NASA Astrophysics Data System (ADS)
Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre
2012-03-01
This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy
Baryons, neutrinos, feedback and weak gravitational lensing
NASA Astrophysics Data System (ADS)
Harnois-Déraps, Joachim; van Waerbeke, Ludovic; Viola, Massimo; Heymans, Catherine
2015-06-01
The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OverWhelmingly Large hydrodynamical simulations. It is specifically calibrated for z < 1.5, where it models the simulations to an accuracy that is better than 2 per cent for scales k < 10 h Mpc-1 and better than 5 per cent for 10 < k < 100 h Mpc-1. Equipped with this precise tool, this paper presents the first constraint on baryonic feedback models using gravitational lensing data, from the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). In this analysis, we show that the effect of neutrino mass on the mass power spectrum is degenerate with the baryonic feedback at small angular scales and cannot be ignored. Assuming a cosmology precision fixed by WMAP9, we find that a universe with massless neutrinos is rejected by the CFHTLenS lensing data with 85-98 per cent confidence, depending on the baryon feedback model. Some combinations of feedback and non-zero neutrino masses are also disfavoured by the data, although it is not yet possible to isolate a unique neutrino mass and feedback model. Our study shows that ongoing weak gravitational lensing surveys (KiDS, HSC and DES) will offer a unique opportunity to probe the physics of baryons at galactic scales, in
Atomic Inference from Weak Gravitational Lensing Data
Marshall, Phil; /KIPAC, Menlo Park
2005-12-14
We present a novel approach to reconstructing the projected mass distribution from the sparse and noisy weak gravitational lensing shear data. The reconstructions are regularized via the knowledge gained from numerical simulations of clusters, with trial mass distributions constructed from n NFW profile ellipsoidal components. The parameters of these ''atoms'' are distributed a priori as in the simulated clusters. Sampling the mass distributions from the atom parameter probability density function allows estimates of the properties of the mass distribution to be generated, with error bars. The appropriate number of atoms is inferred from the data itself via the Bayesian evidence, and is typically found to be small, reecting the quality of the data. Ensemble average mass maps are found to be robust to the details of the noise realization, and succeed in recovering the demonstration input mass distribution (from a realistic simulated cluster) over a wide range of scales. As an application of such a reliable mapping algorithm, we comment on the residuals of the reconstruction and the implications for predicting convergence and shear at specific points on the sky.
Weak gravitational lensing with the Square Kilometre Array
NASA Astrophysics Data System (ADS)
Brown, M.; Bacon, D.; Camera, S.; Harrison, I.; Joachimi, B.; Metcalf, R. B.; Pourtsidou, A.; Takahashi, K.; Zuntz, J.; Abdalla, F. B.; Bridle, S.; Jarvis, M.; Kitching, T.; Miller, L.; Patel, P.
2015-04-01
We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.
The general theory of secondary weak gravitational lensing
NASA Astrophysics Data System (ADS)
Clarkson, Chris
2015-09-01
Weak gravitational lensing is normally assumed to have only two principle effects: a magnification of a source and a distortion of the sources shape in the form of a shear. However, further distortions are actually present owing to changes in the gravitational field across the scale of the ray bundle of light propagating to us, resulting in the familiar arcs in lensed images. This is normally called the flexion, and is approximated by Taylor expanding the shear and magnification across the image plane. However, the physical origin of this effect arises from higher-order corrections in the geodesic deviation equation governing the gravitational force between neighbouring geodesics— so involves derivatives of the Riemann tensor. We show that integrating the second-order geodesic deviation equation results in a `Hessian map' for gravitational lensing, which is a higher-order addition to the Jacobi map. We derive the general form of the Hessian map in an arbitrary spacetime paying particular attention to the separate effects of local Ricci versus non-local Weyl curvature. We then specialise to the case of a perturbed FLRW model, and give the general form of the Hessian for the first time. This has a host of new contributions which could in principle be used as tests for modified gravity.
Weak shear study of galaxy clusters by simulated gravitational lensing
NASA Astrophysics Data System (ADS)
Coss, David
Gravitational lensing has been simulated for numerical galaxy clusters in order to characterize the effects of substructure and shape variations of dark matter halos on the weak lensing properties of clusters. In order to analyze realistic galaxy clusters, 6 high-resolution Adaptive Refinement Tree N-body simulations of clusters with hydrodynamics are used, in addition to a simulation of one group undergoing a merger. For each cluster, the three-dimensional particle distribution is projected perpendicular to three orthogonal lines of sight, providing 21 projected mass density maps. The clusters have representative concentration and mass values for clusters in the concordance cosmology. Two gravitational lensing simulation methods are presented. In the first method, direct integration is used to calculate deflection angles. To overcome computational constraints inherent in this method, a distributed computing project was created for parallel computation. In addition to its use in gravitational lensing simulation, a description of the setup and function of this distributed computing project is presented as an alternative to in-house computing clusters, which has the added benefit of public enrollment in science and low cost. In the second method, shear maps are created using a fast Fourier transform method. From these shear maps, the effects of substructure and shape variation are related to observational gravitational lensing studies. Average shear in regions less than and greater than half of the virial radius demonstrates distinct dispersion, varying by 24% from the mean among the 21 maps. We estimate the numerical error in shear calculations to be of the order of 5%. Therefore, this shear dispersion is a reliable consequence of shape dispersion, correlating most strongly with the ratio of smallest-to-largest principal axis lengths of a cluster isodensity shell. On the other hand, image ellipticities, which are of great importance in mass reconstruction, are shown
Weak Gravitational Lensing from Regular Bardeen Black Holes
NASA Astrophysics Data System (ADS)
Ghaffarnejad, Hossein; niad, Hassan
2016-03-01
In this article we study weak gravitational lensing of regular Bardeen black hole which has scalar charge g and mass m. We investigate the angular position and magnification of non-relativistic images in two cases depending on the presence or absence of photon sphere. Defining dimensionless charge parameter q= {g}/{2m} we seek to disappear photon sphere in the case of |q|>{24√5}/{125} for which the space time metric encounters strongly with naked singularities. We specify the basic parameters of lensing in terms of scalar charge by using the perturbative method and found that the parity of images is different in two cases: (a) The strongly naked singularities is present in the space time. (b) singularity of space time is weak or is eliminated (the black hole lens).
Karhunen-Loeve Analysis for Weak Gravitational Lensing
NASA Astrophysics Data System (ADS)
Vanderplas, Jacob T.
In the past decade, weak gravitational lensing has become an important tool in the study of the universe at the largest scale, giving insights into the distribution of dark matter, the expansion of the universe, and the nature of dark energy. This thesis research explores several applications of Karhunen-Loève (KL) analysis to speed and improve the comparison of weak lensing shear catalogs to theory in order to constrain cosmological parameters in current and future lensing surveys. This work addresses three related aspects of weak lensing analysis: Three-dimensional Tomographic Mapping: (Based on work published in Vanderplas et al 2011) We explore a new fast approach to three-dimensional mass mapping in weak lensing surveys. The KL approach uses a KL-based filtering of the shear signal to reconstruct mass structures on the line-of-sight, and provides a unified framework to evaluate the efficacy of linear reconstruction techniques. We find that the KL-based filtering leads to near-optimal angular resolution, and computation times which are faster than previous approaches. We also use the KL formalism to show that linear non-parametric reconstruction methods are fundamentally limited in their ability to resolve lens redshifts. Shear Peak Statistics with Incomplete Data: (Based on work published in Vanderplas et al 2012) We explore the use of KL eigenmodes for interpolation across masked regions in observed shear maps. Mass mapping is an inherently non-local calculation, meaning gaps in the data can have a significant effect on the properties of the derived mass map. Our KL mapping procedure leads to improvements in the recovery of detailed statistics of peaks in the mass map, which holds promise of improved cosmological constraints based on such studies. Two-point parameter estimation with KL modes: The power spectrum of the observed shear can yield powerful cosmological constraints. Incomplete survey sky coverage, however, can lead to mixing of power between
Weak gravitational lensing systematic errors in the dark energy survey
NASA Astrophysics Data System (ADS)
Plazas, Andres Alejandro
Dark energy is one of the most important unsolved problems in modern Physics, and weak gravitational lensing (WL) by mass structures along the line of sight ("cosmic shear") is a promising technique to learn more about its nature. However, WL is subject to numerous systematic errors which induce biases in measured cosmological parameters and prevent the development of its full potential. In this thesis, we advance the understanding of WL systematics in the context of the Dark Energy Survey (DES). We develop a testing suite to assess the performance of the shapelet-based DES WL measurement pipeline. We determine that the measurement bias of the parameters of our Point Spread Function (PSF) model scales as (S/N )-2, implying that a PSF S/N > 75 is needed to satisfy DES requirements. PSF anisotropy suppression also satisfies the requirements for source galaxies with S/N ≳ 45. For low-noise, marginally-resolved exponential galaxies, the shear calibration errors are up to about 0.06% (for shear values ≲ 0.075). Galaxies with S/N ≳ 75 present about 1% errors, sufficient for first-year DES data. However, more work is needed to satisfy full-area DES requirements, especially in the high-noise regime. We then implement tests to validate the high accuracy of the map between pixel coordinates and sky coordinates (astrometric solution), which is crucial to detect the required number of galaxies for WL in stacked images. We also study the effect of atmospheric dispersion on cosmic shear experiments such as DES and the Large Synoptic Survey Telescope (LSST) in the four griz bands. For DES (LSST), we find systematics in the g and r (g, r, and i) bands that are larger than required. We find that a simple linear correction in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r ( i) band for DES (LSST). More complex corrections will likely reduce the systematic cosmic-shear errors below statistical errors for LSST r band
Constraining modified gravitational theories by weak lensing with Euclid
Martinelli, Matteo; Calabrese, Erminia; De Bernardis, Francesco; Melchiorri, Alessandro; Pagano, Luca; Scaramella, Roberto
2011-01-15
Future proposed satellite missions such as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak-lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios such as those predicted by scalar-tensor and f(R) theories. We find that Euclid will improve constraints expected from the Planck satellite on these modified theories of gravity by 2 orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modifications to gravity.
Gravitational lensing beyond the weak-field approximation
Perlick, Volker
2014-01-14
Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat’s principle and the exact lens map of Frittelli and Newman.
Gravitational lensing beyond the weak-field approximation
NASA Astrophysics Data System (ADS)
Perlick, Volker
2014-01-01
Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat's principle and the exact lens map of Frittelli and Newman.
Turner, E.L.
1988-07-01
For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.
Weak Gravitational Lensing by Galaxy Troughs in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Gruen, Daniel; Dark Energy Survey Collaboration
2016-06-01
The Dark Energy Survey (DES) is in the process of imaging 5000 sq. deg. of the southern sky in five broad-band filters. Its primary purpose is to constrain cosmology and the physics of dark energy using weak gravitational lensing, galaxy clusters, baryonic acoustic oscillations, and supernova distance measurements.I will give an overview of weak gravitational lensing results from early DES data, with a focus on the newly developed galaxy trough statistics. Using the latter, we have made the highest signal-to-noise lensing measurements of the low density Universe to date, probing gravity and structure formation in the underdense regime. Besides these recent results, I will give an outlook on cosmological and astrophysical applications of the trough lensing signal.
Lincoln, Don
2015-06-24
In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.
Constraining Horava-Lifshitz gravity by weak and strong gravitational lensing
Horvath, Zsolt; Gergely, Laszlo A.; Keresztes, Zoltan; Harko, Tiberiu; Lobo, Francisco S. N.
2011-10-15
We discuss gravitational lensing in the Kehagias-Sfetsos space-time emerging in the framework of Horava-Lifshitz gravity. In weak lensing, we show that there are three regimes, depending on the value of {lambda}=1/{omega}d{sup 2}, where {omega} is the Horava-Lifshitz parameter and d characterizes the lensing geometry. When {lambda} is close to zero, light deflection typically produces two images, as in Schwarzschild lensing. For very large {lambda}, the space-time approaches flatness, therefore there is only one undeflected image. In the intermediate range of {lambda}, only the upper focused image is produced due to the existence of a maximal deflection angle {delta}{sub max}, a feature inexistent in the Schwarzschild weak lensing. We also discuss the location of Einstein rings, and determine the range of the Horava-Lifshitz parameter compatible with present-day lensing observations. Finally, we analyze in the strong lensing regime the first two relativistic Einstein rings and determine the constraints on the parameter range to be imposed by forthcoming experiments.
NASA Astrophysics Data System (ADS)
Saha, P.; Murdin, P.
2000-11-01
Gravity bends light rays in a way analogous to, but quantitatively different from, the way it bends trajectories of passing particles. If light from some bright object passes close enough to some foreground mass, that object's image will be altered. The effect is more like a piece of bathroom glass in the sky than a precision-ground and well-focused lens, but the terms `gravitational lensing' or ...
The Effect of Weak Gravitational Lensing on the Angular Distribution of Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Williams, L. L. R.
1996-12-01
If gamma-ray bursts (GRBs) are cosmologically distributed standard candles and are associated with the luminous galaxies, then the observed angular distribution of all GRBs is altered as a result of weak gravitational lensing of bursts by density inhomogeneities. The amplitude of the effect is generally small. For example, if the current catalogs extend to z_max_ ~ 1 and we live in a flat {OMEGA} = 1 universe, the angular autocorrelation function of GRBs will be enhanced by ~8% as a result of lensing, on all angular scales. For an extreme case of z_max_ = 1.5 and ({OMEGA}, {LAMBDA}) = (0.2, 0.8), an enhancement of ~33% is predicted. If the observed distribution of GRBs is used in the future to derive power spectra of mass density fluctuations on large angular scales, the effect of weak lensing should probably be taken into account.
Rotation of the cosmic microwave background polarization from weak gravitational lensing.
Dai, Liang
2014-01-31
When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection. PMID:24580435
An accurate and practical method for inference of weak gravitational lensing from galaxy images
NASA Astrophysics Data System (ADS)
Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.
2016-07-01
We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.
An accurate and practical method for inference of weak gravitational lensing from galaxy images
NASA Astrophysics Data System (ADS)
Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.
2016-04-01
We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong (2014, BA14), extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded image of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies/second/core with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multi-band observations; and joint inference of photometric redshifts and lensing tomography.
Hirata, Christopher M.; Cutler, Curt
2010-06-15
Gravitational wave sources are a promising cosmological standard candle because their intrinsic luminosities are determined by fundamental physics (and are insensitive to dust extinction). They are, however, affected by weak lensing magnification due to the gravitational lensing from structures along the line of sight. This lensing is a source of uncertainty in the distance determination, even in the limit of perfect standard candle measurements. It is commonly believed that the uncertainty in the distance to an ensemble of gravitational wave sources is limited by the standard deviation of the lensing magnification distribution divided by the square root of the number of sources. Here we show that by exploiting the non-Gaussian nature of the lensing magnification distribution, we can improve this distance determination, typically by a factor of 2-3; we provide a fitting formula for the effective distance accuracy as a function of redshift for sources where the lensing noise dominates.
WEAK GRAVITATIONAL LENSING AS A PROBE OF PHYSICAL PROPERTIES OF SUBSTRUCTURES IN DARK MATTER HALOS
Shirasaki, Masato
2015-02-01
We propose a novel method to select satellite galaxies in outer regions of galaxy groups or clusters using weak gravitational lensing. The method is based on the theoretical expectation that the tangential shear pattern around satellite galaxies would appear with negative values at an offset distance from the center of the main halo. We can thus locate the satellite galaxies statistically with an offset distance of several lensing smoothing scales by using the standard reconstruction of surface mass density maps from weak lensing observation. We test the idea using high-resolution cosmological simulations. We show that subhalos separated from the center of the host halo are successfully located even without assuming the position of the center. For a number of such subhalos, the characteristic mass and offset length can be also estimated on a statistical basis. We perform a Fisher analysis to show how well upcoming weak lensing surveys can constrain the mass density profile of satellite galaxies. In the case of the Large Synoptic Survey Telescope with a sky coverage of 20,000 deg{sup 2}, the mass of the member galaxies in the outer region of galaxy clusters can be constrained with an accuracy of ∼0.1 dex for galaxy clusters with mass 10{sup 14} h {sup –1} M {sub ☉} at z = 0.15. Finally we explore the detectability of tidal stripping features for subhalos having a wide range of masses of 10{sup 11}-10{sup 13} h {sup –1} M {sub ☉}.
Improving three-dimensional mass mapping with weak gravitational lensing using galaxy clustering
NASA Astrophysics Data System (ADS)
Simon, Patrick
2013-12-01
Context. The weak gravitational lensing distortion of distant galaxy images (defined as sources) probes the projected large-scale matter distribution in the Universe. The availability of redshift information in galaxy surveys also allows us to recover the radial matter distribution to a certain degree. Aims: To improve quality in the mass mapping, we combine the lensing information with the spatial clustering of a population of galaxies (defined as tracers) that trace the matter density with a known galaxy bias. Methods: We construct a minimum-variance estimator for the 3D matter density that incorporates the angular distribution of galaxy tracers, which are coarsely binned in redshift. Merely the second-order bias of the tracers has to be known, which can in principle be self-consistently constrained in the data by lensing techniques. This synergy introduces a new noise component because of the stochasticity in the matter-tracer density relation. We give a description of the stochasticity noise in the Gaussian regime, and we investigate the estimator characteristics analytically. We apply the estimator to a mock survey based on the Millennium Simulation. Results: The estimator linearly mixes the individual lensing mass and tracer number density maps into a combined smoothed mass map. The weighting in the mix depends on the signal-to-noise ratio (S/N) of the individual maps and the correlation, R, between the matter and galaxy density. The weight of the tracers can be reduced by hand. For moderate mixing, the S/N in the mass map improves by a factor ~2-3 for R ≳ 0.4. Importantly, the systematic offset between a true and apparent mass peak distance (defined as z-shift bias) in a lensing-only map is eliminated, even for weak correlations of R ~ 0.4. Conclusions: If the second-order bias of tracer galaxies can be determined, the synergy technique potentially provides an option to improve redshift accuracy and completeness of the lensing 3D mass map. Herein, the aim
Gravitational Lensing by Kerr-Sen Dilaton-Axion Black Hole in the Weak Deflection Limit
Gyulchev, G. N.; Yazadjiev, S. S.
2010-11-25
We investigate analytically gravitational lensing by charged, stationary, axially symmetric Kerr-Sen dilaton-axion black hole in the weak deflection limit. Approximate solutions to the lightlike equations of motion are present up to and including third-order terms in M/b, a/b and r{sub {alpha}}/b, where M is the black hole mass, a is the angular momentum, r{sub {alpha}}= Q{sup 2}/M,Q being the charge and b is the impact parameter of the light ray. We compute the positions of the two weak field images up to post-Newtonian order. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly with the increase of the charge. The lensing observables are compared to these characteristics for particular cases as Schwarzschild and Kerr black holes as well as the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole.
TOPICAL REVIEW Gravitational lensing
NASA Astrophysics Data System (ADS)
Bartelmann, Matthias
2010-12-01
Gravitational lensing has developed into one of the most powerful tools for the analysis of the dark universe. This review summarizes the theory of gravitational lensing, its main current applications and representative results achieved so far. It has two parts. In the first, starting from the equation of geodesic deviation, the equations of thin and extended gravitational lensing are derived. In the second, gravitational lensing by stars and planets, galaxies, galaxy clusters and large-scale structures is discussed and summarized.
