These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Structure-activity relationships of dimeric PPAR agonists.  

PubMed

A series of dimeric PPAR agonists were designed and tested for PPAR activity in vitro. The SAR showed that dimeric ligands with a common group or full dimeric ligands had retained or even increased PPARgamma potency. The dimeric agonist concept can be used to fine tune the subtype selectivity of PPAR agonists. The PPARgamma potency could, at least partly, be explained using molecular modeling. PMID:15713415

Sauerberg, Per; Mogensen, John P; Jeppesen, Lone; Svensson, L Anders; Fleckner, Jan; Nehlin, Jan; Wulff, Erik M; Pettersson, Ingrid

2005-03-01

2

Recurrent laryngeal nerve activation by ? 2 adrenergic agonists in goats  

Microsoft Academic Search

The purpose of this study was to test the hypothesis that respiratory arrhythmias and apneas induced by ?2 agonists in anesthetized goats are associated with an increase of upper airway expiratory-related activity, rather than a general depression of breathing. Activities of phrenic (Phr) and recurrent laryngeal nerves (RLN) were recorded in response to the ?2 agonists clonidine (0.5–3.0 ?g ·

M. S. Hedrick; M. L. Ryan; G. E. Bisgard

1995-01-01

3

The atypical antidepressant mianserin exhibits agonist activity at ?-opioid receptors  

PubMed Central

BACKGROUND AND PURPOSE Antidepressants are known to interact with the opioid system through mechanisms not completely understood. We previously reported that tricyclic antidepressants act as agonists at distinct opioid receptors. Here, we investigated the effect of the atypical antidepressant mianserin at cloned and native opioid receptors. EXPERIMENTAL APPROACH Effects of mianserin were examined in CHO cells transfected with human opioid receptors, C6 glioma cells and rat brain membranes by the use of radioligand binding and functional assays including the stimulation of [35S]GTP?S binding and MAPK phosphorylation. KEY RESULTS Mianserin displayed 12- and 18-fold higher affinity for ?- than µ- and ?-opioid receptors respectively. In [35S]GTP?S assays, mianserin selectively activated ?-opioid receptors. The agonist activity was antagonized by the selective ?-opioid blocker nor-binaltorphimine (nor-BNI). The mianserin analogue mirtazapine also displayed ?-opioid agonist activity. Mianserin and mirtazapine increased ERK1/2 phosphorylation in CHO cells expressing ?-opioid receptors and C6 cells, and these effects were antagonized by nor-BNI. In rat striatum and nucleus accumbens, mianserin stimulated [35S]GTP?S binding in a nor-BNI-sensitive manner with maximal effects lower than those of the full ?-opioid agonists (–)-U50,488 and dynorphin A. When combined, mianserin antagonized the effects of the full ?-opioid receptor agonists in [35S]GTP?S assays and reduced the stimulation of p38 MAPK and ERK1/2 phosphorylation by dynorphin A. CONCLUSIONS AND IMPLICATIONS In different cell systems, mianserin directly activates ?-opioid receptors, displaying partial agonist activity at brain receptors. Thus, this property appears to be a common feature of different classes of antidepressants. PMID:22708686

Olianas, Maria C; Dedoni, Simona; Onali, Pierluigi

2012-01-01

4

Covalent agonists for studying G protein-coupled receptor activation  

PubMed Central

Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the ?2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

2014-01-01

5

Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity  

PubMed Central

Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [35S]GTP?S assay are predictive of the in vivo profile. PMID:23438330

2013-01-01

6

Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) ? Activators and Pan-PPAR Partial Agonists  

PubMed Central

Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) ? to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPAR? ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPAR? LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPAR? LBD, stronger partial agonists with full length PPAR? and exhibit full blockade of PPAR? phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPAR? also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/?-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPAR? modulators with useful clinical profiles among natural products. PMID:22649490

Ayers, Steven D.; Lin, Jean Z.; Cvoro, Aleksandra; Silveira, Rodrigo L.; Martínez, Leandro; Souza, Paulo C. T.; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A.; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A. R.; Skaf, Munir S.; Webb, Paul; Polikarpov, Igor

2012-01-01

7

In Vitro Evaluation of TLR4 Agonist Activity: Formulation Effects  

PubMed Central

Effective in vitro evaluation of vaccine adjuvants would allow higher throughput screening compared to in vivo studies. However, vaccine adjuvants comprise a wide range of structures and formulations ranging from soluble TLR agonists to complex lipid-based formulations. The effects of formulation parameters on in vitro bioactivity assays and the correlations with in vivo adjuvant activity is not well understood. In the present work, we employ the Limulus amebocyte lysate assay and a human macrophage cellular cytokine production assay to demonstrate the differences in in vitro bioactivity of four distinct formulations of the synthetic TLR4 agonist GLA: an aqueous nanosuspension (GLA-AF), an oil-in-water emulsion (GLA-SE), a liposome (GLA-LS), and an alum-adsorbed formulation (GLA-Alum). Furthermore, we demonstrate the importance of the localization of GLA on in vitro potency. By comparing to previous published reports on the in vivo bioactivity of these GLA-containing formulations, we conclude that the most potent activators of the in vitro systems may not be the most potent in vivo adjuvant formulations. Furthermore, we discuss the formulation considerations which should be taken into account when interpreting data from in vitro adjuvant activity assays. PMID:24121074

Misquith, Ayesha; Millie Fung, H. W.; Dowling, Quinton M.; Guderian, Jeffrey A.; Vedvick, Thomas S.; Fox, Christopher B.

2013-01-01

8

Partial Agonist and Antagonist Activities of a Mutant Scorpion ?-Toxin on Sodium Channels*  

PubMed Central

Scorpion ?-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mutant derivative of this toxin. Substitution of seven different amino acid residues for Glu15 in Css4 yielded toxin derivatives with both increased and decreased affinities for binding to neurotoxin receptor site 4 on sodium channels. Css4E15R is unique among this set of mutants in that it retained nearly normal binding affinity but lost its functional activity for modification of sodium channel gating in our standard electrophysiological assay for voltage sensor trapping. More detailed analysis of the functional effects of Css4E15R revealed weak voltage sensor trapping activity, which was very rapidly reversed upon repolarization and therefore was not observed in our standard assay of toxin effects. This partial agonist activity of Css4E15R is observed clearly in voltage sensor trapping assays with brief (5 ms) repolarization between the conditioning prepulse and the test pulse. The effects of Css4E15R are fit well by a three-step model of toxin action involving concentration-dependent toxin binding to its receptor site followed by depolarization-dependent activation of the voltage sensor and subsequent voltage sensor trapping. Because it is a partial agonist with much reduced efficacy for voltage sensor trapping, Css4E15R can antagonize the effects of wild-type Css4 on sodium channel activation and can prevent paralysis by Css4 when injected into mice. Our results define the first partial agonist and antagonist activities for scorpion toxins and open new avenues of research toward better understanding of the structure-function relationships for toxin action on sodium channel voltage sensors and toward potential toxin-based therapeutics to prevent lethality from scorpion envenomation. PMID:20682774

Karbat, Izhar; Ilan, Nitza; Zhang, Joel Z.; Cohen, Lior; Kahn, Roy; Benveniste, Morris; Scheuer, Todd; Catterall, William A.; Gordon, Dalia; Gurevitz, Michael

2010-01-01

9

A behavioural and biochemical study in rats of 5-hydroxytryptamine receptor agonists and antagonists, with observations on structure-activity requirements for the agonists  

PubMed Central

1 The effect of the putative 5-hydroxytryptamine (5-HT) receptor antagonists, methysergide, methergoline, mianserin, cyproheptadine, cinanserin (all at 10 mg/kg), methiothepin (5 mg/kg) and (-)-propranolol (20 mg/kg) on the behavioural responses to tranylcypromine (10 mg/kg) followed 30 min later by L-tryptophan (100 mg/kg) was examined. 2 Methysergide, methergoline, methiothepin and (-)-propranolol inhibited head weaving, forepaw treading and hind-limb abduction. Methysergide and methergoline increased reactivity. In contrast, cypropheptadine, cinanserin and mianserin had no effects on the behaviour. 3 Similar findings were obtained when the behaviours were elicited by administration of tranylcypromine (10 mg/kg) followed by the putative 5-HT receptor agonist, 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) (2 mg/kg). 4 When the behaviours were elicited by the putative 5-HT receptor agonist, quipazine (50 mg/kg), all the drugs effectively inhibited head weaving and forepaw treading. 5 When the dose of cypropheptadine was doubled to 20 mg/kg an inhibition of the tranylcypromine/L-tryptophan induced behaviours was seen. 6 Methiothepin produced a marked inhibition of apomorphine-induced locomotor activity whilst all the others enhanced this response, suggesting that only methiothepin inhibits the 5-HT behaviours by dopamine antagonism and that the increased reactivity seen following tranylcypromine/L-tryptophan after pretreatment with methysergide or methergoline might be due to enhanced dopamine function. 7 Pretreatment with p-chlorophenylalanine resulted in enhanced behavioural responses to both 5-MeODMT and quipazine. 8 Both methergoline and methiothepin decreased the rate of 5-HT synthesis in whole brain but not spinal cord and methergoline decreased spinal cord 5-HIAA concentration. None of the other drugs had any significant effects on the concentration of 5-HT, 5-HIAA or 5-HT synthesis rate in brain or spinal cord. 9 Experiments with compounds structurally related to quipazine and with molecular models suggested that quipazine produces behavioural changes probably by stimulating the 5-HT receptor in a similar way to 5-HT but that it would bind weakly, in agreement with ligand-receptor binding studies. 10 It is suggested, therefore, that cyproheptadine, cinanserin and mianserin fail to inhibit 5-HT and 5-MeODMT-induced behaviours because they are weak antagonists whilst they are able to inhibit the same behaviours induced by quipazine because it is a weak agonist. 11 These data indicate that extreme care should be taken in accepting or rejecting 5-HT as a mediator of behaviours or of other responses unless several antagonists or agonists have been examined. ImagesFigure 9 PMID:6166345

Green, A.R.; Hall, J.E.; Rees, A.R.

1981-01-01

10

Structure-dependent Ah receptor agonist activities of chlorinated biphenylenes.  

PubMed

Polychlorinated biphenylenes (PCBP) have been identified as combustion by-products that bind the aryl hydrocarbon receptor (AhR) and exhibit 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-like activity. This study investigates the Ah-responsiveness of 2,3,6,7-tetrachlorobiphenylene (2,3,6,7-CBP), 2,3,6-CBP, 2,3-CBP and 2-CBP in breast cancer cells. MCF-7 or ZR-75 cells were treated with different concentrations (1-100 nM) of the compounds alone to determine their activity as inducers of CYP1A1 protein expression or luciferase activity in cells transfected with a construct (pDRE(3)) containing three tandem dioxin responsive elements (DREs) linked to a luciferase reporter gene. In both assays, the order of potency was 2,3,6,7-CBP>2,3,6-CBP>2,3-CBP approximately 2-CBP, and 2,3,6,7-CBP and TCDD were equipotent. Similar results were also observed in an antiestrogenic assay in MCF-7 cells, confirming the high AhR agonist activity of 2,3,6,7-CBP in breast cancer cells. PMID:16759834

Khan, Shaheen; Konstantinov, Alex; Chittim, Brock; McAlees, Alan; Yeo, Brian; Safe, Stephen

2006-10-01

11

Agonist-induced platelet procoagulant activity requires shear and a Rac1-dependent signaling mechanism.  

PubMed

Activated platelets facilitate blood coagulation by exposing phosphatidylserine (PS) and releasing microvesicles (MVs). However, the potent physiological agonists thrombin and collagen poorly induce PS exposure when a single agonist is used. To obtain a greater procoagulant response, thrombin is commonly used in combination with glycoprotein VI agonists. However, even under these conditions, only a percentage of platelets express procoagulant activity. To date, it remains unclear why platelets poorly expose PS even when stimulated with multiple agonists and what the signaling pathways are of soluble agonist-induced platelet procoagulant activity. Here we show that physiological levels of shear present in blood significantly enhance agonist-induced platelet PS exposure and MV release, enabling low doses of a single agonist to induce full-scale platelet procoagulant activity. PS exposed on the platelet surface was immediately released as MVs, revealing a tight coupling between the 2 processes under shear. Using platelet-specific Rac1(-/-) mice, we discovered that Rac1 plays a common role in mediating the low-dose agonist-induced procoagulant response independent of platelet aggregation, secretion, and the apoptosis pathway. Platelet-specific Rac1 function was not only important for coagulation in vitro but also for fibrin accumulation in vivo following laser-induced arteriolar injury. PMID:25079357

Delaney, Michael Keegan; Liu, Junling; Kim, Kyungho; Shen, Bo; Stojanovic-Terpo, Aleksandra; Zheng, Yi; Cho, Jaehyung; Du, Xiaoping

2014-09-18

12

Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)? agonist fenofibrate and the PPAR? agonist pioglitazone  

PubMed Central

Background All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPAR? agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPAR? agonist fenofibrate (FENO) and the PPAR? agonist pioglitazone (PIO) on bone in intact female rats. Methods Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied. Results The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1. Conclusion We show opposite skeletal effects of PPAR? and ? agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPAR? activation. PMID:19331671

Syversen, Unni; Stunes, Astrid K; Gustafsson, Björn I; Obrant, Karl J; Nordsletten, Lars; Berge, Rolf; Thommesen, Liv; Reseland, Janne E

2009-01-01

13

Pharmacological characterization and therapeutic potential for the treatment of opioid abuse with ATPM-ET, an N-ethyl substituted aminothiazolomorphinan with ? agonist and ? agonist/antagonist activity.  

PubMed

We previously reported that the ? agonists with mixed ? activity could attenuate heroin self-administration with less potential to develop tolerance. The present study further investigated the effects of (-)-3-N-Ethylamino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride (ATPM-ET), a ? agonist and ? agonist/antagonist, on the acquisition and reinstatement of morphine-induced conditioned place preference (CPP), heroin self-administration and heroin-primed reinstatement of drug-seeking behavior. We found that ATPM-ET produced a longer duration of potent antinociceptive effects with less side effect of sedation. More importantly, ATPM-ET attenuated the acquisition of morphine-induced CPP, without affecting the reinstatement of morphine CPP. Furthermore, ATPM-ET significantly inhibited heroin self-administration and the reinstatement of heroin primed drug-seeking behavior. Taken together, ATPM-ET, a novel ? agonist and ? agonist/antagonist may have utility for the treatment of drug dependence. PMID:24998879

Sun, Jian-Feng; Wang, Yu-Hua; Chai, Jing-Rui; Li, Fu-Ying; Hang, Ai; Lu, Gang; Tao, Yi-Min; Cheng, Yun; Chi, Zhi-Qiang; Neumeyer, John L; Zhang, Ao; Liu, Jing-Gen; Wang, Yu-Jun

2014-10-01

14

Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine  

SciTech Connect

Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

Wang Junru; Boerma, Marjan; Kulkarni, Ashwini [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Hollenberg, Morley D. [Department of Pharmacology and Therapeutics, University of Calgary, Calgary, AB (Canada); Department of Medicine, University of Calgary, Calgary, AB (Canada); Hauer-Jensen, Martin, E-mail: mhjensen@life.uams.ed [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR (United States)

2010-07-15

15

?7 Receptor-selective agonists and modes of ?7 receptor activation  

Microsoft Academic Search

The ?7-selective agonists 3-(2,4-dimethoxybenzylidene)-anabaseine (GTS-21), also known as DMXB, and 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) produce a variety of behavioral and cytoprotective effects that may be related to the activation of either large transient currents at high concentrations or small sustained currents at lower agonist concentrations. We are using acutely dissociated hypothalamic neurons, which express a central nervous system (CNS) ?7-type receptor, to

Roger L. Papke; Edwin Meyer; Tom Nutter; Vladimir V. Uteshev

2000-01-01

16

Synthesis and structure–activity relationships of a series of pyrrole cannabinoid receptor agonists  

Microsoft Academic Search

We designed and synthesized a series of pyrrole derivatives with the aim of investigating the structure–activity relationship (SAR) for the binding of non-classical agonists to CB1 and CB2 cannabinoid receptors. Superposition of two pyrrole-containing cannabinoid agonists, JWH-007 and JWH-161, allowed us to identify positions 1, 3 and 4 of the pyrrole nucleus as amenable to additional investigation. We prepared the

Giorgio Tarzia; Andrea Duranti; Andrea Tontini; Gilberto Spadoni; Marco Mor; Silvia Rivara; Pier Vincenzo Plazzi; Satish Kathuria; Daniele Piomelli

2003-01-01

17

Inhibitory Effects of Sigma-2 Receptor Agonists on T Lymphocyte Activation  

PubMed Central

Sigma (?) receptor ligands are essentially known for their effects on the nervous system although recent studies have shown their potential effects modulating some other pathophysiological processes as cell proliferation, cancer, and the immune response. Here, we have analyzed the actions of ?-1 and ?-2 receptors ligands on T cell activation. Our results show that treatment of Jurkat T cells with ?-2 agonists decreased the induction of the expression of Interleukin (IL)-2, Tumor necrosis factor (TNF)-?, and Cyclooxygenase (COX)-2 by activated T cells in a dose-dependent manner. These effects take place at the transcriptional level since ?-2 agonists BD-737 and CB-184 diminished the activity of the promoters of those genes. Those immunosuppressive effects could be attributable to interference with transcription factor activation. Induced transcription mediated by Nuclear factor (NF)-?B or Nuclear Factor of Activated T cells (NFAT) was inhibited by ?-2 agonists. These effects seem to be specific for ?-2 agonists as no significant effects on T cell activation by ?-1 ligands PRE-084 and BD-1063 were found. Our results provide new insights into the immunomodulatory actions of ? ligands and describe a new property of ?-2 agonists, through inhibition of activation of transcription factors as NFAT by which these compounds are regulating gene expression. This may have important consequences on the possible therapeutic use of those compounds. PMID:23494519

Iñiguez, Miguel A.; Punzón, Carmen; Nieto, Raquel; Burgueño, Javier; Vela, José M.; Fresno, Manuel

2013-01-01

18

Cigarette smoke exposure inhibits contact hypersensitivity via the generation of platelet-activating factor agonists.  

PubMed

Previous studies have established that pro-oxidative stressors suppress host immunity because of their ability to generate oxidized lipids with platelet-activating factor receptor (PAF-R) agonist activity. Although exposure to the pro-oxidative stressor cigarette smoke (CS) is known to exert immunomodulatory effects, little is known regarding the role of PAF in these events. The current studies sought to determine the role of PAF-R signaling in CS-mediated immunomodulatory effects. We demonstrate that CS exposure induces the generation of a transient PAF-R agonistic activity in the blood of mice. CS exposure inhibits contact hypersensitivity in a PAF-R-dependent manner as PAF-R-deficient mice were resistant to these effects. Blocking PAF-R agonist production either by systemic antioxidants or treatment with serum PAF-acetyl hydrolase enzyme blocked both the CS-mediated generation of PAF-R agonists and PAF-R-dependent inhibition of contact hypersensitivity (CHS) reactions, indicating a role for oxidized glycerophosphocholines with PAF-R agonistic activity in this process. In addition, cyclooxygenase-2 inhibition did not block PAF-R agonist production but prevented CS-induced inhibition of CHS. This suggests that cyclooxygenase-2 acts downstream of the PAF-R in mediating CS-induced systemic immunosuppression. Moreover, CS exposure induced a significant increase in the expression of the regulatory T cell reporter gene in Foxp3(EGFP) mice but not in Foxp3(EGFP) mice on a PAF-R-deficient background. Finally, regulatory T cell depletion via anti-CD25 Abs blocked CS-mediated inhibition of CHS, indicating the potential involvement of regulatory T cells in CS-mediated systemic immunosuppression. These studies provide the first evidence, to our knowledge, that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF-R agonists produced through lipid oxidation. PMID:23355733

Sahu, Ravi P; Petrache, Irina; Van Demark, Mary J; Rashid, Badri M; Ocana, Jesus A; Tang, Yuxuan; Yi, Qiaofang; Turner, Matthew J; Konger, Raymond L; Travers, Jeffrey B

2013-03-01

19

Arylacetamide kappa opioid receptor agonists with reduced cytochrome P450 2D6 inhibitory activity.  

PubMed

Some kappa opioid receptor agonists of the arylacetamide class, for example, ICI 199441 (1), were found to strongly inhibit the activity of cytochrome P450 2D6 (CYP2D6) (1: CYP2D6 IC50=26 nM). Certain analogs bearing a substituted sulfonylamino group, for example, 13, were discovered to have significantly reduced CYP2D6 inhibitory activity (13: CYP2D6 IC50>10 microM) while displaying high affinity toward the cloned human kappa opioid receptor, good kappa/delta and kappa/mu selectivity, and potent in vitro and in vivo agonist activity. PMID:15863335

Le Bourdonnec, Bertrand; Ajello, Christopher W; Seida, Pamela R; Susnow, Roberta G; Cassel, Joel A; Belanger, Serge; Stabley, Gabriel J; DeHaven, Robert N; DeHaven-Hudkins, Diane L; Dolle, Roland E

2005-05-16

20

Co-activation: its association with weakness and specific neurological pathology  

PubMed Central

Background Net agonist muscle strength is in part determined by the degree of antagonist co-activation. The level of co-activation might vary in different neurological disorders causing weakness or might vary with agonist strength. Aim This study investigated whether antagonist co-activation changed a) with the degree of muscle weakness and b) with the nature of the neurological lesion causing weakness. Methods Measures of isometric quadriceps and hamstrings strength were obtained. Antagonist (hamstring) co-activation during knee extension was calculated as a ratio of hamstrings over quadriceps activity both during an isometric and during a functional sit to stand (STS) task (using kinematics) in groups of patients with extrapyramidal (n = 15), upper motor neuron (UMN) (n = 12), lower motor neuron (LMN) with (n = 18) or without (n = 12) sensory loss, primary muscle or neuromuscular junction disorder (n = 17) and in healthy matched controls (n = 32). Independent t-tests or Mann Witney U tests were used to compare between the groups. Correlations between variables were also investigated. Results In healthy subjects mean (SD) co-activation of hamstrings during isometric knee extension was 11.8 (6.2)% and during STS was 20.5 (12.9)%. In patients, co-activation ranged from 7 to 17% during isometric knee extension and 15 to 25% during STS. Only the extrapyramidal group had lower co-activation levels than healthy matched controls (p < 0.05). Agonist isometric muscle strength and co-activation correlated only in muscle disease (r = -0.6, p < 0.05) and during STS in UMN disorders (r = -0.7, p < 0.5). Conclusion It is concluded that antagonist co-activation does not systematically vary with the site of neurological pathology when compared to healthy matched controls or, in most patient groups, with strength. The lower co-activation levels found in the extrapyramidal group require confirmation and further investigation. Co-activation may be relevant to individuals with muscle weakness. Within patient serial studies in the presence of changing muscle strength may help to understand these relationships more clearly. PMID:17116259

Busse, Monica E; Wiles, Charles M; van Deursen, Robert WM

2006-01-01

21

Recurrent laryngeal nerve activation by alpha 2 adrenergic agonists in goats.  

PubMed

The purpose of this study was to test the hypothesis that respiratory and apneas induced by alpha 2 agonists in anesthetized goats are associated with an increase of upper airway expiratory-related activity, rather than a general depression of breathing. Activities of phrenic (Phr) and recurrent laryngeal nerves (RLN) were recorded in response to the alpha 2 agonists clonidine (0.5-3.0 microgram.kg-1 i.v.) or guanabenz (7.0-20.0 micrograms.kg-1 i.v.) in ten chloralose-anesthetized goats. Injection of either alpha 2 agonist resulted in respiratory arrhythmias with a greater than seven-fold increase in TE and a 30% reduction in TI. During apneas RLN expiratory-related activity remained tonic until the next Phr burst, consistent with our hypothesis. Cessation of Phr activity during hypocapnia also resulted in a tonic increase of RLN expiratory activity; and injection of NaCN (50 micrograms.kg-1 i.v.) increased Phr and RLN inspiratory activities, while attenuating RLN expiratory-related activity. Inspiratory and expiratory-related activity of RLN motoneurons appear to be reciprocally modulated by alpha 2 agonists or changes in central or peripheral chemoreceptor drive. The results indicate that central apneas and respiratory arrhythmias may be associated with alpha 2-adrenoceptor modulation of laryngeal expiratory-related activity. PMID:8570915

Hedrick, M S; Ryan, M L; Bisgard, G E

1995-08-01

22

Promotion of adiponectin multimerization by emodin: a novel AMPK activator with PPAR?-agonist activity.  

PubMed

Adiponectin is an important insulin-sensitizing adipokine with multiple beneficial effects on obesity-associated medical complications. It is secreted from adipocytes into circulation as high, medium, and low molecular weight forms (HMW, MMW, and LMW). Each oligomeric form of adiponectin exerts non-overlapping biological functions, with the HMW oligomer possessing the most potent insulin-sensitizing activity. In this study, we reported that emodin, a natural product and active ingredient of various Chinese herbs, activates AMPK in both 3T3-L1 adipocytes and 293T cells. Activation of AMPK by emodin promotes the assembly of HMW adiponectin and increases the ratio of HMW adiponectin to total adiponectin in 3T1-L1 adipocytes. Emodin might activate AMPK by an indirect mechanism similar to berberine. We also found that emodin activates PPAR? and promotes differentiation and adiponectin expression during differentiation of 3T3-L1 preadipocytes. Therefore, emodin is a novel AMPK activator with PPAR?-agonist activity. Our results demonstrate that the effects of emodin on adiponectin expression and multimerization are the ultimate effects resulting from both AMPK activation and PPAR? activation. The dual-activity makes emodin or the derivatives potential drug candidates for the treatment of type 2 diabetes and other obesity-related metabolic diseases. PMID:22730200

Chen, Zhifen; Zhang, Lu; Yi, Junyang; Yang, Zhuanbo; Zhang, Zhijie; Li, Zhen

2012-11-01

23

Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.  

PubMed

To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-? production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity. PMID:22303003

Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B

2012-03-16

24

Platelet-activating Factor Receptor Agonists Mediate Xeroderma Pigmentosum A Photosensitivity*  

PubMed Central

To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa?/?) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-? production in Xpa?/? mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity. PMID:22303003

Yao, Yongxue; Harrison, Kathleen A.; Al-Hassani, Mohammed; Murphy, Robert C.; Rezania, Samin; Konger, Raymond L.; Travers, Jeffrey B.

2012-01-01

25

Discovery of a new series of potent prostacyclin receptor agonists with in vivo activity in rat.  

PubMed

The design and synthesis of two closely related series of prostacyclin receptor agonist compounds that showed excellent human IP receptor potency and efficacy is described. Compounds from this series showed in vivo activity after SC dosing in the monocrotaline model of PAH in rat. PMID:25666818

Tran, Thuy-Anh; Shin, Young-Jun; Kramer, Bryan; Choi, Juyi; Zou, Ning; Vallar, Pureza; Martens, Peter; Douglas Boatman, P; Adams, John W; Ramirez, Juan; Shi, Yunqing; Morgan, Michael; Unett, David J; Chang, Steve; Shu, Hsin-Hui; Tung, Shiu-Feng; Semple, Graeme

2015-03-01

26

Pharmacological characterization of a human-specific peroxisome proliferater-activated receptor ? (PPAR?) agonist in dogs  

Microsoft Academic Search

Peroxisome proliferator-activated receptor ? (PPAR?) is a key regulator in lipid metabolism and a potential therapeutic target for lipid-related metabolic diseases. It has been shown that there are species differences between human and mouse in response to several PPAR? agonists in a transactivation assay. In the present study, we cloned a full length of dog PPAR? and investigated the effects

Michiaki Nagasawa; Tomohiro Ide; Masahiro Suzuki; Masaki Tsunoda; Yunike Akasaka; Takashi Okazaki; Toshiro Mochizuki; Koji Murakami

2004-01-01

27

Natural product agonists of peroxisome proliferator-activated receptor gamma (PPAR?): a review.  

PubMed

Agonists of the nuclear receptor PPAR? are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPAR? agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPAR?-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPAR? modulators (SPPARMs), transactivating the expression of PPAR?-dependent reporter genes as partial agonists. Those natural PPAR? ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPAR? (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPAR?-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPAR? (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPAR? activation by dietary interventions or food supplements. PMID:25083916

Wang, Limei; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Blunder, Martina; Liu, Xin; Malainer, Clemens; Blazevic, Tina; Schwaiger, Stefan; Rollinger, Judith M; Heiss, Elke H; Schuster, Daniela; Kopp, Brigitte; Bauer, Rudolf; Stuppner, Hermann; Dirsch, Verena M; Atanasov, Atanas G

2014-11-01

28

Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering  

PubMed Central

Protease-activated receptor-2 (PAR2) is a G-protein coupled receptor (GPCR) associated with a variety of pathologies. However, the therapeutic potential of PAR2 is limited by a lack of potent and specific ligands. Following proteolytic cleavage, PAR2 is activated through a tethered ligand. Hence, we reasoned that lipidation of peptidomimetic ligands could promote membrane targeting and thus significantly improve potency and constructed a series of synthetic tethered ligands (STLs). STLs contained a peptidomimetic PAR2 agonist (2-aminothiazol-4-yl-LIGRL-NH2) bound to a palmitoyl group (Pam) via polyethylene glycol (PEG) linkers. In a high-throughput physiological assay, these STL agonists displayed EC50 values as low as 1.47 nM, representing a ?200 fold improvement over the untethered parent ligand. Similarly, these STL agonists were potent activators of signaling pathways associated with PAR2: EC50 for Ca2+ response as low as 3.95 nM; EC50 for MAPK response as low as 9.49 nM. Moreover, STLs demonstrated significant improvement in potency in vivo, evoking mechanical allodynia with an EC50 of 14.4 pmol. STLs failed to elicit responses in PAR2?/? cells at agonist concentrations of >300-fold their EC50 values. Our results demonstrate that the STL approach is a powerful tool for increasing ligand potency at PAR2 and represent opportunities for drug development at other protease activated receptors and across GPCRs.—Flynn, A. N., Hoffman, J., Tillu, D. V., Sherwood, C. L., Zhang, Z., Patek, R., Asiedu, M. N. K., Vagner, J., Price, T. J., Boitano, S. Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering. PMID:23292071

Flynn, Andrea N.; Hoffman, Justin; Tillu, Dipti V.; Sherwood, Cara L.; Zhang, Zhenyu; Patek, Renata; Asiedu, Marina N. K.; Vagner, Josef; Price, Theodore J.; Boitano, Scott

2013-01-01

29

Recovery of brain biomarkers following peroxisome proliferator-activated receptor agonist neuroprotective treatment before ischemic stroke  

PubMed Central

Background Lipid lowering agent such as agonists of peroxisome proliferator-activated receptors (PPAR) are suggested as neuroprotective agents and may protect from the sequelae of brain ischemic stroke. Although the demonstration is not clearly established in human, the underlying molecular mechanism may be of interest for future therapeutic purposes. To this end, we have used our well established rodent model of ischemia-reperfusion pre-treated or not with fenofibrate or atorvastatin and performed a differential proteomics analyses of the brain and analysed the protein markers which levels returned to “normal” following pre-treatments with PPAR? agonists. Results In order to identify potential therapeutic targets positively modulated by pre-treatment with the PPAR? agonists, two-dimensional gel electrophoresis proteome profiles between control, ischemia-reperfusion and pre-treated or not, were compared. The polypeptide which expression was altered following ischemia – reperfusion but whose levels remain unchanged after pre-treatment were characterized by mass spectrometry and further investigated by Western-blotting and immunohistochemistry. A series of 28 polypeptides were characterized among which the protein disulfide isomerase reduction – a protein instrumental to the unfolded protein response system - was shown to be reduced following PPAR? agonists treatment while it was strongly increased in ischemia-reperfusion. Conclusions Pre-treatment with PPAR? agonist or atorvastatin show potential neuroprotective effects by inhibiting the PDI overexpression in conjunction with the preservation of other neuronal markers, several of which are associated with the regulation of protein homeostasis, signal transduction and maintenance of synaptic plasticity. This proteomic study therefore suggests that neuroprotective effect of PPAR? agonists supposes the preservation of the expression of several proteins essential for the maintenance of protein homeostasis not necessarily directly linked to PPAR? known-regulated targets. PMID:24944524

2014-01-01

30

Agonist activity of naloxone benzoylhydrazone at recombinant and native opioid receptors  

PubMed Central

In the present study, we examined the pharmacological activity of the putative ?3-opioid receptor agonist naloxone benzoylhydrazone (NalBzoH) at recombinant human opioid receptors individually expressed in Chinese hamster ovary (CHO) cells and native opioid receptors present in rat striatum. At the ?-opioid receptor (MOR), NalBzoH stimulated guanosine-5?-O-(3-[35S]thio)triphosphate ([35S]GTP?S) binding (pEC50=8.59) and inhibited cyclic AMP accumulation (pEC50=8.74) with maximal effects (Emax) corresponding to 55 and 65% of those obtained with the MOR agonist DAMGO, respectively. The MOR antagonist CTAP blocked the stimulatory effects of NalBzoH and DAMGO with similar potencies. At the ?-opioid receptor (KOR), NalBzoH stimulated [35S]GTP?S binding (pEC50=9.70) and inhibited cyclic AMP formation (pEC50=9.45) as effectively as the selective KOR agonist (?)-U-50,488. The NalBzoH effect was blocked by the KOR antagonist nor-binaltorphimine (nor-BNI) (pKi=10.30). In CHO cells expressing the ?-opioid receptor (DOR), NalBzoH increased [35S]GTP?S binding (pEC50=8.49) and inhibited cyclic AMP formation (pEC50=8.61) almost as effectively as the DOR agonist DPDPE. Naltrindole (NTI), a selective DOR antagonist, completely blocked the response to NalBzoH (pKi of 10.40). In CHO cells expressing the nociceptin/orphanin FQ (N/OFQ) receptor (NOP), NalBzoH failed to exert agonist effects and antagonized the agonist-induced receptor activation. When compared to other opioid receptor ligands, NalBzoH showed an efficacy that was lower than that of morphine at MOR, but higher at KOR and DOR. In rat striatum, NalBzoH enhanced [35S]GTP?S binding and inhibited adenylyl cyclase activity. These effects were antagonized by either CTAP, nor-BNI or NTI, each antagonist blocking a fraction of the NalBzoH response. These data demonstrate that NalBzoH displays agonist activity at MOR, DOR and KOR expressed either in a heterologous cell system or in a native environment. PMID:16402046

Olianas, Maria C; Concas, Danilo; Onali, Pierluigi

2006-01-01

31

A peroxisome proliferator-activated receptor-gamma agonist and other constituents from Chromolaena odorata.  

PubMed

Peroxisome proliferator-activated receptors (PPARs) are key regulators of lipid and glucose metabolism and have become important therapeutic targets for various diseases. The phytochemical investigation of the chloroform-soluble extract of Chromolaena odorata led to the isolation of a PPAR-gamma agonist, (9 S,13 R)-12-oxo-phytodienoic acid (1), together with 12 other compounds. The structures of chromomoric acid G (2), a new dehydrogenated derivative of 1, and chromolanone (3) were elucidated based on spectroscopic methods. Compound 1 showed a significant effect on PPAR-gamma activation in comparison with rosiglitazone. However, compound 2 was inactive, suggesting that the dehydrogenation of the prostaglandin-like structure in 1 abrogates its PPAR-gamma agonistic activity. PMID:19242902

Dat, Nguyen Tien; Lee, Kyeong; Hong, Young-Soo; Kim, Young Ho; Minh, Chau Van; Lee, Jung Joon

2009-06-01

32

Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines?  

PubMed Central

Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1?, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPAR? agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain. PMID:25191225

Freitag, Caroline M.; Miller, Richard J.

2014-01-01

33

Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy.  

PubMed

Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) - surprisingly - autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury. PMID:24743740

Gallo, S; Gatti, S; Sala, V; Albano, R; Costelli, P; Casanova, E; Comoglio, P M; Crepaldi, T

2014-01-01

34

Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy  

PubMed Central

Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) – surprisingly – autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury. PMID:24743740

Gallo, S; Gatti, S; Sala, V; Albano, R; Costelli, P; Casanova, E; Comoglio, P M; Crepaldi, T

2014-01-01

35

Modeling active electrolocation in weakly electric fish  

E-print Network

In this paper, we provide a mathematical model for the electrolocation in weakly electric fishes. We first investigate the forward complex conductivity problem and derive the approximate boundary conditions on the skin of the fish. Then we provide a dipole approximation for small targets away from the fish. Based on this approximation, we obtain a non-iterative location search algorithm using multi-frequency measurements. We present numerical experiments to illustrate the performance and the stability of the proposed multi-frequency location search algorithm. Finally, in the case of disk- and ellipse-shaped targets, we provide a method to reconstruct separately the conductivity, the permittivity, and the size of the targets from multi-frequency measurements.

Habib Ammari; Thomas Boulier; Josselin Garnier

2012-03-05

36

RXR Partial Agonist Produced by Side Chain Repositioning of Alkoxy RXR Full Agonist Retains Antitype 2 Diabetes Activity without the Adverse Effects.  

PubMed

We previously reported RXR partial agonist CBt-PMN (1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid: 5, EC50 = 143 nM, Emax = 75%), which showed a potent glucose-lowering effect without causing serious adverse effects. However, it remains important to elucidate the structural requirements for RXR efficacy and the glucose-lowering effect because RXR-permissive heterodimers such as PPAR/RXR or LXR/RXR are reported to be activated differently depending upon the chemical structure of RXR agonists. In this work, we show that an RXR partial agonist, NEt-4IB (6-[ethyl-(4-isobutoxy-3-isopropylphenyl)amino]pyridine-3-carboxylic acid: 8b, EC50 = 169 nM, Emax = 55%), can be obtained simply by repositioning the side chains (interchanging the isobutoxy and isopropoxy groups) at the hydrophobic moiety of the RXR full agonist NEt-3IB (6-[ethyl-(3-isobutoxy-4-isopropylphenyl)amino]pyridine-3-carboxylic acid: 7b, EC50 = 19 nM). NEt-4IB (8b) showed antitype 2 diabetes activity without the above side effects upon repeated oral administration to mice at 10 mg/kg/day, similarly to 5. PMID:25486327

Kawata, Kohei; Morishita, Ken-Ichi; Nakayama, Mariko; Yamada, Shoya; Kobayashi, Toshiki; Furusawa, Yuki; Arimoto-Kobayashi, Sakae; Oohashi, Toshitaka; Makishima, Makoto; Naitou, Hirotaka; Ishitsubo, Erika; Tokiwa, Hiroaki; Tai, Akihiro; Kakuta, Hiroki

2015-01-22

37

The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats  

PubMed Central

Background Activation of peroxisome proliferator-activated receptor (PPAR)gamma is associated with bone loss and increased fracture risk, while PPARalpha activation seems to have positive skeletal effects. To further explore these effects we have examined the effect of the PPARalpha agonists fenofibrate and Wyeth 14643, and the PPARgamma agonist pioglitazone, on bone mineral density (BMD), bone architecture and biomechanical strength in ovariectomized rats. Methods Fifty-five female Sprague-Dawley rats were assigned to five groups. One group was sham-operated and given vehicle (methylcellulose), the other groups were ovariectomized and given vehicle, fenofibrate, Wyeth 14643 and pioglitazone, respectively, daily for four months. Whole body and femoral BMD were measured by dual X-ray absorptiometry (DXA), and biomechanical testing of femurs, and micro-computed tomography (microCT) of the femoral shaft and head, were performed. Results Whole body and femoral BMD were significantly higher in sham controls and ovariectomized animals given fenofibrate, compared to ovariectomized controls. Ovariectomized rats given Wyeth 14643, maintained whole body BMD at sham levels, while rats on pioglitazone had lower whole body and femoral BMD, impaired bone quality and less mechanical strength compared to sham and ovariectomized controls. In contrast, cortical volume, trabecular bone volume and thickness, and endocortical volume were maintained at sham levels in rats given fenofibrate. Conclusions The PPARalpha agonist fenofibrate, and to a lesser extent the PPARaplha agonist Wyeth 14643, maintained BMD and bone architecture at sham levels, while the PPARgamma agonist pioglitazone exaggerated bone loss and negatively affected bone architecture, in ovariectomized rats. PMID:21615901

2011-01-01

38

Liver X Receptor and Peroxisome Proliferator-Activated Receptor Agonist from Cornus alternifolia  

PubMed Central

Background Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptors superfamily and are transcription factors activated by specific ligands. Liver X receptors (LXR) belong to the nuclear hormone receptors and have been shown to play an important role in cholesterol homeostasis. From the previous screening of several medicinal plants for potential partial PPAR? agonists, the extracts of Cornus alternifolia were found to exhibit promising bioactivity. In this paper, we report the isolation and structural elucidation of four new compounds and their potential as ligands for PPAR. Methods The new compounds were extracted from the leaves of Cornus alternifolia and fractionated by high-performance liquid chromatography. Their structures were elucidated on the basis of spectroscopic evidence and analysis of their hydrolysis products. Results Three new iridoid glycosides including an iridolactone, alternosides A-C (1–3), a new megastigmane glycoside, cornalternoside (4) and 10 known compounds, were obtained from the leaves of Cornus alternifolia. Kaempferol-3-O-?-glucopyranoside (5) exhibited potent agonistic activities for PPAR?, PPAR? and LXR with EC50 values of 0.62, 3.0 and 1.8 ? M, respectively. Conclusions We isolated four new and ten known compounds from Cornus alternifolia, and one known compound showed agonistic activities for PPAR?, PPAR? and LXR. General significance Compound 1 is the first example of a naturally occurring iridoid glycoside containing a ?-glucopyranoside moiety at C-6. PMID:22353334

He, Yang-Qing; Ma, Guo-Yi; Peng, Jiang-nan; Ma, Zhan-Ying; Hamann, Mark T.

2012-01-01

39

Activation of Human Brown Adipose Tissue by a ?3-Adrenergic Receptor Agonist.  

PubMed

Increasing energy expenditure through activation of endogenous brown adipose tissue (BAT) is a potential approach to treat obesity and diabetes. The class of ?3-adrenergic receptor (AR) agonists stimulates rodent BAT, but this activity has never been demonstrated in humans. Here we determined the ability of 200 mg oral mirabegron (Myrbetriq, Astellas Pharma, Inc.), a ?3-AR agonist currently approved to treat overactive bladder, to stimulate BAT as compared to placebo. Mirabegron led to higher BAT metabolic activity as measured via (18)F-fluorodeoxyglucose ((18)F-FDG) using positron emission tomography (PET) combined with computed tomography (CT) in all twelve healthy male subjects (p = 0.001), and it increased resting metabolic rate (RMR) by 203 ± 40 kcal/day (+13%; p = 0.001). BAT metabolic activity was also a significant predictor of the changes in RMR (p = 0.006). Therefore, a ?3-AR agonist can stimulate human BAT thermogenesis and may be a promising treatment for metabolic disease. PMID:25565203

Cypess, Aaron M; Weiner, Lauren S; Roberts-Toler, Carla; Elía, Elisa Franquet; Kessler, Skyler H; Kahn, Peter A; English, Jeffrey; Chatman, Kelly; Trauger, Sunia A; Doria, Alessandro; Kolodny, Gerald M

2015-01-01

40

Lanthanide labeling of a potent protease activated receptor-2 agonist for time-resolved fluorescence analysis  

PubMed Central

Protease activated receptor-2 (PAR2) is one of four G-protein coupled receptors (GPCRs) that can be activated by exogenous or endogenous proteases, which cleave the extracellular amino-terminus to expose a tethered ligand and subsequent G-protein signaling. Alternatively, PAR2 can be activated by peptide or peptidomimetic ligands derived from the sequence of the natural tethered ligand. Screening of novel ligands that directly bind to PAR2 to agonize or antagonize the receptor has been hindered by the lack of a sensitive, high-throughput, affinity binding assay. In this report we describe the synthesis and use of a modified PAR2 peptidomimetic agonist, 2-furoyl-LIGRLO-(diethylenetriaminepentaacetic acid)-NH2 (2-f-LIGRLO-dtpa), designed for lanthanide-based time resolved fluorescence screening. We first demonstrate that 2-f-LIGRLO-dtpa is a potent and specific PAR2 agonist across a full spectrum of in vitro assays. We then show that 2-f-LIGRLO-dtpa can be utilized in an affinity binding assay to evaluate the ligand-receptor interactions between known high potency peptidomimetic agonists (2-furoyl-LIGRLO-NH2, 2-f-LIGRLO; 2-aminothiazol-4-yl-LIGRL-NH2, 2-at-LIGRL and; 6-aminonicotinyl-LIGRL-NH2, 6-an-LIGRL) and PAR2. A separate N-terminal peptidomimetic modification (3-indoleacetyl-LIGRL-NH2, 3-ia-LIGRL) that does not activate PAR2 signaling was used as a negative control. All three peptidomimetic agonists demonstrated sigmoidal competitive binding curves, with the more potent agonists (2-f-LIGRLO and 2-at-LIGRL) displaying increased competition. In contrast, the control peptide (3-ia-LIGRL) displayed limited competition for PAR2 binding. In summary, we have developed a Europium-containing PAR2 agonist that can be used in a highly sensitive affinity binding assay to screen novel PAR2 ligands in a high-throughput format. This ligand can serve as a critical tool in the screening and development of PAR2 ligands. PMID:22994402

Hoffman, Justin; Flynn, Andrea N.; Tillu, Dipti V.; Zhang, Zhenyu; Patek, Renata; Price, Theodore J.; Vagner, Josef; Boitano, Scott

2012-01-01

41

Diverging Mechanisms of Activation of Chemokine Receptors Revealed by Novel Chemokine Agonists  

Microsoft Academic Search

CXCL8\\/interleukin-8 is a pro-inflammatory chemokine that triggers pleiotropic responses, including inflammation, angiogenesis, wound healing and tumorigenesis. We engineered the first selective CXCR1 agonists on the basis of residue substitutions in the conserved ELR triad and CXC motif of CXCL8. Our data reveal that the molecular mechanisms of activation of CXCR1 and CXCR2 are distinct: the N-loop of CXCL8 is the

Jose Sarmiento; Christie Shumate; Katsutoshi Suetomi; Aishwarya Ravindran; León Villegas; Krishna Rajarathnam; Javier Navarro

2011-01-01

42

Antitussive activity of sigma-1 receptor agonists in the guinea-pig.  

PubMed

1. Current antitussive medications have limited efficacy and often contain the opiate-like agent dextromethorphan (DEX). The mechanism whereby DEX inhibits cough is ill defined. DEX displays affinity at both NMDA and sigma receptors, suggesting that the antitussive activity may involve central or peripheral activity at either of these receptors. This study examined and compared the antitussive activity of DEX and various putative sigma receptor agonists in the guinea-pig citric-acid cough model. 2. Intraperitoneal (i.p.) administration of DEX (30 mg kg(-1)) and the sigma-1 agonists SKF-10,047 (1-5 mg kg(-1)), Pre-084 (5 mg kg(-1)), and carbetapentane (1-5 mg kg(-1)) inhibited citric-acid-induced cough in guinea-pigs. Intraperitoneal administration of a sigma-1 antagonist, BD 1047 (1-5 mg kg(-1)), reversed the inhibition of cough elicited by SKF-10,047. In addition, two structurally dissimilar sigma agonists SKF-10,047 (1 mg ml(-1)) and Pre-084 (1 mg ml(-1)) inhibited cough when administered by aerosol. 3. Aerosolized BD 1047 (1 mg ml(-1), 30 min) prevented the antitussive action of SKF-10,047 (5 mg kg(-1)) or DEX (30 mg kg(-1)) given by i.p. administration and, likewise, i.p. administration of BD 1047 (5 mg kg(-1)) prevented the antitussive action of SKF-10,047 given by aerosol (1 mg ml(-1)). 4. These results therefore support the argument that antitussive effects of DEX may be mediated via sigma receptors, since both systemic and aerosol administration of sigma-1 receptor agonists inhibit citric-acid-induced cough in guinea-pigs. While significant systemic exposure is possible with aerosol administration, the very low doses administered (estimated <0.3 mg kg(-1)) suggest that there may be a peripheral component to the antitussive effect. PMID:14691051

Brown, Claire; Fezoui, Malika; Selig, William M; Schwartz, Carl E; Ellis, James L

2004-01-01

43

Agonist activity of LSD and lisuride at cloned 5HT2A and 5HT2C receptors  

Microsoft Academic Search

Evidence from studies with phenylisopropylamine hallucinogens indicates that the 5HT2A receptor is the likely target for the initiation of events leading to hallucinogenic activity associated with LSD?and related\\u000a drugs. Recently, lisuride (a purported non-hallucinogenic congener of LSD) was reported to be a potent antagonist at the 5HT2C receptor and an agonist at the 5HT2A receptor. LSD exhibited agonist activity at

Christina T. Egan; Katharine Herrick-Davis; Keith Miller; Richard A. Glennon; M. Teitler

1998-01-01

44

Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists.  

PubMed

Binding of the peptide hormone vasopressin to its type-2 receptor (V2R) in kidney triggers a cAMP-mediated translocation of Aquaporin-2 water channels to the apical membrane, resulting in water reabsorption and thereby preventing dehydration. Mutations in the V2R gene lead to Nephrogenic Diabetes Insipidus (NDI), a disorder in which this process is disturbed, because the encoded, often intrinsically functional mutant V2 receptors are misfolded and retained in the endoplasmic reticulum (ER). Since plasma membrane expression is thought to be essential for V2R activation, cell permeable V2R antagonists have been used to induce maturation and rescue cell surface expression of V2R mutants, after which they need to be displaced by vasopressin for activation. Here, however, we show that 3 novel nonpeptide V2R agonists, but not vasopressin, activate NDI-causing V2R mutants at their intracellular location, without changing their maturation and at a sufficient level to induce the translocation of aquaporin-2 to the apical membrane. Moreover, in contrast to plasma membrane V2R, degradation of intracellular V2R mutants is not increased by their activation. Our data reveal that G protein-coupled receptors (GPCRs) normally active at the plasma membrane can be activated intracellularly and that intracellular activation does not induce their degradation; the data also indicate that nonpeptide agonists constitute highly promising therapeutics for diseases caused by misfolded GPCRs in general, and NDI in particular. PMID:19587238

Robben, Joris H; Kortenoeven, Marleen L A; Sze, Mozes; Yae, Chris; Milligan, Graeme; Oorschot, Viola M; Klumperman, Judith; Knoers, Nine V A M; Deen, Peter M T

2009-07-21

45

Structure-activity relationship of a broad-spectrum insect odorant receptor agonist.  

PubMed

Agonism of insect odorant receptor (OR) cation channels may represent a new strategy for the manipulation of destructive insect olfactory-driven behaviors. We have explored the chemical space around VUAA1, the first in class agonist of the obligate OR co-receptor ion channel (Orco), and describe novel compound analogues with increased potency across insect taxa. Functional analyses reveal several of these VUAA1 structural analogues display significantly greater potency as compared to the activity of the previously described active compounds in mobility-based behavioral assays on mosquito larvae. PMID:22924767

Taylor, Robert W; Romaine, Ian M; Liu, Chao; Murthi, Poornima; Jones, Patrick L; Waterson, Alex G; Sulikowski, Gary A; Zwiebel, Laurence J

2012-10-19

46

Structure-activity relationship studies toward the discovery of selective apelin receptor agonists.  

PubMed

Apelin is the endogenous ligand for the previously orphaned G protein-coupled receptor APJ. Apelin and its receptor are widely distributed in the brain, heart, and vasculature, and are emerging as an important regulator of body fluid homeostasis and cardiovascular functions. To further progress in the pharmacology and the physiological role of the apelin receptor, the development of small, bioavailable agonists and antagonists of the apelin receptor, is crucial. In this context, E339-3D6 (1) was described as the first nonpeptidic apelin receptor agonist. We show here that 1 is actually a mixture of polymethylated species, and we describe an alternative and versatile solid-phase approach that allows access to highly pure 27, the major component of 1. This approach was also applied to prepare a series of derivatives in order to identify the crucial structural determinants required for the ligand to maintain its affinity for the apelin receptor as well as its capacity to promote apelin receptor signaling and internalization. The study of the structure-activity relationships led to the identification of ligands 19, 21, and 38, which display an increased affinity compared to that of 27. The latter and 19 behave as full agonists with regard to cAMP production and apelin receptor internalization, whereas 21 is a biased agonist toward cAMP production. Interestingly, the three ligands display a much higher stability in mouse plasma (T1/2 > 10 h) than the endogenous apelin-17 peptide 2 (T1/2 < 4 min). PMID:24625069

Margathe, Jean-François; Iturrioz, Xavier; Alvear-Perez, Rodrigo; Marsol, Claire; Riché, Stéphanie; Chabane, Hadjila; Tounsi, Nassera; Kuhry, Maxime; Heissler, Denis; Hibert, Marcel; Llorens-Cortes, Catherine; Bonnet, Dominique

2014-04-10

47

Cholinergic and glutamatergic agonists induce gamma frequency activity in dorsal subcoeruleus nucleus neurons  

PubMed Central

The dorsal subcoeruleus nucleus (SubCD) is involved in generating two signs of rapid eye movement (REM) sleep: muscle atonia and ponto-geniculo-occipital (PGO) waves. We tested the hypothesis that single cell and/or population responses of SubCD neurons are capable of generating gamma frequency activity in response to intracellular stimulation or receptor agonist activation. Whole cell patch clamp recordings (immersion chamber) and population responses (interface chamber) were conducted on 9- to 20-day-old rat brain stem slices. All SubCD neurons (n = 103) fired at gamma frequency when subjected to depolarizing steps. Two statistically distinct populations of neurons were observed, which were distinguished by their high (>80 Hz, n = 24) versus low (35–80 Hz, n = 16) initial firing frequencies. Both cell types exhibited subthreshold oscillations in the gamma range (n = 43), which may underlie the gamma band firing properties of these neurons. The subthreshold oscillations were blocked by the sodium channel blockers tetrodotoxin (TTX, n = 21) extracellularly and N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314) intracellularly (n = 5), indicating they were sodium channel dependent. Gamma frequency subthreshold oscillations were observed in response to the nonspecific cholinergic receptor agonist carbachol (CAR, n = 11, d = 1.08) and the glutamate receptor agonists N-methyl-d-aspartic acid (NMDA, n = 12, d = 1.09) and kainic acid (KA, n = 13, d = 0.96), indicating that cholinergic and glutamatergic inputs may be involved in the activation of these subthreshold currents. Gamma band activity also was observed in population responses following application of CAR (n = 4, P < 0.05), NMDA (n = 4, P < 0.05) and KA (n = 4, P < 0.05). Voltage-sensitive, sodium channel-dependent gamma band activity appears to be a part of the intrinsic membrane properties of SubCD neurons. PMID:21543743

Simon, Christen; Kezunovic, Nebojsa; Williams, D. Keith; Urbano, Francisco J.

2011-01-01

48

Neuromuscular Contributions to Age-Related Weakness  

PubMed Central

Background. Declines in skeletal muscle mass and quality are important factors contributing to age-related weakness. Neural activation of agonist and antagonist muscles may also be important contributing factors. Methods. We conducted a review of the scientific literature on older adults to determine (a) methodologies used to quantify activation, (b) the potential role of agonist and antagonist activation on weakness, and (c) some possible neurophysiological mechanisms that may underlie impaired activation. Results. The cumulative evidence indicates that agonist activation is impaired in some, but not all, older adults and that this impairment contributes to age-related weakness. It is possible that antagonist coactivation also plays a role in age-related weakness, though a definitive link has not been established. Conclusion. Future research should focus on improving quantitative measurement and mechanistic understanding of impaired activation with aging. PMID:21415261

Clark, David J.

2012-01-01

49

Structure–Activity Relationships for Side Chain Oxysterol Agonists of the Hedgehog Signaling Pathway  

PubMed Central

Oxysterols (OHCs) are byproducts of cholesterol oxidation that are known to activate the Hedeghog (Hh) signaling pathway. While OHCs that incorporate hydroxyl groups throughout the scaffold are known, those that act as agonists of Hh signaling primarily contain a single hydroxyl on the alkyl side chain. We sought to further explore how side chain hydroxylation patterns affect oxysterol-mediated Hh activation, by performing a structure–activity relationship study on a series of synthetic OHCs. The most active analogue, 23(R)-OHC (35), demonstrated potent activation of Hh signaling in two Hh-dependent cell lines (EC50 values 0.54–0.65 ?M). In addition, OHC 35 was approximately 3-fold selective for the Hh pathway as compared to the liver X receptor, a nuclear receptor that is also activated by endogenous OHCs. Finally, 35 induced osteogenic differentiation and osteoblast formation in cultured cells, indicating functional agonism of the Hh pathway. PMID:24900386

2012-01-01

50

Biological evaluation and structural insights for design of subtype-selective peroxisome proliferator activated receptor-? (PPAR-?) agonists.  

PubMed

Peroxisome proliferator activated receptors-? (PPAR-?) control the expression of several genes involved in diseases like diabetes, hyperlipidaemia, and inflammatory disorders. Herein, we report the biological evaluation of recently identified hits from pharmacophore based virtual screening. The most potent hits, ZINC17167211, ZINC06472206 and ZINC08438472 showed EC50 values of 0.16, 1.1 and 12.1nM in PPAR-? agonist assay, respectively. Further, comparative docking and molecular dynamics analysis of selective PPAR-? agonists revealed that Thr279, Ala333, Lys358 and Met325 residues play an important role in the selective PPAR-? agonistic activity. The insights from docking and molecular dynamic studies will serve as a guideline for the development of potent and selective PPAR-? agonists. PMID:25491112

Gangwal, Rahul P; Damre, Mangesh V; Das, Nihar R; Sharma, Shyam S; Sangamwar, Abhay T

2015-01-15

51

Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor.  

PubMed Central

RU486 induced the binding to a palindromic progestin responsive element (PRE) in vitro of homo- and heterodimers of the human progesterone receptor (hPR) isoforms A and B, present in T47D breast cancer cells or in HeLa cells transiently expressing the recombinant proteins. The resulting complexes were indistinguishable from those induced with the agonist R5020 with respect to specificity, affinity and stability. Ligand exposure was a necessary prerequisite to observe PR/PRE complexes. Antagonist-induced complexes migrated more rapidly during electrophoresis than agonist-induced ones, and no 'mixed' PR/RU486-PR/R5020 complexes were observed, suggesting that the dimerization interfaces of agonist- and antagonist-bound molecules are non-compatible. The analysis of a series of deletion mutants and chimeric receptors revealed the presence of two transcription activation functions (TAFs), located in the N-terminal region A/B (TAF-1) and the hormone binding domain (TAF-2). In the presence of agonists, both TAFs were active in HeLa cells. In the presence of RU486 TAF-2 was inactive, while TAF-1 within the hPR form B/RU486 complex activated transcription from a reporter gene containing a single palindromic PRE. We consider this to be the most convincing evidence that the receptor/RU486-complex does in fact bind to PREs in vivo. No transcriptional activation was observed in the presence of RU486 from a reporter gene containing the complex MMTV-LTR PRE. In contrast to hPR form B, form A was not able to activate transcription from PRE/GRE-tk-CAT in the presence of RU486. In vivo competition between hPR/RU486 and either cPR/R5020 or the human glucocorticoid receptor/dexamethasone (hGR/Dex) complex further supported that hPR/RU486 bound in vivo to its cognate responsive element. Indeed, the observed inhibition of transcription was shown to be due to competition for the MMTV PRE, since no transcriptional interference by the hPR/RU486 was observed, and since no heterodimers were formed between hPR/RU486 and cPR/R5020 or hGR/Dex. That the ligand-free hPR, however, was unable to compete, demonstrated that ligand binding is the prerequisite for DNA binding of hPR in vivo. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2249658

Meyer, M E; Pornon, A; Ji, J W; Bocquel, M T; Chambon, P; Gronemeyer, H

1990-01-01

52

NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with ?-Opioid Agonist Activity  

PubMed Central

A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the ?-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the ?-opioid GPCR was predicated on the modulatory role of nitric oxide on ?-opioid receptor function. Structure–activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 ?M), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent ?-opioid binding affinity, Ki = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 ?M). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

2012-01-01

53

NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with ?-Opioid Agonist Activity.  

PubMed

A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the ?-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the ?-opioid GPCR was predicated on the modulatory role of nitric oxide on ?-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 ?M), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent ?-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 ?M). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S

2012-03-01

54

PPAR-? agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination  

SciTech Connect

Highlights: •PPAR-? increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-?-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor ? (PPAR-?) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-? are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-? in VSMCs is not clear. In this study, we found that PPAR-? agonist pioglitazone increases KLF4 protein levels but does not influence KLF4 gene transcription. PPAR-? overexpression increases, while PPAR-? knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-?-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-? agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-? and KLF4 in regulating each other’s expression in VSMCs.

Sun, Yan; Zheng, Bin; Zhang, Xin-hua; He, Ming; Guo, Zong-wei; Wen, Jin-kun, E-mail: wjk@hebmu.edu.cn

2014-01-10

55

Chloride conductance activated by external agonists and internal messengers in rat peritoneal mast cells.  

