, housings, mounts, etc.).

  6. A far-infrared molecular and atomic line survey of the Orion KL region

    NASA Astrophysics Data System (ADS)

    Lerate, M. R.; Barlow, M. J.; Swinyard, B. M.; Goicoechea, J. R.; Cernicharo, J.; Grundy, T. W.; Lim, T. L.; Polehampton, E. T.; Baluteau, J.-P.; Viti, S.; Yates, J.

    2006-08-01

    We have carried out a high spectral resolution (λ/Δλ ~ 6800-9700) line survey towards the Orion Kleinmann-Low (KL) cluster from 44 to 188 μm. The observations were taken with the Long Wavelength Spectrometer (LWS) in Fabry-Pérot mode, on board the Infrared Space Observatory (ISO). A total of 152 lines are clearly detected and a further 34 features are present as possible detections. The spectrum is dominated by the molecular species H2O, OH and CO, along with [OI] and [CII] lines from photodissociation region (PDR) or shocked gas and [O III] and [NIII] lines from the foreground M42 HII region. Several isotopic species, as well as NH3, are also detected. HDO and H3O+ are tentatively detected for the first time in the far-infrared (FIR) range towards Orion KL. A basic analysis of the line observations is carried out, by comparing with previous measurements and published models and deriving rotational temperatures and column densities in the case of the molecular species. Analysis of the [OI] and [CII] fine structure lines indicates that although a shock model can reproduce the observed [OI] surface brightness levels, it falls short of the observed [CII] level by more than a factor of 30. A PDR model can reproduce the [OI] 63.2 μm and [CII] surface brightness levels within 35 per cent, although overpredicting the LWS [OI] 145.5 μm-emission by a factor of 2.7. The 70 water lines and 22 OH lines detected by the survey appear with mainly P Cygni profiles at the shortest survey wavelengths and with mainly pure emission profiles at the longest survey wavelengths. The emission and absorption velocity peaks of the water and OH lines indicate that they are associated with gas expanding in the outflow from the KL cluster. The estimated column densities are (2-5) × 1014 cm-2 for H2O and (2.5-5.1) × 1016 cm-2 for OH. The 26 detected CO lines confirm the presence of three distinct components, with temperature and column density combinations ranging from 660 K, 6 × 1017

  7. Mass loss and dust formation around oxygen-rich evolved stars

    NASA Astrophysics Data System (ADS)

    Kemper, F.

    2002-09-01

    This work is a study of the formation of dust around oxygen-rich evolved stars, in correlation with the physical conditions in this environment. ISO SWS and LWS spectroscopy has been analysed, and several mineral and molecular species are identified. For two evolved stars: OH/IR star OH 127.8+0.0 and planetary nebula NGC 6302, the spectral energy distribution has been fitted. Metallic iron and carbonates are identified as new dust components. In addition, the degree of crystallinity of silicates has been studied as a function of mass-loss rate. Finally, submm observations of rotational transitions of CO have been analysed to study the mass-loss history of oxygen-rich AGB stars.

  8. Resolving The Azimuthal Ambiguity In Vector Magnetograms Away From Disk Centre With The Solenoidal Condition

    NASA Astrophysics Data System (ADS)

    Crouch, Ashley D.; Barnes, G.

    2007-05-01

    We employ the divergence-free property of magnetic fields to resolve the azimuthal ambiguity in solar vector magnetograms. We show that the ambiguity can be resolved away from disk centre if one knows the line-of-sight derivative of the magnetic field components in the directions parallel and transverse to the line-of-sight. However, knowing only the line-of-sight derivative of the line-of-sight component of the magnetic field is not sufficient except at disk centre. Thus, multi-height vector magnetogram data can be used to resolve the ambiguity provided that all the line-of-sight derivatives can be determined reliably. We use a simple theoretical example, consisting of two submerged magnetic point sources, to demonstrate our findings. This work was supported by funding from NASA/LWS under contract NNH05CC75C.

  9. The role of the living with a star program in enhancing the capbility of the space intrastructure

    NASA Astrophysics Data System (ADS)

    Barth, J.; Brewer, D.; Label, K.

    environment and effects is needed, and each type of environment effect, system impact, and mission phase has unique requirements. Traditional science research programs are not designed to provide space environment data and models that meet requirements imposed by the need for increased capability in our space infrastructure. Also, opportunities to investigate the interaction of the space environment with spacecraft and instrument components are extremely limited. The lack of low cost access to space for research on understanding the mechanisms of environment damage, degradation, and interference severely hampers our ability to utilize enabling technologies in space systems. The NASA Living with a Star (LWS) Program offers a unique opportunity to achieve seamless transition of scientific understanding to applications. (The LWS Program will be discussed in detail in the Joint COSPAR/IAC Session EO.3.) The role of the Space Environment Testbed (SET) element of the LWS Program is to define the response of spacecraft and instrument components to the space environment thereby providing understanding of the mechanisms of degradation, damage, and interference on enabling technologies and validating space weather models. The final paper and presentation will describe technology issues that drive requirements for space environment models and will describe the role of the LWS/SET in understanding and mitigating space environment effects.

  10. The Solar Dynamics Observatory and Its Contributions to Space Weather

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on 11 February 2010 and has worked flawlessly in its first year and a half of operation. SDO was the first mission launched for NASA's Living With a Star Program (LWS), so its focus is not only studying the causes and drivers of the variable Sun, but also how these variations force similar changes in the Earth and other objects within the Heliosphere. Due to SDO's many Space Weather goals, this presentation will not only show some of the recent, ground-breaking new results provided by SDO, but also focus on the real-time Space Weather advances provided by this spacecraft. A main theme throughout this talk will be methods and tools that researchers around the world can utilize to access and manipulate the SDO data real-time for both fundamental science and Space Weather monitoring purposes.

  11. ISO Detections of C3 and NH in SGR B2

    NASA Astrophysics Data System (ADS)

    Goicoechea, J. R.; Cernicharo, J.; Caux, E.

    2000-11-01

    We present ISO/LWS Fabry-Perot data of the prominent Sagittarius B2 molecular cloud. Several ro-vibrational lines of triatomic carbon, C3, have been detected towards the central position of the cloud. Preliminary calculations indicate χ(C3)≃10-8. It is the first time that pure rotational lines of NH have been observed in the dense interstellar medium towards the galactic center. The abundance of NH is a few 10-9. We also report a tentative first detection of SH rotational lines. Polyatomic molecules will have a weak contribution from their pure rotational transitions to the far-infrared spectrum. However, we suggest that they could be, through their low-lying vibrational bending modes, the dominant carriers of emission/absorption in the spectrum of bright far-infrared sources.

  12. RAD750 SBC Usage for the Solar Dynamics Observatory (SDO) Program

    NASA Technical Reports Server (NTRS)

    Li, Kenneth

    2005-01-01

    This presentation focuses on the first space weather research mission in the Living with a Star (LWS) Program. The science objective of the mission is to understand the solar variations that influence life on Earth. The mission is developed and managed by NASA/GSFC with a launch date in 2008 on a five-year mission using a geosynchronous inclined orbit. Involved with the mission are three science instruments: a helloseisic and magnetic imagery (HMI), extreme ultraviolet variability experiment (EVE), and solar helispheric activity research prediction program (SHARPP). 6U qualification Vib test has been completed with successful results (no interrupts detected at 1 nanosecond). Other test result to be reported at workshop.

  13. Cryogenic mechanisms for scanning and interchange of the Fabry-Perot interferometers in the ISO long wavelength spectrometer

    NASA Technical Reports Server (NTRS)

    Davis, G. R.; Furniss, I.; Patrick, T. J.; Sidey, R. C.; Towlson, W. A.

    1991-01-01

    The Infrared Space Observatory (ISO) is an ESA cornerstone mission for infrared astronomy. Schedules for launch in 1993, its four scientific instruments will provide unprecedented sensitivity and spectral resolution at wavelengths which are inaccessible using ground-based techniques. One of these, the Long Wavelength Spectrometer (LWS), will operate in the 45 to 180 micron region (Emery et. al., 1985) and features two Fabry-Perot interferometers mounted on an interchange mechanism. The entire payload module of the spacecraft, comprising the 60 cm telescope and the four focal plane instruments, is maintained at 2 to 4 K by an onboard supply of liquid helium. The mechanical design and testing of the cryogenic interferometer and interchange mechanisms are described.

  14. Hot-electron production and suprathermal heat flux scaling with laser intensity from the two-plasmon-decay instability

    NASA Astrophysics Data System (ADS)

    Vu, H. X.; DuBois, D. F.; Myatt, J. F.; Russell, D. A.

    2012-10-01

    The fully kinetic reduced-description particle-in-cell (RPIC) method has been applied to simulations of two-plasmon-decay (TPD) instability, driven by crossed laser beams, in an inhomogeneous plasma for parameters consistent with recent direct-drive experiments related to laser-driven inertial fusion. The nonlinear saturated state is characterized by very spiky electric fields, with Langmuir cavitation occurring preferentially inside density channels produced by the ponderomotive beating of the crossed laser beams and the primary TPD Langmuir waves (LWs). The heated electron distribution function is, in all cases, bi-Maxwellian, with instantaneous hot-electron temperatures in the range 60-100 keV. The net hot-electron energy flux out of the system is a small fraction (˜1% to 2%) of the input laser intensity in these simulations. Scalings of the hot-electron temperature and suprathermal heat flux as functions of the laser intensity are obtained numerically from RPIC simulations. These simulations lead to the preliminary conclusion that Langmuir cavitation and collapse provide dissipation by producing suprathermal electrons, which stabilize the system in saturation and drive the LW spectrum to the small dissipation scales at the Landau cutoff. The Langmuir turbulence originates at an electron density 0.241× the laser's critical density, where the crossed laser beams excite a "triad" mode—a common forward LW plus a pair of backward LWs. Remnants of this "triad" evolve in k-space and dominate the time-averaged energy spectrum. At times exceeding 10 ps, the excited Langmuir turbulence spreads toward lower densities. Comparisons of RPIC simulations with the extended Zakharov model are presented in appropriate regimes, and the necessary requirements for the validity of a quasi-linear Zakharov model (where the spatially averaged electron-velocity distribution is evolved) are verified by RPIC simulation results.

  15. Spatiotemporal chaos and the dynamics of coupled Langmuir and ion-acoustic waves in plasmas.

    PubMed

    Banerjee, S; Misra, A P; Shukla, P K; Rondoni, L

    2010-04-01

    A simulation study is performed to investigate the dynamics of coupled Langmuir waves (LWs) and ion-acoustic waves (IAWs) in an unmagnetized plasma. The effects of dispersion due to charge separation and the density nonlinearity associated with the IAWs are considered to modify the properties of Langmuir solitons, as well as to model the dynamics of relatively large amplitude wave envelopes. It is found that the Langmuir wave electric field, indeed, increases by the effect of ion-wave nonlinearity (IWN). Use of a low-dimensional model, based on three Fourier modes, shows that a transition to temporal chaos is possible, when the length scale of the linearly excited modes is larger than that of the most unstable ones. The chaotic behaviors of the unstable modes are identified by the analysis of Lyapunov exponent spectra. The space-time evolution of the coupled LWs and IAWs shows that the IWN can cause the excitation of many unstable harmonic modes and can lead to strong IAW emission. This occurs when the initial wave field is relatively large or the length scale of IAWs is larger than the soliton characteristic size. Numerical simulation also reveals that many solitary patterns can be excited and generated through the modulational instability of unstable harmonic modes. As time goes on, these solitons are seen to appear in the spatially partial coherence state due to the free ion-acoustic radiation as well as in the state of spatiotemporal chaos due to collision and fusion in the stochastic motion. The latter results in the redistribution of initial wave energy into a few modes with small length scales, which may lead to the onset of Langmuir turbulence in laboratory as well as space plasmas. PMID:20481845

  16. The Far Infrared Lines of OH as Molecular Cloud Diagnostics

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.