Probing Dark Energy via Weak Gravitational Lensing with the Supernova Acceleration Probe (SNAP)
Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN
2005-08-08
SNAP is a candidate for the Joint Dark Energy Mission (JDEM) that seeks to place constraints on the dark energy using two distinct methods. The first, Type Ia SN, is discussed in a separate white paper. The second method is weak gravitational lensing, which relies on the coherent distortions in the shapes of background galaxies by foreground mass structures. The excellent spatial resolution and photometric accuracy afforded by a 2-meter space-based observatory are crucial for achieving the high surface density of resolved galaxies, the tight control of systematic errors in the telescope's Point Spread Function (PSF), and the exquisite redshift accuracy and depth required by this project. These are achieved by the elimination of atmospheric distortion and much of the thermal and gravity loads on the telescope. The SN and WL methods for probing dark energy are highly complementary and the error contours from the two methods are largely orthogonal. The nominal SNAP weak lensing survey covers 1000 square degrees per year of operation in six optical and three near infrared filters (NIR) spanning the range 350 nm to 1.7 {micro}m. This survey will reach a depth of 26.6 AB magnitude in each of the nine filters and allow for approximately 100 resolved galaxies per square arcminute, {approx} 3 times that available from the best ground-based surveys. Photometric redshifts will be measured with statistical accuracy that enables scientific applications for even the faint, high redshift end of the sample. Ongoing work aims to meet the requirements on systematics in galaxy shape measurement, photometric redshift biases, and theoretical predictions.
NASA Astrophysics Data System (ADS)
Higuchi, Yuichi; Shirasaki, Masato
2016-04-01
We study the effect of f(R) gravity on the statistical properties of various large-scale structures which can be probed in weak gravitational lensing measurements. A set of ray-tracing simulations of gravitational lensing in f(R) gravity enables us to explore cosmological information on (i) stacking analyses of weak lensing observables and (ii) peak statistics in reconstructed lensing mass maps. For the f(R) model proposed by Hu & Sawicki, the measured lensing signals of dark matter haloes in the stacking analysis would show a ≲ 10% difference between the standard ΛCDM and the f(R) model when the additional degree of freedom in f(R) model would be |fR0| ˜ 10-5. Among various large-scale structures to be studied in stacking analysis, troughs, i.e, underdensity regions in projected plane of foreground massive haloes, could be promising to constrain the model with |fR0| ˜ 10-5, while stacking analysis around voids is found to be difficult to improve the constraint of |fR0| even in future lensing surveys with a sky coverage of ˜1000 square degrees. On the peak statistics, we confirm the correspondence between local maxima and dark matter haloes along the line of sight, regardless of the modification of gravity in our simulation. Thus, the number count of high significance local maxima would be useful to probe the mass function of dark matter haloes even in the f(R) model with |f_R0| ≲ 10^{-5}. We also find that including local minima in lensing mass maps would be helpful to improve the constant on f(R) gravity down to |fR0| = 10-5 in ongoing weak lensing surveys.
NASA Astrophysics Data System (ADS)
Higuchi, Yuichi; Shirasaki, Masato
2016-07-01
We study the effect of f(R) gravity on the statistical properties of various large-scale structures which can be probed in weak gravitational lensing measurements. A set of ray-tracing simulations of gravitational lensing in f(R) gravity enables us to explore cosmological information on (i) stacking analyses of weak lensing observables and (ii) peak statistics in reconstructed lensing mass maps. For the f(R) model proposed by Hu & Sawicki, the measured lensing signals of dark matter haloes in the stacking analysis would show a ≲10 per cent difference between the standard Λcold dark matter and the f(R) model when the additional degree of freedom in f(R) model would be |fR0| ˜ 10-5. Among various large-scale structures to be studied in stacking analysis, troughs, i.e. underdensity regions in projected plane of foreground massive haloes, could be promising to constrain the model with |fR0| ˜ 10-5, while stacking analysis around voids is found to be difficult to improve the constraint of |fR0| even in future lensing surveys with a sky coverage of ˜1000 deg2. On the peak statistics, we confirm the correspondence between local maxima and dark matter haloes along the line of sight, regardless of the modification of gravity in our simulation. Thus, the number count of high significance local maxima would be useful to probe the mass function of dark matter haloes even in the f(R) model with |fR0| ≲ 10-5. We also find that including local minima in lensing mass maps would be helpful to improve the constant on f(R) gravity down to |fR0| = 10-5 in ongoing weak lensing surveys.
Zhang Pengjie
2010-09-10
The galaxy intrinsic alignment is a severe challenge to precision cosmic shear measurement. We propose self-calibrating the induced gravitational shear-galaxy intrinsic ellipticity correlation (the GI correlation) in weak lensing surveys with photometric redshift measurements. (1) We propose a method to extract the intrinsic ellipticity-galaxy density cross-correlation (I-g) from the galaxy ellipticity-density measurement in the same redshift bin. (2) We also find a generic scaling relation to convert the extracted I-g correlation to the necessary GI correlation. We perform a concept study under simplified conditions and demonstrate its capability to significantly reduce GI contamination. We discuss the impact of various complexities on the two key ingredients of the self-calibration technique, namely the method for extracting the I-g correlation and the scaling relation between the I-g and the GI correlation. We expect that none of them will likely be able to completely invalidate the proposed self-calibration technique.
Weak gravitational lensing due to large-scale structure of the universe
NASA Technical Reports Server (NTRS)
Jaroszynski, Michal; Park, Changbom; Paczynski, Bohdan; Gott, J. Richard, III
1990-01-01
The effect of the large-scale structure of the universe on the propagation of light rays is studied. The development of the large-scale density fluctuations in the omega = 1 universe is calculated within the cold dark matter scenario using a smooth particle approximation. The propagation of about 10 to the 6th random light rays between the redshift z = 5 and the observer was followed. It is found that the effect of shear is negligible, and the amplification of single images is dominated by the matter in the beam. The spread of amplifications is very small. Therefore, the filled-beam approximation is very good for studies of strong lensing by galaxies or clusters of galaxies. In the simulation, the column density was averaged over a comoving area of approximately (1/h Mpc)-squared. No case of a strong gravitational lensing was found, i.e., no 'over-focused' image that would suggest that a few images might be present. Therefore, the large-scale structure of the universe as it is presently known does not produce multiple images with gravitational lensing on a scale larger than clusters of galaxies.
Cosmology with weak lensing surveys.
Munshi, Dipak; Valageas, Patrick
2005-12-15
Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy. PMID:16286284
Gravitational lensing in quasar samples
NASA Astrophysics Data System (ADS)
Claeskens, Jean-François; Surdej, Jean
The first cosmic mirage was discovered approximately 20 years ago as the double optical counterpart of a radio source. This phenomenon had been predicted some 70 years earlier as a consequence of General Relativity. We present here a summary of what we have learnt since. The applications are so numerous that we had to concentrate on a few selected aspects of this new field of research. This review is focused on strong gravitational lensing, i.e. the formation of multiple images, in QSO samples. It is intended to give the reader an up-to-date status of the observations and to present an overview of its most interesting potential applications in cosmology and astrophysics, as well as numerous important results achieved so far. The first section follows an intuitive approach to the basics of gravitational lensing and is developed in view of our interest in multiply imaged quasars. The astrophysical and cosmological applications of gravitational lensing are outlined in Sect. 2 and the most important results are presented in Sect. 5. Sections 3 and 4 are devoted to the observations. Finally, conclusions are summarized in the last section. We have tried to avoid duplication with existing (and excellent) introductions to the field of gravitational lensing. For this reason, we did not concentrate on the individual properties of specific lens models, as these are already well presented in Narayan and Bartelmann (1996) and on a more intuitive ground in Refsdal and Surdej (1994). Wambsganss (1998) proposes a broad view on gravitational lensing in astronomy; the reviews by Fort and Mellier (1994) and Hattori et al. (1999) deal with lensing by galaxy clusters; microlensing in the Galaxy and the local group is reviewed by Paczynski (1996) and a general panorama on weak lensing is given by Bartelmann and Schneider (1999) and Mellier (1999). The monograph on the theory of gravitational lensing by Schneider, Ehlers and Falco (1992) also remains a reference in the field.
NASA Astrophysics Data System (ADS)
Prod'homme, T.; Verhoeve, P.; Oosterbroek, T.; Boudin, N.; Short, A.; Kohley, R.
2014-07-01
Euclid is the ESA mission to map the geometry of the dark universe. It uses weak gravitational lensing, which requires the accurate measurement of galaxy shapes over a large area in the sky. Radiation damage in the 36 Charge-Coupled Devices (CCDs) composing the Euclid visible imager focal plane has already been identified as a major contributor to the weak-lensing error budget; radiation-induced charge transfer inefficiency (CTI) distorts the galaxy images and introduces a bias in the galaxy shape measurement. We designed a laboratory experiment to project Euclid-like sky images onto an irradiated Euclid CCD. In this way - and for the first time - we are able to directly assess the effect of CTI on the Euclid weak-lensing measurement free of modelling uncertainties. We present here the experiment concept, setup, and first results. The results of such an experiment provide test data critical to refine models, design and test the Euclid data processing CTI mitigation scheme, and further optimize the Euclid CCD operation.
Taylor, James E.; Massey, Richard J.; Leauthaud, Alexie; Tanaka, Masayuki; George, Matthew R.; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Kitching, Thomas D.; Capak, Peter; Finoguenov, Alexis; Ilbert, Olivier; Kneib, Jean-Paul; Jullo, Eric; Koekemoer, Anton M.
2012-04-20
Gravitational lensing can provide pure geometric tests of the structure of spacetime, for instance by determining empirically the angular diameter distance-redshift relation. This geometric test has been demonstrated several times using massive clusters which produce a large lensing signal. In this case, matter at a single redshift dominates the lensing signal, so the analysis is straightforward. It is less clear how weaker signals from multiple sources at different redshifts can be stacked to demonstrate the geometric dependence. We introduce a simple measure of relative shear which for flat cosmologies separates the effect of lens and source positions into multiplicative terms, allowing signals from many different source-lens pairs to be combined. Applying this technique to a sample of groups and low-mass clusters in the COSMOS survey, we detect a clear variation of shear with distance behind the lens. This represents the first detection of the geometric effect using weak lensing by multiple, low-mass groups. The variation of distance with redshift is measured with sufficient precision to constrain the equation of state of the universe under the assumption of flatness, equivalent to a detection of a dark energy component {Omega}{sub X} at greater than 99% confidence for an equation-of-state parameter -2.5 {<=} w {<=} -0.1. For the case w = -1, we find a value for the cosmological constant density parameter {Omega}{sub {Lambda}} = 0.85{sup +0.044}{sub -}0{sub .19} (68% CL) and detect cosmic acceleration (q{sub 0} < 0) at the 98% CL. We consider the systematic uncertainties associated with this technique and discuss the prospects for applying it in forthcoming weak-lensing surveys.
Weak lensing and cosmological investigation
NASA Astrophysics Data System (ADS)
Acquaviva, Viviana
2005-03-01
In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the Cosmic Microwave Background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l ~= 1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended theories of gravity, introducing the physical observables suitable to cast the bridge between lensing and cosmology, and then evaluate the amplitude of the expected effect in the particular case of a Non-Minimally-Coupled model, featuring a quadratic coupling between quintessence and Ricci scalar.
Intermediate Strength Gravitational Lensing
Irwin, John
2005-03-17
Weak lensing is found in the correlations of shear in {approx}10{sup 4} galaxy images, strong lensing is detected by the obvious distortion of a single galaxy image, whereas intermediate lensing requires detection of less obvious curvature in several neighboring galaxies. Small impact-parameter lensing causes a sextupole distortion whose orientation is correlated with the quadrupole distortion (shear). By looking within a field for the spatial correlation of this sextupole-quadrupole correlation, an intermediate lensing regime is observed. This technique requires correction for the sextupole as well as the quadrupole content of the PSF. We remove the HST PSF and uncover intermediate lensing in the Hubble deep fields. Correlations of the type expected are found.
Unfolding the matter distribution using three-dimensional weak gravitational lensing
NASA Astrophysics Data System (ADS)
Simon, P.; Taylor, A. N.; Hartlap, J.
2009-10-01
Combining redshift and galaxy shape information offers new exciting ways of exploiting the gravitational lensing effect for studying the large scales of the cosmos. One application is the three-dimensional (3D) reconstruction of the matter density distribution which is explored in this paper. We give a generalization of an already known minimum-variance estimator of the 3D matter density distribution that facilitates the combination of thin redshift slices of sources with samples of broad redshift distributions for an optimal reconstruction; sources can be given individual statistical weights. We show how, in principle, intrinsic alignments of source ellipticities or shear/intrinsic alignment correlations can be accommodated, albeit these effects are not the focus of this paper. We describe an efficient and fast way to implement the estimator on a contemporary desktop computer. Analytic estimates for the noise and biases in the reconstruction are given. Some regularization (Wiener filtering) of the estimator, adjustable by a tuning parameter, is necessary to increase the signal-to-noise ratio (S/N) to a sensible level and to suppress oscillations in radial direction. This, however, introduces as side effect a systematic shift and stretch of structures in radial direction. This bias can be expressed in terms of a radial point-spread function (PSF) comprising the limitations of the reconstruction due to given source shot noise and a lack of knowledge of the exact source redshifts. We conclude that a 3D mass-density reconstruction on galaxy cluster scales (~1Mpc) is feasible but, for foreseeable surveys, a map with a S/N >~ 3 threshold is limited to structures with M200 >~ 1 × 1014 or 7 × 1014Msolarh-1, at low to moderate redshifts (z = 0.1 or 0.6). However, we find that a heavily smoothed full-sky map of the very large-scale density field may also be possible as the S/N of reconstructed modes increases towards larger scales. Future improvements of the method may be
NASA Astrophysics Data System (ADS)
Wang, Wenting; White, Simon D. M.; Mandelbaum, Rachel; Henriques, Bruno; Anderson, Michael E.; Han, Jiaxin
2016-03-01
We use weak gravitational lensing to measure mean mass profiles around locally brightest galaxies (LBGs). These are selected from the Seventh Data Release of the Sloan Digital Sky Survey spectroscopic and photometric catalogues to be brighter than any neighbour projected within 1.0 Mpc and differing in redshift by <1000 km s-1. Most (>83 per cent) are expected to be the central galaxies of their dark matter haloes. Previous stacking analyses have used this LBG sample to measure mean Sunyaev-Zeldovich flux and mean X-ray luminosity as a function of LBG stellar mass. In both cases, a simulation of the formation of the galaxy population was used to estimate effective halo mass for LBGs of given stellar mass, allowing the derivation of scaling relations between the gas properties of haloes and their mass. By comparing results from a variety of simulations to our lensing data, we show that this procedure has significant model dependence reflecting: (i) the failure of any given simulation to reproduce observed galaxy abundances exactly; (ii) a dependence on the cosmology underlying the simulation; and (iii) a dependence on the details of how galaxies populate haloes. We use our lensing results to recalibrate the scaling relations, eliminating most of this model dependence and explicitly accounting both for residual modelling uncertainties and for observational uncertainties in the lensing results. The resulting scaling relations link the mean gas properties of dark haloes to their mass over an unprecedentedly wide range, 1012.5 < M500/M⊙ < 1014.5, and should fairly and robustly represent the full halo population.
NASA Astrophysics Data System (ADS)
Wittman, David M.; Jain, B.; Jarvis, M.; Knox, L.; Margoniner, V.; Takada, M.; Tyson, J.; Zhan, H.; LSST Weak Lensing Science Collaboration
2006-12-01
Constraining dark energy parameters with weak lensing is one of the primary science goals of the LSST. The LSST Weak Lensing Science Collaboration has been formed with the goal of optimizing the weak lensing science by optimizing the survey cadence; working with Data Management to insure high-quality pipeline processing which will meet our needs; developing the necessary analysis tools well before the onset of data-taking; participating in high-fidelity simulations to test the system end-to-end; and analyzing the real dataset as it becomes available. We review the major weak lensing probes, the twoand three-point shear correlations, and how they constrain dark energy parameters. We also review the possibility of going beyond dark energy models and testing gravity with the LSST data. To realize the promise of the awesome LSST statistical precision, we must ensure that systematic errors are kept under control. We review the major sources of systematics and our plans for mitigation. We present data that demonstrate that these sources of systematics can be kept to a level smaller than the statistical error.
Gravitational lensing in plasmic medium
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.
2015-07-01
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Gravitational lensing in plasmic medium
Bisnovatyi-Kogan, G. S. Tsupko, O. Yu.
2015-07-15
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Gravitational Lensing: Einstein's unfinished symphony
NASA Astrophysics Data System (ADS)
Treu, Tommaso; Ellis, Richard S.
2015-01-01
Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of general relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring the distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a failure of general relativity on large scales. We illustrate the wide range of applications which harness the power of gravitational lensing, from searches for the earliest galaxies magnified by massive clusters to those for extrasolar planets which temporarily brighten a background star. We summarise the future prospects with dedicated ground and space-based facilities designed to exploit this remarkable physical phenomenon.
NASA Astrophysics Data System (ADS)
Choi, Ami
In this dissertation, we describe the results of applying weak gravitational lensing techniques to probe the connection between luminous galaxies and the dark matter halos in which they live. Specifically, we study galaxy-shear correlations in the Deep Lens Survey, and we investigate how this function changes with observable galaxy properties such as stellar mass, luminosity, color, and redshift. In Chapter 3, we examine the galaxy-shear correlation function on a large range of scales from small radii where the dominant contribution is from halos associated with individual galaxies to large radii where the dominant contribution is from neighboring galaxies and large-scale structure. We study the lensing signal for galaxies binned by luminosity and find that more luminous galaxies are more massive. More interestingly, the galaxy-shear correlation function shows features consistent with satellite and 2-halo terms from the halo model and cannot be fit with a single power law out to 15 Mpc. We also find more correlated large scale structure mass at lower redshift, consistent with the paradigm of bottom-up hierarchical structure formation. In Chapter 4, we focus on a subset of the survey with ancillary infrared data that allow estimates of stellar mass. We study the lensing signal for galaxies binned by stellar mass and infer the nature and evolution of the relationship between virial mass and stellar mass. We show that stellar mass and virial mass scale such that galaxies with smaller stellar masses also have smaller virial masses. This work has implications for the idea of downsizing, but does not yet have the S/N to provide competitive constraints. In the process of making lensing measurements on the Deep Lens Survey, we have also investigated errors related to the two most important variables: shapes and photometric redshifts. we discuss our findings in the context of the survey characteristics in Chapter 2 and in the simulations section of Chapter 3. While neither
Optimizing SNAP for Weak Lensing
NASA Astrophysics Data System (ADS)
High, F. W.; Ellis, R. S.; Massey, R. J.; Rhodes, J. D.; Lamoureux, J. I.; SNAP Collaboration
2004-12-01
The Supernova/Acceleration Probe (SNAP) satellite proposes to measure weak gravitational lensing in addition to type Ia supernovae. Its pixel scale has been set to 0.10 arcsec per pixel as established by the needs of supernova observations. To find the optimal pixel scale for accurate weak lensing measurements we conduct a tradeoff study in which, via simulations, we fix the suvey size in total pixels and vary the pixel scale. Our preliminary results show that with a smaller scale of about 0.08 arcsec per pixel we can minimize the contribution of intrinsic shear variance to the error on the power spectrum of mass density distortion. Currently we are testing the robustness of this figure as well as determining whether dithering yields analogous results.