PubMed Central

1. Stimulation of mast cells by externally applied secretagogues activated a slowly developing membrane current. With high external and low internal chloride (Cl-) concentrations, the current reversed at about -40 mV, but when external Cl- was made equal to internal Cl-, the reversal potential shifted to about 0 mV, demonstrating that the current carrier was Cl-. 2. In addition to external agonists, internally applied cyclic AMP and high concentrations of intracellular calcium [Ca2+]i could also activate the Cl- current. However, elevated [Ca2+]i produced only slow and incomplete activation. This suggests that the Cl- current is not directly Ca2+ activated. Also, activation of Cl- current by external agonists and by cyclic AMP was unimpaired when [Ca2+]i was clamped to low levels with internal ethylene glycol bis-N,N,N',N'-tetraacetic acid (EGTA), indicating that elevated [Ca2+]i is not necessary for activation of the Cl- current. Although activation by cyclic AMP was faster than that produced by elevated [Ca2+]i, it still required tens of seconds; thus the effect of cyclic AMP was also likely to be indirect. 3. Internal guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) could also activate the Cl- current, suggesting the involvement of a G protein in the control of the current. 4. The variance associated with the Cl- current was small, and noise analysis gave a lower limit of about 1-2 pS for the single-channel conductance. The Cl- current was reduced by 4,4'-diisothiocyano-2,2'-stilbenedisulphonate (DIDS), and during DIDS blockade, the variance of the current increased. This suggests that DIDS enters and blocks the open channel. 5. Activation of the Cl- current would make the membrane potential negative following stimulation of a mast cell, thus providing a driving force for entry of external calcium via the stimulation-induced influx pathways described in the preceding paper (Matthews, Neher & Penner, 1989). PMID:2559969

Matthews, G; Neher, E; Penner, R

1989-01-01

56

Hydroxy monounsaturated fatty acids as agonists for peroxisome proliferator-activated receptors.  

PubMed

The physiological and pathological role of oxidized polyunsaturated fatty acids (PUFAs) has been extensively studied, whereas those of hydroxy monounsaturated fatty acids (MUFAs) are not well understood. This study demonstrated that 11-hydroxy-(9Z)-octadecenoic acid ((9Z)-11-HOE), which was isolated from adlay seeds (Coix lacryma-jobi L. var. ma-yuen STAF.), can activate peroxisome proliferator-activated receptor (PPAR)alpha, delta and gamma in luciferase reporter assays more efficiently than (9Z)-octadecenoic acid (oleic acid), and to the same degree as linoleic acid. (9Z)-11-HOE increased the mRNA levels of UCP2 and CD36 in C2C12 myotubes and THP- 1 cells, respectively, and these effects were blocked by the PPARdelta- and gamma-specific antagonists GSK0660 and T0070907, respectively. Evaluation of the structure.activity relationship between hydroxy MUFAs and PPAR activation revealed that (9E)-11-HOE, the geometrical isomer of (9Z)-11-HOE, activated PPARs more potently than (9Z)-11-HOE, and that PPAR activation by hydroxyl MUFAs was not markedly influenced by the position of the hydroxy group or the double bond, although PPARdelta seemed to possess ligand specificity different to that of PPARalpha or gamma . Additionally, the finding that 11-hydroxy octadecanoic acid, the hydrogenated product of (9E)-11- HOE, was also capable of activating PPARs to a similar extent as (9E)-11-HOE indicates that the double bond in hydroxy MUFAs is not essential for PPAR activation. In conclusion, (9Z)-11-HOE derived from alday seeds and hydroxy MUFAs with a chain length of 16 or 18 acted as PPAR agonists. Hydroxylation of MUFAs may change these compounds from silent PPAR ligands to active PPAR agonists. PMID:20460766

Yokoi, Hiroshi; Mizukami, Hajime; Nagatsu, Akito; Tanabe, Hiroki; Inoue, Makoto

2010-01-01

57

trans-Caryophyllene is a natural agonistic ligand for peroxisome proliferator-activated receptor-?.  

PubMed

Intake of dietary aroma compounds may regulate cellular lipid metabolism. We demonstrated that trans-caryophyllene, a flavor compound in plant foods and teas, activates peroxisome proliferator-activated receptor (PPAR)-? through direct interaction with the ligand-binding domain of PPAR-?. The agonistic activity of trans-caryophyllene was investigated by the luciferase reporter assay, surface plasmon resonance, and time-resolved fluorescence resonance energy transfer assay. Following the stimulation of cells with trans-caryophyllene, intracellular triglyceride concentrations were significantly reduced by 17%, and hepatic fatty acid uptake was significantly increased by 31%. The rate of fatty acid oxidation was also significantly increased. The expressions of PPAR-? and its target genes and proteins in fatty acid uptake and oxidation were significantly up-regulated as well. In HepG2 cells transfected with small interfering RNA of PPAR-?, the effects of trans-caryophyllene on PPAR-? responsive gene expressions, intracellular triglyceride, fatty acid uptake and oxidation were disappeared. These results indicate that the aroma compound, trans-caryophyllene, is PPAR-? agonist thus regulates cellular lipid metabolism in PPAR-? dependent manners. PMID:24856059

Wu, Chunyan; Jia, Yaoyao; Lee, Ji Hae; Jun, Hee-jin; Lee, Hae-Seung; Hwang, Kwang-Yeon; Lee, Sung-Joon

2014-07-15

58

GLP-1 agonists inhibit ox-LDL uptake in macrophages by activating protein kinase A.  

PubMed

Oxidized low-density lipoprotein (ox-LDL) uptake by monocytes/macrophages plays a pivotal role in atherogenesis. This study was designed to examine the effect of glucagon-like peptide-1 (GLP-1) agonists on ox-LDL uptake in macrophages. Human primary monocytes/macrophages were incubated with native GLP-1 (nGLP-1) or GLP-1 agonist liraglutide to evaluate their effect on ox-LDL uptake and the expression of scavenger receptors (SRs), such as SR-A, CD36, and lectin-like ox-LDL SR-1, in this process. Our study showed a decrease in ox-LDL uptake and CD36 expression in macrophages treated with nGLP-1 or liraglutide. However, nGLP-1 and liraglutide did not affect the expression of other SRs SR-A and lectin-like ox-LDL SR-1. Simultaneously, there was an increase in the expression of activated protein kinase A (PKA). To examine the role of PKA in the effects of nGLP-1 or liraglutide, we treated macrophages with PK inhibitor (6-22) amide, a PKA inhibitor, followed by treatment with nGLP-1 or liraglutide. Inhibition of PKA activation markedly reversed the effect of nGLP-1 or liraglutide on ox-LDL uptake and enhanced the expression of CD36. Our results suggest that GLP-1 agonism inhibits ox-LDL uptake through PKA/CD36 pathway in macrophages. This study provides a novel insight in the mechanism of foam cell formation and the role by GLP-1 agonists therein. PMID:24705175

Dai, Yao; Dai, Dongsheng; Wang, Xianwei; Ding, Zufeng; Li, Chunlin; Mehta, Jawahar L

2014-07-01

59

Pharmacological Characterization of a Novel Liver X Receptor Agonist with Partial LXR? Activity and a Favorable Window in Nonhuman Primates.  

PubMed

Liver X Receptors (LXRs) ? and ? are nuclear hormone receptors that regulate multiple genes involved in reverse cholesterol transport (RCT) and are potential drug targets for atherosclerosis. However, full pan agonists also activate lipogenic genes, resulting in elevated plasma and hepatic lipids. We report the pharmacology of BMS-779788 [2-(2-(1-(2-chlorophenyl)-1-methylethyl)-1-(3'-(methylsulfonyl)-4-biphenylyl)-1H-imidazol-4-yl)-2-propanol], a potent partial LXR agonist with LXR? selectivity, which has an improved therapeutic window in the cynomolgus monkey compared with a full pan agonist. BMS-779788 induced LXR target genes in blood in vivo with an EC50 = 610 nM, a value similar to its in vitro blood gene induction potency. BMS-779788 was 29- and 12-fold less potent than the full agonist T0901317 in elevating plasma triglyceride and LDL cholesterol, respectively, with similar results for plasma cholesteryl ester transfer protein and apolipoprotein B. However, ABCA1 and ABCG1 mRNA inductions in blood, which are critical for RCT, were comparable. Increased liver triglyceride was observed after 7-day treatment with BMS-779788 at the highest dose tested and was nearly identical to the dose response for plasma triglyceride, consistent with the central role of liver LXR in these lipogenic effects. Dose-dependent increases in biliary cholesterol and decreases in phospholipid and bile acid occurred in BMS-779788-treated animals, similar to LXR agonist effects reported in mouse. In summary, BMS-779788, a partial LXR? selective agonist, has decreased lipogenic potential compared with a full pan agonist in cynomolgus monkeys, with similar potency in the induction of genes known to stimulate RCT. This provides support in nonhuman primates for improving LXR agonist therapeutic windows by limiting LXR? activity. PMID:25467132

Kirchgessner, Todd G; Martin, Richard; Sleph, Paul; Grimm, Denise; Liu, Xiaoqin; Lupisella, John; Smalley, James; Narayanan, Rangaraj; Xie, Yinong; Ostrowski, Jacek; Cantor, Glenn H; Mohan, Raju; Kick, Ellen

2015-02-01

60

5-HT2C Receptor Agonist Anorectic Efficacy Potentiated by 5-HT1B Receptor Agonist Coapplication: An Effect Mediated via Increased Proportion of Pro-Opiomelanocortin Neurons Activated  

PubMed Central

An essential component of the neural network regulating ingestive behavior is the brain 5-hydroxytryptamine2C receptor (5-HT2CR), agonists of which suppress food intake and were recently approved for obesity treatment by the US Food and Drug Administration. 5-HT2CR-regulated appetite is mediated primarily through activation of hypothalamic arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons, which are also disinhibited through a 5-HT1BR-mediated suppression of local inhibitory inputs. Here we investigated whether 5-HT2CR agonist anorectic potency could be significantly enhanced by coadministration of a 5-HT1BR agonist and whether this was associated with augmented POMC neuron activation on the population and/or single-cell level. The combined administration of subanorectic concentrations of 5-HT2CR and 5-HT1BR agonists produced a 45% reduction in food intake and significantly greater in vivo ARC neuron activation in mice. The chemical phenotype of activated ARC neurons was assessed by monitoring agonist-induced cellular activity via calcium imaging in mouse POMC-EGFP brain slices, which revealed that combined agonists activated significantly more POMC neurons (46%) compared with either drug alone (~25% each). Single-cell electrophysiological analysis demonstrated that 5-HT2CR/5-HT1BR agonist coadministration did not significantly potentiate the firing frequency of individual ARC POMC-EGFP cells compared with agonists alone. These data indicate a functional heterogeneity of ARC POMC neurons by revealing distinct subpopulations of POMC cells activated by 5-HT2CRs and disinhibited by 5-HT1BRs. Therefore, coadministration of a 5-HT1BR agonist potentiates the anorectic efficacy of 5-HT2CR compounds by increasing the number, but not the magnitude, of activated ARC POMC neurons and is of therapeutic relevance to obesity treatment. PMID:23739976

Doslikova, Barbora; Garfield, Alastair S.; Shaw, Jill; Evans, Mark L.; Burdakov, Denis; Billups, Brian; Heisler, Lora K.

2013-01-01

61

Nicotinic Acetylcholine Receptor Agonists Attenuate Septic Acute Kidney Injury in Mice by Suppressing Inflammation and Proteasome Activity  

PubMed Central

Sepsis is one of the leading causes of acute kidney injury (AKI). Septic patients who develop acute kidney injury (AKI) are at increased risk of death. To date there is no effective treatment for AKI or septic AKI. Based on their anti-inflammatory properties, we examined the effects of nicotinic acetylcholine receptor agonists on renal damage using a mouse model of lipopolysaccharide (LPS)-induced AKI where localized LPS promotes inflammation-mediated kidney damage. Administration of nicotine (1 mg/kg) or GTS-21 (4 mg/kg) significantly abrogated renal leukocyte infiltration (by 40%) and attenuated kidney injury. These renoprotective effects were accompanied by reduced systemic and localized kidney inflammation during LPS-induced AKI. Consistent with these observations, nicotinic agonist treatment significantly decreased renal I?B? degradation and NF?B activation during LPS-induced AKI. Treatment of human kidney cells with nicotinic agonists, an NF?B inhibitor (Bay11), or a proteasome inhibitor (MG132) effectively inhibited their inflammatory responses following stimulation with LPS or TNF?. Renal proteasome activity, a major regulator of NF?B-mediated inflammation, was enhanced by approximately 50% during LPS-induced AKI and elevated proteasome activity was significantly blunted by nicotinic agonist administration in vivo. Taken together, our results identify enhanced renal proteasome activity during LPS-induced AKI and the suppression of both proteasome activity and inflammation by nicotinic agonists to attenuate LPS-induced kidney injury. PMID:22586448

Chatterjee, Prodyot K.; Yeboah, Michael M.; Dowling, Oonagh; Xue, Xiangying; Powell, Saul R.; Al-Abed, Yousef; Metz, Christine N.

2012-01-01

62

The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects.  

PubMed

1. Using membranes from stably or transiently transfected HEK293 cells cultured in 5-HT-free medium and expressing the recombinant human 5-HT(7) receptor splice variants (h5-HT(7(a)), h5-HT(7(b)) and h5-HT(7(d))), we compared their abilities to constitutively activate adenylyl cyclase (AC). 2. All h5-HT(7) splice variants elevated basal and forskolin-stimulated AC. The basal AC activity was reduced by the 5-HT(7) antagonist methiothepin and this effect was blocked by mesulergine (neutral 5-HT(7) antagonist) indicating that the inhibitory effect of methiothepin is inverse agonism at the 5-HT(7) receptor. 3. Receptor density correlated poorly with constitutive AC activity in stable clonal cell lines and transiently transfected cells. Mean constitutive AC activity as a percentage of forskolin-stimulated AC was significantly higher for the h5-HT(7(b)) splice variant compared to the h5-HT(7(a)) and h5-HT(7(d)) splice variants but only in stable cell lines. 4. All eight 5-HT antagonists tested inhibited constitutive AC activity of all splice variants in a concentration-dependent manner. No differences in inverse agonist potencies (pIC(50)) were observed between the splice variants. The rank order of potencies was in agreement and highly correlated with antagonist potencies (pK(b)) determined by antagonism of 5-HT-stimulated AC activity (methiothepin >metergoline> mesulergine > or = clozapine > or = spiperone > or = ritanserin > methysergide > ketanserin). 5. The efficacy of inverse agonism was not receptor level dependent and varied for several 5-HT antagonists between membrane preparations of transiently and stably transfected cells. 6. It is concluded that the h5-HT(7) splice variants display similar constitutive activity and inverse agonist properties. PMID:11906971

Krobert, Kurt A; Levy, Finn Olav

2002-03-01

63

[Dmt(1)]DALDA analogues with enhanced ? opioid agonist potency and with a mixed ?/? opioid activity profile.  

PubMed

Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent ? opioid agonist peptide with mitochondria-targeted antioxidant activity, were prepared by replacing Phe(3) with various 2',6'-dialkylated Phe analogues, including 2',6'-dimethylphenylalanine (Dmp), 2',4',6'-trimethylphenylalanine (Tmp), 2'-isopropyl-6'-methylphenylalanine (Imp) and 2'-ethyl-6'-methylphenylalanine (Emp), or with the bulky amino acids 3'-(1-naphthyl)alanine (1-Nal), 3'-(2-naphthyl)alanine (2-Nal) or Trp. Several compounds showed significantly increased ? agonist potency, retained ? receptor selectivity and are of interest as drug candidates for neuropathic pain treatment. Surprisingly, the Dmp(3)-, Imp(3)-, Emp(3)- and 1-Nal(3)-containing analogues showed much increased ? receptor binding affinity and had mixed ?/? properties. In these cases, molecular dynamics studies indicated conformational preorganization of the unbound peptide ligands due to rotational restriction around the C(?)C(?) bond of the Xxx(3) residue, in correlation with the observed ? receptor binding enhancement. Compounds with a mixed ?/? opioid activity profile are known to have therapeutic potential for treatment of cocaine abuse. PMID:24602401

Bai, Longxiang; Li, Ziyuan; Chen, Jiajia; Chung, Nga N; Wilkes, Brian C; Li, Tingyou; Schiller, Peter W

2014-04-01

64

Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions.  

PubMed

Junctate is a 33 kDa integral protein of sarco(endo)plasmic reticulum membranes that forms a macromolecular complex with inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptors and TRPC3 channels. TIRF microscopy shows that junctate enhances the number of fluorescent puncta on the plasma membrane. The size and distribution of these puncta are not affected by the addition of agonists that mobilize Ca(2+) from Ins(1,4,5)P(3)-sensitive stores. Puncta are associated with a significantly larger number of peripheral junctions between endoplasmic reticulum and plasma membrane, which are further enhanced upon stable co-expression of junctate and TRPC3. The gap between the membranes of peripheral junctions is bridged by regularly spaced electron-dense structures of 10 nm. Ins(1,4,5)P(3) inhibits the interaction of the cytoplasmic N-terminus of junctate with the ligand-binding domain of the Ins(1,4,5)P(3) receptor. Furthermore, Ca(2+) influx evoked by activation of Ins(1,4,5)P(3) receptors is increased where puncta are located. We conclude that stable peripheral junctions between the plasma membrane and endoplasmic reticulum are the anatomical sites of agonist-activated Ca(2+) entry. PMID:21062895

Treves, Susan; Vukcevic, Mirko; Griesser, Johanna; Armstrong, Clara-Franzini; Zhu, Michael X; Zorzato, Fancesco

2010-12-01

65

Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions  

PubMed Central

Junctate is a 33 kDa integral protein of sarco(endo)plasmic reticulum membranes that forms a macromolecular complex with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptors and TRPC3 channels. TIRF microscopy shows that junctate enhances the number of fluorescent puncta on the plasma membrane. The size and distribution of these puncta are not affected by the addition of agonists that mobilize Ca2+ from Ins(1,4,5)P3-sensitive stores. Puncta are associated with a significantly larger number of peripheral junctions between endoplasmic reticulum and plasma membrane, which are further enhanced upon stable co-expression of junctate and TRPC3. The gap between the membranes of peripheral junctions is bridged by regularly spaced electron-dense structures of 10 nm. Ins(1,4,5)P3 inhibits the interaction of the cytoplasmic N-terminus of junctate with the ligand-binding domain of the Ins(1,4,5)P3 receptor. Furthermore, Ca2+ influx evoked by activation of Ins(1,4,5)P3 receptors is increased where puncta are located. We conclude that stable peripheral junctions between the plasma membrane and endoplasmic reticulum are the anatomical sites of agonist-activated Ca2+ entry. PMID:21062895

Treves, Susan; Vukcevic, Mirko; Griesser, Johanna; Armstrong, Clara-Franzini; Zhu, Michael X.; Zorzato, Fancesco

2010-01-01

66

An Agonist of Toll-Like Receptor 5 Has Radioprotective Activity in Mouse and Primate Models  

PubMed Central

The toxicity of ionizing radiation is associated with massive apoptosis in radiosensitive organs. Here, we investigate whether a drug that activates a signaling mechanism used by tumor cells to suppress apoptosis can protect healthy cells from the harmful effects of radiation. We studied CBLB502, a polypeptide drug derived from Salmonella flagellin that binds to Toll-like receptor 5 (TLR5) and activates nuclear factor–?B signaling. A single injection of CBLB502 before lethal total-body irradiation protected mice from both gastrointestinal and hematopoietic acute radiation syndromes and resulted in improved survival. CBLB502 injected after irradiation also enhanced survival, but at lower radiation doses. It is noteworthy that the drug did not decrease tumor radiosensitivity in mouse models. CBLB502 also showed radioprotective activity in lethally irradiated rhesus monkeys. Thus, TLR5 agonists could potentially improve the therapeutic index of cancer radiotherapy and serve as biological protectants in radiation emergencies. PMID:18403709

Burdelya, Lyudmila G.; Krivokrysenko, Vadim I.; Tallant, Thomas C.; Strom, Evguenia; Gleiberman, Anatoly S.; Gupta, Damodar; Kurnasov, Oleg V.; Fort, Farrel L.; Osterman, Andrei L.; DiDonato, Joseph A.; Feinstein, Elena; Gudkov, Andrei V.

2010-01-01

67

Suppression of testicular activity by a GnRH agonist in hypophysectomized, gonadotropin-treated mice.  

PubMed

Although it is believed that the suppressive effect of GnRH agonist on the testes in mediated, at least in part, through its direct action on the testes in rats, such direct action was considered to appear in rats alone and in no other species, including mice, primates and humans. To reexamine such species' specific direct action of GnRH agonists, the effect of a potent GnRH agonist, D-Leu6-GnRH (GnRH-A), on testicular activity was investigated in hypophysectomized, gonadotropin-treated mice. Thirteen days after hypophysectomy the testicular weight had decreased to 20% of that of intact mice. Daily injection of 1 IU of HCG and 0.1 microgram of HMG for 10 days restored the testicular weight to 50% of that of the control animals. Daily sc injections of 1, 0.1 or 0.01 micrograms of GnRH-A (in addition to HCG and HMG) slightly but significantly prevented restoration of testicular weight by exogenous gonadotropins in hypophysectomized mice. A more dramatic effect of GnRH-A was observed in serum testosterone levels. Hypophysectomy resulted in a nearly 96% reduction in serum testosterone level. Treatments with HCG and HMG raised the levels to those found in intact mice. Daily injections of GnRH-A resulted in a marked reduction of testosterone levels at all doses of GnRH-A tested to those corresponding to hypophysectomized, vehicle-treated animals. Daily injection of 1 microgram of GnRH-A also reduced both testicular weight and testosterone levels, but the magnitudes of these reductions were smaller than those observed in hypophysectomized, gonadotropin-treated mice. The results clearly indicated that chronic treatment with GnRH-A reduces testicular function through direct action in mice under the experimental conditions employed. PMID:2561500

Iwasaki, K; Fujii, A; Arimura, A; Groot, K

1989-03-01

68

5-HT4 receptor agonists enhance both cholinergic and nitrergic activities in human isolated colon circular muscle.  

PubMed

Previous studies have demonstrated mixed inhibitory and facilitatory effects of 5-hydroxytryptamine-4 (5-HT(4)) receptor agonists on electrical field stimulation (EFS)-induced responses in human isolated colon. Here we report three types of responses to EFS in human isolated colon circular muscle: monophasic cholinergic contraction during EFS, biphasic response (nitrergic relaxation during EFS followed by cholinergic contraction after termination of EFS) and triphasic response (cholinergic contraction followed by nitrergic relaxation during EFS and a tachykininergic contraction after EFS). The effects of two 5-HT(4) receptor agonists, prucalopride and tegaserod were then investigated on monophasic responses only. Each compound inhibited contractions during EFS in a concentration-dependent manner. In the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME) however, prucalopride and tegaserod enhanced the contractions in a concentration-dependent manner. In strips where the tone was elevated with substance-P and treated with scopolamine, EFS-induced relaxations were enhanced by the two agonists. The above observed effects by the two agonists were abolished by 5-HT(4) receptor antagonist SB-204070. The two agonists did not alter the tone raised by substance-P in the presence of scopolamine and l-NAME and did not affect carbachol-induced contractions in the presence of tetrodotoxin. These results suggest that in the circular muscle of human colon, 5-HT(4) receptor agonists simultaneously facilitate the activity of neurones which release the inhibitory and excitatory neurotransmitters, nitric oxide and acetylcholine respectively. PMID:16918765

Cellek, S; John, A K; Thangiah, R; Dass, N B; Bassil, A K; Jarvie, E M; Lalude, O; Vivekanandan, S; Sanger, G J

2006-09-01

69

Activation of acetylcholine receptors on clonal mammalian BC3H-1 cells by low concentrations of agonist.  

PubMed Central

The patch-clamp technique was used to examine the activation of single acetylcholine receptor channels of clonal BC3H-1 mouse muscle cells. Single-channel currents were activated by low concentrations of the strong agonists acetylcholine (ACh, 50-100 nM), carbamylcholine (1-2 microM), and suberyldicholine (30-50 nM). At low agonist concentrations channel openings occur as isolated short-duration openings and as bursts of longer duration openings separated by brief closed periods. Two distinct types of brief closed periods separate long duration openings: brief closures (mean duration, 50 microseconds) and intermediate closures (mean duration, 0.5-1.0 ms). The kinetic properties of intermediate closures depend on the agonist, suggesting that they reflect receptor reopening from the closed state leading to the open state. Properties of brief closures, in contrast, are independent of the agonist, indicating that they result from an additional closed state leading away from the pathway producing the open state. A receptor activation scheme is proposed which accounts for the observed closed states, and transition rate estimates are presented for steps within the proposed scheme. The channel opening rate, beta, differs several-fold for the agonists studied (200-1400 s-1) and is comparable to the dissociation rate, k-2 (900 s-1). The dissociation rate is similar for the three agonists studied. The channel closing rate, alpha, is much slower than the opening rate (20-60 s-1). The probability is high that a doubly liganded channel is in the open state and depends on the agonist (0.75-0.97). Beta increases and alpha decreases at more negative membrane potentials, whereas k-2 shows little potential dependence. PMID:2427693

Sine, S M; Steinbach, J H

1986-01-01

70

A novel natural Nrf2 activator with PPAR?-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia  

SciTech Connect

Methylglyoxal (MG) is a toxic-glucose metabolite and a major precursor of advanced glycation endproducts (AGEs). MG has been reported to result in inflammation by activating receptor for AGEs (RAGE). We recently found that Monascus-fermented metabolite monascin acts as a novel natural peroxisome proliferator-activated receptor-? (PPAR?) agonist that improves insulin sensitivity. We investigated the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats treated with oral administration of monascin or rosiglitazone. Monascin (a novel PPAR? agonist) activated nuclear factor-erythroid 2-related factor 2 (Nrf2) and down-regulated hyperinsulinmia in oral glucose tolerance test (OGTT). Monascin was able to elevate glyoxalase-1 expression via activation of hepatic Nrf2, hence, resulting in MG metabolism to D-lactic acid and protected from AGEs production in MG-treated rats. Rosiglitazone did not activate Nrf2 nor glyoxalase expression to lower serum and hepatic AGEs levels. Monascin acts as a novel natural Nrf2 activator with PPAR?-agonist activity were confirmed by Nrf2 and PPAR? reporter assays in Hep G2 cells. These findings suggest that monascin acts as an anti-diabetic and anti-oxidative stress agent to a greater degree than rosiglitazone and thus may have therapeutic potential for the prevention of diabetes. - Highlights: • Monascin acts as a PPARgamma agonist. • Monascin activates Nrf2 and AMPK. • Monascin promotes MG metabolism into D-lactic acid. • Monascin attenuates inflammation and diabetes in vivo.

Hsu, Wei-Hsuan; Lee, Bao-Hong; Chang, Yu-Ying [Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Hsu, Ya-Wen [SunWay Biotechnology Company, Taipei, Taiwan (China); Pan, Tzu-Ming, E-mail: tmpan@ntu.edu.tw [Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

2013-11-01

71

The influence of agonist premotor silence and the stretch-shortening cycle on contractile rate in active skeletal muscle  

Microsoft Academic Search

Summary  Agonist premotor silence (PMS), a brief period of relative quiescence in active skeletal muscle prior to phasic activation, was investigated in subjects performing maximal contractions. The frequency of occurrence and potential function of the silent period were examined for elbow flexions and extensions. PMS was evident for movements in both directions, indicating that the mechanism is not primarily limited to

Charles B. Walter

1988-01-01

72

Hepatocyte Growth Factor Is a Downstream Effector that Mediates the Antifibrotic Action of Peroxisome Proliferator–Activated Receptor-? Agonists  

PubMed Central

Peroxisome proliferator–activated receptor-? (PPAR-?) is a ligand-dependent transcription factor that plays an important role in the regulation of insulin sensitivity and lipid metabolism. Evidence shows that PPAR-? agonists also ameliorate renal fibrotic lesions in both diabetic nephropathy and nondiabetic chronic kidney disease. However, little is known about the mechanism underlying their antifibrotic action. This study demonstrated that PPAR-? agonists could exert their actions by inducing antifibrotic hepatocyte growth factor (HGF) expression. Incubation of mesangial cells with natural or synthetic PPAR-? agonists 15-deoxy-?12,14-prostaglandin J2 (15d-PGJ2) or troglitazone and ciglitazone suppressed TGF-?1–mediated ?-smooth muscle actin, fibronectin, and plasminogen activator inhibitor-1 expression. PPAR-? agonists also induced HGF mRNA expression and protein secretion. Transfection studies revealed that 15d-PGJ2 stimulated HGF gene promoter activity, which was dependent on the presence of a novel peroxisome proliferator response element. Treatment of mesangial cells with 15d-PGJ2 induced the binding of PPAR-? to the peroxisome proliferator response element in the HGF promoter region. PPAR-? agonists also activated c-met receptor tyrosine phosphorylation, induced Smad transcriptional co-repressor TG-interacting factor expression, and blocked TGF-?/Smad-mediated gene transcription in mesangial cells. Furthermore, ablation of c-met receptor through the LoxP-Cre system in mesangial cells abolished the antifibrotic effect of 15d-PGJ2. PPAR-? activation also induced HGF expression in renal interstitial fibroblasts and repressed TGF-?1–mediated myofibroblast activation. Both HGF and 15d-PGJ2 attenuated Smad nuclear translocation in response to TGF-?1 stimulation in renal fibroblasts. Together, these findings suggest that HGF may act as a downstream effector that mediates the antifibrotic action of PPAR-? agonists. PMID:16291834

Li, Yingjian; Wen, Xiaoyan; Spataro, Bradley C.; Hu, Kebin; Dai, Chunsun; Liu, Youhua

2007-01-01

73

The Toll-Like Receptor Agonist Imiquimod Is Active against Prions  

PubMed Central

Using a yeast-based assay, a previously unsuspected antiprion activity was found for imiquimod (IQ), a potent Toll-like receptor 7 (TLR7) agonist already used for clinical applications. The antiprion activity of IQ was first detected against yeast prions [PSI+] and [URE3], and then against mammalian prion both ex vivo in a cell-based assay and in vivo in a transgenic mouse model for prion diseases. In order to facilitate structure-activity relationship studies, we conducted a new synthetic pathway which provides a more efficient means of producing new IQ chemical derivatives, the activity of which was tested against both yeast and mammalian prions. The comparable antiprion activity of IQ and its chemical derivatives in the above life forms further emphasizes the conservation of prion controlling mechanisms throughout evolution. Interestingly, this study also demonstrated that the antiprion activity of IQ and IQ-derived compounds is independent from their ability to stimulate TLRs. Furthermore, we found that IQ and its active chemical derivatives inhibit the protein folding activity of the ribosome (PFAR) in vitro. PMID:23977222

Beringue, Vincent; Soubigou, Flavie; Pang, Yanhong; Desban, Nathalie; Massacrier, Catherine; Morel, Yannis; Paturel, Carine; Contesse, Marie-Astrid; Bouaziz, Serge; Sanyal, Suparna; Galons, Hervé; Blondel, Marc; Voisset, Cécile

2013-01-01

74

The effects of agonist and antagonist muscle activation on the knee extension moment-angle relationship in adults and children.  

PubMed

The present study examined the effect of agonist activation and antagonist co-activation on the shape of the knee extension moment-angle relationship in adults and children. Isometric knee extension maximum voluntary contractions (MVCs) were performed at every 5 degrees of knee flexion between 55 degrees and 90 degrees (full extension = 0 degrees) by ten men, ten women, ten boys and ten girls. For each trial, the knee extensors' voluntary activation level was quantified using magnetic stimulation and the level of antagonist co-activation was quantified from their electromyographical activity. Peak MVC moment was greater for men (264 +/- 63 N m) than women (177 +/- 60 N m), and greater for adults than children (boys 78 +/- 17 N m, girls 91 +/- 28 N m) (p < 0.01). The agonistic activation level was greater for adults (approximately 85%) than children (approximately 70%). Similarly, antagonist co-activation was greater for adults than children, but relative to the agonist moment there were no differences between groups (all groups 7-8%). Correcting the peak moment for agonist and antagonist activation levels resulted in moments produced by fully activated agonist muscles of 334 +/- 83, 229 +/- 70, 114.2 +/- 32 and 147 +/- 46 N m, for men, women, boys and girls, respectively. Although correcting for shifts in joint angle during contraction altered the angle of peak moment by approximately 10 degrees (p < 0.01), the peak moment occurred at approximately 60 degrees for all groups. Changes in tendon stiffness, muscle size and architecture, and the pattern of the moment arm-angle relationship may in combination occur so that as children develop and mature into adults the shape of the moment-angle relationship is not altered. PMID:19471955

O'Brien, Thomas D; Reeves, Neil D; Baltzopoulos, Vasilios; Jones, David A; Maganaris, Constantinos N

2009-08-01

75

Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays.  

PubMed

The nuclear receptor, pregnane X receptor (PXR), is a ligand-dependent transcription factor that regulates genes involved in xenobiotic metabolism. Recent studies have shown that PXR activation may affect energy metabolism as well as the endocrine and immune systems. In this study, we characterized and compared the agonistic activities of a variety of pesticides against human PXR (hPXR) and mouse PXR (mPXR). We tested the hPXR and mPXR agonistic activity of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 12 acid amides, 7 triazines, 7 ureas, and 44 others) by reporter gene assays using COS-7 simian kidney cells. Of the 200 pesticides tested, 106 and 93 activated hPXR and mPXR, respectively, and a total of 111 had hPXR and/or mPXR agonistic activity with greater or lesser inter-species differences. Although all of the pyrethroids and most of the organochlorines and acid amides acted as PXR agonists, a wide range of pesticides with diverse structures also showed hPXR and/or mPXR agonistic activity. Among the 200 pesticides, pyributicarb, pretilachlor, piperophos and butamifos for hPXR, and phosalone, prochloraz, pendimethalin, and butamifos for mPXR, acted as particularly potent activators at low concentrations in the order of 10??-10?? M. In addition, we found that several organophosphorus oxon- and pyributicarb oxon-metabolites decreased PXR activation potency compared to their parent compounds. These results suggest that a large number of structurally diverse pesticides and their metabolites possess PXR-mediated transcriptional activity, and their ability to do so varies in a species-dependent manner in humans and mice. PMID:21115097

Kojima, Hiroyuki; Sata, Fumihiro; Takeuchi, Shinji; Sueyoshi, Tatsuya; Nagai, Tadanori

2011-02-27

76

PQ-69, a novel and selective adenosine A1 receptor antagonist with inverse agonist activity.  

PubMed

Potent and selective adenosine A1 receptor (A1AR) antagonists with favourable pharmacokinetic properties used as novel diuretics and antihypertensives are desirable. Thus, we designed and synthesized a series of novel 4-alkylamino substitution-2-arylpyrazolo[4,3-c]quinolin-3-one derivatives. The aim of the present study is to characterize the biological profiles of the optimized compound, PQ-69. In vitro binding assay revealed a K i value of 0.96 nM for PQ-69 in cloned hA1 receptor, which was 217-fold more selective compared with hA2A receptors and >1,000-fold selectivity for hA1 over hA3 receptor. The results obtained from [(35)S]-GTP?S binding and cAMP concentration assays indicated that PQ-69 might be an A1AR antagonist with inverse agonist activity. In addition, PQ-69 displayed highly inhibitory activities on isolated guinea pig contraction (pA2 value of 8.99) induced by an A1AR agonist, 2-chloro-N6-cyclopentyl adenosine. Systemic administration of PQ-69 (0.03, 0.3, 3 mg/kg) increased urine flow and sodium excretion in normal rats. Furthermore, PQ-69 displayed better metabolic stability in vitro and longer terminal elimination half-life (t 1/2) in vivo compared with 1,3-dipropyl-8-cyclopentylxanthine. These findings suggest that PQ-69 exhibits potent antagonist effects on A1AR in vitro, ex vivo and in vivo, it might be a useful research tool for investigating A1AR function, and it could be developed as a potential therapeutic agent. PMID:25248972

Lu, Min; Wang, Bo; Zhang, Cheng; Zhuang, Xiaomei; Yuan, Mei; Wang, Haoshan; Li, Weizhang; Su, Ruibin; Li, Jin

2014-12-01

77

The C3a receptor antagonist SB 290157 has agonist activity.  

PubMed

The anaphylatoxin C3a is an important immune regulator with a number of distinct functions in both innate and adaptive immunity. Many of these roles have been ascribed to C3a based on studies in mice genetically modified to lack its precursor, C3, or its receptor, C3aR. However, other presumed functions of C3a are based on results obtained with a recently described small molecule ligand of C3aR, SB 290157. Although this compound was originally described as an antagonist and appears to act as such in some systems, it has recently been shown to have effects that cannot be explained by simple antagonism of C3aR. In the current study, SB 290157 is shown to have full agonist activity on C3aR in a variety of cell systems, including a calcium mobilization assay in transfected RBL cells, a beta-lactamase assay in CHO-NFAT-bla-Galpha(16) cells and an enzyme-release assay in differentiated U-937 cells. On the other hand, the compound lacks agonist activity in guinea pig platelets, cells known to express C3aR at very low levels. SB 290157 agonism of C3aR is consistent with recent discrepant data obtained using this molecule. These results caution against attributing novel roles to C3a based on data obtained with SB 290157 and highlight a continuing need for the identification of true small molecule C3aR antagonists. PMID:16154494

Mathieu, Marie-Claude; Sawyer, Nicole; Greig, Gillian M; Hamel, Martine; Kargman, Stacia; Ducharme, Yves; Lau, Cheuk K; Friesen, Richard W; O'Neill, Gary P; Gervais, Francois G; Therien, Alex G

2005-09-15

78

Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation  

SciTech Connect

The farnesoid X receptor (FXR), a member of the nuclear hormone receptor family, plays important roles in the regulation of bile acid and cholesterol homeostasis, glucose metabolism, and insulin sensitivity. There is intense interest in understanding the mechanisms of FXR regulation and in developing pharmaceutically suitable synthetic FXR ligands that might be used to treat metabolic syndrome. We report here the identification of a potent FXR agonist (MFA-1) and the elucidation of the structure of this ligand in ternary complex with the human receptor and a coactivator peptide fragment using x-ray crystallography at 1.9-{angstrom} resolution. The steroid ring system of MFA-1 binds with its D ring-facing helix 12 (AF-2) in a manner reminiscent of hormone binding to classical steroid hormone receptors and the reverse of the pose adopted by naturally occurring bile acids when bound to FXR. This binding mode appears to be driven by the presence of a carboxylate on MFA-1 that is situated to make a salt-bridge interaction with an arginine residue in the FXR-binding pocket that is normally used to neutralize bound bile acids. Receptor activation by MFA-1 differs from that by bile acids in that it relies on direct interactions between the ligand and residues in helices 11 and 12 and only indirectly involves a protonated histidine that is part of the activation trigger. The structure of the FXR:MFA-1 complex differs significantly from that of the complex with a structurally distinct agonist, fexaramine, highlighting the inherent plasticity of the receptor.

Soisson, Stephen M.; Parthasarathy, Gopalakrishnan; Adams, Alan D.; Sahoo, Soumya; Sitlani, Ayesha; Sparrow, Carl; Cui, Jisong; Becker, Joseph W. (Merck)

2008-07-08

79

T-Cell Activation: A Queuing Theory Analysis at Low Agonist Density J. R. Wedagedera* and N. J. Burroughsy  

E-print Network

T-Cell Activation: A Queuing Theory Analysis at Low Agonist Density J. R. Wedagedera* and N. J, University of Warwick, Coventry, United Kingdom ABSTRACT We analyze a simple linear triggering model of the T-cell,arobustnessanalysisshowsthatthesepropertiesaredegradedwhenthequeueparameters aresubject tovariation--for example, under stochasticity in the ligand number in the cell-cell interface

Wedagedera, Janak R.

80

Peroxisome proliferator-activated receptor-? agonists modulate CXCL9 and CXCL11 chemokines in Graves' ophthalmopathy fibroblasts and preadipocytes.  

PubMed

Peroxisome proliferator-activated receptors (PPAR)? have been shown to exert immunomodulatory effects in autoimmune disorders; no study evaluated the effect of PPAR? activation in Graves' ophthalmopathy (GO). We show the presence of PPAR?, ? and ? in GO fibroblasts and preadipocytes. PPAR? activators have a potent inhibitory action on the secretion of CXCL9 and CXCL11 chemokines (induced by IFN? and TNF?) in fibroblasts and preadipocytes. The potency of the used PPAR? agonists was maximum on the secretion of CXCL11 (67% inhibition by fenofibrate) in fibroblasts. The relative potency of the compounds in GO fibroblasts was different with each chemokine. PPAR? agonists were stronger inhibitors of CXCL9 and CXCL11 (in GO fibroblasts and preadipocytes) than PPAR? activators. This study first shows that PPAR? activators inhibit CXCL9 and CXCL11 chemokines in normal and GO fibroblasts and preadipocytes, suggesting that PPAR? may be involved in the modulation of the immune response in GO. PMID:22101320

Antonelli, Alessandro; Ferrari, Silvia Martina; Frascerra, Silvia; Ruffilli, Ilaria; Gelmini, Stefania; Minuto, Michele; Pupilli, Cinzia; Miccoli, Paolo; Sellari-Franceschini, Stefano; Ferrannini, Ele; Fallahi, Poupak

2012-02-26

81

Electrical activity of caudal neurosecretory neurons in seawater- and freshwater-adapted flounder: responses to cholinergic agonists.  

PubMed

The caudal neurosecretory system (CNSS) of the euryhaline flounder is involved in osmoregulatory responses underlying adaptation to seawater and freshwater. This study compared electrophysiological activity and responses to cholinergic agonists in the neuroendocrine Dahlgren cells in an in vitro preparation taken from fully seawater- (SWA) or freshwater-adapted (FWA) fish. Resting membrane and action potential parameters showed few differences between SWA and FWA cells. The hyperpolarisation-activated sag potential and depolarising afterpotential were present under both conditions; however, amplitude of the latter was significantly greater in SWA cells. The proportions of cells within the population exhibiting different firing patterns were similar in both adaptation states. However, bursting parameters were more variable in FWA cells, suggesting that bursting activity was less robust. The muscarinic agonist, oxotremorine, was largely inhibitory in Dahlgren cells, but increased activity in a non-Dahlgren cell population, alpha neurons. Nicotine promoted bursting activity in SWA Dahlgren cells, whereas it inhibited over half of FWA cells. PMID:14555741

Brierley, M J; Ashworth, A J; Craven, T P; Woodburn, M; Banks, J R; Lu, W; Riccardi, D; Balment, R J; McCrohan, C R

2003-11-01

82

Human Toll-like receptor 8-selective agonistic activities in 1-alkyl-1H-benzimidazol-2-amines.  

PubMed

Toll-like receptor (TLR)-8 agonists strongly induce the production of T helper 1-polarizing cytokines and may therefore serve as promising candidate vaccine adjuvants, especially for the very young and the elderly. Earlier structure-based ligand design led to the identification of 3-pentyl-quinoline-2-amine as a novel, human TLR8-specific agonist. Comprehensive structure-activity relationships in ring-contracted 1-alkyl-1H-benzimidazol-2-amines were undertaken, and the best-in-class compound, 4-methyl-1-pentyl-1H-benzo[d]imidazol-2-amine, was found to be a pure TLR8 agonist, evoking strong proinflammatory cytokine and Type II interferon responses in human PBMCs, with no attendant CD69 upregulation in natural lymphocytic subsets. The 1-alkyl-1H-benzimidazol-2-amines represent a novel, alternate chemotype with pure TLR8-agonistic activities and will likely prove useful not only in understanding TLR8 signaling but also perhaps as a candidate vaccine adjuvant. PMID:25102141

Beesu, Mallesh; Malladi, Subbalakshmi S; Fox, Lauren M; Jones, Cassandra D; Dixit, Anshuman; David, Sunil A

2014-09-11

83

A novel natural Nrf2 activator with PPAR?-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia.  

PubMed

Methylglyoxal (MG) is a toxic-glucose metabolite and a major precursor of advanced glycation endproducts (AGEs). MG has been reported to result in inflammation by activating receptor for AGEs (RAGE). We recently found that Monascus-fermented metabolite monascin acts as a novel natural peroxisome proliferator-activated receptor-? (PPAR?) agonist that improves insulin sensitivity. We investigated the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats treated with oral administration of monascin or rosiglitazone. Monascin (a novel PPAR? agonist) activated nuclear factor-erythroid 2-related factor 2 (Nrf2) and down-regulated hyperinsulinmia in oral glucose tolerance test (OGTT). Monascin was able to elevate glyoxalase-1 expression via activation of hepatic Nrf2, hence, resulting in MG metabolism to d-lactic acid and protected from AGEs production in MG-treated rats. Rosiglitazone did not activate Nrf2 nor glyoxalase expression to lower serum and hepatic AGEs levels. Monascin acts as a novel natural Nrf2 activator with PPAR?-agonist activity were confirmed by Nrf2 and PPAR? reporter assays in Hep G2 cells. These findings suggest that monascin acts as an anti-diabetic and anti-oxidative stress agent to a greater degree than rosiglitazone and thus may have therapeutic potential for the prevention of diabetes. PMID:23954466

Hsu, Wei-Hsuan; Lee, Bao-Hong; Chang, Yu-Ying; Hsu, Ya-Wen; Pan, Tzu-Ming

2013-11-01

84

Tricyclic alkylamides as melatonin receptor ligands with antagonist or inverse agonist activity.  

PubMed

This work reports the design and synthesis of novel alkylamides, characterized by a dibenzo[a,d]cycloheptene nucleus, as melatonin (MLT) receptor ligands. The tricyclic scaffold was chosen on the basis of previous quantitative structure-activity studies on MT1 and MT2 antagonists, relating selective MT2 antagonism to the presence of an aromatic substituent out of the plane of the MLT indole ring. Some dibenzo seven-membered structures were thus selected because of the noncoplanar arrangement of their benzene rings, and an alkylamide chain was introduced to fit the requirements for MLT receptor binding, namely, dibenzocycloheptenes with an acylaminoalkyl side chain at position 10 and dibenzoazepines with this side chain originating from the nitrogen atom bridging the two phenyl rings. Binding affinity at human cloned MT1 and MT2 receptors was measured by 2-[125I]iodomelatonin displacement assay and intrinsic activity by the GTPgammaS test. The majority of the compounds were characterized by higher affinity at the MT2 than at the MT1 receptor and by very low intrinsic activity values, thus confirming the importance of the noncoplanar arrangement of the two aromatic rings for selective MT2 antagonism. Dibenzocycloheptenes generally displayed higher MT1 and MT 2affinity than dibenzoazepines. N-(8-Methoxy-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-10-ylmethyl)propionamide (4c) and -butyramide (4d) were the most selective MT2 receptor antagonists of the series, with MT2 receptor affinity comparable to that of melatonin and as such among the highest reported in the literature for MLT receptor antagonists. The acetamide derivative 4b produced a noticeable reduction of GTPgammaS binding at MT2 receptor, thus being among the few inverse agonists described. PMID:15293992

Lucini, Valeria; Pannacci, Marilou; Scaglione, Francesco; Fraschini, Franco; Rivara, Sivia; Mor, Marco; Bordi, Fabrizio; Plazzi, Pier Vincenzo; Spadoni, Gilberto; Bedini, Annalida; Piersanti, Giovanni; Diamantini, Giuseppe; Tarzia, Giorgio

2004-08-12

85

Thrombopoietin receptor agonists protect human cardiac myocytes from injury by activation of cell survival pathways.  

PubMed

Thrombopoietin confers immediate protection against injury caused by ischemia/reperfusion in the rat heart. Eltrombopag is a small molecule agonist of the thrombopoietin receptor, the physiologic target of thrombopoietin. However, the ability of eltrombopag and thrombopoietin to protect human cardiac myocytes against injury and the mechanisms underlying myocyte protection are not known. Human cardiac myocytes (n = 6-10/group) were treated with eltrombopag (0.1-30.0 µM) or thrombopoietin (0.1-30.0 ng/ml) and then subjected to 5 hours of hypoxia (95% N2/5% CO2) and 16 hours of reoxygenation to determine their ability to confer resistance to myocardial injury. The thrombopoietin receptor c-Mpl was detected in unstimulated human cardiac myocytes by Western blotting. Eltrombopag and thrombopoietin confer immediate protection to human cardiac myocytes against injury from hypoxia/reoxygenation by decreasing necrotic and apoptotic cell death in a concentration-dependent manner, with an optimal concentration of 3 µM for eltrombopag and 1.0 ng/ml for thrombopoietin. The extent of protection conferred with eltrombopag is equivalent to that of thrombopoietin. Eltrombopag and thrombopoietin activate multiple prosurvival pathways; inhibition of Janus kinase-2, proto-oncogene tyrosine-protein kinase, protein kinase B/phosphatidylinositol-3 kinase, p44/42 mitogen-activated protein kinase (MAPK), and p38 MAPK abolished cardiac myocyte protection by eltrombopag and thrombopoietin. Eltrombopag and thrombopoietin may represent important and potent agents for immediately and substantially increasing protection of human cardiac myocytes, and may offer a long-lasting benefit through activation of prosurvival pathways during ischemia. PMID:25512369

Baker, John E; Su, Jidong; Koprowski, Stacy; Dhanasekaran, Anuradha; Aufderheide, Tom P; Gross, Garrett J

2015-03-01

86

Protective Effects of Peroxisome Proliferator-Activated Receptor-? Agonist, Wy14643, on Hypoxia/Reoxygenation Injury in Primary Rat Hepatocytes  

PubMed Central

This study investigates the effects and possible mechanism of an agonist of PPAR?, Wy14643, on primary hepatocytes subjected to H/R injury in rats. H/R induced a significant increase ALT, AST, MDA in the culture medium and ROS in the hepatocytes. These effects were reversed by pretreatment with Wy14643 in the dose-dependent manner. The activity of SOD and the level of GSH in the hepatocytes were decreased after H/R, which were increased by Wy14643 pretreatment. Moreover, the mRNA expressions of PPAR? significantly increased in H/R+Wy14643 groups when compared with that in H/R group. A PPAR? agonist, Wy14643, exerts significant protective effect against H/R injury in primary hepatocytes via PPAR? activation and attenuating oxidative stress. PMID:22007188

Chen, Ke; Li, Yuan-Hai; Xu, Si-Qi; Hu, Sheng-Hong; Zhang, Lei

2012-01-01

87

Design and synthesis of sulfamoyl benzoic acid analogues with subnanomolar agonist activity specific to the LPA2 receptor.  

PubMed

Lysophosphatidic acid (LPA) is a growth factor-like mediator and a ligand for multiple GPCR. The LPA2 GPCR mediates antiapoptotic and mucosal barrier-protective effects in the gut. We synthesized sulfamoyl benzoic acid (SBA) analogues that are the first specific agonists of LPA2, some with subnanomolar activity. We developed an experimental SAR that is supported and rationalized by computational docking analysis of the SBA compounds into the LPA2 ligand-binding pocket. PMID:25100502

Patil, Renukadevi; Fells, James I; Szabó, Erzsébet; Lim, Keng G; Norman, Derek D; Balogh, Andrea; Patil, Shivaputra; Strobos, Jur; Miller, Duane D; Tigyi, Gábor J

2014-08-28

88

Selective CB2 receptor agonists. Part 2: Structure-activity relationship studies and optimization of proline-based compounds.  

PubMed

Through a ligand-based pharmacophore model (S)-proline based compounds were identified as potent cannabinoid receptor 2 (CB2) agonists with high selectivity over the cannabinoid receptor 1 (CB1). Structure-activity relationship investigations for this compound class lead to oxo-proline compounds 21 and 22 which combine an impressive CB1 selectivity profile with good pharmacokinetic properties. In a streptozotocin induced diabetic neuropathy model, 22 demonstrated a dose-dependent reversal of mechanical hyperalgesia. PMID:25556092

Riether, Doris; Zindell, Renee; Wu, Lifen; Betageri, Raj; Jenkins, James E; Khor, Someina; Berry, Angela K; Hickey, Eugene R; Ermann, Monika; Albrecht, Claudia; Ceci, Angelo; Gemkow, Mark J; Nagaraja, Nelamangala V; Romig, Helmut; Sauer, Achim; Thomson, David S

2015-02-01

89

6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity.  

PubMed

A series of 6alpha-alkyl-substituted analogues of chenodeoxycholic acid (CDCA) were synthesized and evaluated as potential farnesoid X receptor (FXR) ligands. Among them, 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA) was shown to be a very potent and selective FXR agonist (EC(50) = 99 nM) and to be endowed with anticholeretic activity in an in vivo rat model of cholestasis. PMID:12166927

Pellicciari, Roberto; Fiorucci, Stefano; Camaioni, Emidio; Clerici, Carlo; Costantino, Gabriele; Maloney, Patrick R; Morelli, Antonio; Parks, Derek J; Willson, Timothy M

2002-08-15

90

EFFECT OF THE P-ADRENERGIC AGONIST L ON MUSCLE GROWTH ENDOGENOUS PROTEINASE ACTIVITIES AND POSTMORTEM PROTEOLYSIS IN WETHER LAMBS  

Microsoft Academic Search

ABSTRACT To examine the effect of a f3-adrenergic agonist (BAA) on muscle growlh, proteinase activities, and postmortem proteolysis, 16 wether lambs were randomly assigned to receive 0 or 4 ppm of hs9 in a completely mixed high-concentrate diet for 6 wk. Weight of the biceps femoris was 18.6% heavier in treated lambs. At 0 h after slaughter, treated lambs had

N. E. Muggli-coclud; R. T. Stone

2010-01-01

91

Cerebral radioprotection by pentobarbital: Dose-response characteristics and association with GABA agonist activity  

SciTech Connect

Pentobarbital reduces cerebral radiation toxicity; however, the mechanism of this phenomenon remains unknown. As an anesthetic and depressant of cerebral metabolism, pentobarbital induces its effects on the central nervous system by stimulating the binding of gamma-aminobutyric acid (GABA) to its receptor and by inhibiting postsynaptic excitatory amino acid activity. The purpose of this study is to investigate the role of these actions as well as other aspects of the radioprotective activity of pentobarbital. Fischer 344 rats were separated into multiple groups and underwent two dose-response evaluations. In one set of experiments to examine the relationship of radioprotection to pentobarbital dose, a range of pentobarbital doses (0 to 75 mg/kg) were given intraperitoneally prior to a constant-level radiation dose (70 Gy). In a second series of experiments to determine the dose-response relationship of radiation protection to radiation dose, a range of radiation doses (10 to 90 Gy) were given with a single pentobarbital dose. Further groups of animals were used to evaluate the importance of the timing of pentobarbital administration, the function of the (+) and (-) isomers of pentobarbital, and the role of an alternative GABA agonist (diazepam). In addition, the potential protective effects of alternative methods of anesthesia (ketamine) and induction of cerebral hypometabolism (hypothermia) were examined. Enhancement of survival time from acute radiation injury due to high-dose single-fraction whole-brain irradiation was maximal with 60 mg/kg of pentobarbital, and occurred over the range of all doses examined between 30 to 90 Gy. Protection was seen only in animals that received the pentobarbital before irradiation. Administration of other compounds that enhance GABA binding (Saffan and diazepam) also significantly enhanced survival time.

Olson, J.J.; Friedman, R.; Orr, K.; Delaney, T.; Oldfield, E.H. (National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (USA))

1990-05-01

92

Isolation and functional characterization of peptide agonists of PTPRJ, a tyrosine phosphatase receptor endowed with tumor suppressor activity.  

PubMed

PTPRJ is a receptor-type protein tyrosine phosphatase whose expression is strongly reduced in the majority of investigated cancer cell lines and tumor specimens. PTPRJ negatively interferes with mitogenic signals originating from several oncogenic receptor tyrosine kinases, including HGFR, PDGFR, RET, and VEGFR-2. Here we report the isolation and characterization of peptides from a random peptide phage display library that bind and activate PTPRJ. These agonist peptides, which are able to both circularize and form dimers in acqueous solution, were assayed for their biochemical and biological activity on both human cancer cells and primary endothelial cells (HeLa and HUVEC, respectively). Our results demonstrate that binding of PTPRJ-interacting peptides to cell cultures dramatically reduces the extent of both MAPK phosphorylation and total phosphotyrosine levels; conversely, they induce a significant increase of the cell cycle inhibitor p27(Kip1). Moreover, PTPRJ agonist peptides both reduce proliferation and trigger apoptosis of treated cells. Our data indicate that peptide agonists of PTPRJ positively modulate the PTPRJ activity and may lead to novel targeted anticancer therapies. PMID:22759068

Paduano, Francesco; Ortuso, Francesco; Campiglia, Pietro; Raso, Cinzia; Iaccino, Enrico; Gaspari, Marco; Gaudio, Eugenio; Mangone, Graziella; Carotenuto, Alfonso; Bilotta, Anna; Narciso, Domenico; Palmieri, Camillo; Agosti, Valter; Artese, Anna; Gomez-Monterrey, Isabel; Sala, Marina; Cuda, Giovanni; Iuliano, Rodolfo; Perrotti, Nicola; Scala, Giuseppe; Viglietto, Giuseppe; Alcaro, Stefano; Croce, Carlo M; Novellino, Ettore; Fusco, Alfredo; Trapasso, Francesco

2012-10-19

93

Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas M1-macrophage-related molecules such as integrin {alpha}X, IL-1{beta}, MIP2{alpha} and leptin were decreased at rosiglitazone-treated incisional sites. Moreover, transplantation of rosiglitazone-treated peritoneal macrophages into the incisional sites significantly attenuated hyperalgesia. We speculate that local administration of rosiglitazone significantly alleviated the development of postincisional pain, possibly through regulating macrophage polarity at the inflamed site. PPAR{gamma} signaling in macrophages may be a potential therapeutic target for the treatment of acute pain development.

Hasegawa-Moriyama, Maiko, E-mail: hase-mai@m3.kufm.kagoshima-u.ac.jp [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)] [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)] [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)

2012-09-14

94

Agonist pharmacology of neonatal and adult glycine receptor alpha subunits: identification of amino acid residues involved in taurine activation.  

PubMed Central

The inhibitory glycine receptor (GlyR) is a pentameric chloride channel protein which mediates postsynaptic inhibition in the mammalian central nervous system. In spinal cord, different GlyR isoforms originate from the sequential expression of developmentally regulated variants of the ligand binding alpha subunit. Here, neonatal alpha 2 and adult alpha 1 subunits are shown to generate GlyRs with distinct agonist activation profiles upon heterologous expression in Xenopus oocytes. Whereas alpha 1 receptors are efficiently gated by beta-alanine and taurine, alpha 2 GlyRs show only a low relative response to these agonists, which also display a reduced sensitivity to inhibition by the glycinergic antagonist strychnine. Construction of an alpha 2/alpha 1 subunit chimera and site-directed mutagenesis of the extracellular region of the alpha 1 sequence identified amino acid positions 111 and 212 as important determinants of taurine activation. Our results indicate the existence of distinct subsites for agonists on alpha 1 and alpha 2 GlyRs and suggest that the ligand binding pocket of these receptor proteins is formed from discontinuous domains of their extracellular region. Images PMID:1376243

Schmieden, V; Kuhse, J; Betz, H

1992-01-01

95

Discovery of N-sulfonyl-7-azaindoline derivatives as potent, orally available and selective M(4) muscarinic acetylcholine receptor agonists.  

PubMed

We designed and synthesized novel N-sulfonyl-7-azaindoline derivatives as selective M4 muscarinic acetylcholine receptor agonists. Modification of the N-carbethoxy piperidine moiety of compound 2, an M4 muscarinic acetylcholine receptor (mAChR)-preferring agonist, led to compound 1, a selective M4 mAChR agonist. Compound 1 showed a highly selective M4 mAChR agonistic activity with weak hERG inhibition in vitro. A pharmacokinetic study of compound 1 in vivo revealed good bioavailability and brain penetration in rats. Compound 1 reversed methamphetamine-induced locomotor hyperactivity in rats (1-10 mg/kg, po). PMID:24852118

Suwa, Atsushi; Konishi, Yasuko; Uruno, Yoshiharu; Takai, Kentaro; Nakako, Tomokazu; Sakai, Mutsuko; Enomoto, Takeshi; Ochi, Yoshiaki; Matsuda, Harumi; Kitamura, Atsushi; Uematsu, Yasuaki; Kiyoshi, Akihiko; Sumiyoshi, Takaaki

2014-07-01

96

Homology modeling and molecular dynamics simulations of the active state of the nociceptin receptor reveal new insights into agonist binding and activation.  