    2004-01-01

    Future IR missions should give some priority to high resolution spectroscopic observations of the set of far-IR transitions of OH. There are 15 far-IR lines arising between the lowest eight rotational levels of OH, and ISO detected nine of them. Furthermore, ISO found the OH lines, sometimes in emission and sometimes in absorption, in a wide variety of galactic and extragalactic objects ranging from AGB stars to molecular clouds to active galactic nuclei and ultra-luminous IR galaxies. The ISO/LWS Fabry-Perot resolved the 119 m doublet line in a few of the strong sources. This set of OH lines provides a uniquely important diagnostic for many reasons: the lines span a wide wavelength range (28.9 m to 163.2 m); the transitions have fast radiative rates; the abundance of the species is relatively high; the IR continuum plays an important role as a pump; the contribution from shocks is relatively minor; and, not least, the powerful centimeter-wave radiation from OH allows comparison with radio and VLBI datasets. The problem is that the large number of sensitive free parameters, and the large optical depths of the strongest lines, make modeling the full set a difficult job. The SWAS montecarlo radiative transfer code has been used to analyze the ISO/LWS spectra of a number of objects with good success, including in both the lines and the FIR continuum; the DUSTY radiative transfer code was used to insure a self-consistent continuum. Other far IR lines including those from H2O, CO, and [OI] are also in the code. The OH lines all show features which future FIR spectrometers should be able to resolve, and which will enable further refinements in the details of each cloud's structure. Some examples are given, including the case of S140, for which independent SWAS data found evidence for bulk flows.

  17. High blood pressure and visual sensitivity

    NASA Astrophysics Data System (ADS)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  18. Engineering development of a lightweight high-pressure scarifier for tank waste retrieval

    SciTech Connect

    Hatchell, B.K.

    1997-09-01

    The Retrieval Process Development and Enhancements Program (RPD&E) is sponsored by the U.S. Department of Energy Tanks Focus Area to investigate existing and emerging retrieval processes suitable for the retrieval of high-level radioactive waste inside underground storage tanks. This program, represented by industry, national laboratories, and academia, seeks to provide a technical and cost basis to support site-remediation decisions. Part of this program has involved the development of a high-pressure waterjet dislodging system and pneumatic conveyance integrated as a scarifier. Industry has used high-pressure waterjet technology for many years to mine, cut, clean, and scarify materials with a broad range of properties. The scarifier was developed as an alternate means of retrieving waste inside Hanford single-shell tanks, particularly hard, stubborn waste. Testing of the scarifier has verified its ability to retrieve a wide range of tank waste ranging from extremely hard waste that is resistant to other dislodging means to soft sludge and even supernatant fluid. Since the scarifier expends water at a low rate and recovers most of the water as it is used, the scarifier is well suited for retrieval of tanks that leak and cannot be safely sluiced or applications where significant waste dilution is not acceptable. Although the original scarifier was effective, it became evident that a lighter, more compact version that would be compatible with light weight deployment systems under development, such as the Light Duty Utility Arm, was needed. At the end of FY 95, the Light Weight Scarifier (LWS) was designed to incorporate the features of the original scarifier in a smaller, lighter end effector. During FY 96, the detailed design of the LWS was completed and two prototypes were fabricated.

  19. Population dynamics and growth of the bivalve Choromytilus meridionalis (Kr.) at different tidal levels

    NASA Astrophysics Data System (ADS)

    Griffiths, Roberta J.

    1981-01-01

    Settlement, growth and reproductive output of a population of Choromytilus meridionalis have been monitored at different shore levels at Bailey's Cottage, False Bay, South Africa. Settlement was irregular, occurring at 4- to 6-year intervals, and confined to the sublittoral and lower littoral of rocky areas. Spat settled on the existing mussel bed and adjacent clean rock surfaces. Continual migration of young mussels up the shore took place during the first 1 to 1·5 years of growth until an even distribution up to 0·5 m above L.W.S. was achieved. Juveniles displaced older individuals by moving between them and forcing them off the rocks so that the majority of the adult population were eliminated from the bed within the first year after spat settlement. Mortality in individual cohorts was largely caused by strong wave action and competition for space. The density of individuals within the mussel bed was closely related to mean shell length. Growth rates varied with habitat and declined markedly with increasing height above L.W.S. Sexual maturity was attained at approximately 20 mm and reproductive output rose from 5 kJ year -1 at this length to 80 kJ year -1 at 100 mm shell length. Since packing densities were much higher in smaller individuals the annual gamete output assessed on an area basis, remained fairly constant as the mussels grew, and averaged 1392 g m -2 year -1 dry weight (31 320 kJ m -2 year -1). Energy expended as gonad output exceeded that due to mortality by a factor of 10.

  20. 90 GHz AND 150 GHz OBSERVATIONS OF THE ORION M42 REGION. A SUBMILLIMETER TO RADIO ANALYSIS

    SciTech Connect

    Dicker, S. R.; Korngut, P. M.; Devlin, M. J.; Mason, B. S.; Cotton, W. D.; Compiegne, M.; Martin, P. G.; Ade, P. A. R; Tucker, C.; Benford, D. J.; Staguhn, J. G.; Irwin, K. D.; Maddalena, R. J.; McMullin, J. P.; Shepherd, D.S.; Sievers, A.

    2009-11-01

    We have used the new 90 GHz MUSTANG camera on the Robert C. Byrd Green Bank Telescope (GBT) to map the bright Huygens region of the star-forming region M42 with a resolution of 9'' and a sensitivity of 2.8 mJy beam{sup -1}. Ninety GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the H II region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMC1 molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150 GHz GISMO camera taken on the IRAM 30 m telescope. This map has 15'' resolution. By combining the MUSTANG data with 1.4, 8, and 21 GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure averaged electron temperature of T{sub e} = 11376 +- 1050 K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining Infrared Space Observatory-long wavelength spectrometer (ISO-LWS) data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80'' ISO-LWS beam toward Orion KL/BN, T{sub d} = 42 +- 3 K and beta {sub d} = 1.3 +- 0.1. We show that both T{sub d} and beta {sub d} decrease when going from the H II region and excited OMC1 interface to the denser UV shielded part of OMC1 (Orion KL/BN, Orion S). With a model consisting of only free-free and thermal dust emission, we are able to fit data taken at frequencies from 1.5 GHz to 854 GHz (350 mum).

  1. Hot-electron production and suprathermal heat flux scaling with laser intensity from the two-plasmon-decay instability

    SciTech Connect

    Vu, H. X.; DuBois, D. F.; Myatt, J. F.; Russell, D. A.

    2012-10-15

    The fully kinetic reduced-description particle-in-cell (RPIC) method has been applied to simulations of two-plasmon-decay (TPD) instability, driven by crossed laser beams, in an inhomogeneous plasma for parameters consistent with recent direct-drive experiments related to laser-driven inertial fusion. The nonlinear saturated state is characterized by very spiky electric fields, with Langmuir cavitation occurring preferentially inside density channels produced by the ponderomotive beating of the crossed laser beams and the primary TPD Langmuir waves (LWs). The heated electron distribution function is, in all cases, bi-Maxwellian, with instantaneous hot-electron temperatures in the range 60-100 keV. The net hot-electron energy flux out of the system is a small fraction ({approx}1% to 2%) of the input laser intensity in these simulations. Scalings of the hot-electron temperature and suprathermal heat flux as functions of the laser intensity are obtained numerically from RPIC simulations. These simulations lead to the preliminary conclusion that Langmuir cavitation and collapse provide dissipation by producing suprathermal electrons, which stabilize the system in saturation and drive the LW spectrum to the small dissipation scales at the Landau cutoff. The Langmuir turbulence originates at an electron density 0.241 Multiplication-Sign the laser's critical density, where the crossed laser beams excite a 'triad' mode-a common forward LW plus a pair of backward LWs. Remnants of this 'triad' evolve in k-space and dominate the time-averaged energy spectrum. At times exceeding 10 ps, the excited Langmuir turbulence spreads toward lower densities. Comparisons of RPIC simulations with the extended Zakharov model are presented in appropriate regimes, and the necessary requirements for the validity of a quasi-linear Zakharov model (where the spatially averaged electron-velocity distribution is evolved) are verified by RPIC simulation results.

  2. ISO Key Project: Exploring The Full Range of Quasar/AGN Properties

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda; West, Donald K. (Technical Monitor)

    2002-01-01

    While most of the work on this program has been completed, as previously reported, the portion of the program dealing with the sub topic of ISO LWS data analysis and reduction for the LWS Extragalactic Science Team and its leader, Dr. Howard Smith, is still active. This program in fact continues to generate results, and newly available computer modeling has extended the value of the datasets, As a result the team has requested and been granted an obtained a no-cost extension to this program, through December 31, 2003. The essence of the proposal is to perform ISO spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, but including as well some other spectroscopic data bases. Four kinds of regions are considered in the studies: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star formation regions; (3) star formation in external, bright IR galaxies; and (4) the galactic center. One prime focus of the program is the OH lines in the far infrared. The program has the following goals: (1) refine the data analysis of ISO observations, to obtain deeper and better SNR results on selected sources. The ISO data itself underwent "pipeline 10" reductions in early 2001, and additional "hands-on data reduction packages" were supplied by the ISO teams in 2001. The Fabry-Perot database in particularly sensitive to noise can slight calibration errors. (2) model the atomic and molecular line shapes, in particular the OH lines, using revised Monte-Carlo techniques developed by the SWAS team at the Center for Astrophysics; (3) attend scientific meetings and workshops; (4) do E&PO activities related to infrared astrophysics and/or spectroscopy.

  3. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  4. ISO Key Project: Exploring the Full Range of Quasar/Agn Properties

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    While most of the work on this program has been completed, as previously reported, the portion of the program dealing with the subtopic of ISO LWS data analysis and reduction for the LWS Extragalactic Science Team and its leader, Dr. Howard Smith, is still active. This program in fact continues to generate results, and newly available computer modeling has extended the value of the datasets. As a result the team requests a one-year no-cost extension to this program, through 31 December 2004. The essence of the proposal is to perform ISO spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, but including as well some other spectroscopic databases. Four kinds of regions are considered in the studies: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR galaxies; and (4) the galactic center. One prime focus of the program is the OH lines in the far infrared. The program has the following goals: 1) Refine the data analysis of ISO observations to obtain deeper and better SNR results on selected sources. The ISO data itself underwent 'pipeline 10' reductions in early 2001, and additional 'hands-on data reduction packages' were supplied by the ISO teams in 2001. The Fabry-Perot database is particularly sensitive to noise and slight calibration errors; 2) Model the atomic and molecular line shapes, in particular the OH lines, using revised Monte-Carlo techniques developed by the SWAS team at the Center for Astrophysics; 3) Attend scientific meetings and workshops; 4) Perform E&PO activities related to infrared astrophysics and/or spectroscopy.