Gravitational lensing by gravastars
NASA Astrophysics Data System (ADS)
Kubo, Tomohiro; Sakai, Nobuyuki
2016-04-01
As a possible method to detect gravastars (gravitational-vacuum-star), which was originally proposed by Mazur and Mottola, we study their gravitational lensing effects. Specifically, we adopt a spherical thin-shell model of a gravastar developed by Visser and Wiltshire, which connects interior de Sitter geometry and exterior Schwarzschild geometry, and assume that its surface is optically transparent. We calculate the image of a companion which rotates around the gravastar; we find that some characteristic images appear, depending on whether the gravastar possess unstable circular orbits of photons (Model 1) or not (Model 2). For Model 2, we calculate the total luminosity change, which is called microlensing effects; the maximal luminosity could be considerably larger than the black hole with the same mass.
Nbody Simulations and Weak Gravitational Lensing using new HPC-Grid resources: the PI2S2 project
NASA Astrophysics Data System (ADS)
Becciani, U.; Antonuccio-Delogu, V.; Costa, A.; Comparato, M.
2008-08-01
We present the main project of the new grid infrastructure and the researches, that have been already started in Sicily and will be completed by next year. The PI2S2 project of the COMETA consortium is funded by the Italian Ministry of University and Research and will be completed in 2009. Funds are from the European Union Structural Funds for Objective 1 regions. The project, together with a similar project called Trinacria GRID Virtual Laboratory (Trigrid VL), aims to create in Sicily a computational grid for e-science and e-commerce applications with the main goal of increasing the technological innovation of local enterprises and their competition on the global market. PI2S2 project aims to build and develop an e-Infrastructure in Sicily, based on the grid paradigm, mainly for research activity using the grid environment and High Performance Computer systems. As an example we present the first results of a new grid version of FLY a tree Nbody code developed by INAF Astrophysical Observatory of Catania, already published in the CPC program Library, that will be used in the Weak Gravitational Lensing field.
NASA Astrophysics Data System (ADS)
Blake, Chris; Joudaki, Shahab; Heymans, Catherine; Choi, Ami; Erben, Thomas; Harnois-Deraps, Joachim; Hildebrandt, Hendrik; Joachimi, Benjamin; Nakajima, Reiko; van Waerbeke, Ludovic; Viola, Massimo
2016-03-01
The unknown nature of `dark energy' motivates continued cosmological tests of large-scale gravitational physics. We present a new consistency check based on the relative amplitude of non-relativistic galaxy peculiar motions, measured via redshift-space distortion, and the relativistic deflection of light by those same galaxies traced by galaxy-galaxy lensing. We take advantage of the latest generation of deep, overlapping imaging and spectroscopic data sets, combining the Red Cluster Sequence Lensing Survey, the Canada-France-Hawaii Telescope Lensing Survey, the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. We quantify the results using the `gravitational slip' statistic EG, which we estimate as 0.48 ± 0.10 at z = 0.32 and 0.30 ± 0.07 at z = 0.57, the latter constituting the highest redshift at which this quantity has been determined. These measurements are consistent with the predictions of General Relativity, for a perturbed Friedmann-Robertson-Walker metric in a Universe dominated by a cosmological constant, which are EG = 0.41 and 0.36 at these respective redshifts. The combination of redshift-space distortion and gravitational lensing data from current and future galaxy surveys will offer increasingly stringent tests of fundamental cosmology.
Investigations of Galaxy Clusters Using Gravitational Lensing
Wiesner, Matthew P.
2014-08-01
In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.
Gravitational lensing from compact bodies: Analytical results for strong and weak deflection limits
Amore, Paolo; Cervantes, Mayra; De Pace, Arturo; Fernandez, Francisco M.
2007-04-15
We develop a nonperturbative method that yields analytical expressions for the deflection angle of light in a general static and spherically symmetric metric. The method works by introducing into the problem an artificial parameter, called {delta}, and by performing an expansion in this parameter to a given order. The results obtained are analytical and nonperturbative because they do not correspond to a polynomial expression in the physical parameters. Already to first order in {delta} the analytical formulas obtained using our method provide at the same time accurate approximations both at large distances (weak deflection limit) and at distances close to the photon sphere (strong deflection limit). We have applied our technique to different metrics and verified that the error is at most 0.5% for all regimes. We have also proposed an alternative approach which provides simpler formulas, although with larger errors.
Measuring neutrino masses with weak lensing
Wong, Yvonne Y. Y.
2006-11-17
Weak gravitational lensing of distant galaxies by large scale structure (LSS) provides an unbiased way to map the matter distribution in the low redshift universe. This technique, based on the measurement of small distortions in the images of the source galaxies induced by the intervening LSS, is expected to become a key cosmological probe in the future. We discuss how future lensing surveys can probe the sum of the neutrino masses at the 0 05 eV level.
Weak lensing of the primary CMB bispectrum
Cooray, Asantha; Sarkar, Devdeep; Serra, Paolo
2008-06-15
The bispectrum of cosmic microwave background (CMB) anisotropies is a well-known probe of the non-Gaussianity of primordial perturbations. Just as the intervening large-scale structure modifies the CMB angular power spectrum through weak gravitational lensing, the CMB primary bispectrum generated at the last scattering surface is also modified by lensing. We discuss the lensing modification to the CMB bispectrum and show that lensing leads to an overall decrease in the amplitude of the primary bispectrum at multipoles of interest between 100 and 2000 through additional smoothing introduced by lensing. Since weak lensing is not accounted for in current estimators of the primordial non-Gaussianity parameter, the existing measurements of f{sub NL} of the local model with WMAP out to l{sub max}{approx}750 is biased low by about 6%. For a high resolution experiment such as Planck, the lensing modification to the bispectrum must be properly included when attempting to estimate the primordial non-Gaussianity or the bias will be at the level of 30%. For Planck, weak lensing increases the minimum detectable value for the non-Gaussianity parameter of the local type f{sub NL} to 7 from the previous estimate of about 5 without lensing. The minimum detectable value of f{sub NL} for a cosmic variance limited experiment is also increased from less than 3 to {approx}5.
Roulettes: a weak lensing formalism for strong lensing: I. Overview
NASA Astrophysics Data System (ADS)
Clarkson, Chris
2016-08-01
We present a new perspective on gravitational lensing. We describe a new extension of the weak lensing formalism capable of describing strongly lensed images. By integrating the nonlinear geodesic deviation equation, the amplification matrix of weak lensing is generalised to a sum over independent amplification tensors of increasing rank. We show how an image distorted by a generic lens may be constructed as a sum over ‘roulettes’, which are the natural curves associated with the independent spin modes of the amplification tensors. Highly distorted images can be constructed even for large sources observed near or within the Einstein radius of a lens where the shear and convergence are large. The amplitude of each roulette is formed from a sum over appropriate derivatives of the lensing potential. Consequently, measuring these individual roulettes for images around a lens gives a new way to reconstruct a strong lens mass distribution without requiring a lens model. This formalism generalises the convergence, shear and flexion of weak lensing to arbitrary order, and provides a unified bridge between the strong and weak lensing regimes. This overview paper is accompanied by a much more detailed paper II, arXiv:1603.04652.
NASA Astrophysics Data System (ADS)
Okura, Yuki; Futamase, Toshifumi
2016-08-01
We improve the ellipticity of re-smeared artificial image (ERA) method of point-spread function (PSF) correction in a weak lensing shear analysis in order to treat the realistic shape of galaxies and the PSF. This is done by re-smearing the PSF and the observed galaxy image using a re-smearing function (RSF) and allows us to use a new PSF with a simple shape and to correct the PSF effect without any approximations or assumptions. We perform a numerical test to show that the method applied for galaxies and PSF with some complicated shapes can correct the PSF effect with a systematic error of less than 0.1%. We also apply the ERA method for real data of the Abell 1689 cluster to confirm that it is able to detect the systematic weak lensing shear pattern. The ERA method requires less than 0.1 or 1 s to correct the PSF for each object in a numerical test and a real data analysis, respectively.
EDITORIAL: Focus on Gravitational Lensing
NASA Astrophysics Data System (ADS)
Jain, Bhuvnesh
2007-11-01
Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies
CONSTRAINING SOURCE REDSHIFT DISTRIBUTIONS WITH GRAVITATIONAL LENSING
Wittman, D.; Dawson, W. A.
2012-09-10
We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that {approx}40 massive ({sigma}{sub v} = 1200 km s{sup -1}) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to {approx}11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20%-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as N{sub lens}{sup -1/2}, but the improvement slows as one is forced to use lenses further down the mass function. Future large surveys contain enough clusters to reach 1% precision in the bin fractions if the tight lens-mass priors can be maintained for large samples of lenses. In practice this will be difficult to achieve, but the method may be valuable as a complement to other more precise methods because it is based on different physics and therefore has different systematic errors.
NASA Astrophysics Data System (ADS)
Leauthaud, Alexie; J. Benson, Andrew; Civano, Francesca; L. Coil, Alison; Bundy, Kevin; Massey, Richard; Schramm, Malte; Schulze, Andreas; Capak, Peter; Elvis, Martin; Kulier, Andrea; Rhodes, Jason
2015-01-01
Understanding the relationship between galaxies hosting active galactic nuclei (AGN) and the dark matter haloes in which they reside is key to constraining how black hole fuelling is triggered and regulated. Previous efforts have relied on simple halo mass estimates inferred from clustering, weak gravitational lensing, or halo occupation distribution modelling. In practice, these approaches remain uncertain because AGN, no matter how they are identified, potentially live a wide range of halo masses with an occupation function whose general shape and normalization are poorly known. In this work, we show that better constraints can be achieved through a rigorous comparison of the clustering, lensing, and cross-correlation signals of AGN hosts to the fiducial stellar-to-halo mass relation (SHMR) derived for all galaxies, irrespective of nuclear activity. Our technique exploits the fact that the global SHMR can be measured with much higher accuracy than any statistic derived from AGN samples alone. Using 382 moderate luminosity X-ray AGN at z < 1 from the COSMOS field, we report the first measurements of weak gravitational lensing from an X-ray-selected sample. Comparing this signal to predictions from the global SHMR, we find that, contrary to previous results, most X-ray AGN do not live in medium size groups - nearly half reside in relatively low mass haloes with M200b ˜ 1012.5 M⊙. The AGN occupation function is well described by the same form derived for all galaxies but with a lower normalization - the fraction of haloes with AGN in our sample is a few per cent. The number of AGN satellite galaxies scales as a power law with host halo mass with a power-law index α = 1. By highlighting the relatively `normal' way in which moderate luminosity X-ray AGN hosts occupy haloes, our results suggest that the environmental signature of distinct fuelling modes for luminous quasars compared to moderate luminosity X-ray AGN is less obvious than previously claimed.
SUNGLASS: A Weak-lensing Simulation Pipeline
NASA Astrophysics Data System (ADS)
Kiessling, Alina; Taylor, A.; Heavens, A.; Rhodes, J.; Bartlett, J.
2013-01-01
Weak gravitational lensing analysis is a powerful tool to investigate the dark Universe. Next generation weak-lensing telescope surveys (e.g. Euclid and WFIRST) promise to determine the equation of state of dark energy to 1% as well as probing the possibilities of extra dimensional gravity models and alternative cosmologies. To realize the potential of these new telescope surveys and to test new weak-lensing analysis techniques, challenges must be met. To achieve the small statistical errors required, experiments require full end-to-end simulations of huge volumes, which also probe the non-linear regime to assist in understanding the limitations of the analysis techniques. We have developed a new cosmic shear analysis pipeline SUNGLASS (Simulated UNiverses for Gravitational Lensing Analysis and Shear Surveys) that rapidly generates cosmic shear and convergence catalogues using N-body simulations. In this poster, I introduce the SUNGLASS pipeline and show how the SUNGLASS mock shear catalogues can be used in preparation for upcoming telescope missions and for analysis of existing observational data sets.
Gravitational Lenses in the Classroom
ERIC Educational Resources Information Center
Ros, Rosa M.
2008-01-01
It is not common to introduce current astronomy in school lessons. This article presents a set of experiments about gravitational lenses. It is normal to simulate them by means of computers, but it is very simple to simulate similar effects using a drinking glass full of liquid or using only the glass base. These are, of course, cheap and easy…
HUBBLE'S TOP TEN GRAVITATIONAL LENSES
NASA Technical Reports Server (NTRS)
2002-01-01
The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368
Pixelation Effects in Weak Lensing
NASA Technical Reports Server (NTRS)
High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard
2007-01-01
Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, and Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09' for a 0.14' FWHM point-spread function (PSF). The pixel scale could be increased to 0.16' if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape
Pixelation Effects in Weak Lensing
NASA Astrophysics Data System (ADS)
High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard
2007-11-01
Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, & Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09" for a 0.14" FWHM point-spread function (PSF). The pixel scale could be increased to ~0.16" if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape
Gravitational Lensing in TeVe S
NASA Astrophysics Data System (ADS)
Chiu, Mu-Chen; Ko, Chung-Ming; Tian, Yong
Gravitational Lensing is an important tool to understand the "missing mass" problem, especially for Modified Gravity. Recently, Bekenstein proposed a relativistic gravitation theory for Modified Newtonian Dynamics (MOND) paradigm which resolves the "missing mass" problem well on abnormal dynamical behaviors in extragalactic region. Our work follow Bekenstein's approach to investigating gravitational lensing to get theoretical prediction.
WEAK LENSING MASS RECONSTRUCTION: FLEXION VERSUS SHEAR
Pires, S.
2010-11-10
Weak gravitational lensing has proven to be a powerful tool to map directly the distribution of dark matter in the universe. The technique, currently used, relies on the accurate measurement of the gravitational shear that corresponds to the first-order distortion of the background galaxy images. More recently, a new technique has been introduced that relies on the accurate measurement of the gravitational flexion that corresponds to the second-order distortion of the background galaxy images. This technique should probe structures on smaller scales than that of shear analysis. The goal of this paper is to compare the ability of shear and flexion to reconstruct the dark matter distribution by taking into account the dispersion in shear and flexion measurements. Our results show that the flexion is less sensitive than shear for constructing the convergence maps on scales that are physically feasible for mapping, meaning that flexion alone should not be used to do convergence map reconstruction, even on small scales.
Tomography and weak lensing statistics
Munshi, Dipak; Coles, Peter; Kilbinger, Martin E-mail: peter.coles@astro.cf.ac.uk
2014-04-01
We provide generic predictions for the lower order cumulants of weak lensing maps, and their correlators for tomographic bins as well as in three dimensions (3D). Using small-angle approximation, we derive the corresponding one- and two-point probability distribution function for the tomographic maps from different bins and for 3D convergence maps. The modelling of weak lensing statistics is obtained by adopting a detailed prescription for the underlying density contrast that involves hierarchal ansatz and lognormal distribution. We study the dependence of our results on cosmological parameters and source distributions corresponding to the realistic surveys such as LSST and DES. We briefly outline how photometric redshift information can be incorporated in our results. We also show how topological properties of convergence maps can be quantified using our results.
LensTools: Weak Lensing computing tools
NASA Astrophysics Data System (ADS)
Petri, A.
2016-02-01
LensTools implements a wide range of routines frequently used in Weak Gravitational Lensing, including tools for image analysis, statistical processing and numerical theory predictions. The package offers many useful features, including complete flexibility and easy customization of input/output formats; efficient measurements of power spectrum, PDF, Minkowski functionals and peak counts of convergence maps; survey masks; artificial noise generation engines; easy to compute parameter statistical inferences; ray tracing simulations; and many others. It requires standard numpy and scipy, and depending on tools used, may require Astropy (ascl:1304.002), emcee (ascl:1303.002), matplotlib, and mpi4py.
Gravitational Lensing Extends SETI Range
NASA Astrophysics Data System (ADS)
Factor, Richard
Microwave SETI (The Search for Extraterrestrial Intelligence) focuses on two primary strategies, the "Targeted Search" and the "All-Sky Survey." Although the goal of both strategies is the unequivocal discovery of a signal transmitted by intelligent species outside our solar system, they pursue the strategies in very different manners and have vastly different requirements. This chapter introduces Gravitational Lensing SETI (GL-SETI), a third strategy. Its goal is the unequivocal discovery of an extraterrestrial signal, with equipment and data processing requirements that are substantially different from the commonly-used strategies. This strategy is particularly suitable for use with smaller radio telescopes and has budgetary requirements suitable for individual researchers.
Weak Gravitatational Lensing by Illustris-1 Galaxies
NASA Astrophysics Data System (ADS)
Brainerd, Tereasa G.; Koh, Patrick H.
2016-06-01
We compute the weak gravitational lensing signal of isolated, central galaxies obtained from the z=0.5 timestep of the ΛCDM Illustris-1 simulation. The galaxies have stellar masses ranging from 9.5 ≤ log10(M*/Msun) ≤ 11.0 and are located outside cluster and rich group environments. Although there is local substructure present in the form of small, luminous satellite galaxies, the central galaxies are the dominant objects within the virial radii (r200), and each central galaxy is at least 5 times brighter than any other luminous galaxy within the friends-of-friends halo. We compute the weak lensing signal within projected radii 0.05 < rp/r200 < 1.5 and investigate the degree to which the weak lensing signal is anisotropic. Since CDM halos are non-spherical, the weak lensing signal is expected to be anisotropic; however, the degree of anisotropy that is observed depends upon the symmetry axes that are used to define the geometry. The anisotropy is expected to be maximized when the major axis of the projected dark matter mass distribution is used to define the geomety. In practice in the observed universe, one must necessarily use the projected distribution of the luminous mass to define the geometry. If mass and light are not well-aligned, this results in a suppression of the weak lensing anistropy. Our initial analysis shows that the ellipticity of the projected dark matter halo is uncorrelated with the ellipticity of the projected stellar mass. That is εhalo ≠ f × εlight, where f is a constant multiplicative factor. In addition, in projection on the sky, the major axis of the dark matter mass is offset from that of the stellar mass by ∼40o on average. On scales rp ≤ 0.15 r200, the weak lensing anisotropy obtained when using the stellar mass to define the geometry is of order 7% and agrees well with the anisotropy obtained when using the dark matter mass to define the geometry. On scales rp ∼ r200, the anisotropy obtained when using the stellar mass
Weak Lensing Results of the Merging Cluster A1758
NASA Technical Reports Server (NTRS)
Markevitch, M.; Gonzalez, A. H.; Bradac, M.
2011-01-01
Here we present the weak lensing results of A1758, which is known to have four cluster members undergoing two separate mergers, A1758N and A1758S. Weak lensing results of A1758N agree with previous weak lensing results of clusters lE0657-558 (Bullet cluster) and MACS J0025.4-1222, whose X-ray gas components were found to be largely separated from their clusters' gravitational potentials. A1758N has a geometry that is different from previously published mergers in that one of its X-ray peaks overlays the corresponding gravitational potential and the other X-ray peak is well separated from its cluster's gravitational potential.