PubMed

The opioid receptor-like receptor, also known as the nociceptin receptor (NOP), is a class A G protein-coupled receptor (GPCR) in the opioid receptor family. Although NOP shares a significant homology with the other opioid receptors, it does not bind known opioid ligands and has been shown to have a distinct mechanism of activation compared to the closely related opioid receptors mu, delta, and kappa. Previously reported homology models of the NOP receptor, based on the inactive-state GPCR crystal structures, give limited information on the activation and selectivity features of this fourth member of the opioid receptor family. We report here the first active-state homology model of the NOP receptor based on the opsin GPCR crystal structure. An inactive-state homology model of NOP was also built using a multiple template approach. Molecular dynamics simulation of the active-state NOP model and comparison to the inactive-state model suggest that NOP activation involves movements of transmembrane (TM)3 and TM6 and several activation microswitches, consistent with GPCR activation. Docking of the selective nonpeptidic NOP agonist ligand Ro 64-6198 into the active-state model reveals active-site residues in NOP that play a role in the high selectivity of this ligand for NOP over the other opioid receptors. Docking the shortest active fragment of endogenous agonist nociceptin/orphaninFQ (residues 1-13) shows that the NOP extracellular loop 2 (EL2) loop interacts with the positively charged residues (8-13) of N/OFQ. Both agonists show extensive polar interactions with residues at the extracellular end of the TM domain and EL2 loop, suggesting agonist-induced reorganization of polar networks, during receptor activation. PMID:22489047

Daga, Pankaj R; Zaveri, Nurulain T

2012-08-01

97

Opiate Agonists Activate Feeding in Limax: Comparison of In Vivo and In Vitro Effects  

Microsoft Academic Search

The neural control system for feeding in the terrestrial mollusc Limax maximus is modulated by at least two major families of peptides. Sequence homology between one of the peptides known to modulate Limax feeding and some members of the opioid peptide family suggested that opioid peptides might also modulate Limax feeding. Experiments with the mu agonist morphine and the kappa

M. Wong; K. Delaney; A. Gelperin

1991-01-01

98

Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart  

Technology Transfer Automated Retrieval System (TEKTRAN)

Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of pr...

99

Squalene emulsion potentiates the adjuvant activity of the TLR4 agonist, GLA, via inflammatory caspases, IL-18, and IFN-?  

PubMed

The synthetic TLR4 agonist glucopyranosyl lipid adjuvant (GLA) is a potent Th1-response-inducing adjuvant when formulated in a squalene oil-in-water emulsion (SE). While the innate signals triggered by TLR4 engagement are well studied, the contribution of SE remains unclear. To better understand the effect of SE on the adjuvant properties of GLA-SE, we compared the innate and adaptive immune responses elicited by immunization with different formulations: GLA without oil, SE alone or the combination, GLA-SE, in mice. Within the innate response to adjuvants, only GLA-SE displayed features of inflammasome activation, evidenced by early IL-18 secretion and IFN-? production in memory CD8(+) T cells and neutrophils. Such early IFN-? production was ablated in caspase-1/11(-/-) mice and in IL-18R1(-/-) mice. Furthermore, caspase-1/11 and IL-18 were also required for full Th1 CD4(+) T-cell induction via GLA-SE. Thus, we demonstrate that IL-18 and caspase-1/11 are components of the response to immunization with the TLR4 agonist/squalene oil-in-water based adjuvant, GLA-SE, providing implications for other adjuvants that combine oils with TLR agonists. PMID:25367751

Desbien, Anthony L; Reed, Steven J; Bailor, Hilton R; Cauwelaert, Natasha Dubois; Laurance, John D; Orr, Mark T; Fox, Christopher B; Carter, Darrick; Reed, Steven G; Duthie, Malcolm S

2014-11-01

100

Nociceptin/Orphanin FQ Receptor Activation Attenuates Antinociception Induced by Mixed Nociceptin/Orphanin FQ/?-Opioid Receptor Agonists  

PubMed Central

Activation of brain nociceptin/orphanin FQ (NOP) receptors leads to attenuation of ?-opioid receptor (MOP receptor)-mediated antinociception. Buprenorphine, a high-affinity partial MOP receptor agonist also binds to NOP receptors with 80 nM affinity. The buprenorphine-induced inverted U-shaped dose-response curve for antinociception may be due to NOP receptor activation, given that, in the presence of the NOP receptor antagonist, 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J113397), or in NOP receptor knockout mice, buprenorphine has a steeper dose-response curve and acts as a full agonist. To further explore the involvement of the direct activation of NOP receptors by buprenorphine and other compounds that activate both NOP and MOP receptors, the antinociceptive effects of 1-(1-(2,3,3?,4,5,6-hexahydro-1H-phenalen-1-yl)piperidin-4-yl)-indolin-2-one. (SR16435), 3-ethyl-1-(1-(4-isopropylcyclohexyl)piperidin-4-yl)-indolin-2-one (SR16507), buprenorphine, pentazocine, and morphine, compounds with varying levels of MOP and NOP receptor affinity and efficacy, were assessed in mice using the tail-flick assay. The ability of the selective NOP receptor antagonist (?)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111) to potentiate antinociception induced by the above compounds was examined to investigate whether activation of NOP receptors leads to attenuation of MOP receptor-mediated antinociception. SB-612111 potentiated antinociception induced by buprenorphine and the other mixed NOP/MOP receptor agonists SR16435 and SR16507. However, SB-612111 had no effect on pentazocine or morphine antinociception, two compounds with no NOP receptor-binding affinity. These results further support the hypothesis that activation of NOP receptors can lead to attenuation of MOP receptor-mediated antinociception elicited by mixed NOP/MOP receptor compounds such as buprenorphine, SR16435, and SR16507 and that, although buprenorphine has low efficacy in vitro, it has significant NOP receptor agonist activity in vivo. PMID:19713488

Khroyan, Taline V.; Polgar, Willma E.; Jiang, Faming; Zaveri, Nurulain T.

2009-01-01

101

Nociceptin/orphanin FQ receptor activation attenuates antinociception induced by mixed nociceptin/orphanin FQ/mu-opioid receptor agonists.  

PubMed

Activation of brain nociceptin/orphanin FQ (NOP) receptors leads to attenuation of mu-opioid receptor (MOP receptor)-mediated antinociception. Buprenorphine, a high-affinity partial MOP receptor agonist also binds to NOP receptors with 80 nM affinity. The buprenorphine-induced inverted U-shaped dose-response curve for antinociception may be due to NOP receptor activation, given that, in the presence of the NOP receptor antagonist, 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J113397), or in NOP receptor knockout mice, buprenorphine has a steeper dose-response curve and acts as a full agonist. To further explore the involvement of the direct activation of NOP receptors by buprenorphine and other compounds that activate both NOP and MOP receptors, the antinociceptive effects of 1-(1-(2,3,3alpha,4,5,6-hexahydro-1H-phenalen-1-yl)piperidin-4-yl)-indolin-2-one. (SR16435), 3-ethyl-1-(1-(4-isopropylcyclohexyl)piperidin-4-yl)-indolin-2-one (SR16507), buprenorphine, pentazocine, and morphine, compounds with varying levels of MOP and NOP receptor affinity and efficacy, were assessed in mice using the tail-flick assay. The ability of the selective NOP receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111) to potentiate antinociception induced by the above compounds was examined to investigate whether activation of NOP receptors leads to attenuation of MOP receptor-mediated antinociception. SB-612111 potentiated antinociception induced by buprenorphine and the other mixed NOP/MOP receptor agonists SR16435 and SR16507. However, SB-612111 had no effect on pentazocine or morphine antinociception, two compounds with no NOP receptor-binding affinity. These results further support the hypothesis that activation of NOP receptors can lead to attenuation of MOP receptor-mediated antinociception elicited by mixed NOP/MOP receptor compounds such as buprenorphine, SR16435, and SR16507 and that, although buprenorphine has low efficacy in vitro, it has significant NOP receptor agonist activity in vivo. PMID:19713488

Khroyan, Taline V; Polgar, Willma E; Jiang, Faming; Zaveri, Nurulain T; Toll, Lawrence

2009-12-01

102

Amyloid-? pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo.  

PubMed

Previous data demonstrate that bexarotene (Bex), retinoid X receptor (RXR) agonist, reduces soluble and insoluble amyloid-? (A?) in Alzheimer disease (AD)-transgenic mice either by increasing the levels of mouse apolipoprotein E (apoE) or increasing ABCA1/ABCG1-induced apoE lipoprotein association/lipidation. However, although the mechanism of action of RXR agonists remains unclear, a major concern for their use is human (h)-APOE4, the greatest AD genetic risk factor. If APOE4 imparts a toxic gain-of-function, then increasing apoE4 may increase soluble A?, likely the proximal AD neurotoxin. If the APOE4 loss-of-function is lipidation of apoE4, then induction of ABCA1/ABCG1 may be beneficial. In novel EFAD-Tg mice (overexpressing h-A?42 with h-APOE), levels of soluble A? (A?42 and oligomeric A?) are highest in E4FAD hippocampus (HP) > E3FAD-HP > E4FAD cortex (CX) > E3FAD-CX, whereas levels of lipoprotein-associated/lipidated apoE have the opposite pattern (6 months). In E4FAD-HP, short-term RXR agonist treatment (Bex or LG100268; 5.75-6 months) increased ABCA1, apoE4 lipoprotein-association/lipidation, and apoE4/A? complex, decreased soluble A?, and increased PSD95. In addition, hydrogel delivery, which mimics low sustained release, was equally effective as gavage for Bex and LG100268. RXR agonists induced no beneficial effects in the E4FAD-HP in a prevention protocol (5-6 months) and actually increased soluble A? levels in E3FAD-CX and E4FAD-CX with the short-term protocol, possibly the result of systemic hepatomegaly. Thus, RXR agonists address the loss-of-function associated with APOE4 and exacerbated by A? pathology, i.e. low levels of apoE4 lipoprotein association/lipidation. Further studies are vital to address whether RXR agonists are an APOE4-specific AD therapeutic and the systemic side effects that limit translational application. PMID:25217640

Tai, Leon M; Koster, Kevin P; Luo, Jia; Lee, Sue H; Wang, Yue-ting; Collins, Nicole C; Ben Aissa, Manel; Thatcher, Gregory R J; LaDu, Mary Jo

2014-10-31

103

Chemical synthesis, docking studies and biological effects of a pan peroxisome proliferator-activated receptor agonist and cyclooxygenase inhibitor.  

PubMed

The compound (5Z)-5-[(5-bromo-1H-indol-3-yl)methylene]-3-(4-chlorobenzyl)-thiazolidine-2,4-dione (LYSO-7) was synthesised in order to obtain a new type of anti-inflammatory drug, designed with hybrid features to inhibit cyclooxygenase (COX) and also to activate peroxisome proliferator-activated receptor (PPAR). Results obtained from docking (in silico) studies corroborated with experimental data, showing the potential affinity between the studied ligand and targets. The specificity of LYSO-7 for COX-enzymes was detected by the inhibition of COX-1 and COX-2 activities by 30% and 20%, respectively. In transactivation reporter gene assays LYSO-07 showed a pan partial agonist effect on the three PPAR subtypes (PPAR?, PPAR? and PPAR?/?). The agonist action on PPAR? was also observed by a pharmacological approach, as the reduction in the Escherichia coli lipopolysaccharide (LPS)-induced interleukin 1 beta (IL-1?) secretion and nitric oxide (NO) production by mouse neutrophils was blocked by GW9962, a specific PPAR? antagonist. Additionally, the in vivo effect was measured by reduced carrageenan-induced neutrophil influx into the subcutaneous tissue of mice. Taken together, these data show that LYSO-7 displays a potent in vivo anti-inflammatory effect during the innate acute response, which is dependent on its associated COX inhibitory activities and PPAR activation. PMID:23305993

Santin, José Roberto; Uchôa, Flávia D T; Lima, Maria do Carmo A; Rabello, Marcelo M; Machado, Isabel Daufenback; Hernandes, Marcelo Z; Amato, Angelica A; Milton, Flora Aparecida; Webb, Paul; Neves, Francisco de Assis Rocha; Galdino, Suely L; Pitta, Ivan Rocha; Farsky, Sandra H P

2013-03-12

104

Structure-Activity Relationships in Nucleotide Oligomerization Domain-1 (Nod1)-Agonistic ?-Glutamyl-diaminopimelic Acid Derivatives  

PubMed Central

N-acyl-?-glutamyl-diaminopimelic acid is a prototype ligand for Nod1. We report a detailed SAR of C12-?-D-Glu-DAP. Analogues with glutaric or ?-aminobutyric acid replacing the glutamic acid show greatly attenuated Nod1-agonistic activity. Substitution of the meso-diaminopimelic (DAP) acid component with monoaminopimelic acid, L- or D-lysine, or cadaverine also results in reduced activity. The free amine on DAP is crucial. However, the N-acyl group on the D-glutamyl residue can be substituted with N-alkyl groups with full preservation of activity. The free carboxylates on the DAP and Glu components can also be esterified, resulting in more lipophilic, but active analogues. Transcriptomal profiling showed a dominant upregulation of IL-19, IL-20, IL-22, and IL-24, which may explain the pronounced Th2-polarizing activity of these compounds, and also implicate cell signaling mediated by TREM-1. These results may explain the hitherto unknown mechanism of synergy between Nod1- and TLR-agonists, and are likely to be useful in designing vaccine adjuvants. PMID:21299227

Agnihotri, Geetanjali; Ukani, Rehman; Malladi, Subbalakshmi S.; Warshakoon, Hemamali J.; Balakrishna, Rajalakshmi; Wang, Xinkun; David, Sunil A.

2011-01-01

105

Small molecule receptor agonists and antagonists of CCR3 provide insight into mechanisms of chemokine receptor activation.  

PubMed

Chemokine receptor CCR3 is highly expressed by eosinophils and signals in response to binding of the eotaxin family of chemokines, which are up-regulated in allergic disorders. Consequently, CCR3 blockade is of interest as a possible therapeutic approach for the treatment of allergic disease. We have described previously a bispecific antagonist of CCR1 and CCR3 named UCB35625 that was proposed to interact with the transmembrane residues Tyr-41, Tyr-113, and Glu-287 of CCR1, all of which are conserved in CCR3. Here, we show that cells expressing the CCR3 constructs Y113A and E287Q are insensitive to antagonism by UCB35625 and also exhibit impaired chemotaxis in response to CCL11/eotaxin, suggesting that these residues are important for antagonist binding and also receptor activation. Furthermore, mutation of the residue Tyr-113 to alanine was found to turn the antagonist UCB35625 into a CCR3 agonist. Screens of small molecule libraries identified a novel specific agonist of CCR3 named CH0076989. This was able to activate eosinophils and transfectants expressing both wild-type CCR3 and a CCR1-CCR3 chimeric receptor lacking the CCR3 amino terminus, indicating that this region of CCR3 is not required for CH0076989 binding. A direct interaction with the transmembrane helices of CCR3 was supported by mutation of the residues Tyr-41, Tyr-113, and Glu-287 that resulted in complete loss of CH0076989 activity, suggesting that the compound mimics activation by CCL11. We conclude that both agonists and antagonists of CCR3 appear to occupy overlapping sites within the transmembrane helical bundle, suggesting a fine line between agonism and antagonism of chemokine receptors. PMID:17635911

Wise, Emma L; Duchesnes, Cécile; da Fonseca, Paula C A; Allen, Rodger A; Williams, Timothy J; Pease, James E

2007-09-21

106

SMALL MOLECULE RECEPTOR AGONISTS AND ANTAGONISTS OF CCR3 PROVIDE INSIGHT INTO MECHANISMS OF CHEMOKINE RECEPTOR ACTIVATION  

PubMed Central

Chemokine receptor CCR3 is highly expressed by eosinophils and signals in response to binding of the eotaxin family of chemokines, which are upregulated in allergic disorders. Consequently, CCR3 blockade is of interest as a possible therapeutic approach for the treatment of allergic disease. We have described previously a bi-specific antagonist of CCR1 and CCR3 named UCB35625, which was proposed to interact with the transmembrane residues Y41, Y113 and E287 of CCR1, all of which are conserved in CCR3. Here, we show that cells expressing the CCR3 constructs Y113A and E287Q are insensitive to antagonism by UCB35625 and also exhibit impaired chemotaxis in response to CCL11/Eotaxin suggesting that these residues are important for antagonist binding and also receptor activation. Furthermore, mutation of the residue Y113 to alanine was found to turn the antagonist UCB35625 into a CCR3 agonist. Screens of small molecule libraries identified a novel specific agonist of CCR3 named CH0076989. This was able to activate eosinophils and transfectants expressing both wild-type CCR3 and a CCR1:CCR3 chimaeric receptor lacking the CCR3 amino-terminus, indicating that this region of CCR3 is not required for CH0076989 binding. A direct interaction with the transmembrane helices of CCR3 was supported by mutation of the residues Y41, Y113 and E287 which resulted in complete loss of CH0076989 activity, suggesting that the compound mimics activation by CCL11. We conclude that both agonists and antagonists of CCR3 appear to occupy overlapping sites within the transmembrane helical bundle, suggesting a fine line between agonism and antagonism of chemokine receptors. PMID:17635911

Wise, Emma L.; Duchesnes, Cécile; da Fonseca, Paula C.A.; Allen, Rodger A.; Williams, Timothy J.; Pease, James E.

2007-01-01

107

FFA1-selective agonistic activity based on docking simulation using FFA1 and GPR120 homology models  

PubMed Central

BACKGROUND AND PURPOSE The free fatty acid FFA1 receptor and GPR120 are GPCRs whose endogenous ligands are medium- and long-chain FFAs, and they are important in regulating insulin and GLP-1 secretion respectively. Given that the ligands of FFA1 receptor and GPR120 have similar properties, selective pharmacological tools are required to study their functions further. EXPERIMENTAL APPROACH We used a docking simulation approach using homology models for each receptor. Biological activity was assessed by phosphorylation of ERK and elevation of intracellular calcium ([Ca2+]i) in cells transfected with FFA1 receptor or GPR120. Insulin secretion from murine pancreatic beta cells (MIN6) was also measured. KEY RESULTS Calculated hydrogen bonding energies between a series of synthetic carboxylic acid compounds and the homology models of the FFA1 receptor and GPR120, using docking simulations, correlated well with the effects of the compounds on ERK phosphorylation in transfected cells (R2= 0.65 for FFA1 receptor and 0.76 for GPR120). NCG75, the compound with the highest predicted selectivity for FFA1 receptors from this structure-activity relationship analysis, activated ERK and increased [Ca2+]i as potently as the known FFA1 receptor-selective agonist, Compound 1. Site-directed mutagenesis analysis based on the docking simulation showed that different amino acid residues were important for the recognition and activation by FFA1 receptor agonists. Moreover, NCG75 strongly induced ERK and [Ca2+]i responses, and promoted insulin secretion from MIN6 cells, which express endogenous FFA1 receptors. CONCLUSION AND IMPLICATIONS A docking simulation approach using FFA1 receptor and GPR120 homology models could be useful in predicting FFA1 receptor-selective agonists. PMID:22639973

Takeuchi, Masato; Hirasawa, Akira; Hara, Takafumi; Kimura, Ikuo; Hirano, Tatsuya; Suzuki, Takayoshi; Miyata, Naoki; Awaji, Takeo; Ishiguro, Masaji; Tsujimoto, Gozoh

2013-01-01

108

The Novel PPAR ?/? Dual Agonist MHY 966 Modulates UVB–Induced Skin Inflammation by Inhibiting NF-?B Activity  

PubMed Central

Ultraviolet B (UVB; 290~320nm) irradiation-induced lipid peroxidation induces inflammatory responses that lead to skin wrinkle formation and epidermal thickening. Peroxisome proliferator-activated receptor (PPAR) ?/? dual agonists have the potential to be used as anti-wrinkle agents because they inhibit inflammatory response and lipid peroxidation. In this study, we evaluated the function of 2-bromo-4-(5-chloro-benzo[d]thiazol-2-yl) phenol (MHY 966), a novel synthetic PPAR ?/? dual agonist, and investigated its anti-inflammatory and anti-lipid peroxidation effects. The action of MHY 966 as a PPAR ?/? dual agonist was also determined in vitro by reporter gene assay. Additionally, 8-week-old melanin-possessing hairless mice 2 (HRM2) were exposed to 150 mJ/cm2 UVB every other day for 17 days and MHY 966 was simultaneously pre-treated every day for 17 days to investigate the molecular mechanisms involved. MHY 966 was found to stimulate the transcriptional activities of both PPAR ? and ?. In HRM2 mice, we found that the skins of mice exposed to UVB showed significantly increased pro-inflammatory mediator levels (NF-?B, iNOS, and COX-2) and increased lipid peroxidation, whereas MHY 966 co-treatment down-regulated these effects of UVB by activating PPAR ? and ?. Thus, the present study shows that MHY 966 exhibits beneficial effects on inflammatory responses and lipid peroxidation by simultaneously activating PPAR ? and ?. The major finding of this study is that MHY 966 demonstrates potential as an agent against wrinkle formation associated with chronic UVB exposure. PMID:24130794

Park, Min Hi; Park, Ji Young; Lee, Hye Jin; Kim, Dae Hyun; Chung, Ki Wung; Park, Daeui; Jeong, Hyoung Oh; Kim, Hye Rim; Park, Chan Hum; Kim, So Ra; Chun, Pusoon; Byun, Youngjoo; Moon, Hyung Ryong; Chung, Hae Young

2013-01-01

109

Structure-activity relationship studies on cholecystokinin: Analogues with partial agonist activity  

SciTech Connect

In the present study, hepta- and octapeptide analogues of the C-terminal part of cholecystokinin, modified on the C-terminal phenylalanine residue, were synthesized. CCK analogues were prepared in which the peptide bond between aspartic acid and phenylalanine had or had not been modified and were lacking the C-terminal primary amide function. These CCK derivatives were able to cause full stimulation of amylase release from rat pancreatic acini but without a decrease in amylase release at supramaximal concentrations. There was a close relationship between the abilities of these derivatives to stimulate amylase release and their abilities to inhibit binding of {sup 125}I-BH-CCK-9 to CCK receptors on rat and guinea pig pancreatic acini. These CCK analogues were also able to recognize the guinea pig brain CCK receptors, some of them being particularly potent. The findings indicate that the aromatic ring of phenylalanine is important for the binding to brain and pancreatic CCK receptors, whereas the C-terminal primary amide function is not essential for the binding to pancreatic CCK receptors but is crucial for biological activity of rat pancreatic acini.

Galas, M.C.; Lignon, M.F.; Rodriguez, M.; Mendre, C.; Fulcrand, P.; Laur, J.; Martinez, J. (Centre de Pharmacologie-Endocrinologie, Montpellier (France))

1988-02-01

110

Opiate agonists activate feeding in Limax: comparison of in vivo and in vitro effects.  

PubMed

The neural control system for feeding in the terrestrial mollusc Limax maximus is modulated by at least two major families of peptides. Sequence homology between one of the peptides known to modulate Limax feeding and some members of the opioid peptide family suggested that opioid peptides might also modulate Limax feeding. Experiments with the mu agonist morphine and the kappa agonist U50,488H showed that the probability of feeding, but not meal size, was increased by morphine injection into intact animals, whereas the length of feeding motor program responses elicited from the isolated lip-brain preparation of Limax was augmented by U50,488H. The behavioral effect of morphine was blocked by naltrexone injection, whereas the physiological effect of U50,488H was blocked by naloxone. Factors that influence the behavioral and electrophysiological effects of opioids on mollusc feeding are discussed. PMID:1851015

Wong, M; Delaney, K; Gelperin, A

1991-02-01

111

Enantioselective synthesis of PPAR (peroxisome proliferator-activated receptors) agonists and antagonists.  

PubMed

This review deals with stereoselective issues in PPAR ligands some of which are in clinical use for treating certain metabolic disorders. After a short introduction of these nuclear receptor and their agonists, some cases of enantioselective separations are reported. The main part concerns stereoselective synthesis first starting with asymmetric synthesis from chiral precursors followed by what we refer to as "true" enantioselective methods. Some examples are discussed in detail for each particular heading. PMID:24758429

Goya, Pilar; Perez-Fernandez, Ruth; Gonzalez-Muniz, Rosario; Elguero, Jose

2014-01-01

112

Comparison of human B cell activation by TLR7 and TLR9 agonists  

Microsoft Academic Search

BACKGROUND: Human B cells and plasmacytoid dendritic cells (pDC) are the only cells known to express both TLR7 and TLR9. Plasmacytoid dendritic cells are the primary IFN-? producing cells in response to TLR7 and TLR9 agonists. The direct effects of TLR7 stimulation on human B cells is less understood. The objective of this study was to compare the effects of

John A Hanten; John P Vasilakos; Christie L Riter; Lori Neys; Kenneth E Lipson; Sefik S Alkan; Woubalem Birmachu

2008-01-01

113

PPAR? agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways  

Microsoft Academic Search

Objective  The aim of this paper was to investigate the inhibitory effect of peroxisome proliferator-activated receptor-gamma (PPAR?)\\u000a agonist pioglitazone on microglia inflammation induced by lipopolysaccharide (LPS).\\u000a \\u000a \\u000a \\u000a \\u000a Materials and methods  Highly aggressively proliferating immortalized cells were used from a rat microglial cell line. Expression of PPAR?, inducible\\u000a NO synthase (iNOS), the p42\\/44 extracellular signal-regulated kinase (ERK) MAPKs, c-Jun NH2-terminal kinases (JNKs) and p38

Huoyan Ji; Huimin Wang; Fupeng Zhang; Xiaohong Li; Lu Xiang; Shen Aiguo

2010-01-01

114

TLR7/8 agonists activate a mild immune response in rabbits through TLR8 but not TLR7.  

PubMed

Toll-like receptors 7 (TLR7) and 8 (TLR8) recognize viral single-stranded RNA and small molecular weight agonists to activate anti-viral immune responses. TLR8s from different species have distinct ligand recognitions. For example, human TLR8 is responsive to ligand stimulation, but mouse and rat TLR8 are activated by small molecular weight agonists only in the presence of polyT-oligodeoxynucleotides. TLR7 and TLR8 have been reported to be absent and pseudogenized, respectively, in rabbit (Oryctolagus cuniculus). In this study, we detected the expression of rabbit (rab)TLR8 in immune-cell-associated tissues. Cell proliferation and cytokine expressions in rabbit splenocytes were induced by the TLR7/8 ligand but not by the TLR7 ligands, suggesting that rabTLR8 is functional but rabTLR7 is not. In rabbits, CL075, a TLR7/8 ligand, activated an antigen-specific antibody response, although one not as potent as aluminum salt or Freund's adjuvant. Nevertheless, CL075, alone or in combination with aluminum salt, generates fewer adverse effects than Freund's adjuvant at the injection sites. To further investigate the activation of rabTLR8, we cloned its cDNA. In cell-based assay, this rabTLR8 is activated by TLR7/8 ligand but not activated by TLR7 ligand. Upon stimulation the rabTLR8 had a lower activation compared to the activation of TLR8 from other species, except the mouse and rat TLR8s. Using different deletion and human-rabbit chimeric TLR8 expressing constructs, we showed that an extra peptide in the undefined region results in reduced activity of rabTLR8. These results provide a molecular basis for the mild activities of TLR7/8 ligands in rabbits, and suggest TLR7/8 agonists may provide safer immune stimuli in rabbits than in other non-rodent species. PMID:25131730

Lai, Chao-Yang; Liu, Yi-Ling; Yu, Guann-Yi; Maa, Ming-Chei; Leu, Tzeng-Horng; Xu, Congfeng; Luo, Yunping; Xiang, Rong; Chuang, Tsung-Hsien

2014-09-29

115

Conicasterol E, a small heterodimer partner sparing farnesoid X receptor modulator endowed with a pregnane X receptor agonistic activity, from the marine sponge Theonella swinhoei.  

PubMed

We report the isolation and pharmacological characterization of conicasterol E isolated from the marine sponge Theonella swinhoei. Pharmacological characterization of this steroid in comparison to CDCA, a natural FXR ligand, and 6-ECDCA, a synthetic FXR agonist generated by an improved synthetic strategy, and rifaximin, a potent PXR agonist, demonstrated that conicasterol E is an FXR modulator endowed with PXR agonistic activity. Conicasterol E induces the expression of genes involved in bile acids detoxification without effect on the expression of small heterodimer partner (SHP), thus sparing the expression of genes involved in bile acids biosynthesis. The relative positioning in the ligand binding domain of FXR, explored through docking calculations, demonstrated a different spatial arrangement for conicasterol E and pointed to the presence of simultaneous and efficient interactions with the receptor. In summary, conicasterol E represents a FXR modulator and PXR agonist that might hold utility in treatment of liver disorders. PMID:22126372

Sepe, Valentina; Ummarino, Raffaella; D'Auria, Maria Valeria; Chini, Maria Giovanna; Bifulco, Giuseppe; Renga, Barbara; D'Amore, Claudio; Debitus, Cécile; Fiorucci, Stefano; Zampella, Angela

2012-01-12

116

Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers.  

PubMed

The transient receptor potential melastatin 8 (TRPM8) ion channel is a major sensor of environmental cold temperatures. It is activated by cold and chemical agonists, such as menthol and icilin. The activation of these channels both by cold and cooling agents requires the presence of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. The mechanism of TRPM8 activation by physical and chemical factors is unknown, and the involvement of cellular signaling pathways has been considered. Here we have characterized the gating mechanism of the rat TRPM8 reconstituted in planar lipid bilayers and its activation by different stimuli. In this system, the influence of cellular signaling pathways can be excluded. We found that TRPM8 activated by cold exhibits steep temperature dependence [temperature coefficient (Q(10)) of ?40], and the channel openings are accompanied by large changes in entropy and enthalpy, suggesting a substantial conformation change. TRPM8 channel behavior upon menthol and icilin activation was distinguishable, and the effect of icilin depended on the presence of calcium on the intracellular side of the protein. Here we also demonstrate that PI(4,5)P(2) is the prime factor that impacts the gating of TRPM8 and that other phosphoinositides are less efficient in supporting channel activity. Menthol increases the potency of PI(4,5)P(2) to activate the channels and increases binding of phosphoinositides to the full-length channel protein. Our data demonstrate conclusively that TRPM8 is gated by cold and its chemical agonists directly, and that dependence of its gating on PI(4,5)P(2) is a result of direct specific interactions with the lipid. PMID:20844147

Zakharian, Eleonora; Cao, Chike; Rohacs, Tibor

2010-09-15

117

Activation of the gut calcium-sensing receptor by peptide agonists reduces rapid elevation of plasma glucose in response to oral glucose load in rats.  

PubMed

The calcium-sensing receptor (CaSR) is expressed in various tissues, including the gastrointestinal tract. To investigate the role of gut CaSR on glycemic control, we examined whether single oral administration of CaSR agonist peptides affected the glycemic response in rats. Glucose tolerance tests were performed under oral or duodenal administration of various CaSR agonist peptides (?Glu-Cys, protamine, and poly-d-lysine hydrobromide) in conscious rats. Involvement of CaSR was determined by using a CaSR antagonist. Signaling pathways underlying CaSR agonist-modified glycemia were investigated using gut hormone receptor antagonists. The gastric emptying rate after the administration of CaSR agonist peptides was measured by the phenol red recovery method. Oral and duodenal administration of CaSR agonist peptides attenuated glycemic responses under the oral glucose tolerance test, but the administration of casein did not. The promotive effect on glucose tolerance was weakened by luminal pretreatment with a CaSR antagonist. Treatment with a 5-HT3 receptor antagonist partially diminished the glucose-lowering effect of peptides. Furthermore, the gastric emptying rate was decreased by duodenal administration of CaSR agonist peptides. These results demonstrate that activation of the gut CaSR by peptide agonists promotes glucose tolerance in conscious rats. 5-HT3 receptor and the delayed gastric emptying rate appear to be involved in the glucose-lowering effect of CaSR agonist peptides. Thus, activation of gut CaSR by dietary peptides reduces glycemic responses so that gut CaSR may be a potential target for the improvement of postprandial glycemia. PMID:24812056

Muramatsu, Maya; Hira, Tohru; Mitsunaga, Arimi; Sato, Eri; Nakajima, Shingo; Kitahara, Yoshiro; Eto, Yuzuru; Hara, Hiroshi

2014-06-15

118

A ?-Arrestin–Biased Agonist of the Parathyroid Hormone Receptor (PTH1R) Promotes Bone Formation Independent of G Protein Activation  

PubMed Central

About 40% of the therapeutic agents in use today exert their effects through seven-transmembrane receptors (7TMRs). When activated by ligands, these receptors trigger two pathways that independently transduce signals to the cell: one through heterotrimeric GTP-binding proteins (G proteins) and one through ?-arrestins; so-called biased agonists can selectively activate these distinct pathways. Here, we investigate selective activation of these pathways through the use of a biased agonist for the type 1 parathyroid hormone (PTH)–PTH-related protein receptor (PTH1R), (D-Trp12, Tyr34)-PTH(7–34) (PTH-?arr), which activates ?-arrestin but not classic G protein signaling. In mice, PTH-?arr induces anabolic bone formation, as does the nonselective agonist PTH (1–34), which activates both mechanisms. In ?-arrestin2–null mice, the increase in bone mineral density evoked by PTH(1–34) is attenuated and that stimulated by PTH-?arr is ablated. The ?-arrestin2–dependent pathway contributes primarily to trabecular bone formation and does not stimulate bone resorption. These results show that a biased agonist selective for the ?-arrestin pathway can elicit a response in vivo distinct from that elicited by nonselective agonists. Ligands with these properties may form the basis for improved 7TMR-directed pharmacologic agents with enhanced therapeutic specificity. PMID:20368153

Gesty-Palmer, Diane; Flannery, Pat; Yuan, Ling; Corsino, Leonor; Spurney, Robert; Lefkowitz, Robert J.; Luttrell, Louis M.

2010-01-01

119

Modulation of the CXC Chemokine Receptor 4 Agonist Activity of Ubiquitin through C-Terminal Protein Modification  

PubMed Central

Extracellular ubiquitin has recently been described as a CXC chemokine receptor (CXCR) 4 agonist. Studies on the structure–function relationship suggested that the C-terminus of ubiquitin facilitates CXCR4 activation. It remains unknown, however, whether C-terminal processing of ubiquitin could be biologically relevant and whether modifications of the ubiquitin C-terminus can modulate CXCR4 activation. We show that C-terminal truncated ubiquitin antagonizes ubiquitin and stromal cell-derived factor (SDF)-1? induced effects on cell signaling and function. Reduction of cell surface expression of insulin degrading enzyme (IDE), which cleaves the C-terminal di-Gly of ubiquitin, enhances ubiquitin induced reduction of cAMP levels in BV2 and THP-1 cells, but does not influence changes in cAMP levels in response to SDF-1?. Reduction of cell surface IDE expression in THP-1 cells also increases the chemotactic activity of ubiquitin. As compared with native ubiquitin, C-terminal Tyr extension of ubiquitin results in reduced CXCR4 mediated effects on cellular cAMP levels and abolishes chemotactic activity. Replacement of C-terminal di-Gly of ubiquitin with di-Val or di-Arg enhances CXCR4 mediated effects on cAMP levels and the di-Arg substitution exerts increased chemotactic activity, when compared with wild type ubiquitin. The chemotactic activities of the di-Val and di-Arg mutants and their effects on cAMP levels can be antagonized with C-terminal truncated ubiquitin. These data suggest that the development of CXCR4 ligands with enhanced agonist activities is possible and that C-terminal processing of ubiquitin could constitute a biological mechanism, which regulates termination of receptor signaling. PMID:23697661

Tripathi, Abhishek; Saini, Vikas; Marchese, Adriano; Volkman, Brian F.; Tang, Wei-Jen; Majetschak, Matthias

2014-01-01

120

Complex pharmacology of natural cannabivoids: Evidence for partial agonist activity of ? 9-tetrahydrocannabinol and antagonist activity of cannabidiol on rat brain cannabinoid receptors  

Microsoft Academic Search

?9-tetrahydrocannabinol (?9-THC), cannabinol and cannabidiol are three important natural cannabinoids from the Marijuana plant (Cannabis sativa). Using [35S]GTP-?-S binding on rat cerebellar homogenate as an index of cannabinoid receptor activation we show that: ?9-THC does not induce the maximal effect obtained by classical cannabinoid receptor agonists such as CP55940. Moreover at high concentration ?9-THC exhibits antagonist properties. Cannabinol is a

François Petitet; Bernadette Jeantaud; Michel Reibaud; Assunta Imperato; Marie-Christine Dubroeucq

1998-01-01

121

Synthesis, pharmacological characterization, and structure-activity relationship studies of small molecular agonists for the orphan GPR88 receptor.  

PubMed

GPR88 is an orphan G-protein-coupled receptor (GPCR) enriched in the striatum. Genetic deletion and gene expression studies have suggested that GPR88 plays an important role in the regulation of striatal functions and is implicated in psychiatric disorders. The signal transduction pathway and receptor functions of GPR88, however, are still largely unknown due to the lack of endogenous and synthetic ligands. In this paper, we report the synthesis of a GPR88 agonist 2-PCCA and its pure diastereomers, which were functionally characterized in both transiently and stably expressing GPR88 HEK293 cells. 2-PCCA inhibited isoproterenol-stimulated cAMP accumulation in a concentration-dependent manner in cells expressing GPR88 but not in the control cells, suggesting that the observed cAMP inhibition is mediated through GPR88 and that GPR88 is coupled to G?i. 2-PCCA did not induce calcium mobilization in GPR88 cells, indicating no G?q-mediated response. A structure-activity relationship (SAR) study of 2-PCCA was also conducted to explore the key structural features for GPR88 agonist activity. PMID:24793972

Jin, Chunyang; Decker, Ann M; Huang, Xi-Ping; Gilmour, Brian P; Blough, Bruce E; Roth, Bryan L; Hu, Yang; Gill, Joseph B; Zhang, X Peter

2014-07-16

122

In Silico Design for Adenosine Monophosphate-Activated Protein Kinase Agonist from Traditional Chinese Medicine for Treatment of Metabolic Syndromes  

PubMed Central

Adenosine monophosphate-activated protein kinase (AMPK) acts as a master mediator of metabolic homeostasis. It is considered as a significant millstone to treat metabolic syndromes including obesity, diabetes, and fatty liver. It can sense cellular energy or nutrient status by switching on the catabolic pathways. Investigation of AMPK has new findings recently. AMPK can inhibit cell growth by the way of autophagy. Thus AMPK has become a hot target for small molecular drug design of tumor inhibition. Activation of AMPK must undergo certain extent change of the structure. Through the methods of structure-based virtual screening and molecular dynamics simulation, we attempted to find out appropriate small compounds from the world's largest TCM Database@Taiwan that had the ability to activate the function of AMPK. Finally, we found that two TCM compounds, eugenyl_beta-D-glucopyranoside and 6-O-cinnamoyl-D-glucopyranose, had the qualification to be AMPK agonist. PMID:24899913

Tang, Hsin-Chieh

2014-01-01

123

T33, a novel peroxisome proliferator-activated receptor ?/? agonist, exerts neuroprotective action via its anti-inflammatory activities  

PubMed Central

Aim: To examine the neuroprotective effects of T33, a peroxisome proliferator-activated receptor gamma/alpha (PPAR?/?) agonist, in acute ischemic models in vitro and in vivo. Methods: Primary astrocytes subjected to oxygen-glucose deprivation/reperfusion (O/R) and BV-2 cells subjected to hypoxia were used as a model simulating the ischemic core and penumbra, respectively. The mRNA levels of tumor necrosis factor-? (TNF-?) and interleukin-1? (IL-1?) were measured using qPCR. The levels of TNF-? secreted by BV-2 cells were measured using ELISA. Protein levels of cyclooxygenase-2 (COX-2), p65, phosphorylated I-?B?/I-?B?, phosphorylated I-?B kinase (pIKK), phosphorylated eukaryote initiation factor 2? (p-eIF-2?)/eIF-2? and p-p38/p38 were detected using Western blot. PPAR? activity was measured using EMSA. The neuroprotection in vivo was examined in rat middle cerebral artery occlusion (MCAO) model with neurological scoring and TTC staining. Results: Addition of T33 (0.5 ?mol/L) increased the level of I-?B? protein in primary astrocytes subjected to O/R, which was due to promoting protein synthesis without affecting degradation. In primary astrocytes subjected to O/R, addition of T33 amplified I-?B? gene transcription and mRNA translation, thus suppressing the nuclear factor-kappa B (NF-?B) pathway and reducing inflammatory mediators (TNF-?, IL-1?, and COX-2). In BV-2 cells subjected to hypoxia, T33 (0.5 ?mol/L) reduced TNF-?, COX-2, and p-P38 production, which was antagonized by pre-administration of the specific PPAR? antagonist GW9662 (30 ?mol/L). T33 (2 mg/kg, ip) attenuated MCAO-induced inflammatory responses and brain infarction, which was antagonized by pre-administered GW9662 (4 mg/kg, ip). Conclusion: T33 exerted anti-inflammatory effects in the ischemic core and penumbra via PPAR? activation, which contributed to its neuroprotective action. PMID:21804572

Wang, Ying; Yang, Yu-she; Tang, Xi-can; Zhang, Hai-yan

2011-01-01

124

A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight.  

PubMed

Schizophrenia is a chronic, severe and highly complex mental illness. Current treatments manage the positive symptoms, yet have minimal effects on the negative and cognitive symptoms, two prominent features of the disease with critical impact on the long-term morbidity. In addition, antipsychotic treatments trigger serious side effects that precipitate treatment discontinuation. Here, we show that activation of the trace amine-associated receptor 1 (TAAR1), a modulator of monoaminergic neurotransmission, represents a novel therapeutic option. In rodents, activation of TAAR1 by two novel and pharmacologically distinct compounds, the full agonist RO5256390 and the partial agonist RO5263397, blocks psychostimulant-induced hyperactivity and produces a brain activation pattern reminiscent of the antipsychotic drug olanzapine, suggesting antipsychotic-like properties. TAAR1 agonists do not induce catalepsy or weight gain; RO5263397 even reduced haloperidol-induced catalepsy and prevented olanzapine from increasing body weight and fat accumulation. Finally, TAAR1 activation promotes vigilance in rats and shows pro-cognitive and antidepressant-like properties in rodent and primate models. These data suggest that TAAR1 agonists may provide a novel and differentiated treatment of schizophrenia as compared with current medication standards: TAAR1 agonists may improve not only the positive symptoms but also the negative symptoms and cognitive deficits, without causing adverse effects such as motor impairments or weight gain. PMID:22641180

Revel, F G; Moreau, J-L; Pouzet, B; Mory, R; Bradaia, A; Buchy, D; Metzler, V; Chaboz, S; Groebke Zbinden, K; Galley, G; Norcross, R D; Tuerck, D; Bruns, A; Morairty, S R; Kilduff, T S; Wallace, T L; Risterucci, C; Wettstein, J G; Hoener, M C

2013-05-01

125

Exposure of MC4R to agonist in the endoplasmic reticulum stabilizes an active conformation of the receptor that does not desensitize  

PubMed Central

Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in neurons of the hypothalamus where it regulates food intake. MC4R responds to an agonist, ?-melanocyte–stimulating hormone (?-MSH) and to an antagonist/inverse agonist, agouti-related peptide (AgRP), which are released by upstream neurons. Binding to ?-MSH leads to stimulation of receptor activity and suppression of food intake, whereas AgRP has opposite effects. MC4R cycles constantly between the plasma membrane and endosomes and undergoes agonist-mediated desensitization by being routed to lysosomes. MC4R desensitization and increased AgRP expression are thought to decrease the effectiveness of MC4R agonists as an antiobesity treatment. In this study, ?-MSH, instead of being delivered extracellularly, is targeted to the endoplasmic reticulum (ER) of neuronal cells and cultured hypothalamic neurons. We find that the ER-targeted agonist associates with MC4R at this location, is transported to the cell surface, induces constant cAMP and AMP kinase signaling at maximal amplitude, abolishes desensitization of the receptor, and promotes both cell-surface expression and constant signaling by an obesity-linked MC4R variant, I316S, that otherwise is retained in the ER. Formation of the MC4R/agonist complex in the ER stabilizes the receptor in an active conformation that at the cell surface is insensitive to antagonism by AgRP and at the endosomes is refractory to routing to the lysosomes. The data indicate that targeting agonists to the ER can stabilize an active conformation of a G protein-coupled receptor that does not become desensitized, suggesting a target for therapy. PMID:24248383

Granell, Susana; Molden, Brent M.; Baldini, Giulia

2013-01-01

126

Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist  

SciTech Connect

The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

1986-01-13

127

Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists  

Microsoft Academic Search

Ca2+, pheromones, sweet taste compounds, and the main neurotransmitters glutamate and -aminobutyric acid activate G protein-coupled receptors (GPCRs) that constitute the GPCR family 3. These receptors are dimers, and each subunit has a large extracellular domain called a Venus flytrap module (VFTM), where agonists bind. This module is connected to a heptahelical domain that activates G proteins. Recently, the structure

Anne-Sophie Bessis; Philippe Rondard; Florence Gaven; Isabelle Brabet; Nicolas Triballeau; Laurent Prézeau; Francine Acher; Jean-Philippe Pin

2002-01-01

128

Thiazolidinedione Class of Peroxisome Proliferator-Activated Receptor   Agonists Prevents Neuronal Damage, Motor Dysfunction, Myelin Loss, Neuropathic Pain, and Inflammation after Spinal Cord Injury in Adult Rats  

Microsoft Academic Search

Thiazolidinediones (TZDs) are potent synthetic agonists of the ligand-activated transcription factor peroxisome proliferator- activated receptor- (PPAR). TZDs were shown to induce neuroprotection after cerebral ischemia by blocking inflamma- tion. As spinal cord injury (SCI) induces massive inflammation that precipitates secondary neuronal death, we currently ana- lyzed the therapeutic efficacy of TZDs pioglitazone and rosigli- tazone after SCI in adult rats.

Seung-Won Park; Jae-Hyuk Yi; Guruwattan Miranpuri; Irawan Satriotomo; Kellie Bowen; Daniel K. Resnick; Raghu Vemuganti

2006-01-01

129

A pepducin derived from the third intracellular loop of FPR2 is a partial agonist for direct activation of this receptor in neutrophils but a full agonist for cross-talk triggered reactivation of FPR2.  

PubMed

We recently described a novel receptor cross-talk mechanism in neutrophils, unique in that the signals generated by the PAF receptor (PAFR) and the ATP receptor (P2Y2R) transfer formyl peptide receptor 1 (FPR1) from a desensitized (non-signaling) state back to an actively signaling state (Forsman H et al., PLoS One, 8:e60169, 2013; Önnheim K, et al., Exp Cell Res, 323?209, 2014). In addition to the G-protein coupled FPR1, neutrophils also express the closely related receptor FPR2. In this study we used an FPR2 specific pepducin, proposed to work as an allosteric modulator at the cytosolic signaling interface, to determine whether the cross-talk pathway is utilized also by FPR2. The pepducin used contains a fatty acid linked to a peptide sequence derived from the third intracellular loop of FPR2, and it activates as well as desensensitizes this receptor. We now show that neutrophils desensitized with the FPR2-specific pepducin display increased cellular responses to stimulation with PAF or ATP. The secondary PAF/ATP induced response was sensitive to FPR2-specific inhibitors, disclosing a receptor cross-talk mechanism underlying FPR2 reactivation. The pepducin induced an activity in naïve cells similar to that of a conventional FPR2 agonist, but with lower potency (partial efficacy), meaning that the pepducin is a partial agonist. The PAF- or ATP-induced reactivation was, however, much more pronounced when neutrophils had been desensitized to the pepducin as compared to cells desensitized to conventional agonists. The pepducin should thus in this respect be classified as a full agonist. In summary, we demonstrate that desensitized FPR2 can be transferred back to an actively signaling state by receptor cross-talk signals generated through PAFR and P2Y2R, and the difference in agonist potency with respect to pepducin-induced direct receptor activation and cross-talk reactivation of FPR2 puts the concept of functional selectivity in focus. PMID:25303226

Gabl, Michael; Winther, Malene; Skovbakke, Sarah Line; Bylund, Johan; Dahlgren, Claes; Forsman, Huamei

2014-01-01

130

KCNQ (Kv7) potassium channel activators as bronchodilators: combination with a ?2-adrenergic agonist enhances relaxation of rat airways.  

PubMed

KCNQ (Kv7 family) potassium (K(+)) channels were recently found in airway smooth muscle cells (ASMCs) from rodent and human bronchioles. In the present study, we evaluated expression of KCNQ channels and their role in constriction/relaxation of rat airways. Real-time RT-PCR analysis revealed expression of KCNQ4 > KCNQ5 > KCNQ1 > KCNQ2 > KCNQ3, and patch-clamp electrophysiology detected KCNQ currents in rat ASMCs. In precision-cut lung slices, the KCNQ channel activator retigabine induced a concentration-dependent relaxation of small bronchioles preconstricted with methacholine (MeCh; EC50 = 3.6 ± 0.3 ?M). Bronchoconstriction was also attenuated in the presence of two other structurally unrelated KCNQ channel activators: zinc pyrithione (ZnPyr; 1 ?M; 22 ± 7%) and 2,5-dimethylcelecoxib (10 ?M; 24 ± 8%). The same three KCNQ channel activators increased KCNQ currents in ASMCs by two- to threefold. The bronchorelaxant effects of retigabine and ZnPyr were prevented by inclusion of the KCNQ channel blocker XE991. A long-acting ?2-adrenergic receptor agonist, formoterol (10 nM), did not increase KCNQ current amplitude in ASMCs, but formoterol (1-1,000 nM) did induce a time- and concentration-dependent relaxation of rat airways, with a notable desensitization during a 30-min treatment or with repetitive treatments. Coadministration of retigabine (10 ?M) with formoterol produced a greater peak and sustained reduction of MeCh-induced bronchoconstriction and reduced the apparent desensitization observed with formoterol alone. Our findings support a role for KCNQ K(+) channels in the regulation of airway diameter. A combination of a ?2-adrenergic receptor agonist with a KCNQ channel activator may improve bronchodilator therapy. PMID:24441871

Brueggemann, Lioubov I; Haick, Jennifer M; Neuburg, Samantha; Tate, Shawn; Randhawa, Devjit; Cribbs, Leanne L; Byron, Kenneth L

2014-03-15

131

?-Lactotensin derived from bovine ?-lactoglobulin exhibits anxiolytic-like activity as an agonist for neurotensin NTS(2) receptor via activation of dopamine D(1) receptor in mice.  

PubMed

?-Lactotensin (His-Ile-Arg-Leu) is a bioactive peptide derived from bovine milk ?-lactoglobulin, acting as a natural agonist for neurotensin receptors. We found that ?-lactotensin exhibited anxiolytic-like activity in an elevated plus-maze test after its intraperitoneal (i.p.) administration in mice. ?-Lactotensin was also orally active. The anxiolytic-like activity of ?-lactotensin after i.p. administration was blocked by levocabastine, an antagonist for the neurotensin NTS(2) receptor. ?-Lactotensin had anxiolytic-like activity in wild-type but not Ntsr2-knockout mice. ?-Lactotensin increased intracellular Ca(2+) flux in glial cells derived from wild-type mice but not Ntsr2 knockout mice. These results suggest that ?-lactotensin acts as an NTS(2) receptor agonist having anxiolytic-like activity. The anxiolytic-like activity of ?-lactotensin was also blocked by SCH23390 and SKF83566, antagonists for dopamine D(1) receptor, but not by raclopride, an antagonist for D(2) receptor. Taken together, ?-lactotensin may exhibit anxiolytic-like activity via NTS(2) receptor followed by D(1) receptor. PMID:21895659

Hou, I-Ching; Suzuki, Chihiro; Kanegawa, Norimasa; Oda, Ayako; Yamada, Ayako; Yoshikawa, Masaaki; Yamada, Daisuke; Sekiguchi, Masayuki; Wada, Etsuko; Wada, Keiji; Ohinata, Kousaku

2011-11-01

132

Anti-kindling Effect of Bezafibrate, a Peroxisome Proliferator-activated Receptors Alpha Agonist, in Pentylenetetrazole Induced Kindling Seizure Model  

PubMed Central

Background and Purpose: Studies in the animals suggested that Peroxisome proliferators activated receptors (PPARs) may be involved in seizure control and selective agonists of PPAR ? or PPAR ? raise seizure thresholds. The present study was contemplated with the aim of evaluating the anti kindling effects and the mechanism of bezafibrate, a Peroxisome proliferator-activated receptors ? (PPAR-?) agonist in pentylenetetrazole (PTZ) induced kindling model of seizures in rats. Methods: In a PTZ kindled Wistar rat model, different doses of bezafibrate (100 mg/kg, 200 mg/kg and 300 mg/kg) were administered intraperitoneally 30 minutes before the PTZ injection. The PTZ injection was given on alternate day till the animal became fully kindled or till 10 weeks. The parameters measured were the latency to develop kindling and incidence of kindling, histopathological study of hippocampus, hippocampal lipid peroxidation studies, serum neuron specific enolase, and hippocampal DNA fragmentation study. Results: In this study, bezafibrate significantly reduced the incidence of kindling in PTZ treated rats and exhibited a marked prolongation in the latencies to seizures. In the present study bezafibrate decreased the thiobarbituric acid-reactive substance i.e. Malondialdehyde levels, increased the reduced glutathione levels, catalase and superoxide dismutase activity in the brain. This added to its additional neuroprotective effects. Bezafibrate also reduced the neuronal damage and apoptosis in hippocampal area of the brain. Therefore bezafibrate exerted anticonvulsant properties in PTZ induced kindling model in rats. Conclusions: These findings may provide insights into the understanding of the mechanism of bezafibrate as an anti kindling agent and could offer a useful support to the basic antiepileptic therapy in preventing the development of PTZ induced seizures, suggesting its potential for therapeutic applications in temporal lobe epilepsy. PMID:25625088

Saha, Lekha; Bhandari, Swati; Bhatia, Alka; Banerjee, Dibyajyoti; Chakrabarti, Amitava

2014-01-01

133

Weak acids enhance halogen activation on atmospheric water's surfaces.  

PubMed

We report that rates of I(2)(g) emissions, measured via cavity ring-down spectroscopy, during the heterogeneous ozonation of interfacial iodide: I(-)(surface, s) + O(3)(g) + H(+)(s) ?? I(2)(g), are enhanced several-fold, whereas those of IO·(g) are unaffected, by the presence of undissociated alkanoic acids on water. The amphiphilic weak carboxylic acids appear to promote I(2)(g) emissions by supplying the requisite interfacial protons H(+)(s) more efficiently than water itself, at pH values representative of submicrometer marine aerosol particles. We infer that the organic acids coating aerosol particles ejected from ocean's topmost films should enhance I(2)(g) production in marine boundary layers. PMID:21513276

Hayase, Sayaka; Yabushita, Akihiro; Kawasaki, Masahiro; Enami, Shinichi; Hoffmann, Michael R; Colussi, Agustín J

2011-05-19

134

Existence of weak entropic solutions for gas chromatography system with one or two active species  

E-print Network

Existence of weak entropic solutions for gas chromatography system with one or two active species), the system of conservation laws (6) generalizes the system of chromatography which has been intensively of chromatography co

Gisclon, Marguerite

135

Correlating AMPA receptor activation and cleft closure across subunits: crystal structures of the GluR4 ligand-binding domain in complex with full and partial agonists.  

PubMed

AMPA receptors are glutamate-gated ion channels that are essential mediators of synaptic signals in the central nervous system. They form tetramers that are assembled as combinations of subunits GluR1-4, each of which contains a ligand-binding domain (LBD). Crystal structures of the GluR2 LBD have revealed an agonist-binding cleft, which is located between two lobes and which acts like a Venus flytrap. In general, agonist efficacy is correlated with the extent of cleft closure. However, recent observations show that cleft closure is not the sole determinant of the relative efficacy for glutamate receptors. In addition, these studies have focused on the GluR2 subunit, which is the specific target of a physiologically important RNA-editing modification in vivo. We therefore sought to test the generality of the cleft closure-efficacy correlation for other AMPA-R subunits. Here, we present crystal structures of the GluR4(flip) LBD in complex with both full and partial agonists. As for GluR2, both agonists stabilize a closed-cleft conformation, and the partial agonist induces a smaller cleft closure than the full agonist. However, a detailed analysis of LBD-kainate interactions reveals the importance of subtle backbone conformational changes in the ligand-binding pocket in determining the magnitude of agonist-associated conformational changes. Furthermore, the GluR4 subunit exhibits a different correlation between receptor activation and LBD cleft closure than does GluR2. PMID:19102704

Gill, Avinash; Birdsey-Benson, Amanda; Jones, Brian L; Henderson, Leslie P; Madden, Dean R

2008-12-30

136

Dual Peroxisome Proliferator–Activated Receptor ?/? Agonist GFT505 Improves Hepatic and Peripheral Insulin Sensitivity in Abdominally Obese Subjects  

PubMed Central

OBJECTIVE The development of new insulin sensitizers is an unmet need for the treatment of type 2 diabetes. We investigated the effect of GFT505, a dual peroxisome proliferator–activated receptor (PPAR)-?/? agonist, on peripheral and hepatic insulin sensitivity. RESEARCH DESIGN AND METHODS Twenty-two abdominally obese insulin-resistant males (homeostasis model assessment of insulin resistance >3) were randomly assigned in a randomized crossover study to subsequent 8-week treatment periods with GFT505 (80 mg/day) or placebo, followed by a two-step hyperinsulinemic-euglycemic insulin clamp with a glucose tracer to calculate endogenous glucose production (EGP). The primary end point was the improvement in glucose infusion rate (GIR). Gene expression analysis was performed on skeletal muscle biopsy specimens. RESULTS GFT505 improved peripheral insulin sensitivity, with a 21% (P = 0.048) increase of the GIR at the second insulin infusion period. GFT505 also enhanced hepatic insulin sensitivity, with a 44% (P = 0.006) increase of insulin suppression of EGP at the first insulin infusion period. Insulin-suppressed plasma free fatty acid concentrations were significantly reduced on GFT505 treatment (0.21 ± 0.07 vs. 0.27 ± 0.11 mmol/L; P = 0.006). Neither PPAR? nor PPAR? target genes were induced in skeletal muscle, suggesting a liver-targeted action of GFT505. GFT505 significantly reduced fasting plasma triglycerides (?21%; P = 0.003) and LDL cholesterol (?13%; P = 0.0006), as well as liver enzyme concentrations (?-glutamyltranspeptidase: ?30.4%, P = 0.003; alanine aminotransferase: ?20.5%, P = 0.004). There was no safety concern or any indication of PPAR? activation with GFT505. CONCLUSIONS The dual PPAR?/? agonist GFT505 is a liver-targeted insulin-sensitizer that is a promising drug candidate for the treatment of type 2 diabetes and nonalcoholic fatty liver disease. PMID:23715754

Cariou, Bertrand; Hanf, Rémy; Lambert-Porcheron, Stéphanie; Zaïr, Yassine; Sauvinet, Valérie; Noël, Benoit; Flet, Laurent; Vidal, Hubert; Staels, Bart; Laville, Martine

2013-01-01

137

Excitation- and ?2-agonist-induced activation of the Na+?K+ pump in rat soleus muscle  

PubMed Central

In rat skeletal muscle, Na+–K+ pump activity increases dramatically in response to excitation (up to 20-fold) or ?2-agonists (2-fold), leading to a reduction in intracellular Na+. This study examines the time course of these effects and whether they are due to an increased affinity of the Na+–K+ pump for intracellular Na+. Isolated rat soleus muscles were incubated at 30 oC in Krebs-Ringer bicarbonate buffer. The effects of direct electrical stimulation on 86Rb+ uptake rate and intracellular Na+ concentration ([Na+]i) were characterized in the subsequent recovery phase. [Na+]i was varied using monensin or buffers with low Na+. In the [Na+]i range 21–69 mm, both the ?2-agonist salbutamol and electrical stimulation produced a left shift of the curves relating 86Rb+ uptake rate to [Na+]i. In the first 10 s after 1 or 10 s pulse trains of 60 Hz, [Na+]i showed no increase, but 86Rb+ uptake rate increased by 22 and 86 %, respectively. Muscles excited in Na+-free Li+-substituted buffer and subsequently allowed to rest in standard buffer also showed a significant increase in 86Rb+ uptake rate and decrease in [Na+]i. Na+ loading induced by monensin or electroporation also stimulated 86Rb+ uptake rate but, contrary to excitation, increased [Na+]i. The increase in the rate of 86Rb+ uptake elicited by electrical stimulation was abolished by ouabain, but not by bumetanide. The results indicate that excitation (like salbutamol) induces a rapid increase in the affinity of the Na+–K+ pump for intracellular Na+. This leads to a Na+–K+ pump activation that does not require Na+ influx, but possibly the generation of action potentials. This improves restoration of the Na+–K+ homeostasis during work and optimizes excitability and contractile performance of the working muscle. PMID:12433963

Buchanan, Rasmus; Nielsen, Ole Bækgaard; Clausen, Torben

2002-01-01

138

Non-conventional synchronization of weakly coupled active oscillators  

NASA Astrophysics Data System (ADS)

We present a new type of self-sustained vibrations in the fundamental physical model covering a broad area of applications from wave generation in radiophysics and nonlinear optics to the heart muscle contraction and eyesight disorder in biophysics. Such a diversity of applications is due to the universal physical phenomenon of synchronization. Previous studies of this phenomenon, originating from Huygens famous observation, are based mainly on the model of two weakly coupled Van der Pol oscillators and usually deal with their synchronization in the regimes close to nonlinear normal modes (NNMs). In this work, we show for the first time that, in the important case of threshold excitation, an alternative synchronization mechanism can develop when the conventional synchronization becomes impossible. We identify this mechanism as an appearance of dynamic attractor with the complete periodic energy exchange between the oscillators, which is the dissipative analogue of highly intensive beats in a conservative system. This type of motion is therefore opposite to the NNM-type synchronization with no energy exchange by definition. The analytical description of these vibrations employs the concept of Limiting Phase Trajectories (LPTs) introduced by one of the authors earlier for conservative systems. Finally, within the LPT approach, we describe the transition from the complete energy exchange between the oscillators to the energy localization mostly on one of the two oscillators. The localized mode is an attractor in the range of model parameters wherein the LPT as well as the in-phase and out-of-phase NNMs become unstable.