  5. Living with a Star: New Opportunities in Sun-Climate Research

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Living With a Star is a NASA initiative employing the combination of dedicated spacecraft with targeted research and modeling efforts to improve what we know of solar effects of all kinds on the Earth and its surrounding space environment, with particular emphasis on those that have significant practical impacts on life and society. The highest priority among these concerns is the subject of this report: the potential effects of solar variability on regional and global climate, including the extent to which solar variability has contributed to the well-documented warming of the Earth in the last 100 years. Understanding how the climate system reacts to external forcing from the Sun will also greatly improve our knowledge of how climate will respond to other climate drivers, including those of anthropogenic origin. A parallel element of the LWS program addresses solar effects on space weather : the impulsive emissions of charged particles, short-wave electromagnetic radiation and magnetic disturbances in the upper atmosphere and near-Earth environment that also affect life and society. These include a wide variety of solar impacts on aeronautics, astronautics, electric power transmission, and national defense. Specific examples are (1) the impacts of potentially- damaging high energy radiation and atomic particles of solar origin on satellites and satellite operations, spacecraft electronics systems and components, electronic communications, electric power distribution grids, navigational and GPS systems, and high altitude aircraft; and (2) the threat of sporadic, high-energy solar radiation to astronauts and high altitude aircraft passengers and crews. Elements of the LWS program include an array of dedicated spacecraft in near- Earth and near-Sun orbits that will closely study and observe both the Sun itself and the impacts of its variations on the Earth's radiation belts and magnetosphere, the upper atmosphere, and ionosphere. These spacecraft, positioned to

  6. 90 GHz and 150 GHz Observations of the Orion M42 Region. A Submillimeter to Radio Analysis

    NASA Technical Reports Server (NTRS)

    Dicker, S. R.; Mason, B. S.; Korngut, P. M.; Cotton, W. D.; Compiegne, M.; Devlin, M. J.; Martin, P. G.; Ade, P. A. R; Benford, D. J.; Irwin, K. D.; Maddalena, R. J.; McMullin, J. P.; Shepherd, D. S.; Sievers, A.; Staguhn, J. G.; Tucker, C.

    2009-01-01

    We have used the new 90GHz MUSTANG camera on the Robert C. Green Bank Telescope (GBT)to map the bright Huygens region of the star-forming region M42 with a resolution of 9" and a sensitivity of 2.8 mJy/beam. Ninety GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the H II region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMCI molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150 GHz GISMO camera taken on the IRAM 30 m telescope. This map has 15" resolution. By combining the MUSTANG data with 1.4, 8. and 31 GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure averaged electron temperature of T(sub e) = 11376+/-1050 K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining Infrared Space Observatory-long wavelength spectrometer (ISO-LWS) data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80" ISO-LWS beam toward Orion KL/BN, T(sub d) = 42+/-3 K and Beta(sub d) = 1.3+/-0.1. We show that both T(sub d) and Beta(sub d) decrease when going from the H II region and excited OMCI interface to the denser UV shielded part OMCI (Orion KL/BN, Orion S). With a model consisting of only free-free and thermal dust emission, we are able to fit data taken at frequencies from 1.5 GHz to 854 GHz (350 micrometers).

  7. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates.

    PubMed

    Díaz, Nicolás M; Morera, Luis P; Guido, Mario E

    2016-01-01

    Melanopsin (Opn4), a member of the G-protein-coupled receptor family, is a vitamin A-based opsin in the vertebrate retina that has been shown to be involved in the synchronization of circadian rhythms, pupillary light reflexes, melatonin suppression and other light-regulated tasks. In nonmammalian vertebrates there are two Opn4 genes, Opn4m and Opn4x, the mammalian and Xenopus orthologs respectively. Opn4x is only expressed in nonmammalian vertebrates including reptiles, fish and birds, while Opn4m is found in a subset of retinal ganglion cells (RGCs), the intrinsically photosensitive (ip) RGCs of the inner retina of both mammals and nonmammalian vertebrates. All opsins described utilize retinaldehyde as chromophore, photoisomerized from 11-cis- to all-trans-retinal upon light exposure. Visual retinal photoreceptor cones and rods, responsible for day and night vision respectively, recycle retinoids through a process called the visual cycle that involves the retinal pigment epithelium or glial Müller cells. Although Opn4 has been characterized as a bistable photopigment, little is known about the mechanism/s involved in its chromophore regeneration. In this review, we will attempt to shed light on the visual cycle taking place in the inner retina and discuss the state of the art in the nonvisual photochemistry of vertebrates. PMID:26500165

  8. Photoreceptor types and distributions in the retinae of insectivores.

    PubMed

    Peichl, L; Künzle, H; Vogel, P

    2000-01-01

    The retinae of insectivores have been rarely studied, and their photoreceptor arrangements and expression patterns of visual pigments are largely unknown. We have determined the presence and distribution of cones in three species of shrews (common shrew Sorex araneus, greater white-toothed shrew Crocidura russula, dark forest shrew Crocidura poensis; Soricidae) and in the lesser hedgehog tenrec Echinops telfairi (Tenrecidae). Special cone types were identified and quantified in flattened whole retinae by antisera/antibodies recognizing the middle-to-long-wavelength-sensitive (M/L-)cone opsin and the short-wavelength-sensitive (S-)cone opsin, respectively. A combination of immunocytochemistry with conventional histology was used to assess rod densities and cone/rod ratios. In all four species the rods dominate at densities of about 230,000-260,000/mm2. M/L- and S-cones are present, comprising between 2% of the photoreceptors in the nocturnal Echinops telfairi and 13% in Sorex araneus that has equal diurnal and nocturnal activity phases. This suggests dichromatic color vision like in many other mammals. A striking feature in all four species are dramatically higher S-cone proportions in ventral than in dorsal retina (0.5% vs. 2.5-12% in Sorex, 5-15% vs. 30-45% in Crocidura poensis, 3-12% vs. 20-50% in Crocidura russula, 10-30% vs. 40-70% in Echinops). The functional and comparative aspects of these structural findings are discussed. PMID:11193110

  9. Light-induced currents in Xenopus oocytes expressing bovine rhodopsin.

    PubMed Central

    Knox, B E; Khorana, H G; Nasi, E

    1993-01-01

    1. We have investigated the functioning of bovine rod opsin, which is efficiently synthesized from RNA made by in vitro transcription, following injection into Xenopus oocytes. We found that oocytes expressing the gene for opsin exhibit light-dependent ionic currents only after pigment generation by incubation with 11-cis-retinal. These currents are similar to the endogenous muscarinic acetylcholine (ACh) response of oocytes, but their amplitude is substantially smaller. 2. In order to optimize the conditions for obtaining light-induced currents in RNA-injected oocytes, the native ACh response was examined under several conditions. It was found that elevated external calcium markedly enhances the muscarinic response and that these currents have a non-linear dependence on membrane voltage, increasing substantially with depolarization. 3. Using the optimal conditions for evoking the largest ACh responses, (28 mM [Ca2+]o, 0 mV, omission of serum and Hepes from the media), the light-evoked currents obtained in RNA-injected oocytes were remarkably enhanced, and responses to multiple light stimuli could be obtained. 4. The light response appeared to desensitize, even after long periods of recovery and pigment regeneration. By contrast, the ACh responses continued to appear normal. These results suggest that desensitization of photoresponses expressed in Xenopus oocytes involve changes at early stages of the pathway, resulting in a reduced ability of rhodopsin to couple to the endogenous signalling system. Images Fig. 3 PMID:7692039

  10. Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans.

    PubMed Central

    Levenson, D H; Dizon, A

    2003-01-01

    All mammals ancestrally possessed two types of cone pigments, an arrangement that persists in nearly all contemporary species. However, the absence of one of these cone types, the short-wavelength-sensitive (SWS) cone, has recently been established in several delphinoid cetacean species, indicating that the loss of this pigment type may be widespread among cetaceans. To evaluate the functional condition of SWS cones in cetaceans, partial SWS cone-opsin gene sequences were obtained from nuclear DNA for 16 species representing 12 out of the 14 extant mysticete (baleen) and odontocete (toothed) families. For all these species one or more mutations were identified that indicate that their SWS cone-opsin genes are pseudogenes and thus do not code for functional visual pigment proteins. Parsimonious interpretation of the distribution of some of these mis-sense mutations indicates that the conversion of cetacean SWS coneopsin genes to pseudogenes probably occurred before the divergences of the mysticete and odontocete suborders. Thus, in the absence of dramatic homoplasy, all modern cetaceans lack functional SWS cone visual pigments and, by extension, the visual capacities that such pigments typically support. PMID:12713740

  11. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light.

    PubMed

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm(2)). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  12. The molecular genetics of red and green color vision in mammals.

    PubMed

    Yokoyama, S; Radlwimmer, F B

    1999-10-01

    To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the "true" red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia). PMID:10511567

  13. An Ultrastructural and Immunohistochemical Analysis of the Outer Plexiform Layer of the Retina of the European Silver Eel (Anguilla anguilla L).

    PubMed

    Klooster, Jan; Kamermans, Maarten

    2016-01-01

    Here we studied the ultrastructural organization of the outer retina of the European silver eel, a highly valued commercial fish species. The retina of the European eel has an organization very similar to most vertebrates. It contains both rod and cone photoreceptors. Rods are abundantly present and immunoreactive for rhodopsin. Cones are sparsely present and only show immunoreactivity for M-opsin and not for L-, S- or UV-cone opsins. As in all other vertebrate retinas, Müller cells span the width of the retina. OFF-bipolar cells express the ionotropic glutamate receptor GluR4 and ON-bipolar cells, as identified by their PKCα immunoreactivity, express the metabotropic receptor mGluR6. Both the ON- and the OFF-bipolar cell dendrites innervate the cone pedicle and rod spherule. Horizontal cells are surrounded by punctate Cx53.8 immunoreactivity indicating that the horizontal cells are strongly electrically coupled by gap-junctions. Connexin-hemichannels were found at the tips of the horizontal cell dendrites invaginating the photoreceptor synapse. Such hemichannels are implicated in the feedback pathway from horizontal cells to cones. Finally, horizontal cells are surrounded by tyrosine hydroxylase immunoreactivity, illustrating a strong dopaminergic input from interplexiform cells. PMID:27032102

  14. An Ultrastructural and Immunohistochemical Analysis of the Outer Plexiform Layer of the Retina of the European Silver Eel (Anguilla anguilla L)

    PubMed Central

    Klooster, Jan; Kamermans, Maarten

    2016-01-01

    Here we studied the ultrastructural organization of the outer retina of the European silver eel, a highly valued commercial fish species. The retina of the European eel has an organization very similar to most vertebrates. It contains both rod and cone photoreceptors. Rods are abundantly present and immunoreactive for rhodopsin. Cones are sparsely present and only show immunoreactivity for M-opsin and not for L-, S- or UV-cone opsins. As in all other vertebrate retinas, Müller cells span the width of the retina. OFF-bipolar cells express the ionotropic glutamate receptor GluR4 and ON-bipolar cells, as identified by their PKCα immunoreactivity, express the metabotropic receptor mGluR6. Both the ON- and the OFF-bipolar cell dendrites innervate the cone pedicle and rod spherule. Horizontal cells are surrounded by punctate Cx53.8 immunoreactivity indicating that the horizontal cells are strongly electrically coupled by gap-junctions. Connexin-hemichannels were found at the tips of the horizontal cell dendrites invaginating the photoreceptor synapse. Such hemichannels are implicated in the feedback pathway from horizontal cells to cones. Finally, horizontal cells are surrounded by tyrosine hydroxylase immunoreactivity, illustrating a strong dopaminergic input from interplexiform cells. PMID:27032102

  15. Ultraviolet visual sensitivity in three avian lineages: paleognaths, parrots, and passerines.

    PubMed

    Aidala, Zachary; Huynen, Leon; Brennan, Patricia L R; Musser, Jacob; Fidler, Andrew; Chong, Nicola; Machovsky Capuska, Gabriel E; Anderson, Michael G; Talaba, Amanda; Lambert, David; Hauber, Mark E

    2012-07-01

    Ultraviolet (UV) light-transmitted signals play a major role in avian foraging and communication, subserving functional roles in feeding, mate choice, egg recognition, and nestling discrimination. Sequencing functionally relevant regions of the short wavelength sensitive type 1 (SWS1) opsin gene that is responsible for modulating the extent of SWS1 UV sensitivity in birds allows predictions to be made about the visual system's UV sensitivity in species where direct physiological or behavioral measures would be impractical or unethical. Here, we present SWS1 segment sequence data from representative species of three avian lineages for which visually based cues for foraging and communication have been investigated to varying extents. We also present a preliminary phylogenetic analysis and ancestral character state reconstructions of key spectral tuning sites along the SWS1 opsin based on our sequence data. The results suggest ubiquitous ultraviolet SWS1 sensitivity (UVS) in both paleognaths, including extinct moa (Emeidae), and parrots, including the nocturnal and flightless kakapo (Strigops habroptilus), and in most, but not all, songbird (oscine) lineages, and confirmed violet sensitivity (VS) in two suboscine families. Passerine hosts of avian brood parasites were included both UVS and VS taxa, but sensitivity did not co-vary with egg rejection behaviors. The results should stimulate future research into the functional parallels between the roles of visual signals and the genetic basis of visual sensitivity in birds and other taxa. PMID:22534772

  16. Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter.