Weak lensing corrections to tSZ-lensing cross correlation
NASA Astrophysics Data System (ADS)
Tröster, Tilman; Van Waerbeke, Ludovic
2014-11-01
The cross correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and gravitational lensing in wide field has recently been measured. It can be used to probe the distribution of the diffuse gas in large scale structure, as well as inform us about the missing baryons. As for any lensing-based quantity, higher order lensing effects can potentially affect the signal. Here, we extend previous higher order lensing calculations to the case of tSZ-lensing cross correlations. We derive terms analogous to corrections due to the Born approximation, lens-lens coupling, and reduced shear up to order l gtrsim 3000.
Weak lensing by galaxy troughs
NASA Astrophysics Data System (ADS)
Gruen, Daniel
2016-06-01
Galaxy troughs, i.e. underdensities in the projected galaxy field, are a weak lensing probe of the low density Universe with high signal-to-noise ratio. I present measurements of the radial distortion of background galaxy images and the de-magnification of the CMB by troughs constructed from Dark Energy Survey and Sloan Digital Sky Survey galaxy catalogs. With high statistical significance and a relatively robust modeling, these probe gravity in regimes of density and scale difficult to access for conventional statistics.
Gravitational lensing by rotating naked singularities
Gyulchev, Galin N.; Yazadjiev, Stoytcho S.
2008-10-15
We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.
Gravitational lensing by straight cosmic strings
NASA Astrophysics Data System (ADS)
Kotvytskiy, A. T.
2015-07-01
We consider effects due to gravitational lensing by hypothetical cosmic strings. We briefly review facts concerning infinite straight strings, obtain the equation for a gravitational lens produced by an infinite string in the classical form, and analyze features of the gravitational lensing for a given object in detail. We consider a finite straight string. We present caustics and critical curves for strings with different lengths and also some images produced by the considered gravitational lens. We propose a method for constructing brightness curves numerically. As an example of the working capacity of this method, we construct a concrete brightness curve for certain gravitational lens parameters.
Lossy compression of weak lensing data
Vanderveld, R. Ali; Bernstein, Gary M.; Stoughton, Chris; Rhodes, Jason; Massey, Richard; Dobke, Benjamin M.
2011-07-12
Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is by construction less than the Poisson error from photon shot noise. For simulated space-based images (without cosmic rays) digitized to the typical 16 bits per pixel, application of the lossy compression followed by image-wise lossless compression yields images with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m {approx} -4 x 10^{-4}. This bias is small when compared to the many other issues that precision weak lensing surveys must confront, and furthermore we expect it to be reduced further with better calibration of ellipticity measurement methods.
Lossy compression of weak lensing data
Vanderveld, R. Ali; Bernstein, Gary M.; Stoughton, Chris; Rhodes, Jason; Massey, Richard; Dobke, Benjamin M.
2011-07-12
Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is by construction less than the Poisson error from photon shot noise. For simulated space-based images (without cosmicmore » rays) digitized to the typical 16 bits per pixel, application of the lossy compression followed by image-wise lossless compression yields images with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m {approx} -4 x 10-4. This bias is small when compared to the many other issues that precision weak lensing surveys must confront, and furthermore we expect it to be reduced further with better calibration of ellipticity measurement methods.« less
Gravitational lensing of gravitational waves from merging neutron star binaries
Wang, Yun; Stebbins, Albert; Turner, Edwin L.
1996-05-01
We discuss the gravitational lensing of gravitational waves from merging neutron star binaries, in the context of advanced LIGO type gravitational wave detectors. We consider properties of the expected observational data with cut on the signal-to-noise ratio \\rho, i.e., \\rho>\\rho_0. An advanced LIGO should see unlensed inspiral events with a redshift distribution with cut-off at a redshift z_{\\rm max} < 1 for h \\leq 0.8. Any inspiral events detected at z>z_{\\rm max} should be lensed. We compute the expected total number of events which are present due to gravitational lensing and their redshift distribution for an advanced LIGO in a flat Universe. If the matter fraction in compact lenses is close to 10\\%, an advanced LIGO should see a few strongly lensed events per year with \\rho >5.
Cosmological Applications of Strong Gravitational Lensing
NASA Astrophysics Data System (ADS)
Paraficz, Danuta
2009-11-01
One of the most intriguing recent results in physics is the growing evidence that an unknown energy field and an unknown kind of matter are the major components of the Universe (70% and 30%, respectively; see e.g. Riess et al. 1998, Spergel et al. 2007). Understanding and estimating the precise value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown by Refsdal (1964), H0, !m and !! can be measured based on the time delay ("t) between multiply lensed images of QSOs, because "t depends on H0 and on the distances to lens and source, hence!m and !!. Determination of cosmological parameters using gravitational lensing suffers from some degeneracies, but it is based on well understood physics and unlike distance ladder methods there are no calibration issues. Moreover, it has an advantage over some of the leading methods (such as Type Ia SNe) in that it is a purely cosmological approach. In this thesis, the property of strong gravitational lensing - time delay - is extensively explored. Strong gravitational lensing, and in particular time delays, are investigated here both theoretically and observationally. The focus is on the time delay as a cosmological and astrophysical tool to constrain H0, !m, !!, and to measure the masses of lensing galaxies. The first Chapter presents a historical background of gravitational lensing. It explains the process involved in creating the theory of gravitational lenses. It shows how Newton and then Einstein developed the concept and how Refsdal and others made it a cosmological tool. We present in more detail how gravitational lensing influenced the history of physics by being the first proof of Einstein's theory of gravity. The Chapter ends by discussing the first observational discovery of a strong
WEAK-LENSING RESULTS FOR THE MERGING CLUSTER A1758
Ragozzine, B.; Clowe, D.; Markevitch, M.; Gonzalez, A. H.; Bradac, M.
2012-01-10
Here we present the weak-lensing results for A1758, which is known to consist of four subclusters undergoing two separate mergers, A1758N and A1758S. Weak-lensing results for A1758N agree with previous weak-lensing results for clusters 1E0657-558 (Bullet cluster) and MACS J0025.4-1222, whose X-ray gas components were found to be largely separated from their clusters' gravitational potentials. A1758N has a geometry that is different from previously published mergers in that one of its X-ray peaks overlays the corresponding gravitational potential and the other X-ray peak is well separated from its cluster's gravitational potential. The weak-lensing mass peaks of the two northern clusters are separated at the 2.5{sigma} level. We estimate the combined mass of the clusters in A1758N to be (2.2 {+-} 0.5) Multiplication-Sign 10{sup 15} M{sub Sun} and r{sub 200} = 2300{sup +100}{sub -130} kpc. We also detect seven strong-lensing candidates, two of which may provide information that would improve the mass measurements of A1758N.
Weak lensing cosmology beyond ΛCDM
Das, Sudeep; Linder, Eric V.; Nakajima, Reiko; Putter, Roland de E-mail: rdeputter@icc.ub.edu E-mail: reiko@astro.uni-bonn.de
2012-11-01
Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth — dynamical dark energy, extended gravity, neutrino masses, and spatial curvature — we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ΛCDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies.
Gravitational lensing in observational cosmology
NASA Astrophysics Data System (ADS)
Nottale, L.
This paper reviews some previous theoretical and observational results concerning the various effects of gravitational lensing, and also presents still unpublished results in this field. The theoretical section deals with the Optical Scalar Equation (OSE) approach. We recall the form of these equations, which relate the deformations of the cross sectional area of a light beam to the material and energetic distribution it encounters, via the two basic contributions to lensing, the matter or Ricci term and the shear term. The introduction of a new distance, the optical distance, allows to write the OSE in a simplified way from which new solutions are easily derived. We demonstrate here that a general form may be obtained for the amplification formula in the exact relativistic treatment, provided the Universe is assumed to be Friedmannian in the mean. New results are also presented concerning the probability distribution of amplifications, the relation from matter term to shear terms (the first ones give the mean of the second ones) and the problem of energy conservation. We recall how our method let to an analytical formula yielding the amplification by any number of lenses placed anywhere along the line of sight and present new general solutions for lensing by large scale density inhomogeneities. The gravitational redshift effects are also considered, either due to the crossing by photons of inhomogeneities, or intrinsic to them ; generalized solutions to the last problem are given. Some observational evidence concerning various lensing effects, either statistical or applying to individual sources, are considered. We first recall how the dependence of the amplification formula on the various physical parameters points towards the optimisation of lensing by very rich clusters of galaxies lying at redshifts around 0.7, which may give rise to very large amplifications for reasonable values of the density parameter. Recent results concerning a statistical effect of
Lensing of 21-cm fluctuations by primordial gravitational waves.
Book, Laura; Kamionkowski, Marc; Schmidt, Fabian
2012-05-25
Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed. PMID:23003237
Lensing of 21-cm Fluctuations by Primordial Gravitational Waves
NASA Astrophysics Data System (ADS)
Book, Laura; Kamionkowski, Marc; Schmidt, Fabian
2012-05-01
Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r˜10-9—far smaller than those currently accessible—to be probed.
Gravitational lensing of active galactic nuclei.
Hewitt, J N
1995-01-01
Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613
Gravitational lenses and dark matter - Theory
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1987-01-01
Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.
Atmospheric Dispersion Effects in Weak Lensing Measurements
Plazas, Andrés Alejandro; Bernstein, Gary
2012-10-01
The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore » statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less
Atmospheric Dispersion Effects in Weak Lensing Measurements
Plazas, Andrés Alejandro; Bernstein, Gary
2012-10-01
The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.
Magnified Weak Lensing Cross Correlation Tomography
Ulmer, Melville P., Clowe, Douglas I.
2010-11-30
nights on 4-m class telescopes, which gives concrete evidence of strong community support for this project. The WLT technique is based on the dependence of the gravitational shear signal on the angular diameter distances between the observer, the lens, and the lensed galaxy to measure cosmological parameters. By taking the ratio of measured shears of galaxies with different redshifts around the same lens, one obtains a measurement of the ratios of the angular diameter distances involved. Making these observations over a large range of lenses and background galaxy redshifts will measure the history of the expansion rate of the universe. Because this is a purely geometric measurement, it is insensitive to any form of evolution of objects or the necessity to understand the physics in the early universe. Thus, WLT was identified by the Dark Energy Task Force as perhaps the best method to measure the evolution of DE. To date, however, the conjecture of the DETF has not been experimentally verified, but will be by the proposed project. The primary reason for the lack of tomography measurements is that one must have an exceptional data-set to attempt the measurement. One needs both extremely good seeing (or space observations) in order to minimize the point spread function smearing corrections on weak lensing shear measurements and deep, multi-color data, from B to z, to measure reliable photometric redshifts of the background galaxies being lensed (which are typically too faint to obtain spectroscopic redshifts). Because the entire process from multi-drizzling the HST images, and then creating shear maps, to gathering the necessary ground based observations, to generating photo-zs and then carrying out the tomography is a complicated task, until the creation of our team, nobody has taken the time to connect all the levels of expertise necessary to carry out this project based on HST archival data. Our data are being used in 2 Ph.D. theses. Kellen Murphy, at Ohio University, is
Time delay in Swiss cheese gravitational lensing
Chen, B.; Kantowski, R.; Dai, X.
2010-08-15
We compute time delays for gravitational lensing in a flat {Lambda} dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with {Lambda}) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach {approx}4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.
Cosmological constraints from weak lensing non-Gaussian statistics
NASA Astrophysics Data System (ADS)
Liu, Jia; Haiman, Zoltan; Petri, Andrea; Hill, James; Hui, Lam; Kratochvil, Jan Michael; May, Morgan
2016-01-01
Weak gravitational lensing is one of the most promising techniques to probe dark energy. Our work to date suggests that the information in the nonlinear regime exceeds that in the two-point functions. Using the publicly available data from the 154 deg^2 CFHTLenS survey and a large suite of ray-tracing N-body simulations on a grid of 91 cosmological models, we find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined.I will also introduce the utility of cross-correlating weak galaxy lensing maps with CMB lensing maps, a technique that will be useful to probe structures at an intermediate redshift of 0.9, as larger weak lensing surveys such as HSC, DES, KiDS, Euclid, and LSST come online. We cross-correlate the CFHTLenS galaxy lensing convergence maps with Planck CMB lensing maps. Our results show two sigma tension with the constraints obtained from the Planck temperature measurements. I will discuss possible sources of the tension, including intrinsic alignments, photo-z uncertainties, masking of tSZ in the CMB maps, and the multiplicative bias.
HST Observations of New Class Gravitational Lenses
NASA Astrophysics Data System (ADS)
Jackson, Neal
1995-07-01
We propose to examine a few of the very best lens candidates from a new gravitational lens survey, the Cosmic Lens All-Sky Survey (CLASS) made with the VLA. We are virtually certain that we have one new lens system (1600+434) and another (1609+655) has a radio configuration which almost invariably indicates gravitational lensing. The other cases are systems which have a high probability of being lenses (statistically we would expect at least 5 of the 10 objects should be lensed, since we have imaged >3000 radio sources and experience shows that 1 in 500 are lensed). All have separations which make them difficult to study from the ground and therefore uniquely suited to the capabilities of the HST. In this investigation we will study 1600+434 and 1609+655 and attempt to image the lensing galaxy. We will image the remainder in an attempt to confirm their lens status (which requires 0.1" resolution imaging typically) and search for lensing galaxies and/or clusters in those found to be lensed systems.
Okura, Yuki; Futamase, Toshifumi E-mail: tof@astr.tohoku.ac.jp
2014-09-10
Highly accurate weak lensing analysis is urgently required for planned cosmic shear observations. For this purpose we have eliminated various systematic noises in the measurement. The point-spread function (PSF) effect is one of them. A perturbative approach for correcting the PSF effect on the observed image ellipticities has been previously employed. Here we propose a new non-perturbative approach for PSF correction that avoids the systematic error associated with the perturbative approach. The new method uses an artificial image for measuring shear which has the same ellipticity as the lensed image. This is done by re-smearing the observed galaxy images and observed star images (PSF) with an additional smearing function to obtain the original lensed galaxy images. We tested the new method with simple simulated objects that have Gaussian or Sérsic profiles smeared by a Gaussian PSF with sufficiently large size to neglect pixelization. Under the condition of no pixel noise, it is confirmed that the new method has no systematic error even if the PSF is large and has a high ellipticity.
Neutrino mass and dark energy from weak lensing.
Abazajian, Kevork N; Dodelson, Scott
2003-07-25
Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09. PMID:12906650
EFFECT OF MASKED REGIONS ON WEAK-LENSING STATISTICS
Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi
2013-09-10
Sky masking is unavoidable in wide-field weak-lensing observations. We study how masks affect the measurement of statistics of matter distribution probed by weak gravitational lensing. We first use 1000 cosmological ray-tracing simulations to examine in detail the impact of masked regions on the weak-lensing Minkowski Functionals (MFs). We consider actual sky masks used for a Subaru Suprime-Cam imaging survey. The masks increase the variance of the convergence field and the expected values of the MFs are biased. The bias then compromises the non-Gaussian signals induced by the gravitational growth of structure. We then explore how masks affect cosmological parameter estimation. We calculate the cumulative signal-to-noise ratio (S/N) for masked maps to study the information content of lensing MFs. We show that the degradation of S/N for masked maps is mainly determined by the effective survey area. We also perform simple {chi}{sup 2} analysis to show the impact of lensing MF bias due to masked regions. Finally, we compare ray-tracing simulations with data from a Subaru 2 deg{sup 2} survey in order to address if the observed lensing MFs are consistent with those of the standard cosmology. The resulting {chi}{sup 2}/n{sub dof} = 29.6/30 for three combined MFs, obtained with the mask effects taken into account, suggests that the observational data are indeed consistent with the standard {Lambda}CDM model. We conclude that the lensing MFs are a powerful probe of cosmology only if mask effects are correctly taken into account.
Effect of Masked Regions on Weak-lensing Statistics
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi
2013-09-01
Sky masking is unavoidable in wide-field weak-lensing observations. We study how masks affect the measurement of statistics of matter distribution probed by weak gravitational lensing. We first use 1000 cosmological ray-tracing simulations to examine in detail the impact of masked regions on the weak-lensing Minkowski Functionals (MFs). We consider actual sky masks used for a Subaru Suprime-Cam imaging survey. The masks increase the variance of the convergence field and the expected values of the MFs are biased. The bias then compromises the non-Gaussian signals induced by the gravitational growth of structure. We then explore how masks affect cosmological parameter estimation. We calculate the cumulative signal-to-noise ratio (S/N) for masked maps to study the information content of lensing MFs. We show that the degradation of S/N for masked maps is mainly determined by the effective survey area. We also perform simple χ2 analysis to show the impact of lensing MF bias due to masked regions. Finally, we compare ray-tracing simulations with data from a Subaru 2 deg2 survey in order to address if the observed lensing MFs are consistent with those of the standard cosmology. The resulting χ2/n dof = 29.6/30 for three combined MFs, obtained with the mask effects taken into account, suggests that the observational data are indeed consistent with the standard ΛCDM model. We conclude that the lensing MFs are a powerful probe of cosmology only if mask effects are correctly taken into account.
Bayesian Inference of CMB Gravitational Lensing
NASA Astrophysics Data System (ADS)
Anderes, Ethan; Wandelt, Benjamin D.; Lavaux, Guilhem
2015-08-01
The Planck satellite, along with several ground-based telescopes, has mapped the cosmic microwave background (CMB) at sufficient resolution and signal-to-noise so as to allow a detection of the subtle distortions due to the gravitational influence of the intervening matter distribution. A natural modeling approach is to write a Bayesian hierarchical model for the lensed CMB in terms of the unlensed CMB and the lensing potential. So far there has been no feasible algorithm for inferring the posterior distribution of the lensing potential from the lensed CMB map. We propose a solution that allows efficient Markov Chain Monte Carlo sampling from the joint posterior of the lensing potential and the unlensed CMB map using the Hamiltonian Monte Carlo technique. The main conceptual step in the solution is a re-parameterization of CMB lensing in terms of the lensed CMB and the “inverse lensing” potential. We demonstrate a fast implementation on simulated data, including noise and a sky cut, that uses a further acceleration based on a very mild approximation of the inverse lensing potential. We find that the resulting Markov Chain has short correlation lengths and excellent convergence properties, making it promising for applications to high-resolution CMB data sets in the future.
Cosmological test using strong gravitational lensing systems
NASA Astrophysics Data System (ADS)
Yuan, C. C.; Wang, F. Y.
2015-09-01
As one of the probes of universe, strong gravitational lensing systems allow us to compare different cosmological models and constrain vital cosmological parameters. This purpose can be reached from the dynamic and geometry properties of strong gravitational lensing systems, for instance, time-delay Δτ of images, the velocity dispersion σ of the lensing galaxies and the combination of these two effects, Δτ/σ2. In this paper, in order to carry out one-on-one comparisons between ΛCDM universe and Rh = ct universe, we use a sample containing 36 strong lensing systems with the measurement of velocity dispersion from the Sloan Lens Advanced Camera for Surveys (SLACS) and Lens Structure and Dynamic survey (LSD) survey. Concerning the time-delay effect, 12 two-image lensing systems with Δτ are also used. In addition, Monte Carlo simulations are used to compare the efficiency of the three methods as mentioned above. From simulations, we estimate the number of lenses required to rule out one model at the 99.7 per cent confidence level. Comparing with constraints from Δτ and the velocity dispersion σ, we find that using Δτ/σ2 can improve the discrimination between cosmological models. Despite the independence tests of these methods reveal a correlation between Δτ/σ2 and σ, Δτ/σ2 could be considered as an improved method of σ if more data samples are available.