Manevitch, L. I.; Kovaleva, M. A.; Pilipchuk, V. N.

2013-03-01

139

Peroxisome proliferator-activated receptor ? agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease.  

PubMed

Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR)? activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR? and PPAR? activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN)? and tumor necrosis factor (TNF)?. IFN? stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF? alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN? and TNF? had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR? activators inhibited the secretion of both chemokines (stimulated with IFN? and TNF?) at a level higher (for CXCL10, about 60-72%) than PPAR? agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN? and TNF? in GD and normal thyrocytes. Furthermore we first show that PPAR? activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR? may be involved in the modulation of the immune response in the thyroid. PMID:21565188

Antonelli, Alessandro; Ferrari, Silvia Martina; Frascerra, Silvia; Corrado, Alda; Pupilli, Cinzia; Bernini, Giampaolo; Benvenga, Salvatore; Ferrannini, Ele; Fallahi, Poupak

2011-07-01

140

Peroxisome proliferator-activated receptor agonists (PPARs): a promising prospect in the treatment of psoriasis and psoriatic arthritis*  

PubMed Central

Psoriasis is a polygenic, inflammatory and progressive disease, characterized by an abnormal differentiation and hyperproliferation of keratinocytes, associated with impaired immunologic activation and systemic disorders, while psoriatic arthritis is a chronic inflammatory articular disease. Pathophysiology of psoriasis comprises a dysfunction of the immune system cells with an interactive network between cells and cytokines supporting the initiation and perpetuation of disease and leading to inflammation of skin, enthesis and joints. Recent studies have shown an important role of systemic inflammation in the development of atherosclerosis. Corroborating these findings, patients with severe Psoriasis have marked incidence of psoriatic arthritis, cardiovascular diseases, hypertension, dyslipidemia, obesity and diabetes mellitus, showing an increased risk for acute myocardial infarction, which suggests that the condition is not restricted to the skin. Nuclear receptors are ligand-dependent transcription factors, whose activation affects genes that control vital processes. Among them the peroxisome proliferator-activated receptor is responsible for establishing the relationship between lipids, metabolic diseases and innate immunity. In the skin, peroxisome proliferator-activated receptors have an important effect in keratinocyte homeostasis, suggesting a role in diseases such as psoriasis. The peroxisome proliferator-activated receptors agonists represent a relevant source of research in the treatment of skin conditions, however more clinical studies are needed to define the potential response of these drugs in patients with psoriasis and psoriatic arthritis. PMID:24474126

Lima, Emerson de Andrade; Lima, Mariana Modesto Dantas de Andrade; Marques, Cláudia Diniz Lopes; Duarte, Angela Luzia Branco Pinto; Pita, Ivan da Rocha; Pita, Maira Galdino da Rocha

2013-01-01

141

Peroxisome proliferator-activated receptor-{gamma} agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells  

SciTech Connect

We have previously shown that peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPAR{gamma} agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPAR{gamma} agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.

Arnold, Ralf [Institute of Medical Microbiology, Otto-von-Guericke-University, Leipzigerstr. 44, 39120 Magdeburg (Germany)]. E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang [Institute of Medical Microbiology, Otto-von-Guericke-University, Leipzigerstr. 44, 39120 Magdeburg (Germany)

2006-07-05

142

Effects of peroxisome proliferator-activated receptor (PPAR)-? and PPAR-? agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus  

Microsoft Academic Search

Aims\\/hypothesis  The aim of the study was to examine the effects of pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR)-?\\u000a agonist, and fenofibrate (FENO), a PPAR-? agonist, as monotherapy and in combination on glucose and lipid metabolism.\\u000a \\u000a \\u000a \\u000a Subjects and methods  Fifteen type 2 diabetic patients received FENO (n?=?8) or PIO (n?=?7) for 3 months, followed by the addition of the other agent for 3 months

M. Bajaj; S. Suraamornkul; L. J. Hardies; L. Glass; N. Musi; R. A. DeFronzo

2007-01-01

143

Differential Pathway Coupling Efficiency of the Activated Insulin Receptor Drives Signaling Selectivity by XMetA, an Allosteric Partial Agonist Antibody  

Technology Transfer Automated Retrieval System (TEKTRAN)

XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

144

Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor ? agonist  

SciTech Connect

Highlights: •6-ODA, a rare fatty acid with a triple bond, was identified from Marrubium vulgare. •6-ODA was synthesized from petroselinic acid as a starting material. •6-ODA stimulated lipid accumulation in HSC-T6 and 3T3-L1 cells. •The first report of a fatty acid with a triple bond functioning as a PPAR? agonist. •This study sheds light on novel functions of a fatty acid with a triple bond. -- Abstract: 6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor ? (PPAR?). Fibrogenesis caused by hepatic stellate cells is inhibited by PPAR? whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPAR? agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPAR? agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPAR? in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPAR?-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPAR? agonists.

Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)] [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko [Alliance for Research on North Africa (ARENA), University of Tsukuba, Ibaraki 305-8572 (Japan) [Alliance for Research on North Africa (ARENA), University of Tsukuba, Ibaraki 305-8572 (Japan); Faculty of Life and Environment, University of Tsukuba, Ibaraki 305-8572 (Japan); Neffati, Mohamed [Arid Zone Research Institute (IRA), Médenine 4119 (Tunisia)] [Arid Zone Research Institute (IRA), Médenine 4119 (Tunisia); Akita, Toru; Maejima, Kazuhiro [Nippon Shinyaku CO., LTD., Kyoto 601-8550 (Japan)] [Nippon Shinyaku CO., LTD., Kyoto 601-8550 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)] [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Mori, Naoki; Irie, Kazuhiro [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan)] [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)] [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)

2013-10-18

145

A GPBAR1 (TGR5) small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE) in vivo.  

PubMed

GPBAR1 is a G protein-coupled receptor that is activated by certain bile acids and plays an important role in the regulation of bile acid synthesis, lipid metabolism, and energy homeostasis. Recent evidence suggests that GPBAR1 may also have important effects in reducing the inflammatory response through its expression on monocytes and macrophages. To further understand the role of GPBAR1 in inflammation, we generated a novel, selective, proprietary GPBAR1 agonist and tested its effectiveness at reducing monocyte and macrophage activation in vitro and in vivo. We have used this agonist, together with previously described agonists to study agonism of GPBAR1, and shown that they can all induce cAMP and reduce TLR activation-induced cytokine production in human monocytes and monocyte-derived macrophages in vitro. Additionally, through the usage of RNA sequencing (RNA-Seq), we identified a select set of genes that are regulated by GPBAR1 agonism during LPS activation. To further define the in vivo role of GPBAR1 in inflammation, we assessed GPBAR1 expression and found high levels on circulating mouse monocytes. Agonism of GPBAR1 reduced LPS-induced cytokine production in mouse monocytes ex vivo and serum cytokine levels in vivo. Agonism of GPBAR1 also had profound effects in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis, where monocytes play an important role. Mice treated with the GPBAR1 agonist exhibited a significant reduction in the EAE clinical score which correlated with reduced monocyte and microglial activation and reduced trafficking of monocytes and T cells into the CNS. These data confirm the importance of GPBAR1 in controlling monocyte and macrophage activation in vivo and support the rationale for selective agonists of GPBAR1 in the treatment of inflammatory diseases. PMID:24967665

Lewis, Nuruddeen D; Patnaude, Lori A; Pelletier, Josephine; Souza, Donald J; Lukas, Susan M; King, F James; Hill, Jonathan D; Stefanopoulos, Dimitria E; Ryan, Kelli; Desai, Sudha; Skow, Donna; Kauschke, Stefan G; Broermann, Andre; Kuzmich, Daniel; Harcken, Christian; Hickey, Eugene R; Modis, Louise K

2014-01-01

146

A GPBAR1 (TGR5) Small Molecule Agonist Shows Specific Inhibitory Effects on Myeloid Cell Activation In Vitro and Reduces Experimental Autoimmune Encephalitis (EAE) In Vivo  

PubMed Central

GPBAR1 is a G protein-coupled receptor that is activated by certain bile acids and plays an important role in the regulation of bile acid synthesis, lipid metabolism, and energy homeostasis. Recent evidence suggests that GPBAR1 may also have important effects in reducing the inflammatory response through its expression on monocytes and macrophages. To further understand the role of GPBAR1 in inflammation, we generated a novel, selective, proprietary GPBAR1 agonist and tested its effectiveness at reducing monocyte and macrophage activation in vitro and in vivo. We have used this agonist, together with previously described agonists to study agonism of GPBAR1, and shown that they can all induce cAMP and reduce TLR activation-induced cytokine production in human monocytes and monocyte-derived macrophages in vitro. Additionally, through the usage of RNA sequencing (RNA-Seq), we identified a select set of genes that are regulated by GPBAR1 agonism during LPS activation. To further define the in vivo role of GPBAR1 in inflammation, we assessed GPBAR1 expression and found high levels on circulating mouse monocytes. Agonism of GPBAR1 reduced LPS-induced cytokine production in mouse monocytes ex vivo and serum cytokine levels in vivo. Agonism of GPBAR1 also had profound effects in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis, where monocytes play an important role. Mice treated with the GPBAR1 agonist exhibited a significant reduction in the EAE clinical score which correlated with reduced monocyte and microglial activation and reduced trafficking of monocytes and T cells into the CNS. These data confirm the importance of GPBAR1 in controlling monocyte and macrophage activation in vivo and support the rationale for selective agonists of GPBAR1 in the treatment of inflammatory diseases. PMID:24967665

Lewis, Nuruddeen D.; Patnaude, Lori A.; Pelletier, Josephine; Souza, Donald J.; Lukas, Susan M.; King, F. James; Hill, Jonathan D.; Stefanopoulos, Dimitria E.; Ryan, Kelli; Desai, Sudha; Skow, Donna; Kauschke, Stefan G.; Broermann, Andre; Kuzmich, Daniel; Harcken, Christian; Hickey, Eugene R.; Modis, Louise K.

2014-01-01

147

Promotion of Agonist Activity of Antiandrogens by the Androgen Receptor Coactivator, ARA70, in Human Prostate Cancer DU145 Cells  

Microsoft Academic Search

Although hormone therapy with antiandrogens has been widely used for the treatment of prostate cancer, some antiandrogens may act as androgen receptor (AR) agonists that may result in antiandrogen withdrawal syndrome. The molecular mechanism of this agonist response, however, remains unclear. Using mammalian two-hybrid assay, we report that antiandrogens, hydroxyflutamide, bicalutamide (casodex), cyproterone acetate, and RU58841, and other compounds such

Hiroshi Miyamoto; Shuyuan Yeh; George Wilding; Chawnshang Chang

1998-01-01

148

The G protein-biased ?-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo.  

PubMed

The hypothesis that functionally selective G protein-coupled receptor (GPCR) agonists may have enhanced therapeutic benefits has revitalized interest for many GPCR targets. In particular, although ?-opioid receptor (KOR) agonists are analgesic with a low risk of dependence and abuse, their use is limited by a propensity to induce sedation, motor incoordination, hallucinations, and dysphoria-like states. Several laboratories have produced a body of work suggesting that G protein-biased KOR agonists might be analgesic with fewer side effects. Although that has been an intriguing hypothesis, suitable KOR-selective and G protein-biased agonists have not been available to test this idea. Here we provide data using a G protein-biased agonist, RB-64 (22-thiocyanatosalvinorin A), which suggests that KOR-mediated G protein signaling induces analgesia and aversion, whereas ?-arrestin-2 signaling may be associated with motor incoordination. Additionally, unlike unbiased KOR agonists, the G protein-biased ligand RB-64 does not induce sedation and does not have anhedonia-like actions, suggesting that a mechanism other than G protein signaling mediates these effects. Our findings provide the first evidence for a highly selective and G protein-biased tool compound for which many, but not all, of the negative side effects of KOR agonists can be minimized by creating G protein-biased KOR agonists. PMID:25320048

White, Kate L; Robinson, J Elliott; Zhu, Hu; DiBerto, Jeffrey F; Polepally, Prabhakar R; Zjawiony, Jordan K; Nichols, David E; Malanga, C J; Roth, Bryan L

2015-01-01

149

Protease-Activated Receptor – 2 (PAR-2) is a weak enhancer of mucin secretion by human bronchial epithelial cells in vitro  

PubMed Central

PAR-2, a member of a family of G-protein-coupled receptors, can be activated by serine proteases via proteolytic cleavage. PAR-2 expression is known to be upregulated in respiratory epithelium subsequent to inflammation in asthma and chronic obstructive pulmonary disease (COPD). Since these diseases also are characterized by excessive mucus production and secretion, we investigated whether PAR-2 could be linked to mucin hypersecretion by airway epithelium. Normal human bronchial epithelial (NHBE) cells in primary culture or the human bronchial epithelial cell lines, NCI-H292 and HBE-1, were used. NHBE, NCI-H292, and HBE-1 cells expressed prominent levels of PAR-2 protein. Short term (30 min) exposure of cells to the synthetic PAR-2 agonist peptide (SLIGKV-NH2) elicited a small but statistically significant increase in mucin secretion at high concentrations (100µM and 1000µM), compared to a control peptide with reversed amino acid sequence (VKGILS-NH2). Neither human lung tryptase nor bovine pancreatic trypsin, both PAR-2 agonists, affected NHBE cell mucin secretion when added over a range of concentrations. Knockdown of PAR-2 expression by siRNA blocked the stimulatory effect of the AP. The results suggest that, since PAR-2 activation only weakly increases mucin secretion by human airway epithelial cells in vitro, PAR-2 probably is not a significant contributor to mucin hypersecretion in inflamed airways. PMID:18077203

Lin, Ko-Wei; Park, Joungjoa; Crews, Anne L.; Li, Yuehua; Adler, Kenneth B.

2008-01-01

150

Antitussive activity of sigma-1 receptor agonists in the guinea-pig  

Microsoft Academic Search

1 Current antitussive medications have limited efficacy and often contain the opiate-like agent dextromethorphan (DEX). The mechanism whereby DEX inhibits cough is ill defined. DEX displays affinity at both NMDA and sigma receptors, suggesting that the antitussive activity may involve central or peripheral activity at either of these receptors. This study examined and compared the antitussive activity of DEX and

Claire Brown; Malika Fezoui; William M. Selig; Carl E. Schwartz; James L. Ellis

2004-01-01

151

Increased corticosteroid sensitivity by a long acting ?2 agonist formoterol via ?2 adrenoceptor independent protein phosphatase 2A activation.  

PubMed

Long-acting ?2-adrenoceptor agonists (LABAs) are reported to enhance anti-inflammatory effects of corticosteroids in vitro and in vivo, although the molecular mechanisms have not yet been elucidated. We investigated the role of serine/threonine protein phosphatase 2A (PP2A) on regulation of corticosteroid sensitivity via inhibition of glucocorticoid receptor (GR) phosphorylation as the target of formoterol, an LABA. Corticosteroid sensitivity was determined as IC50 to dexamethasone (Dex) on TNF?-induced IL-8 release in a U937 monocytic cell line (Dex-IC50). Phosphorylation levels of GR-Ser226 and c-Jun N-terminal kinase (JNK) were determined by western-blotting. Phosphatase activity of immunopurified PP2A was measured by fluorescence-based assay. Exposure to IL-2/IL-4 for 48 h decreased Dex sensitivity with a concomitant increase of GR phosphorylation at Ser226 with JNK1 activation. Formoterol restored Dex sensitivity by inhibiting phosphorylation of GR-Ser226 and JNK1. PP2A inhibition by okadaic acid, a phosphatase inhibitor, abrogated formoterol-mediated effects. In addition, formoterol enhanced PP2A activity in intact or IL-2/IL-4 treated U937 cells and human peripheral blood mononuclear cells. In addition, PP2A activation by formoterol was not antagonized by ICI-118551, and formoterol could activate PP2A directly in cell free system. Taken together, formoterol increases corticosteroid sensitivity via activation of PP2A in receptor independent manner, explaining its benefits as add-on therapy for the treatment of corticosteroid-insensitive diseases, such as severe asthma. PMID:22401993

Kobayashi, Yoshiki; Mercado, Nicolas; Miller-Larsson, Anna; Barnes, Peter J; Ito, Kazuhiro

2012-06-01

152

Toll-Like Receptor Agonist Augments Virus-Like Particle-Mediated Protection from Ebola Virus with Transient Immune Activation  

PubMed Central

Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR) agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP) vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNF?, IL6, MCP1, MIP1?, KC, and MIP1? levels in the periphery and with the activation of dendritic cells (DCs), NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels. PMID:24586996

Martins, Karen A. O.; Steffens, Jesse T.; van Tongeren, Sean A.; Wells, Jay B.; Bergeron, Alison A.; Dickson, Samuel P.; Dye, John M.; Salazar, Andres M.; Bavari, Sina

2014-01-01

153

Extending the structure-activity relationship of anthranilic acid derivatives as farnesoid X receptor modulators: development of a highly potent partial farnesoid X receptor agonist.  

PubMed

The ligand activated transcription factor nuclear farnesoid X receptor (FXR) is involved as a regulator in many metabolic pathways including bile acid and glucose homeostasis. Therefore, pharmacological activation of FXR seems a valuable therapeutic approach for several conditions including metabolic diseases linked to insulin resistance, liver disorders such as primary biliary cirrhosis or nonalcoholic steatohepatitis, and certain forms of cancer. The available FXR agonists, however, activate the receptor to the full extent which might be disadvantageous over a longer time period. Hence, partial FXR activators are required for long-term treatment of metabolic disorders. We here report the SAR of anthranilic acid derivatives as FXR modulators and development, synthesis, and characterization of compound 51, which is a highly potent partial FXR agonist in a reporter gene assay with an EC50 value of 8 ± 3 nM and on mRNA level in liver cells. PMID:25255039

Merk, Daniel; Lamers, Christina; Ahmad, Khalil; Carrasco Gomez, Roberto; Schneider, Gisbert; Steinhilber, Dieter; Schubert-Zsilavecz, Manfred

2014-10-01

154

Peroxisome-proliferator-activated receptor-{gamma} agonists inhibit the release of proinflammatory cytokines from RSV-infected epithelial cells  

SciTech Connect

The epithelial cells of the airways are the target cells for respiratory syncytial virus (RSV) infection and the site of the majority of the inflammation associated with the disease. Recently, peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear hormone receptor superfamily, has been shown to possess anti-inflammatory properties. Therefore, we investigated the role of PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone and troglitazone) on the synthesis of RSV-induced cytokine release from RSV-infected human lung epithelial cells (A549). We observed that all PPAR{gamma} ligands inhibited dose-dependently the release of TNF-{alpha}, GM-CSF, IL-1{alpha}, IL-6 and the chemokines CXCL8 (IL-8) and CCL5 (RANTES) from RSV-infected A549 cells. Concomitantly, the PPAR{gamma} ligands diminished the cellular amount of mRNA encoding for IL-6, CXCL8 and CCL5 and the RSV-induced binding activity of the transcription factors NF-{kappa}B (p65/p50) and AP-1 (c-fos), respectively. Our data presented herein suggest a potential application of PPAR{gamma} ligands in the anti-inflammatory treatment of RSV infection.

Arnold, Ralf [Institute of Medical Microbiology, Otto-von-Guericke-University, Leipzigerstr. 44, 39120 Magdeburg, (Germany)]. E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang [Institute of Medical Microbiology, Otto-von-Guericke-University, Leipzigerstr. 44, 39120 Magdeburg, (Germany)

2006-03-15

155

Differential G-protein activation by alkaloid and peptide opioid agonists in the human neuroblastoma cell line SK-N-BE.  

PubMed Central

Differences in the specificity of coupling of delta-opioid receptor with G-protein have been reported in the literature. We have observed a differential desensitization of delta-opioid receptors, endogenously expressed in the neuroblastoma cell line SK-N-BE, induced by peptide and alkaloid agonists. By combining photoaffinity labelling of receptor-activated G-proteins with [alpha-(32)P]azidoanilide-GTP and an anti-sense oligodeoxynucleotide strategy, we examined whether the chemical nature of opioid agonists, alkaloid or peptide, has a critical role in determining a G(i)alpha/G(o)alpha-protein-selective activation by the human delta-opioid receptors. Etorphine, a non-selective alkaloid agonist, was shown to stimulate the incorporation of [alpha-(32)P]azidoanilide-GTP into G(i)alpha1, G(i)alpha2, G(i)alpha3 and pertussis-toxin-insensitive Galpha subunits. In contrast, [d-Pen(2),d-Pen(5)]enkephalin (DPDPE; Pen is penicillamine) and Tyr-d-Ala-Phe-Asp-Val-Val-Gly-NH(2) (deltorphin I), selective peptide agonists, mainly activated G(i)alpha2 and G(o)alpha2 subunits. The 'knock-down' of G(o)alpha2 subunits by anti-sense oligodeoxynucleotides selectively decreased the inhibition of adenylate cyclase induced by DPDPE and deltorphin I, whereas anti-sense oligodeoxynucleotides directed against G(i)alpha2 subunits only decreased the potency of etorphine in inhibiting cAMP accumulation. These results suggest that the nature of the agonist, peptide or alkaloid is critical in determining the interaction between human delta-opioid receptors and Galpha subunits. PMID:10432302

Allouche, S; Polastron, J; Hasbi, A; Homburger, V; Jauzac, P

1999-01-01

156

Effects of 5-HT1A Receptor Stimulation on D1 Receptor Agonist-Induced Striatonigral Activity and Dyskinesia in Hemiparkinsonian Rats  

PubMed Central

Accumulating evidence supports the value of 5-HT1A receptor (5-HT1AR) agonists for dyskinesias that arise with long-term L-DOPA therapy in Parkinson’s disease (PD). Yet, how 5-HT1AR stimulation directly influences the dyskinetogenic D1 receptor (D1R)-expressing striatonigral pathway remains largely unknown. To directly examine this, one cohort of hemiparkinsonian rats received systemic injections of Vehicle + Vehicle, Vehicle + the D1R agonist SKF81297 (0.8 mg/kg), or the 5-HT1AR agonist ±8-OH-DPAT (1.0 mg/kg) + SKF81297. Rats were examined for changes in abnormal involuntary movements (AIMs), rotations, striatal preprodynorphin (PPD), and glutamic acid decarboxylase (GAD; 65 and 67) mRNA via RT-PCR. In the second experiment, hemiparkinsonian rats received intrastriatal pretreatments of Vehicle (aCSF), ±8-OH-DPAT (7.5 mM), or ±8-OH-DPAT + the 5-HT1AR antagonist WAY100635 (4.6 mM), followed by systemic Vehicle or SKF81297 after which AIMs, rotations, and extracellular striatal glutamate and nigral GABA efflux were measured by in vivo microdialysis. Results revealed D1R agonist-induced AIMs were reduced by systemic and intrastriatal 5-HT1AR stimulation while rotations were enhanced. Although ±8-OH-DPAT did not modify D1R agonist-induced increases in striatal PPD mRNA, the D1R/5-HT1AR agonist combination enhanced GAD65 and GAD67 mRNA. When applied locally, ±8-OH-DPAT alone diminished striatal glutamate levels while the agonist combination increased nigral GABA efflux. Thus, presynaptic 5-HT1AR stimulation may attenuate striatal glutamate levels, resulting in diminished D1R-mediated dyskinetic behaviors, but maintain or enhance striatal postsynaptic factors ultimately increasing nigral GABA levels and rotational activity. The current findings offer a novel mechanistic explanation for previous results concerning 5-HT1AR agonists for the treatment of dyskinesia. PMID:23496922

2013-01-01

157

Isoproterenol Acts as a Biased Agonist of the Alpha-1A-Adrenoceptor that Selectively Activates the MAPK/ERK Pathway.  

PubMed

The ?1A-AR is thought to couple predominantly to the G?q/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with G?q coupling-defective variants of ?1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between ?1A-AR and ?2-AR that leads to potentiation of a G?q-independent signaling cascade in response to ?1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as ?-AR-selective agonist, was examined with respect to activation of ?1A-AR. ?1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at ?1A-AR. Iso induced signaling at ?1A-AR was further interrogated by probing steps along the G?q /PLC, G?s and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with ?1A-AR, and CHO_?1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by ?1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical G?q- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of ?1A-AR partial agonist with signaling bias toward MAPK/ERK signaling cascade that is likely independent of coupling to G?q. PMID:25606852

Copik, Alicja J; Baldys, Aleksander; Nguyen, Khanh; Sahdeo, Sunil; Ho, Hoangdung; Kosaka, Alan; Dietrich, Paul J; Fitch, Bill; Raymond, John R; Ford, Anthony P D W; Button, Donald; Milla, Marcos E

2015-01-01

158

Isoproterenol Acts as a Biased Agonist of the Alpha-1A-Adrenoceptor that Selectively Activates the MAPK/ERK Pathway  

PubMed Central

The ?1A-AR is thought to couple predominantly to the G?q/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with G?q coupling-defective variants of ?1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between ?1A-AR and ?2-AR that leads to potentiation of a G?q-independent signaling cascade in response to ?1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as ?-AR-selective agonist, was examined with respect to activation of ?1A-AR. ?1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at ?1A-AR. Iso induced signaling at ?1A-AR was further interrogated by probing steps along the G?q /PLC, G?s and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with ?1A-AR, and CHO_?1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by ?1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical G?q- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of ?1A-AR partial agonist with signaling bias toward MAPK/ERK signaling cascade that is likely independent of coupling to G?q. PMID:25606852

Copik, Alicja. J.; Baldys, Aleksander; Nguyen, Khanh; Sahdeo, Sunil; Ho, Hoangdung; Kosaka, Alan; Dietrich, Paul J.; Fitch, Bill; Raymond, John R.; Ford, Anthony P. D. W.; Button, Donald; Milla, Marcos E.

2015-01-01

159

The Peroxisomal Proliferator-Activated Receptor (PPAR) ? Agonist, Fenofibrate, Prevents Fractionated Whole-Brain Irradiation-Induced Cognitive Impairment  

PubMed Central

We hypothesized that dietary administration of the peroxisomal proliferator-activated receptor ? agonist, fenofibrate, to young adult male rats would prevent the fractionated whole-brain irradiation (fWBI)-induced reduction in cognitive function and neurogenesis and prevent the fWBI-induced increase in the total number of activated microglia. Eighty 12–14-week-old young adult male Fischer 344 × Brown Norway rats received either: (1) sham irradiation, (2) 40 Gy of fWBI delivered as two 5 Gy fractions/week for 4 weeks, (3) sham irradiation + dietary fenofibrate (0.2% w/w) starting 7 days prior to irradiation, or (4) fWBI + fenofibrate. Cognitive function was measured 26–29 weeks after irradiation using: (1) the perirhinal cortex (PRh)-dependent novel object recognition task; (2) the hippocampal-dependent standard Morris water maze (MWM) task; (3) the hippocampal-dependent delayed match-to-place version of the MWM task; and (4) a cue strategy preference version of the MWM to distinguish hippocampal from striatal task performance. Neurogenesis was assessed 29 weeks after fWBI in the granular cell layer and subgranular zone of the dentate gyrus using a doublecortin antibody. Microglial activation was assessed using an ED1 antibody in the dentate gyrus and hilus of the hippocampus. A significant impairment in perirhinal cortex-dependent cognitive function was measured after fWBI. In contrast, fWBI failed to alter hippocampal-dependent cognitive function, despite a significant reduction in hippocampal neurogenesis. Continuous administration of fenofibrate prevented the fWBI-induced reduction in perirhinal cortex-dependent cognitive function, but did not prevent the radiation-induced reduction in neurogenesis or the radiation-induced increase in activated microglia. These data suggest that fenofibrate may be a promising therapeutic for the prevention of some modalities of radiation-induced cognitive impairment in brain cancer patients. PMID:24397438

Greene-Schloesser, Dana; Payne, Valerie; Peiffer, Ann M.; Hsu, Fang-Chi; Riddle, David R.; Zhao, Weiling; Chan, Michael D.; Metheny-Barlow, Linda; Robbins, Mike E.

2014-01-01

160

CMHX008, a Novel Peroxisome Proliferator-Activated Receptor ? Partial Agonist, Enhances Insulin Sensitivity In Vitro and In Vivo  

PubMed Central

The peroxisome proliferator-activated receptor ? (PPAR?) plays an important role in adipocyte differentiation and insulin sensitivity. Its ligand rosiglitazone has anti-diabetic effect but is frequently accompanied with some severe unwanted effects. The aim of the current study was to compare the anti-diabetic effect of CMHX008, a novel thiazolidinedione-derivative, with rosiglitazone. A luciferase assay was used to evaluate in vitro PPAR? activation. 3T3-L1 cells were used to examine adipocyte differentiation. High fat diet (HFD) mice were used to examine in vivo insulin sensitivity. The mRNA levels were evaluated by real-time RT-PCR. Serum biochemical and hormonal variables were assessed using a clinical chemistry analyser. CMHX008 displayed a moderate PPAR? agonist activity, and promoted 3T3-L1 preadipocyte differentiation with lower activity than rosiglitazone. CMHX008 regulated the expression of PPAR? target genes in a different manner from rosiglitazone. CMHX008 increased the expression and secretion of adiponectin with the similar efficacy as rosiglitazone, but only 25% as potent as rosiglitazone for the induction of adipocyte fatty acid binding protein. Treatment of CMHX008 and rosiglitazone protected mice from high fat diet (HFD)-induced glucose intolerance, hyperinsulinemia and inflammation. CMHX008 reduced the mRNA expression of M1 macrophage markers, and significantly increased the expressions of M2 markers. In conclusion, CMHX008 shared the comparable insulin-sensitizing effects as rosiglitazone with lower adipogenic capacity and might potentially be developed into an effective agent for the treatment of diabetes and metabolic disorders. PMID:25004107

Song, Ying; Liu, Zhiguo; Li, Jibin; Gao, Rufei; Zhang, Yuyao; Mei, Hu; Guo, Tingwang; Xiao, Ling; Wang, Bochu; Wu, Chaodong; Xiao, Xiaoqiu

2014-01-01

161

TGF-?-activated Kinase 1 (Tak1) Mediates Agonist-induced Smad Activation and Linker Region Phosphorylation in Embryonic Craniofacial Neural Crest-derived Cells*  

PubMed Central

Although the importance of TGF-? superfamily signaling in craniofacial growth and patterning is well established, the precise details of its signaling mechanisms are still poorly understood. This is in part because of the concentration of studies on the role of the Smad-dependent (so-called “canonical”) signaling pathways relative to the Smad-independent ones in many biological processes. Here, we have addressed the role of TGF-?-activated kinase 1 (Tak1, Map3k7), one of the key mediators of Smad-independent (noncanonical) TGF-? superfamily signaling in craniofacial development, by deleting Tak1 specifically in the neural crest lineage. Tak1-deficient mutants display a round skull, hypoplastic maxilla and mandible, and cleft palate resulting from a failure of palatal shelves to appropriately elevate and fuse. Our studies show that in neural crest-derived craniofacial ecto-mesenchymal cells, Tak1 is not only required for TGF-?- and bone morphogenetic protein-induced p38 Mapk activation but also plays a role in agonist-induced C-terminal and linker region phosphorylation of the receptor-mediated R-Smads. Specifically, we demonstrate that the agonist-induced linker region phosphorylation of Smad2 at Thr-220, which has been shown to be critical for full transcriptional activity of Smad2, is dependent on Tak1 activity and that in palatal mesenchymal cells TGF?RI and Tak1 kinases mediate both overlapping and distinct TGF-?2-induced transcriptional responses. To summarize, our results suggest that in neural crest-derived ecto-mesenchymal cells, Tak1 provides a critical point of intersection in a complex dialogue between the canonical and noncanonical arms of TGF-? superfamily signaling required for normal craniofacial development. PMID:23546880

Yumoto, Kenji; Thomas, Penny S.; Lane, Jamie; Matsuzaki, Kouichi; Inagaki, Maiko; Ninomiya-Tsuji, Jun; Scott, Gregory J.; Ray, Manas K.; Ishii, Mamoru; Maxson, Robert; Mishina, Yuji; Kaartinen, Vesa

2013-01-01

162

Membrane partitioning of various delta-opioid receptor forms before and after agonist activations: the effect of cholesterol.  

PubMed

Lipid rafts depicted as densely packed and thicker membrane microdomains, based on the dynamic clustering of cholesterol and sphingolipids, may help as platforms involved in a wide variety of cellular processes. The reasons why proteins segregate into rafts are yet to be clarified. The human delta opioid receptor (hDOR) reconstituted in a model system has been characterised after ligand binding by an elongation of its transmembrane part, inducing rearrangement of its lipid microenvironment [Alves, Salamon, Hruby, and Tollin (2005) Biochemistry 44, 9168-9178]. We used hDOR to understand better the correlation between its function and its membrane microdomain localisation. A fusion protein of hDOR with the Green Fluorescent Protein (DOR*) allows precise receptor membrane quantification. Here we report that (i) a fraction of the total receptor pool requires cholesterol for binding activity, (ii) G-proteins stabilize a high affinity state conformation which does not seem modulated by cholesterol. In relation to its distribution, and (iii) a fraction of DOR* is constitutively associated with detergent-resistant membranes (DRM) characterised by an enrichment in lipids and proteins raft markers. (iv) An increase in the quantity of DOR* was observed upon agonist addition. (v) This DRM relocation is prevented by uncoupling the receptor-G-protein interaction. PMID:18423369

André, Aurore; Gaibelet, Gérald; Le Guyader, Laurent; Welby, Michèle; Lopez, André; Lebrun, Chantal

2008-06-01

163

Phospholipid-esterified Eicosanoids Are Generated in Agonist-activated Human Platelets and Enhance Tissue Factor-dependent Thrombin Generation*  

PubMed Central

Here, a group of specific lipids, comprising phosphatidylethanolamine (PE)- or phosphatidylcholine (PC)-esterified 12S-hydroxyeicosatetraenoic acid (12S-HETE), generated by 12-lipoxygenase was identified and characterized. 12S-HETE-PE/PCs were formed within 5 min of activation by thrombin, ionophore, or collagen. Esterified HETE levels generated in response to thrombin were 5.85 ± 1.42 (PE) or 18.35 ± 4.61 (PC), whereas free was 65.5 ± 17.6 ng/4 × 107 cells (n = 5 separate donors, mean ± S.E.). Their generation was stimulated by triggering protease-activated receptors-1 and -4 and signaling via Ca2+ mobilization secretory phospholipase A2, platelet-activating factor-acetylhydrolase, src tyrosine kinases, and protein kinase C. Stable isotope labeling showed that they form predominantly by esterification that occurs on the same time scale as free acid generation. Unlike free 12S-HETE that is secreted, esterified HETEs remain cell-associated, with HETE-PEs migrating to the outside of the plasma membrane. 12-Lipoxygenase inhibition attenuated externalization of native PE and phosphatidylserine and HETE-PEs. Platelets from a patient with the bleeding disorder, Scott syndrome, did not externalize HETE-PEs, and liposomes supplemented with HETE-PC dose-dependently enhanced tissue factor-dependent thrombin generation in vitro. This suggests a role for these novel lipids in promoting coagulation. Thus, oxidized phospholipids form by receptor/agonist mechanisms, not merely as an undesirable consequence of vascular and inflammatory disease. PMID:20061396

Thomas, Christopher P.; Morgan, Lloyd T.; Maskrey, Benjamin H.; Murphy, Robert C.; Kühn, Hartmut; Hazen, Stanley L.; Goodall, Alison H.; Hamali, Hassan A.; Collins, Peter W.; O'Donnell, Valerie B.

2010-01-01

164

Biostable agonists that match or exceed activity of native insect kinins on recombinant arthropod GPCRs  

Technology Transfer Automated Retrieval System (TEKTRAN)

The multifunctional arthropod insect kinins share the evolutionarily conserved C-terminal pentapeptide motif Phe-X1-X2-Trp-Gly-NH2, where X1 = His, Asn, Ser, or Tyr and X2 = Ser, Pro, or Ala. Insect kinins regulate diuresis in many species of insects. Compounds with similar biological activity cou...

165

Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.  

ERIC Educational Resources Information Center

Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)

Engelhorn, Richard

1983-01-01

166

Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells.  

PubMed

The aim of this study was to determine the expression of protease-activated receptor 2 (PAR-2) in the human pancreatic cancer cell line SW1990, and to evaluate its effect on cell proliferation and invasion. The expression of PAR-2 protein and mRNA in SW1990 cells was determined by immunocytochemistry and reverse transcription polymerase chain reaction (PCR), respectively. MTT and cell invasion and migration assays, as well as semi-quantitative PCR and zymography analysis, were additionally performed. PAR-2 mRNA was significantly upregulated in the cells treated with trypsin or the PAR-2 activating peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV) (P<0.01), but not in the Val-Lys-Gly-Ile-Leu-Ser group (P>0.05). Trypsin and SLIGKV significantly promoted SW1990 cell proliferation in a dose- and time-dependent manner (P<0.05). Compared with the control group, trypsin and SLIGKV significantly increased the mRNA expression (P<0.01) and gelatinolytic activity (P<0.01) of matrix metalloproteinase (MMP)-2. In conclusion, PAR-2 is expressed in SW1990 cells. PAR-2 activation may promote the invasion and migration of human pancreatic cancer cells by increasing MMP-2 expression. PMID:25452809

Xie, Liqun; Duan, Zexing; Liu, Caiju; Zheng, Yanmin; Zhou, Jing

2015-01-01

167

Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-alpha beta and IFN-gamma.  

PubMed

Recognition of conserved features of infectious agents by innate pathogen receptors plays an important role in initiating the adaptive immune response. We have investigated early changes occurring among T cells after injection of TLR agonists into mice. Widespread, transient phenotypic activation of both naive and memory T cells was observed rapidly after injection of molecules acting through TLR3, -4, -7, and -9, but not TLR2. T cell activation was shown to be mediated by a combination of IFN-alphabeta, secreted by dendritic cells (DCs), and IFN-gamma, secreted by NK cells; notably, IFN-gamma-secreting NK cells expressed CD11c and copurified with DCs. Production of IFN-gamma by NK cells could be stimulated by DCs from TLR agonist-injected mice, and although soluble factors secreted by LPS-stimulated DCs were sufficient to induce IFN-gamma, maximal IFN-gamma production required both direct contact of NK cells with DCs and DC-secreted cytokines. In vitro, IFN-alphabeta, IL-18, and IL-12 all contributed to DC stimulation of NK cell IFN-gamma, whereas IFN-alphabeta was shown to be important for induction of T cell bystander activation and NK cell IFN-gamma production in vivo. The results delineate a pathway involving innate immune mediators through which TLR agonists trigger bystander activation of T cells. PMID:15634897

Kamath, Arun T; Sheasby, Christopher E; Tough, David F

2005-01-15

168

Novel N-Substituted Benzimidazolones as Potent, Selective, CNS-Penetrant, and Orally Active M1 mAChR Agonists  

PubMed Central

Virtual screening of the corporate compound collection yielded compound 1 as a subtype selective muscarinic M1 receptor agonist hit. Initial optimization of the N-capping group of the central piperidine ring resulted in compounds 2 and 3 with significantly improved potency and selectivity. Subsequent optimization of substituents on the phenyl ring of the benzimidazolone moiety led to the discovery of novel muscarinic M1 receptor agonists 4 and 5 with excellent potency, general and subtype selectivity, and pharmacokinetic (PK) properties including good central nervous system (CNS) penetration and oral bioavailability. Compound 5 showed robust in vivo activities in animal models of cognition enhancement. The combination of high potency, excellent selectivity, and good PK properties makes compounds 4 and 5 valuable tool compounds for investigating and validating potential therapeutic benefits resulting from selective M1 activation. PMID:24900202

2010-01-01

169

Fenofibrate A peroxisome proliferator activated receptor-? agonist treatment ameliorates Concanavalin A-induced hepatitis in rats.  

PubMed

Peroxisome proliferator-activated receptor-? (PPAR?) is physiologically highly expressed by hepatocytes, where it plays a pivotal anti-inflammatory and metabolic role. The decrease expression and functional activity of PPAR? in hepatocytes during hepatitis C virus infection may contribute to the pathogenesis of the disease in humans. This study aims at evaluating the effects of PPAR? activation with fenofibrate (FF) on liver inflammation, fibrosis and portal pressure (PP) in Concanavalin A (Con A)- induced hepatitis in rats. The rats were randomly divided to 3 groups; control (1 ml saline iv/wk) group, Con A (20mg/kg/iv/wk) group and Con A with FF (100mg/kg/day p.o) group. Blood samples and livers were collected by the end of the first, second, fourth and eighth injections of Con A for biochemical, histopathological and immunohistochemistry studies for ?-smooth muscle actin (? SMA). Measurement of PP was performed by the end of the 8th week. FF group had a significant (P<0.05) decrease of serum alanine and aspartate aminotransferases with significant reduction of hepatic tumor necrosis factor alpha and malondialdehyde levels than Con A group. Histopathological examination revealed that treatment with FF significantly suppressed early inflammation, reduced ? SMA, and apoptosis of hepatocytes induced by Con A, thereby preventing the progression of chronic liver injury and fibrosis. In addition FF group had a significantly lower PP (-89.0%) than Con A group. In conclusion PPAR? activation significantly reduced liver inflammation, fibrosis and PP in Con A model of hepatitis that may represent a new therapeutic strategy for hepatitis and its complications. PMID:24140572

Mohamed, Doaa I; Elmelegy, Ahmed A M; El-Aziz, Lubna F A; Abdel Kawy, Hala S; El-Samad, Abeer A Abd; El-Kharashi, Omnyah A

2013-12-01

170

Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism  

Microsoft Academic Search

1 Thrombin, generated in the circulation during injury, cleaves proteinase-activated receptor 1 (PAR1) to stimulate plasma extravasation and granulocyte infiltration. However, the mechanism of thrombin-induced inflammation in intact tissues is unknown. We hypothesized that thrombin cleaves PAR1 on sensory nerves to release substance P (SP), which interacts with the neurokinin 1 receptor (NK1R) on endothelial cells to cause plasma extravasation.

Lawrence de Garavilla; Nathalie Vergnolle; Steven H. Young; Helena Ennes; Martin Steinhoff; Valeria S Ossovskaya; Michael R D'Andrea; Emeran A Mayer; John L Wallace; Morley D Hollenberg; Patricia Andrade-Gordon; Nigel W Bunnett

2001-01-01

171

Thrombin-activated platelets promote leukotriene B4 synthesis in polymorphonuclear leucocytes stimulated by physiological agonists.  

PubMed Central

1. The addition of 2 x 10(8) human platelets to 8 x 10(6) polymorphonuclear leucocytes (PMNL) incubated in presence of 2.5 u ml-1 thrombin and 0.1 microM N-formyl-Met-Leu-Phe (FMLP) (or C5a or PAF) led to enhancement of leukotriene B4 (LTB4) synthesis by the PMNL (measured by h.p.l.c. as 20-hydroxy- and 20-carboxy-LTB4) from 4 +/- 1 pmol (in absence of platelets) to 26 +/- 4 pmol (mean +/- s.e.mean, n = 9). Platelets and thrombin were both essential for the enhancement of LTB4 synthesis. 2. Platelets also caused enhancement of LTB4 synthesis from (30 +/- 12 to 134 +/- 25 pmol, n = 6) when PMNL pretreated with granulocyte-macrophage colony-stimulating factor were used in similar experiments. 3. Enhancement of LTB4 synthesis was also observed (from 5 +/- 1.5 to 26.5 +/- 5 pmol, n = 9) when the supernatants of thrombin-activated platelet suspensions were added to FMLP-stimulated PMNL. 4. Supernatants of platelet suspensions activated by thrombin in presence of cyclo-oxygenase and 12-lipoxygenase inhibitors led to greater enhancement (from 5 +/- 3 to 153.5 +/- 27.5 pmol, n = 3) of LTB4 synthesis by FMLP-stimulated PMNL, suggesting that arachidonic acid itself, rather than its metabolites was responsible for the effects of platelets. 5. Addition of arachidonic acid to FMLP-stimulated PMNL at a concentration comparable to that measured in thrombin-activated platelet supernatants (0.2 +/- 0.025 microM, n = 6) mimicked the effect of platelets or platelet supernatants on LTB4 synthesis in FMLP-activated PMNL.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1655146

Palmantier, R.; Borgeat, P.

1991-01-01

172

Assessment of NMDA receptor activation in vivo by Fos induction after challenge with the direct NMDA agonist (tetrazol-5-yl)glycine: effects of clozapine and haloperidol  

Microsoft Academic Search

Summary  Induction of Fos protein by the potent and direct NMDA agonist (tetrazol-5-yl)glycine (TZG) was examined in mice. Effects\\u000a of antipsychotic drugs were assessed on this in vivo index of NMDA receptor activation. TZG induced the expression of Fos\\u000a in a neuroanatomically selective manner, with the hippocampal formation showing the most robust response. In mice genetically\\u000a altered to express low levels

K. Inada; J. S. Farrington; S. S. Moy; B. H. Koller; G. E. Duncan

2007-01-01

173

Antidepressant-type effect of the NK3 tachykinin receptor agonist aminosenktide in mouse lines differing in endogenous opioid system activity  

Microsoft Academic Search

The influence of the tachykinin NK3 receptor agonist, aminosenktide on the immobility in the forced swimming test was studied in mouse lines selectively bred for divergent magnitudes of stress-induced analgesia. The high analgesia (HA) line is known to display enhanced, and the low analgesia (LA) line displays reduced activity of the opioid system. Aminosenktide at doses of 125 ?g\\/kg or

I Panocka; M Massi; I Lapo; T Swiderski; M Kowalczyk; B Sadowski

2001-01-01

174

F15063, a compound with D2/D3 antagonist, 5-HT1A agonist and D4 partial agonist properties: (II) Activity in models of positive symptoms of schizophrenia  

PubMed Central

Background and purpose: F15063 is a high affinity D2/D3 antagonist, D4 partial agonist, and high efficacy 5-HT1A agonist, with little affinity (40-fold lower than for D2 receptors) at other central targets. Here, the profile of F15063 was evaluated in models of positive symptoms of schizophrenia and motor side-effects. Experimental approach: Rodent behavioural tests were based on reversal of hyperactivity induced by psychostimulants and on measures of induction of catalepsy and ‘serotonin syndrome'. Key results: F15063 potently (ED50s: 0.23 to 1.10 mg kg?1 i.p.) reversed methylphenidate-induced stereotyped behaviors, blocked d-amphetamine and ketamine hyperlocomotion, attenuated apomorphine-induced prepulse inhibition (PPI) deficits, and was active in the conditioned avoidance test. In mice, it reversed apomorphine-induced climbing (ED50 = 0.30 mg kg?1 i.p.). F15063, owing to its 5-HT1A agonism, did not produce (ED50 > 40 mg kg?1 i.p.) catalepsy in rats and mice, a behavior predictive of occurrence of extra-pyramidal syndrome (EPS) in man. This absence of cataleptogenic activity was maintained upon sub-chronic treatment of rats for 5 days at 40 mg kg?1 p.o. Furthermore, F15063 did not induce the ‘serotonin syndrome' in rats (flat body posture and forepaw treading: ED50 >32 mg kg?1 i.p.). Conclusions and implications: F15063 conformed to the profile of an atypical antipsychotic, with potent actions in models of hyperdopaminergic activity but without inducing catalepsy. These data suggest that F15063 may display potent antipsychotic actions with low EPS liability. This profile is complemented by a favourable profile in rodent models of negative symptoms and cognitive deficits of schizophrenia (companion paper). PMID:17375086

Depoortère, R; Bardin, L; Auclair, A L; Kleven, M S; Prinssen, E; Colpaert, F; Vacher, B; Newman-Tancredi, A

2007-01-01

175

Agonistic anti-ICAM-1 antibodies in scleroderma: Activation of endothelial pro-inflammatory cascades  

PubMed Central

Background Scleroderma (SSc) is a complex autoimmune disorder that can be characterised by the presence 2of circulating autoantibodies to nuclear, cytoplasmic and cell surface antigens. In particular antibodies directed against endothelial cell antigens (anti-endothelial cell antibodies; AECA) have been detected. ICAM-1 is an adhesion molecule expressed on the surface of human endothelial cells. We have previously shown that cross-linking ICAM-1 with monoclonal antibodies leads to pro-inflammatory activation of human endothelial and vascular smooth muscle cells and that cardiac transplant recipients with transplant associated vasculopathy make antibodies directed against ICAM-1. Objectives To determine whether SSc patients make antibodies directed against ICAM-1 and whether these antibodies induce pro-inflammatory activation of human endothelial cells in vitro. Methods Using recombinant ICAM-1 as capture antigen, an ELISA was developed to measure ICAM-1 antibodies in sera from SSc patients. Antibodies were purified using ICAM-1 micro-affinity columns. HUVEC were incubated with purified anti-ICAM-1 antibodies and generation of reactive oxygen species, and expression of VCAM-1 was measured. Results Significantly elevated levels of anti-ICAM-1 antibodies were detected in patients with diffuse (dSSc; 10/31 32%) or limited (lSSc; 14/36 39%) scleroderma. Cross-linking of HUVEC with purified anti-ICAM-1 antibodies caused a significant increase in ROS production (2.471 ± 0.408 fold increase above untreated after 150 min p < 0.001), and significant increase in VCAM-1 expression (10.6 ± 1.77% vs 4.12 ± 1.33%, p < 0.01). Conclusion AECA from SSc patients target specific endothelial antigens including ICAM-1, and cause pro-inflammatory activation of human endothelial cells, suggesting that they are not only a marker of disease but that they contribute to its progression. PMID:23685129

Wolf, Sabine I.; Howat, Sarah; Abraham, David J.; Pearson, Jeremy D.; Lawson, Charlotte

2013-01-01

176

A TLR2 Agonist in German Cockroach Frass Activates MMP-9 Release and is Protective Against Allergic Inflammation in Mice  

PubMed Central

The role of TLR2 in modulating experimentally induced asthma is not fully understood. We recently identified that German cockroach (GC) frass contains a TLR2 ligand allowing us to investigate the role of a TLR2 agonist in a complex real world allergen in mediating allergic airway inflammation. GC frass exposure significantly increased airway inflammation, airway hyperresponsiveness and serum IgE levels in wild type mice; however the same exposure in TLR2-deficient mice resulted in greatly exaggerated serum IgE and eosinophilia but diminished airway neutrophilia, suggesting a protective role for TLR2. Since GC frass inhalation usually induces airway neutrophilia, we queried the effect of neutrophil depletion on airway responses. Inhibition of neutrophil recruitment into the airways of naïve wild type mice prior to intratracheal inhalation of GC frass resulted in significantly increased levels of serum IgE and eosinophilia. Neutrophils are a rich source of MMP-9, and we found that MMP-9 levels were significantly increased in the airways of mice following exposure to GC frass. Importantly the levels of MMP-9 were significantly decreased in neutrophil-depleted and TLR2-deficient mice after exposure to GC frass, suggesting that TLR2 regulated MMP-9 release from neutrophils. Functionally, MMP-9-deficient mice had more acute allergic inflammation than wild type mice, suggesting that MMP-9 was protective against experimentally-induced asthma. These data suggest that TLR2 activation of neutrophils leads to release of MMP-9 which decreases allergic responses to GC frass. This suggests a protective role for TLR2 activation and MMP-9 release in the context of experimentally-induced asthma in mice. PMID:19667087

Page, Kristen; Ledford, John R.; Zhou, Ping; Wills-Karp, Marsha

2009-01-01

177

Prostanoid DP1 receptor agonist inhibits the pruritic activity in NC/Nga mice with atopic dermatitis.  

PubMed

NC/Nga mice have similar pathological and behavioral features of human atopic dermatitis and are used as a model of the disease. Under conventional circumstances, spontaneous and persistent scratching is frequent and can lead to the onset of skin inflammation. We examined the effects of several prostanoids and their related compounds on the scratching behavior of NC/Nga mice. Among them, topically applied prostaglandin D2, prostaglandin E1, prostaglandin E2 and prostaglandin I2 significantly suppressed the scratching, the order of inhibitory activities being prostaglandin D2>prostaglandin I2>prostaglandin E1=prostaglandin E2. Prostaglandin D2 metabolite, prostaglandin J2 also significantly suppressed the scratching but not so 13,14-dihydro-15-keto-prostaglandin D2, and 15-deoxy-Delta12,14-prostaglandin J2. The order of the inhibitory activities of these prostaglandin D2 metabolites depended on affinity of the prostanoid DP1 receptor but not on the DP2 receptor (chemoattractant receptor-homologous molecule expressed on T helper2 cells, CRTH2) and PPAR-gamma receptors. Likewise, topically applied arachidonic acid significantly suppressed the scratching while indomethacin enhanced it. Pretreatment of arachidonic acid increased the skin prostaglandins (prostaglandin D2, prostaglandin E2, prostaglandin F2alpha and 6-keto-prostaglandin F1alpha) contents, but indomethacin decreased the prostaglandin D2 and prostaglandin E2 contents. On the other hand, prostaglandin D2 and indomethacin had no apparent effects on histamine-induced scratching of ICR mice. These results suggested that prostaglandin D2 plays a physiological role in inhibiting pruritus of NC/Nga mice via their specific prostanoid DP1 receptors, and that prostaglandin D2 and/or a prostanoid DP1 receptor agonist may have therapeutic effects for cases of consecutive skin inflammation. PMID:15556157

Arai, Iwao; Takano, Norikazu; Hashimoto, Yuki; Futaki, Nobuko; Sugimoto, Masanori; Takahashi, Nobutaka; Inoue, Tomoyuki; Nakaike, Shiro

2004-11-28

178

Baclofen, an agonist at peripheral GABAB receptors, induces antinociception via activation of TEA-sensitive potassium channels  

PubMed Central

Background and Purpose: Central anti-nociceptive actions of baclofen involve activation of K+ channels. Here we assessed what types of K+ channel might participate in the peripheral anti-nociception induced by baclofen. Experimental approach: Nociceptive thresholds to mechanical stimulation in rat paws treated with intraplantar prostaglandin E2.(PGE2) to induce hyperalgesia were measured 3h after PGE2 injection. Other agents were also given by intraplantar injection Key results: Baclofen elicited a dose-dependent (15 - 240 ?g per paw) anti-nociceptive effect. An intermediate dose of baclofen (60??g) did not produce antinociception in the contralateral paw, showing its peripheral site of action. The GABAB receptor antagonist saclofen (12.5 - 100 ?g per paw) antagonized, in a dose-dependent manner, peripheral antinociception induced by baclofen (60 ?g), suggesting a specific effect. This antinociceptive action of baclofen was unaffected by bicuculline, GABAA receptor antagonist (80 ?g per paw), or by (1,2,5,6 tetrahydropyridin-4-yl) methylphosphinic acid, GABAC receptor antagonist (20 ?g per paw). The peripheral antinociception induced by baclofen (60 ?g) was reversed, in a dose-dependent manner, by the voltage-dependent K+ channel blockers tetraethylammonium (7.5 - 30 ?g per paw) and 4-aminopyridine (2.5 - 10 ?g per paw). The blockers of other K+ channels, glibenclamide (160 ?g), tolbutamide (320 ?g), charybdotoxin (2 ?g), dequalinium (50 ?g) and caesium (500 ?g) had no effect. Conclusions and Implications: This study provides evidence that the peripheral antinociceptive effect of the GABAB receptor agonist baclofen results from the activation of tetraethylammonium-sensitive K+ channels. Other K+ channels appear not to be involved. PMID:17016510

Reis, G M L; Duarte, I D G

2006-01-01

179

Amplified Inhibition of Stellate Cell Activation Pathways by PPAR-?, RAR and RXR Agonists  

PubMed Central

Peroxisome proliferator activator receptors (PPAR) ligands such as 15-?12,13-prostaglandin L(2) [PJ] and all trans retinoic acid (ATRA) have been shown to inhibit the development of liver fibrosis. The role of ligands of retinoic X receptor (RXR) and its ligand, 9-cis, is less clear. The purpose of this study was to investigate the effects of combined treatment of the three ligends, PJ, ATRA and 9-cis, on key events during liver fibrosis in rat primary hepatic stellate cells (HSCs). We found that the anti-proliferative effect of the combined treatment of PJ, ATRA and 9-cis on HSCs was additive. Further experiments revealed that this inhibition was due to cell cycle arrest at the G0/G1 phase as demonstrated by FACS analysis. In addition, the combined treatment reduced cyclin D1 expression and increased p21 and p27 protein levels. Furthermore, we found that the three ligands down regulated the phosphorylation of mTOR and p70S6K. The activation of HSCs was also inhibited by the three ligands as shown by inhibition of vitamin A lipid droplets depletion from HSCs. Studies using real time PCR and western blot analysis showed marked inhibition of collagen I?1 and ?SMA by the combination of the three ligands. These findings suggest that the combined use of PJ, ATRA and 9-cis causes inhibition of cell proliferation by cell cycle arrest and down-regulation of fibrotic markers to a greater extent compared to each of the ligands alone. PMID:24098526

Reif, Shimon; Bruck, Rafael

2013-01-01

180

Actions of Agonists and Antagonists of the ghrelin/GHS-R Pathway on GH Secretion, Appetite, and cFos Activity  

PubMed Central

The stimulatory effects of ghrelin, a 28-AA acylated peptide originally isolated from stomach, on growth hormone (GH) secretion and feeding are exclusively mediated through the growth hormone secretagogue 1a receptor (GHS-R1a), the only ghrelin receptor described so far. Several GHS-R1a agonists and antagonists have been developed to treat metabolic or nutritional disorders but their mechanisms of action in the central nervous system remain poorly understood. In the present study, we compared the activity of BIM-28163, a GHS-R1a antagonist, and of several agonists, including native ghrelin and the potent synthetic agonist, BIM-28131, to modulate food intake, GH secretion, and cFos activity in arcuate nucleus (ArcN), nucleus tractus solitarius (NTS), and area postrema (AP) in wild-type and NPY-GFP mice. BIM-28131 was as effective as ghrelin in stimulating GH secretion, but more active than ghrelin in inducing feeding. It stimulated cFos activity similarly to ghrelin in the NTS and AP but was more powerful in the ArcN, suggesting that the super-agonist activity of BIM-28131 is mostly mediated in the ArcN. BIM-28163 antagonized ghrelin-induced GH secretion but not ghrelin-induced food consumption and cFos activation, rather it stimulated food intake and cFos activity without affecting GH secretion. The level of cFos activation was dependent on the region considered: BIM-28163 was as active as ghrelin in the NTS, but less active in the ArcN and AP. All compounds also induced cFos immunoreactivity in ArcN NPY neurons but BIM-28131 was the most active. In conclusion, these data demonstrate that two peptide analogs of ghrelin, BIM-28163, and BIM-28131, are powerful stimulators of appetite in mice, acting through pathways and key brain regions involved in the control of appetite that are only partially superimposable from those activated by ghrelin. A better understanding of the molecular pathways activated by these compounds could be useful in devising future therapeutic applications, such as for cachexia and anorexia. PMID:23515849

Hassouna, Rim; Labarthe, Alexandra; Zizzari, Philippe; Videau, Catherine; Culler, Michael; Epelbaum, Jacques; Tolle, Virginie

2012-01-01

181

Pyrroloquinoxaline derivatives as high-affinity and selective 5-HT(3) receptor agonists: synthesis, further structure-activity relationships, and biological studies.  

PubMed

The synthesis, pharmacological evaluation, and structure-activity relationships (SARs) of a series of novel pyrroloquinoxalines and heteroaromatic-related derivatives are described. The new pyrroloquinoxaline-related ligands were tested in rat cortex, a tissue expressing high density of 5-HT(3) receptors, and on NG108-15 cells and exhibited IC(50) values in the low nanomolar or subnanomolar range, as measured by the inhibition of [(3)H]zacopride binding. The SAR studies detailed herein delineated a number of structural features required for improving affinity. Some of the ligands were employed as "molecular yardsticks" to probe the spatial dimensions of the lipophilic pockets L1, L2, and L3 in the 5-HT(3) receptor cleft, while the 7-OH pyrroloquinoxaline analogue was designed to investigate hydrogen bonding with a putative receptor site H1 possibly interacting with the serotonin hydroxy group. The most active pyrroloquinoxaline derivatives showed subnanomolar affinity for the 5-HT(3) receptor. In functional studies ([(14)C]guanidinium accumulation test in NG108-15 hybrid cells, in vitro) most of the tested compounds showed clear-cut 5-HT(3) agonist properties, while some others were found to be partial agonists. Several heteroaromatic systems, bearing N-substituted piperazine moieties, have been explored with respect to 5-HT(3) affinity, and novel structural leads for the development of potent and selective central 5-HT(3) receptor agonists have been identified. Preliminary pharmacokinetic studies indicate that these compounds easily cross the blood-brain barrier (BBB) after systemic administration with a brain/plasma ratio between 2 and 20, unless they bear a highly hydrophilic group on the piperazine ring. None of the tested compounds showed in vivo anxiolytic-like activity, but potential analgesic-like properties have been possibly disclosed for this new class of 5-HT(3) receptor agonists. PMID:10543880

Campiani, G; Morelli, E; Gemma, S; Nacci, V; Butini, S; Hamon, M; Novellino, E; Greco, G; Cagnotto, A; Goegan, M; Cervo, L; Dalla Valle, F; Fracasso, C; Caccia, S; Mennini, T

1999-10-21

182

Structural Basis for Iloprost as a Dual Peroxisome Proliferator-activated Receptor [alpha/delta] Agonist  

SciTech Connect

Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural and functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.