    PubMed

    Levenson, David H; Ponganis, Paul J; Crognale, Michael A; Deegan, Jess F; Dizon, Andy; Jacobs, Gerald H

    2006-08-01

    Rod and cone visual pigments of 11 marine carnivores were evaluated. Rod, middle/long-wavelength sensitive (M/L) cone, and short-wavelength sensitive (S) cone opsin (if present) sequences were obtained from retinal mRNA. Spectral sensitivity was inferred through evaluation of known spectral tuning residues. The rod pigments of all but one of the pinnipeds were similar to those of the sea otter, polar bear, and most other terrestrial carnivores with spectral peak sensitivities (lambda(max)) of 499 or 501 nm. Similarly, the M/L cone pigments of the pinnipeds, polar bear, and otter had inferred lambda(max) of 545 to 560 nm. Only the rod opsin sequence of the elephant seal had sensitivity characteristic of adaptation for vision in the marine environment, with an inferred lambda(max) of 487 nm. No evidence of S cones was found for any of the pinnipeds. The polar bear and otter had S cones with inferred lambda(max) of approximately 440 nm. Flicker-photometric ERG was additionally used to examine the in situ sensitivities of three species of pinniped. Despite the use of conditions previously shown to evoke cone responses in other mammals, no cone responses could be elicited from any of these pinnipeds. Rod photoreceptor responses for all three species were as predicted by the genetic data. PMID:16572322

  17. Preservation of cone photoreceptors after a rapid yet transient degeneration and remodeling in cone-only Nrl−/− mouse retina

    PubMed Central

    Roger, Jerome E; Ranganath, Keerthi; Zhao, Lian; Cojocaru, Radu I; Brooks, Matthew; Gotoh, Norimoto; Veleri, Shobi; Hiriyanna, Avinash; Rachel, Rivka A; Campos, Maria Mercedes; Fariss, Robert N; Wong, Wai T; Swaroop, Anand

    2012-01-01

    Cone photoreceptors are the primary initiator of visual transduction in the human retina. Dysfunction or death of rod photoreceptors precedes cone loss in many retinal and macular degenerative diseases, suggesting a rod-dependent trophic support for cone survival. Rod differentiation and homeostasis are dependent on the basic motif leucine zipper transcription factor NRL. The loss of Nrl (Nrl−/−) in mice results in a retina with predominantly S-opsin containing cones that exhibit molecular and functional characteristics of WT cones. Here we report that Nrl−/− retina undergoes a rapid but transient period of degeneration in early adulthood, with cone apoptosis, retinal detachment, alterations in retinal vessel structure, and activation and translocation of retinal microglia. However, cone degeneration stabilizes by four months of age, resulting in a thinner but intact outer nuclear layer with residual cones expressing S- and M-opsins and a preserved photopic ERG. At this stage, microglia translocate back to the inner retina and reacquire a quiescent morphology. Gene profiling analysis during the period of transient degeneration reveals misregulation of genes related to stress response and inflammation, implying their involvement in cone death. The Nrl−/− mouse illustrates the long-term viability of cones in the absence of rods and RPE defects in a rodless retina. We propose that Nrl−/− retina may serve as a model for elucidating mechanisms of cone homeostasis and degeneration that would be relevant to understanding diseases of the cone-dominant human macula. PMID:22238088

  18. Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and Old World monkeys.

    PubMed

    Dulai, K S; Bowmaker, J K; Mollon, J D; Hunt, D M

    1994-10-01

    In man, the spectral shift between the middle-wave (MW) and long-wave (LW) visual pigments is largely achieved by amino acid substitution at two codons, both located in exon 5. A third amino acid site coded by exon 3 is polymorphic between pigments. We have studied the equivalent regions of the cone opsin genes in two members of the Hominidea (the gorilla, Gorilla gorilla and the chimpanzee, Pan troglodytes) and in three members of the Cercopithecoidea family of Old World primates (the diana monkey, Cercopithecus diana, the talapoin monkey, Miopithecus talapoin, and the crab-eating macaque, Macaca fascicularis). No variation in the codons that specify the amino acids involved in spectral tuning were found. We predict therefore that the MW and LW pigments of gorilla and chimpanzee have similar spectral characteristics to those of man. Multiple copies of the same opsin gene sequence were identified in the chimpanzee, talapoin and macaque and we also show that non-human Old World primates are similar to man in showing a bunching of polymorphic sites in exon 3. We discuss the ancestry of the separate MW and LW genes of Old World primates and the equivalent polymorphic gene of the marmoset, a New World primate. PMID:7975287

  19. Structural and Functional Effects of Hemiretinal Endodiathermy Axotomy in Cynomolgus Macaques

    PubMed Central

    Dashek, Ryan J.; Kim, Charlene B. Y.; Rasmussen, Carol A.; Hennes-Beean, Elizabeth A.; VerHoeve, James N.; Nork, T. Michael

    2013-01-01

    Purpose. Outer retinal injury has been well described in glaucoma. To better understand the source of this injury, we wanted to develop a reliable model of partial retinal ganglion cell (RGC) axotomy. Methods. Endodiathermy spots were placed along the inferior 180° adjacent to the optic nerve margin in the right eyes of four cynomolgus monkeys. Fluorescein angiography, spectral domain optical coherence tomography (SD-OCT), and multifocal electroretinography (mfERG) were performed at various intervals. Two animals were sacrificed at 3 months. Two animals were sacrificed at 4 months, at which time they underwent an injection of fluorescent microspheres to measure regional choroidal blood flow. Retinal immunohistochemistry for glial fibrillary acidic protein (GFAP), rhodopsin, S-cone opsin, and M/L-cone opsin were performed, as were axon counts of the optic nerves. Results. At 3 months, there was marked thinning of the inferior nerve fiber layer on SD-OCT. The mfERG waveforms were consistent with inner but not outer retinal injury. Greater than 95% reduction in axons was seen in the inferior optic nerves but no secondary degeneration superiorly. There was marked thinning of the nerve fiber and ganglion cell layers in the inferior retinas. However, the photoreceptor histology was similar in the axotomized and nonaxotomized areas. Regional choroidal blood flow was not affected by the axotomy. Conclusions. Unlike experimental glaucoma, hemiretinal endodiathermy axotomy (HEA) of the RGCs produces no apparent anatomic, functional, or blood flow effects on the outer retina and choroid. PMID:23620427

  20. Incorporation of squalene into rod outer segments

    SciTech Connect

    Keller, R.K.; Fliesler, S.J. )

    1990-08-15

    We have reported previously that squalene is the major radiolabeled nonsaponifiable lipid product derived from ({sup 3}H)acetate in short term incubations of frog retinas. In the present study, we demonstrate that newly synthesized squalene is incorporated into rod outer segments under similar in vitro conditions. We show further that squalene is an endogenous constituent of frog rod outer segment membranes; its concentration is approximately 9.5 nmol/mumol of phospholipid or about 9% of the level of cholesterol. Pulse-chase experiments with radiolabeled precursors revealed no metabolism of outer segment squalene to sterols in up to 20 h of chase. Taken together with our previous absolute rate studies, these results suggest that most, if not all, of the squalene synthesized by the frog retina is transported to rod outer segments. Synthesis of protein is not required for squalene transport since puromycin had no effect on squalene incorporation into outer segments. Conversely, inhibition of isoprenoid synthesis with mevinolin had no effect on the incorporation of opsin into the outer segment. These latter results support the conclusion that the de novo synthesis and subsequent intracellular trafficking of opsin and isoprenoid lipids destined for the outer segment occur via independent mechanisms.

  1. Modeling color percepts of dichromats.

    PubMed

    Wachtler, Thomas; Dohrmann, Ulrike; Hertel, Rainer

    2004-11-01

    Protanopes and deuteranopes, despite lacking a chromatic dimension at the receptor level, use the color terms "red" and "green", together with "blue" and "yellow", to describe their color percepts. Color vision models proposed so far fail to account for these findings in dichromats. We confirmed, by the method of hue scaling, the consistent use of these color terms, as well as their dependence on intensity, in subjects shown to have only a single X-chromosomal opsin gene each. We present a model for the processing of photoreceptor signals which, under physiologically plausible assumptions, achieves a trichromat-like representation of dichromatic receptor signals. Key feature of the dichromat model is the processing of the photoreceptor signals in parallel channels with different gains and nonlinearities. In this way, the two-dimensional receptor signals are represented on a manifold in a higher-dimensional space, supporting categorization for efficient image segmentation. Introducing a third cone opsin yields a model that explains normal, trichromat hue scaling. PMID:15342228

  2. Evolution of vertebrate retinal photoreception

    PubMed Central

    Lamb, Trevor D.

    2009-01-01

    Recent findings shed light on the steps underlying the evolution of vertebrate photoreceptors and retina. Vertebrate ciliary photoreceptors are not as wholly distinct from invertebrate rhabdomeric photoreceptors as is sometimes thought. Recent information on the phylogenies of ciliary and rhabdomeric opsins has helped in constructing the likely routes followed during evolution. Clues to the factors that led the early vertebrate retina to become invaginated can be obtained by combining recent knowledge about the origin of the pathway for dark re-isomerization of retinoids with knowledge of the inability of ciliary opsins to undergo photoreversal, along with consideration of the constraints imposed under the very low light levels in the deep ocean. Investigation of the origin of cell classes in the vertebrate retina provides support for the notion that cones, rods and bipolar cells all originated from a primordial ciliary photoreceptor, whereas ganglion cells, amacrine cells and horizontal cells all originated from rhabdomeric photoreceptors. Knowledge of the molecular differences between cones and rods, together with knowledge of the scotopic signalling pathway, provides an understanding of the evolution of rods and of the rods' retinal circuitry. Accordingly, it has been possible to propose a plausible scenario for the sequence of evolutionary steps that led to the emergence of vertebrate photoreceptors and retina. PMID:19720653

  3. Constitutive phospholipid scramblase activity of a G protein-coupled receptor

    NASA Astrophysics Data System (ADS)

    Goren, Michael A.; Morizumi, Takefumi; Menon, Indu; Joseph, Jeremiah S.; Dittman, Jeremy S.; Cherezov, Vadim; Stevens, Raymond C.; Ernst, Oliver P.; Menon, Anant K.