Gravitational Lensing of Supernova Neutrinos
Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab
2006-10-01
The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.
Weak lensing in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Troxel, Michael
2016-03-01
I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.
Strong gravitational lensing of gravitational waves in Einstein Telescope
Piórkowska, Aleksandra; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl
2013-10-01
Gravitational wave experiments have entered a new stage which gets us closer to the opening a new observational window on the Universe. In particular, the Einstein Telescope (ET) is designed to have a fantastic sensitivity that will provide with tens or hundreds of thousand NS-NS inspiral events per year up to the redshift z = 2. Some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral NS-NS events in the Einstein telescope. Being conservative we consider the lens population of elliptical galaxies. It turns out that depending on the local insipral rate ET should detect from one per decade detection in the pessimistic case to a tens of detections per year for the most optimistic case. The detection of gravitationally lensed source in gravitational wave detectors would be an invaluable source of information concerning cosmography, complementary to standard ones (like supernovae or BAO) independent of the local cosmic distance ladder calibrations.
Probing cosmology with weak lensing Minkowski functionals
NASA Astrophysics Data System (ADS)
Kratochvil, Jan M.; Lim, Eugene A.; Wang, Sheng; Haiman, Zoltán; May, Morgan; Huffenberger, Kevin
2012-05-01
In this paper, we show that Minkowski functionals (MFs) of weak gravitational lensing (WL) convergence maps contain significant non-Gaussian, cosmology-dependent information. To do this, we run a large suite of cosmological ray-tracing N-body simulations to create mock WL convergence maps, and study the cosmological information content of MFs derived from these maps. Our suite consists of 80 independent 5123 N-body runs, covering seven different cosmologies, varying three cosmological parameters Ωm, w, and σ8 one at a time, around a fiducial lambda cold dark matter model. In each cosmology, we use ray tracing to create a thousand pseudoindependent 12deg2 convergence maps, and use these in a Monte Carlo procedure to estimate the joint confidence contours on the above three parameters. We include redshift tomography at three different source redshifts zs=1, 1.5, 2, explore five different smoothing scales θG=1,2,3,5,10arcmin, and explicitly compare and combine the MFs with the WL power spectrum. We find that the MFs capture a substantial amount of information from non-Gaussian features of convergence maps, i.e. beyond the power spectrum. The MFs are particularly well suited to break degeneracies and to constrain the dark energy equation of state parameter w (by a factor of ≈three better than from the power spectrum alone). The non-Gaussian information derives partly from the one-point function of the convergence (through V0, the “area” MF), and partly through nonlinear spatial information (through combining different smoothing scales for V0, and through V1 and V2, the boundary length and genus MFs, respectively). In contrast to the power spectrum, the best constraints from the MFs are obtained only when multiple smoothing scales are combined.
The geometry of gravitational lensing magnification
NASA Astrophysics Data System (ADS)
Aazami, Amir Babak; Werner, Marcus C.
2016-02-01
We present a definition of unsigned magnification in gravitational lensing valid on arbitrary convex normal neighborhoods of time oriented Lorentzian manifolds. This definition is a function defined at any two points along a null geodesic that lie in a convex normal neighborhood, and foregoes the usual notions of lens and source planes in gravitational lensing. Rather, it makes essential use of the van Vleck determinant, which we present via the exponential map, and Etherington's definition of luminosity distance for arbitrary spacetimes. We then specialize our definition to spacetimes, like Schwarzschild's, in which the lens is compact and isolated, and show that our magnification function is monotonically increasing along any geodesic contained within a convex normal neighborhood.
Gravitational lensing statistics of amplified supernovae
NASA Technical Reports Server (NTRS)
Linder, Eric V.; Wagoner, Robert V.; Schneider, P.
1988-01-01
Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.
SimpLens: Interactive gravitational lensing simulator
NASA Astrophysics Data System (ADS)
Saha, Prasenjit; Williams, Liliya L. R.
2016-06-01
SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.
Weak Lensing from Space I: Instrumentation and Survey Strategy
Rhodes, Jason; Refregier, Alexandre; Massey, Richard; Albert, Justin; Bacon, David; Bernstein, Gary; Ellis, Richard; Jain, Bhuvnesh; Kim, Alex; Lampton, Mike; McKay, Tim; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bester, M.; Bonissent, A.; Bower, C.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.; Harvey, P.; Heetderks, H.; Holland, S.; Huterer, D.; Karcher, A.; Kolbe, W.; Kreiger, B.; Lafever, R.; Lamoureux, J.; Levi, M.; Devin, D.; Linder, E.; Loken, S.; Malina, R.; McKee, S.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch, A.; von der Lippe, H.; Vincent, D.; Walder, J.-P.; Wang, G.
2003-04-23
A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ''wide'' 300 square degree survey and a ''deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.
Gravitational Lensing: Recent Progress & Future Goals
NASA Technical Reports Server (NTRS)
Brainerd, Tereasa
2001-01-01
This award was intended to provide financial support for an international astrophysics conference on gravitational lensing which was held at Boston University from July 25 to July 30, 1999. Because of the nature of the award, no specific research was proposed, nor was any carried out. The participants at the conference presented results of their on-going research efforts, and written summaries of their presentations have been published by the Astronomical Society of the Pacific as part of their conference series. The reference to the conference proceedings book is Gravitational Lensing: Recent Progress and Future Goals, ASP Conference Series volume 237, eds. T. G. Brainerd and C. S. Kochanek (2001). The ISBN number of this book is 1-58381-074-9. The goal of the conference was to bring together both senior and junior investigators who were actively involved in all aspects of gravitational lensing research. This was the first conference in four years to address gravitational lensing from such a broad perspective (the previous such conference being IAU Symposium 173 held in Melbourne, Australia in July 1995). The conference was attended by 190 participants, who represented of order 70 different institutions and of order 15 different countries. The Scientific Organizing Committee members were Matthias Bartelmann (co-chair), Tereasa Brainerd (co-chair), Ian Browne, Richard Ellis, Nick Kaiser, Yannick Mellier, Sjur Refsdal, HansWalter Rix, Joachim Wambsganss, and Rachel Webster. The Local Organizing Committee members were Tereasa Brainerd (chair), Emilio Falco, Jacqueline Hewitt, Christopher Kochanek, and Irwin Shapiro. The oral sessions were organized around specific applications of gravitational lensing and included invited reviews, invited 'targeted talks', and contributed talks. The review speakers were Roger Blandford, Tereasa Brainerd, Gus Evrard, Nick Kaiser, Guinevere Kaufmann, Chris Kochanek, Charley Lineweaver, Gerry Luppino, Shude Mao, Paul Schechter, Peter
Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew
2009-01-29
We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.
Using gravitationally lensed images to investigate the intrinsic AGN variability
NASA Astrophysics Data System (ADS)
Martí-Vidal, I.; Muller, S.
2016-05-01
We discuss about how the relative flux densities among the images of gravitationally-lensed active galactic nuclei (AGN), can be used to study the intrinsic AGN variability with high accuracy. Multi-frequency monitoring observations of resolved gravitational lenses can allow us to detect signals of very weak variability and also provide information about the jet opacity and structure. As an example, we investigate the variability of the flux-density ratio between the two lensed images of the blazar B 0218+357, using dual-frequency cm-wave observations. Similar to our previously reported submm-wave observations of the lensed blazar PKS 1830-211, we observe a clear chromatic variability, starting short before an increase in the flux-density of the blazar. The evolution of the flux-density ratios between the blazar images shows a more clear and rich structure than that of the mere lightcurves of each individual image. The accuracy in the ratio measurements is allowing us to see variability episodes in the blazar that are weaker than the natural scatter in the absolute flux-density measurements. A simple opacity model in the jet is used to consistently explain the difference between the flux-density-ratio evolution at the two frequencies.
The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook
NASA Astrophysics Data System (ADS)
Mandelbaum, Rachel; Rowe, Barnaby; Bosch, James; Chang, Chihway; Courbin, Frederic; Gill, Mandeep; Jarvis, Mike; Kannawadi, Arun; Kacprzak, Tomasz; Lackner, Claire; Leauthaud, Alexie; Miyatake, Hironao; Nakajima, Reiko; Rhodes, Jason; Simet, Melanie; Zuntz, Joe; Armstrong, Bob; Bridle, Sarah; Coupon, Jean; Dietrich, Jörg P.; Gentile, Marc; Heymans, Catherine; Jurling, Alden S.; Kent, Stephen M.; Kirkby, David; Margala, Daniel; Massey, Richard; Melchior, Peter; Peterson, John; Roodman, Aaron; Schrabback, Tim
2014-05-01
The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include many novel aspects including realistically complex galaxy models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel; and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.
Cannon Prize: Weak lensing - Revealing the Dark Side of the Universe
NASA Astrophysics Data System (ADS)
Mandelbaum, Rachel
2012-01-01
Weak gravitational lensing, the deflection of light from distant galaxies due to all intervening mass along the line of sight, is one of the most direct ways to observe dark matter. As a result, in the past decade, weak lensing has become a very important tool both for constraining cosmological parameters and for revealing the connection between galaxies and dark matter. I will begin by reviewing some of the most significant recent observational advances that were made possible by weak lensing. Next, I will outline some of the challenges and opportunities facing the lensing community in existing and upcoming imaging surveys. I will conclude with some perspective on how these challenges will be addressed to do ground-breaking work in the fields of cosmology, galaxy formation, and galaxy cluster formation and evolution with weak lensing observations in the next decade.
3D weak lensing with spin wavelets on the ball
NASA Astrophysics Data System (ADS)
Leistedt, Boris; McEwen, Jason D.; Kitching, Thomas D.; Peiris, Hiranya V.
2015-12-01
We construct the spin flaglet transform, a wavelet transform to analyze spin signals in three dimensions. Spin flaglets can probe signal content localized simultaneously in space and frequency and, moreover, are separable so that their angular and radial properties can be controlled independently. They are particularly suited to analyzing cosmological observations such as the weak gravitational lensing of galaxies. Such observations have a unique 3D geometrical setting since they are natively made on the sky, have spin angular symmetries, and are extended in the radial direction by additional distance or redshift information. Flaglets are constructed in the harmonic space defined by the Fourier-Laguerre transform, previously defined for scalar functions and extended here to signals with spin symmetries. Thanks to various sampling theorems, both the Fourier-Laguerre and flaglet transforms are theoretically exact when applied to bandlimited signals. In other words, in numerical computations the only loss of information is due to the finite representation of floating point numbers. We develop a 3D framework relating the weak lensing power spectrum to covariances of flaglet coefficients. We suggest that the resulting novel flaglet weak lensing estimator offers a powerful alternative to common 2D and 3D approaches to accurately capture cosmological information. While standard weak lensing analyses focus on either real- or harmonic-space representations (i.e., correlation functions or Fourier-Bessel power spectra, respectively), a wavelet approach inherits the advantages of both techniques, where both complicated sky coverage and uncertainties associated with the physical modeling of small scales can be handled effectively. Our codes to compute the Fourier-Laguerre and flaglet transforms are made publicly available.
Exploring the Dark and Dusty Universe with Gravitational Lensing
NASA Astrophysics Data System (ADS)
Elíasdóttir, Árdís
2007-12-01
In this thesis, gravitational lensing is used as a tool to study the dusty and dark distant universe. The first part of the thesis presents the first systematic study of dust extinction in lensing galaxies using gravitationally lensed background quasars. It is shown the these galaxies vary greatly both in the amount and type of dust and can vary significantly from the dust seen in the Milky Way. This is a significant result since, due to lack of knowledge on extragalactic dust, Milky Way type of extinction is frequently assumed when calibrating high precision cosmological data (e.g. supernova Ia dark energy surveys). Studying the dust extinction in the very large lensing data sets which will arise serendipitously in future planned space based missions (such as the SNAP dark energy survey), it will be possible to constrain the evolution of dust with redshift and morphology, providing these surveys with an independent estimate of one of their major sources of systematic error. The second topic of this thesis is dark matter in galaxies and clusters. It starts with a theoretical study of the strong lensing properties of the Sérsic profile and compares it to those of the NFW profile. The NFW profile is the standard description of dark matter, but recently it has been suggested that the Sérsic profile, more commonly used to describe baryonic matter in galaxies, may be a more accurate description. The results show that it is often possible to find an NFW profile which accurately reproduces the strong lensing signal of a Sérsic profile. However, in other cases, the difference between these profiles could contribute to explaining the discrepancy in the mass and concentration estimates from strong lensing on the one hand, and from weak lensing and X-ray measurements on the other. Next, a mass reconstruction of the galaxy cluster Abell 2218 is deduced using strong lensing constraints. The mass distribution is found to be bimodal in agreement with previous models of Abell
Virbhadra, K. S.; Keeton, C. R.
2008-06-15
We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.
Disentangling dark sector models using weak lensing statistics
NASA Astrophysics Data System (ADS)
Giocoli, Carlo; Metcalf, R. Benton; Baldi, Marco; Meneghetti, Massimo; Moscardini, Lauro; Petkova, Margarita
2015-09-01
We perform multiplane ray tracing using the GLAMER gravitational lensing code within high-resolution light-cones extracted from the CoDECS simulations: a suite of cosmological runs featuring a coupling between dark energy and cold dark matter (CDM). We show that the presence of the coupling is evident not only in the redshift evolution of the normalization of the convergence power spectrum, but also in differences in non-linear structure formation with respect to ΛCDM. Using a tomographic approach under the assumption of a ΛCDM cosmology, we demonstrate that weak lensing measurements would result in a σ8 value that changes with the source redshift if the true underlying cosmology is a coupled dark energy (cDE) one. This provides a generic null test for these types of models. We also find that different models of cDE can show either an enhanced or a suppressed correlation between convergence maps with differing source redshifts as compared to ΛCDM. This would provide a direct way to discriminate between different possible realizations of the cDE scenario. Finally, we discuss the impact of the coupling on several lensing observables for different source redshifts and angular scales with realistic source redshift distributions for current ground-based and future space-based lensing surveys.
The CASTLES Imaging Survey of Gravitational Lenses
NASA Astrophysics Data System (ADS)
Peng, C. Y.; Falco, E. E.; Lehar, J.; Impey, C. D.; Kochanek, C. S.; McLeod, B. A.; Rix, H.-W.
1997-12-01
The CASTLES survey (Cfa-Arizona-(H)ST-Lens-Survey) is imaging most known small-separation gravitational lenses (or lens candidates), using the NICMOS camera (mostly H-band) and the WFPC2 (V and I band) on HST. To date nearly half of the IR imaging survey has been completed. The main goals are: (1) to search for lens galaxies where none have been directly detected so far; (2) obtain photometric redshift estimates (VIH) for the lenses where no spectroscopic redshifts exist; (3) study and model the lens galaxies in detail, in part to study the mass distribution within them, in part to identify ``simple" systems that may permit accurate time delay estimates for H_0; (3) measure the M/L evolution of the sample of lens galaxies with look-back time (to z ~ 1); (4) determine directly which fraction of sources are lensed by ellipticals vs. spirals. We will present the survey specifications and the images obtained so far.
Direct shear mapping - a new weak lensing tool
NASA Astrophysics Data System (ADS)
de Burgh-Day, C. O.; Taylor, E. N.; Webster, R. L.; Hopkins, A. M.
2015-08-01
We have developed a new technique called direct shear mapping (DSM) to measure gravitational lensing shear directly from observations of a single background source. The technique assumes the velocity map of an unlensed, stably rotating galaxy will be rotationally symmetric. Lensing distorts the velocity map making it asymmetric. The degree of lensing can be inferred by determining the transformation required to restore axisymmetry. This technique is in contrast to traditional weak lensing methods, which require averaging an ensemble of background galaxy ellipticity measurements, to obtain a single shear measurement. We have tested the efficacy of our fitting algorithm with a suite of systematic tests on simulated data. We demonstrate that we are in principle able to measure shears as small as 0.01. In practice, we have fitted for the shear in very low redshift (and hence unlensed) velocity maps, and have obtained null result with an error of ±0.01. This high-sensitivity results from analysing spatially resolved spectroscopic images (i.e. 3D data cubes), including not just shape information (as in traditional weak lensing measurements) but velocity information as well. Spirals and rotating ellipticals are ideal targets for this new technique. Data from any large Integral Field Unit (IFU) or radio telescope is suitable, or indeed any instrument with spatially resolved spectroscopy such as the Sydney-Australian-Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI), the Atacama Large Millimeter/submillimeter Array (ALMA), the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Square Kilometer Array (SKA).
Predicting weak lensing statistics from halo mass reconstructions - Final Paper
Everett, Spencer
2015-08-20
As dark matter does not absorb or emit light, its distribution in the universe must be inferred through indirect effects such as the gravitational lensing of distant galaxies. While most sources are only weakly lensed, the systematic alignment of background galaxies around a foreground lens can constrain the mass of the lens which is largely in the form of dark matter. In this paper, I have implemented a framework to reconstruct all of the mass along lines of sight using a best-case dark matter halo model in which the halo mass is known. This framework is then used to make predictions of the weak lensing of 3,240 generated source galaxies through a 324 arcmin² field of the Millennium Simulation. The lensed source ellipticities are characterized by the ellipticity-ellipticity and galaxy-mass correlation functions and compared to the same statistic for the intrinsic and ray-traced ellipticities. In the ellipticity-ellipticity correlation function, I and that the framework systematically under predicts the shear power by an average factor of 2.2 and fails to capture correlation from dark matter structure at scales larger than 1 arcminute. The model predicted galaxy-mass correlation function is in agreement with the ray-traced statistic from scales 0.2 to 0.7 arcminutes, but systematically underpredicts shear power at scales larger than 0.7 arcminutes by an average factor of 1.2. Optimization of the framework code has reduced the mean CPU time per lensing prediction by 70% to 24 ± 5 ms. Physical and computational shortcomings of the framework are discussed, as well as potential improvements for upcoming work.
Fitting gravitational lenses: truth or delusion
NASA Astrophysics Data System (ADS)
Evans, N. Wyn; Witt, Hans J.
2003-11-01
The observables in a strong gravitational lens are usually just the image positions and sometimes the flux ratios. We develop a new and simple algorithm which allows a set of models to be fitted exactly to the observations. Taking our cue from the strong body of evidence that early-type galaxies are close to isothermal, we assume that the lens is scale-free with a flat rotation curve. External shear can be easily included. Our algorithm allows full flexibility regarding the angular structure of the lensing potential. Importantly, all the free parameters enter linearly into the model and so the lens and flux ratio equations can always be solved by straightforward matrix inversion. The models are only restricted by the fact that the surface mass density must be positive. We use this new algorithm to examine some of the claims made for anomalous flux ratios. It has been argued that such anomalies betray the presence of substantial amounts of substructure in the lensing galaxy. We demonstrate by explicit construction that some of the lens systems for which substructure has been claimed can be well fitted by smooth lens models. This is especially the case when the systematic errors in the flux ratios (caused by microlensing or differential extinction) are taken into account. However, there is certainly one system (B1422+231) for which the existing smooth models are definitely inadequate and for which substructure may be implicated. Within a few tens of kpc of the lensing galaxy centre, dynamical friction and tidal disruption are known to be very efficient at dissolving any substructure. Very little substructure is projected within the Einstein radius. The numbers of strong lenses for which substructure is currently being claimed may be so large that this contradicts rather than supports cold dark matter theories.