Jin, Lihua; Lin, Shengchen; Rong, Hui; Zheng, Songyang; Jin, Shikan; Wang, Rui; Li, Yong (Pitt); (Xiamen)

2012-03-15

183

Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration  

SciTech Connect

Mitochondrial impairment is increasingly implicated in the etiology of toxicity caused by some thiazolidinediones, fibrates, and statins. We examined the effects of members of these drug classes on respiration of isolated rat liver mitochondria using a phosphorescent oxygen sensitive probe and on the activity of individual oxidative phosphorylation (OXPHOS) complexes using a recently developed immunocapture technique. Of the six thiazolidinediones examined, ciglitazone, troglitazone, and darglitazone potently disrupted mitochondrial respiration. In accord with these data, ciglitazone and troglitazone were also potent inhibitors of Complexes II + III, IV, and V, while darglitazone predominantly inhibited Complex IV. Of the six statins evaluated, lovastatin, simvastatin, and cerivastatin impaired mitochondrial respiration the most, with simvastatin and lovastatin impairing multiple OXPHOS Complexes. Within the class of fibrates, gemfibrozil more potently impaired respiration than fenofibrate, clofibrate, or ciprofibrate. Gemfibrozil only modestly inhibited Complex I, fenofibrate inhibited Complexes I, II + III, and V, and clofibrate inhibited Complex V. Our findings with the two complementary methods indicate that (1) some members of each class impair mitochondrial respiration, whereas others have little or no effect, and (2) the rank order of mitochondrial impairment accords with clinical adverse events observed with these drugs. Since the statins are frequently co-prescribed with the fibrates or thiazolidinediones, various combinations of these three drug classes were also analyzed for their mitochondrial effects. In several cases, the combination additively uncoupled or inhibited respiration, suggesting that some combinations are more likely to yield clinically relevant drug-induced mitochondrial side effects than others.

Nadanaciva, Sashi [MitoSciences, Inc., 1850 Millrace Drive, Eugene, OR 97403 (United States); Dykens, James A. [Drug Safety Research and Development, Pfizer, Inc., 10646 Science Center Drive, San Diego, CA 92121 (United States); Bernal, Autumn; Capaldi, Roderick A. [MitoSciences, Inc., 1850 Millrace Drive, Eugene, OR 97403 (United States); Will, Yvonne [Drug Safety Research and Development, Pfizer, Inc., 10646 Science Center Drive, San Diego, CA 92121 (United States)], E-mail: Yvonne.will@pfizer.com

2007-09-15

184

Structure-activity relationship-guided development of retinoic acid receptor-related orphan receptor gamma (ROR?)-selective inverse agonists with a phenanthridin-6(5H)-one skeleton from a liver X receptor ligand.  

PubMed

Retinoic acid receptor-related orphan receptors (RORs), which belong to the nuclear receptor superfamily, regulate many physiological processes, including hepatic gluconeogenesis, lipid metabolism, immune function and circadian rhythm. Since RORs resemble liver X receptors (LXRs) in the fold structure of their ligand-binding domains, we speculated that ROR-mediated transcription might be modulated by LXR ligands, in line with the multi-template hypothesis. Therefore, we screened our LXR ligand library for compounds with ROR ligand activity and identified a novel ROR ligand with a phenanthridin-6(5H)-one skeleton. Structure-activity relationship studies aimed at separating ROR inverse agonistic activity from LXR-agonistic activity enabled us to develop a series of ROR inverse agonists based on the phenanthridin-6(5H)-one skeleton, including a ROR?-selective inverse agonist. PMID:24702856

Nishiyama, Yuko; Nakamura, Masahiko; Misawa, Takashi; Nakagomi, Madoka; Makishima, Makoto; Ishikawa, Minoru; Hashimoto, Yuichi

2014-05-01

185

A robotic MCF-7:WS8 cell proliferation assay to detect agonist and antagonist estrogenic activity.  

PubMed

Endocrine-disrupting chemicals with estrogenic activity (EA) or anti-EA (AEA) have been extensively reported to possibly have many adverse health effects. We have developed robotized assays using MCF-7:WS8 cell proliferation (or suppression) to detect EA (or AEA) of 78 test substances supplied by the Interagency Coordinating Committee on the Validation of Alternative Methods and the National Toxicology Program's Interagency Center for the Evaluation of Alternative Toxicological Methods for validation studies. We also assayed ICI 182,780, a strong estrogen antagonist. Chemicals to be assayed were initially examined for solubility and volatility to determine optimal assay conditions. For both EA and AEA determinations, a Range-Finder assay was conducted to determine the concentration range for testing, followed by a Comprehensive assay. Test substances with potentially positive results from an EA Comprehensive assay were subjected to an EA Confirmation assay that evaluated the ability of ICI 182,780 to reverse chemically induced MCF-7 cell proliferation. The AEA assays examined the ability of chemicals to decrease MCF-7 cell proliferation induced by nonsaturating concentrations of 17?-estradiol (E2), relative to ICI or raloxifene, also a strong estrogen antagonist. To be classified as having AEA, a saturating concentration of E2 had to significantly reverse the decrease in cell proliferation produced by the test substance in nonsaturating E2. We conclude that our robotized MCF-7 EA and AEA assays have accuracy, sensitivity, and specificity values at least equivalent to validated test methods accepted by the U.S. Environmental Protection Agency and the Organisation for Economic Co-operation and Development. PMID:24213142

Yang, Chun Z; Casey, Warren; Stoner, Matthew A; Kollessery, Gayathri J; Wong, Amy W; Bittner, George D

2014-02-01

186

Effects of aging on agonist-activated sup 86 Rb efflux in arteries of Fischer 344 rats  

SciTech Connect

Segments of thoracic aorta (DTA), tail artery (TA), and mesenteric artery branches (MAB) were obtained from male Fischer 344 rats at ages of 1, 2, 6, 12, 24, and 30 mo and were used to determine the effects of aging on agonist-activated {sup 86}Rb (and {sup 42}K) efflux. At all three arterial sites, basal efflux decreased during development (1-6 mo), but no further changes were observed with aging (6-30 mo). The initial efflux response to 10 microM norepinephrine (NE) in the presence of 1 microM propranolol exhibited either no change (DTA) or an increase (TA and MAB) during development (1-6 mo), but all three sites showed a large decrease during aging (6-30 mo). Changes in the steady-state response to NE paralleled changes in the basal efflux at all ages and arterial sites. The initial efflux response to 75 mM K+-physiological salt solution (PSS) for the DTA in the presence of 1 microM phentolamine and 1 microM propranolol decreased during development followed by an increase during aging, whereas for the TA and MAB, there were no significant changes with age. The steady-state efflux response to K+ decreased during development at all three sites but was increased only for the DTA during aging. The steady-state efflux response to K+ was not altered for the TA and MAB during aging. Efflux responses using {sup 42}K were qualitatively similar, but rate constants were quantitatively larger than those with {sup 86}Rb at all three arterial sites and at all ages.

Cox, R.H.; Tulenko, T.N. (Univ. of Pennsylvania, Philadelphia (USA))

1989-08-01

187

Partial agonists for ?4?2 nicotinic receptors stimulate dopaminergic neuron firing with relatively enhanced maximal effects  

PubMed Central

BACKGROUND AND PURPOSE Partial agonists selective for ?4?2 nicotinic ACh receptors have been developed for smoking cessation as they induce weak activation of native ?4?2* receptors and inhibit effect of nicotine. However, it is unclear whether at brain functions there is an existence of receptor reserve that allows weak receptor activation to induce maximum physiological effects. We assessed the extent of ?4?2 partial agonist-induced increase of firing rate in dopaminergic neurons and evaluated the influence of receptor reserve. EXPERIMENTAL APPROACH The relative maximal effects and potencies of six nicotinic agonists were assessed on recombinant human ?4?2 and ?7 receptors expressed in mammalian cell lines by measuring calcium influx. Agonist-induced increase of the spontaneous firing rate of dopaminergic neurons was recorded using microelectrodes in the ventral tegmental area of rat brain slices. KEY RESULTS All ?4?2 partial and full agonists increased the firing rate concentration-dependently. Their sensitivity to subtype-selective antagonists showed predominant activation of native ?4?2* receptors. However, partial agonists with relative maximal effects as low as 33% on ?4?2 receptors maximally increased the firing rate and induced additional depolarization block of firing, demonstrating that partial activation of receptors caused the maximum increase in firing rate in the presence of a receptor reserve. CONCLUSIONS AND IMPLICATIONS Partial ?4?2 agonists induced relatively enhanced effects on the firing rate of dopaminergic neurons, and the effect was mainly attributed to the existence of native ?4?2* receptor reserve. The results have implications in the understanding of physiological effects and therapeutic efficacies of ?4?2 partial agonists. PMID:21838750

Chen, Ying; Broad, Lisa M; Phillips, Keith G; Zwart, Ruud

2012-01-01

188

Benzofuran Derivatives as Potent, Orally Active S1P1 Receptor Agonists: A Preclinical Lead Molecule for MS  

PubMed Central

We have discovered novel benzofuran-based S1P1 agonists with excellent in vitro potency and selectivity. 1-((4-(5-Benzylbenzofuran-2-yl)-3-fluorophenyl)methyl) azetidine-3-carboxylic acid (18) is a potent S1P1 agonist with >1000× selectivity over S1P3. It demonstrated a good in vitro ADME profile and excellent oral bioavailability across species. Dosed orally at 0.3 mg/kg, 18 significantly reduced blood lymphocyte counts 24 h postdose and demonstrated efficacy in a mouse EAE model of relapsing MS. PMID:24900286

2010-01-01

189

Pharmacological evidence of bradykinin regeneration from extended sequences that behave as peptidase–activated B2 receptor agonists  

PubMed Central

While bradykinin (BK) is known to be degraded by angiotensin converting enzyme (ACE), we have recently discovered that Met-Lys-BK-Ser-Ser is paradoxically activated by ACE. We designed and evaluated additional “prodrug” peptides extended around the BK sequence as potential ligands that could be locally activated by vascular or blood plasma peptidases. BK regeneration was estimated using the contractility of the human umbilical vein as model of vascular functions mediated by endogenous B2 receptors (B2Rs) and the endocytosis of the fusion protein B2R-green fluorescent protein (B2R-GFP) expressed in Human Embryonic Kidney 293 cells. Of three BK sequences extended by a C-terminal dipeptide, BK-His-Leu had the most desirable profile, exhibiting little direct affinity for the receptor but a significant one for ACE (as shown by competition of [3H]BK binding to B2R-GFP or of [3H]enalaprilat to recombinant ACE, respectively). The potency of the contractile effect of this analog on the vein was reduced 18-fold by the ACE inhibitor enalaprilat, pharmacologically evidencing BK regeneration in situ. BK-Arg, a potential substrate of arginine carboxypeptidases, had a low affinity for B2Rs and its potency as a contractile agent was reduced 15-fold by tissue treatment with an inhibitor of these enzymes, Plummer’s inhibitor. B2R-GFP internalization in response to 100 nM of the extended peptides recapitulated these findings, as enalaprilat selectively inhibited the effect of BK-His-Leu and Plummer’s inhibitor, that of BK-Arg. The two peptidase inhibitors did not affect BK-induced effects in either assay. The novel C-terminally extended BKs had no or very little affinity for the kinin B1 receptor (competition of [3H]Lys-des-Arg9-BK binding). The feasibility of peptidase-activated B2R agonists is illustrated by C-terminal extensions of the BK sequence. PMID:24639651

Charest-Morin, Xavier; Roy, Caroline; Fortin, Émile-Jacques; Bouthillier, Johanne; Marceau, François

2014-01-01

190

Euglycemic and hypolipidemic activity of PAT5A: a unique thiazolidinedione with weak peroxisome proliferator activated receptor gamma activity.  

PubMed

The euglycemic and hypolipidemic activities of PAT5A, a novel pyridine analog of thiazolidinedione, have been evaluated in different animal models. Administration of PAT5A to db/db mice resulted in dose-dependent decreases in plasma glucose, triglyceride, and insulin levels, and an improved glucose tolerance. The glucose-lowering activity of PAT5A was better than that of troglitazone and comparable to that of rosiglitazone. In addition, PAT5A showed better lipid-lowering activity than troglitazone or rosiglitazone. A similar profile was seen in ob/ob mice. In high-fat-fed Sprague Dawley rats, PAT5A treatment reduced plasma triglyceride and total cholesterol levels. An in vitro peroxisome proliferator activated receptor gamma (PPARgamma) transactivation assay in HEK-293 cells showed poor transactivation for PAT5A compared with rosiglitazone. PAT5A did not show any PPARalpha- or PPARdelta-activating properties. Ex vivo study in db/db mice treated with PAT5A showed decreased activity of liver glucose 6-phosphatase, a key enzyme in gluconeogenesis. A 28-day probe toxicity study in Wistar rats did not show any treatment-related alterations in hematologic and biochemical parameters, nor any macroscopic and microscopic changes in the vital organs, whereas rosiglitazone treatment increased liver and heart weights. Our results indicate that PAT5A is a potent insulin sensitizer and hypolipidemic compound with a weak PPARgamma activation potential. Both in vivo and in vitro results suggest that PAT5A improves glucose kinetics and lipid levels through mechanisms not related to PPAR activation. PMID:11092504

Vikramadithyan, R K; Chakrabarti, R; Misra, P; Premkumar, M; Kumar, S K; Rao, C S; Ghosh, A; Reddy, K N; Uma, C; Rajagopalan, R

2000-11-01

191

CANNABINOID RECEPTOR AGONISTS UPREGULATE AND ENHANCE SEROTONIN 2A (5-HT2A) RECEPTOR ACTIVITY VIA ERK1/2 SIGNALING  

PubMed Central

Recent behavioral studies suggest that non-selective agonists of cannabinoid receptors may regulate serotonin 2A (5-HT2A) receptor neurotransmission. Two cannabinoids receptors are found in brain, CB1 and CB2 receptors, but the molecular mechanism by which cannabinoid receptors would regulate 5-HT2A receptor neurotransmission remains unknown. Interestingly, we have recently found that certain cannabinoid receptor agonists can specifically upregulate 5-HT2A receptors. Here, we present experimental evidence that rats treated with a non-selective cannabinoid receptor agonist (CP 55,940, 50?g/kg, 7 days) showed increases in 5-HT2A receptor protein levels, 5-HT2A receptor mRNA levels, and 5-HT2A receptor-mediated phospholipase C Beta (PLC?) activity in prefrontal cortex (PFCx). Similar effects were found in neuronal cultured cells treated with CP 55,940 but these effects were prevented by selective CB2, but not selective CB1, receptor antagonists. CB2 receptors couple to the extracellular kinase (ERK) signaling pathway by G?i/o class of G-proteins. Noteworthy, GP 1a (selective CB2 receptor agonist) produced a strong upregulation of 5-HT2A receptor mRNA and protein, an effect that was prevented by selective CB2 receptor antagonists and by an ERK1/2 inhibitor, PD 198306. In summary, our results identified a strong cannabinoid-induced upregulation of 5-HT2A receptor signaling in rat PFCx. Our cultured cell studies suggest that selective CB2 receptor agonists upregulate 5-HT2A receptor signaling by activation of the ERK1/2 signaling pathway. Activity of cortical 5-HT2A receptors has been associated with several physiological functions and neuropsychiatric disorders such as stress response, anxiety & depression and schizophrenia. Therefore, these results might provide a molecular mechanism by which activation of cannabinoid receptors might be relevant to the pathophysiology of some cognitive and mood disorders in humans. PMID:23151877

Franklin, Jade M.; Carrasco, Gonzalo A.

2012-01-01

192

Histamine H3 receptor agonists.  

PubMed

The SAR of H3 ligands has been difficult to evaluate because of species differences, multiple isoforms and constitutive activity, among other complicating factors. A review is given of the sometimes-conflicting affinity, activity and efficacy data of H3 agonists that has been described in literature to date. PMID:15544556

De Esch, I J P; Belzar, K J

2004-11-01

193

Kappa Opioid Receptor Agonist and Brain Ischemia  

PubMed Central

Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

2014-01-01

194

Enhancement of antitumor effect using dendritic cells activated with natural killer cells in the presence of Toll-like receptor agonist  

PubMed Central

Dendritic cells (DCs) play a role in natural killer (NK) cell activation, while NK cells are also able to activate and mature DCs. Toll-like receptors (TLRs) on the surface of DCs and NK cells induce the maturation and activation of these cells when engaged with their cognate ligand. We investigated to generate potent DCs by maturation with NK cells in the presence of TLR agonist in vitro and tested the efficacy of these DC vaccinations in mouse colon cancer model. The optimal ratios of DCs versus NK cells were 1:1 to 1:2. Immature DCs were mature with NK cells in the presence of lipopolysaccharide, which is TLR4 agonist, and further addition of IL-2 induced phenotypically and functionally mature bone marrow-derived DCs. These potent DCs exhibited not only high expression of several costimulatory molecules and high production of IL-12p40 and IL-12p70, but also high allogeneic T cells stimulatory capacity, and the induction of the high activities to generate tumor-specific CTLs. Consistently, vaccination with these DCs efficiently inhibited CT-26 tumor growth in mouse colon cancer model when compared to other vaccination strategies. Interestingly, combination therapy of these DC-based vaccines and with low-dose cyclophosphamide showed dramatic inhibition effects of tumor growth. These results suggest that the DCs maturated with NK cells in the presence of TLR agonist are potent inducer of antitumor immune responses in mouse model and may provide a new source of DC-based vaccines for the development of immunotherapy against colon cancer. PMID:20386085

Pham, Thanh Nhan Nguyen; Hong, Cheol Yi; Min, Jung-Joon; Rhee, Joon-Haeng; Nguyen, Truc-Anh Thi; Park, Byoung Chul; Yang, Deok-Hwan; Young-Kyu Park; Kim, Hyeong-Rok; Chung, Ik-Joo; Kim, Hyeoung-Joon

2010-01-01

195

Estrogen receptor ? L543A,L544A mutation changes antagonists to agonists, correlating with the ligand binding domain dimerization associated with DNA binding activity.  

PubMed

A ligand-dependent nuclear transcription factor, ER? has two transactivating functional domains (AF), AF-1 and AF-2. AF-1 is localized in the N-terminal region, and AF-2 is distributed in the C-terminal ligand-binding domain (LBD) of the ER? protein. Helix 12 (H12) in the LBD is a component of the AF-2, and the configuration of H12 is ligand-inducible to an active or inactive form. We demonstrated previously that the ER? mutant (AF2ER) possessing L543A,L544A mutations in H12 disrupts AF-2 function and reverses antagonists such as fulvestrant/ICI182780 (ICI) or 4-hydoxytamoxifen (OHT) into agonists in the AF2ER knock-in mouse. Our previous in vitro studies suggested that the mode of AF2ER activation is similar to the partial agonist activity of OHT for WT-ER?. However, it is still unclear how antagonists activate ER?. To understand the molecular mechanism of antagonist reversal activity, we analyzed the correlation between the ICI-dependent estrogen-responsive element-mediated transcription activity of AF2ER and AF2ER-LBD dimerization activity. We report here that ICI-dependent AF2ER activation correlated with the activity of AF2ER-LBD homodimerization. Prevention of dimerization impaired the ICI-dependent ERE binding and transcription activity of AF2ER. The dislocation of H12 caused ICI-dependent LBD homodimerization involving the F-domain, the adjoining region of H12. Furthermore, F-domain truncation also strongly depressed the dimerization of WT-ER?-LBD with antagonists but not with E2. AF2ER activation levels with ICI, OHT, and raloxifene were parallel with the degree of AF2ER-LBD homodimerization, supporting a mechanism that antagonist-dependent LBD homodimerization involving the F-domain results in antagonist reversal activity of H12-mutated ER?. PMID:23733188

Arao, Yukitomo; Hamilton, Katherine J; Coons, Laurel A; Korach, Kenneth S

2013-07-19

196

Estrogen Receptor ? L543A,L544A Mutation Changes Antagonists to Agonists, Correlating with the Ligand Binding Domain Dimerization Associated with DNA Binding Activity*  

PubMed Central

A ligand-dependent nuclear transcription factor, ER? has two transactivating functional domains (AF), AF-1 and AF-2. AF-1 is localized in the N-terminal region, and AF-2 is distributed in the C-terminal ligand-binding domain (LBD) of the ER? protein. Helix 12 (H12) in the LBD is a component of the AF-2, and the configuration of H12 is ligand-inducible to an active or inactive form. We demonstrated previously that the ER? mutant (AF2ER) possessing L543A,L544A mutations in H12 disrupts AF-2 function and reverses antagonists such as fulvestrant/ICI182780 (ICI) or 4-hydoxytamoxifen (OHT) into agonists in the AF2ER knock-in mouse. Our previous in vitro studies suggested that the mode of AF2ER activation is similar to the partial agonist activity of OHT for WT-ER?. However, it is still unclear how antagonists activate ER?. To understand the molecular mechanism of antagonist reversal activity, we analyzed the correlation between the ICI-dependent estrogen-responsive element-mediated transcription activity of AF2ER and AF2ER-LBD dimerization activity. We report here that ICI-dependent AF2ER activation correlated with the activity of AF2ER-LBD homodimerization. Prevention of dimerization impaired the ICI-dependent ERE binding and transcription activity of AF2ER. The dislocation of H12 caused ICI-dependent LBD homodimerization involving the F-domain, the adjoining region of H12. Furthermore, F-domain truncation also strongly depressed the dimerization of WT-ER?-LBD with antagonists but not with E2. AF2ER activation levels with ICI, OHT, and raloxifene were parallel with the degree of AF2ER-LBD homodimerization, supporting a mechanism that antagonist-dependent LBD homodimerization involving the F-domain results in antagonist reversal activity of H12-mutated ER?. PMID:23733188

Arao, Yukitomo; Hamilton, Katherine J.; Coons, Laurel A.; Korach, Kenneth S.

2013-01-01

197

Combined Use of the Adenosine A 2A Antagonist KW6002 with l DOPA or with Selective D1 or D2 Dopamine Agonists Increases Antiparkinsonian Activity but Not Dyskinesia in MPTP-Treated Monkeys  

Microsoft Academic Search

The novel selective adenosine A2A receptor antagonist KW-6002 improves motor disability in MPTP-treated parkinsonian marmosets without provoking dyskinesia. In this study we have investigated whether KW-6002 in combination with l-DOPA or selective D1 or D2 dopamine receptor agonists enhances antiparkinsonian activity in MPTP-treated common marmosets. Combination of KW-6002 with the selective dopamine D2 receptor agonist quinpirole or the D1 receptor

Tomoyuki Kanda; Michael J. Jackson; Lance A. Smith; Ronald K. B. Pearce; Joji Nakamura; Hiroshi Kase; Yoshihisa Kuwana; Peter Jenner

2000-01-01

198

Comparative effects of ? 2 -adrenoceptor agonists on intracranial self-stimulation, Sidman avoidance, and motor activity in rats  

Microsoft Academic Search

The effects of ß-adrenoceptor agonists were compared in various operant behavioral tasks, particularly intracranial self-stimulation (ICSS). Clenbuterol, salbutamol, and terbutaline all reduced responding by rats that lever-pressed for low stimulation intensities. The effects of clenbuterol in this test were completely reversed by propranolol, and those of salbutamol were partly reversed. Intermediate doses of clenbuterol and salbutamol slowed the initiation of

Jeffrey M. Liebman; Nancy R. Hall; James Prowse; Susan Gerhardt; Linda Noreika; Howard M. Fenton

1984-01-01

199

Local Administration of Serotonin Agonists Blocks Light-Induced Phase Advances of the Circadian Activity Rhythm in the Hamster  

Microsoft Academic Search

Circadian rhythms in mammals are synchronized to environmental light-dark cycles through a direct retinal projection to the suprachiasmatic nucleus (SCN), a circadian clock. This process is thought to be modulated by other afferents to the SCN, including a dense serotonergic projection from the midbrain raphe. Previous work from this laboratory demonstrated that a systemically administered 5-hydroxytry ptamine1A\\/7 (5-HT1A\\/7) agonist 8-hydroxy-2-(di-n-propylamino)tetralin

E. T. Weber; R. L. Gannon; M. A. Rea

1998-01-01

200

Synthesis, hypoglycaemic, hypolipidemic and PPAR? agonist activities of 5-(2-Alkyl/aryl-6-Arylimidazo[2,1-b][1,3,4]thiadiazol-5-yl)methylene-1,3-thiazolidinediones.  

PubMed

A novel series of 5-(2-alkyl/aryl-6-arylimidazo[2,1-b][1,3,4]thiadiazol-5-yl)methylene-1,3-thiazolidinediones were synthesized as possible PPAR? agonists. The structures of these target molecules were established by spectral and analytical data. All the newly synthesized compounds were screened for their in vivo hypoglycaemic and hypolipidemic activity in male Wistar rats. Further, compounds with good activity were screened for PPAR? agonist activity. Among the screened compounds, 5-{[2-Cyclohexyl-6-(4-methoxyphenyl)imidazo[2,1-b] [1,3,4]thiadiazol-5-yl]methylene}-1,3-thiazolidine-2,4-dione (3i) exhibits promising hypoglycaemic and hypolipidemic activity via potential PPAR? agonist activity. PMID:23581650

Khazi, Mohammed Iqbal A; Belavagi, Ningaraddi S; Kim, Kwang R; Gong, Young-Dae; Khazi, Imtiyaz Ahmed M

2013-08-01

201

Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy.  

PubMed

Many commonly used chemotherapeutics including oxaliplatin are associated with the development of a painful chemotherapy-induced peripheral neuropathy (CIPN). This dose-limiting complication can appear long after the completion of therapy causing a significant reduction in quality-of-life and impeding cancer treatment. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (i.e., IB-MECA) blocked the development of chemotherapy induced-neuropathic pain in models evoked by distinct agents including oxaliplatin without interfering with their anticancer activities. The mechanism(s) of action underlying these beneficial effects has yet to be explored. Our results herein demonstrate that the development of oxaliplatin-induced mechano-hypersensitivity (allodynia and hyperalgesia) in rats is associated with the hyperactivation of astrocytes, but not microglial cells, increased production of pro-inflammatory and neuroexcitatory cytokines (TNF, IL-1?), and reductions in the levels of anti-inflammatory/neuroprotective cytokines (IL-10, IL-4) in the dorsal horn of the spinal cord. These events did not require lymphocytic mobilization since oxaliplatin did not induce CD45(+)/CD3(+) T-cell infiltration into the spinal cord. A3AR agonists blocked the development of neuropathic pain with beneficial effects strongly associated with the modulation of spinal neuroinflammatory processes: attenuation of astrocytic hyperactivation, inhibition of TNF and IL-1? production, and an increase in IL-10 and IL-4. These results suggest that inhibition of an astrocyte-associated neuroinflammatory response contributes to the protective actions of A3AR signaling and continues to support the pharmacological basis for selective A3AR agonists as adjuncts to chemotherapeutic agents for the management of chronic pain. PMID:25220279

Janes, Kali; Wahlman, Carrie; Little, Joshua W; Doyle, Timothy; Tosh, Dillip K; Jacobson, Kenneth A; Salvemini, Daniela

2015-02-01

202

Purine Receptors: GPCR Structure and Agonist Design  

PubMed Central

An integrated approach to the study of drug-receptor interactions has been applied to adenosine receptors (ARs) and P2Y nucleotide receptors. This approach includes probing the receptor structure through site-directed mutagenesis and molecular modeling, in concert with altering the structure of the agonist ligands. Goals of this structural approach are to generate a testable hypothesis for location of the binding site and subsequently to enable the rational design of new agonists and antagonists. In this manner, receptor subtype selectivity has been increased, and agonists have been converted into partial agonists and antagonists. An approach to receptor engineering (neoceptors) has been explored, in which synthetic small molecule agonists (neoligands) are specifically tailored to activate only receptors in which the putative binding sites have been modified. This orthogonal approach to receptor activation, intended for eventual gene therapy, has been demonstrated for A3 and A2A ARs. PMID:15616163

Jacobson, Kenneth A.; Kim, Soo-Kyung; Costanzi, Stefano; Gao, Zhan-Guo

2012-01-01

203

Structural motifs of importance for the constitutive activity of the orphan 7TM receptor EBI2: analysis of receptor activation in the absence of an agonist.  

PubMed

The Epstein-Barr induced receptor 2 (EBI2) is a lymphocyte-expressed orphan seven transmembrane-spanning (7TM) receptor that signals constitutively through Galphai, as shown, for instance by guanosine 5'-O-(3-thio)triphosphate incorporation. Two regions of importance for the constitutive activity were identified by a systematic mutational analysis of 29 residues in EBI2. The cAMP response element-binding protein transcription factor was used as a measure of receptor activity and was correlated to the receptor surface expression. PheVI:13 (Phe257), and the neighboring CysVI:12 (Cys256), in the conserved CW/FxP motif in TM 6, acted as negative regulators as Ala substitutions at these positions increased the constitutive activity 5.7- and 2.3-fold, respectively, compared with EBI2 wild type (wt). In contrast, ArgII:20 (Arg87) in TM-2 acted as a positive regulator, as substitution to Ala, but not to Lys, decreased the constitutive activity more than 7-fold compared with wt EBI2. IleIII:03 (Ile106) is located only 4 A from ArgII:20, and a favorable electrostatic interaction with ArgII:20 was created by introduction of Glu in III:03, given that the activity increased to 4.4-fold of that wt EBI2. It is noteworthy that swapping these charges by introduction of Glu in II:20 and Arg in III:03 resulted in a 2.7-fold increase compared with wt EBI2, thereby rescuing the two signaling-deficient single mutations, which exhibited a 3.8- to 4.5-fold decrease in constitutive activity. The uncovering of these molecular mechanisms for EBI2 activation is important from a drug development point of view, in that it may facilitate the rational design and development of small-molecule inverse agonists against EBI2 of putative importance as antiviral- or immune modulatory therapy. PMID:18628402

Benned-Jensen, Tau; Rosenkilde, Mette M

2008-10-01

204

Mixed Kappa/Mu Opioid Receptor Agonists: The 6?-Naltrexamines  

PubMed Central

Ligands from the naltrexamine series have consistently demonstrated agonist activity at kappa opioid receptors (KOR), with varying activity at the mu opioid receptor (MOR). Various 6?-cinnamoylamino derivatives were made with the aim of generating ligands with a KOR agonist/MOR partial agonist profile, as ligands with this activity may be of interest as treatment agents for cocaine abuse. The ligands all displayed the desired high affinity, non-selective binding in vitro and in the functional assays were high efficacy KOR agonists with some partial agonist activity at MOR. Two of the new ligands (12a, 12b) have been evaluated in vivo, with 12a acting as a KOR agonist, and therefore somewhat similar to the previously evaluated analogues 3–6, while 12b displayed predominant MOR agonist activity. PMID:19253970

Cami-Kobeci, Gerta; Neal, Adrian P.; Bradbury, Faye A.; Purington, Lauren C.; Aceto, Mario D.; Harris, Louis S.; Lewis, John W.; Traynor, John R.; Husbands, Stephen M.

2011-01-01

205

Evaluation of a Novel Calcium Channel Agonist for Therapeutic Potential in Lambert–Eaton Myasthenic Syndrome  

PubMed Central

We developed a novel calcium (Ca2+) channel agonist that is selective for N- and P/Q-type Ca2+ channels, which are the Ca2+ channels that regulate transmitter release at most synapses. We have shown that this new molecule (GV-58) slows the deactivation of channels, resulting in a large increase in presynaptic Ca2+ entry during activity. GV-58 was developed as a modification of (R)-roscovitine, which was previously shown to be a Ca2+ channel agonist, in addition to its known cyclin-dependent kinase activity. In comparison with the parent molecule, (R)-roscovitine, GV-58 has a ?20-fold less potent cyclin-dependent kinase antagonist effect, a ?3- to 4-fold more potent Ca2+ channel agonist effect, and ?4-fold higher efficacy as a Ca2+ channel agonist. We have further evaluated GV-58 in a passive transfer mouse model of Lambert–Eaton myasthenic syndrome and have shown that weakened Lambert–Eaton myasthenic syndrome-model neuromuscular synapses are significantly strengthened following exposure to GV-58. This new Ca2+ channel agonist has potential as a lead compound in the development of new therapeutic approaches to a variety of disorders that result in neuromuscular weakness. PMID:23785168

Tarr, Tyler B.; Malick, Waqas; Liang, Mary; Valdomir, Guillermo; Frasso, Michael; Lacomis, David; Reddel, Stephen W.; Garcia-Ocano, Adolfo

2013-01-01

206

Active compensation in combination with weak passive shielding for magnetocardiographic measurements  

NASA Astrophysics Data System (ADS)

We studied different schemes of noise reduction using active compensation of environmental magnetic field noises in order to develop a high-temperature-superconductor (HTS) magnetometer system for the measurement of magnetocardiographic signals. The active compensation was combined with weak passive shielding of about 20 dB by the use of a magnetically shielded room (MSR) having a single layer of surrounding ?-metal. A novel method using a normal detection coil and compensation coils that were wound around the walls of the MSR to enable magnetic coupling was examined. Effective suppression of environmental field noises of more than 20 dB at 0.5-10 Hz and 10 dB at 10-100 Hz, covering the low-frequency range of biological signals, was obtained. In an alternative method using a reference HTS magnetometer in the MSR for noise detection, a compensation coil was set in the MSR and served as a feedback coil in operating the magnetometer. Residual field noises that were limited by the intrinsic noise of the reference magnetometer were obtained. Using such active compensation and weak passive shielding, measurement of magnetocardiogram was possible with a sensing HTS magnetometer in a wide frequency range of 0.5-100 Hz.

Kuriki, S.; Hayashi, A.; Washio, T.; Fujita, M.

2002-02-01

207

PPAR? Agonist Beyond Glucose Lowering Effect  

PubMed Central

The nuclear hormone receptor PPAR? is activated by several agonists, including members of the thiazolidinedione group of insulin sensitizers. Pleiotropic beneficial effects of these agonists, independent of their blood glucose-lowering effects, have recently been demonstrated in the vasculature. PPAR? agonists have been shown to lower blood pressure in animals and humans, perhaps by suppressing the renin-angiotensin (Ang)-aldosterone system (RAAS), including the inhibition of Ang II type 1 receptor expression, Ang-II-mediated signaling pathways, and Ang-II-induced adrenal aldosterone synthesis/secretion. PPAR? agonists also inhibit the progression of atherosclerosis in animals and humans, possibly through a pathway involving the suppression of RAAS and the thromboxane A2 system, as well as the protection of endothelial function. Moreover, PPAR?-agonist-mediated renal protection, especially the reduction of albuminuria, has been observed in diabetic nephropathy, including animal models of the disease, and in non-diabetic renal dysfunction. The renal protective activities may reflect, at least in part, the ability of PPAR? agonists to lower blood pressure, protect endothelial function, and cause vasodilation of the glomerular efferent arterioles. Additionally, anti-neoplastic effects of PPAR? agonists have recently been described. Based on the multiple therapeutic actions of PPAR? agonists, they will no doubt lead to novel approaches in the treatment of lifestyle-related and other diseases. PMID:21437157

Uruno, Akira; Kudo, Masataka; Matsuda, Ken; Yang, Chul Woo; Ito, Sadayoshi

2011-01-01

208

In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR){alpha} and PPAR{gamma} and quantitative analysis of in vivo induction pathway  

SciTech Connect

Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors and key regulators of lipid metabolism and cell differentiation. However, there have been few studies reporting on a variety of environmental chemicals, which may interact with these receptors. In the present study, we characterized mouse PPAR{alpha} and PPAR{gamma} agonistic activities of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 11 acid amides, 7 triazines, 8 ureas and 44 others) by in vitro reporter gene assays using CV-1 monkey kidney cells. Three of the 200 pesticides, diclofop-methyl, pyrethrins and imazalil, which have different chemical structures, showed PPAR{alpha}-mediated transcriptional activities in a dose-dependent manner. On the other hand, none of the 200 pesticides showed PPAR{gamma} agonistic activity at concentrations {<=} 10{sup -5} M. To investigate the in vivo effects of diclofop-methyl, pyrethrins and imazalil, we examined the gene expression of PPAR{alpha}-inducible cytochrome P450 4As (CYP4As) in the liver of female mice intraperitoneally injected with these compounds ({<=} 300 mg/kg). RT-PCR revealed significantly high induction levels of CYP4A10 and CYP4A14 mRNAs in diclofop-methyl- and pyrethrins-treated mice, whereas imazalil induced almost no gene expressions of CYP4As. In particular, diclofop-methyl induced as high levels of CYP4A mRNAs as WY-14643, a potent PPAR{alpha} agonist. Thus, most of the 200 pesticides tested do not activate PPAR{alpha} or PPAR{gamma} in in vitro assays, but only diclofop-methyl and pyrethrins induce PPAR{alpha} agonistic activity in vivo as well as in vitro.

Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Matsuda, Tadashi [Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan); Kobayashi, Satoshi [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Takahashi, Tetsuo [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Kojima, Hiroyuki [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan)]. E-mail: kojima@iph.pref.hokkaido.jp

2006-12-15

209

Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor ? agonist improve vascular function and decrease renal injury in hypertensive obese rats  

PubMed Central

Cardiometabolic syndrome occurs with obesity and consists of pathophysiological factors that increase the risk for cardiovascular events. Soluble epoxide hydrolase inhibition (sEHi) is a novel therapeutic approach that exerts renal and cardiovascular protection. Although sEHi as a therapeutic approach is promising, it could be more effective for the treatment of cardiometabolic syndrome when combined with peroxisome proliferator activated receptor ? (PPAR?) agonists. We hypothesized that the PPAR? agonist, rosiglitazone in combination with a sEHi (tAUCB) will provide synergistic actions to decrease blood pressure, improve vascular function, decrease inflammation, and prevent renal damage in spontaneously hypertensive obese rats (SHROB). SHROB were treated with rosiglitazone, tAUCB or the combination of tAUCB and rosiglitazone for four-weeks and compared with spontaneously hypertensive (SHR) and Wistar–Kyoto (WKY) rats. Blood pressure increased in SHROB (164 ±7 mmHg) and decreased 10 mmHg when treated with rosiglitazone, tAUCB, or tAUCB and rosiglitazone. Mesenteric artery dilation to the KATP channel opener pinacidil was attenuated in SHROB (EMax = 77 ±7%), compared with WKY (EMax = 115 ±19) and SHR (EMax = 93 ±12%). Vasodilation to pinacidil was improved by rosiglitazone (EMax = 92 ±14%) but not tAUCB. Renal macrophage infiltration increased in SHROB and significantly decreased with rosiglitazone or tAUCB and rosiglitazone treatment. Albuminuria was increased in SHROB (90 ±20 mg/d) and was significantly decreased by the combination of tAUCB and rosiglitazone (37 ±9 mg/d). Glomerular injury in SHROB was also significantly decreased by tAUCB and rosiglitazone. These results indicate that even though sEHi or PPAR? agonist have benefits when used individually, the combination is more beneficial for the multidisease features in cardiometabolic syndrome. PMID:23354399

Imig, John D; Walsh, Katie A; Khan, Md Abdul Hye; Nagasawa, Tasuku; Cherian-Shaw, Mary; Shaw, Sean M; Hammock, Bruce D

2013-01-01

210

Neuroprotective Potential of Peroxisome Proliferator Activated Receptor-? Agonist in Cognitive Impairment in Parkinson's Disease: Behavioral, Biochemical, and PBPK Profile  

PubMed Central

Parkinson's disease (PD) is a common neurodegenerative disorder affecting 1% of the population by the age of 65 years and 4-5% of the population by the age of 85 years. PD affects functional capabilities of the patient by producing motor symptoms and nonmotor symptoms. Apart from this, it is also associated with a higher risk of cognitive impairment that may lead to memory loss, confusion, and decreased attention span. In this study, we have investigated the effect of fenofibrate, a PPAR-? agonist in cognitive impairment model in PD. Bilateral intranigral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (100?µg/1?µL/side) produced significant cognitive dysfunctions. Fenofibrate treatment at 10, 30, and 100?mg/kg for twenty-five days was found to be neuroprotective and improved cognitive impairment in MPTP-induced PD model as evident from behavioral, biochemical (MDA, GSH, TNF-?, and IL-6), immunohistochemistry (TH), and DNA fragmentation (TUNEL positive cells) studies. Further, physiologically based pharmacokinetic (PBPK) modeling study was performed using GastroPlus to characterize the kinetics of fenofibric acid in the brain. A good agreement was found between pharmacokinetic parameters obtained from the actual and simulated plasma concentration-time profiles of fenofibric acid. Results of this study suggest that PPAR-? agonist (fenofibrate) is neuroprotective in PD-induced cognitive impairment. PMID:24693279

Das, Nihar R.; Gangwal, Rahul P.; Damre, Mangesh V.; Sangamwar, Abhay T.; Sharma, Shyam S.

2014-01-01

211

Combination Therapy of an Intestine-Specific Inhibitor of Microsomal Triglyceride Transfer Protein and Peroxisome Proliferator-Activated Receptor ? Agonist in Diabetic Rat  

PubMed Central

We investigated effects on glucose and lipid metabolism in combination of JTT-130, a novel intestine-specific microsomal triglyceride transfer protein (MTP) inhibitor, and pioglitazone, peroxisome proliferator-activated receptor (PPAR) ? agonist. Male Zucker diabetic fatty rats were divided into 4 groups: control group, JTT-130 treatment group, pioglitazone treatment group, and combination group. The Zucker diabetic fatty rats were fed a regular powdered diet with JTT-130 and/or pioglitazone as a food admixture for 6 weeks. Effects on glucose and lipid metabolism were compared mainly between JTT-130 treatment group and combination group. JTT-130 treatment showed good glycemic control, while the plasma glucose and glycated hemoglobin levels in combination group were significantly decreased as compared with those JTT-130 treatment group. The reduction in the plasma triglyceride and free fatty acid levels in combination group was higher than that in JTT-130 treatment group, and glucose utilization was significantly elevated in adipose tissues. In Zucker diabetic fatty rats, combination treatment of JTT-130 and pioglitazone showed better glycemic control and a strong hypolipidemic action with an enhancement of insulin sensitivity. Combination therapy of MTP inhibitor and PPAR? agonist might be more useful in the treatment of type 2 diabetes accompanied with obesity and insulin resistance. PMID:24772450

Sakata, Shohei; Mera, Yasuko; Kuroki, Yukiharu; Nashida, Reiko; Kakutani, Makoto; Ohta, Takeshi

2014-01-01

212

A peroxisome proliferator-activated receptor-? agonist provides neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease  

PubMed Central

Peroxisome proliferator-activated receptor (PPAR)-? and PPAR? have shown neuroprotective effects in models of Parkinson’s disease (PD). The role of the third, more ubiquitous isoform PPAR? has not been fully explored. This study investigated the role of PPAR? in PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to model the dopaminergic neurodegeneration of PD. In vitro administration of the PPAR? antagonist GSK0660 (1 ?M) increased the detrimental effect of 1-methyl-4-phenylpyridinium iodide (MPP+) on cell viability, which was reversed by co-treatment with agonist GW0742 (1 ?M). GW0742 alone did not affect MPP+ toxicity. PPAR? was expressed in the nucleus of dopaminergic neurons and in astrocytes. Striatal PPAR? levels were increased (over two-fold) immediately after MPTP treatment (30 mg/kg for 5 consecutive days) compared to saline-treated mice. PPAR? heterozygous mice were not protected against MPTP toxicity. Intra-striatal infusion of GW0742 (84 ?g/day) reduced the MPTP-induced loss of dopaminergic neurons (5036 ± 195) when compared to vehicle-infused mice (3953 ± 460). These results indicate that agonism of PPAR? provides protection against MPTP toxicity, in agreement with the effects of other PPAR agonists. PMID:23500098

Martin, H.L.; Mounsey, R.B.; Sathe, K.; Mustafa, S.; Nelson, M.C.; Evans, R.M.; Teismann, P.

2013-01-01

213

DOI: 10.1002/cmdc.201100278 Optimisation of the Anti-Trypanosoma brucei Activity of  

E-print Network

), a hit compound discovered by screening the Sigma­Aldrich Library of Pharmacologically Active Compounds), is the enantiomer of (�)-(1S,2S)- U50488 (2), which is a potent agonist of the k-opioid receptor. In contrast, (+)-(1R,2R)-U50488 (1) is a weak agonist of the k- opioid receptor.[5] Compound 1 represents

Schnaufer, Achim

214

Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup ?/?} mice by attenuating the activation of T cells and promoting their apoptosis  

SciTech Connect

Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup ?/?} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup ?/?} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-? expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ? JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ? JWH-133 suppressed inflammation and toxicity to colon by inducing T cell apoptosis. ? JWH-133 decreased mast cells, macrophages, NK cells, IFN-?{sup +} cells in the LPL. ? AM630, a cannnabinoid receptor-2 antagonist inverted the colitis defense of JWH-133. ? Cannnabinoid receptor-2 may serve as a novel therapeutic target for IBD.

Singh, Udai P.; Singh, Narendra P. [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States)] [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Singh, Balwan [National Primate Research Center, Emory University, Atlanta GA 30329 (United States)] [National Primate Research Center, Emory University, Atlanta GA 30329 (United States); Price, Robert L. [Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 (United States)] [Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Mitzi [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States)] [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Prakash S., E-mail: Prakash.Nagarkatti@uscmed.sc.edu [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States)

2012-01-15

215

The fungal T-2 toxin alters the activation of primary macrophages induced by TLR-agonists resulting in a decrease of the inflammatory response in the pig  

PubMed Central

T-2 toxin is known to be one of the most toxic trichothecene mycotoxins. Exposure to T-2 toxin induces many hematologic and immunotoxic disorders and is involved in immuno-modulation of the innate immune response. The objective of this work was to evaluate the effects of T-2 toxin on the activation of macrophages by different agonists of Toll-like receptors (TLR) using an in vitro model of primary porcine alveolar macrophages (PAM). Cytotoxic effects of T-2 toxin on PAM were first evaluated. An IC50 of 19.47?±?0.9753 nM was determined for the cytotoxicity of T-2 toxin. A working concentration of 3 nM of T-2 toxin was chosen to test the effect of T-2 toxin on TLR activation; this dose was not cytotoxic and did not induce apoptosis as demonstrated by Annexin/PI staining. A pre-exposure of macrophages to 3 nM of T-2 toxin decreased the production of inflammatory mediators (IL-1 beta, TNF-alpha, nitric oxide) in response to LPS and FSL1, TLR4 and TLR2/6 agonists respectively. The decrease of the pro-inflammatory response is associated with a decrease of TLR mRNA expression. By contrast, the activation of TLR7 by ssRNA was not modulated by T-2 toxin pre-treatment. In conclusion, our results suggest that ingestion of low concentrations of T-2 toxin affects the TLR activation by decreasing pattern recognition of pathogens and thus interferes with initiation of inflammatory immune response against bacteria and viruses. Consequently, mycotoxins could increase the susceptibility of humans and animals to infectious diseases. PMID:22530722

2012-01-01

216

Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10(-/-) mice by attenuating the activation of T cells and promoting their apoptosis.  

PubMed

Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10(-/-) mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10(-/-) mice. After JWH-133 treatment, the percentage of CD4(+) T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-? expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. PMID:22119709

Singh, Udai P; Singh, Narendra P; Singh, Balwan; Price, Robert L; Nagarkatti, Mitzi; Nagarkatti, Prakash S

2012-01-15

217

A novel PPAR{gamma} agonist, KR62776, suppresses RANKL-induced osteoclast differentiation and activity by inhibiting MAP kinase pathways  

SciTech Connect

We investigated the effects of a novel peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, KR62776, on osteoclast differentiation and function, and on the underlying signaling pathways. KR62776 markedly suppressed differentiation into osteoclasts in various osteoclast model systems, including bone marrow mononuclear (BMM) cells and a co-culture of calvarial osteoblasts and BMM cells. KR62776 suppressed the activation of tartrate-resistant acid phosphatase (TRAP) and the expression of genes associated with osteoclast differentiation, such as TRAP, dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated receptor (OSCAR). Furthermore, KR62776 reduced resorption pit formation in osteoclasts, and down-regulated genes essential for osteoclast activity, such as Src and {alpha}v{beta}3 integrin. An analysis of a signaling pathway showed that KR62776 inhibited the receptor activator of nuclear factor-{kappa}B ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK), extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor-{kappa}B (NF-{kappa}B). Together, these results demonstrate that KR62776 negatively affects osteoclast differentiation and activity by inhibiting the RANKL-induced activation of MAP kinases and NF-{kappa}B.

Park, Ju-Young [Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu (Korea, Republic of); Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Bae, Myung-Ae; Cheon, Hyae Gyeong; Kim, Sung Soo [Center for Metabolic Syndrome Therapeutics, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Hong, Jung-Min; Kim, Tae-Ho [Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu (Korea, Republic of); Choi, Je-Yong [Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu (Korea, Republic of); Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kim, Sang-Hyun [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Lim, Jiwon [Department of Oral Pathology, IHBR, School of Dentistry, Kyungpook National University, Daegu (Korea, Republic of); Choi, Chang-Hyuk [Department of Orthopaedic Surgery, School of Medicine, Catholic University of Daegu, Daegu (Korea, Republic of); Shin, Hong-In [Department of Oral Pathology, IHBR, School of Dentistry, Kyungpook National University, Daegu (Korea, Republic of); Kim, Shin-Yoon [Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu (Korea, Republic of); Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)], E-mail: syukim@knu.ac.kr; Park, Eui Kyun [Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu (Korea, Republic of); Department of Oral Pathology, IHBR, School of Dentistry, Kyungpook National University, Daegu (Korea, Republic of)], E-mail: epark@knu.ac.kr

2009-01-16

218

Effects of ATPM-ET, a novel ? agonist with partial ? activity, on physical dependence and behavior sensitization in mice  

PubMed Central

Aim: To investigate the effects of ATPM-ET [(?)-3-N-Ethylaminothiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] on physical dependence and behavioral sensitization to morphine in mice. Methods: The pharmacological profile of ATPM-ET was characterized using competitive binding and GTP?S binding assays. We then examined the antinociceptive effects of ATPM-ET in the hot plate test. Morphine dependence assay and behavioral sensitization assay were used to determine the effect of ATPM-ET on physical dependence and behavior sensitization to morphine in mice. Results: The binding assay indicated that ATPM-ET ATPM-ET exhibited a high affinity to both ?- and ?-opioid receptors with Ki values of 0.15 nmol/L and 4.7 nmol/L, respectively, indicating it was a full ?-opioid receptor agonist and a partial ?-opioid receptor agonist. In the hot plate test, ATPM-ET produced a dose-dependent antinociceptive effect, with an ED50 value of 2.68 (2.34–3.07) mg/kg. Administration of ATPM-ET (1 and 2 mg/kg, sc) prior to naloxone (3.0 mg/kg, sc) injection significantly inhibited withdrawal jumping of mice. In addition, ATPM-ET (1 and 2 mg/kg, sc) also showed a trend toward decreasing morphine withdrawal-induced weight loss. ATPM-ET (1.5 and 3 mg/kg, sc) 15 min before the morphine challenge significantly inhibited the morphine-induced behavior sensitization (P<0.05). Conclusion: ATPM-ET may have potential as a therapeutic agent for the treatment of drug abuse. PMID:21102484

Sun, Jian-feng; Wang, Yu-hua; Li, Fu-ying; Lu, Gang; Tao, Yi-min; Cheng, Yun; Chen, Jie; Xu, Xue-jun; Chi, Zhi-qiang; Neumeyer, John L; Zhang, Ao; Liu, Jing-gen

2010-01-01

219

Development of Functionally Selective, Small Molecule Agonists at Kappa Opioid Receptors*  

PubMed Central

The kappa opioid receptor (KOR) is widely expressed in the CNS and can serve as a means to modulate pain perception, stress responses, and affective reward states. Therefore, the KOR has become a prominent drug discovery target toward treating pain, depression, and drug addiction. Agonists at KOR can promote G protein coupling and ?arrestin2 recruitment as well as multiple downstream signaling pathways, including ERK1/2 MAPK activation. It has been suggested that the physiological effects of KOR activation result from different signaling cascades, with analgesia being G protein-mediated and dysphoria being mediated through ?arrestin2 recruitment. Dysphoria associated with KOR activation limits the therapeutic potential in the use of KOR agonists as analgesics; therefore, it may be beneficial to develop KOR agonists that are biased toward G protein coupling and away from ?arrestin2 recruitment. Here, we describe two classes of biased KOR agonists that potently activate G protein coupling but weakly recruit ?arrestin2. These potent and functionally selective small molecule compounds may prove to be useful tools for refining the therapeutic potential of KOR-directed signaling in vivo. PMID:24187130

Zhou, Lei; Lovell, Kimberly M.; Frankowski, Kevin J.; Slauson, Stephen R.; Phillips, Angela M.; Streicher, John M.; Stahl, Edward; Schmid, Cullen L.; Hodder, Peter; Madoux, Franck; Cameron, Michael D.; Prisinzano, Thomas E.; Aubé, Jeffrey; Bohn, Laura M.

2013-01-01

220

Manifestation of weak ferromagnetism and photocatalytic activity in bismuth ferrite nanoparticles  

SciTech Connect

Bismuth ferrite (BFO) nanoparticles were synthesized by auto-ignition technique with and without adding ignition fuel such as citric acid. The presence of citric acid in the reaction mixture yielded highly-magnetic BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite. When this composite was annealed to 650 Degree-Sign C, a single phase BFO was formed with average crystallite size of 50 nm and showed weak ferromagnetic behavior. Conversely, the phase pure BFO prepared without adding citric acid exhibited antiferromagnetism because of its larger crystallite size of around 70 nm. The visible-light driven photocatalytic activity of both the pure BFO and BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite were examined by degrading methyl orange dye. The pure BFO showed a moderate photocatalytic activity; while BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite showed enhanced activity. This could be probably due to the optimal band gap ratio between BFO and {gamma}-Fe{sub 2}O{sub 3} phases reduced the recombination of electron-hole pairs which aided in the enhancement of photocatalytic activity.

Sakar, M.; Balakumar, S. [National Center for Nanoscience and Nanotechnology, University of Madras, Chennai - 600025 (India); Saravanan, P. [Advanced Magnetics Group, Defence Metallurgical Research Laboratory, Hyderabad - 500 058 (India); Jaisankar, S. N. [Polymer Lab, Central Leather Research Laboratory, Adyar, Chennai - 600020 (India)

2013-02-05

221

Molecular Engineering of Organophosphate Hydrolysis Activity from a Weak Promiscuous Lactonase Template  

PubMed Central

Rapid evolution of enzymes provides unique molecular insights into the remarkable adaptability of proteins and helps to elucidate the relationship between amino acid sequence, structure and function. We interrogated the evolution of the phosphotriesterase from Pseudomonas diminuta (PdPTE), which hydrolyzes synthetic organophosphates with remarkable catalytic efficiency. PTE is thought to be an evolutionarily “young” enzyme and it has been postulated that it has evolved from members of the phosphotriesterase-like lactonase (PLL) family that show promiscuous organophosphate degrading activity. Starting from a weakly promiscuous PLL scaffold (Dr0930 from Deinococcus radiodurans), we designed an extremely efficient organophosphate hydrolase (OPH) with broad substrate specificity using rational and random mutagenesis in combination with in vitro activity screening. The OPH activity for seven organophosphate substrates was simultaneously enhanced by up to five orders of magnitude, achieving absolute values of catalytic efficiencies up to 106 M?1 s?1. Structural and computational analyses identified the molecular basis for the enhanced OPH activity of the engineered PLL variants and demonstrated that OPH catalysis in PdPTE and the engineered PLL differ significantly in the mode of substrate binding. PMID:23837603

Meier, Monika M; Rajendran, Chitra; Malisi, Christoph; Fox, Nicholas G; Xu, Chengfu; Schlee, Sandra; Barondeau, David P; Höcker, Birte; Sterner, Reinhard; Raushel, Frank M

2013-01-01

222

Investigation of a Bubble Detector based on Active Electrolocation of Weakly Electric Fish  

NASA Astrophysics Data System (ADS)

Weakly electric fish employ active electrolocation for navigation and object detection. They emit an electric signal with their electric organ in the tail and sense the electric field with electroreceptors that are distributed over their skin. We adopted this principle to design a bubble detector that can detect gas bubbles in a fluid or, in principle, objects with different electric conductivity than the surrounding fluid. The evaluation of the influence of electrode diameter on detecting a given bubble size showed that the signal increases with electrode diameter. Therefore it appears that this detector will be more appropriate for large sized applications such as bubble columns than small sized applications such as bubble detectors in dialysis.

Mohan, M.; Mayekar, K.; Zhou, R.; von der Emde, G.; Bousack, H.

2013-04-01

223

AMPK-Dependent Metabolic Regulation by PPAR Agonists  

PubMed Central

Comprehensive studies support the notion that the peroxisome proliferator-activated receptors, (PPARs), PPAR?, PPAR?/?, and PPAR?, regulate cell growth, morphogenesis, differentiation, and homeostasis. Agonists of each PPAR subtype exert their effects similarly or distinctly in different tissues such as liver, muscle, fat, and vessels. It is noteworthy that PPAR? or PPAR? agonists have pharmacological effects by modulating the activity of AMPK, which is a key cellular energy sensor. However, the role of AMPK in the metabolic effects of PPAR agonists has not been thoroughly focused. Moreover, AMPK activation by PPAR agonists seems to be independent of the receptor activation. This intriguing action of PPAR agonists may account in part for the mechanistic basis of the therapeutics in the treatment of metabolic disease. In this paper, the effects of PPAR agonists on metabolic functions were summarized with particular reference to their AMPK activity regulation. PMID:20814441

Lee, Woo Hyung; Kim, Sang Geon

2010-01-01

224

Antidepressant-Like Activity of YL-0919: A Novel Combined Selective Serotonin Reuptake Inhibitor and 5-HT1A Receptor Agonist  

PubMed Central

It has been suggested that drugs combining activities of selective serotonin reuptake inhibitor and 5-HT1A receptor agonist may form a novel strategy for higher therapeutic efficacy of antidepressant. The present study aimed to examine the pharmacology of YL-0919, a novel synthetic compound with combined high affinity and selectivity for serotonin transporter and 5-HT1A receptors. We performed in vitro binding and function assays and in vivo behavioral tests to assess the pharmacological properties and antidepressant-like efficacy of YL-0919. YL-0919 displayed high affinity in vitro to both 5-HT1A receptor and 5-HT transporter prepared from rat cortical tissue. It exerted an inhibitory effect on forskolin-stimulated cAMP formation and potently inhibited 5-HT uptake in both rat cortical synaptosomes and recombinant cells. After acute p.o. administration, very low doses of YL-0919 reduced the immobility time in tail suspension test and forced swimming test in mice and rats, with no significant effect on locomotor activity in open field test. Furthermore, WAY-100635 (a selective 5-HT1A receptor antagonist, 0.3 mg/kg) significantly blocked the effect of YL-0919 in tail suspension test and forced swimming test. In addition, chronic YL-0919 treatment significantly reversed the depressive-like behaviors in chronically stressed rats. These findings suggest that YL-0919, a novel structure compound, exerts dual effect on the serotonergic system, as both 5-HT1A receptor agonist and 5-HT uptake blocker, showing remarkable antidepressant effects in animal models. Therefore, YL-0919 may be used as a new option for the treatment of major depressive disorder. PMID:24367588

Zhang, Li-ming; Xue, Rui; Xu, Xiao-dan; Zhao, Nan; Qiu, Zhi-kun; Wang, Xian-wang; Zhang, You-zhi; Yang, Ri-fang; Li, Yun-feng

2013-01-01

225

Epoxyeicosatrienoic acid agonist regulates human mesenchymal stem cell-derived adipocytes through activation of HO-1-pAKT signaling and a decrease in PPAR?.  