    2014-10-01

    Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that β2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes.

  4. Functional and evolutionary relationships between bacteriorhodopsin and halorhodopsin in the archaebacterium, halobacterium halobium

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1986-01-01

    The archaebacteria occupy a unique place in phylogenetic trees constructed from analyses of sequences from key informational macromolecules, and their study continues to yield interesting ideas on the early evolution and divergence of biological forms. It is now known that the halobacteria among these species contain various retinal-proteins, resembling eukaryotic rhodopsins, but with different functions. Two of these pigments, located in the cytoplasmic membranes of the bacteria, are bacteriorhodopsin (a light-driven proton pump) and halorhodopsin (a light-driven chloride pump). Comparison of these systems is expected to reveal structure/function relationships in these simple (primitive?) energy transducing membrane components and evolutionary relationships which had produced the structural features which allow the divergent functions. Findings indicate that very different primary structures are needed for these proteins to accomplish their different functions. Indeed, analysis of partial amino acid sequences from halo-opsin shows already that few if any long segments exist which are homologous to bacterio-opsin. Either these proteins diverged a very long time ago to allow for the observed differences, or the evolutionary clock in the halobacteria runs faster than usual.

  5. In vivo optogenetic stimulation of the rodent central nervous system.

    PubMed

    Sidor, Michelle M; Davidson, Thomas J; Tye, Kay M; Warden, Melissa R; Diesseroth, Karl; McClung, Colleen A

    2015-01-01

    The ability to probe defined neural circuits in awake, freely-moving animals with cell-type specificity, spatial precision, and high temporal resolution has been a long sought tool for neuroscientists in the systems-level search for the neural circuitry governing complex behavioral states. Optogenetics is a cutting-edge tool that is revolutionizing the field of neuroscience and represents one of the first systematic approaches to enable causal testing regarding the relation between neural signaling events and behavior. By combining optical and genetic approaches, neural signaling can be bi-directionally controlled through expression of light-sensitive ion channels (opsins) in mammalian cells. The current protocol describes delivery of specific wavelengths of light to opsin-expressing cells in deep brain structures of awake, freely-moving rodents for neural circuit modulation. Theoretical principles of light transmission as an experimental consideration are discussed in the context of performing in vivo optogenetic stimulation. The protocol details the design and construction of both simple and complex laser configurations and describes tethering strategies to permit simultaneous stimulation of multiple animals for high-throughput behavioral testing. PMID:25651158

  6. Constitutive phospholipid scramblase activity of a G Protein-coupled receptor*

    PubMed Central

    Goren, Michael A.; Morizumi, Takefumi; Menon, Indu; Joseph, Jeremiah S.; Dittman, Jeremy S.; Cherezov, Vadim; Stevens, Raymond C.; Ernst, Oliver P.; Menon, Anant K.

    2014-01-01

    Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. Additionally, we demonstrate that β2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modeling cell membranes. PMID:25296113

  7. Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades.

    PubMed

    Bailes, Helena J; Lucas, Robert J

    2013-05-22

    A subset of mammalian retinal ganglion cells expresses an opsin photopigment (melanopsin, Opn4) and is intrinsically photosensitive. The human retina contains melanopsin, but the literature lacks a direct investigation of its spectral sensitivity or G-protein selectivity. Here, we address this deficit by studying physiological responses driven by human melanopsin under heterologous expression in HEK293 cells. Luminescent reporters for common second messenger systems revealed that light induces a high amplitude increase in intracellular calcium and a modest reduction in cAMP in cells expressing human melanopsin, implying that this pigment is able to drive responses via both Gq and Gi/o class G-proteins. Melanopsins from mouse and amphioxus had a similar profile of G-protein coupling in HEK293 cells, but chicken Opn4m and Opn4x pigments exhibited some Gs activity in addition to a strong Gq/11 response. An action spectrum for the calcium response in cells expressing human melanopsin had the predicted form for an opsin : vitamin A1 pigment and peaked at 479 nm. The G-protein selectivity and spectral sensitivity of human melanopsin is similar to that previously described for rodents, supporting the utility of such laboratory animals for developing methods of manipulating this system using light or pharmacological agents. PMID:23554393

  8. Optogenetic Control of Targeted Peripheral Axons in Freely Moving Animals

    PubMed Central

    Iyer, Shrivats M.; Deisseroth, Karl; Delp, Scott L.

    2013-01-01

    Optogenetic control of the peripheral nervous system (PNS) would enable novel studies of motor control, somatosensory transduction, and pain processing. Such control requires the development of methods to deliver opsins and light to targeted sub-populations of neurons within peripheral nerves. We report here methods to deliver opsins and light to targeted peripheral neurons and robust optogenetic modulation of motor neuron activity in freely moving, non-transgenic mammals. We show that intramuscular injection of adeno-associated virus serotype 6 enables expression of channelrhodopsin (ChR2) in motor neurons innervating the injected muscle. Illumination of nerves containing mixed populations of axons from these targeted neurons and from neurons innervating other muscles produces ChR2-mediated optogenetic activation restricted to the injected muscle. We demonstrate that an implanted optical nerve cuff is well-tolerated, delivers light to the sciatic nerve, and optically stimulates muscle in freely moving rats. These methods can be broadly applied to study PNS disorders and lay the groundwork for future therapeutic application of optogenetics. PMID:23991144

  9. Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway

    PubMed Central

    Guo, Wei; Hight, Ariel E.; Chen, Jenny X.; Klapoetke, Nathan C.; Hancock, Kenneth E.; Shinn-Cunningham, Barbara G.; Boyden, Edward S.; Lee, Daniel J.; Polley, Daniel B.

    2015-01-01

    Optogenetics provides a means to dissect the organization and function of neural circuits. Optogenetics also offers the translational promise of restoring sensation, enabling movement or supplanting abnormal activity patterns in pathological brain circuits. However, the inherent sluggishness of evoked photocurrents in conventional channelrhodopsins has hampered the development of optoprostheses that adequately mimic the rate and timing of natural spike patterning. Here, we explore the feasibility and limitations of a central auditory optoprosthesis by photoactivating mouse auditory midbrain neurons that either express channelrhodopsin-2 (ChR2) or Chronos, a channelrhodopsin with ultra-fast channel kinetics. Chronos-mediated spike fidelity surpassed ChR2 and natural acoustic stimulation to support a superior code for the detection and discrimination of rapid pulse trains. Interestingly, this midbrain coding advantage did not translate to a perceptual advantage, as behavioral detection of midbrain activation was equivalent with both opsins. Auditory cortex recordings revealed that the precisely synchronized midbrain responses had been converted to a simplified rate code that was indistinguishable between opsins and less robust overall than acoustic stimulation. These findings demonstrate the temporal coding benefits that can be realized with next-generation channelrhodopsins, but also highlight the challenge of inducing variegated patterns of forebrain spiking activity that support adaptive perception and behavior. PMID:26000557

  10. Illuminating the Undergraduate Behavioral Neuroscience Laboratory: A Guide for the in vivo Application of Optogenetics in Mammalian Model Organisms

    PubMed Central

    Roberts, Bradley M.; Jarrin, Sarah E.; Mathur, Brian N.; Bailey, Aileen M.

    2016-01-01

    Optogenetics is a technology that is growing rapidly in neuroscience, establishing itself as a fundamental investigative tool. As this tool is increasingly utilized across the neuroscience community and is one of the primary research techniques being presented at neuroscience conferences and in journals, we believe that it is important that this technology is introduced into the undergraduate neuroscience research laboratory. While there has been a significant body of work concentrated to deploy optogenetics in invertebrate model organisms, little to no work has focused on brining this technology to mammalian model organisms in undergraduate neuroscience laboratories. The establishment of in vivo optogenetics could provide for high-impact independent research projects for upper-level undergraduate students. Here we review the considerations for establishing in vivo optogenetics with the use of rodents in an undergraduate laboratory setting and provide some cost-saving guidelines to assist in making optogenetic technologies financially accessible. We discuss opsin selection, cell-specific opsin expression strategies, species selection, experimental design, selection of light delivery systems, and the construction of implantable optical fibers for the application of in vivo optogenetics in rodents. PMID:27385919

  11. Self-organized criticality and color vision: A guide to water-protein landscape evolution

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2013-02-01

    We focus here on the scaling properties of small interspecies differences between red cone opsin transmembrane proteins, using a hydropathic elastic roughening tool previously applied to the rhodopsin rod transmembrane proteins. This tool is based on a non-Euclidean hydropathic metric realistically rooted in the atomic coordinates of 5526 protein segments, which thereby encapsulates universal non-Euclidean long-range differential geometrical features of water films enveloping globular proteins in the Protein Data Bank. Whereas the rhodopsin blue rod water films are smoothest in humans, the red cone opsins’ water films are optimized for smoothness in cats and elephants, consistent with protein species landscapes that evolve differently in different contexts. We also analyze red cone opsins in the chromatophore-containing family of chameleons, snakes, zebrafish and goldfish, where short- and long-range (BLAST and hydropathic) amino acid (aa) correlations are found with values as large as 97%-99%. We use hydropathic aa optimization to estimate the maximum number Nmax of color shades that the human eye can discriminate, and obtain 106

  12. The amphioxus genome illuminates vertebrate origins and cephalochordate biology

    PubMed Central

    Holland, Linda Z.; Albalat, Ricard; Azumi, Kaoru; Benito-Gutiérrez, Èlia; Blow, Matthew J.; Bronner-Fraser, Marianne; Brunet, Frederic; Butts, Thomas; Candiani, Simona; Dishaw, Larry J.; Ferrier, David E.K.; Garcia-Fernàndez, Jordi; Gibson-Brown, Jeremy J.; Gissi, Carmela; Godzik, Adam; Hallböök, Finn; Hirose, Dan; Hosomichi, Kazuyoshi; Ikuta, Tetsuro; Inoko, Hidetoshi; Kasahara, Masanori; Kasamatsu, Jun; Kawashima, Takeshi; Kimura, Ayuko; Kobayashi, Masaaki; Kozmik, Zbynek; Kubokawa, Kaoru; Laudet, Vincent; Litman, Gary W.; McHardy, Alice C.; Meulemans, Daniel; Nonaka, Masaru; Olinski, Robert P.; Pancer, Zeev; Pennacchio, Len A.; Pestarino, Mario; Rast, Jonathan P.; Rigoutsos, Isidore; Robinson-Rechavi, Marc; Roch, Graeme; Saiga, Hidetoshi; Sasakura, Yasunori; Satake, Masanobu; Satou, Yutaka; Schubert, Michael; Sherwood, Nancy; Shiina, Takashi; Takatori, Naohito; Tello, Javier; Vopalensky, Pavel; Wada, Shuichi; Xu, Anlong; Ye, Yuzhen; Yoshida, Keita; Yoshizaki, Fumiko; Yu, Jr-Kai; Zhang, Qing; Zmasek, Christian M.; de Jong, Pieter J.; Osoegawa, Kazutoyo; Putnam, Nicholas H.; Rokhsar, Daniel S.; Satoh, Noriyuki; Holland, Peter W.H.

    2008-01-01

    Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates—a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates. PMID:18562680

  13. Formation and Decay of the Arrestin·Rhodopsin Complex in Native Disc Membranes*

    PubMed Central

    Beyrière, Florent; Sommer, Martha E.; Szczepek, Michal; Bartl, Franz J.; Hofmann, Klaus Peter; Heck, Martin; Ritter, Eglof

    2015-01-01

    In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor. PMID:25847250

  14. Isolation and characterization of melanopsin and pinopsin expression within photoreceptive sites of reptiles

    NASA Astrophysics Data System (ADS)

    Frigato, Elena; Vallone, Daniela; Bertolucci, Cristiano; Foulkes, Nicholas S.