Spurious Shear in Weak Lensing with LSST
Chang, C.; Kahn, S.M.; Jernigan, J.G.; Peterson, J.R.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jee, M.J.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, P.J.; Marshall, S.; Meert, A.
2012-09-19
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image {approx} 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r {approx} 27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, additive systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than {approx} 10{prime} in the single short exposures, which propagates into a spurious shear correlation function at the 10{sup -4}-10{sup -3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.
Future detectability of gravitational-wave induced lensing from high-sensitivity CMB experiments
NASA Astrophysics Data System (ADS)
Namikawa, Toshiya; Yamauchi, Daisuke; Taruya, Atsushi
2015-02-01
We discuss the future detectability of gravitational-wave induced lensing from high-sensitivity cosmic microwave background (CMB) experiments. Gravitational waves can induce a rotational component of the weak-lensing deflection angle, usually referred to as the curl mode, which would be imprinted on the CMB maps. Using the technique of reconstructing lensing signals involved in CMB maps, this curl mode can be measured in an unbiased manner, offering an independent confirmation of the gravitational waves complementary to B-mode polarization experiments. Based on the Fisher matrix analysis, we first show that with the noise levels necessary to confirm the consistency relation for the primordial gravitational waves, the future CMB experiments will be able to detect the gravitational-wave induced lensing signals. For a tensor-to-scalar ratio of r ≲0.1 , even if the consistency relation is difficult to confirm with a high significance, the gravitational-wave induced lensing will be detected at more than 3 σ significance level. Further, we point out that high-sensitivity experiments will be also powerful to constrain the gravitational waves generated after the recombination epoch. Compared to the B-mode polarization, the curl mode is particularly sensitive to gravitational waves generated at low redshifts (z ≲10 ) with a low frequency (k ≲1 0-3 Mpc-1 ), and it could give a much tighter constraint on their energy density ΩGW by more than 3 orders of magnitude.
cluster-lensing: Tools for calculating properties and weak lensing profiles of galaxy clusters
NASA Astrophysics Data System (ADS)
Ford, Jes
2016-05-01
The cluster-lensing package calculates properties and weak lensing profiles of galaxy clusters. Implemented in Python, it includes cluster mass-richness and mass-concentration scaling relations, and NFW halo profiles for weak lensing shear, the differential surface mass density ΔΣ(r), and for magnification, Σ(r). Optionally the calculation will include the effects of cluster miscentering offsets.
Modulation of a chirp gravitational wave from a compact binary due to gravitational lensing
Yamamoto, Kazuhiro
2005-05-15
A possible wave effect in the gravitational lensing phenomenon is discussed. We consider the interference of two coherent gravitational waves of slightly different frequencies from a compact binary, due to the gravitational lensing by a galaxy halo. This system shows the modulation of the wave amplitude. The lensing probability of such the phenomenon is of order 10{sup -5} for a high-z source, but it may be advantageous to the observation due to the magnification of the amplitude.
Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters
NASA Technical Reports Server (NTRS)
Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; Sako, Masao; Holoien, Thomas W. -S.; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, Stephen Bradley; Donahue, Megan; Filippenko, Alexei V.; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G.; Umetsu, Keiichi; Zheng, Wei
2014-01-01
We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.
GLAMER - II. Multiple-plane gravitational lensing
NASA Astrophysics Data System (ADS)
Petkova, Margarita; Metcalf, R. Benton; Giocoli, Carlo
2014-12-01
We present an extension to multiple planes of the gravitational lensing code GLAMER. The method entails projecting the mass in the observed light-cone on to a discrete number of lens planes and inverse ray-shooting from the image to the source plane. The mass on each plane can be represented as haloes, simulation particles, a projected mass map extracted form a numerical simulation or any combination of these. The image finding is done in a source-oriented fashion, where only regions of interest are iteratively refined on an initially coarse image plane grid. The calculations are performed in parallel on shared memory machines. The code is able to handle different types of analytic haloes (NFW, NSIE, power law, etc.), haloes extracted from numerical simulations and clusters constructed from semi-analytic models (MOKA). Likewise, there are several different options for modelling the source(s) which can be distributed throughout the light-cone. The distribution of matter in the light-cone can be either taken from a pre-existing N-body numerical simulations, from halo catalogues, or are generated from an analytic mass function. We present several tests of the code and demonstrate some of its applications such as generating mock images of galaxy and galaxy cluster lenses.
NASA Astrophysics Data System (ADS)
Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.
2016-06-01
We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg2 of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of zmed ˜ 0.7, while the CMB lensing kernel is broad and peaks at z ˜ 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z ˜ 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DES×SPT cross-power is found to be ASPT = 0.88 ± 0.30 and that from DES×Planck to be APlanck = 0.86 ± 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9σ and 2.2σ, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 ± 0.36 for DES×SPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.
Neutrino halos in clusters of galaxies and their weak lensing signature
Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Miralda-Escudé, Jordi; Quilis, Vicent E-mail: miralda@icc.ub.es E-mail: vicent.quilis@uv.es
2011-06-01
We study whether non-linear gravitational effects of relic neutrinos on the development of clustering and large-scale structure may be observable by weak gravitational lensing. We compute the density profile of relic massive neutrinos in a spherical model of a cluster of galaxies, for several neutrino mass schemes and cluster masses. Relic neutrinos add a small perturbation to the mass profile, making it more extended in the outer parts. In principle, this non-linear neutrino perturbation is detectable in an all-sky weak lensing survey such as EUCLID by averaging the shear profile of a large fraction of the visible massive clusters in the universe, or from its signature in the general weak lensing power spectrum or its cross-spectrum with galaxies. However, correctly modeling the distribution of mass in baryons and cold dark matter and suppressing any systematic errors to the accuracy required for detecting this neutrino perturbation is severely challenging.
Strong field gravitational lensing by a charged Galileon black hole
NASA Astrophysics Data System (ADS)
Zhao, Shan-Shan; Xie, Yi
2016-07-01
Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.
Lognormal Property of Weak-Lensing Fields
NASA Astrophysics Data System (ADS)
Taruya, Atsushi; Takada, Masahiro; Hamana, Takashi; Kayo, Issha; Futamase, Toshifumi
2002-06-01
The statistical properties of weak-lensing fields are studied quantitatively using ray-tracing simulations. Motivated by an empirical lognormal model that excellently characterizes the probability distribution function of a three-dimensional mass distribution, we critically investigate the validity of the lognormal model in weak-lensing statistics. Assuming that the convergence field κ is approximately described by the lognormal distribution, we present analytic formulae of convergence for the one-point probability distribution function (PDF) and the Minkowski functionals. The validity of the lognormal models is checked in detail by comparing those predictions with ray-tracing simulations in various cold dark matter models. We find that the one-point lognormal PDF can accurately describe the non-Gaussian tails of convergence fields up to ν~10, where ν is the level threshold given by ν≡κ/<κ2>1/2, although the systematic deviation from the lognormal prediction becomes manifest at higher source redshift and larger smoothing scales. The lognormal formulae for Minkowski functionals also fit the simulation results when the source redshift is low, zs=1. Accuracy of the lognormal fit remains good even at small angular scales 2'<~θ<~4', where the perturbation formulae by the Edgeworth expansion break down. On the other hand, the lognormal model enables us to predict higher order moments, i.e., skewness S3,κ and kurtosis S4,κ, and we thus discuss the consistency by comparing the predictions with the simulation results. Since these statistics are very sensitive to the high- and low-convergence tails, the lognormal prediction does not provide a successful quantitative fit. We therefore conclude that the empirical lognormal model of the convergence field is safely applicable as a useful cosmological tool, as long as we are concerned with the non-Gaussianity of ν<~5 for low-zs samples.
Extreme value statistics of weak lensing shear peak counts
NASA Astrophysics Data System (ADS)
Reischke, R.; Maturi, M.; Bartelmann, M.
2016-02-01
The statistics of peaks in weak gravitational lensing maps is a promising technique to constrain cosmological parameters in present and future surveys. Here we investigate its power when using general extreme value statistics which is very sensitive to the exponential tail of the halo mass function. To this end, we use an analytic method to quantify the number of weak lensing peaks caused by galaxy clusters, large-scale structures and observational noise. Doing so, we further improve the method in the regime of high signal-to-noise ratios dominated by non-linear structures by accounting for the embedding of those counts into the surrounding shear caused by large-scale structures. We derive the extreme value and order statistics for both overdensities (positive peaks) and underdensities (negative peaks) and provide an optimized criterion to split a wide field survey into subfields in order to sample the distribution of extreme values such that the expected objects causing the largest signals are mostly due to galaxy clusters. We find good agreement of our model predictions with a ray-tracing N-body simulation. For a Euclid-like survey, we find tight constraints on σ8 and Ωm with relative uncertainties of ˜10-3. In contrast, the equation of state parameter w0 can be constrained only with a 10 per cent level, and wa is out of reach even if we include redshift information.
Gravitational Lenses and the Structure and Evolution of Galaxies
NASA Technical Reports Server (NTRS)
Kockanek, Christopher; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
This grant has supported papers which present a new direction in the theory and interpretation of gravitational lenses. During the second year we have focused more closely on the relationship of baryons and dark matter.
What is Gravitational Lensing?(LBNL Summer Lecture Series)
Alexie, Leauthaud; Reiko, Nakajima [Berkeley Center for Cosmological Physics, Berkely, California, United States
2010-01-08
July 28, 2009 Berkeley Lab summer lecture: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
What is Gravitational Lensing? (LBNL Summer Lecture Series)
Leauthaud, Alexie; Nakajima, Reiko
2009-07-28
Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
What is Gravitational Lensing? (LBNL Summer Lecture Series)
Leauthaud, Alexie; Nakajima, Reiko [Berkeley Center for Cosmological Physics
2011-04-28
Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
Optimal Weak-Lensing Skewness Measurements
NASA Astrophysics Data System (ADS)
Zhang, Tong-Jie; Pen, Ue-Li; Zhang, Pengjie; Dubinski, John
2003-12-01
Weak-lensing measurements are starting to provide statistical maps of the distribution of matter in the universe that are increasingly precise and complementary to cosmic microwave background maps. The most common measurement is the correlation in alignments of background galaxies, which can be used to infer the variance of the projected surface density of matter. This measurement of the fluctuations is insensitive to the total mass content and is analogous to using waves on the ocean to measure its depths. However, when the depth is shallow, as happens near a beach, waves become skewed. Similarly, a measurement of skewness in the projected matter distribution directly measures the total matter content of the universe. While skewness has already been convincingly detected, its constraint on cosmology is still weak. We address optimal analyses for the Canada-France-Hawaii Telescope Legacy Survey in the presence of noise. We show that a compensated Gaussian filter with a width of 2.5‧ optimizes the cosmological constraint, yielding ΔΩm/Ωm~10%. This is significantly better than other filters that have been considered in the literature. This can be further improved with tomography and other sophisticated analyses.
Weak lensing galaxy cluster field reconstruction
NASA Astrophysics Data System (ADS)
Jullo, E.; Pires, S.; Jauzac, M.; Kneib, J.-P.
2014-02-01
In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.
NASA Astrophysics Data System (ADS)
Mocanu, Laura Monica; South Pole Telescope Collaboration
2016-06-01
Weak gravitational lensing by large-scale structure in the universe causes deflections in the paths of cosmic microwave background (CMB) photons. This effect introduces non-Gaussian correlations in the observed CMB temperature and polarization fields. The signature of lensing can be used to reconstruct the projected gravitational lensing potential with a quadratic estimator technique; this provides a measure of the integrated mass distribution out to the surface of last scattering, sourced primarily from redshifts between 0.1 and 5. The power spectrum of the lensing potential encodes information about the geometry of the universe and the growth of structure and can be used to place constraints on the sum of neutrino masses and dark energy. High signal-to-noise mass maps from CMB lensing are also powerful for cross-correlating with other tracers of large-scale structure and for delensing the CMB in search for primordial gravitational waves. This poster will describe recent progress on measuring the CMB gravitational lensing potential and its power spectrum using data from 500 deg2 of sky observed with the polarization-sensitive receiver installed on the South Pole Telescope, SPTpol.
FASTLens (FAst STatistics for weak Lensing): Fast Method for Weak Lensing Statistics and Map Making
NASA Astrophysics Data System (ADS)
Pires, S.; Starck, J.-L.; Amara, A.; Teyssier, R.; Refregier, A.; Fadili, J.
2010-10-01
The analysis of weak lensing data requires to account for missing data such as masking out of bright stars. To date, the majority of lensing analyses uses the two point-statistics of the cosmic shear field. These can either be studied directly using the two-point correlation function, or in Fourier space, using the power spectrum. The two-point correlation function is unbiased by missing data but its direct calculation will soon become a burden with the exponential growth of astronomical data sets. The power spectrum is fast to estimate but a mask correction should be estimated. Other statistics can be used but these are strongly sensitive to missing data. The solution that is proposed by FASTLens is to properly fill-in the gaps with only NlogN operations, leading to a complete weak lensing mass map from which one can compute straight forwardly and with a very good accuracy any kind of statistics like power spectrum or bispectrum.
FAst STatistics for weak Lensing (FASTLens): fast method for weak lensing statistics and map making
NASA Astrophysics Data System (ADS)
Pires, S.; Starck, J.-L.; Amara, A.; Teyssier, R.; Réfrégier, A.; Fadili, J.
2009-05-01
With increasingly large data sets, weak lensing measurements are able to measure cosmological parameters with ever-greater precision. However, this increased accuracy also places greater demands on the statistical tools used to extract the available information. To date, the majority of lensing analyses use the two-point statistics of the cosmic shear field. These can be either studied directly using the two-point correlation function or in Fourier space, using the power spectrum. But analysing weak lensing data inevitably involves the masking out of regions, for example to remove bright stars from the field. Masking out the stars is common practice but the gaps in the data need proper handling. In this paper, we show how an inpainting technique allows us to properly fill in these gaps with only NlogN operations, leading to a new image from which we can compute straightforwardly and with a very good accuracy both the power spectrum and the bispectrum. We then propose a new method to compute the bispectrum with a polar FFT algorithm, which has the main advantage of avoiding any interpolation in the Fourier domain. Finally, we propose a new method for dark matter mass map reconstruction from shear observations, which integrates this new inpainting concept. A range of examples based on 3D N-body simulations illustrates the results.
Gravitational Lenses and the Structure and Evolution of Galaxies
NASA Technical Reports Server (NTRS)
Kochanek, Christopher
2003-01-01
The grant has supported the completion of 16 papers and 4 conference proceedings to date. During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, "The Importance of Einstein Rings", we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. We applied the theory to three lenses with lensed host galaxies. For the time delay lens PG 1115+080 we found that the structure of the Einstein ring ruled out models of the gravitational potential which permitted a large Hubble constant (70 km/s Mpc). In the second paper, :Cusped Mass Models Of Gravitational Lenses", we introduced a new class of lens models where the central density is characterized by a cusp ( rho proportional to tau(sup -gamma), 1 less than gamma less than 2) as in most modern models and theories of galaxies rather than a finite core radius. In the third paper, "Global Probes of the Impact of Baryons on Dark Matter Halos", we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. We show that the key physics for the origin of the sharp separation cutoff in the separation distribution near 3 arc sec is the effect of the cooling baryons in galaxies on the density structure of the system.
Early Weak Lensing Results From The Dark Energy Survey
NASA Astrophysics Data System (ADS)
Maccrann, Niall; Dark Energy Survey Collaboration
2016-01-01
I present the early weak lensing results, including cosmological constraints, from the Dark Energy Survey (DES). Although only 3% of the final survey, DES Science Verification data already constituted a competitive weak lensing dataset, and the thoroughly tested shear catalogs allowed a number of interesting science analyses including cosmology from cosmic shear, mass mapping, combining lensing with galaxy clustering and combining with CMB lensing. I will summarize the main results of these analyses, discuss common systematic effects which need to be addressed to take advantage of the greater statistical power of main survey data, and outline some of improvements at various stages of the analysis pipeline that aim to do this.
Constraints on neutrino masses from weak lensing
Ichiki, Kiyotomo; Takada, Masahiro; Takahashi, Tomo
2009-01-15
Weak lensing (WL) distortions of distant galaxy images are sensitive to neutrino masses by probing the suppression effect on clustering strengths of total matter in large-scale structure. We use the latest measurements of WL correlations, the Canada-France-Hawaii Telescope Legacy Survey data, to explore constraints on neutrino masses. We find that, while the WL data alone cannot place a stringent limit on neutrino masses due to parameter degeneracies, the constraint can be significantly improved when combined with other cosmological probes, such as the WMAP 5-year data (WMAP5) and the distance measurements of type-Ia supernovae (SNe) and baryon acoustic oscillations (BAO). The upper bounds on the sum of neutrino masses are , 0.76, and 0.54 eV (95% CL) for WL+WMAP5, WMAP5+SNe+BAO, and WL+WMAP5+SNe+BAO, respectively, assuming a flat {lambda}CDM model with finite-mass neutrinos. In deriving these constraints, our analysis includes the non-Gaussian covariances of the WL correlation functions to properly take into account significant correlations between different angles.
High resolution weak lensing mass mapping combining shear and flexion
NASA Astrophysics Data System (ADS)
Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.
2016-06-01
Aims: We propose a new mass mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. Methods: To preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass mapping problem as a general ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. Results: We tested our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion, which are otherwise lost if only shear information is used. In particular, we can detect substructures on the 15'' scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse
Constraints on cosmological models from strong gravitational lensing systems
Cao, Shuo; Pan, Yu; Zhu, Zong-Hong; Biesiada, Marek; Godlowski, Wlodzimierz E-mail: panyu@cqupt.edu.cn E-mail: godlowski@uni.opole.pl
2012-03-01
Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.
Gravitational lensing by black holes: The case of Sgr A*
Bozza, V.
2014-01-14
The strong gravitational fields created by black holes dramatically affect the propagation of photons by bending their trajectories. Gravitational lensing thus stands as the main source of information on the space-time structure in such extreme regimes. We will review the theory and phenomenology of gravitational lensing by black holes, with the generation of higher order images and giant caustics by rotating black holes. We will then focus on Sgr A*, the black hole at the center of the Milky Way, for which next-to-come technology will be able to reach resolutions of the order of the Schwarzschild radius and ultimately test the existence of an event horizon.
Data mining for gravitationally lensed quasars
NASA Astrophysics Data System (ADS)
Agnello, Adriano; Kelly, Brandon C.; Treu, Tommaso; Marshall, Philip J.