PubMed

Human mesenchymal stem cells (MSCs) expressed substantial levels of CYP2J2, a major CYP450 involved in epoxyeicosatrienoic acid (EET) formation. MSCs synthesized significant levels of EETs (65.8?±?5.8?pg/mg protein) and dihydroxyeicosatrienoic acids (DHETs) (15.83?±?1.62?pg/mg protein), suggesting the presence of soluble epoxide hydrolase (sEH). The addition of an sEH inhibitor to MSC culture decreased adipogenesis. EETs decreased MSC-derived adipocytes in a concentration-dependent manner, 8,9- and 14,15-EET having the maximum reductive effect on adipogenesis. We examined the effect of 12-(3-hexylureido)dodec-8(Z)-enoic acid, an EET agonist, on MSC-derived adipocytes and demonstrated an increased number of healthy small adipocytes, attenuated fatty acid synthase (FAS) levels (P?activity or AKT by tin mesoporphyrin (SnMP) and LY2940002, respectively, reversed EET-induced inhibition of adipogenesis, suggesting that activation of the HO-1-adiponectin axis underlies EET effect in MSCs. These findings indicate that EETs decrease MSC-derived adipocyte stem cell differentiation by upregulation of HO-1-adiponectin-AKT signaling and play essential roles in the regulation of adipocyte differentiation by inhibiting PPAR?, C/EBP?, and FAS and in stem cell development. These novel observations highlight the seminal role of arachidonic acid metabolism in MSCs and suggest that an EET agonist may have potential therapeutic use in the treatment of dyslipidemia, diabetes, and the metabolic syndrome. PMID:20412023

Kim, Dong Hyun; Vanella, Luca; Inoue, Kazuyoshi; Burgess, Angela; Gotlinger, Katherine; Manthati, Vijaya Lingam; Koduru, Sreenivasulu Reddy; Zeldin, Darryl C; Falck, John R; Schwartzman, Michal L; Abraham, Nader G

2010-12-01

226

A Conserved Aspartic Acid Is Important for Agonist (VUAA1) and Odorant/Tuning Receptor-Dependent Activation of the Insect Odorant Co-Receptor (Orco)  

PubMed Central

Insect odorant receptors function as heteromeric odorant-gated cation channels comprising a conventional odorant-sensitive tuning receptor, and a conserved co-receptor (Orco). An Orco agonist, VUAA1, is able to activate both heteromeric and homomeric Orco-containing channels. Very little is known about specific residues in Orco that contribute to cation permeability and gating. We investigated the importance of two conserved Asp residues, one in each of transmembrane domains 5 and 7, for channel function by mutagenesis. Drosophila melanogaster Orco and its substitution mutants were expressed in HEK cells and VUAA1-stimulated channel activity was determined by Ca2+ influx and whole-cell patch clamp electrophysiology. Substitution of D466 in transmembrane 7 with amino acids other than glutamic acid resulted in a substantial reduction in channel activity. The D466E Orco substitution mutant was ?2 times more sensitive to VUAA1. The permeability of the D466E Orco mutant to cations was unchanged relative to wild-type Orco. When D466E Orco is co-expressed with a conventional tuning odorant receptor, the heteromeric complex also shows increased sensitivity to an odorant. Thus, the effect of the D466E mutation is not specific to VUAA1 agonism or dependent on homomeric Orco assembly. We suggest the gain-of-activation characteristic of the D466E mutant identifies an amino acid that is likely to be important for activation of both heteromeric and homomeric insect odorant receptor channels. PMID:23894621

Kumar, Brijesh N.; Taylor, Robert W.; Pask, Gregory M.; Zwiebel, Laurence J.; Newcomb, Richard D.; Christie, David L.

2013-01-01

227

In vivo activity of the thyroid hormone receptor beta- and ?-selective agonists GC-24 and CO23 on rat liver, heart, and brain.  

PubMed

Thyroid hormone analogs with selective actions through specific thyroid hormone receptor (TR) subtypes are of great interest. They might offer the possibility of mimicking physiological actions of thyroid hormone with receptor subtype or tissue specificity with therapeutic aims. They are also pharmacological tools to dissect biochemical pathways mediated by specific receptor subtypes, in a complementary way to mouse genetic modifications. In this work, we studied the in vivo activity in developing rats of two thyroid hormone agonists, the TR?-selective GC-24 and the TR?-selective CO23. Our principal goal was to check whether these compounds were active in the rat brain. Analog activity was assessed by measuring the expression of thyroid hormone target genes in liver, heart, and brain, after administration to hypothyroid rats. GC-24 was very selective for TR? and lacked activity on the brain. On the other hand, CO23 was active in liver, heart, and brain on genes regulated by either TR? or TR?. This compound, previously shown to be TR?-selective in tadpoles, displayed no selectivity in the rat in vivo. PMID:21239431

Grijota-Martínez, Carmen; Samarut, Eric; Scanlan, Thomas S; Morte, Beatriz; Bernal, Juan

2011-03-01

228

Memory Enhancement Induced by Post-Training Intrabasolateral Amygdala Infusions of [beta]-Adrenergic or Muscarinic Agonists Requires Activation of Dopamine Receptors: Involvement of Right, but Not Left, Basolateral Amygdala  

ERIC Educational Resources Information Center

Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a [beta]-adrenergic or muscarinic cholinergic agonist requires concurrent activation

LaLumiere, Ryan T.; McGaugh, James L.

2005-01-01

229

A pilot study of the effects of gonadotropin-releasing hormone agonist therapy on brain activation pattern in a man with pedophilia.  

PubMed

Gonadotropin-releasing hormone (GnRH) agonists, such as leuprorelin, are recommended in the patients with pedophilia at highest risk of offending. However, the cerebral mechanisms of the effects of these testosterone-decreasing drugs are poorly known. This study aimed to identify changes caused by leuprorelin in a pedophilic patient's brain responses to pictures representing children. Clinical, endocrine, and fMRI investigations were done of a man with pedophilia before leuprorelin therapy and 5 months into leuprorelin therapy. Patient was compared with an age-matched healthy control also assessed 5 months apart. Before therapy, pictures of boys elicited activation in the left calcarine fissure, left insula, anterior cingulate cortex, and left cerebellar vermis. Five months into therapy, all the above-mentioned activations had disappeared. No such activations and, consequently, no such decreases occurred in the healthy control. The results of this pilot study suggest that leuprorelin decreased activity in regions known to mediate the perceptual, motivational, and affective responses to visual sexual stimuli. PMID:21518701

Moulier, Virginie; Fonteille, Véronique; Pélégrini-Issac, Mélanie; Cordier, Bernard; Baron-Laforêt, Sophie; Boriasse, Emeline; Durand, Emmanuel; Stoléru, Serge

2012-02-01

230

Inhibitory activity of the novel CB2 receptor agonist, GW833972A, on guinea-pig and human sensory nerve function in the airways  

PubMed Central

Background and purpose: Sensory nerves regulate central and local reflexes such as airway plasma protein leakage, bronchoconstriction and cough. Sensory nerve activity may be enhanced during inflammation such that these protective effects become exacerbated and deleterious. Cannabinoids are known to inhibit airway sensory nerve function. However, there is still controversy surrounding which receptor is involved in eliciting these effects. Experimental approach: We have adopted a pharmacological approach, including using a novel, more selective CB2 receptor agonist, GW 833972A (1000-fold selective CB2/CB1), and receptor selective antagonists to investigate the inhibitory activity of cannabinoids on sensory nerve activity in vitro and in vivo in guinea-pig models of cough and plasma extravasation. Key results: GW 833972A inhibited capsaicin-induced depolarization of the human and guinea-pig and prostaglandin E2 (PGE2) and hypertonic saline-induced depolarization of the guinea-pig isolated vagus nerve in vitro. GW 833972A also inhibited citric acid-induced cough but not plasma extravasation in the guinea-pig and this effect was blocked by a CB2 receptor antagonist. Conclusions and implications: This confirms and extends previous studies highlighting the role of CB2 receptors in the modulation of sensory nerve activity elicited both by the exogenous ligands capsaicin and hypertonic saline but also by endogenous modulators such as PGE2 and low pH stimuli. These data establish the CB2 receptor as an interesting target for the treatment of chronic cough. PMID:18695648

Belvisi, M G; Patel, H J; Freund-Michel, V; Hele, D J; Crispino, N; Birrell, M A

2008-01-01

231

Peroxisome Proliferator-Activated Receptor-? Agonist Treatment Increases Septation and Angiogenesis and Decreases Airway Hyperresponsiveness in a Model of Experimental Neonatal Chronic Lung Disease  

PubMed Central

Chronic lung disease (CLD) affects premature newborns requiring supplemental oxygen and results in impaired lung development and subsequent airway hyperreactivity. We hypothesized that the maintenance of peroxisome proliferator-activated receptor gamma (PPAR?) signaling is important for normal lung morphogenesis and treatment with PPAR? agonists could protect against CLD and airway hyperreactivity (AHR) following chronic hyperoxic exposure. This was tested in an established hyperoxic murine model of experimental CLD. Newborn mice and mothers were exposed to room air (RA) or moderate hyperoxia (70% oxygen) for 10 days and fed a standard diet or chow impregnated with the PPAR? agonist rosiglitazone (ROSI) for the duration of study. Following hyperoxic exposure (HE) animals were returned to RA until postnatal day (P) 13 or P41. The accumulation of ROSI in neonatal and adult tissue was confirmed by mass spectrometry. Analyses of body weight and lung histology were performed on P13 and P41 to localize and quantitate PPAR? expression, determine alveolar and microvessel density, proliferation and alpha-smooth muscle actin (?-SMA) levels as a measure of myofibroblast differentiation. Microarray analyses were conducted on P13 to examine transcriptional changes in whole lung. Pulmonary function and airway responsiveness were analyzed at P55. ROSI treatment during HE preserved septation and vascular density. Key array results revealed ontogeny groups differentially affected by hyperoxia including cell cycle, angiogenesis, matrix and muscle differentiation/contraction. These results were further confirmed by histological evaluation of myofibroblast and collagen accumulation. Late AHR to methacholine was present in mice following HE and attenuated with ROSI treatment. These findings suggest that rosiglitazone maintains downstream PPAR? effects and may be beneficial in the prevention of severe CLD with AHR. PMID:19484746

Takeda, K.; Okamoto, M.; De Langhe, S.; Dill, E.; Armstrong, M.; Reisdorf, N.; Irwin, D.; Koster, M.; Wilder, J.; Stenmark, K.R.; West, J.; Klemm, D.; Gelfand, E.W.; Nozik-Grayck, E.; Majka, S. M.

2010-01-01

232

Innate Immune Receptors in Human Airway Smooth Muscle Cells: Activation by TLR1/2, TLR3, TLR4, TLR7 and NOD1 Agonists  

PubMed Central

Background Pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs), recognize microbial components and trigger a host defense response. Respiratory tract infections are common causes of asthma exacerbations, suggesting a role for PRRs in this process. The present study aimed to examine the expression and function of PRRs on human airway smooth muscle cells (HASMCs). Methods Expression of TLR, NLR and RLR mRNA and proteins was determined using real-time RT-PCR, flow cytometry and immunocytochemistry. The functional responses to ligand stimulation were investigated in terms of cytokine and chemokine release, cell surface marker expression, proliferation and proteins regulating the contractile state. Results HASMCs expressed functional TLR2, TLR3, TLR4, TLR7 and NOD1. Stimulation with the corresponding agonists Pam3CSK4, poly(I:C), LPS, R-837 and iE-DAP, respectively, induced IL-6, IL-8 and GM-CSF release and up-regulation of ICAM-1 and HLA-DR, while poly(I:C) also affected the release of eotaxin and RANTES. The proliferative response was slightly increased by LPS. Stimulation, most prominently with poly(I:C), down-regulated myosin light chain kinase and cysteinyl leukotriene 1 receptor expression and up-regulated ?2-adrenoceptor expression. No effects were seen for agonist to TLR2/6, TLR5, TLR8, TLR9, NOD2 or RIG-I/MDA-5. Conclusion Activation of TLR2, TLR3, TLR4, TLR7 and NOD1 favors a synthetic phenotype, characterized by an increased ability to release inflammatory mediators, acquire immunomodulatory properties by recruiting and interacting with other cells, and reduce the contractile state. The PRRs might therefore be of therapeutic use in the management of asthma and infection-induced disease exacerbations. PMID:23861935

Månsson Kvarnhammar, Anne; Tengroth, Lotta; Adner, Mikael; Cardell, Lars-Olaf

2013-01-01

233

GPR119 agonists: a promising approach for T2DM treatment? A SWOT analysis of GPR119.  

PubMed

Ever since its advent as a promising therapeutic target for type 2 diabetes mellitus (T2DM), G-protein-coupled receptor 119 (GPR119) has received much interest from the pharmaceutical industry. This interest peaked in June 2010, when Sanofi-Aventis agreed to pay Metabolex (Cymabay Therapeutics) US$375 million for MBX-2982, which was a representative orally active GPR119 agonist. However, Sanofi-Aventis opted to terminate the deal in May 2011 and another leading GPR119 agonist, GSK1292263, had a loss of efficacy during its clinical trial. In this review, I discuss the pros and cons of GPR119 through a strengths, weaknesses, opportunities, and threats (SWOT) analysis and propose development strategies for the eventual success of a GPR119 agonist development program. PMID:24060477

Kang, Sang-Uk

2013-12-01

234

Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus.  

PubMed

Vibrio parahaemolyticus and Vibriovulnificus cause severe foodborne illness in humans; thus, to reduce outbreaks of disease, it is clearly important to reduce food contamination by these pathogens. Although electrolyzed oxidizing (EO) water has been reported to exhibit strong bactericidal activities against many pathogens, it has never been tested against V. vulnificus and V. parahaemolyticus. The purpose of this study was to evaluate the bactericidal activity of weakly acidic electrolyzed water (WAEW), a type of EO water, against V. vulnificus and V. parahaemolyticus. Cell suspensions and cell cultures of both pathogens were treated for 30s with sodium hypochlorite solution containing 35mg/L available chlorine concentration (ACC) or WAEW containing 35mg/L ACC. After an initial inoculum of 5.7logCFU/mL, the number of viable V. vulnificus cells was reduced by 2.2 logs after treatment for 60s with sodium hypochlorite solution containing 35mg/L ACC, while no cells survived treatment with WAEW for 30s. Similar results were obtained for V. parahaemolyticus. Under open storage conditions, WAEW maintained bactericidal activities against cell suspensions of both strains after 5weeks but disappeared against cell cultures of the two strains after 5weeks. Under closed storage conditions, however, WAEW maintained bactericidal activities against both cell suspensions and cell cultures of each strain after 5weeks. No cells were detected in the cell suspensions and cultures when the ACC of WAEW was more than 20mg/L and treatment time was greater than 15s. Bactericidal activity of WAEW against V. vulnificus cell culture was reduced when the ACC of WAEW was less than 15mg/L but was maintained in the V. vulnificus cell suspension when the ACC of WAEW was 0.5mg/L. Thus, the bactericidal activity of WAEW was primarily affected by ACC rather than treatment time. Similar results were obtained for V. parahaemolyticus, indicating that WAEW kills these microorganisms more quickly than a chemical product such as sodium hypochlorite (NaClO), even at equivalent ACCs. PMID:20004034

Quan, Yaru; Choi, Kyoo-Duck; Chung, Donghwa; Shin, Il-Shik

2010-01-01

235

Mass-spectrometric analysis of agonist-induced retinoic acid receptor gamma conformational change.  

PubMed Central

Apo and holo forms of retinoic acid receptors, and other nuclear receptors, display differential sensitivity to proteolytic digestion that likely reflects the distinct conformational states of the free and liganded forms of the receptor. We have developed a method for rapid peptide mapping of holo-retinoic acid receptor gamma that utilizes matrix-assisted laser-desorption-ionization time-of-flight MS to identify peptide fragments that are derived from the partially proteolysed holo-receptor. The peptide maps of retinoic acid receptor gamma bound by four different agonists were identical, suggesting that all four ligands induced a similar conformational change within the ligand-binding domain of the receptor. In all cases, this agonist-induced conformational change promoted the direct association of retinoic acid receptor gamma with the transcriptional co-activator p300 and inhibited interaction of the receptor with the nuclear receptor co-repressor. SR11253, a compound previously reported to exert mixed retinoic acid receptor gamma agonist/antagonist activities in cultured cells, was found to bind directly to, but only weakly altered the protease-sensitivity of, the receptor and failed to promote interaction of the receptor with p300 or induce dissociation of receptor-nuclear receptor co-repressor complexes. This technique should be generally applicable to other members of the nuclear receptor superfamily that undergo an induced structural alteration upon agonist or antagonist binding, DNA binding and/or protein-protein interaction. PMID:11829754

Peterson, Valerie J; Barofsky, Elisabeth; Deinzer, Max L; Dawson, Marcia I; Feng, Kai-Chia; Zhang, Xiao-kun; Madduru, Machender R; Leid, Mark

2002-01-01

236

Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.

Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung; Kim, Hye Jin; Yang, Jin Mo; Ryu, Somi; Noh, Yoo Hun; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Yoo, Keon Hee [Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)] [Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Koo, Hong Hoe, E-mail: hhkoo@skku.edu [Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Sung, Ki Woong, E-mail: kwsped@skku.edu [Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

2012-01-06

237

Pyrexia, anorexia, adipsia, and depressed motor activity in rats during systemic inflammation induced by the Toll-like receptors-2 and -6 agonists MALP-2 and FSL-1.  

PubMed

Macrophage-activating lipopeptide-2 (MALP-2) from Mycoplasma fermentans has been identified as a pathogen-associated molecular pattern of Mycoplasmas that causes activation of the innate immune system through the activation of the heterodimeric Toll-like receptors (TLRs)-2 and -6. The aim of this study was to characterize the ability of MALP-2 and a synthetic analog fibroblast-stimulating lipopeptide-1 (FSL-1; represents the NH2-terminal sequence of a lipoprotein from M. salivarium) to act as exogenous pyrogens, to induce formation of cytokines (endogenous pyrogens), and to cause sickness behavior, such as depressed motor activity, anorexia, and adipsia. For this purpose, body temperature, activity, food intake, and water intake were recorded for 3 days by use of telemetry devices in several groups of rats treated with MALP-2/FSL-1 or the respective control solutions. Intraperitoneal injections of FSL-1 caused fever at doses of 10 or 100 microg/kg, which was preceded by a pronounced phase of hypothermia in response to a dose of 1,000 microg/kg. The maximal fever (a peak of 1.5 degrees C above baseline) was caused by the 100 microg/kg dose with almost identical responses to both MALP-2 and FSL-1. Fever was accompanied by pronounced rises of the proinflammatory cytokines TNF and IL-6 in plasma. Treatment with the TLR-2 and -6 agonists further induced a dose-dependent manifestation of anorexia and adipsia, as well as a reduction of motor activity. We could thus demonstrate that activation of TLR-2 and -6 can induce systemic inflammation in rats accompanied by the classical signs of brain-controlled illness responses. PMID:16154916

Hübschle, Thomas; Mütze, Jörg; Mühlradt, Peter F; Korte, Stefan; Gerstberger, Rüdiger; Roth, Joachim

2006-01-01

238

Pharmacological Exploitation of the Peroxisome Proliferator-Activated Receptor ? Agonist Ciglitazone to Develop a Novel Class of Androgen Receptor-Ablative Agents  

PubMed Central

Based on our finding that the peroxisome proliferator-activated receptor (PPAR)? agonist ciglitazone at high doses was able to mediate PPAR?-independent transcriptional repression of androgen receptor (AR) in a tumor cell-specific manner, we used ?2CG, a PPAR?-inactive analogue of ciglitazone, to conduct lead optimization to develop a novel class of AR-ablative agents. Structure-activity analysis indicates a high degree of flexibility in realigning ?2CG’s structural moieties without compromising potency in AR repression, as evidenced by the higher AR-ablative activity of the permuted isomer 9 [(Z)-5-(4-hydroxy-benzylidene)-3-(1-methyl-cyclohexylmethyl)-thiazolidine-2,4-dione]. Further modificiations of 9 gave rise to 12 [(Z)-5-(4-hydroxy-3-trifluoromethyl-benzylidene)-3-(1-methyl-cyclohexylmethyl)-thiazolidine-2,4-dione] which completely inhibited AR expression in LNCaP cells at low ?M concentrations. This AR downregulation led to growth inhibition in LNCaP cells through apoptosis induction. Moreover, the role of AR repression in the antiproliferative effect of compound 12 was validated by the differential inhibition of cell viability between androgen-responsive and androgen-nonresponsive cells. PMID:18335975

Yang, Jian; Wei, Shuo; Wang, Da-Sheng; Wang, Yu-Chieh; Kulp, Samuel K.; Chen, Ching-Shih

2014-01-01

239

2-Methyl-1,3-dioxaazaspiro[4.5]decanes as novel muscarinic cholinergic agonists.  

PubMed

Many nonquaternary ammonium muscarinic agonists have been developed over the last few years, but most of the existing compounds (e.g., arecoline, RS-86, AF-30) behave as weak partial agonists at cholinergic receptors in tissues of limited receptor reserve. The current paper describes the synthesis and biochemical assessment of analogues of AF-30 designed to have sufficient conformational freedom to allow greater receptor flexibility and hence activation. The new compounds and important standards were tested in a new biochemical assay designed to measure both receptor affinity and intrinsic activity of each compound and for their ability to stimulate phosphatidylinositol turnover in rat cerebral cortex. Two azaspirodecanes (5a and 5b) were shown to have far greater predicted efficacy than AF-30. PMID:3339620

Saunders, J; Showell, G A; Snow, R J; Baker, R; Harley, E A; Freedman, S B

1988-02-01

240

Synthesis and evaluation of novel peripherally restricted kappa-opioid receptor agonists.  

PubMed

A series of 3-substituted analogs (3) of the parent kappa agonist, 1, were prepared to limit access to the central nervous system. With the exception of compound 3j, all other compounds bound to the human kappa opioid receptor with high affinity (K(i)=0.31-9.5 nM) and were selective for kappa over mu and delta opioid receptors. Compounds 3c, d, and 3g-i produced potent antinociceptive activity in the rat formalin assay (i.paw) and the mouse acetic acid-induced writhing assay (s.c.), with weak activity in the mouse platform sedation test. The peripheral restriction indices of 3c, d, 3g, and 3i were improved 2- to 7-fold compared to the parent compound 1, and these compounds were approximately 2- to 5-fold more potent than the peripheral kappa agonist ICI 204448. PMID:15686919

Kumar, Virendra; Guo, Deqi; Cassel, Joel A; Daubert, Jeffrey D; Dehaven, Robert N; Dehaven-Hudkins, Diane L; Gauntner, Erin K; Gottshall, Susan L; Greiner, Susan L; Koblish, Michael; Little, Patrick J; Mansson, Erik; Maycock, Alan L

2005-02-15

241

Evidence for fault weakness and fluid flow within an active low-angle normal fault.  

PubMed

Determining the composition and physical properties of shallow-dipping, active normal faults (dips < 35 degrees with respect to the horizontal) is important for understanding how such faults slip under low resolved shear stress and accommodate significant extension of the crust and lithosphere. Seismic reflection images and earthquake source parameters show that a magnitude 6.2 earthquake occurred at about 5 km depth on or close to a normal fault with a dip of 25-30 degrees located ahead of a propagating spreading centre in the Woodlark basin. Here we present results from a genetic algorithm inversion of seismic reflection data, which shows that the fault at 4-5 km depth contains a 33-m-thick layer with seismic velocities of about 4.3 km s(-1), which we interpret to be composed of serpentinite fault gouge. Isolated zones exhibit velocities as low as approximately 1.7 km s(-1) with high porosities, which we suggest are maintained by high fluid pressures. We propose that hydrothermal fluid flow, possibly driven by a deep magmatic heat source, and high extensional stresses ahead of the ridge tip have created conditions for fault weakness and strain localization on the low-angle normal fault. PMID:11459052

Floyd, J S; Mutter, J C; Goodliffe, A M; Taylor, B

2001-06-14

242

Salt bridges overlapping the gonadotropin-releasing hormone receptor agonist binding site reveal a coincidence detector for G protein-coupled receptor activation.  

PubMed

G protein-coupled receptors (GPCRs) play central roles in most physiological functions, and mutations in them cause heritable diseases. Whereas crystal structures provide details about the structure of GPCRs, there is little information that identifies structural features that permit receptors to pass the cellular quality control system or are involved in transition from the ground state to the ligand-activated state. The gonadotropin-releasing hormone receptor (GnRHR), because of its small size among GPCRs, is amenable to molecular biological approaches and to computer modeling. These techniques and interspecies comparisons are used to identify structural features that are important for both intracellular trafficking and GnRHR activation yet distinguish between these processes. Our model features two salt (Arg(38)-Asp(98) and Glu(90)-Lys(121)) and two disulfide (Cys(14)-Cys(200) and Cys(114)-Cys(196)) bridges, all of which are required for the human GnRHR to traffic to the plasma membrane. This study reveals that both constitutive and ligand-induced activation are associated with a "coincidence detector" that occurs when an agonist binds. The observed constitutive activation of receptors lacking Glu(90)-Lys(121), but not Arg(38)-Asp(98) ionic bridge, suggests that the role of the former connection is holding the receptor in the inactive conformation. Both the aromatic ring and hydroxyl group of Tyr(284) and the hydrogen bonding of Ser(217) are important for efficient receptor activation. Our modeling results, supported by the observed influence of Lys(191) from extracellular loop 2 (EL2) and a four-residue motif surrounding this loop on ligand binding and receptor activation, suggest that the positioning of EL2 within the seven-?-helical bundle regulates receptor stability, proper trafficking, and function. PMID:21527534

Janovick, Jo Ann; Pogozheva, Irina D; Mosberg, Henry I; Conn, P Michael

2011-08-01

243

Cannabinoid receptor type 2 agonist attenuates apoptosis by activation of phosphorylated CREB-Bcl-2 pathway after subarachnoid hemorrhage in rats.  

PubMed

Early brain injury (EBI) which comprises of vasogenic edema and apoptotic cell death is an important component of subarachnoid hemorrhage (SAH) pathophysiology. This study evaluated whether cannabinoid receptor type 2 (CB2R) agonist, JWH133, attenuates EBI after SAH and whether CB2R stimulation reduces pro-apoptotic caspase-3 via up-regulation of cAMP response element-binding protein (CREB)-Bcl-2 signaling pathway. Male Sprague-Dawley rats (n=123) were subjected to SAH by endovascular perforation. Rats received vehicle or JWH133 at 1h after SAH. Neurological deficits and brain water content were evaluated at 24h after SAH. Western blot was performed to quantify phosphorylated CREB (pCREB), Bcl-2, and cleaved caspase-3 levels. Neuronal cell death was evaluated with terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. Additionally, CREB siRNA was administered to manipulate the proposed pathway. JWH133 (1.0mg/kg) improved neurological deficits and reduced brain water content in left hemisphere 24h after SAH. JWH133 significantly increased activated CREB (pCREB) and Bcl-2 levels and significantly decreased cleaved caspase-3 levels in left hemisphere 24h after SAH. CREB siRNA reversed the effects of treatment. TUNEL positive neurons in the cortex were reduced with JWH133 treatment. Thus, CB2R stimulation attenuated EBI after SAH possibly through activation of pCREB-Bcl-2 pathway. PMID:25058046

Fujii, Mutsumi; Sherchan, Prativa; Soejima, Yoshiteru; Hasegawa, Yu; Flores, Jerry; Doycheva, Desislava; Zhang, John H

2014-11-01

244

Early controlled release of peroxisome proliferator-activated receptor ?/? agonist GW501516 improves diabetic wound healing through redox modulation of wound microenvironment.  

PubMed

Diabetic wounds are imbued with an early excessive and protracted reactive oxygen species production. Despite the studies supporting PPAR?/? as a valuable pharmacologic wound-healing target, the therapeutic potential of PPAR?/? agonist GW501516 (GW) as a wound healing drug was never investigated. Using topical application of polymer-encapsulated GW, we revealed that different drug release profiles can significantly influence the therapeutic efficacy of GW and consequently diabetic wound closure. We showed that double-layer encapsulated GW microparticles (PLLA:PLGA:GW) provided an earlier and sustained dose of GW to the wound and reduced the oxidative wound microenvironment to accelerate healing, in contrast to single-layered PLLA:GW microparticles. The underlying mechanism involved an early GW-mediated activation of PPAR?/? that stimulated GPx1 and catalase expression in fibroblasts. GPx1 and catalase scavenged excessive H2O2 accumulation in diabetic wound beds, prevented H2O2-induced ECM modification and facilitated keratinocyte migration. The microparticles with early and sustained rate of GW release had better therapeutic wound healing activity. The present study underscores the importance of drug release kinetics on the therapeutic efficacy of the drug and warrants investigations to better appreciate the full potential of controlled drug release. PMID:25449811

Wang, Xiaoling; Sng, Ming Keat; Foo, Selin; Chong, Han Chung; Lee, Wei Li; Tang, Mark Boon Yang; Ng, Kee Woei; Luo, Baiwen; Choong, Cleo; Wong, Marcus Thien Chong; Tong, Benny Meng Kiat; Chiba, Shunsuke; Loo, Say Chye Joachim; Zhu, Pengcheng; Tan, Nguan Soon

2015-01-10

245

Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease  

SciTech Connect

Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.

Antonelli, Alessandro, E-mail: a.antonelli@med.unipi.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy)] [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Ferrari, Silvia Martina, E-mail: sm.ferrari@int.med.unipi.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Frascerra, Silvia, E-mail: lafrasce@gmail.com [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy)] [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Corrado, Alda, E-mail: dala_res@hotmail.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy)] [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Pupilli, Cinzia, E-mail: c.pupilli@dfc.unifi.it [Endocrinology Unit, Azienda Ospedaliera Careggi and University of Florence, Viale Morgagni 85, I-50134, Florence (Italy)] [Endocrinology Unit, Azienda Ospedaliera Careggi and University of Florence, Viale Morgagni 85, I-50134, Florence (Italy); Bernini, Giampaolo, E-mail: g.bernini@int.med.unipi.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy)] [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Benvenga, Salvatore, E-mail: s.benvenga@me.nettuno.it [Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Messina, Piazza Pugliatti 1, I-98122, Messina (Italy)] [Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Messina, Piazza Pugliatti 1, I-98122, Messina (Italy); Ferrannini, Ele, E-mail: eferrannini@med.unipi.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy)] [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Fallahi, Poupak, E-mail: poupak@int.med.unipi.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy)] [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy)

2011-07-01

246

Comprehensive survey of chemical libraries yielding enzyme inhibitors, receptor agonists and antagonists, and other biologically active agents: 1992 through 1997  

Microsoft Academic Search

This review is a historical accounting of chemical libraries from which biologically active agents have been obtained. The comprehensive tabulation includes citations as early as 1992, when the first descriptions of biologically active libraries were disclosed, and continues through 1997. Four tables are provided listing libraries screened against (1) proteolytic enzymes, (2) non-proteolytic enzymes, (3) G-protein coupled receptors (GPCRs), and

Roland E. Dolle

1997-01-01

247

Discovery of N-substituted 7-azaindoline derivatives as potent, orally available M1 and M4 muscarinic acetylcholine receptors selective agonists.  

PubMed

We designed and synthesized novel N-substituted 7-azaindoline derivatives as selective M1 and M4 muscarinic acetylcholine receptors (mAChRs) agonists. Hybridization of compound 2 with the HTS hit compound 5 followed by optimization of the N-substituents of 7-azaindoline led to identification of compound 1, which showed highly selective M1 and M4 mAChRs agonistic activity, weak human ether-a-go-go related gene inhibition, and good bioavailability in multiple animal species. PMID:24856064

Takai, Kentaro; Inoue, Yasunao; Konishi, Yasuko; Suwa, Atsushi; Uruno, Yoshiharu; Matsuda, Harumi; Nakako, Tomokazu; Sakai, Mutsuko; Nishikawa, Hiroyuki; Hashimoto, Gakuji; Enomoto, Takeshi; Kitamura, Atsushi; Uematsu, Yasuaki; Kiyoshi, Akihiko; Sumiyoshi, Takaaki

2014-07-15

248

Activating persulfate by Fe? coupling with weak magnetic field: performance and mechanism.  

PubMed

Weak magnetic field (WMF) and Fe(0) were proposed to activate PS synergistically (WMF-Fe(0)/PS) to degrade dyes and aromatic contaminants. The removal rates of orange G (OG) by WMF-Fe(0)/PS generally decreased with increasing initial pH (3.0-10.0) and increased with increasing Fe(0) (0.5-3.0 mM) or PS dosages (0.5-3.0 mM). Compared to its counterpart without WMF, the WMF-Fe(0)/PS process could induce a 5.4-28.2 fold enhancement in the removal rate of OG under different conditions. Moreover, the application of WMF significantly enhanced the decolorization rate and the mineralization of OG. The degradation rates of caffeine, 4-nitrophenol, benzotriazole and diuron by Fe(0)/PS were improved by 2.1-11.1 fold due to the superimposed WMF. Compared to many other sulfate radical-based advanced oxidation technologies under similar reaction conditions, WMF-Fe(0)/PS technology could degrade selected organic contaminants with much greater rates. Sulfate radical was identified to be the primary radical species responsible for the OG degradation at pH 7.0 in WMF-Fe(0)/PS process. This study unraveled that the presence of WMF accelerated the corrosion rate of Fe(0) and thus promoted the release of Fe(2+), which induced the increased production of sulfate radicals from PS and promoted the degradation of organic contaminants. Employing WMF to enhance oxidation capacity of Fe(0)/PS is a novel, efficient, promising and environmental-friendly method since it does not need extra energy and costly reagents. PMID:24934323

Xiong, Xinmei; Sun, Bo; Zhang, Jing; Gao, Naiyun; Shen, Jimin; Li, Jialing; Guan, Xiaohong

2014-10-01

249

Rosiglitazone, an agonist of peroxisome-proliferator-activated receptor gamma (PPARgamma), decreases inhibitory serine phosphorylation of IRS1 in vitro and in vivo.  

PubMed

Peroxisome-proliferator-activated receptor gamma agonists such as rosiglitazone, a thiazolidinedione, improve insulin sensitivity in vivo, but the underlying mechanism(s) remains unclear. Phosphorylation of IRS1 (insulin receptor substrate protein 1) on certain serine residues, including S307 and S612 in rodent IRS1 (equivalent to S312 and S616 in human IRS1), has been shown to play a negative role in insulin signalling. In the present study, we investigated whether rosiglitazone improves insulin sensitivity by decreasing IRS1 inhibitory serine phosphorylation. In HEK-293 (human embryonic kidney 293) cells stably expressing recombinant IRS1 and in 3T3L1 adipocytes, rosiglitazone attenuated PMA-induced IRS1 S307/S612 phosphorylation and decreased insulin-stimulated Akt phosphorylation. We observed increased IRS1 S307 phosphorylation and concomitant decrease in insulin signalling as measured by insulin-stimulated IRS1 tyrosine phosphorylation, and Akt threonine phosphorylation in adipose tissues of Zucker obese rats compared with lean control rats. Treatment with rosiglitazone at 30 mg/kg body weight for 24 and 48 h increased insulin signalling and decreased IRS1 S307 phosphorylation concomitantly. Whereas the 48 h treatment reversed hyper-phosphorylation (and activation) of both c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, the 24 h treatments only decreased hyper-phosphorylation of p38 mitogen-activated protein kinase. The treatment of the Zucker obese rats with rosiglitazone also reversed the high circulating levels of non-esterified fatty acids, which have been shown to be correlated with increased IRS1 serine phosphorylation in other animal models. Taken together, these results suggest that IRS1 inhibitory serine phosphorylation is a key component of insulin resistance and its reversal contributes to the insulin sensitizing effects by rosiglitazone. PMID:14556646

Jiang, Guoqiang; Dallas-Yang, Qing; Biswas, Subarna; Li, Zhihua; Zhang, Bei B

2004-01-15

250

NOD-like receptors and RIG-I-like receptors in human eosinophils: activation by NOD1 and NOD2 agonists  

PubMed Central

NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs) are newly discovered pattern-recognition receptors. They detect substructures of bacterial peptidoglycan and viral RNA, respectively, thereby initiating an immune response. However, their role in eosinophil activation remains to be explored. The aim of this study was to characterize the expression of a range of NLRs and RLRs in purified human eosinophils and assess their functional importance. Expression of NOD1, NOD2, NLRP3, RIG-I and MDA-5 was investigated using real-time reverse transcription PCR, flow cytometry and immunohistochemistry. The effects of the corresponding agonists iE-DAP (NOD1), MDP (NOD2), alum (NLRP3) and poly(I:C)/LyoVec (RIG-I/MDA-5) were studied in terms of cytokine secretion, degranulation, survival, expression of adhesion molecules and activation markers, and chemotactic migration. Eosinophils expressed NOD1 and NOD2 mRNA and protein. Low levels of RIG-I and MDA-5 were found, whereas expression of NLRP3 was completely absent. In accordance, stimulation with iE-DAP and MDP was found to induce secretion of interleukin-8, up-regulate expression of CD11b, conversely down-regulate CD62 ligand, increase expression of CD69 and induce migration. The MDP also promoted release of eosinophil-derived neurotoxin, whereas iE-DAP failed to do so. No effects were seen upon stimulation with alum or poly(I:C)/LyoVec. Moreover, the NOD1-induced and NOD2-induced activation was mediated via the nuclear factor-?B signalling pathway and augmented by interleukin-5 and granulocyte–macrophage colony-stimulating factor, but not interferon-?. Taken together, the NLR system represents a novel pathway for eosinophil activation. The responses are enhanced in the presence of cytokines that regulate T helper type 2 immunity, suggesting that the NLRs constitute a link between respiratory infections and exacerbations of allergic disease. PMID:21978001

Kvarnhammar, Anne Månsson; Petterson, Terese; Cardell, Lars-Olaf

2011-01-01

251

NOD-like receptors and RIG-I-like receptors in human eosinophils: activation by NOD1 and NOD2 agonists.  

PubMed

NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs) are newly discovered pattern-recognition receptors. They detect substructures of bacterial peptidoglycan and viral RNA, respectively, thereby initiating an immune response. However, their role in eosinophil activation remains to be explored. The aim of this study was to characterize the expression of a range of NLRs and RLRs in purified human eosinophils and assess their functional importance. Expression of NOD1, NOD2, NLRP3, RIG-I and MDA-5 was investigated using real-time reverse transcription PCR, flow cytometry and immunohistochemistry. The effects of the corresponding agonists iE-DAP (NOD1), MDP (NOD2), alum (NLRP3) and poly(I:C)/LyoVec (RIG-I/MDA-5) were studied in terms of cytokine secretion, degranulation, survival, expression of adhesion molecules and activation markers, and chemotactic migration. Eosinophils expressed NOD1 and NOD2 mRNA and protein. Low levels of RIG-I and MDA-5 were found, whereas expression of NLRP3 was completely absent. In accordance, stimulation with iE-DAP and MDP was found to induce secretion of interleukin-8, up-regulate expression of CD11b, conversely down-regulate CD62 ligand, increase expression of CD69 and induce migration. The MDP also promoted release of eosinophil-derived neurotoxin, whereas iE-DAP failed to do so. No effects were seen upon stimulation with alum or poly(I:C)/LyoVec. Moreover, the NOD1-induced and NOD2-induced activation was mediated via the nuclear factor-?B signalling pathway and augmented by interleukin-5 and granulocyte-macrophage colony-stimulating factor, but not interferon-?. Taken together, the NLR system represents a novel pathway for eosinophil activation. The responses are enhanced in the presence of cytokines that regulate T helper type 2 immunity, suggesting that the NLRs constitute a link between respiratory infections and exacerbations of allergic disease. PMID:21978001

Kvarnhammar, Anne Månsson; Petterson, Terese; Cardell, Lars-Olaf

2011-11-01

252

Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist.  

PubMed Central

A potent platelet aggregation inducer, aggretin, was purified from Malayan-pit-viper (Calloselasma rhodostoma) venom by ionic-exchange chromatography, gel-filtration chromatography and HPLC. It is a heterodimeric protein (29 kDa) devoid of esterase, phospholipase A and thrombin-like activity. Aggretin (> 5 nM) elicited platelet aggregation with a lag period in both human platelet-rich plasma and washed platelet suspension. EDTA (5 mM), prostaglandin E1 (1 microM) and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester ('TMB-8'; 100 microM) abolished its aggregating activity, indicating that exogenous bivalent cations and intracellular Ca2+ mobilization are essential for aggretin-induced platelet aggregation. Neomycin (4 mM) and mepacrine (50 microM) completely inhibited aggretin (33 nM)-induced aggregation; however, creatine phosphate/creatine phosphokinase (5 mM, 5 units/ml) and indomethacin (50 microM) did not significantly affect its aggregating activity. Aggretin caused a significant increase of [3H]InsP formation in [3H]Ins-loaded platelets, intracellular Ca2+ mobilization and thromboxane B2 formation. Neomycin, a phospholipase C inhibitor, completely inhibited both the increase of [3H]InsP and intracellular Ca2+ mobilization of platelets stimulated by aggretin. A monoclonal antibody (6F1) directed against glycoprotein Ia/IIa inhibited platelet shape change and aggregation induced by aggretin. 125I-aggretin bound to platelets with a high affinity (Kd = 4.0 +/- 1.1 nM), and the number of binding sites was estimated to be 2119 +/- 203 per platelet. It is concluded that aggretin may act as a glycoprotein Ia/IIa agonist to elicit platelet aggregation through the activation of endogenous phospholipase C, leading to hydrolysis of phosphoinositides and subsequent intracellular Ca2+ mobilization. Images Figure 1 PMID:7639679

Huang, T F; Liu, C Z; Yang, S H

1995-01-01

253

SAR-studies of ?-secretase modulators with PPAR?-agonistic and 5-lipoxygenase-inhibitory activity for Alzheimer's disease.  

PubMed

We present the design, synthesis and biological evaluation of compounds containing a 2-(benzylidene)hexanoic acid scaffold as multi-target directed ?-secretase-modulators. Broad structural variations were undertaken to elucidate the structure-activity-relationships at the 5-position of the aromatic core. Compound 13 showed the most potent activity profile with IC50 values of 0.79?M (A?42), 0.3?M (5-lipoxygenase) and an EC50 value of 4.64?M for PPAR?-activation. This derivative is the first compound exhibiting low micromolar to nanomolar activities for these three targets. Combining ?-secretase-modulation, PPAR?-agonism and inhibition of 5-lipoxygenase in one compound could be a novel disease-modifying multi-target-strategy for Alzheimer's disease to concurrently address the causative amyloid pathology and secondary pathologies like chronic brain inflammation. PMID:25575659

Flesch, Daniel; Ness, Julia; Lamers, Christina; Dehm, Friederike; Popella, Sven; Steri, Ramona; Ogorek, Isabella; Hieke, Martina; Dannhardt, Gerd; Werz, Oliver; Weggen, Sascha; Schubert-Zsilavecz, Manfred

2015-02-15

254

Effects of the P-Adrenergic Agonist L644,969 on Muscle Protein Turnover, Endogenous Proteinase Activities, and Meat Tenderness in Steers1f2  

Microsoft Academic Search

Eight MARC I11 composite (1\\/4 Hereford, 114 Angus, 114 Pinzgauer, and 1\\/4 Red Poll) steers weighing approximately 350 kg were fed 0 or 3 ppm of the P-adrenergic agonist Le44,QeQ (Merck Sharp and Dohme Laboratories, Rahway, NJ) for 6 wk in a high-concentrate diet. Feed efficiency was higher (P < .05) in p-adrenergic agonist-fed steers at 1, 3, 5, and

T. L. Wheeler; M. Koohmaraie; Roman L. Hruska

2010-01-01

255

Orally active opioid ?/? dual agonist MGM-16, a derivative of the indole alkaloid mitragynine, exhibits potent antiallodynic effect on neuropathic pain in mice.  

PubMed

(E)-Methyl 2-((2S,3S,7aS,12bS)-3-ethyl-7a-hydroxy-8-methoxy-1,2,3,4,6,7,7a,12b-octahydroindolo[2,3-a]quinolizin-2-yl)-3-methoxyacrylate (7-hydroxymitragynine), a main active constituent of the traditional herbal medicine Mitragyna speciosa, is an indole alkaloid that is structurally different from morphine. 7-Hydroxymitragynine induces a potent antinociceptive effect on mouse acute pain through ?-opioid receptors. In this study, we developed dual-acting ?- and ?-opioid agonists MGM-15 and MGM-16 from 7-hydroxymitragynine for the treatment of acute and chronic pain. MGM-16 showed a higher potency than that of 7-hydroxymitragynine and MGM-15 in in vitro and in vivo assays. MGM-16 exhibited a high affinity for ?- and ?-opioid receptors, with K(i) values of 2.1 and 7.0 nM, respectively. MGM-16 showed ?- and ?-opioid full agonistic effects in a guanosine 5'-O-(3-[(35)S]thiotriphosphate) binding assay and in a functional test using electrically elicited guinea pig ileum and mouse vas deferens contractions. Systemic administration of MGM-16 produced antinociceptive effects in a mouse acute pain model and antiallodynic effects in a chronic pain model. The antinociceptive effect of MGM-16 was approximately 240 times more potent than that of morphine in a mouse tail-flick test, and its antiallodynic effect was approximately 100 times more potent than that of gabapentin in partial sciatic nerve-ligated mice, especially with oral administration. The antinociceptive effect of MGM-16 was completely and partially blocked by the ?-selective antagonist ?-funaltrexamine hydrochloride (?-FNA) and by the ?-selective antagonist naltrindole, respectively, in a tail-flick test. The antiallodynic effect of MGM-16 was completely blocked by ?-FNA and naltrindole in a neuropathic pain model. These findings suggest that MGM-16 could become a class of a compound with potential therapeutic utility for treating neuropathic pain. PMID:24345467

Matsumoto, Kenjiro; Narita, Minoru; Muramatsu, Naotaka; Nakayama, Terumi; Misawa, Kaori; Kitajima, Mariko; Tashima, Kimihito; Devi, Lakshmi A; Suzuki, Tsutomu; Takayama, Hiromitsu; Horie, Syunji

2014-03-01

256

Inhibition of rotavirus ECwt infection in ICR suckling mice by N-acetylcysteine, peroxisome proliferator-activated receptor gamma agonists and cyclooxygenase-2 inhibitors  

PubMed Central

Live attenuated vaccines have recently been introduced for preventing rotavirus disease in children. However, alternative strategies for prevention and treatment of rotavirus infection are needed mainly in developing countries where low vaccine coverage occurs. In the present work, N-acetylcysteine (NAC), ascorbic acid (AA), some nonsteroidal anti-inflammatory drugs (NSAIDs) and peroxisome proliferator-activated receptor gamma (PPAR?) agonists were tested for their ability to interfere with rotavirus ECwt infectivity as detected by the percentage of viral antigen-positive cells of small intestinal villi isolated from ECwt-infected ICR mice. Administration of 6 mg NAC/kg every 8 h for three days following the first diarrhoeal episode reduced viral infectivity by about 90%. Administration of AA, ibuprofen, diclofenac, pioglitazone or rosiglitazone decreased viral infectivity by about 55%, 90%, 35%, 32% and 25%, respectively. ECwt infection of mice increased expression of cyclooxygenase-2, ERp57, Hsc70, NF-?B, Hsp70, protein disulphide isomerase (PDI) and PPAR? in intestinal villus cells. NAC treatment of ECwt-infected mice reduced Hsc70 and PDI expression to levels similar to those observed in villi from uninfected control mice. The present results suggest that the drugs tested in the present work could be assayed in preventing or treating rotaviral diarrhoea in children and young animals. PMID:24037197

Guerrero, Carlos Arturo; Pardo, Paula; Rodriguez, Victor; Guerrero, Rafael; Acosta, Orlando

2013-01-01

257

Assessment of NMDA receptor activation in vivo by Fos induction after challenge with the direct NMDA agonist (tetrazol-5-yl)glycine: effects of clozapine and haloperidol.  

PubMed

Induction of Fos protein by the potent and direct NMDA agonist (tetrazol-5-yl)glycine (TZG) was examined in mice. Effects of antipsychotic drugs were assessed on this in vivo index of NMDA receptor activation. TZG induced the expression of Fos in a neuroanatomically selective manner, with the hippocampal formation showing the most robust response. In mice genetically altered to express low levels of the NR1 subunit of the NMDA receptor, TZG-induced Fos was reduced markedly in comparison to the wild type controls. TZG-induced Fos was also blocked by the selective NMDA antagonist MK-801. Pretreatment of mice with clozapine (3 and 10 mg/kg) reduced TZG-induced Fos in the hippocampal formation but not in other brain regions. Haloperidol at a dose of 0.5 mg/kg did not antagonize TZG induced Fos in any region. Haloperidol at a dose of 1.0 mg/kg did attenuate the induction of Fos by TZG in the hippocampus but not in other brain regions. The relatively high dose (1 mg/kg) of haloperidol required to block effects of TZG suggests that this action may not be related to the D(2) dopamine receptor-blocking properties, since maximal D(2) receptor blockade was probably achieved by the 0.5 mg/kg dose of haloperidol. The antidepressant drug imipramine (10 or 20 mg/kg) did not antagonize TZG induced Fos in any brain region. The data suggest that clozapine can reduce excessive activation of NMDA receptors by TZG administration in vivo at doses relevant to the drugs' actions in rodent models of antipsychotic activity. Whether or not this action of clozapine contributes to its therapeutic properties will require further study. PMID:17318306

Inada, K; Farrington, J S; Moy, S S; Koller, B H; Duncan, G E

2007-07-01

258

Effects of peroxisome proliferator-activated receptor alpha (PPARalpha) agonists on leucine-induced phosphorylation of translational targets in C2C12 cells.  

PubMed

Effect of peroxisome proliferator-activated receptor alpha (PPARalpha) agonists, WY-14,643 (WY) and/or clofibrate, on the leucine-induced phosphorylation of translational targets in C2C12 myoblasts was studied. C2C12 cells were treated with WY or clofibrate for 24 h prior to stimulation with leucine. Western blot analyses revealed that the leucine-induced phosphorylation of p70 S6 kinase (p70S6K), a key regulator of translation initiation, was significantly higher in WY-treated cells than in control and clofibrate-treated cells. Phosphorylation of extracellular-regulated kinase (ERK1/2) was higher in WY-treated cells. WY treatment also increased the leucine-induced phosphorylation of ribosomal protein S6 and eukaryotic initiation factor 4B. In contrast, eukaryotic elongation factor 2, a marker for peptide chain elongation process, was significantly activated (dephosphorylated) only in leucine-stimulated control cells. Pre-treatment of the cells with PD98059 (ERK1/2 kinase inhibitor) prevented the phosphorylation of ERK1/2 and decreased the leucine-induced phosphorylation of p70S6K. It is concluded that WY increased the leucine-induced phosphorylation of target proteins involving in translation initiation via ERK/p70S6K pathway, but impaired the signaling for elongation process, suggesting that p70S6K phosphorylation may be essential, but not sufficient for the activation of entire targets for protein translation in WY-treated cells. PMID:18602970

Nakai, Naoya; Kawano, Fuminori; Terada, Masahiro; Oke, Yoshihiko; Ohira, Takashi; Ohira, Yoshinobu

2008-10-01

259

Lesions of area postrema and subfornical organ alter exendin-4-induced brain activation without preventing the hypophagic effect of the GLP-1 receptor agonist.  

PubMed

The mechanism and route whereby glucagon-like peptide 1 (GLP-1) receptor agonists, such as GLP-1 and exendin-4 (Ex-4), access the central nervous system (CNS) to exert their metabolic effects have yet to be clarified. The primary objective of the present study was to investigate the potential role of two circumventricular organs (CVOs), the area postrema (AP) and the subfornical organ (SFO), in mediating the metabolic and CNS-stimulating effects of Ex-4. We demonstrated that electrolytic ablation of the AP, SFO, or AP + SFO does not acutely prevent the anorectic effects of Ex-4. AP + SFO lesion chronically decreased food intake and body weight and also modulated the effect of Ex-4 on the neuronal activation of brain structures involved in the hypothalamic-pituitary-adrenal axis and glucose metabolism. The results of the study also showed that CVO lesions blunted Ex-4-induced expression of c-fos mRNA (a widely used neuronal activity marker) in 1) limbic structures (bed nucleus of the stria terminalis and central amygdala), 2) hypothalamus (paraventricular hypothalamic nucleus, supraoptic nucleus, and arcuate nucleus), and 3) hindbrain (lateral and lateral-external parabrachial nucleus, medial nucleus of the solitary tract, and ventrolateral medulla). In conclusion, although the present results do not support a role for the CVOs in the anorectic effect induced by a single injection of Ex-4, they suggest that the CVOs play important roles in mediating the actions of Ex-4 in the activation of CNS structures involved in homeostatic control. PMID:20106992

Baraboi, Elena-Dana; Smith, Pauline; Ferguson, Alastair V; Richard, Denis

2010-04-01

260

Increased agonist affinity at the mu-opioid receptor induced by prolonged agonist exposure  

PubMed Central

Prolonged exposure to high-efficacy agonists results in desensitization of the mu opioid receptor (MOR). Desensitized receptors are thought to be unable to couple to G-proteins, preventing downstream signaling, however the changes to the receptor itself are not well characterized. In the current study, confocal imaging was used to determine whether desensitizing conditions cause a change in agonist-receptor interactions. Using rapid solution exchange, the binding kinetics of fluorescently labeled opioid agonist, dermorphin Alexa594 (derm A594), to MORs was measured in live cells. The affinity of derm A594 binding increased following prolonged treatment of cells with multiple agonists that are known to cause receptor desensitization. In contrast, binding of a fluorescent antagonist, naltrexamine Alexa 594, was unaffected by similar agonist pre-treatment. The increased affinity of derm A594 for the receptor was long-lived and partially reversed after a 45 min wash. Treatment of the cells with pertussis toxin did not alter the increase in affinity of the derm A594 for MOR. Likewise the affinity of derm A594 for MORs expressed in mouse embryonic fibroblasts derived from arrestin 1 and 2 knockout animals increased following treatment of the cells with the desensitization protocol. Thus, opioid receptors were “imprinted” with a memory of prior agonist exposure that was independent of G-protein activation or arrestin binding that altered subsequent agonist-receptor interactions. The increased affinity suggests that acute desensitization results in a long lasting but reversible conformational change in the receptor. PMID:23447620

Birdsong, William T.; Arttamangkul, Seksiri; Clark, Mary J.; Cheng, Kejun; Rice, Kenner C.; Traynor, John R.; Williams, John T.

2013-01-01

261

Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine.  

PubMed

A large body of evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists may improve some of the pathological features of Parkinson's disease (PD). In the present study, we evaluated the effects of the PPAR-? agonist fenofibrate (100mg/kg) and PPAR-? agonist pioglitazone (30mg/kg) in a rat model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine (MPTP). Male Wistar rats were pretreated with both drugs for 5 days and received an infusion of MPTP. The experiments were divided into two parts. First, 1, 7, 14, and 21 days after surgery, the animals were submitted to the open field test. On days 21 and 22, the rats were subjected to the forced swim test and two-way active avoidance task. In the second part of the study, 24h after neurotoxin administration, immunohistochemistry was performed to assess tyrosine hydroxylase activity. The levels of dopamine and its metabolites in the striatum were determined using high-performance liquid chromatography, and fluorescence detection was used to assess caspase-3 activation in the substantia nigra pars compacta (SNpc). Both fenofibrate as pioglitazone protected against hypolocomotion, depressive-like behavior, impairment of learning and memory, and dopaminergic neurodegeneration caused by MPTP, with dopaminergic neuron loss of approximately 33%. Fenofibrate and pioglitazone also protected against the increased activation of caspase-3, an effector enzyme of the apoptosis cascade that is considered one of the pathological features of PD. Thus, PPAR agonists may contribute to therapeutic strategies in PD. PMID:25127682

Barbiero, Janaína K; Santiago, Ronise M; Persike, Daniele Suzete; da Silva Fernandes, Maria José; Tonin, Fernanda S; da Cunha, Claudio; Lucio Boschen, Suelen; Lima, Marcelo M S; Vital, Maria A B F

2014-11-01

262

Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity.  

PubMed

K2 and several similar purported "incense products" spiked with synthetic cannabinoids are abused as cannabis substitutes. We hypothesized that metabolism of JWH-073, a prevalent cannabinoid found in K2, contributes to toxicity associated with K2 use. Competition receptor binding studies and G-protein activation assays, both performed by employing mouse brain homogenates, were used to determine the affinity and intrinsic activity, respectively, of potential monohydroxylated (M1, M3-M5) and monocarboxylated (M6) metabolites at cannabinoid 1 receptors (CB1Rs). Surprisingly, M1, M4 and M5 retain nanomolar affinity for CB1Rs, while M3 displays micromolar affinity and M6 does not bind to CB1Rs. JWH-073 displays equivalent efficacy to that of the CB1R full agonist CP-55,940, while M1, M3, and M5 act as CB1R partial agonists, and M4 shows little or no intrinsic activity. Further in vitro investigation by Schild analysis revealed that M4 acts as a competitive neutral CB1R antagonist (K(b)?40nM). In agreement with in vitro studies, M4 also demonstrates CB1R antagonism in vivo by blunting cannabinoid-induced hypothermia in mice. Interestingly, M4 does not block agonist-mediated responses of other measures in the cannabinoid tetrad (e.g., locomotor suppression, catalepsy or analgesia). Finally, also as predicted by in vitro results, M1 exhibits agonist activity in vivo by inducing significant hypothermia and suppression of locomotor activity in mice. In conclusion, the present study indicates that further work examining the physiological effects of synthetic cannabinoid metabolism is warranted. Such a complex mix of metabolically produced CB1R ligands may contribute to the adverse effect profile of JWH-073-containing products. PMID:22266354

Brents, Lisa K; Gallus-Zawada, Anna; Radominska-Pandya, Anna; Vasiljevik, Tamara; Prisinzano, Thomas E; Fantegrossi, William E; Moran, Jeffery H; Prather, Paul L

2012-04-01

263

Total Synthesis and Structure-Activity Relationship Study of the Potent cAMP Signaling Agonist (-)-Alotaketal A  

PubMed Central

A detailed account of the first total synthesis of alotaketal A, a tricyclic spiroketal sesterterpenoid that potently activates the cAMP signaling pathway, is provided. The synthesis employs both intra- and intermolecular reductive allylation of esters for assembling one of the fragments and their coupling. A Hg(OAc)2-mediated allylic mercuration is used to introduce the C22-hydroxyl group. The subtle influence of substituents over the course of the spiroketalization process is revealed. The synthesis confirms the relative and absolute stereochemistry of (-)-alotaketal A and allows verification of alotaketal A’s effect over cAMP signaling using reporter-based FRET imaging assays with HEK 293T cells. Our studies also revealed alotaketal A’s unique activity in selectively targeting nuclear PKA signaling in living cells. PMID:23584129

Huang, Jinhua; Yang, Jessica R.

2013-01-01

264

A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo  

Microsoft Academic Search

The aryl hydrocarbon receptor (AhR) is best known as a mediator of toxicity of a diverse family of xenobiotic chemicals such as dioxins and PCBs. However, many naturally occurring compounds also activate AhR. One such compound, 2-(1?H-indole-3?-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), was isolated from tissue and found to be potent in preliminary tests [J. Song, M. Clagett-Dame, R.E. Peterson, M.E.

E. C. Henry; J. C. Bemis; O. Henry; A. S. Kende; T. A. Gasiewicz

2006-01-01

265

Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity.  

PubMed

Exploitation of the biologic activity of neurotrophins is desirable for medical purposes, but their protein nature intrinsically bears adverse pharmacokinetic properties. Here, we report synthesis and biologic characterization of a novel class of low molecular weight, non-peptidic compounds with NGF (nerve growth factor)-mimetic properties. MT2, a representative compound, bound to Trk (tropomyosin kinase receptor)A chain on NGF-sensitive cells, as well as in cell-free assays, at nanomolar concentrations and induced TrkA autophosphorylation and receptor-mediated internalization. MT2 binding involved at least two amino-acid residues within TrkA molecule. Like NGF, MT2 increased phosphorylation of extracellular signal-regulated kinase 1/2 and Akt proteins and production of MKP-1 phosphatase (dual specificity phosphatase 1), modulated p38 mitogen-activated protein kinase activation,sustained survival of serum-starved PC12 or RDG cells, and promoted their differentiation. However, the intensity of such responses was heterogenous, as the ability of maintaining survival was equally possessed by NGF and MT2, whereas the induction of differentiation was expressed at definitely lower levels by the mimetic. Analysis of TrkA autophosphorylation patterns induced by MT2 revealed a strong tyrosine (Tyr)490 and a limited Tyr785 and Tyr674/675 activation, findings coherent with the observed functional divarication. Consistently, in an NGF-deprived rat hippocampal neuronal model of Alzheimer Disease, MT2 could correct the biochemical abnormalities and sustain cell survival. Thus, NGF mimetics may reveal interesting investigational tools in neurobiology, as well as promising drug candidates. PMID:22951986

Scarpi, D; Cirelli, D; Matrone, C; Castronovo, G; Rosini, P; Occhiato, E G; Romano, F; Bartali, L; Clemente, A M; Bottegoni, G; Cavalli, A; De Chiara, G; Bonini, P; Calissano, P; Palamara, A T; Garaci, E; Torcia, M G; Guarna, A; Cozzolino, F

2012-01-01

266

Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity.  