    2006-08-01

    Non-mammalian vertebrates have multiple extraocular photoreceptors, mainly localised in the pineal complex and the brain, to mediate irradiance detection. In this study, we report the full-length cDNA cloning of ruin lizard melanopsin and pinopsin. The high level of identity with opsins in both the transmembrane regions, where the chromophore binding site is located, and the intracellular loops, where the G-proteins interact, suggests that both melanopsin and pinopsin should be able to generate a stable photopigment, capable of triggering a transduction cascade mediated by G-proteins. Phylogenetic analysis showed that both opsins are located on the expected branches of the corresponding sequences of ortholog proteins. Subsequently, using RT-PCR and RPA analysis, we verified the expression of ruin lizard melanopsin and pinopsin in directly photosensitive organs, such as the lateral eye, brain, pineal gland and parietal eye. Melanopsin expression was detected in the lateral eye and all major regions of the brain. However, different from the situation in Xenopus and chicken, melanopsin is not expressed in the ruin lizard pineal. Pinopsin mRNA expression was only detected in the pineal complex. As a result of their phylogenetic position and ecology, reptiles provide the circadian field with some of the most interesting models for understanding the evolution of the vertebrate circadian timing system and its response to light. This characterization of melanopsin and pinopsin expression in the ruin lizard will be important for future studies aimed at understanding the molecular basis of circadian light detection in reptiles.

  15. Archaebacterial rhodopsin sequences: Implications for evolution

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1991-01-01

    It was proposed over 10 years ago that the archaebacteria represent a separate kingdom which diverged very early from the eubacteria and eukaryotes. It follows that investigations of archaebacterial characteristics might reveal features of early evolution. So far, two genes, one for bacteriorhodopsin and another for halorhodopsin, both from Halobacterium halobium, have been sequenced. We cloned and sequenced the gene coding for the polypeptide of another one of these rhodopsins, a halorhodopsin in Natronobacterium pharaonis. Peptide sequencing of cyanogen bromide fragments, and immuno-reactions of the protein and synthetic peptides derived from the C-terminal gene sequence, confirmed that the open reading frame was the structural gene for the pharaonis halorhodopsin polypeptide. The flanking DNA sequences of this gene, as well as those of other bacterial rhodopsins, were compared to previously proposed archaebacterial consensus sequences. In pairwise comparisons of the open reading frame with DNA sequences for bacterio-opsin and halo-opsin from Halobacterium halobium, silent divergences were calculated. These indicate very considerable evolutionary distance between each pair of genes, even in the dame organism. In spite of this, three protein sequences show extensive similarities, indicating strong selective pressures.

  16. Candidate genes for colour and vision exhibit signals of selection across the pied flycatcher (Ficedula hypoleuca) breeding range

    PubMed Central

    Lehtonen, P K; Laaksonen, T; Artemyev, A V; Belskii, E; Berg, P R; Both, C; Buggiotti, L; Bureš, S; Burgess, M D; Bushuev, A V; Krams, I; Moreno, J; Mägi, M; Nord, A; Potti, J; Ravussin, P-A; Sirkiä, P M; Sætre, G-P; Winkel, W; Primmer, C R

    2012-01-01

    The role of natural selection in shaping adaptive trait differentiation in natural populations has long been recognized. Determining its molecular basis, however, remains a challenge. Here, we search for signals of selection in candidate genes for colour and its perception in a passerine bird. Pied flycatcher plumage varies geographically in both its structural and pigment-based properties. Both characteristics appear to be shaped by selection. A single-locus outlier test revealed 2 of 14 loci to show significantly elevated signals of divergence. The first of these, the follistatin gene, is expressed in the developing feather bud and is found in pathways with genes that determine the structure of feathers and may thus be important in generating variation in structural colouration. The second is a gene potentially underlying the ability to detect this variation: SWS1 opsin. These two loci were most differentiated in two Spanish pied flycatcher populations, which are also among the populations that have the highest UV reflectance. The follistatin and SWS1 opsin genes thus provide strong candidates for future investigations on the molecular basis of adaptively significant traits and their co-evolution. PMID:22027894

  17. Structure-function studies on bacteriorhodopsin. IX. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin

    SciTech Connect

    Mogi, T.; Marti, T.; Khorana, H.G. )

    1989-08-25

    Bacteriorhodopsin contains 8 tryptophan residues distributed across the membrane-embedded helices. To study their possible functions, we have replaced them one at a time by phenylalanine; in addition, Trp-137 and -138 have been replaced by cysteine. The mutants were prepared by cassette mutagenesis of the synthetic bacterio-opsin gene, expression and purification of the mutant apoproteins, renaturation, and chromophore regeneration. The replacement of Trp-10, Trp-12 (helix A), Trp-80 (helix C), and Trp-138 (helix E) by phenylalanine and of Trp-137 and Trp-138 by cysteine did not significantly alter the absorption spectra or affect their proton pumping. However, substitution of the remaining tryptophans by phenylalanine had the following effects. (1) Substitution of Trp-86 (helix C) and Trp-137 gave chromophores blue-shifted by 20 nm and resulted in reduced proton pumping to about 30%. (2) As also reported previously, substitution of Trp-182 and Trp-189 (helix F) caused large blue shifts (70 and 40 nm, respectively) in the chromophore and affected proton pumping. (3) The substitution of Trp-86 and Trp-182 by phenylalanine conferred acid instability on these mutants. The spectral shifts indicate that Trp-86, Trp-182, Trp-189, and possibly Trp-137 interact with retinal. It is proposed that these tryptophans, probably along with Tyr-57 (helix B) and Tyr-185 (helix F), form a retinal binding pocket. We discuss the role of tryptophan residues that are conserved in bacteriorhodopsin, halorhodopsin, and the related family of opsin proteins.

  18. Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning*

    PubMed Central

    Zheng, Lijun; Farrell, David M.; Fulton, Ruth M.; Bagg, Eve E.; Salcedo, Ernesto; Manino, Meridee; Britt, Steven G.

    2015-01-01

    The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residueat this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant. PMID:26195627

  19. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

    PubMed Central

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  20. Evidence for multiple phototransduction pathways in a reef-building coral.

    PubMed

    Mason, Benjamin; Schmale, Michael; Gibbs, Patrick; Miller, Margaret W; Wang, Qiang; Levay, Konstantin; Shestopalov, Valery; Slepak, Vladlen Z

    2012-01-01

    Photosensitive behaviors and circadian rhythms are well documented in reef-building corals and their larvae, but the mechanisms responsible for photoreception have not been described in these organisms. Here we report the cloning, immunolocalization, and partial biochemical characterization of three opsins and four G proteins expressed in planulae of the Caribbean elkhorn coral, Acropora palmata. All three opsins (acropsins 1-3) possess conserved seven-pass transmembrane structure, and localize to distinct regions of coral planulae. Acropsin 1 was localized in the larval endoderm, while acropsin 2 was localized in solitary cells of the ectoderm. These rod-like cells displayed a remarkably polarized distribution, concentrated in the aboral end. We also cloned four A. palmata G protein alpha subunits. Three were homologs of vertebrate Gi, Go, and Gq. The fourth is presumably a novel G protein, which displays only 40% identity with the nearest known G protein, and we termed it Gc for "cnidarian". We show that Gc and Gq can be activated by acropsins in a light-dependent manner in vitro. This indicates that at least acropsins 1 and 3 can form functional photoreceptors and potentially may play a role in color preference during settlement, vertical positioning and other light-guided behaviors observed in coral larvae. PMID:23227169

  1. Photoreceptor-specific protein expression of mouse retina in organ culture and retardation of rd degeneration in vitro by a combination of basic fibroblast and nerve growth factors.

    PubMed

    Caffé, A R; Söderpalm, A; van Veen, T

    1993-08-01

    Previously we have presented the morphological features of a neonatal mouse retinal explant kept in culture for 3 to 4 weeks. To further evaluate the organotypic parameters of the tissue we have examined the presence of opsin, S-antigen, and interphotoreceptor retinoid-binding protein (IRBP) in the same experimental paradigm, using light microscopic immunocytochemistry. In vitro, opsin and S-antigen staining is found in photoreceptor somata from genetically normal explants and those derived from mice with the rd or the rds mutation. When present, inner and outer segments label more intensely. No IRBP staining has been found in cell bodies of any genotype. However, some labeling is found in the plexiform layers and in the inner segments. The results indicate that photoreceptor proteins are continuously produced in vitro. This further establishes the organotypic nature of the retinal explant in culture. The administration of growth factors to these explants has been investigated. Neither basic fibroblast growth factor nor nerve growth factor alone has affected the explants phenotype. However, the combination of these proteins has significantly retarded rd cell loss in vitro. PMID:8222732

  2. Illuminating the Undergraduate Behavioral Neuroscience Laboratory: A Guide for the in vivo Application of Optogenetics in Mammalian Model Organisms.

    PubMed

    Roberts, Bradley M; Jarrin, Sarah E; Mathur, Brian N; Bailey, Aileen M

    2016-01-01

    Optogenetics is a technology that is growing rapidly in neuroscience, establishing itself as a fundamental investigative tool. As this tool is increasingly utilized across the neuroscience community and is one of the primary research techniques being presented at neuroscience conferences and in journals, we believe that it is important that this technology is introduced into the undergraduate neuroscience research laboratory. While there has been a significant body of work concentrated to deploy optogenetics in invertebrate model organisms, little to no work has focused on brining this technology to mammalian model organisms in undergraduate neuroscience laboratories. The establishment of in vivo optogenetics could provide for high-impact independent research projects for upper-level undergraduate students. Here we review the considerations for establishing in vivo optogenetics with the use of rodents in an undergraduate laboratory setting and provide some cost-saving guidelines to assist in making optogenetic technologies financially accessible. We discuss opsin selection, cell-specific opsin expression strategies, species selection, experimental design, selection of light delivery systems, and the construction of implantable optical fibers for the application of in vivo optogenetics in rodents. PMID:27385919

  3. Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning.

    PubMed

    Zheng, Lijun; Farrell, David M; Fulton, Ruth M; Bagg, Eve E; Salcedo, Ernesto; Manino, Meridee; Britt, Steven G

    2015-09-01

    The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residue at this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant. PMID:26195627

  4. Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cis-locked eight-membered ring retinal.

    PubMed Central

    Mizukami, T; Kandori, H; Shichida, Y; Chen, A H; Derguini, F; Caldwell, C G; Biffe, C F; Nakanishi, K; Yoshizawa, T

    1993-01-01

    The primary photochemical event in rhodopsin is an 11-cis to 11-trans photoisomerization of its retinylidene chromophore to form the primary intermediate photorhodopsin. Earlier picosecond studies have shown that no intermediate is formed when the retinal 11-ene is fixed through a bridging five-membered ring, whereas a photorhodopsin-like intermediate is formed when it is fixed through a flexible seven-membered ring. Results from a rhodopsin analog formed from a retinal with locked 11-ene structure through the more flexible eight-membered ring (Ret8) are described. Incubation of bovine opsin with Ret8 formed two pigments absorbing at 425 nm (P425) and 500 nm (P500). P425, however, is an artifact because it formed from thermally denatured opsin or other proteins and Ret8. Excitation of P500 with a picosecond green pulse led to formation of two intermediates corresponding to photo- and bathorhodopsins. These results demonstrate that an appearance of early intermediates is dependent on the flexibility of the 11-ene and that the photoisomerization of P500 proceeds by stepwise changes of chromophore-protein interaction, which in turn leads to a relaxation of the highly twisted all-trans-retinylidene chromophore in photorhodopsin. PMID:8483923

  5. Chemical Kinetic Analysis of Thermal Decay of Rhodopsin Reveals Unusual Energetics of Thermal Isomerization and Hydrolysis of Schiff Base*

    PubMed Central

    Liu, Jian; Liu, Monica Yun; Fu, Li; Zhu, Gefei Alex; Yan, Elsa C. Y.