2015-04-01
Gravitationally lensed quasars are brighter than their unlensed counterparts and produce images with distinctive morphological signatures. Past searches and target-selection algorithms, in particular the Sloan Quasar Lens Search (SQLS), have relied on basic morphological criteria, which were applied to samples of bright, spectroscopically confirmed quasars. The SQLS techniques are not sufficient for searching into new surveys (e.g. DES, PS1, LSST), because spectroscopic information is not readily available and the large data volume requires higher purity in target/candidate selection. We carry out a systematic exploration of machine-learning techniques and demonstrate that a two-step strategy can be highly effective. In the first step, we use catalogue-level information (griz+WISE magnitudes, second moments) to pre-select targets, using artificial neural networks. The accepted targets are then inspected with pixel-by-pixel pattern recognition algorithms (gradient-boosted trees), to form a final set of candidates. The results from this procedure can be used to further refine the simpler SQLS algorithms, with a twofold (or threefold) gain in purity and the same (or 80 per cent) completeness at target-selection stage, or a purity of 70 per cent and a completeness of 60 per cent after the candidate-selection step. Simpler photometric searches in griz+WISE based on colour cuts would provide samples with 7 per cent purity or less. Our technique is extremely fast, as a list of candidates can be obtained from a Stage III experiment (e.g. DES catalogue/data base) in a few CPU hours. The techniques are easily extendable to Stage IV experiments like LSST with the addition of time domain information.
Combining weak-lensing tomography and spectroscopic redshift surveys
Cai, Yan -Chuan; Bernstein, Gary
2012-05-11
Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less
Combining weak-lensing tomography and spectroscopic redshift surveys
Cai, Yan -Chuan; Bernstein, Gary
2012-05-11
Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the same sky area. For sky coverage f_{sky} = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin^{–2} are measured in the lensing survey and all halos with M > M_{min} = 10^{13}h^{–1}M_{⊙} have spectra. For the gravitational growth parameter parameter γ (f = Ω^{γ}_{m}), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 10^{13.5} (10^{14}) h^{–1} M_{⊙}. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 10^{13} -10^{14} h^{–1} M_{⊙}, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is
Three gravitationally lensed supernovae behind clash galaxy clusters
Patel, Brandon; McCully, Curtis; Jha, Saurabh W.; Holoien, Thomas W.-S.; Rodney, Steven A.; Jones, David O.; Graur, Or; Riess, Adam G.; Merten, Julian; Zitrin, Adi; Matheson, Thomas; Sako, Masao; Postman, Marc; Coe, Dan; Bradley, Larry; Bartelmann, Matthias; Balestra, Italo; Benítez, Narciso; Bouwens, Rychard; Broadhurst, Tom; and others
2014-05-01
We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was ∼1.0 ± 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is ∼0.2 ± 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log{sub 10}μ): 0.83 ± 0.16 mag for SN CLO12Car, 0.28 ± 0.08 mag for SN CLN12Did, and 0.43 ± 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.
Wardlow, Julie L.; Cooray, Asantha; De Bernardis, Francesco; Calanog, J.; Amblard, A.; Arumugam, V.; Aussel, H.; Bethermin, M.; Blundell, R.; Bussmann, R. S.; Bock, J.; Bridge, C.; Carpenter, J. M.; Boselli, A.; Buat, V.; Burgarella, D.; Cabrera-Lavers, A.; Castro-Rodriguez, N.; Casey, C. M.; and others
2013-01-01
We present a list of 13 candidate gravitationally lensed submillimeter galaxies (SMGs) from 95 deg{sup 2} of the Herschel Multi-tiered Extragalactic Survey, a surface density of 0.14 {+-} 0.04 deg{sup -2}. The selected sources have 500 {mu}m flux densities (S {sub 500}) greater than 100 mJy. Gravitational lensing is confirmed by follow-up observations in 9 of the 13 systems (70%), and the lensing status of the four remaining sources is undetermined. We also present a supplementary sample of 29 (0.31 {+-} 0.06 deg{sup -2}) gravitationally lensed SMG candidates with S {sub 500} = 80-100 mJy, which are expected to contain a higher fraction of interlopers than the primary candidates. The number counts of the candidate lensed galaxies are consistent with a simple statistical model of the lensing rate, which uses a foreground matter distribution, the intrinsic SMG number counts, and an assumed SMG redshift distribution. The model predicts that 32%-74% of our S {sub 500} {>=} 100 mJy candidates are strongly gravitationally lensed ({mu} {>=} 2), with the brightest sources being the most robust; this is consistent with the observational data. Our statistical model also predicts that, on average, lensed galaxies with S {sub 500} = 100 mJy are magnified by factors of {approx}9, with apparently brighter galaxies having progressively higher average magnification, due to the shape of the intrinsic number counts. 65% of the sources are expected to have intrinsic 500 {mu}m flux densities less than 30 mJy. Thus, samples of strongly gravitationally lensed SMGs, such as those presented here, probe below the nominal Herschel detection limit at 500 {mu}m. They are good targets for the detailed study of the physical conditions in distant dusty, star-forming galaxies, due to the lensing magnification, which can lead to spatial resolutions of {approx}0.''01 in the source plane.
Is There a Quad Problem Among Pptical Gravitational Lenses?
Oguri, Masamune
2007-06-06
Most of optical gravitational lenses recently discovered in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) have two-images rather than four images, in marked contrast to radio lenses for which the fraction of four-image lenses (quad fraction) is quite high. We revisit the quad fraction among optical lenses by taking the selection function of the SQLS into account. We find that the current observed quad fraction in the SQLS is indeed lower than, but consistent with, the prediction of our theoretical model. The low quad fraction among optical lenses, together with the high quad fraction among radio lenses, implies that the quasar optical luminosity function has a relatively shallow faint end slope.
Kirk, D.; et al.
2015-12-14
We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg$^{2}$ of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of $z_{\\rm med} {\\sim} 0.7$, while the CMB lensing kernel is broad and peaks at $z{\\sim}2$. The resulting cross-correlation is maximally sensitive to mass fluctuations at $z{\\sim}0.44$. Assuming the Planck 2015 best-fit cosmology, the amplitude of the DES$\\times$SPT cross-power is found to be $A = 0.88 \\pm 0.30$ and that from DES$\\times$Planck to be $A = 0.86 \\pm 0.39$, where $A=1$ corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of $2.9 \\sigma$ and $2.2 \\sigma$ respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photometric redshift uncertainty and CMB lensing systematics. Significant intrinsic alignment of galaxy shapes would increase the cross-correlation signal inferred from the data; we calculate a value of $A = 1.08 \\pm 0.36$ for DES$\\times$SPT when we correct the observations with a simple IA model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation, given the size of the statistical uncertainties and the significant impact of systematic errors, particularly IAs. We provide forecasts for the expected signal-to-noise of the combination of the five-year DES survey and SPT-3G.
PICS: Simulations of Strong Gravitational Lensing in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Li, Nan; Gladders, Michael D.; Rangel, Esteban M.; Florian, Michael K.; Bleem, Lindsey E.; Heitmann, Katrin; Habib, Salman; Fasel, Patricia
2016-09-01
Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.
Gravitational lensing of massive particles in Schwarzschild gravity
NASA Astrophysics Data System (ADS)
Liu, Xionghui; Yang, Nan; Jia, Junji
2016-09-01
Both massless light ray and objects with nonzero mass experience trajectory bending in a gravitational field. In this work the bending of trajectories of massive objects in a Schwarzschild spacetime and the corresponding gravitational lensing (GL) effects are studied. A particle sphere for Schwarzschild black hole (BH) is found with its radius a simple function of the particle velocity and proportional to the BH mass. A single master formula for both the massless and massive particle bending angle is found, in the form of an elliptic function depending only on the velocity and impact parameter. This bending angle is expanded in both large and small velocity limits and large and small impact parameter limits. The corresponding deflection angle for weak and strong GL of massive particles are analyzed, and their corrections to the light ray deflection angles are obtained. The dependence of the deflection angles on the source angle and the particle speed is investigated. Finally we discuss the potential applications of the results in hypervelocity star observations and in determining mass/mass hierarchy of slow particles/objects.
SHELS: TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS
Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian P.; Ramella, Massimo E-mail: mkurtz@cfa.harvard.ed E-mail: ian@het.brown.ed
2010-02-01
Weak-lensing surveys are emerging as an important tool for the construction of 'mass-selected' clusters of galaxies. We evaluate both the efficiency and completeness of a weak-lensing selection by combining a dense, complete redshift survey, the Smithsonian Hectospec Lensing Survey (SHELS), with a weak-lensing map from the Deep Lens Survey (DLS). SHELS includes 11,692 redshifts for galaxies with R <= 20.6 in the 4 deg{sup 2} DLS field; the survey is a solid basis for identifying massive clusters of galaxies with redshift z approx< 0.55. The range of sensitivity of the redshift survey is similar to the range for the DLS convergence map. Only four of the 12 convergence peaks with signal to noise >=3.5 correspond to clusters of galaxies with M approx> 1.7 x 10{sup 14} M{sub sun}. Four of the eight massive clusters in SHELS are detected in the weak-lensing map yielding a completeness of approx50%. We examine the seven known extended cluster X-ray sources in the DLS field: three can be detected in the weak-lensing map, three should not be detected without boosting from superposed large-scale structure, and one is mysteriously undetected even though its optical properties suggest that it should produce a detectable lensing signal. Taken together, these results underscore the need for more extensive comparisons among different methods of massive cluster identification.
On the probability of magnification by cosmologically distributed gravitational lenses
NASA Technical Reports Server (NTRS)
Pei, Yichuan C.
1993-01-01
An analytical method for calculating the statistical properties of source magnification caused by gravitational lenses randomly distributed throughout the universe is presented. Two lenses are considered at different redshifts to show that such an assumption is a statistically adequate approximation. The derived general formulas are applied to point-mass lenses with both point and extended sources. Analytical results of the magnification probability for point sources are accurate to within 10 percent in comparison with the available numerical simulations to moderate redshifts of less than about 2. In terms of the flux conservation, the results are accurate to within 18 percent at a redshift of 6 with respect to the Dyer-Roeder model of a clumpy universe. It is concluded that the present formulas are adequate for statistical studies of magnification by random gravitational lenses on cosmological scales.
Gravitational Lenses and the Structure and Evolution of Galaxies
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor); Kochanek, Christopher
2004-01-01
During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, The Importance of Einstein Rings, we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. In the second paper, Cusped Mass Models Of Gravitational Lenses, we introduced a new class of lens models. In the third paper, Global Probes of the Impact of Baryons on Dark Matter Halos, we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. The last two papers explore the properties of two lenses in detail. During the second year we have focused more closely on the relationship of baryons and dark matter. In the third year we have been further examining the relationship between baryons and dark matter. In the present year we extended our statistical analysis of lens mass distributions using a self-similar model for the halo mass distribution as compared to the luminous galaxy.
Magnified Views of Relativistic Outflows in Gravitationally Lensed Quasars
NASA Astrophysics Data System (ADS)
Chartas, G.; Cappi, M.; Hamann, F.; Eracleous, M.; Strickland, S.; Vignali, C.; Dadina, M.; Giustini, M.; Saez, C.; Misawa, T.
2016-06-01
We presents results from X-ray observations of relativistic outflows in lensed quasars. The lensing magnification of the observed objects provides high signal-to-noise X-ray spectra of quasars showing the absorption signatures of relativistic outflows at redshifts near a crucial phase of black hole growth and the peak of cosmic AGN activity. We summarise the properties of the wide-angle relativistic outflow of the z = 1.51 NAL quasar HS 0810 detected in recent deep XMM-Newton and Chandra observations of this object. We also present preliminary results from a mini-survey of gravitationally lensed mini-BAL quasars performed with XMM-Newton.
The impact of camera optical alignments on weak lensing measures for the Dark Energy Survey
Antonik, M. L.; Bacon, D. J.; Bridle, S.; Doel, P.; Brooks, D.; Worswick, S.; Bernstein, G.; Bernstein, R.; DePoy, D.; Flaugher, B.; Frieman, J. A.; Gladders, M.; Gutierrez, G.; Jain, B.; Jarvis, M.; Kent, S. M.; Lahav, O.; Parker, S. -. J.; Roodman, A.; Walker, A. R.
2013-04-10
Telescope point spread function (PSF) quality is critical for realizing the potential of cosmic weak lensing observations to constrain dark energy and test general relativity. In this paper, we use quantitative weak gravitational lensing measures to inform the precision of lens optical alignment, with specific reference to the Dark Energy Survey (DES). We compute optics spot diagrams and calculate the shear and flexion of the PSF as a function of position on the focal plane. For perfect optical alignment, we verify the high quality of the DES optical design, finding a maximum PSF contribution to the weak lensing shear of 0.04 near the edge of the focal plane. However, this can be increased by a factor of approximately 3 if the lenses are only just aligned within their maximum specified tolerances. We calculate the E- and B-mode shear and flexion variance as a function of the decentre or tilt of each lens in turn. We find tilt accuracy to be a few times more important than decentre, depending on the lens considered. Finally, we consider the compound effect of decentre and tilt of multiple lenses simultaneously, by sampling from a plausible range of values of each parameter. We find that the compound effect can be around twice as detrimental as when considering any one lens alone. Furthermore, this combined effect changes the conclusions about which lens is most important to align accurately. For DES, the tilt of the first two lenses is the most important.
Gravitational lensing and structural stability of dark matter caustic rings
Onemli, V. K.
2006-12-15
In a cold dark matter (CDM) paradigm, density perturbations enter the nonlinear regime of structure formation where shell crossings occur, and caustics form. A dark matter caustic is generically a surface in space where the CDM particles are naturally focussed, and hence, the density is very large. The caustic ring model of galactic halo formation predicts a minimal caustic structure classified as outer caustics and caustic rings at certain locations in the halos. It provides a well-defined density profile and geometry near the caustics. Using this model, I show that the gravitational lensing by the cusps (A{sub -3} catastrophes) of caustic rings at cosmological distances may offer the tantalizing opportunity to detect CDM indirectly, and discriminate between axions and weakly interacting massive particles (WIMPs). The lensing effects of the caustic rings increase as the line of sight approaches to the cusps where it diverges in the limit of zero velocity dispersion. In the presence of finite velocity dispersion, the caustics are smeared out in space, and hence, the divergence is cut off. Primordial smearing distance of caustics may be used to obtain an upper bound for the lensing effects. Evidences found for the caustic rings, on the other hand, were used to estimate an upper bound for the smearing distance, which may be used to obtain a lower bound for the lensing effects. In that range of smearing out, the magnification of a cosmological axion caustic ring is constrained between 3% and 2800% at the outer cusp, and between 2% and 46% at the nonplanar cusps. For a cosmological WIMP caustic ring, the magnification is constrained between 3% and 28% at the outer cusp, and between 2% and 5% at the nonplanar cusps. As pointlike background sources cross behind the axion (WIMP) folds, the time scale of brightness change is about an hour (a year). Thus, they may be used to probe the cusps and discriminate between axions and WIMPs by present instruments. Finally, I derive
Sample variance in weak lensing: How many simulations are required?
NASA Astrophysics Data System (ADS)
Petri, Andrea; Haiman, Zoltán; May, Morgan
2016-03-01
Constraining cosmology using weak gravitational lensing consists of comparing a measured feature vector of dimension Nb with its simulated counterpart. An accurate estimate of the Nb×Nb feature covariance matrix C is essential to obtain accurate parameter confidence intervals. When C is measured from a set of simulations, an important question is how large this set should be. To answer this question, we construct different ensembles of Nr realizations of the shear field, using a common randomization procedure that recycles the outputs from a smaller number Ns≤Nr of independent ray-tracing N -body simulations. We study parameter confidence intervals as a function of (Ns , Nr ) in the range 1 ≤Ns≤200 and 1 ≤Nr≲105. Previous work [S. Dodelson and M. D. Schneider, Phys. Rev. D 88, 063537 (2013)] has shown that Gaussian noise in the feature vectors (from which the covariance is estimated) lead, at quadratic order, to an O (1 /Nr) degradation of the parameter confidence intervals. Using a variety of lensing features measured in our simulations, including shear-shear power spectra and peak counts, we show that cubic and quartic covariance fluctuations lead to additional O (1 /Nr2) error degradation that is not negligible when Nr is only a factor of few larger than Nb. We study the large Nr limit, and find that a single, 240 Mpc /h sized 5123-particle N -body simulation (Ns=1 ) can be repeatedly recycled to produce as many as Nr=few×104 shear maps whose power spectra and high-significance peak counts can be treated as statistically independent. As a result, a small number of simulations (Ns=1 or 2) is sufficient to forecast parameter confidence intervals at percent accuracy.
Sample variance in weak lensing: How many simulations are required?
Petri, Andrea; May, Morgan; Haiman, Zoltan
2016-03-24
Constraining cosmology using weak gravitational lensing consists of comparing a measured feature vector of dimension Nb with its simulated counterpart. An accurate estimate of the Nb × Nb feature covariance matrix C is essential to obtain accurate parameter confidence intervals. When C is measured from a set of simulations, an important question is how large this set should be. To answer this question, we construct different ensembles of Nr realizations of the shear field, using a common randomization procedure that recycles the outputs from a smaller number Ns ≤ Nr of independent ray-tracing N-body simulations. We study parameter confidence intervalsmore » as a function of (Ns, Nr) in the range 1 ≤ Ns ≤ 200 and 1 ≤ Nr ≲ 105. Previous work [S. Dodelson and M. D. Schneider, Phys. Rev. D 88, 063537 (2013)] has shown that Gaussian noise in the feature vectors (from which the covariance is estimated) lead, at quadratic order, to an O(1/Nr) degradation of the parameter confidence intervals. Using a variety of lensing features measured in our simulations, including shear-shear power spectra and peak counts, we show that cubic and quartic covariance fluctuations lead to additional O(1/N2r) error degradation that is not negligible when Nr is only a factor of few larger than Nb. We study the large Nr limit, and find that a single, 240 Mpc/h sized 5123-particle N-body simulation (Ns = 1) can be repeatedly recycled to produce as many as Nr = few × 104 shear maps whose power spectra and high-significance peak counts can be treated as statistically independent. Lastly, a small number of simulations (Ns = 1 or 2) is sufficient to forecast parameter confidence intervals at percent accuracy.« less
Massey, Richard; Hoekstra, Henk; Kitching, Thomas; Rhodes, Jason; Cropper, Mark; Amiaux, Jerome; Harvey, David; Mellier, Yannick; Meneghetti, Massimo; Miller, Lance; Paulin-Henriksson, Stephane; Pires, Sandrine; Scaramella, Roberto; Schrabback, Tim
2012-12-13
The first half of this paper explores the origin of systematic biases in the measurement of weak gravitational lensing. Compared to previous work, we expand the investigation of point spread function instability and fold in for the first time the effects of non-idealities in electronic imaging detectors and imperfect galaxy shape measurement algorithms. In addition, these now explain the additive A(ℓ) and multiplicative M(ℓ) systematics typically reported in current lensing measurements. We find that overall performance is driven by a product of a telescope/camera's absolute performance, and our knowledge about its performance.
Constraining the mass-concentration relation through weak lensing peak function
Mainini, R.; Romano, A. E-mail: anna.romano@oar.inaf.it
2014-08-01
Halo masses and concentrations have been studied extensively, by means of N-body simulations as well as observationally, during the last decade. Nevertheless, the exact form of the mass-concentration relation is still widely debated. One of the most promising method to estimate masses and concentrations relies on gravitational lensing from massive halos. Here we investigate the impact of the mass-concentration relation on halo peak abundance in weak lensing shear maps relying on the aperture mass method for peak detections. After providing a prescription to take into account the concentration dispersion (always neglected in previous works) in peak number counts predictions, we assess their power to constrain the mass-concentration relation by means of Fisher matrix technique. We find that, when combined with different cosmological probes, peak statistics information from near-future weak lensing surveys provides an interesting and complementary alternative method to lessen the long standing controversy about the mass-concentration relation.