PubMed

Exploitation of the biologic activity of neurotrophins is desirable for medical purposes, but their protein nature intrinsically bears adverse pharmacokinetic properties. Here, we report synthesis and biologic characterization of a novel class of low molecular weight, non-peptidic compounds with NGF (nerve growth factor)-mimetic properties. MT2, a representative compound, bound to Trk (tropomyosin kinase receptor)A chain on NGF-sensitive cells, as well as in cell-free assays, at nanomolar concentrations and induced TrkA autophosphorylation and receptor-mediated internalization. MT2 binding involved at least two amino-acid residues within TrkA molecule. Like NGF, MT2 increased phosphorylation of extracellular signal-regulated kinase1/2 and Akt proteins and production of MKP-1 phosphatase (dual specificity phosphatase 1), modulated p38 mitogen-activated protein kinase activation, sustained survival of serum-starved PC12 or RDG cells, and promoted their differentiation. However, the intensity of such responses was heterogenous, as the ability of maintaining survival was equally possessed by NGF and MT2, whereas the induction of differentiation was expressed at definitely lower levels by the mimetic. Analysis of TrkA autophosphorylation patterns induced by MT2 revealed a strong tyrosine (Tyr)490 and a limited Tyr785 and Tyr674/675 activation, findings coherent with the observed functional divarication. Consistently, in an NGF-deprived rat hippocampal neuronal model of Alzheimer Disease, MT2 could correct the biochemical abnormalities and sustain cell survival. Thus, NGF mimetics may reveal interesting investigational tools in neurobiology, as well as promising drug candidates. PMID:22764098

Scarpi, D; Cirelli, D; Matrone, C; Castronovo, G; Rosini, P; Occhiato, E G; Romano, F; Bartali, L; Clemente, A M; Bottegoni, G; Cavalli, A; De Chiara, G; Bonini, P; Calissano, P; Palamara, A T; Garaci, E; Torcia, M G; Guarna, A; Cozzolino, F

2012-01-01

267

Toll-like receptor agonists induce apoptosis in mouse B-cell lymphoma cells by altering NF-?B activation  

PubMed Central

Toll-like receptor 9 (TLR9) recognizes microbial DNA containing unmethylated cytosyl guanosyl (CpG) sequences, induces innate immune responses, and facilitates antigen-specific adaptive immunity. Recent studies report that in addition to stimulating innate immunity, TLR9 ligands induce apoptosis of TLR9 expressing cancer cells. To understand the mechanism of TLR9-induced apoptosis, we compared the effects of CpG containing oligodeoxynucleotides (CpG ODN) on a mouse B-cell lymphoma line, CH27, with those on mouse splenic B cells. CpG ODN inhibited constitutive proliferation and induced apoptosis in the CH27 B-cell lymphoma line. In contrast, CpG ODN-treated primary B cells were stimulated to proliferate and were rescued from spontaneous apoptosis. The induction of apoptosis required the ODNs to contain the CpG motif and the expression of TLR9 in lymphoma B cells. A decrease in Bcl-xl expression and an increase in Fas and Fas ligand expression accompanied lymphoma B-cell apoptosis. Treatment with the Fas ligand-neutralizing antibody inhibited CpG ODN-induced apoptosis. CpG ODN triggered a transient NF-?B activation in the B-cell lymphoma cell line, which constitutively expresses a high level of c-Myc, while CpG ODN induced sustained increases in NF-?B activation and c-Myc expression in primary B cells. Furthermore, an NF-?B inhibitor inhibited the proliferation of the CH27 B-cell lymphoma line. Our data suggest that the differential responses of lymphoma and primary B cells to CpG ODN are the result of differences in NF-?B activation. The impaired NF-?B activation in the CpG ODN-treated B-cell lymphoma cell line alters the balance between NF-?B and c-Myc, which induces Fas/Fas ligand-dependent apoptosis. PMID:23727784

Arunkumar, Nandini; Liu, Chaohong; Hang, Haiying; Song, Wenxia

2013-01-01

268

Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration.  

PubMed

Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ER? and ER?. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS. PMID:25245209

Chakrabarti, Mrinmay; Haque, Azizul; Banik, Naren L; Nagarkatti, Prakash; Nagarkatti, Mitzi; Ray, Swapan K

2014-10-01

269

Mechanism of action of NH4Cl and other weak bases in the activation of sea urchin eggs  

Microsoft Academic Search

EXPOSURE of unfertilised sea urchin eggs to NH4Cl and other weak bases such as procaine or nicotine results in the activation of some of the events which normally follow fertilisation, such as the acceleration of protein synthesis and the initiation of DNA synthesis1,2. The initial events of normal fertilisation, for example, the cortical reaction and respiratory burst, are bypassed. It

Matthew M. Winkler; James L. Grainger

1978-01-01

270

Unique In Vitro and In Vivo Thrombopoietic Activities of Ingenol 3,20 Dibenzoate, A Ca++-Independent Protein Kinase C Isoform Agonist  

PubMed Central

Thrombopoiesis following severe bone marrow injury frequently is delayed, thereby resulting in life-threatening thrombocytopenia for which there are limited treatment options. The reasons for these delays in recovery are not well understood. Protein kinase C (PKC) agonists promote megakaryocyte differentiation in leukemia cell lines and primary cells. However, little is known about the megakaryopoietic effects of PKC agonists on primary CD34+ cells grown in culture or in vivo. Here we present evidence that the novel PKC isoform-selective agonist 3,20 ingenol dibenzoate (IDB) potently stimulates early megakaryopoiesis of human CD34+ cells. In contrast, broad spectrum PKC agonists failed to do so. In vivo, a single intraperitoneal injection of IDB selectively increased platelets in mice without affecting hemoglobin or white counts. Finally, IDB strongly mitigated radiation-induced thrombocytopenia, even when administered 24 hours after irradiation. Our data demonstrate that novel PKC isoform agonists such as IDB may represent a unique therapeutic strategy for accelerating the recovery of platelet counts following severe marrow injury. PMID:23284657

Racke, Frederick K.; Baird, Maureen; Barth, Rolf F.; Huo, Tianyao; Yang, Weilian; Gupta, Nilendu; Weldon, Michael; Rutledge, Heather

2012-01-01

271

Crystal structure of phospholipase PA2-Vb, a protease-activated receptor agonist from the Trimeresurus stejnegeri snake venom.  

PubMed

Phospholipase A2 (PLA2) is an important component in snake venoms. Here, an acidic PLA2, designated PA2-Vb was isolated from the Trimeresurus stejnegeri snake venom. PA2-Vb acts on a protease-activated receptor (PAR-1) to evoke Ca(2+) release through the inositol 1,4,5-trisphosphate receptor (IP3R) and induces mouse aorta contraction. PAR-1, phospholipase C and IP3R inhibitors suppressed PA2-Vb-induced aorta contraction. The crystal structure reveals that PA2-Vb has the typical fold of most snake venom PLA2. Several PEG molecules bond to a positively charged pocket. The finding offers a novel pharmacological basis of the structure for investigating the PAR-1 receptor and suggests potential applications for PA2-Vb in the vascular system. PMID:25447533

Zeng, Fuxing; Zhang, Wenjuan; Xue, Nairui; Teng, Maikun; Li, Xu; Shen, Bing

2014-12-20

272

Substituted acyclic sulfonamides as human cannabinoid-1 receptor inverse agonists  

Microsoft Academic Search

Sulfonamide analogues of the potent CB1R inverse agonist taranabant were prepared and optimized for potency and selectivity for CB1R. They were variably more potent than the corresponding amide analogues. The most potent representative 22 had good pharmacokinetic and brain levels, but was modestly active in blocking CB1R agonist-mediated hypothermia.

Helen E. Armstrong; Amy Galka; Linus S. Lin; Thomas J. Lanza Jr.; James P. Jewell; Shrenik K. Shah; Ravi Guthikonda; Quang Truong; Linda L. Chang; Grace Quaker; Vincent J. Colandrea; Xinchun Tong; Junying Wang; Sherry Xu; Tung M. Fong; Chun-Pyn Shen; Julie Lao; Jing Chen; Lauren P. Shearman; D. Sloan Stribling; Kimberly Rosko; Alison Strack; Sookhee Ha; Lex Van der Ploeg; Mark T. Goulet; William K. Hagmann

2007-01-01

273

The peptidic urotensin-II receptor ligand GSK248451 possesses less intrinsic activity than the low-efficacy partial agonists SB-710411 and urantide in native mammalian tissues and recombinant cell systems  

PubMed Central

Several peptidic urotensin-II (UT) receptor antagonists exert ‘paradoxical' agonist activity in recombinant cell- and tissue-based bioassay systems, likely the result of differential urotensin-II receptor (UT receptor) signal transduction/coupling efficiency between assays. The present study has examined this phenomenon in mammalian arteries and recombinant UT-HEK (human embryonic kidney) cells. BacMam-mediated recombinant UT receptor upregulation in HEK cells augmented agonist activity for all four peptidic UT ligands studied. The nominal rank order of relative intrinsic efficacy was U-II>urantide ([Pen5-DTrp7-Orn8]hU-II4–11)>SB-710411 (Cpa-c[DCys-Pal-DTrp-Lys-Val-Cys]-Cpa-amide)?GSK248451 (Cin-c[DCys-Pal-DTrp-Orn-Val-Cys]-His-amide) (the relative coupling efficiency of recombinant HEK cells was cat>human?rat UT receptor). The present study further demonstrated that the use of high signal transduction/coupling efficiency isolated blood vessel assays (primate>cat arteries) is required in order to characterize UT receptor antagonism thoroughly. This cannot be attained simply by using the rat isolated aorta, an artery with low signal transduction/coupling efficiency in which low-efficacy agonists appear to function as antagonists. In contrast to the ‘low-efficacy agonists' urantide and SB-710411, GSK248451 functioned as a potent UT receptor antagonist in all native isolated tissues studied (UT receptor selectivity was confirmed in the rat aorta). Further, GSK248451 exhibited an extremely low level of relative intrinsic activity in recombinant HEK cells (4–5-fold less than seen with urantide). Since GSK248451 (1?mg?kg?1, i.v.) blocked the systemic pressor actions of exogenous U-II in the anaesthetized cat, it represents a suitable peptidic tool antagonist for delineating the role of U-II in the aetiology of mammalian cardiometabolic diseases. PMID:16547525

Behm, David J; Stankus, Gerald; Doe, Christopher P A; Willette, Robert N; Sarau, Henry M; Foley, James J; Schmidt, Dulcie B; Nuthulaganti, Parvathi; Fornwald, James A; Ames, Robert S; Lambert, David G; Calo', Girolamo; Camarda, Valeria; Aiyar, Nambi V; Douglas, Stephen A

2006-01-01

274

Weak superconductivity  

SciTech Connect

This Proceedings consist of invited papers and contributions presented at the Fifth Czechoslovak Symposium on Weak Superconductivity (5CSSWS) held at Smolenice Castle from May 29 to June 2, 1989. This five-days meeting was organized by the Institute of Electrical Engineering, Electro-Physical Research Center, Slovak Academy of Sciences, Bratislava, in cooperation with the Institute of Measurement and Measuring Techniques, EPRC, SAS, Bratislava and the Institute of Physics, CSAS, in Prague. From the beginning the Czechoslovak activities in weak superconductivity were concerned with preparation and study of properties of weak links based on superconducting thin films of Pb, Nb, and Nb{sub 3}Sn, as well as bulk point contacts and rf SQUIDs for magnetometry. The possibility of application of superconducting weak links with tunnel and bridge junctions in measuring techniques, magnetometry, medicine, metrology, radiometry, etc., were studied. Some of these activities are still in progress. These Proceedings include contributions on the properties of tunnel junctions, electrodynamics of SQUIDs, computer simulation of interferometers, multi-channel magnetometry for biomagnetic applications, etc. The discovery of high T{sub c} superconductivity influenced strongly the topics of 5CSSWS. Most contributions of this volume are devoted to the preparation of high T{sub c} superconductor thin films by vacuum deposition techniques because of their dominant role in technology of cryoelectronic microcircuits. Further, results in the study of physical properties of high T{sub c} superconducting thin films by means of both dc and rf methods, tunnel and microcontact spectroscopy, are documented. Other contributions deal with preparation of rf SQUIDs, radiation detectors, etc.

Benacka, S.; Kedro, M.

1990-01-01

275

GILA WOODPECKER AGONISTIC BEHAVIOR  

Microsoft Academic Search

ABSTRCT.--Agonistic behavior of Gila Woodpeckers, including vocalizations, visual displays, and other related behaviors, is described. Interactions with both con- and heterospecifics were analyzed by stochastic processes, and it is shown that the timing of aggression toward a species coincided with the time during which that species was searching for nest sites or cavities. The behavior shown toward Flickers and Starlings

GENE L. BRENOWITZ

276

Activation of estrogen receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist, 3,3',4,4',5-Pentachlorobiphenyl (PCB126) in salmon in vitro system  

SciTech Connect

Available toxicological evidence indicates that environmental contaminants with strong affinity to the aryl hydrocarbon receptor (AhR) have anti-estrogenic properties in both mammalian and non-mammalian in vivo and in vitro studies. The primary objective of the present study was to investigate the interactions between the AhR and estrogen receptor (ER) in salmon in vitro system. Two separate experiments were performed and gene expression patterns were analyzed using real-time PCR, while protein analysis was done by immunoblotting. Firstly, salmon primary hepatocytes were exposed to the dioxin-like PCB126 at 1, 10 and 50 pM and ER agonist nonylphenol (NP) at 5 and 10 {mu}M, singly or in combination. Our data showed increased levels of ER-mediated gene expression (vitellogenin: Vtg, zona radiata protein: Zr-protein, ER{alpha}, ER{beta} and vigilin) as well as increased cellular ER{alpha} protein levels after treatment with NP and PCB126, singly or in combination. PCB126 treatment alone produced, as expected, increased transcription of AhR nuclear translocator (Arnt), CYP1A1 and AhR repressor (AhRR) mRNA, and these responses were reduced in the presence of NP concentrations. PCB126 exposure alone did not produce significant effect on AhR2{alpha} mRNA but increased (at 1 and 50 pM) and decreased (at 10 pM) AhR2{beta} mRNA below control level. For AhR2{delta} and AhR2{gamma} isotypes, PCB126 (at 1 pM) produced significant decreases (total inhibition for AhR2{gamma}) of mRNA levels but was indifferent at 10 and 50 pM, compared to control. NP exposure alone produced concentration-dependent significant decrease of AhR2{beta} mRNA. In contrast, while 5 {mu}M NP produced an indifferent effect on AhR2{delta} and AhR2{gamma}, 10 {mu}M NP produced significant decrease (total inhibition for AhR2{gamma}) and the presence of NP produced apparent PCB126 concentration-specific modulation of all AhR isotypes. A second experiment was performed to evaluate the involvement of ER isoforms in PCB126 mediated estrogenicity. Here, cells were treated with the different concentrations of PCB126, alone or in combination with ICI182,780 (ICI) and sampled at 12, 24 and 48 h post-exposure. Our data showed that PCB126 produced a time- and concentration-specific increase of ER{alpha} and Vtg expressions and these responses were decreased in the presence of ICI. In general, these responses show a direct PCB126 induced transcriptional activation of ER{alpha} and estrogenic responses in the absence of ER agonists. Although not conclusive, our findings represent the first study showing the activation of estrogenic responses by a dioxin-like PCB in fish in vitro system and resemble the 'ER-hijacking' hypothesis that was recently proposed. Thus, the direct estrogenic actions of PCB126 observed in the present study add new insight on the mechanisms of ER-AhR cross-talk, prompting a new wave of discussion on whether AhR-mediated anti-estrogenicity is an exception rather than rule of action.

Mortensen, Anne Skjetne [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway); Arukwe, Augustine [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway)], E-mail: arukwe@bio.ntnu.no

2008-03-01

277

Mechanisms underlying activation of transient BK current in rabbit urethral smooth muscle cells and its modulation by IP3-generating agonists  

PubMed Central

We used the perforated patch-clamp technique at 37°C to investigate the mechanisms underlying the activation of a transient large-conductance K+ (tBK) current in rabbit urethral smooth muscle cells. The tBK current required an elevation of intracellular Ca2+, resulting from ryanodine receptor (RyR) activation via Ca2+-induced Ca2+ release, triggered by Ca2+ influx through L-type Ca2+ (CaV) channels. Carbachol inhibited tBK current by reducing Ca2+ influx and Ca2+ release and altered the shape of spike complexes recorded under current-clamp conditions. The tBK currents were blocked by iberiotoxin and penitrem A (300 and 100 nM, respectively) and were also inhibited when external Ca2+ was removed or the CaV channel inhibitors nifedipine (10 ?M) and Cd2+ (100 ?M) were applied. The tBK current was inhibited by caffeine (10 mM), ryanodine (30 ?M), and tetracaine (100 ?M), suggesting that RyR-mediated Ca2+ release contributed to the activation of the tBK current. When IP3 receptors (IP3Rs) were blocked with 2-aminoethoxydiphenyl borate (2-APB, 100 ?M), the amplitude of the tBK current was not reduced. However, when Ca2+ release via IP3Rs was evoked with phenylephrine (1 ?M) or carbachol (1 ?M), the tBK current was inhibited. The effect of carbachol was abolished when IP3Rs were blocked with 2-APB or by inhibition of muscarinic receptors with the M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (1 ?M). Under current-clamp conditions, bursts of action potentials could be evoked with depolarizing current injection. Carbachol reduced the number and amplitude of spikes in each burst, and these effects were reduced in the presence of 2-APB. In the presence of ryanodine, the number and amplitude of spikes were also reduced, and carbachol was without further effect. These data suggest that IP3-generating agonists can modulate the electrical activity of rabbit urethral smooth muscle cells and may contribute to the effects of neurotransmitters on urethral tone. PMID:23804200

Kyle, Barry D.; Bradley, Eamonn; Large, Roddy; Sergeant, Gerard P.; McHale, Noel G.; Thornbury, Keith D.

2013-01-01

278

Detection of weak forces based on noise-activated switching in bistable optomechanical systems  

NASA Astrophysics Data System (ADS)

We propose to use cavity optomechanical systems in the regime of optical bistability for the detection of weak harmonic forces. Due to the optomechanical coupling an external force on the mechanical oscillator modulates the resonance frequency of the cavity and consequently the switching rates between the two bistable branches. A large difference in the cavity output fields then leads to a strongly amplified homodyne signal. We determine the switching rates as a function of the cavity detuning from extensive numerical simulations of the stochastic master equation as appropriate for continuous homodyne detection. We develop a two-state rate equation model that quantitatively describes the slow switching dynamics. This model is solved analytically in the presence of a weak harmonic force to obtain approximate expressions for the power gain and signal-to-noise ratio that we then compare to force detection with an optomechanical system in the linear regime.

Aldana, Samuel; Bruder, Christoph; Nunnenkamp, Andreas

2014-12-01

279

Thermotolerant Campylobacter with no or weak catalase activity isolated from dogs  

Microsoft Academic Search

ThermotolerantCampylobacter strains isolated from dog feces were characterized by phenotypical tests, DNA base composition, and DNA-DNA-hybridization. Out of 98 strains, 63 were catalase negative or weakly reacting (CNW); they were found in diarrheic as well as in healthy dogs. The CNW strains were all nalidixic-acid sensitive, hippurate negative, and grew at 42°C but not at 25°C. Seven strains were further

Karin Sandstedt; Jan Ursing; Mats Walder

1983-01-01

280

Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein  

PubMed Central

Short lipidated peptide sequences derived from various intracellular loop regions of G protein-coupled receptors (GPCRs) are named pepducins and act as allosteric modulators of a number of GPCRs. Recently, a pepducin selectively targeting the C-X-C chemokine receptor type 4 (CXCR4) was found to be an allosteric agonist, active in both cell-based assays and in vivo. However, the precise mechanism of action of this class of ligands remains poorly understood. In particular, given the diversity of signaling effectors that can be engaged by a given receptor, it is not clear whether pepducins can show biased signaling leading to functional selectivity. To explore the ligand-biased potential of pepducins, we assessed the effect of the CXCR4 selective pepducin, ATI-2341, on the ability of the receptor to engage the inhibitory G proteins (Gi1, Gi2 and Gi3), G13, and ?-arrestins. Using bioluminescence resonance energy transfer-based biosensors, we found that, in contrast to the natural CXCR4 ligand, stromal cell-derived factor-1?, which promotes the engagement of the three Gi subtypes, G13 and the two ?-arrestins, ATI-2341 leads to the engagement of the Gi subtypes but not G13 or the ?-arrestins. Calculation of the transduction ratio for each pathway revealed a strong negative bias of ATI-2341 toward G13 and ?-arrestins, revealing functional selectivity for the Gi pathways. The negative bias toward ?-arrestins results from the reduced ability of the pepducin to promote GPCR kinase-mediated phosphorylation of the receptor. In addition to revealing ligand-biased signaling of pepducins, these findings shed some light on the mechanism of action of a unique class of allosteric regulators. PMID:24309376

Quoyer, Julie; Janz, Jay M.; Luo, Jiansong; Ren, Yong; Armando, Sylvain; Lukashova, Viktoria; Benovic, Jeffrey L.; Carlson, Kenneth E.; Hunt, Stephen W.; Bouvier, Michel

2013-01-01

281

Bezafibrate, a peroxisome proliferator-activated receptor ? agonist, decreases circulating CD14(+)CD16(+) monocytes in patients with type 2 diabetes.  

PubMed

CD14(+)CD16(+) monocytes are proinflammatory cells that produce tumor necrosis factor and interleukin (IL)-1?. The number of circulating CD14(+)CD16(+) monocytes is increased in patients with chronic renal failure or coronary artery disease. We investigated the effect of bezafibrate, a peroxisome proliferator-activated receptor ? agonist, on circulating CD14(+)CD16(+) monocytes in patients with type 2 diabetes. Using cells isolated from type 2 diabetic subjects, we also examined the in vitro expression of CD16 messenger RNA (mRNA) by mononuclear cells (MNCs) exposed to bezafibrate. The percentage of CD14(+)CD16(+) monocytes among all CD14(+) monocytes was significantly higher in subjects with impaired glucose tolerance (P < 0.01) or type 2 diabetes (P < 0.05) than in those with normal glucose tolerance. The percentage of CD14(+)CD16(+) monocytes was significantly lower in patients with type 2 diabetes who were taking bezafibrate (400 mg/d) than in patients not taking it (P < 0.01). Treatment with bezafibrate for 12 weeks significantly reduced the percentage of circulating CD14(+)CD16(+) monocytes from 45.4 ± 25.2% to 38.3 ± 21.8% (P = 0.0144). In an in vitro study, the expression of CD16 mRNA by MNCs from 6 diabetic subjects was decreased after 24 hours of treatment with 10 ?g/mL of bezafibrate (P < 0.05). Expression of IL-1? mRNA by MNCs was also decreased after 24 hours of treatment with 10 ?g/mL of bezafibrate, whereas the IL-1? level in the culture supernatant was significantly decreased after treatment of MNCs with either 1 or 10 ?g/mL of bezafibrate. In conclusion, bezafibrate decreased circulating CD14(+)CD16(+) monocytes in patients with type 2 diabetes, probably by inhibiting the expression of CD16 mRNA. PMID:25134759

Terasawa, Tomoko; Aso, Yoshimasa; Omori, Kyoko; Fukushima, Maiko; Momobayashi, Atsushi; Inukai, Toshihiko

2015-02-01

282

Induction of ovarian activity and ovulation in an induced ovulator, the maned wolf (Chrysocyon brachyurus), using GnRH agonist and recombinant LH.  

PubMed

Assisted reproductive techniques, such as ovarian manipulation and artificial insemination, are useful for enhancing genetic management of threatened wildlife maintained ex situ. In this study, we used noninvasive fecal hormone monitoring to investigate (1) the influence of pairing with a male on endocrine responses of female maned wolves (Chrysocyon brachyurus) to a GnRH agonist (deslorelin) and (2) the efficiency of recombinant LH (reLH) on ovulation induction in females housed alone. Deslorelin (2.1 mg Ovuplant) was given to females that were either paired with a male (n = 4) or housed alone (n = 7); the implant was removed 7 to 11 days postimplantation. Three of seven singleton females were injected with reLH (0.0375 mg) on the day of implant removal, whereas the remaining females (n = 4) did not receive the additional treatment. Fecal samples were collected 5 to 7 days/wk from all females starting 11 days prior to hormone insertion until at least 70 days post implant removal for a total of 11 hormone treatment cycles. Fecal estrogen and progestagen metabolites were extracted and analyzed by enzyme immunoassay. Evidence of ovulation, demonstrated by a surge of estrogen followed by a significant rise in progestagen, occurred in all paired females. Three of the four singleton females that did not receive reLH treatment exhibited no rise in progestagen after an estrogen surge. All singleton females treated with reLH exhibited a rise in fecal progestagen after injection, indicating ovulation. In conclusion, deslorelin is effective at inducing ovarian activity and ovulation in paired female maned wolves; however, exogenous reLH is needed to induce ovulation in females housed alone. The findings obtained from this study serve as a foundation for future application of artificial insemination to enhance genetic management of this threatened species ex situ. PMID:24742964

Johnson, Amy E M; Freeman, Elizabeth W; Colgin, Mark; McDonough, Caitlin; Songsasen, Nucharin

2014-07-01

283

Suzaku Observes Weak Flares from IGRJ17391-3021 Representing a Common Low-Activity State in this SFXT  

NASA Technical Reports Server (NTRS)

We present an analysis of a 37-ks observation of the supergiant fast X-ray transient (SFXT) IGRJ17391 -3021 (=XTEJ1739-302) gathered with Suzaku. The source evolved from quiescence to a low-activity level culminating in three weak flares lasting approx.3 ks each in which the peak luminosity is only a factor of 5 times that of the pre-flare luminosity. The minimum observed luminosity was 1.3 x 10(exp 33) erg/s (d/2.7 kpc)(exp 2) in the 0.5-10 keV range. The weak flares are accompanied by significant changes in the spectral parameters including a column density (N(sub H) = (4.1(+0.4/-0.5)) x 10(exp 22)/sq cm) that is approx.2-9 times the absorption measured during quiescence. Accretion of obscuring clumps of stellar wind material can explain both the small flares and the increase in NH. Placing this observation in the context of the recent Swift monitoring campaign, we find that weak-flaring episodes, or at least epochs of enhanced activity just above the quiescent level but well below the moderately bright or high-luminosity outbursts, represent more than 60+/-5% of all observations in the 0.5-10keV energy range making this the most common state in the emission behavior of IGRJ17391 -3021.

Bodaghee, A.; Tomsick, J. A.; Rodriquez, J.; Chaty, S.; Pottschmidt, K.; Walter, R.; Romano, P.

2010-01-01

284

Antidiabetic and hypolipidemic effects of a novel dual peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist, E3030, in db/db mice and beagle dogs.  

PubMed

We investigated the antidiabetic effects of E3030, which is a potent dual activator of peroxisome proliferator-activated receptor (PPAR) alpha and PPARgamma, in an animal model of diabetes, C57BL/KsJ-db/db mice (db/db mice), and the lipidemic effects of E3030 in beagle dogs, whose PPARalpha and PPARgamma transactivation responses to E3030 were similar to those of humans. E3030 activated human PPARalpha, mouse PPARalpha, dog PPARalpha, human PPARgamma, mouse PPARgamma, and dog PPARgamma with EC(50) values of 65, 920, 87, 34, 73, and 34 nM, respectively, in the chimeric GAL4-PPAR receptor transactivation reporter assay. In db/db mice orally administered E3030 decreased blood glucose, triglyceride (TG), non-esterified fatty acids (NEFA), and insulin levels and increased blood adiponectin levels during a 14-day experimental period. Significant effects on blood glucose and adiponectin levels were observed at a dose of 3 mg/kg or greater. Furthermore, significant effects on blood TG, NEFA, and insulin levels were observed at doses of 1 mg/kg or more. An oral glucose tolerance test (OGTT) performed on Day 15 showed that E3030 at 3 mg/kg improved glucose tolerance in this model. Fourteen days of oral treatment with E3030 at a dose of 0.03 mg/kg or greater showed remarkable TG- and non high-density lipoprotein (non-HDL) cholesterol-lowering effects in beagle dogs. These results were similar to those observed for the PPARalpha agonist fenofibrate. E3030 also reduced apo C-III levels on Days 7 and 14, and elevated lipoprotein lipase (LPL) levels on Day 15. These results indicate that the TG- and non-HDL cholesterol-lowering actions of E3030 involve combined effects on reduction of apo C-III and elevation of LPL, resulting in increased lipolysis. The experimental results in animals suggest that E3030 has potential for use in the treatment of various aspects of metabolic dysfunction in type 2 diabetes, including dyslipidemia, hyperglycemia, hyperinsulinemia, and impaired glucose disposal. PMID:18776709

Kasai, Shunji; Inoue, Takashi; Yoshitomi, Hideki; Hihara, Taro; Matsuura, Fumiyoshi; Harada, Hitoshi; Shinoda, Masanobu; Tanaka, Isao

2008-09-01

285

Immobilized thrombin receptor agonist peptide accelerates wound healing in mice.  

PubMed

To accelerate the healing processes in wound repair, attempts have been repeatedly made to use growth factors including thrombin and its peptide fragments. Unfortunately, the employment of thrombin is limited because of its high liability and pro-inflammatory actions at high concentrations. Some cellular effects of thrombin in wound healing are mediated by the activation of protease activated receptor-1 (PAR-1). The thrombin receptor agonist peptide (TRAP:SFLLRN) activates this receptor and mimics the effects of thrombin, but TRAP is a relatively weak agonist. We speculated that the encapsulated peptide may be more effective for PAR-1 activation than nonimmobilized peptide and developed a novel method for TRAP encapsulation in hydrogel films based on natural and synthetic polymers. The effects of an encapsulated TRAP in composite poly(N-vinyl caprolactam)-calcium alginate (PVCL) hydrogel films were investigated in a mouse model of wound healing. On day 7 the wound sizes decreased by about 60% under TRAP-chitosan-containing PVCL films, as compared with control films without TRAP. In the case of TRAP-polylysine-containing films no significant decrease in wound sizes was found. The fibroblast/macrophage ratio increased under TRAP-containing films on day 3 and on day 7. The number of proliferating fibroblasts increased to 150% under TRAP-chitosan films on day 7 as compared with control films. The number of [3H]-thymidine labeled endothelial and epithelial cells in granulation tissues was also enhanced. Thus, the immobilized TRAP to PVCL-chitosan hydrogel films were found to promote wound healing following the stimulation of fibroblast and epithelial cell proliferation and neovascularization. Furthermore, TRAP was shown to inhibit the secretion of the inflammatory mediator PAF from stimulated rat peritoneal mast cells due to augmentation of NO release from the mast cells. The encapsulated TRAP is suggested to accelerate wound healing due to the anti-inflammatory effects and earlier development of the proliferative phase of wound healing. PMID:11697718

Strukova, S M; Dugina, T N; Chistov, I V; Lange, M; Markvicheva, E A; Kuptsova, S; Zubov, V P; Glusa, E

2001-10-01

286

Novel Amino-Carbonitrile-Pyrazole Identified in a Small Molecule Screen Activates Wild-Type and ?F508 Cystic Fibrosis Transmembrane Conductance Regulator in the Absence of a cAMP Agonist  

PubMed Central

Cystic fibrosis (CF) is caused by loss-of-function mutations in the CF transmembrane conductance regulator (CFTR) Cl? channel. We developed a phenotype-based high-throughput screen to identify small-molecule activators of human airway epithelial Ca2+-activated Cl? channels (CaCCs) for CF therapy. Unexpectedly, screening of ?110,000 synthetic small molecules revealed an amino-carbonitrile-pyrazole, Cact-A1, that activated CFTR but not CaCC Cl? conductance. Cact-A1 produced large and sustained CFTR Cl? currents in CFTR-expressing Fisher rat thyroid (FRT) cells and in primary cultures of human bronchial epithelial (HBE) cells, without increasing intracellular cAMP and in the absence of a cAMP agonist. Cact-A1 produced linear whole-cell currents. Cact-A1 also activated ?F508-CFTR Cl? currents in low temperature-rescued ?F508-CFTR-expressing FRT cells and CF-HBE cells (from homozygous ?F508 patients) in the absence of a cAMP agonist, and showed additive effects with forskolin. In contrast, N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770) and genistein produced little or no ?F508-CFTR Cl? current in the absence of a cAMP agonist. In FRT cells expressing G551D-CFTR and in CF nasal polyp epithelial cells (from a heterozygous G551D/Y1092X-CFTR patient), Cact-A1 produced little Cl? current by itself but showed synergy with forskolin. The amino-carbonitrile-pyrazole Cact-A1 identified here is unique among prior CFTR-activating compounds, as it strongly activated wild-type and ?F508-CFTR in the absence of a cAMP agonist. Increasing ?F508-CFTR Cl? conductance by an “activator,” as defined by activation in the absence of cAMP stimulation, provides a novel strategy for CF therapy that is different from that of a “potentiator,” which requires cAMP elevation. PMID:23788656

Park, Jinhong; Seo, Yohan; Verkman, A. S.

2013-01-01

287

Mixed ?/? partial opioid agonists as potential treatments for cocaine dependence.  

PubMed

Cocaine use activates the dopamine reward pathway, leading to the reinforcing effects of dopamine. There is no FDA-approved medication for treating cocaine dependence. Opioid agonists and antagonists have been approved for treating opioid and alcohol dependence. Agonists that activate the ? opioid receptor increase dopamine levels in the nucleus accumbens, while ? receptor antagonists decrease dopamine levels by blocking the effects of endogenous opioid peptides. Activation of the ? opioid receptor decreases dopamine levels and leads to dysphoria. In contrast, inhibition of the ? opioid receptor decreases dopamine levels in the nucleus accumbens. Antagonists acting at the ? receptor reduce stress-mediated behaviors and anxiety. Mixed partial ?/? agonists have the potential of striking a balance between dopamine levels and attenuating relapse to cocaine. The pharmacological properties of mixed ?/? opioid receptor agonists will be discussed and results from clinical and preclinical studies will be presented. Results from studies with some of the classical benzomorphans and morphinans will be presented as they lay the foundation for structure-activity relationships. Recent results with other partial opioid agonists, including buprenorphine derivatives and the mixed ?/? peptide CJ-15,208, will be discussed. The behavioral effects of the mixed ?/? MCL-741, an aminothiazolomorphinan, in attenuating cocaine-induced locomotor activity will be presented. While not a mixed ?/? opioid, results obtained with GSK1521498, a ? receptor inverse agonist, will be discussed. Preclinical strategies and successes will lay the groundwork for the further development of mixed ?/? opioid receptor agonists to treat cocaine dependence. PMID:24484983

Bidlack, Jean M

2014-01-01

288

Beta-Adrenergic Agonists  

PubMed Central

Inhaled ?2-adrenoceptor (?2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the ?2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of ?2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and ?-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled ?2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised.

Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

2010-01-01

289

Liver X receptor agonist GW3965 dose-dependently regulates lps-mediated liver injury and modulates posttranscriptional TNF-alpha production and p38 mitogen-activated protein kinase activation in liver macrophages.  

PubMed

Modulation of the host inflammatory response to infection may be a key approach to improve the outcome of patients with sepsis and organ injury. We previously reported that pretreatment of rats with the liver X receptor (LXR) agonist GW3965 reduced the liver injury associated with endotoxemia and attenuated the production of TNF-alpha by rat Kupffer cells. Here, we examine the dose-dependent effect of GW3965 on liver injury and cytokine production in a rat model of endotoxemia and explore the mechanisms underlying TNF-alpha attenuation in Kupffer cells. Low doses of GW3965 (0.1 or 0.3 mg/kg) administered 30 min before infusion of LPS and peptidoglycan significantly attenuated the increase in plasma levels of the liver injury markers alanine aminotransferase and bilirubin (6 h) as well as the inflammatory mediators TNF-alpha (1 h) and prostaglandin E2 (6 h) associated with endotoxemia. In contrast, pretreatment with a higher dose of GW3965 (1.0 mg/kg) had no such effect. Studies in primary cultures of rat Kupffer cells demonstrated that LXR agonist treatment attenuated both the secreted and cell-associated levels of TNF-alpha, whereas TNF-alpha mRNA levels were not altered. Phosphorylated p38 mitogen-activated protein kinase, which plays a major role in production of TNF-alpha at the posttranscriptional level, was attenuated by GW3965 treatment in Kupffer cells. Experiments in murine LXR-deficient Kupffer cells demonstrated enhanced production of TNF-alpha in Kupffer cells from LXR-alpha(-/-) mice when challenged with LPS compared with LXR-beta(-/-) and wild-type Kupffer cells. Taken together, these results argue in favor of a novel mechanism for LXR-mediated attenuation of liver injury by interfering with posttranscriptional regulation of TNF-alpha in Kupffer cells. PMID:19295476

Wang, Yun Yong; Dahle, Maria K; Steffensen, Knut R; Reinholt, Finn P; Collins, Jon L; Thiemermann, Christoph; Aasen, Ansgar O; Gustafsson, Jan-Ake; Wang, Jacob E

2009-11-01

290

Anti-nociception mediated by a ? opioid receptor agonist is blocked by a ? receptor agonist  

PubMed Central

BACKGROUND AND PURPOSE The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the ? (MOP), ? (DOP), ? (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. EXPERIMENTAL APPROACH We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. KEY RESULTS Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg?1), unmasked etorphine (3 mg·kg?1) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg?1) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg?1) and diazepam (1 mg·kg?1). CONCLUSIONS AND IMPLICATIONS Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24923251

Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

2015-01-01

291

Non-thermal influence of a weak microwave on nerve fiber activity  

E-print Network

This paper presents a short selective review of the non-thermal weak microwave field impact on a nerve fiber. The published results of recent experiments are reviewed and analyzed. The theory of the authors is presented, according to which there are strongly pronounced resonances in the range of about 30-300 GHz associated with the excitation of ultrasonic vibrations in the membrane as a result of interactions with the microwave radiation. These forced vibrations create acoustic pressure, which may lead to the redistribution of the protein transmembrane channels, thus changing the threshold of the action potential excitation in the axons of the neural network. The problem of surface charge on the bilayer lipid membrane of the nerve fiber is discussed. Various experiments for observing the effects considered are also discussed.

Shneider, M N

2014-01-01

292

Monoterpenoid agonists of TRPV3  

PubMed Central

Background and purpose: Transient receptor potential (TRP) V3 is a thermosensitive ion channel expressed predominantly in the skin and neural tissues. It is activated by warmth and the monoterpene camphor and has been hypothesized to be involved in skin sensitization. A selection of monoterpenoid compounds was tested for TRPV3 activation to establish a structure-function relationship. The related channel TRPM8 is activated by cool temperatures and a number of chemicals, among them the monoterpene (-)-menthol. The overlap of the receptor pharmacology between the two channels was investigated. Experimental approach: Transfected HEK293 cells were superfused with the test substances. Evoked currents were measured in whole cell patch clamp measurements. Dose-response curves for the most potent agonists were obtained in Xenopus laevis oocytes. Key results: Six monoterpenes significantly more potent than camphor were identified: 6-tert-butyl-m-cresol, carvacrol, dihydrocarveol, thymol, carveol and (+)-borneol. Their EC50 is up to 16 times lower than that of camphor. All of these compounds carry a ring-located hydroxyl group and neither activates TRPM8 to a major extent. Conclusions and implications: Terpenoids have long been recognized as medically and pharmacologically active compounds, although their molecular targets have only partially been identified. TRPV3 activation may be responsible for several of the described effects of terpenoids. We show here that TRPV3 is activated by a number of monoterpenes and that a secondary hydroxyl-group is a structural requirement. PMID:17420775

Vogt-Eisele, A K; Weber, K; Sherkheli, M A; Vielhaber, G; Panten, J; Gisselmann, G; Hatt, H

2007-01-01

293

Multiple tyrosine metabolites are GPR35 agonists  

PubMed Central

Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including ?-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3?,5?-triiodothyronine, 3,3?,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

Deng, Huayun; Hu, Haibei; Fang, Ye

2012-01-01

294

Effect of the 5HT 1A partial agonist buspirone on regional brain electrical activity in man: a functional neuroimaging study using low-resolution electromagnetic tomography (LORETA)  

Microsoft Academic Search

In a double-blind, placebo-controlled study, the effects of 20 mg buspirone — a 5-HT1A partial agonist — on regional electrical generators within the human brain were investigated utilizing three-dimensional EEG tomography. Nineteen-channel vigilance-controlled EEG recordings were carried out in 20 healthy subjects before and 1, 2, 4, 6 and 8 h after drug intake. Low-resolution electromagnetic tomography (LORETA; Key Institute

Peter Anderer; Bernd Saletu; Roberto D. Pascual-Marqui

2000-01-01

295

A Pilot Study of the Effects of Gonadotropin-Releasing Hormone Agonist Therapy on Brain Activation Pattern in a Man With Pedophilia  

Microsoft Academic Search

Gonadotropin-releasing hormone (GnRH) agonists, such as leuprorelin, are recommended in the patients with pedophilia at highest risk of offending. However, the cerebral mechanisms of the effects of these testosterone-decreasing drugs are poorly known. This study aimed to identify changes caused by leuprorelin in a pedophilic patient’s brain responses to pictures representing children. Clinical, endocrine, and fMRI investigations were done of

Virginie Moulier; Véronique Fonteille; Mélanie Pélégrini-Issac; Bernard Cordier; Sophie Baron-Laforêt; Emeline Boriasse; Emmanuel Durand; Serge Stoléru

2012-01-01

296

Modification of TLR-induced activation of human dendritic cells by type I IFN: synergistic interaction with TLR4 but not TLR3 agonists.  

PubMed

Upon detection of direct and indirect signs of infection, dendritic cells (DC) undergo functional changes that modify their ability to elicit immune responses. Type I interferon (IFN-alpha/beta), which includes a large family of closely related infection-inducible cytokines, represents one indirect signal that can act as a DC stimulus. We have investigated the ability of IFN-alpha/beta subtypes to affect DC function and to influence DC responses to Toll-like receptor (TLR) agonists (i.e., direct infection-associated signals). Subtle differences were observed among 15 subtypes of IFN-alpha/beta in the ability to stimulate expression of maturation markers and chemokines by human monocyte-derived DC, with IFN-omega being the most unique in its effects. Pre-treatment with IFN-alpha/beta did not alter the ability of DC to mature in response to subsequent contact with TLR agonists, but did modulate their secretion of chemokines. Conversely, IFN-alpha/beta was shown to act synergistically with TLR4 but not TLR3 agonists for the induction of maturation and chemokine production when DC were exposed to IFN-alpha/beta and TLR ligands simultaneously. Taken together, these results indicate a complex role for IFN-alpha/beta in regulating DC function during the course an infection, which varies according to IFN-alpha/beta subtype and the timing of exposure to other stimuli. PMID:16783851

Walker, Josef; Tough, David F

2006-07-01

297

Photolabelling the urotensin II receptor reveals distinct agonist- and partial-agonist-binding sites  

PubMed Central

The mechanism by which GPCRs (G-protein-coupled receptors) undergo activation is believed to involve conformational changes following agonist binding. We have used photoaffinity labelling to identify domains within GPCRs that make contact with various photoreactive ligands in order to better understand the activation mechanism. Here, a series of four agonist {[Bpa1]U-II (Bpa is p-benzoyl-L-phenylalanine), [Bpa2]U-II, [Bpa3]U-II and [Bpa4]U-II} and three partial agonist {[Bpa1Pen5D-Trp7Orn8]U-II (Pen is penicillamine), [Bpa2Pen5D-Trp7Orn8]U-II and [Pen5Bpa6D-Trp7Orn8]U-II} photoreactive urotensin II (U-II) analogues were used to identify ligand-binding sites on the UT receptor (U-II receptor). All peptides bound the UT receptor expressed in COS-7 cells with high affinity (Kd of 0.3–17.7 nM). Proteolytic mapping and mutational analysis led to the identification of Met288 of the third extracellular loop of the UT receptor as a binding site for all four agonist peptides. Both partial agonists containing the photoreactive group in positions 1 and 2 also cross-linked to Met288. We found that photolabelling with the partial agonist containing the photoreactive group in position 6 led to the detection of transmembrane domain 5 as a binding site for that ligand. Interestingly, this differs from Met184/Met185 of the fourth transmembrane domain that had been identified previously as a contact site for the full agonist [Bpa6]U-II. These results enable us to better map the binding pocket of the UT receptor. Moreover, the data also suggest that, although structurally related agonists or partial agonists may dock in the same general binding pocket, conformational changes induced by various states of activation may result in slight differences in spatial proximity within the cyclic portion of U-II analogues. PMID:17064254

Holleran, Brian J.; Beaulieu, Marie-Eve; Proulx, Christophe D.; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard

2006-01-01

298

TO901317, a potent LXR agonist, is an inverse agonist of CAR.  

PubMed

The basal transcriptional activity of unliganded human constitutive androstane receptor (hCAR) was shown to be repressed by the potent liver X receptor (LXR) agonist, TO901317, in a concentration-dependent manner using a reporter assay in cultured cells. TO901317 also repressed the basal transcriptional activity of both mouse and rat CAR. The certified hCAR agonist, CITCO, partially reversed this repressive effect of TO901317 on hCAR basal activity. Unlike hCAR, a three alanine insertion mutant and the splice variant 2 of hCAR require agonists, such as CITCO, to become transcriptionally active and the CITCO-induced reporter activity was repressed by TO901317. As has been previously shown for the typical hCAR inverse agonist, PK11195, TO901317 blocked the interaction of hCAR with steroid receptor co-activator 1 (SRC1). In contrast, the interaction between hCAR and nuclear receptor corepressor 1 (NCoR1) was promoted by PK11195 and TO901317. Furthermore, the hCAR-mediated basal induction of endogenous cytochrome P450 2B6 (CYP2B6) mRNA was adversely affected by co-treatment with TO901317. PMID:23665929

Kanno, Yuichiro; Tanuma, Nobuaki; Takahashi, Ami; Inouye, Yoshio

2013-01-01

299

PPAR? agonists inhibit TGF-?-PKA signaling in glomerulosclerosis  

Microsoft Academic Search

Aim:To study the probable mechanisms of the anti-glomerulosclerosis effects induced by peroxisome proliferator-activated receptor gamma (PPAR?) agonists in rat intraglomerular mesangial cells (MCs).Methods:Cells were transfected with the pTAL-PPRE-tk-Luc+ plasmid and then treated with different concentrations of PPAR? agonist, either troglitazone or telmisartan, for the indicated times. Promega luciferase assays were subsequently used for the detection of PPAR? activation. Protein expression

Rong Zou; Gang Xu; Xiao-cheng Liu; Min Han; Jing-jing Jiang; Qian Huang; Yong He; Ying Yao

2010-01-01

300

Modification of activation and evaluation properties of narratives by weak complex magnetic field patterns that simulate limbic burst firing.  

PubMed

In two separate experiments a total of 71 volunteers were asked to generate spontaneous narratives that were scored automatically by the Whissell Dictionary of Affect. During the narratives, weak (1 microT; 10 mG) magnetic fields were applied briefly through the temporal planes. In Experiment I, subjects who were exposed to simple sine wave or pulsed fields generated more scorable words that indicated lower activation and evaluation than sham-field conditions. In Experiment II subjects exposed to a computer-generated wave form, designed to simulate neuronal burst firing, generated narratives dominated by more pleasantness and less activation than a reference group. The possibility that this approach could be utilized to study the affective dimension of language selection was indicated. PMID:8407157

Richards, P M; Persinger, M A; Koren, S A

1993-01-01

301

Physical activity: benefit or weakness in metabolic adaptations in a mouse model of chronic food restriction?  

PubMed

In restrictive-type anorexia nervosa (AN) patients, physical activity is usually associated with food restriction, but its physiological consequences remain poorly characterized. In female mice, we evaluated the impact of voluntary physical activity with/without chronic food restriction on metabolic and endocrine parameters that might contribute to AN. In this protocol, FRW mice (i.e., food restriction with running wheel) reached a crucial point of body weight loss (especially fat mass) faster than FR mice (i.e., food restriction only). However, in contrast to FR mice, their body weight stabilized, demonstrating a protective effect of a moderate, regular physical activity. Exercise delayed meal initiation and duration. FRW mice displayed food anticipatory activity compared with FR mice, which was strongly diminished with the prolongation of the protocol. The long-term nature of the protocol enabled assessment of bone parameters similar to those observed in AN patients. Both restricted groups adapted their energy metabolism differentially in the short and long term, with less fat oxidation in FRW mice and a preferential use of glucose to compensate for the chronic energy imbalance. Finally, like restrictive AN patients, FRW mice exhibited low leptin levels, high plasma concentrations of corticosterone and ghrelin, and a disruption of the estrous cycle. In conclusion, our model suggests that physical activity has beneficial effects on the adaptation to the severe condition of food restriction despite the absence of any protective effect on lean and bone mass. PMID:25465889

Méquinion, Mathieu; Caron, Emilie; Zgheib, Sara; Stievenard, Aliçia; Zizzari, Philippe; Tolle, Virginie; Cortet, Bernard; Lucas, Stéphanie; Prévot, Vincent; Chauveau, Christophe; Viltart, Odile

2015-02-01

302

Thrombopoietin Receptor Agonists in Primary ITP  

PubMed Central

Thrombopoietin (TPO) regulates thrombopoiesis through activation of TPO receptors on the megakaryocyte cell surface, resulting in increased platelet production. The TPO receptor agonists are novel treatments for patients with chronic ITP aimed at increasing platelet production through interactions with the TPO receptor on megakaryocytes. Two TPO receptor agonists, romiplostim and eltrombopag, have received regulatory approval. In patients with chronic ITP who remain at risk of bleeding following treatment with first-line therapies, these agents have been shown to increase platelet counts, decrease bleeding events and reduce the need for adjunctive or rescue treatments. The TPO receptor agonists are well-tolerated, though uncertainty remains regarding the risk of thromboembolism and bone marrow fibrosis. Comparative clinical trial data addressing the efficacy, safety, cost-effectiveness, and impact on health-related quality of life of TPO receptor agonists relative to other second-line treatment options are needed to guide treatment decisions in chronic ITP patients who fail first-line therapies. PMID:23664510

Siegal, Deborah; Crowther, Mark; Cuker, Adam

2013-01-01

303

Creatine Kinase Activity Weakly Correlates to Volume Completed Following Upper Body Resistance Exercise  

ERIC Educational Resources Information Center

In the current study, we examined the relationship between serum creatine kinase (CK) activity following upper body resistance exercise with a 1- or 3-min rest between sets. Twenty men performed two sessions, each consisting of four sets with a 10-repetition maximum load. The results demonstrated significantly greater volume for the 3-min…

Machado, Marco; Willardson, Jeffrey M.; Silva, Dailson P.; Frigulha, Italo C.; Koch, Alexander J.; Souza, Sergio C.

2012-01-01

304

The Solar Activity Cycle is Weakly Synchronized with the Solar Inertial Motion  

E-print Network

that the gravitational forces exerted upon the Sun by the giant planets in the solar system can influence the solar Solar Inertial Motion and Sunspots: The Data In reaction to movements of the planets in the solar system inside the Sun, has resulted in many models which reproduce basic features of solar activity [5

Seehafer, Norbert

305

Potentiation of a weakly active ricin A chain immunotoxin recognizing the neural cell adhesion molecule.  

PubMed Central

A ricin A chain immunotoxin, SEN36-ricin A chain, directed against the neural cell adhesion molecule (N-CAM) had no selective cytotoxic activity against three different small cell lung cancer (SCLC) cell lines in tissue culture despite expression of the target antigen on more than 98% of cells in each line detected by indirect immunofluorescence. Treatment of the SW2 SCLC cell line with suramin and interferons alpha and gamma increased the level of N-CAM expression only slightly and had no significant effect on the cytotoxic activity of the SEN36 immunotoxin. In the presence of the carboxylic ionophore monensin at a concentration of 0.1 microM, the toxicity of SEN36-ricin A chain to the SW2 cell line was enhanced by 12,000-fold. In contrast, lysosomotropic amines showed little or no potentiation of activity, suggesting that lysosomal degradation was not the major factor limiting the action of the anti-N-CAM immunotoxin. The findings of this study indicate that ricin A chain immunotoxins directed against N-CAM on SCLC are unlikely to have sufficient activity to be useful therapeutic agents in the absence of potentiating agents such as monensin, which can interfere with the normal intracellular pathways of antigen routing. PMID:1325302

Derbyshire, E J; Stahel, R A; Wawrzynczak, E J

1992-01-01

306

Muscarinic agonists as analgesics. Antinociceptive activity versus M1 activity: SAR of alkylthio-TZTP's and related 1,2,5-thiadiazole analogs.  

PubMed

Alkylthio-TZTPs (3-(3-alkylthio-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-met hylpyridines) and corresponding azabicyclic analogs were tested for m1 efficacy in cloned human m1 receptors and for antinociceptive activity in the mouse grid shock assay. The m1 (%PI) SAR were distinctly different from the analgesia and the salivation SAR, suggesting that analgesia is mediated by neither m1 nor M3 muscarinic receptors. PMID:10188779

Sauerberg, P; Olesen, P H; Sheardown, M J; Suzdak, P D; Shannon, H E; Bymaster, F P; Calligaro, D O; Mitch, C H; Ward, J S; Swedberg, M D

1995-01-01

307

Resveratrol dimers, nutritional components in grape wine, are selective ROS scavengers and weak Nrf2 activators.  

PubMed

Resveratrol monomer (Res) and its oligomers are considered as nutritional components distributed in edible plants. Three naturally occurring resveratrol dimers, namely parthenocissin A (Par), quadrangularin A (Qua) and pallidol (Pal), were synthesized and evaluated for their ability to scavenge reactive oxygen species (ROS) and to activate the transcription factor Nrf2, which regulates cellular antioxidant systems. In vitro studies with different ROS and radical assay models showed that all the three dimers are strong DPPH quenchers and selective singlet oxygen ((1)O2) scavengers (IC50=4.90, 1.05 and 5.50 ?M, respectively). However, they were ineffective against hydroxyl radical (OH) or superoxide anion (O2(-)). Exposing the dimers to an antioxidant response element (ARE) reporter cell line revealed that only pallidol was able to activate Nrf2 at 30 ?M, while parthenocissin A and quadrangularin A had no significant effect on Nrf2. Our data demonstrates the distinct difference between reservatrol monomer and its dimers in activating the Nrf2/ARE signalling pathway. PMID:25466015

Li, Chang; Xu, Xiaofei; Tao, Zhihao; Wang, Xiu Jun; Pan, Yuanjiang

2015-04-15

308

Fast Skeletal Muscle Troponin Activation Increases Force of Mouse Fast Skeletal Muscle and Ameliorates Weakness Due to Nebulin-Deficiency  

PubMed Central

The effect of the fast skeletal muscle troponin activator, CK-2066260, on calcium-induced force development was studied in skinned fast skeletal muscle fibers from wildtype (WT) and nebulin deficient (NEB KO) mice. Nebulin is a sarcomeric protein that when absent (NEB KO mouse) or present at low levels (nemaline myopathy (NM) patients with NEB mutations) causes muscle weakness. We studied the effect of fast skeletal troponin activation on WT muscle and tested whether it might be a therapeutic mechanism to increase muscle strength in nebulin deficient muscle. We measured tension–pCa relations with and without added CK-2066260. Maximal active tension in NEB KO tibialis cranialis fibers in the absence of CK-2066260 was ?60% less than in WT fibers, consistent with earlier work. CK-2066260 shifted the tension-calcium relationship leftwards, with the largest relative increase (up to 8-fold) at low to intermediate calcium levels. This was a general effect that was present in both WT and NEB KO fiber bundles. At pCa levels above ?6.0 (i.e., calcium concentrations <1 µM), CK-2066260 increased tension of NEB KO fibers to beyond that of WT fibers. Crossbridge cycling kinetics were studied by measuring ktr (rate constant of force redevelopment following a rapid shortening/restretch). CK-2066260 greatly increased ktr at submaximal activation levels in both WT and NEB KO fiber bundles. We also studied the sarcomere length (SL) dependence of the CK-2066260 effect (SL 2.1 µm and 2.6 µm) and found that in the NEB KO fibers, CK-2066260 had a larger effect on calcium sensitivity at the long SL. We conclude that fast skeletal muscle troponin activation increases force at submaximal activation in both wildtype and NEB KO fiber bundles and, importantly, that this troponin activation is a potential therapeutic mechanism for increasing force in NM and other skeletal muscle diseases with loss of muscle strength. PMID:23437068

Lee, Eun-Jeong; De Winter, Josine M.; Buck, Danielle; Jasper, Jeffrey R.; Malik, Fady I.; Labeit, Siegfried; Ottenheijm, Coen A.; Granzier, Henk

2013-01-01

309

Topical Application of a Platelet Activating Factor Receptor Agonist Suppresses Phorbol Ester-Induced Acute and Chronic Inflammation and Has Cancer Chemopreventive Activity in Mouse Skin  

PubMed Central

Platelet activating factor (PAF) has long been associated with acute edema and inflammatory responses. PAF acts by binding to a specific G-protein coupled receptor (PAF-R, Ptafr). However, the role of chronic PAF-R activation on sustained inflammatory responses has been largely ignored. We recently demonstrated that mice lacking the PAF-R (Ptafr-/- mice) exhibit increased cutaneous tumorigenesis in response to a two-stage chemical carcinogenesis protocol. Ptafr-/- mice also exhibited increased chronic inflammation in response to phorbol ester application. In this present study, we demonstrate that topical application of the non-hydrolysable PAF mimetic (carbamoyl-PAF (CPAF)), exerts a potent, dose-dependent, and short-lived edema response in WT mice, but not Ptafr -/- mice or mice deficient in c-Kit (c-KitW-sh/W-sh mice). Using an ear inflammation model, co-administration of topical CPAF treatment resulted in a paradoxical decrease in both acute ear thickness changes associated with a single PMA application, as well as the sustained inflammation associated with chronic repetitive PMA applications. Moreover, mice treated topically with CPAF also exhibited a significant reduction in chemical carcinogenesis. The ability of CPAF to suppress acute and chronic inflammatory changes in response to PMA application(s) was PAF-R dependent, as CPAF had no effect on basal or PMA-induced inflammation in Ptafr-/- mice. Moreover, c-Kit appears to be necessary for the anti-inflammatory effects of CPAF, as CPAF had no observable effect in c-KitW-sh/W-sh mice. These data provide additional evidence that PAF-R activation exerts complex immunomodulatory effects in a model of chronic inflammation that is relevant to neoplastic development. PMID:25375862

Ocana, Jesus A.; DaSilva-Arnold, Sonia C.; Bradish, Joshua R.; Richey, Justin D.; Warren, Simon J.; Rashid, Badri; Travers, Jeffrey B.; Konger, Raymond L.

2014-01-01

310

Recombinant human LH supplementation versus supplementation with urinary hCG-based LH activity during controlled ovarian stimulation in the long GnRH-agonist protocol: a matched case-control study.  

PubMed

An observational, matched, case-control study was carried out to compare the efficacy of recombinant human luteinizing hormone (r-hLH) supplementation with that of urinary human menopausal gonadotrophin (u-hMG)-based LH activity during controlled ovarian stimulation (COS) for assisted reproductive technology (ART) using a long gonadotrophin-releasing hormone (GnRH)-agonist protocol. A total of 4719 women, 1573 per group, matched by age, body mass index, indication and number of previous ART cycles, were treated with either recombinant human follicle-stimulating hormone (r-hFSH) and r-hLH in a fixed 2:1 ratio or u-hMG, either alone or in combination with r-hFSH, after down-regulation in a long GnRH-agonist protocol. Compared with the two u-hMG groups (u-hMG alone or in combination with r-hFSH, respectively), r-hFSH consumption was significantly lower (p?agonist protocol for ART. PMID:22115012

Bühler, Klaus F; Fischer, Robert

2012-05-01

311

Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists  

Microsoft Academic Search

Toll-like receptor 9 (TLR9) agonists have demonstrated substantial potential as vaccine adjuvants, and as mono- or combination therapies for the treatment of cancer and infectious and allergic diseases. Commonly referred to as CpG oligodeoxynucleotides (ODN), TLR9 agonists directly induce the activation and maturation of plasmacytoid dendritic cells and enhance differentiation of B cells into antibody-secreting plasma cells. Preclinical and early

Jörg Vollmer; Arthur M. Krieg

2009-01-01

312

Design, synthesis and evaluation of dual pharmacology ?2-adrenoceptor agonists and PDE4 inhibitors.  

PubMed

A novel series of formoterol-phthalazinone hybrids were synthesised and evaluated as dual pharmacology ?2-adrenoceptor agonists and PDE4 inhibitors. Most of the hybrids displayed high ?2-adrenoceptor agonist and moderate PDE4 inhibitory activities. The most potent compound, (R,R)-11c, exhibited agonist (EC50=1.05nM, pEC50=9.0) and potent PDE4B2 inhibitory activities (IC50=0.092?M). PMID:24300734

Huang, Ling; Shan, Wenjun; Zhou, Qi; Xie, Jiaxing; Lai, Kefang; Li, Xingshu

2014-01-01

313

Active-to-absorbing-state phase transition in the presence of fluctuating environments: Weak and strong dynamic scaling  

NASA Astrophysics Data System (ADS)

We investigate the scaling properties of phase transitions between survival and extinction (active-to-absorbing-state phase transition, AAPT) in a model that by itself belongs to the directed percolation (DP) universality class, interacting with a spatiotemporally fluctuating environment having its own nontrivial dynamics. We model the environment by (i) a randomly stirred fluid, governed by the Navier-Stokes (NS) equation, and (ii) a fluctuating surface, described either by the Kardar-Parisi-Zhang (KPZ) or the Edward-Wilkinson (EW) equations. We show, by using a one-loop perturbative field theoretic setup that, depending upon the spatial scaling of the variance of the external forces that drive the environment (i.e., the NS, KPZ, or EW equations), the system may show weak or strong dynamic scaling at the critical point of active-to-absorbing-state phase transitions. In the former case AAPT displays scaling belonging to the DP universality class, whereas in the latter case the universal behavior is different.