    2011-01-01

    The thermal properties of rhodopsin, which set the threshold of our vision, have long been investigated, but the chemical kinetics of the thermal decay of rhodopsin has not been revealed in detail. To understand thermal decay quantitatively, we propose a kinetic model consisting of two pathways: 1) thermal isomerization of 11-cis-retinal followed by hydrolysis of Schiff base (SB) and 2) hydrolysis of SB in dark state rhodopsin followed by opsin-catalyzed isomerization of free 11-cis-retinal. We solve the kinetic model mathematically and use it to analyze kinetic data from four experiments that we designed to assay thermal decay, isomerization, hydrolysis of SB using dark state rhodopsin, and hydrolysis of SB using photoactivated rhodopsin. We apply the model to WT rhodopsin and E181Q and S186A mutants at 55 °C, as well as WT rhodopsin in H2O and D2O at 59 °C. The results show that the hydrogen-bonding network strongly restrains thermal isomerization but is less important in opsin and activated rhodopsin. Furthermore, the ability to obtain individual rate constants allows comparison of thermal processes under various conditions. Our kinetic model and experiments reveal two unusual energetic properties: the steep temperature dependence of the rates of thermal isomerization and SB hydrolysis in the dark state and a strong deuterium isotope effect on dark state SB hydrolysis. These findings can be applied to study pathogenic rhodopsin mutants and other visual pigments. PMID:21921035

  6. A misassembled transmembrane domain of a polytopic protein associates with signal peptide peptidase

    PubMed Central

    2004-01-01

    The endoplasmic reticulum (ER) exerts a quality control over newly synthesized proteins and a variety of components have been implicated in the specific recognition of aberrant or misfolded polypeptides. We have exploited a site-specific cross-linking approach to search for novel ER components that may specifically recognize the misassembled transmembrane domains present in truncated polytopic proteins. We find that a single probe located in the transmembrane domain of a truncated opsin fragment is cross-linked to several ER proteins. These components are distinct from subunits of the Sec61 complex and represent a ‘post-translocon’ environment. In this study, we identify one of these post-translocon cross-linking partners as the signal peptide peptidase (SPP). We find that the interaction of truncated opsin chains with SPP is mediated by its second transmembrane domain, and propose that this interaction may contribute to the recognition of misassembled transmembrane domains during membrane protein quality control at the ER. PMID:15373738

  7. Longitudinal spread of adaptation in the rods of the frog's retina.

    PubMed

    Hemilä, S; Reuter, T

    1981-01-01

    1. The stimulus-response function of the red rods in the retina of the common frog (Rana temporaria) was determined in different adaptational states by measuring aspartate-isolated receptor responses. 2. Flash stimuli, background adaptations and bleaches were delivered through the same optical channel forming an oblique light-beam striking the receptor side of the isolated and flat-mounted retina at an angle of 10 degrees. 3. When the light was blue-green and optimally polarized the absorbance of the receptor layer was about 2, from which follows that 70-80% of the light was absorbed in the distal third of the rod outer segments, i.e. the exposure was local. Homogeneous exposures of the whole rod outer segments were obtained with orange and red lights. 4. Combinations of homogeneous and local stimuli with homogeneous and local adaptations were used to investigate the longitudinal spread of background, intermediate and opsin adaptation, i.e. the sensitivity-reducing effect of a background light, and the transient and permanent sensitivity losses following a bleach isomerizing 3.5-26% (usually 10%) of the rhodopsin in the retina. 5. The results obtained were related to predictions based both on the assumption that the adaptation effects spread longitudinally within the rod outer segments and the assumption that they are strictly confined to the disks absorbing the adapting lights. 6. These comparisons reveal that all three types of adaptation spread longitudinally. It is for instance clear that the sensitivity loss observed with homogeneous stimuli and local adaptation (as compared to homogeneous adaptation) is larger than that predicted by the non-spreading hypothesis. 7. The longitudinal spread of background adaptation is largely finished within 10 sec after turning on the background light, while an efficient spread of the intermediate adaptation effect may require minutes. 8. A background light decreasing the sensitivity by about one log unit decreases the time

  8. Evolution of clitellate phaosomes from rhabdomeric photoreceptor cells of polychaetes – a study in the leech Helobdella robusta (Annelida, Sedentaria, Clitellata)

    PubMed Central

    2013-01-01

    Introduction In Annelida two types of photoreceptor cells (PRCs) are regarded as generally present, rhabdomeric and ciliary PRCs. In certain taxa, however, an additional type of PRC may occur, the so called phaosomal PRC. Whereas the former two types of PRCs are always organized as an epithelium with their sensory processes projecting into an extracellular cavity formed by the PRCs and (pigmented) supportive cells, phaosomes are seemingly intracellular vacuoles housing the sensory processes. Phaosomal PRCs are the only type of PRC found in one major annelid group, Clitellata. Several hypotheses have been put forward explaining the evolutionary origin of the clitellate phaosomes. To elucidate the evolution of clitellate PRC and eyes the leech Helobdella robusta, for which a sequenced genome is available, was chosen. Results TEM observations showed that extraocular and ocular PRCs are structurally identical. Bioinformatic analyses revealed predictions for four opsin genes, three of which could be amplified. All belong to the rhabdomeric opsin family and phylogenetic analyses showed them in a derived position within annelid opsins. Gene expression studies showed two of them expressed in the eye and in the extraocular PRCs. Polychaete eye-typic key enzymes for ommochromme and pterin shading pigments synthesis are not expressed in leech eyes. Conclusions By comparative gene-expression studies we herein provide strong evidence that the phaosomal PRCs typical of Clitellata are derived from the rhabdomeric PRCs characteristic for polychaete adult eyes. Thus, they represent a highly derived type of PRC that evolved in the stem lineage of Clitellata rather than another, primitive type of PRC in Metazoa. Evolution of these PRCs in Clitellata is related to a loss of the primary eyes and most of their photoreceptive elements except for the rhabdomeric PRCs. Most likely this happened while changing to an endobenthic mode of life. This hypothesis of PRC evolution is in accordance

  9. Two UV-Sensitive Photoreceptor Proteins, Opn5m and Opn5m2 in Ray-Finned Fish with Distinct Molecular Properties and Broad Distribution in the Retina and Brain

    PubMed Central

    Sato, Keita; Yamashita, Takahiro; Haruki, Yoshihiro; Ohuchi, Hideyo; Kinoshita, Masato; Shichida, Yoshinori

    2016-01-01

    Opn5 is a group within the opsin family of proteins that is responsible for visual and non-visual photoreception in animals. It consists of several subgroups, including Opn5m, the only subgroup containing members found in most vertebrates, including mammals. In addition, recent genomic information has revealed that some ray-finned fishes carry paralogous genes of Opn5m while other fishes have no such genes. Here, we report the molecular properties of the opsin now called Opn5m2 and its distributions in both the retina and brain. Like Opn5m, Opn5m2 exhibits UV light-sensitivity when binding to 11-cis-retinal and forms a stable active state that couples with Gi subtype of G protein. However, Opn5m2 does not bind all-trans-retinal and exhibits exclusive binding to 11-cis-retinal, whereas many bistable opsins, including fish Opn5m, can bind directly to all-trans-retinal as well as 11-cis-retinal. Because medaka fish has lost the Opn5m2 gene from its genome, we compared the tissue distribution patterns of Opn5m in medaka fish, zebrafish, and spotted gar, in addition to the distribution patterns of Opn5m2 in zebrafish and spotted gar. Opn5m expression levels showed a gradient along the dorsal–ventral axis of the retina, and preferential expression was observed in the ventral retina in the three fishes. The levels of Opn5m2 showed a similar gradient with preferential expression observed in the dorsal retina. Opn5m expression was relatively abundant in the inner region of the inner nuclear layer, while Opn5m2 was expressed in the outer edge of the inner nuclear layer. Additionally, we could detect Opn5m expression in several brain regions, including the hypothalamus, of these fish species. Opn5m2 expression could not be detected in zebrafish brain, but was clearly observed in limited brain regions of spotted gar. These results suggest that ray-finned fishes can generally utilize UV light information for non-image-forming photoreception in a wide range of cells in the

  10. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots

    PubMed Central

    2013-01-01

    Background One of the most striking features of avian vision is the variation in spectral sensitivity of the short wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS). In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders. While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and decorate elaborate bower structures. Results The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C. nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments, allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of 403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS, indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor. Conclusions Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are an unusual exception among vertebrates where some descendants re

  11. Iodopsin, a red-sensitive cone visual pigment in the chicken retina.

    PubMed

    Yoshizawa, T; Kuwata, O

    1991-12-01

    The vertebrate retina contains two kinds of visual cells: rods, responsible for twilight (scotopic) vision (black and white discrimination); and cones, responsible for daylight (photopic) vision (color discrimination). Here we attempt to explain some of their functional differences and similarities in terms of their visual pigments. In the chicken retina there are four types of single cones and a double cone; each of the single cones has its own characteristic oil droplet (red, orange, blue, or colorless) and the double cone is composed of a set of principal and accessory members, the former of which has a green-colored oil droplet. Iodopsin, the chicken red-sensitive cone visual pigment, is located at outer segments of both the red single cones and the double cones, while the other single cones and the rod contain their own visual pigments with different absorption spectra. The diversity in absorption spectra among these visual pigments is caused by the difference in interaction between chromophore (11-cis retinal) and protein moiety (opsin). However, the chromophore-binding pocket in iodopsin is similar to that in rhodopsin. The difference in absorption maxima between both pigments could be explained by the difference in distances between the protonated Schiff-bases at the chromophore-binding site and their counter ions in iodopsin and rhodopsin. Furthermore, iodopsin has a unique chloride-binding site whose chloride ion serves for the red-shift of the absorption maximum of iodopsin. Visual pigment bleaches upon absorption of light through several intermediates and finally dissociates into all-trans retinal and opsin. That the sensitivity of cones is lower than rods cannot be explained by the relative photosensitivity of iodopsin to rhodopsin, but may be understood to some extent by the short lifetime of an enzymatically active intermediate (corresponding to metarhodopsin II) produced in the photobleaching process of iodopsin. The rapid formation and decay of the

  12. Bovine Pancreatic Trypsin Inhibitor-Trypsin Complex as a Detection System for Recombinant Proteins

    NASA Astrophysics Data System (ADS)

    Borjigin, Jimo; Nathans, Jeremy

    1993-01-01

    Bovine pancreatic trypsin inhibitor (BPTI) binds to trypsin and anhydrotrypsin (an enzymatically inactive derivative of trypsin) with affinities of 6 x 10-14 and 1.1 x 10-13 M, respectively. We have taken advantage of the high affinity and specificity of this binding reaction to develop a protein tagging system in which biotinylated trypsin or biotinylated anhydrotrypsin is used as the reagent to detect recombinant fusion proteins into which BPTI has been inserted. Two proteins, opsin and growth hormone, were used as targets for insertional mutagenesis with BPTI. In each case, both domains of the fusion protein appear to be correctly folded. The fusion proteins can be specifically and efficiently detected by biotinylated trypsin or biotinylated anhydrotrypsin, as demonstrated by staining of transfected cells, protein blotting, affinity purification, and a mobility shift assay in SDS/polyacrylamide gels.

  13. C-terminal peptides of rhodopsin. Determination of the optimum sequence for recognition of retinal transducin.

    PubMed Central

    Takemoto, D J; Morrison, D; Davis, L C; Takemoto, L J

    1986-01-01

    In vertebrate retinal rod outer segments, transducin, a guanine-nucleotide-binding protein, mediates signal coupling between rhodopsin and cyclic GMP phosphodiesterase. Whereas the T alpha subunit (39 kDa) of transducin binds guanine nucleotides and is the activator of the phosphodiesterase, the T beta gamma subunits (35 and 10 kDa) may function to physically link T alpha with photolysed rhodopsin. We have previously reported that a site of binding of transducin is on the C-terminus of bovine rhodopsin. By using competition with synthetic peptides, the recognition region was localized to bovine opsin amino acid residues 317-339. Further studies are detailed which determine the boundaries of this binding site on rhodopsin, as well as some of the critical amino acids needed for transducin binding. These results suggest that the serine and threonine residues in the rhodopsin C-terminal peptides Rhod-1 and Rhod-3 are critical for reconstitution of transducin GTPase activity. PMID:3461782

  14. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex

    PubMed Central

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  15. Direct visualization of the murine dorsal cochlear nucleus for optogenetic stimulation of the auditory pathway.

    PubMed

    Kozin, Elliott D; Darrow, Keith N; Hight, Ariel E; Lehmann, Ashton E; Kaplan, Alyson B; Brown, M Christian; Lee, Daniel J

    2015-01-01

    Investigation into the use of virus-mediated gene transfer to arrest or reverse hearing loss has largely been relegated to the peripheral auditory system. Few studies have examined gene transfer to the central auditory system. The dorsal cochlear nucleus (DCN) of the brainstem, which contains second order neurons of the auditory pathway, is a potential site for gene transfer. In this protocol, a technique for direct and maximal exposure of the murine DCN via a posterior fossa approach is demonstrated. This approach allows for either acute or survival surgery. Following direct visualization of the DCN, a host of experiments are possible, including injection of opsins into the cochlear nucleus and subsequent stimulation by an optical fiber coupled to a blue light laser. Other neurophysiology experiments, such as electrical stimulation and neural injector tracings are also feasible. The level of visualization and the duration of stimulation achievable make this approach applicable to a wide range of experiments. PMID:25650555

  16. Direct Visualization of the Murine Dorsal Cochlear Nucleus for Optogenetic Stimulation of the Auditory Pathway

    PubMed Central

    Lehmann, Ashton E.; Kaplan, Alyson B.; Brown, M. Christian; Lee, Daniel J.

    2015-01-01

    Investigation into the use of virus-mediated gene transfer to arrest or reverse hearing loss has largely been relegated to the peripheral auditory system. Few studies have examined gene transfer to the central auditory system. The dorsal cochlear nucleus (DCN) of the brainstem, which contains second order neurons of the auditory pathway, is a potential site for gene transfer. In this protocol, a technique for direct and maximal exposure of the murine DCN via a posterior fossa approach is demonstrated. This approach allows for either acute or survival surgery. Following direct visualization of the DCN, a host of experiments are possible, including injection of opsins into the cochlear nucleus and subsequent stimulation by an optical fiber coupled to a blue light laser. Other neurophysiology experiments, such as electrical stimulation and neural injector tracings are also feasible. The level of visualization and the duration of stimulation achievable make this approach applicable to a wide range of experiments. PMID:25650555

  17. Topography of the long- to middle-wavelength sensitive cone ratio in the human retina assessed with a wide-field color multifocal electroretinogram

    PubMed Central

    Kuchenbecker, James A.; Sahay, Manisha; Tait, Diane M.; Neitz, Maureen; Neitz, Jay

    2008-01-01

    The topographical distribution of relative sensitivity to red and green lights across the retina was assayed using a custom-made wide-field color multifocal electroretinogram apparatus. There were increases in the relative sensitivity to red compared to green light in the periphery that correlate with observed increases in the relative amount of long (L) compared to middle (M) wavelength sensitive opsin mRNA. These results provide electrophysiological evidence that there is a dramatic increase in the ratio of L to M cones in the far periphery of the human retina. The central to far peripheral homogeneity in cone proportions has implications for understanding the developmental mechanisms that determine the identity of a cone as L or M and for understanding the circuitry for color vision in the peripheral retina. PMID:18598401

  18. Brains, Genes and Primates

    PubMed Central

    Belmonte, Juan Carlos Izpisua; Callaway, Edward M.; Churchland, Patricia; Caddick, Sarah J.; Feng, Guoping; Homanics, Gregg E.; Lee, Kuo-Fen; Leopold, David A.; Miller, Cory T.; Mitchell, Jude F.; Mitalipov, Shoukhrat; Moutri, Alysson R.; Movshon, J. Anthony; Okano, Hideyuki; Reynolds, John H.; Ringach, Dario; Sejnowski, Terrence J.; Silva, Afonso C.; Strick, Peter L.; Wu, Jun; Zhang, Feng

    2015-01-01

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. PMID:25950631

  19. A glimpse into the basis of vision in the kingdom Mycota

    PubMed Central

    Idnurm, Alexander; Verma, Surbhi; Corrochano, Luis M.

    2010-01-01

    Virtually all organisms exposed to light are capable of sensing this environmental signal. In recent years the photoreceptors that mediate the ability of fungi to “see” have been identified in diverse species, and increasingly characterized. The small sizes of fungal genomes and ease in genetic and molecular biology manipulations make this kingdom ideal amongst the eukaryotes for understanding photosensing. The most widespread and conserved photosensory protein in the fungi is White collar 1 (WC-1), a flavin-binding photoreceptor that functions with WC-2 as a transcription factor complex. Other photosensory proteins in fungi include opsins, phytochromes and cryptochromes whose roles in fungal photobiology are not fully resolved and their distribution in the fungi requires further taxon sampling. Additional unknown photoreceptors await discovery. This review discusses the effects of light on fungi and the evolutionary processes that may have shaped the ability of species to sense and respond to this signal. PMID:20451644

  20. Wavelength Discrimination in Drosophila Suggests a Role of Rhodopsin 1 in Color Vision

    PubMed Central

    Garbers, Christian; Wachtler, Thomas

    2016-01-01

    Among the five photoreceptor opsins in the eye of Drosophila, Rhodopsin 1 (Rh1) is expressed in the six outer photoreceptors. In a previous study that combined behavioral genetics with computational modeling, we demonstrated that flies can use the signals from Rh1 for color vision. Here, we provide an in-depth computational analysis of wildtype Drosophila wavelength discrimination specifically considering the consequences of different choices of computations in the preprocessing of the behavioral data. The results support the conclusion that Drosophila wavelength discrimination behavior can best be explained by a contribution of Rh1. These findings are corroborated by results of an information-theoretical analysis that shows that Rh1 provides information for discrimination of natural reflectance spectra. PMID:27258000

  1. "Seasonal changes in the neuroendocrine system": some reflections.

    PubMed

    Follett, Brian K

    2015-04-01

    This perspective considers first the general issue of seasonality and how it is shaped ecologically. It asks what is the relative importance of "strategic" (photoperiod-dependent) versus "tactical" (supplemental) cues in seasonality and what neural circuits are involved? It then considers recent developments as reflected in the Special Issue. What don't we understand about the photoperiodic clock and also the long-term timing mechanisms underlying refractoriness? Are these latter related to the endogenous annual rhythms? Can we finally identify the opsins involved in photodetection? What is the present position with regard to melatonin as "the" annual calendar? An exciting development has been the recognition of the involvement of thyroid hormones in seasonality but how does the Dio/TSH/thyroid hormone pathway integrate with downstream components of the photoperiodic response system? Finally, there are the seasonal changes within the central nervous system itself--perhaps the most exciting aspect of all. PMID:25462591

  2. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics

    PubMed Central

    Stujenske, Joseph M.; Spellman, Timothy; Gordon, Joshua A.

    2015-01-01

    Summary Despite the increasing use of optogenetics in vivo, the effects of direct light exposure to brain tissue are understudied. Of particular concern is the potential for heat induced by prolonged optical stimulation. We demonstrate that high intensity light, delivered through an optical fiber, is capable of elevating firing rate locally, even in the absence of opsin expression. Predicting the severity and spatial extent of any temperature increase during optogenetic stimulation is therefore of considerable importance. Here we describe a realistic model that simulates light and heat propagation during optogenetic experiments. We validated the model by comparing predicted and measured temperature changes in vivo. We further demonstrate the utility of this model by comparing predictions for various wavelengths of light and fiber sizes, as well as testing methods for reducing heat effects on neural targets in vivo. PMID:26166563

  3. Melanopsin and Mechanisms of Non-visual Ocular Photoreception*

    PubMed Central

    Sexton, Timothy; Buhr, Ethan; Van Gelder, Russell N.

    2012-01-01

    In addition to rods and cones, the mammalian eye contains a third class of photoreceptor, the intrinsically photosensitive retinal ganglion cell (ipRGC). ipRGCs are heterogeneous irradiance-encoding neurons that primarily project to non-visual areas of the brain. Characteristics of ipRGC light responses differ significantly from those of rod and cone responses, including depolarization to light, slow on- and off-latencies, and relatively low light sensitivity. All ipRGCs use melanopsin (Opn4) as their photopigment. Melanopsin resembles invertebrate rhabdomeric photopigments more than vertebrate ciliary pigments and uses a Gq signaling pathway, in contrast to the Gt pathway used by rods and cones. ipRGCs can recycle chromophore in the absence of the retinal pigment epithelium and are highly resistant to vitamin A depletion. This suggests that melanopsin employs a bistable sequential photon absorption mechanism typical of rhabdomeric opsins. PMID:22074930

  4. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution.

    PubMed

    Nosrati, Meisam; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-07-20

    The members of the rhodopsin family of proteins are involved in many essential light-dependent processes in biology. Specific photoisomerization of the protein-bound retinylidene PSB at a specified wavelength range of light is at the heart of all of these systems. Nonetheless, it has been difficult to reproduce in an engineered system. We have developed rhodopsin mimics, using intracellular lipid binding protein family members as scaffolds, to study fundamental aspects of protein/chromophore interactions. Herein we describe a system that specifically isomerizes the retinylidene protonated Schiff base both thermally and photochemically. This isomerization has been characterized at atomic resolution by quantitatively interconverting the isomers in the crystal both thermally and photochemically. This event is accompanied by a large pKa change of the imine similar to the pKa changes observed in bacteriorhodopsin and visual opsins during isomerization. PMID:27310917

  5. Photochemical activation of TRPA1 channels in neurons and animals

    PubMed Central

    Kokel, David; Cheung, Chung Yan J.; Mills, Robert; Coutinho-Budd, Jaeda; Huang, Liyi; Setola, Vincent; Sprague, Jared; Jin, Shan; Jin, Youngnam N.; Huang, Xi-Ping; Bruni, Giancarlo; Woolf, Clifford; Roth, Bryan L.; Hamblin, Michael R; Zylka, Mark J.; Milan, David J.; Peterson, Randall T.

    2013-01-01

    Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild type animals. Surprisingly, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in non-transgenic animals, including humans. PMID:23396078

  6. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex.

    PubMed

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  7. Characterization of Ribozymes Targeting a Congenital Night Blindness Mutation in Rhodopsin Mutation.