Sarkar, Niladri; Basu, Abhik

2012-08-01

314

Active-to-absorbing-state phase transition in the presence of fluctuating environments: weak and strong dynamic scaling.  

PubMed

We investigate the scaling properties of phase transitions between survival and extinction (active-to-absorbing-state phase transition, AAPT) in a model that by itself belongs to the directed percolation (DP) universality class, interacting with a spatiotemporally fluctuating environment having its own nontrivial dynamics. We model the environment by (i) a randomly stirred fluid, governed by the Navier-Stokes (NS) equation, and (ii) a fluctuating surface, described either by the Kardar-Parisi-Zhang (KPZ) or the Edward-Wilkinson (EW) equations. We show, by using a one-loop perturbative field theoretic setup that, depending upon the spatial scaling of the variance of the external forces that drive the environment (i.e., the NS, KPZ, or EW equations), the system may show weak or strong dynamic scaling at the critical point of active-to-absorbing-state phase transitions. In the former case AAPT displays scaling belonging to the DP universality class, whereas in the latter case the universal behavior is different. PMID:23005737

Sarkar, Niladri; Basu, Abhik

2012-08-01

315

Effects of an intrathecally administered benzodiazepine receptor agonist, antagonist and inverse agonist on morphine-induced inhibition of a spinal nociceptive reflex.  

PubMed Central

1. The effects of an intrathecally administered benzodiazepine receptor (BZR) agonist (midazolam, up to 50 micrograms), antagonist (flumazenil, Ro 15-1788, 5 micrograms) and inverse agonist (Ro 19-4603, 15 micrograms) on nociception and on morphine-induced antinociception were studied in rats. 2. By themselves, none of these compounds significantly altered pain threshold. 3. The BZR agonist midazolam enhanced the morphine-induced antinociceptive effect whereas the antagonist flumazenil did not alter it. In contrast, the BZR inverse agonist Ro 19-4603 decreased the morphine-induced antinociceptive effect. 4. Naloxone (1 mg kg-1 i.p.) completely reversed all these effects. 5. These results demonstrate that BZR agonists and inverse agonists are able to affect, by allosteric up- or down-modulation of gamma-aminobutyric acidA (GABAA)-receptors, the transmission of nociceptive information at the spinal cord level, when this transmission is depressed by mu-opioid receptor activation. PMID:2898960

Moreau, J. L.; Pieri, L.

1988-01-01

316

Agonist-induced polyphosphoinositide breakdown in cultured human endothelial and vascular smooth muscle cells.  

PubMed

Human aortic endothelial cells and smooth cells (SMC) from human aorta and coronary arteries were grown in culture. Subcultured vascular SMC retained several important features of human vascular SMC in situ, for example, vimentin-type intermediate filaments, smooth muscle myosin, a well-developed microfilament system, and expression of caldesmon protein involved in the regulation of contraction in smooth muscle. Aortic endothelial cells were shown to possess functional receptors to histamine, thrombin, serotonin, acetylcholine, bradykinin, platelet activating factor (PAF), angiotensin II, vasopressin, prostaglandin E2 (PGE2), and U46619, a stable analog of thromboxane A2. All these substances stimulated polyphosphoinositide (PPI) breakdown in endothelium. Thrombin, histamine, and PAF were the most potent activators. The response of aortic SMC to the same panel of agonists were different. Serotonin, histamine, and angiotensin II produced higher levels of inositol phosphates (IP, IP2, IP3) in SMC than in endothelium. Responses to acetylcholine, bradykinin, and PGE2 were weak and inferior to those of endothelial cells. Other agents evoked approximately equivalent responses in both cell types. Coronary artery SMC resembled aortic SMC in the high extent of PPI hydrolysis after stimulation with serotonin and histamine. The complete inability of angiotensin II and vasopressin to cause accumulation of inositol phosphates in coronary SMC contrasted with the presence of functional receptors to these hormones on aortic SMC. We conclude that the effect of vasoactive agents on human vascular cells may be realized via activation of PPI hydrolysis. Agonists with reported strong vasoconstrictor action seem to stimulate preferential PPI hydrolysis in SMC, whereas endothelium-dependent relaxers cause more pronounced PPI breakdown in endothelial cells. Peculiarities of angiotensin II and vasopressin receptor expression and/or coupling in human aorta and coronary artery SMC may be relevant for understanding the selective action of agonists on human vessels. PMID:2854052

Shirinsky, V P; Sobolevsky, A V; Grigorian GYu; Danilov, S M; Tararak, E M; Tkachuk, V A

1988-01-01

317

Advances in the understanding of skeletal muscle weakness in murine models of diseases affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers.  

PubMed

Disease processes and trauma affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers cause different levels of muscle weakness, i.e., reduced maximal force production in response to voluntary activation or nerve stimulation. However, the mechanisms of muscle weakness are not well known. Using murine models of amyotrophic lateral sclerosis (SOD1(G93A) transgenic mice), congenital myasthenic syndrome (AChE knockout mice and Musk(V789M/-) mutant mice), Schwartz-Jampel syndrome (Hspg2(C1532YNEO/C1532YNEO) mutant mice) and traumatic nerve injury (Neurotomized wild-type mice), we show that the reduced maximal activation capacity (the ability of the nerve to maximally activate the muscle) explains 52%, 58% and 100% of severe weakness in respectively SOD1(G93A), Neurotomized and Musk mice, whereas muscle atrophy only explains 37%, 27% and 0%. We also demonstrate that the impaired maximal activation capacity observed in SOD1, Neurotomized, and Musk mice is not highly related to Hdac4 gene upregulation. Moreover, in SOD1 and Neurotomized mice our results suggest LC3, Fn14, Bcl3 and Gadd45a as candidate genes involved in the maintenance of the severe atrophic state. In conclusion, our study indicates that muscle weakness can result from the triggering of different signaling pathways. This knowledge may be helpful in designing therapeutic strategies and finding new drug targets for amyotrophic lateral sclerosis, congenital myasthenic syndrome, Schwartz-Jampel syndrome and nerve injury. PMID:25042397

Ferry, Arnaud; Joanne, Pierre; Hadj-Said, Wahiba; Vignaud, Alban; Lilienbaum, Alain; Hourdé, Christophe; Medja, Fadia; Noirez, Philippe; Charbonnier, Frederic; Chatonnet, Arnaud; Chevessier, Frederic; Nicole, Sophie; Agbulut, Onnik; Butler-Browne, Gillian

2014-11-01

318

Synthesis of the four isomers of 4-aminopyrrolidine-2,4-dicarboxylate: identification of a potent, highly selective, and systemically-active agonist for metabotropic glutamate receptors negatively coupled to adenylate cyclase.  

PubMed

The four isomers of 4-aminopyrrolidine-2,4-dicarboxylate (APDC) were prepared and evaluated for their effects at glutamate receptors in vitro. (2R,4R)-APDC (2a), an aza analog of the nonselective mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (1S,3R)-ACPD, 1), was found to possess relatively high affinity for metabotropic glutamate receptors (mGluRs) (ACPD-sensitive [3H]glutamate binding IC50 = 6.49 +/- 1.21 microM) with no effects on radioligand binding to NMDA, AMPA, or kainate receptors up to 100 microM. None of the other APDC isomers showed significant mGluR binding affinity, indicating that this interaction is highly stereospecific. Both 1 and 2a were effective in decreasing forskolin-stimulated cAMP formation in the adult rat cerebral cortex (EC50 = 8.17 +/- 2.21 microM for 1; EC50 = 14.51 +/- 5.54 microM for 2a); however, while 1 was also effective in stimulating basal tritiated inositol monophosphate production in the neonatal rat cerebral cortex (EC50 = 27.7 +/- 5.2 microM), 2a (up to 100 microM) was ineffective in stimulating phosphoinositide hydrolysis in this tissue preparation, further supporting our previous observations that 2a is a highly selective agonist for mGluRs negatively coupled to adenylate cyclase. Microelectrophoretic application of either 1 or 2a to intact rat spinal neurons produced an augmentation of AMPA-induced excitation (95 +/- 10% increase for 1, 52 +/- 6% increase for 2a). Intracerebral injection of 1 (400 nmol) produced characteristic limbic seizures in mice which are not mimicked by 2a (200-1600 nmol, ic). However, the limbic seizures induced by 1 were blocked by systemically administered 2a in a dose-dependent manner (EC50 = 271 mg/kg, ip). It is concluded that (2R,4R)-APDC (2a) is a highly selective, systemically-active agonist of mGluRs negatively coupled to adenylate cyclase and that selective activation of these receptors in vivo can result in anticonvulsant effects. PMID:8709133

Monn, J A; Valli, M J; Johnson, B G; Salhoff, C R; Wright, R A; Howe, T; Bond, A; Lodge, D; Spangle, L A; Paschal, J W; Campbell, J B; Griffey, K; Tizzano, J P; Schoepp, D D

1996-07-19

319

C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists.  

PubMed

White adipose tissue (WAT) stores energy in the form of triglycerides, whereas brown tissue (BAT) expends energy, primarily by oxidizing lipids. WAT also secretes many cytokines and acute-phase proteins that contribute to insulin resistance in obese subjects. In this study, we have investigated the mechanisms by which activation of peroxisome proliferator-activated receptor gamma (PPARgamma) with synthetic agonists induces a brown phenotype in white adipocytes in vivo and in vitro. We demonstrate that this phenotypic conversion is characterized by repression of a set of white fat genes ("visceral white"), including the resistin, angiotensinogen, and chemerin genes, in addition to induction of brown-specific genes, such as Ucp-1. Importantly, the level of expression of the "visceral white" genes is high in mesenteric and gonadal WAT depots but low in the subcutaneous WAT depot and in BAT. Mutation of critical amino acids within helix 7 of the ligand-binding domain of PPARgamma prevents inhibition of visceral white gene expression by the synthetic agonists and therefore shows a direct role for PPARgamma in the repression process. Inhibition of the white adipocyte genes also depends on the expression of C/EBPalpha and the corepressors, carboxy-terminal binding proteins 1 and 2 (CtBP1/2). The data further show that repression of resistin and angiotensinogen expression involves recruitment of CtBP1/2, directed by C/EBPalpha, to the minimal promoter of the corresponding genes in response to the PPARgamma ligand. Developing strategies to enhance the brown phenotype in white adipocytes while reducing secretion of stress-related cytokines from visceral WAT is a means to combat obesity-associated disorders. PMID:19564408

Vernochet, Cecile; Peres, Sidney B; Davis, Kathryn E; McDonald, Meghan E; Qiang, Li; Wang, Hong; Scherer, Philipp E; Farmer, Stephen R

2009-09-01

320

Actions of the prototypical 5-HT1A receptor agonist 8-OH-DPAT at human alpha2-adrenoceptors: (+)8-OH-DPAT, but not (-)8-OH-DPAT is an alpha2B subtype preferential agonist.  

PubMed

8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] is the prototypical agonist at serotonin 5-HT1A receptors; however, activity at other targets contributes to the functional effects of the compound as well. We examined the properties of 8-OH-DPAT and its enantiomers at recombinant human (h)alpha2-adrenoceptor subtypes, using a panel of radioligand binding and functional tests. In competition binding experiments using [3H]-RX821002, about 10-fold selectivity of (+)8-OH-DPAT for the halpha2B subtype (pKi about 7) over halpha2A- and halpha2C-adrenoceptors was observed. In contrast, the S(-) enantiomer of 8-OH-DPAT showed similar weak affinities for the three receptor subtypes (pKis<6). The binding affinity of (+)8-OH-DPAT at the halpha2B- and the halpha2A-adrenoceptor was found sensitive to GTPgammaS, a receptor/G protein-uncoupling agent, indicating agonist properties of the drug. Furthermore, using [35S]GTPgammaS binding determination at CHO-halpha2B or CHO-halpha2A cell membranes and G protein coupled inwardly rectifying potassium (GIRK) current recordings in Xenopus oocytes expressing halpha2B, partial agonist activity of (+)8-OH-DPAT at the respective receptors was confirmed in these two different functional assays. Potency of (+)8-OH-DPAT for stimulation of [35S]GTPgammaS incorporation was lower at the halpha2A- than at the halpha2B-adrenoceptor, consistent with binding affinities. Thus, (+)8-OH-DPAT and, as a consequence, racemic (+/-)8-OH-DPAT are partial agonists at halpha2-adrenoceptors with selectivity for the halpha2B subtype, a property that might contribute to the effects of the compound described in native systems. PMID:20450907

Heusler, Peter; Rauly-Lestienne, Isabelle; Tourette, Amélie; Tardif, Stéphanie; Ailhaud, Marie-Christine; Croville, Guillaume; Cussac, Didier

2010-08-25

321

Toll-like receptor 9 (TLR9) agonists in the treatment of cancer  

Microsoft Academic Search

Although still early in clinical development, agonists of Toll-like receptor 9 (TLR9) have demonstrated potential for the treatment of cancer. TLR9 agonists directly induce activation and maturation of plasmacytoid dendritic cells and enhance differentiation of B cells into antibody-secreting plasma cells. Preclinical and early clinical data support the use of TLR9 agonists in patients with solid tumors and hematologic malignancies.

A M Krieg

2008-01-01

322

Partial GABA agonist activity of SR 95531 on the binding of [35S]TBPS, [3H]DMCM and [3H]lormetazepam to rat brain membranes.  

PubMed

A recently developed series of pyridazinyl-GABA derivatives has been classified as GABA antagonists in electrophysiological, behavioral and biochemical experiments. These substances seemed superior to the classical GABA antagonist bicuculline because of their water-solubility, high potency and apparent selectivity for GABAA receptors. In the present study the most potent representative of this class, SR 95531 almost completely reversed the stimulatory or inhibitory effect of GABA on [3H]lormetazepam and [35S]TBPS binding, respectively. To a lesser extent, it antagonized the inhibition of [3H]DMCM binding by GABA. However, the interaction of SR 95531 with the GABA receptor seems to be of a complex nature since the compound enhanced the binding of [3H]lormetazepam by 28% at 37 degrees in the presence of 200 mM Cl-. Bicuculline inhibited [3H]lormetazepam binding under these conditions, presumably by antagonizing the effect of residual endogenous GABA. Similar to GABA and THIP, SR 95531 potently inhibited the binding of [3H]DMCM and [35S]TBPS, suggesting SR 95531 to be a partial agonist at the GABAA receptor. PMID:2550012

Zimmermann, L N; Schneider, H H; Stephens, D N

1989-09-01

323

The Saga of kappa-elastin or the promotion of elastin degradation products from "garbage" to receptor agonists and pharmacologically active principles.  

PubMed

In this review article, dedicated to Prof. Ines Mandl, for her 90st birthday, some of the essential steps of our research over the years on elastin are described. Insoluble fibrous elastin could be "solubilized" by 1M KOH in 80% aqueous ethanol at room temperature. The large peptides obtained were designated kappa-elastin after a suggestion by I. Mandl. These peptides were widely used for biological, biochemical and pharmacological studies and were also commercialized and applied in "anti-aging" preparations. Kappa-elastin was used to demonstrate the importance of hydrophobic interactions in the stalilization of elastin fibers. It was used also as an "agonist" for studies on the elastin receptor and its age-dependent modifications (uncoupling). Kappa-elastin became also an important ingredient for dermocosmetology. This review spans several decades from the discovery of the first elastase, by Banga and Balo, in the 1950-ies to the pharmacological studies of the elastin receptor in the recent years. PMID:20067411

Robert, Ladislas

2010-01-01

324

Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas  

PubMed Central

Patients with non-Hodgkin lymphoma (NHL) are treated today with a cocktail of drugs referred to as CHOP (Cyclophosphamide, Hydroxyldaunorubicin, Oncovin, and Prednisone). Subsets of patients with NHL of germinal center origin bear oncogenic mutations in the EZH2 histone methyltransferase. Clinical testing of the EZH2 inhibitor EPZ-6438 has recently begun in patients. We report here that combining EPZ-6438 with CHOP in preclinical cell culture and mouse models results in dramatic synergy for cell killing in EZH2 mutant germinal center NHL cells. Surprisingly, we observe that much of this synergy is due to Prednisolone – a glucocorticoid receptor agonist (GRag) component of CHOP. Dramatic synergy was observed when EPZ-6438 is combined with Prednisolone alone, and a similar effect was observed with Dexamethasone, another GRag. Remarkably, the anti-proliferative effect of the EPZ-6438+GRag combination extends beyond EZH2 mutant-bearing cells to more generally impact germinal center NHL. These preclinical data reveal an unanticipated biological intersection between GR-mediated gene regulation and EZH2-mediated chromatin remodeling. The data also suggest the possibility of a significant and practical benefit of combining EZH2 inhibitors and GRag that warrants further investigation in a clinical setting. PMID:25493630

Klaus, Christine R.; Wigle, Tim J.; Iwanowicz, Dorothy; Littlefield, Bruce A.; Porter-Scott, Margaret; Smith, Jesse J.; Moyer, Mikel P.; Copeland, Robert A.; Pollock, Roy M.; Kuntz, Kevin W.; Raimondi, Alejandra; Keilhack, Heike

2014-01-01

325

Rat Urinary Bladder Carcinogenesis by Dual-Acting PPAR? + ? Agonists  

PubMed Central

Despite clinical promise, dual-acting activators of PPAR? and ? (here termed PPAR?+? agonists) have experienced high attrition rates in preclinical and early clinical development, due to toxicity. In some cases, discontinuation was due to carcinogenic effect in the rat urothelium, the epithelial layer lining the urinary bladder, ureters, and kidney pelvis. Chronic pharmacological activation of PPAR? is invariably associated with cancer in rats and mice. Chronic pharmacological activation of PPAR? can in some cases also cause cancer in rats and mice. Urothelial cells coexpress PPAR? as well as PPAR?, making it plausible that the urothelial carcinogenicity of PPAR?+? agonists may be caused by receptor-mediated effects (exaggerated pharmacology). Based on previously published mode of action data for the PPAR?+? agonist ragaglitazar, and the available literature about the role of PPAR? and ? in rodent carcinogenesis, we propose a mode of action hypothesis for the carcinogenic effect of PPAR?+? agonists in the rat urothelium, which combines receptor-mediated and off-target cytotoxic effects. The proposed mode of action hypothesis is being explored in our laboratories, towards understanding the human relevance of the rat cancer findings, and developing rapid in vitro or short-term in vivo screening approaches to faciliate development of new dual-acting PPAR agonist compounds. PMID:19197366

Oleksiewicz, Martin B.; Southgate, Jennifer; Iversen, Lars; Egerod, Frederikke L.

2008-01-01

326

Honokiol: A non-adipogenic PPAR? agonist from nature?  

PubMed Central

Background Peroxisome proliferator-activated receptor gamma (PPAR?) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPAR? activators. Methods We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPAR? agonists. Results The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPAR? ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPAR? ligand-binding domain (LBD) and acted as partial agonist in a PPAR?-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain. Conclusion We identified honokiol as a partial non-adipogenic PPAR? agonist in vitro which prevented hyperglycemia and weight gain in vivo. General significance This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine. PMID:23811337

Atanasov, Atanas G.; Wang, Jian N.; Gu, Shi P.; Bu, Jing; Kramer, Matthias P.; Baumgartner, Lisa; Fakhrudin, Nanang; Ladurner, Angela; Malainer, Clemens; Vuorinen, Anna; Noha, Stefan M.; Schwaiger, Stefan; Rollinger, Judith M.; Schuster, Daniela; Stuppner, Hermann; Dirsch, Verena M.; Heiss, Elke H.

2013-01-01

327

Dominance relations and agonistic behaviour of Tundra Swans ( Cygnus columbianus columbianus ) during fall and spring migration  

Microsoft Academic Search

Social interactions and agonistic activities of Tundra Swans (Cygnus columbianus columbianus ) were docu- mented at Long Point, Ontario, to determine (i) dominance relations among social groups and (ii) the frequency and in- tensity of agonistic acts by swans. Families were involved in one-third as many interactions as were nonfamily groups. Nonfamily groups initiated interactions with other nonfamily groups more

Shannon S. Badzinski

2003-01-01

328

Influence of offset weak zones on the development of rift basins: Activation and abandonment during continental extension and breakup  

NASA Astrophysics Data System (ADS)

We use numerical modelling to investigate reactivation of inherited Offset Weak Zones (OWZ) in continental crust and Mantle Weak Zones (MWZ) to form offset rift basins during continental rifting and breakup. Offset rift basins are basins that are set off/offset from the main rift/locus of breakup. Weak zones embedded in a stiff layer are preferentially and rapidly reactivated, whereas the same zones are either ignored or slowly reactivated when embedded in pliable layers. Here stiff implies a nonlinear flow law with a high stress exponent (n > ˜ 10,000), a plastic material, and pliable means a low stress exponent (n ˜ 2-5) as in ductile, power-law creep of rocks. Whether offset rift basins form during rifting of a composite lithosphere (i.e., comprising stiff and pliable layers) depends on the competition between necking instabilities that develop at the weak zones in the stiff layers, and the coupling between the stiff and pliable layers. Stiff/cratonic lithosphere results in early localization of the deformation at the MWZ, rapid necking and breakup without developing offset rift basins. In contrast, warm pliable lithosphere develops significant offset basins and has protracted rifting because the MWZ is now embedded in a pliable layer. We also investigate the influence of OWZ dip, sedimentation, and the sensitivity of reactivation to the distance from OWZ to the MWZ, and to the size of the MWZ. A tectonic rifting styles diagram is used to show that the model results agree with natural examples.

Chenin, Pauline; Beaumont, Christopher

2013-04-01

329

Chemotype-selective Modes of Action of ?-Opioid Receptor Agonists*  

PubMed Central

The crystal structures of opioid receptors provide a novel platform for inquiry into opioid receptor function. The molecular determinants for activation of the ?-opioid receptor (KOR) were studied using a combination of agonist docking, functional assays, and site-directed mutagenesis. Eighteen positions in the putative agonist binding site of KOR were selected and evaluated for their effects on receptor binding and activation by ligands representing four distinct chemotypes: the peptide dynorphin A(1–17), the arylacetamide U-69593, and the non-charged ligands salvinorin A and the octahydroisoquinolinone carboxamide 1xx. Minimally biased docking of the tested ligands into the antagonist-bound KOR structure generated distinct binding modes, which were then evaluated biochemically and pharmacologically. Our analysis identified two types of mutations: those that affect receptor function primarily via ligand binding and those that primarily affect function. The shared and differential mechanisms of agonist binding and activation in KOR are further discussed. Usually, mutations affecting function more than binding were located at the periphery of the binding site and did not interact strongly with the various ligands. Analysis of the crystal structure along with the present results provide fundamental insights into the activation mechanism of the KOR and suggest that “functional” residues, along with water molecules detected in the crystal structure, may be directly involved in transduction of the agonist binding event into structural changes at the conserved rotamer switches, thus leading to receptor activation. PMID:24121503

Vardy, Eyal; Mosier, Philip D.; Frankowski, Kevin J.; Wu, Huixian; Katritch, Vsevolod; Westkaemper, Richard B.; Aubé, Jeffrey; Stevens, Raymond C.; Roth, Bryan L.

2013-01-01

330

Ligands regulate cell surface level of the human kappa opioid receptor by activation-induced down-regulation and pharmacological chaperone-mediated enhancement: differential effects of nonpeptide and peptide agonists.  

PubMed

Two peptide agonists, eight nonpeptide agonists, and five nonpeptide antagonists were evaluated for their capacity to regulate FLAG (DYKDDDDK)-tagged human kappa opioid receptors (hKORs) stably expressed in Chinese hamster ovary cells after incubation for 4 h with a ligand at a concentration approximately 1000-fold of its EC(50) (agonist) or K(i) (antagonist) value. Dynorphins A and B decreased the fully glycosylated mature form (55-kDa) of FLAG-hKOR by 70%, whereas nonpeptide full agonists [2-(3,4-dichlorophenyl)-N-methyl-N-[(2R)-2-pyrrolidin-1-ylcyclohexyl-]acetamide (U50,488H), 17-cyclopropylmethyl-3,14-dihydroxy-4,5-epoxy-6-[N-methyl-trans-3-(3-furyl) acrylamido] morphinan hydrochloride (TRK-820), ethylketocyclazocine, bremazocine, asimadoline, and (RS)-[3-[1-[[(3,4-dichlorophenyl)acetyl]-methylamino]-2-(1-pyrrolidinyl)ethyl]phenoxy] acetic acid hydrochloride (ICI 204,448) caused 10-30% decreases. In contrast, pentazocine (partial agonist) and etorphine (full agonist) up-regulated by approximately 15 and 25%, respectively. The antagonists naloxone and norbinaltorphimine also significantly increased the 55-kDa receptor, whereas selective mu, delta, and D(1) receptor antagonists had no effect. Naloxone up-regulated the receptor concentration- and time-dependently and enhanced the receptor maturation extent, without affecting its turnover. Treatment with brefeldin A (BFA), which disrupts Golgi, resulted in generation of a 51-kDa form that resided intracellularly. Naloxone up-regulated the new species, indicating that its action site is in the endoplasmic reticulum as a pharmacological chaperone. After treatment with BFA, all nonpeptide agonists up-regulated the 51-kDa form, whereas dynorphins A and B did not, indicating that nonpeptide agonists act as pharmacological chaperones, but peptide agonists do not. BFA treatment enhanced down-regulation of the cell surface receptor induced by nonpeptide agonists, but not that by peptide agonists, and unmasked etorphine- and pentazocine-mediated receptor down-regulation. These results demonstrate that ligands have dual effects on receptor levels: enhancement by chaperone-like effects and agonist-promoted down-regulation, and the net effect reflects the algebraic sum of the two. PMID:16882876

Chen, Yong; Chen, Chongguang; Wang, Yulin; Liu-Chen, Lee-Yuan

2006-11-01

331

[Melatoninergic receptor agonists and antagonists: therapeutic perspectives].  

PubMed

The chronobiotic neurohormone melatonin, synthetized in the pineal gland during darkness periods governs the circadian and seasonal biological rhythms. Physiologically, melatonin regulates the sleep/activity alternance, together with the circadian cycle of body temperature and cortisol secretion, and influences various immune, endocrine and metabolic functions. Dysfunction of the endogenous melatonin secretion is associated with mood and behavioral disorders including body weight. Patients with severe depression exhibit desynchronized and reduced melatonin secretion, in parallel with marked sleep disturbances whereas exogenous melatonin administration and antidepressive drugs restore melatonin secretion. A dysregulated melatonin secretion is also observed in obese subjects. Implication of melatonin in these disorders stimulated the search for melatonin analogues with enhanced antidepressive and body weight control effects. The melatoninergic agonist S 20098, or agomelatin, disclosed a potent antidepressive and anxiolytic activity in preclinical studies, which was confirmed in clinical trials in patients with major depression. The antagonist S 20928 was shown to limit seasonal weight gain in an hibernating rodent model. Thus, development of melatoninergic agonists and antagonists appear as an innovative approach in the treatment of depression and obesity, two major public health problems. PMID:17762830

Guardiola-Lemaitre, Béatrice

2007-01-01

332

A Point Mutation That Confers Constitutive Activity to CXCR4 Reveals That T140 Is an Inverse Agonist and That AMD3100 and  

E-print Network

A Point Mutation That Confers Constitutive Activity to CXCR4 Reveals That T140 Is an Inverse University, Princeton, New Jersey 08544 CXCR4 is a G protein-coupled receptor for stromal- derived factor 1, and human immunodeficiency virus type-1 infec- tion. To elucidate the mechanism for CXCR4 activation

Tian, Weidong

333

Weak solar flares with a detectable flux of hard X rays: Specific features of microwave radiation in the corresponding active regions  

NASA Astrophysics Data System (ADS)

The emission of very weak flares was registered at the Suzaku X-ray observatory in 2005-2009. The photon power spectrum in the 50-110 keV range for a number of these phenomena shows that some electrons accelerate to energies higher than 100 keV. The corresponding flares originate in active regions (ARs) with pronounced sunspots. As in the case of AR 10933 in January 2007 analyzed by us previously (Grigor'eva et al., 2013), the thoroughly studied weak flares in May 2007 are related to the emergence of a new magnetic field in the AR and to the currents that originate in this case. A comparison of the Suzaku data with the RATAN-600 microwave observations indicates that a new polarized source of microwave radiation develops in the AR (or the previously existing source intensifies) one-two days before a weak flare in the emerging flux regions. Arguments in favor of recent views that fields are force-free in the AR corona are put forward. The development of weak flares is related to the fact that the free energy of the currents that flow above the field neutral line at altitudes reaching several thousand kilometers is accumulated and subsequently released.

Grigor'eva, I. Yu.; Livshits, M. A.

2014-12-01

334

A reversed sulfonamide series of selective RORc inverse agonists.  

PubMed

The identification of a new series of RORc inverse agonists is described. Comprehensive structure-activity relationship studies of this reversed sulfonamide series identified potent RORc inverse agonists in biochemical and cellular assays which were also selective against a panel of nuclear receptors. Our work has contributed a compound that may serve as a useful in vitro tool to delineate the complex biological pathways involved in signalling through RORc. An X-ray co-crystal structure of an analogue with RORc has also provided useful insights into the binding interactions of the new series. PMID:25453817

van Niel, Monique B; Fauber, Benjamin P; Cartwright, Matthew; Gaines, Simon; Killen, Jonathan C; René, Olivier; Ward, Stuart I; de Leon Boenig, Gladys; Deng, Yuzhong; Eidenschenk, Céline; Everett, Christine; Gancia, Emanuela; Ganguli, Arunima; Gobbi, Alberto; Hawkins, Julie; Johnson, Adam R; Kiefer, James R; La, Hank; Lockey, Peter; Norman, Maxine; Ouyang, Wenjun; Qin, Ann; Wakes, Nicole; Waszkowycz, Bohdan; Wong, Harvey

2014-12-15

335

Principles of agonist recognition in Cys-loop receptors  

PubMed Central

Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine, and GABA. After the term “chemoreceptor” emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies, and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands. PMID:24795655

Lynagh, Timothy; Pless, Stephan A.

2014-01-01

336

Identification of tertiary sulfonamides as RORc inverse agonists.  

PubMed

Screening a nuclear receptor compound subset in a RORc biochemical binding assay revealed a benzylic tertiary sulfonamide hit. Herein, we describe the identification of compounds with improved RORc biochemical inverse agonist activity and cellular potencies. These improved compounds also possessed appreciable selectivity for RORc over other nuclear receptors. PMID:24685544

Fauber, Benjamin P; René, Olivier; Burton, Brenda; Everett, Christine; Gobbi, Alberto; Hawkins, Julie; Johnson, Adam R; Liimatta, Marya; Lockey, Peter; Norman, Maxine; Wong, Harvey

2014-05-01

337

Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.  

EPA Science Inventory

Peroxisome proliferator-activated receptor alpha (PPARa) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARa ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

338

Silver-Free Activation of Ligated Gold(I) Chlorides: The Use of [Me3 NB12 Cl11 ](-) as a Weakly Coordinating Anion in Homogeneous Gold Catalysis.  

PubMed

Phosphane and N-heterocyclic carbene ligated gold(I) chlorides can be effectively activated by Na[Me3 NB12 Cl11 ] (1) under silver-free conditions. This activation method with a weakly coordinating closo-dodecaborate anion was shown to be suitable for a large variety of reactions known to be catalyzed by homogeneous gold species, ranging from carbocyclizations to heterocyclizations. Additionally, the capability of 1 in a previously unknown conversion of 5-silyloxy-1,6-allenynes was demonstrated. PMID:25394284

Wegener, Michael; Huber, Florian; Bolli, Christoph; Jenne, Carsten; Kirsch, Stefan F

2014-11-13

339

Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells  

PubMed Central

MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 ?M PD 098059 ( IC 50 =51 ?M) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 ?M PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 ?M genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 ?M PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but not for its insulin secretory response with respect to major initiators and modulators of insulin release. The data indicate that MAP kinase is active and under the control of MAP kinase. PKC is upstream of a genisteinsensitive tyrosine kinase and probably downstream of a PI3-kinase in INS-1 cells. PMID:12369712

Böcker, Dietmar

2001-01-01

340

Role of protein kinase C, PI3-kinase and tyrosine kinase in activation of MAP kinase by glucose and agonists of G-protein coupled receptors in INS-1 cells.  

PubMed

MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase and cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [32P]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 microM PD 098059 (IC50 = 5 microM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton ("downregulation") of PKC by a long term (22 h) pretreatment with 1 microM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 microM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 microM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [3H]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but not for its insulin secretory response with respect to major initiators and modulators of insulin release. The data indicate that MAP kinase is active and under the control of MAP kinase. PKC is upstream of a genistein-sensitive tyrosine kinase and probably downstream of a PI3-kinase in INS-1 cells. PMID:12369712

Böcker, D; Verspohl, E J

2001-01-01

341

Conversion of a scorpion toxin agonist into an antagonist highlights an acidic residue involved in voltage sensor trapping during activation of neuronal Na+ channels.  

PubMed

Gating modifiers constitute a large group of polypeptide toxins that interact with the voltage-sensing module of ion channels. Among them, scorpion beta-toxins induce a negative shift in the voltage dependence of sodium channel activation. To explain their effect, a "voltage sensor trapping" model has been proposed in which the voltage sensor of domain-II (DIIS4) is trapped in an outward, activated position by a prebound beta-toxin upon membrane depolarization. Whereas toxin effect on channel activation was enhanced upon neutralization of the two outermost arginines in DIIS4, toxin residues involved in sensor trapping have not been identified. Using the scorpion excitatory beta-toxin, Bj-xtrIT, we found two conserved acidic residues, Glu15 and Glu30, mandatory for toxin action. Whereas mutagenesis of Glu30 affected both toxicity and binding affinity, substitutions E15A/F abolished activity but had minor effects on binding. Complete uncoupling of activity from binding was obtained with mutant E15R, acting as an efficient antagonist of Bj-xtrIT. On the basis of the voltage sensor trapping model and our results, we propose that Glu15 interacts with the emerging gating charges of DIIS4 upon membrane depolarization. Conserved acidic residues found in a variety of gating modifiers from scorpions and spiders may interact similarly with the voltage sensor. PMID:15054090

Karbat, Izhar; Cohen, Lior; Gilles, Nicholas; Gordon, Dalia; Gurevitz, Michael; Izhar, Karbat; Lior, Cohen; Nicholas, Gilles; Dalia, Gordon; Michael, Gurevitz

2004-04-01

342

Pyrrolo- and pyridomorphinans: non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists.  

PubMed

Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse. PMID:24973818

Kumar, V; Clark, M J; Traynor, J R; Lewis, J W; Husbands, S M

2014-08-01

343

Effect of the activation of central 5-HT2C receptors by the 5-HT2C agonist mCPP on blood pressure and heart rate in rats.  

PubMed

In the present study we investigated the role of central 5-HT2C receptors in the control of blood pressure and heart rate in non-stressed and stressed, adult, male, Wistar rats. Third ventricle injections of the 5-HT2C agonist mCPP elicited a significant increase in blood pressure in non-stressed animals. The initial period of this hypertensive response (10-30 min after mCPP administration) was accompanied by baroreflex-mediated bradycardia, while after this period the coexistence of hypertension and tachycardia was observed. These cardiovascular effects promoted by the central administration of mCPP were blocked by pretreatment with the 5-HT2C antagonist, SDZ SER 082. The administration of SDZ SER 082 alone induced no significant changes in blood pressure or heart rate. The pharmacological stimulation of central 5-HT2C receptors by mCPP did not change the hypertensive or tachycardic responses induced by restraint stress. Conversely, the blockade of central 5-HT2C receptors by SDZ SER 082 blunted stress-induced hypertension without modifying stress-induced tachycardia. It is concluded that the activation of central 5-HT2C receptors induces hypertension in non-stressed rats and that the normal function of these receptors is essential for the rise in blood pressure that occurs in the course of restraint stress. PMID:15804427

Ferreira, Hilda Silva; Oliveira, Elenilda; Faustino, Thiallan Nery; Silva, Emilio de Castro E; Fregoneze, Josmara Bartolomei

2005-04-01

344

Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor [alpha] Selective Agonist 2-((3-((2-(4-Chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic Acid (BMS-687453)  

SciTech Connect

An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and 410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.

Li, Jun; Kennedy, Lawrence J.; Shi, Yan; Tao, Shiwei; Ye, Xiang-Yang; Chen, Stephanie Y.; Wang, Ying; Hernndez, Andrs S.; Wang, Wei; Devasthale, Pratik V.; Chen, Sean; Lai, Zhi; Zhang, Hao; Wu, Shung; Smirk, Rebecca A.; Bolton, Scott A.; Ryono, Denis E.; Zhang, Huiping; Lim, Ngiap-Kie; Chen, Bang-Chi; Locke, Kenneth T.; O’ Malley, Kevin M.; Zhang, Litao; Srivastava, Rai Ajit; Miao, Bowman; Meyers, Daniel S.; Monshizadegan, Hossain; Search, Debra; Grimm, Denise; Zhang, Rongan; Harrity, Thomas; Kunselman, Lori K.; Cap, Michael; Kadiyala, Pathanjali; Hosagrahara, Vinayak; Zhang, Lisa; Xu, Carrie; Li, Yi-Xin; Muckelbauer, Jodi K.; Chang, Chiehying; An, Yongmi; Krystek, Stanley R.; Blanar, Michael A.; Zahler, Robert; Mukherjee, Ranjan; Cheng, Peter T.W.; Tino, Joseph A. (BMS)

2010-04-12

345

Discovery and implementation of transcriptional biomarkers of synthetic LXR agonists in peripheral blood cells  

Microsoft Academic Search

BACKGROUND: LXRs (Liver X Receptor ? and ?) are nuclear receptors that act as ligand-activated transcription factors. LXR activation causes upregulation of genes involved in reverse cholesterol transport (RCT), including ABCA1 and ABCG1 transporters, in macrophage and intestine. Anti-atherosclerotic effects of synthetic LXR agonists in murine models suggest clinical utility for such compounds. OBJECTIVE: Blood markers of LXR agonist exposure\\/activity

Elizabeth A DiBlasio-Smith; Maya Arai; Elaine M Quinet; Mark J Evans; Tad Kornaga; Michael D Basso; Liang Chen; Irene Feingold; Anita R Halpern; Qiang-Yuan Liu; Ponnal Nambi; Dawn Savio; Shuguang Wang; William M Mounts; Jennifer A Isler; Anna M Slager; Michael E Burczynski; Andrew J Dorner; Edward R LaVallie

2008-01-01

346

Activation of silent and weak synapses by cAMP-dependent protein kinase in cultured cerebellar granule neurons.  

PubMed

Presynaptic long term potentiation of synaptic transmission activates silent synapses and potentiates existing active synapses. We sought to visualise these two processes by studying the cAMP-dependent protein kinase (PKA) potentiation of presynaptic vesicle cycling in cultured cerebellar granule neurons.Using FM dyes to label the pool of recycling synaptic vesicles,we found that trains of electrical stimulation which do not potentiate already active synapses are sufficient to rapidly activate a discrete population comprising silent and very low activity synapses. Silent synapse activation required PKA activity and conversely, active synapses could be silenced by PKA inhibition. Surprisingly, the recycling pool of synaptic vesicles in recently activated synapses was larger than in already active synapses and equivalent to synapses treated with forskolin. Imaging of synaptic vesicle cycling and cytosolic Ca(2+) in individual nerve terminals confirmed that silent synapses have evoked Ca(2+) transients comparable to those of active synapses. Furthermore, across populations of active synapses, changes in Ca(2+) influx did not correlate with changes in the size of the pool of recycling synaptic vesicles. Finally, we found that stimulation of synapsin phosphorylation, but not RIM1?, by PKA was frequency dependent and long lasting. These data are consistent with the idea that PKA regulates synaptic vesicle recycling downstream of Ca(2+) influx and that this pathway is highly active in recently activated synapses. PMID:21486806

Cousin, Michael A; Evans, Gareth J O

2011-04-15

347

Select G-protein coupled receptors modulate agonist-induced signaling via a ROCK, LIMK and ?-arrestin 1 pathway  

PubMed Central

G-protein coupled receptors (GPCRs) are typically present in a basal, inactive state, but when bound to agonist they activate downstream signaling cascades. In studying arrestin regulation of opioid receptors in dorsal root ganglia (DRG) neurons, we find that agonists of delta opioid receptors (?ORs) activate cofilin through Rho-associated coiled-coiled containing protein kinase (ROCK), LIM domain kinase (LIMK) and ?- arrestin 1 (?-arr1), to regulate actin polymerization. This controls receptor function, as assessed by agonist-induced inhibition of voltage-dependent Ca2+ channels in DRGs. Agonists of opioid-receptor like receptors (ORL1) similarly influence the function of this receptor through ROCK, LIMK and ?-arr1. Functional evidence of this cascade was demonstrated in vivo where the behavioral effects of ?OR or ORL1 agonists were enhanced in the absence of ?-arr1 or prevented by inhibiting ROCK. This pathway allows ?OR and ORL1 agonists to rapidly regulate receptor function. PMID:24239352

Mittal, Nitish; Roberts, Kristofer; Pal, Katsuri; Bentolila, Laurent A.; Fultz, Elissa; Minasyan, Ani; Cahill, Catherine; Pradhan, Amynah; Conner, David; DeFea, Kathryn; Evans, Christopher; Walwyn, Wendy

2013-01-01

348

Heavy Xray Absorption in Soft Xray Weak Active Galactic S. C. Gallagher, 1 W. N. Brandt, 1 A. Laor, 2 M. Elvis, 3 S. Mathur, 4 Beverley J. Wills, 5 and  

E-print Network

is quite a strong effect. The Laor et al. (1997) soft X­ray weak (SXW) AGN lie at least an order different spectral energy distributions, and variability of the X­ray and/or optical fluxes. OnlyHeavy X­ray Absorption in Soft X­ray Weak Active Galactic Nuclei S. C. Gallagher, 1 W. N. Brandt, 1

Brandt, William Nielsen

349

Identification of Novel ?4?2-Nicotinic Acetylcholine Receptor (nAChR) Agonists Based on an Isoxazole Ether Scaffold that Demonstrate Antidepressant-like Activity  

PubMed Central

There is considerable evidence to support the hypothesis that the blockade of nAChR is responsible for the antidepressant action of nicotinic ligands. The nicotinic acetylcholine receptor (nAChR) antagonist, mecamylamine, has been shown to be an effective add-on in patients that do not respond to selective serotonin reuptake inhibitors. This suggests that nAChR ligands may address an unmet clinical need by providing relief from depressive symptoms in refractory patients. In this study, a new series of nAChR ligands based on an isoxazole-ether scaffold have been designed and synthesized for binding and functional assays. Preliminary structure-activity relationship (SAR) efforts identified a lead compound 43, which possesses potent antidepressant-like activity (1 mg/kg, IP; 5 mg/kg, PO) in the classical mouse forced swim test. Early stage absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) studies also suggested favorable drug-like properties, and broad screening towards other common neurotransmitter receptors indicated that compound 43 is highly selective for nAChRs over the other 45 neurotransmitter receptors and transporters tested. PMID:22148173

Yu, Li-Fang; Tückmantel, Werner; Eaton, J. Brek; Caldarone, Barbara; Fedolak, Allison; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J.; Kozikowski, Alan P.

2012-01-01

350

Antiproliferative Effects of Cannabinoid Agonists on Deep Infiltrating Endometriosis  

PubMed Central

Deep infiltrating endometriosis (DIE) is characterized by chronic pain, hyperproliferation of endometriotic cells and fibrosis. Since cannabinoids are endowed with antiproliferative and antifibrotic properties, in addition to their psychogenic and analgesic effects, cannabinoid agonists have been evaluated in DIE both in vitro and in vivo. The in vitro effects of the cannabinoid agonist WIN 55212-2 were evaluated on primary endometriotic and endometrial stromal and epithelial cell lines extracted from patients with or without DIE. Cell proliferation was determined by thymidine incorporation and production of reactive oxygen species by spectrofluorometry. ERK and Akt pathways were studied by immunoblotting. Immunoblotting of ?-smooth muscle actin was studied as evidence of myofibroblastic transformation. The in vivo effects of WIN 55212-2 were evaluated on Nude mice implanted with human deep infiltrating endometriotic nodules. The in vitro treatment of stromal endometriotic cells by WIN 55212-2 decreased cell proliferation, reactive oxygen species production, and ?-smooth muscle actin expression. The decrease in cell proliferation induced by WIN 55212-2 was not associated with a decrease in ERK activation, but was associated with the inhibition of Akt activation. WIN 55212-2 abrogated the growth of endometriotic tissue implanted in Nude mice. Cannabinoid agonists exert anti-proliferative effects on stromal endometriotic cells linked to the inhibition of the Akt pathway. These beneficial effects of cannabinoid agonists on DIE have been confirmed in vivo. PMID:21057002

Leconte, Mahaut; Nicco, Carole; Ngô, Charlotte; Arkwright, Sylviane; Chéreau, Christiane; Guibourdenche, Jean; Weill, Bernard; Chapron, Charles; Dousset, Bertrand; Batteux, Frédéric

2010-01-01

351

New Agonists / Antagonists for Toll-like Receptors (TLR7 and TLR9)  

E-print Network

New Agonists / Antagonists for Toll-like Receptors (TLR7 and TLR9) Technologieangebot B 67104 activity is observed. Industrial Sector Pharmaceutigs & Medicine Key Words TLR9, TLR7, Toll-like receptors

352

The ?2-adrenoceptor agonist formoterol stimulates mitochondrial biogenesis.  

PubMed

Mitochondrial dysfunction is a common mediator of disease and organ injury. Although recent studies show that inducing mitochondrial biogenesis (MB) stimulates cell repair and regeneration, only a limited number of chemicals are known to induce MB. To examine the impact of the ?-adrenoceptor (?-AR) signaling pathway on MB, primary renal proximal tubule cells (RPTC) and adult feline cardiomyocytes were exposed for 24 h to multiple ?-AR agonists: isoproterenol (nonselective ?-AR agonist), (±)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL 37344) (selective ?(3)-AR agonist), and formoterol (selective ?(2)-AR agonist). The Seahorse Biosciences (North Billerica, MA) extracellular flux analyzer was used to quantify carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)-uncoupled oxygen consumption rate (OCR), a marker of maximal electron transport chain activity. Isoproterenol and BRL 37244 did not alter mitochondrial respiration at any of the concentrations examined. Formoterol exposure resulted in increases in both FCCP-uncoupled OCR and mitochondrial DNA (mtDNA) copy number. The effect of formoterol on OCR in RPTC was inhibited by the ?-AR antagonist propranolol and the ?(2)-AR inverse agonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol hydrochloride (ICI-118,551). Mice exposed to formoterol for 24 or 72 h exhibited increases in kidney and heart mtDNA copy number, peroxisome proliferator-activated receptor ? coactivator 1?, and multiple genes involved in the mitochondrial electron transport chain (F0 subunit 6 of transmembrane F-type ATP synthase, NADH dehydrogenase subunit 1, NADH dehydrogenase subunit 6, and NADH dehydrogenase [ubiquinone] 1? subcomplex subunit 8). Cheminformatic modeling, virtual chemical library screening, and experimental validation identified nisoxetine from the Sigma Library of Pharmacologically Active Compounds and two compounds from the ChemBridge DIVERSet that increased mitochondrial respiratory capacity. These data provide compelling evidence for the use and development of ?(2)-AR ligands for therapeutic MB. PMID:22490378

Wills, Lauren P; Trager, Richard E; Beeson, Gyda C; Lindsey, Christopher C; Peterson, Yuri K; Beeson, Craig C; Schnellmann, Rick G

2012-07-01

353

Agonist regulation of adenylate cyclase activity in neuroblastoma x glioma hybrid NG108-15 cells transfected to co-express adenylate cyclase type II and the beta 2-adrenoceptor. Evidence that adenylate cyclase is the limiting component for receptor-mediated stimulation of adenylate cyclase activity.  

PubMed Central

Stable cell lines, derived from NG108-15 cells and transfected to express both the beta 2-adrenoceptor and adenylate cyclase type II, were produced and examined. The absence of adenylate cyclase type II in the parental cells and its presence in these clones was demonstrated by reverse transcriptase-PCR. Total cellular levels of adenylate cyclase were increased in a number of clones between 3- and 8-fold, as assessed by guanine nucleotide-stimulated specific high-affinity binding of [3H]forskolin to cellular membranes. Basal adenylate cyclase activity was markedly elevated compared with a clone expressing similar levels of the beta 2-adrenoceptor in the absence of adenylate cyclase type II. Each of NaF, forskolin and guanosine 5'-[beta, gamma-imido]triphosphate (a poorly hydrolysed analogue of GTP) produced substantially higher levels of adenylate cyclase activity in membranes of the clones positive for expression of adenylate cyclase type II than was achieved with the parental cells. Both isoprenaline, acting at the introduced beta 2-adrenoceptor, and iloprost, acting at the endogenously expressed IP prostanoid receptor, stimulated adenylate cyclase activity to much higher levels in the clones expressing adenylate cyclase type II compared with the clone lacking this adenylate cyclase; however, the concentration-effect curves for adenylate cyclase stimulation by these two agonists were not different between parental cells and clones over-expressing adenylate cyclase type II. A maximally effective concentration of the beta-adrenoceptor partial agonist ephedrine displayed similar intrinsic activity and potency to stimulate adenylate cyclase in membranes of clones both with and without adenylate cyclase type II. Both secretin and 5'-N-ethylcarbox-amidoadenosine (acting at an endogenous A2 adenosine receptor) were also able to produce substantially greater maximal activations of adenylate cyclase in the clones expressing excess adenylate cyclase type II, without alterations in agonist intrinsic activity or potency. These results demonstrate that the maximal output of the stimulatory arm of the adenylate cyclase cascade can be increased by increasing total levels of adenylate cyclase in the genetic background of NG108-15 cells. PMID:8836153

MacEwan, D J; Kim, G D; Milligan, G

1996-01-01

354

Atomistic Detailed Mechanism and Weak Cation-Conducting Activity of HIV-1 Vpu Revealed by Free Energy Calculations  

PubMed Central

The viral protein U (Vpu) encoded by HIV-1 has been shown to assist in the detachment of virion particles from infected cells. Vpu forms cation-specific ion channels in host cells, and has been proposed as a potential drug target. An understanding of the mechanism of ion transport through Vpu is desirable, but remains limited because of the unavailability of an experimental structure of the channel. Using a structure of the pentameric form of Vpu – modeled and validated based on available experimental data – umbrella sampling molecular dynamics simulations (cumulative simulation time of more than 0.4 µs) were employed to elucidate the energetics and the molecular mechanism of ion transport in Vpu. Free energy profiles corresponding to the permeation of Na+ and K+ were found to be similar to each other indicating lack of ion selection, consistent with previous experimental studies. The Ser23 residue is shown to enhance ion transport via two mechanisms: creating a weak binding site, and increasing the effective hydrophilic length of the channel, both of which have previously been hypothesized in experiments. A two-dimensional free energy landscape has been computed to model multiple ion permeation, based on which a mechanism for ion conduction is proposed. It is shown that only one ion can pass through the channel at a time. This, along with a stretch of hydrophobic residues in the transmembrane domain of Vpu, explains the slow kinetics of ion conduction. The results are consistent with previous conductance studies that showed Vpu to be a weakly conducting ion channel. PMID:25392993

Padhi, Siladitya; Burri, Raghunadha Reddy; Jameel, Shahid; Priyakumar, U. Deva

2014-01-01

355

Azepinone as a conformational constraint in the design of kappa-opioid receptor agonists.  

PubMed

A new class of kappa-opioid receptor agonists is described. The design of these agents was based upon energy minimization and structural overlay studies of the generic azepin-2-one structure 3 with the crystal structure of arylacetamide kappa agonist 1, ICI 199441. The most active compound identified was ligand 4a (K(i)=0.34 nM), which demonstrated potent antinociceptive activity after oral administration in rodents. PMID:15482950

Tuthill, Paul A; Seida, Pamela R; Barker, William; Cassel, Joel A; Belanger, Serge; DeHaven, Robert N; Koblish, Michael; Gottshall, Susan L; Little, Patrick J; DeHaven-Hudkins, Diane L; Dolle, Roland E

2004-11-15

356

Glypican 4 may be involved in the adipose tissue redistribution in high-fat feeding C57BL/6J mice with peroxisome proliferators-activated receptor ? agonist rosiglitazone treatment.  

PubMed

Fat distribution affects the risk of developing obesity-related chronic diseases. Glypican 4 (Gpc4) may be involved in the regulation of obesity and body fat distribution. The aim of the study was to explore whether Gpc4 affects fat accumulation and the possible mechanism. C57BL/6J mice were fed with a high-fat diet for eight weeks and treated with a peroxisome proliferators-activated receptor ? (PPAR?) agonist, rosiglitazone, for another four weeks. The weight of inguinal and epididymal fat pads was determined. The Gpc4 mRNA and protein expression and two probable regulators of the Gpc4 gene, specificity protein 1 (Sp1) and Sp3 mRNA, were also measured. Mice treated with rosiglitazone showed a significant increase in subcutaneous fat weight compared with the untreated mice. The expression of Gpc4 mRNA and protein was significantly higher in visceral than in subcutaneous fat in all the groups. Compared with untreated mice the expression of Gpc4 and Sp3 mRNA in subcutaneous fat and the expression of Sp1 and Sp3 mRNA in visceral fat in mice treated with rosiglitazone increased significantly. The Sp3/Sp1 ratio was consistent with the expression of Gpc4 mRNA and protein in subcutaneous and visceral fat. The present study indicated that Gpc4 may play an important role in fat distribution, and this effect is perhaps regulated by the ratio of Sp3/Sp1 in the subcutaneous and visceral fat tissues. PMID:25371737

Liu, Li; Gu, Hailun; Zhao, Yue; An, Li; Yang, Jun

2014-12-01

357

Glypican 4 may be involved in the adipose tissue redistribution in high-fat feeding C57BL/6J mice with peroxisome proliferators-activated receptor ? agonist rosiglitazone treatment  

PubMed Central

Fat distribution affects the risk of developing obesity-related chronic diseases. Glypican 4 (Gpc4) may be involved in the regulation of obesity and body fat distribution. The aim of the study was to explore whether Gpc4 affects fat accumulation and the possible mechanism. C57BL/6J mice were fed with a high-fat diet for eight weeks and treated with a peroxisome proliferators-activated receptor ? (PPAR?) agonist, rosiglitazone, for another four weeks. The weight of inguinal and epididymal fat pads was determined. The Gpc4 mRNA and protein expression and two probable regulators of the Gpc4 gene, specificity protein 1 (Sp1) and Sp3 mRNA, were also measured. Mice treated with rosiglitazone showed a significant increase in subcutaneous fat weight compared with the untreated mice. The expression of Gpc4 mRNA and protein was significantly higher in visceral than in subcutaneous fat in all the groups. Compared with untreated mice the expression of Gpc4 and Sp3 mRNA in subcutaneous fat and the expression of Sp1 and Sp3 mRNA in visceral fat in mice treated with rosiglitazone increased significantly. The Sp3/Sp1 ratio was consistent with the expression of Gpc4 mRNA and protein in subcutaneous and visceral fat. The present study indicated that Gpc4 may play an important role in fat distribution, and this effect is perhaps regulated by the ratio of Sp3/Sp1 in the subcutaneous and visceral fat tissues. PMID:25371737

LIU, LI; GU, HAILUN; ZHAO, YUE; AN, LI; YANG, JUN

2014-01-01

358

Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer  

PubMed Central

Background: Recombinant tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces tumour-selective apoptosis in various pre-clinical models by binding its specific receptors expressed on cancer cells. Mapatumumab is a fully human monoclonal antibody that is agonistic to the TRAIL Receptor 1 (TRAIL-R1). Methods: This phase II multicentre study was designed to evaluate the efficacy and safety of mapatumumab in patients with colorectal cancer (CRC) who had failed to respond to, were intolerant to, or not candidates for fluoropyrimidine, oxaliplatin, and irinotecan-based regimens. All patients received two loading doses of mapatumumab (20?mg?kg?1 every 14 days), followed by maintenance therapy with 10?mg?kg?1 infused every 14 days. Results: A total of 38 patients, who had progressive disease after a median of three earlier chemotherapy lines, were enrolled. No response according to the Response Evaluation Criteria in Solid Tumors was observed. A total of 12 patients (32%) achieved stable disease for a median of 2.6 months. The median progression-free survival was 1.2 months. The most common adverse events reported, regardless of relationship, were fatigue, nausea, anorexia, and abdominal pain. Plasma mapatumumab concentrations were within the range of exposures predicted by the results of phase I studies of mapatumumab. Conclusion: No clinical activity of single-agent mapatumumab was observed in patients with advanced refractory CRC. However, on the basis of its favourable safety profile and pre-clinical evidence of potential synergy in combination with agents commonly used in the treatment of colorectal cancer, further evaluation of mapatumumab in combination with chemotherapy is warranted. PMID:20068564

Trarbach, T; Moehler, M; Heinemann, V; Köhne, C-H; Przyborek, M; Schulz, C; Sneller, V; Gallant, G; Kanzler, S

2010-01-01

359

De novo design, synthesis, and biological activities of high-affinity and selective non-peptide agonists of the delta-opioid receptor.  

PubMed

On the basis of the structure-activity relationships of delta-opioid-selective peptide ligands and on a model of the proposed bioactive conformation for a potent and selective, conformationally constrained delta-opioid peptide ligand [(2S, 3R)-TMT1]DPDPE, a series of small organic peptide mimetic compounds targeted for the delta-opioid receptor have been designed, synthesized, and evaluated in radiolabeled ligand binding assays and in vitro bioassays. The new non-peptide ligands use piperazine as a template to present the most important pharmacophore groups, including phenol and phenyl groups and a hydrophobic moiety. This hydrophobic group was designed to mimic the hydrophobic character of the D-Pen residues in DPDPE, which has been found to be extremely important for increasing the binding affinity and selectivity of these non-peptide ligands for the delta-opioid receptor over the mu-opioid receptor. Compound 6f (SL-3111) showed 8 nM binding affinity and over 2000-fold selectivity for the delta-opioid receptor over the mu-opioid receptor. Both enantiomers of SL-3111 were separated, and the (-)-isomer was shown to be the compound with the highest affinity for the delta-opioid receptor found in our study (IC50 = 4.1 nM), with a selectivity very similar to that observed for the racemic compound. The phenol hydroxyl group of SL-3111 turned out to be essential to maintain high affinity for the delta-opioid receptor, which also was observed in the case of the delta-opioid-selective peptide ligand DPDPE. Binding studies of SL-3111 and [p-ClPhe4]DPDPE on the cloned wild-type and mutated human delta-opioid receptors suggested that the new non-peptide ligand has a binding profile similar to that of DPDPE but different from that of (+)-4-[((alphaR)-alpha(2S,5R)-4-allyl-2, 5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC-80), another delta-opioid-selective non-peptide ligand. PMID:9822547

Liao, S; Alfaro-Lopez, J; Shenderovich, M D; Hosohata, K; Lin, J; Li, X; Stropova, D; Davis, P; Jernigan, K A; Porreca, F; Yamamura, H I; Hruby, V J

1998-11-19

360

Dopamine agonists and risk: impulse control disorders in Parkinson's disease.  

PubMed

Impulse control disorders are common in Parkinson's disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a 'Sure' choice and a 'Gamble' choice of moderate risk. To commence each trial, in the 'Gain' condition, individuals started at $0 and in the 'Loss' condition individuals started at -$50 below the 'Sure' amount. The difference between the maximum and minimum outcomes from each gamble (i.e. range) was used as an index of risk ('Gamble Risk'). Sixteen healthy volunteers were behaviourally tested. Fourteen impulse control disorder (problem gambling or compulsive shopping) and 14 matched Parkinson's disease controls were tested ON and OFF dopamine agonists. Patients with impulse control disorder made more risky choices in the 'Gain' relative to the 'Loss' condition along with decreased orbitofrontal cortex and anterior cingulate activity, with the opposite observed in Parkinson's disease controls. In patients with impulse control disorder, dopamine agonists were associated with enhanced sensitivity to risk along with decreased ventral striatal activity again with the opposite in Parkinson's disease controls. Patients with impulse control disorder appear to have a bias towards risky choices independent of the effect of loss aversion. Dopamine agonists enhance sensitivity to risk in patients with impulse control disorder possibly by impairing risk evaluation in the striatum. Our results provide a potential explanation of why dopamine agonists may lead to an unconscious bias towards risk in susceptible individuals. PMID:21596771

Voon, Valerie; Gao, Jennifer; Brezing, Christina; Symmonds, Mkael; Ekanayake, Vindhya; Fernandez, Hubert; Dolan, Raymond J; Hallett, Mark

2011-05-01