Weak lensing generated by vector perturbations and detectability of cosmic strings
Yamauchi, Daisuke; Namikawa, Toshiya; Taruya, Atsushi E-mail: namikawa@utap.phys.s.u-tokyo.ac.jp
2012-10-01
We study the observational signature of vector metric perturbations through the effect of weak gravitational lensing. In the presence of vector perturbations, the non-vanishing signals for B-mode cosmic shear and curl-mode deflection angle, which have never appeared in the case of scalar metric perturbations, naturally arise. Solving the geodesic and geodesic deviation equations, we drive the full-sky formulas for angular power spectra of weak lensing signals, and give the explicit expressions for E-/B-mode cosmic shear and gradient-/curl-mode deflection angle. As a possible source for seeding vector perturbations, we then consider a cosmic string network, and discuss its detectability from upcoming weak lensing and CMB measurements. Based on the formulas and a simple model for cosmic string network, we calculate the angular power spectra and expected signal-to-noise ratios for the B-mode cosmic shear and curl-mode deflection angle. We find that the weak lensing signals are enhanced for a smaller intercommuting probability of the string network, P, and they are potentially detectable from the upcoming cosmic shear and CMB lensing observations. For P ∼ 10{sup −1}, the minimum detectable tension of the cosmic string will be down to Gμ ∼ 5 × 10{sup −8}. With a theoretically inferred smallest value P ∼ 10{sup −3}, we could even detect the string with Gμ ∼ 5 × 10{sup −10}.
Weak Lensing by Galaxy Clusters: from Pixels to Cosmology
Gruen, Daniel
2015-03-11
The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J
Polarization as an indicator of intrinsic alignment in radio weak lensing
NASA Astrophysics Data System (ADS)
Brown, Michael L.; Battye, Richard A.
2011-01-01
We propose a new technique for weak gravitational lensing in the radio band making use of polarization information. Since the orientation of a galaxy’s polarized emission is both unaffected by lensing and is related to the galaxy’s intrinsic orientation, it effectively provides information on the unlensed galaxy position angle. We derive a new weak-lensing estimator, which exploits this effect and makes full use of both the observed galaxy shapes and the estimates of the intrinsic position angles as provided by polarization. Our method has the potential both to reduce the effects of shot noise and to reduce to negligible levels, in a model-independent way, all effects of intrinsic galaxy alignments. We test our technique on simulated weak-lensing skies, including an intrinsic alignment contaminant consistent with recent observations, in three overlapping redshift bins. Adopting a standard weak-lensing analysis and ignoring intrinsic alignments results in biases of 5-10 per cent in the recovered power spectra and cosmological parameters. Applying our new estimator to one-tenth the number of galaxies used for the standard case, we recover both power spectra and the input cosmology with similar precision and with negligible residual bias. This remains true even in the presence of a substantial (astrophysical) scatter in the relationship between the observed orientation of the polarized emission and the intrinsic orientation. Assuming a reasonable polarization fraction for star-forming galaxies, and no cosmological conspiracy in the relationship between polarization direction and intrinsic morphology, our estimator should prove a valuable tool for weak-lensing analyses of forthcoming radio surveys, in particular, deep wide-field surveys with e-MERLIN, MeerKAT and ASKAP, and ultimately, definitive radio lensing surveys with the SKA.
Weak Lensing PSF Correction of Wide-field CCD Mosaic Images (SULI Paper)
Cevallos, Marissa; /Caltech /SLAC
2006-01-04
Gravitational lensing provides some of the most compelling evidence for the existence of dark matter. Dark matter on galaxy cluster scales can be mapped due to its weak gravitational lensing effect: a cluster mass distribution can be inferred from the net distortion of many thousands of faint background galaxies that it induces. Because atmospheric aberration and defects in the detector distort the apparent shape of celestial objects, it is of great importance to characterize accurately the point spread function (PSF) across an image. In this research, the PSF is studied in images from the Canada-France-Hawaii Telescope (CFHT), whose camera is divided into 12 CCD chips. Traditional weak lensing methodology involves averaging the PSF across the entire image: in this work we investigate the effects of measuring the PSF in each chip independently. This chip-by-chip analysis was found to reduce the strength of the correlation between star and galaxy shapes, and predicted more strongly the presence of known galaxy clusters in mass maps. These results suggest correcting the CFHT PSF on an individual chip basis significantly improves the accuracy of detecting weak lensing.
Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS
NASA Astrophysics Data System (ADS)
Schrabback, T.; Hartlap, J.; Joachimi, B.; Kilbinger, M.; Simon, P.; Benabed, K.; Bradač, M.; Eifler, T.; Erben, T.; Fassnacht, C. D.; High, F. William; Hilbert, S.; Hildebrandt, H.; Hoekstra, H.; Kuijken, K.; Marshall, P. J.; Mellier, Y.; Morganson, E.; Schneider, P.; Semboloni, E.; van Waerbeke, L.; Velander, M.
2010-06-01
We present a comprehensive analysis of weak gravitational lensing by large-scale structure in the Hubble Space Telescope Cosmic Evolution Survey (COSMOS), in which we combine space-based galaxy shape measurements with ground-based photometric redshifts to study the redshift dependence of the lensing signal and constrain cosmological parameters. After applying our weak lensing-optimized data reduction, principal-component interpolation for the spatially, and temporally varying ACS point-spread function, and improved modelling of charge-transfer inefficiency, we measured a lensing signal that is consistent with pure gravitational modes and no significant shape systematics. We carefully estimated the statistical uncertainty from simulated COSMOS-like fields obtained from ray-tracing through the Millennium Simulation, including the full non-Gaussian sampling variance. We tested our lensing pipeline on simulated space-based data, recalibrated non-linear power spectrum corrections using the ray-tracing analysis, employed photometric redshift information to reduce potential contamination by intrinsic galaxy alignments, and marginalized over systematic uncertainties. We find that the weak lensing signal scales with redshift as expected from general relativity for a concordance ΛCDM cosmology, including the full cross-correlations between different redshift bins. Assuming a flat ΛCDM cosmology, we measure σ_8(Ω_m/0.3)0.51 = 0.75±0.08 from lensing, in perfect agreement with WMAP-5, yielding joint constraints Ω_m = 0.266+0.025-0.023, σ_8 = 0.802+0.028-0.029 (all 68.3% conf.). Dropping the assumption of flatness and using priors from the HST Key Project and Big-Bang nucleosynthesis only, we find a negative deceleration parameter q0 at 94.3% confidence from the tomographic lensing analysis, providing independent evidence of the accelerated expansion of the Universe. For a flat wCDM cosmology and prior w ∈ [-2,0], we obtain w <-0.41 (90% conf.). Our dark energy
Strong gravitational lensing in a noncommutative black-hole spacetime
NASA Astrophysics Data System (ADS)
Ding, Chikun; Kang, Shuai; Chen, Chang-Yong; Chen, Songbai; Jing, Jiliang
2011-04-01
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norström black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norström black hole, and may permit us to probe the spacetime noncommutative constant ϑ by the astronomical instruments in the future.
Weak lensing mass reconstruction of the galaxy cluster Abell 209
NASA Astrophysics Data System (ADS)
Paulin-Henriksson, S.; Antonuccio-Delogu, V.; Haines, C. P.; Radovich, M.; Mercurio, A.; Becciani, U.
2007-05-01
Context: Weak lensing applied to deep optical images of clusters of galaxies provides a powerful tool to reconstruct the distribution of the gravitating mass associated to these structures. Aims: We use the shear signal extracted by an analysis of deep exposures of a region centered around the galaxy cluster ABCG 209, at redshift z˜ 0.2, to derive both a map of the projected mass distribution and an estimate of the total mass within a characteristic radius. Methods: We use a series of deep archival R-band images from CFHT-12k, covering an area of 0.3 deg^2. We determine the shear of background galaxy images using a new implementation of the modified Kaiser-Squires-Broadhurst KSB+ pipeline for shear determination, which we has been tested against the "Shear TEsting Program 1 and 2'' simulations. We use mass aperture statistics to produce maps of the 2 dimensional density distribution, and parametric fits using both Navarro-Frenk-White and singular-isothermal-sphere profiles to constrain the total mass. Results: The projected mass distribution shows a pronounced asymmetry, with an elongated structure extending from the SE to the NW. This is in general agreement with the optical distribution previously found by other authors. A similar elongation was previously detected in the X-ray emission map, and in the distribution of galaxy colours. The circular NFW mass profile fit gives a total mass of M200 = 7.7+4.3-2.7× 1014 {M}_⊙ inside the virial radius r200 = 1.8± 0.3 Mpc. Conclusions: The weak lensing profile reinforces the evidence for an elongated structure of ABCG 209, as previously suggested by studies of the galaxy distribution and velocities. This project has been partly supported by a Marie Curie Transfer of Knowledge Fellowship of the European Community's Sixth Framework Programme, under contract: MTKD-CT-002995 COSMOCT. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada
General requirements on matter power spectrum predictions for cosmology with weak lensing tomography
Hearin, Andrew P.; Zentner, Andrew R.; Ma, Zhaoming E-mail: zentner@pitt.edu
2012-04-01
Forthcoming projects such as DES, LSST, WFIRST, and Euclid aim to measure weak lensing shear correlations with unprecedented precision, constraining the dark energy equation of state at the percent level. Reliance on photometrically-determined redshifts constitutes a major source of uncertainty for these surveys. Additionally, interpreting the weak lensing signal requires a detailed understanding of the nonlinear physics of gravitational collapse. We present a new analysis of the stringent calibration requirements for weak lensing analyses of future imaging surveys that addresses both photo-z uncertainty and errors in the calibration of the matter power spectrum. We find that when photo-z uncertainty is taken into account the requirements on the level of precision in the prediction for the matter power spectrum are more stringent than previously thought. Including degree-scale galaxy clustering statistics in a joint analysis with weak lensing not only strengthens the survey's constraining power by ∼ 20%, but can also have a profound impact on the calibration demands, decreasing the degradation in dark energy constraints with matter power spectrum uncertainty by a factor of 2-5. Similarly, using galaxy clustering information significantly relaxes the demands on photo-z calibration. We compare these calibration requirements to the contemporary state-of-the-art in photometric redshift estimation and predictions of the power spectrum and suggest strategies to utilize forthcoming data optimally.
The effect of weak lensing on distance estimates from supernovae
Smith, Mathew; Maartens, Roy; Bacon, David J.; Nichol, Robert C.; Campbell, Heather; D'Andrea, Chris B.; Clarkson, Chris; Bassett, Bruce A.; Cinabro, David; Finley, David A.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Olmstead, Matthew D.; Schneider, Donald P.; Shapiro, Charles; Sollerman, Jesper
2014-01-01
Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line of sight. We find that the correlation between this measurement and the Hubble residuals is consistent with the prediction from lensing (at a significance of 1.7σ). Strong correlations are also found between the residuals and supernova nuisance parameters after a linear correction is applied. When these other correlations are taken into account, the lensing signal is detected at 1.4σ. We show, for the first time, that distance estimates from supernovae can be improved when lensing is incorporated, by including a new parameter in the SALT2 methodology for determining distance moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using cosmic microwave background data from WMAP7, H {sub 0} data from Hubble Space Telescope and Sloan Digital Sky Survey (SDSS) Baryon acoustic oscillations measurements, we find the best-fit value of the new lensing parameter and show that the central values and uncertainties on Ω {sub m} and w are unaffected. The lensing of supernovae, while only seen at marginal significance in this low-redshift sample, will be of vital importance for the next generation of surveys, such as DES and LSST, which will be systematics-dominated.
Searching for massive clusters in weak lensing surveys
NASA Astrophysics Data System (ADS)
Hamana, Takashi; Takada, Masahiro; Yoshida, Naoki
2004-05-01
We explore the ability of weak lensing surveys to locate massive clusters. We use both analytic models of dark matter haloes and mock weak lensing surveys generated from a large cosmological N-body simulation. The analytic models describe the average properties of weak lensing haloes and predict the number counts, enabling us to compute an effective survey selection function. We argue that the detectability of massive haloes depends not only on the halo mass but also strongly on the redshift where the halo is located. We test the model prediction for the peak number counts in weak lensing mass maps against mock numerical data, and find that the noise resulting from intrinsic galaxy ellipticities causes a systematic effect which increases the peak counts. We develop a correction scheme for the systematic effect in an empirical manner, and show that, after correction, the model prediction agrees well with the mock data. The mock data is also used to examine the completeness and efficiency of the weak lensing halo search by fully taking into account the noise and the projection effect by large-scale structures. We show that the detection threshold of S/N = 4 ~ 5 gives an optimal balance between completeness and efficiency. Our results suggest that, for a weak lensing survey with a galaxy number density of ng= 30 arcmin-2 with a mean redshift of z= 1, the mean number of haloes which are expected to cause lensing signals above S/N = 4 is Nhalo(S/N > 4) = 37 per 10 deg2, whereas 23 of the haloes are actually detected with S/N > 4, giving the effective completeness as good as 63 per cent. Alternatively, the mean number of peaks in the same area is Npeak= 62 for a detection threshold of S/N = 4. Among the 62 peaks, 23 are caused by haloes with the expected peak height S/N > 4, 13 result from haloes with 3 < S/N < 4 and the remaining 26 peaks are either the false peaks caused by the noise or haloes with a lower expected peak height. Therefore the contamination rate is 44
Galaxy cluster center detection methods with weak lensing
NASA Astrophysics Data System (ADS)
Simet, Melanie
The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. In this work, we test methods of centroid determination from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ˜ 500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. We also project the usefulness of this technique in future surveys.
Gravitational lenses in generalized Einstein-aether theory: The bullet cluster
Dai, D.-C.; Matsuo, Reijiro; Starkman, Glenn
2008-11-15
We study the lensing properties of an asymmetric mass distribution and vector field in generalized Einstein-aether (GEA) theory. As vector-field fluctuations are responsible in GEA for seeding baryonic structure formation, vector-field concentrations can exist independently of baryonic matter. Such concentrations would not be expected to be tied to baryonic matter except gravitationally, and so, like dark matter halos, would become separated from baryonic matter in interacting systems such as the bullet cluster. These vector-field concentrations cause metric deviations that affect weak lensing. Therefore, the distribution of weak lensing deviates from that which would be inferred from the luminous mass distribution, in a way that numerical calculations demonstrate can be consistent with observations. This suggests that MOND-inspired theories can reproduce weak lensing observations, but makes clear the price: the existence of a coherent large-scale fluctuation of a field(s) weakly tied to the baryonic matter, not completely dissimilar to a dark matter halo.
Cosmic variance of the galaxy cluster weak lensing signal
NASA Astrophysics Data System (ADS)
Gruen, D.; Seitz, S.; Becker, M. R.; Friedrich, O.; Mana, A.
2015-06-01
Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M_{200m}≈ 10^{14}ldots 10^{15} h^{-1}{ M_{⊙}}, z = 0.25…0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate mass uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ≈20 per cent uncertainty from cosmic variance alone at M_{200m}≈ 10^{15} h^{-1}{ M_{⊙}} and z = 0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). These biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.
From weak lensing to non-Gaussianity via Minkowski functionals
NASA Astrophysics Data System (ADS)
Munshi, Dipak; van Waerbeke, Ludovic; Smidt, Joseph; Coles, Peter
2012-01-01
We present a new harmonic-domain-based approach for extracting morphological information, in the form of Minkowski functionals (MFs), from weak-lensing convergence maps. Using a perturbative expansion of the MFs, which is expected to be valid for the range of angular scales probed by most current weak-lensing surveys, we show that the study of three generalized skewness parameters is equivalent to the study of the three MFs defined in 2D. We then extend these skewness parameters to three associated skew spectra which carry more information about the convergence bispectrum than their one-point counterparts. We discuss various issues such as noise and incomplete sky coverage in the context of estimation of these skew spectra from realistic data. Our technique provides an alternative to the pixel-space approaches typically used in the estimation of MFs, and it can be particularly useful in the presence of masks with non-trivial topology. Analytical modelling of weak-lensing statistics relies on an accurate modelling of the statistics of the underlying density distribution. We apply three different formalisms to model the underlying dark matter bispectrum: the hierarchical ansatz, halo model and a fitting function based on numerical simulations; MFs resulting from each of these formalisms are computed and compared. We investigate the extent to which late-time gravity-induced non-Gaussianity (to which weak lensing is primarily sensitive) can be separated from primordial non-Gaussianity and how this separation depends on source redshift and angular scale.
Resolving high energy emission of jets using strong gravitational lensing
NASA Astrophysics Data System (ADS)
Barnacka, Anna
2014-11-01
Chandra observations of M87 in 2004 uncovered an outburst originating in distant knot along the jet hundreds of parsecs from the core. This discovery challenges our understanding of the origin of high energy flares. Current technology is inadequate to resolve jets at distances greater than M87, or observed at higher energies. We propose to use gravitationally lensed jets to investigate the structure of more distant sources. Photons emitted at different sites cross the lens plane at different distances, thus magnification ratios and time delays differ between the mirage images. Monitoring of flares from lensed jets reveals the origin of the emission. With detectors like Chandra, lensed systems are a tool for resolving the structure of the jets and for investigating their cosmic evolution.
Gravitational lensing in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Narayan, Ramesh; White, Simon D. M.
1988-01-01
Gravitational lensing due to mass condensations in a biased cold dark matter (CDM) universe is investigated using the Press-Schechter (1974) theory with density fluctuation amplitudes taken from previous N-body work. Under the critical assumption that CDM haloes have small core radii, a distribution of image angular separations for high-z lensed quasars with a peak at about 1 arcsec and a half-width of a factor of about 10. Allowing for selection effects at small angular separations, this is in good agreement with the observed separations. The estimated frequency of lensing is somewhat lower than that observed, but the discrepancy can be removed by invoking amplification bias and by making a small upward adjustment to the density fluctuation amplitudes assumed in the CDM model.
Observing cosmic string loops with gravitational lensing surveys
Mack, Katherine J.; Wesley, Daniel H.; King, Lindsay J.
2007-12-15
We show that the existence of cosmic strings can be strongly constrained by the next generation of gravitational lensing surveys at radio frequencies. We focus on cosmic string loops, which simulations suggest would be far more numerous than long (horizon-sized) strings. Using simple models of the loop population and minimal assumptions about the lensing cross section per loop, we estimate the optical depth to lensing and show that extant radio surveys such as CLASS have already ruled out a portion of the cosmic string model parameter space. Future radio interferometers, such as LOFAR and especially SKA, may constrain G{mu}/c{sup 2}<10{sup -9} in some regions of parameter space, outperforming current constraints from pulsar timing and the cosmic microwave backgound by up to two orders of magnitude. This method relies on direct detections of cosmic strings, and so is less sensitive to the theoretical uncertainties in string network evolution that weaken other constraints.
Higher-order gravitational lensing reconstruction using Feynman diagrams
Jenkins, Elizabeth E.; Manohar, Aneesh V.; Yadav, Amit P.S.; Waalewijn, Wouter J. E-mail: amanohar@ucsd.edu E-mail: ayadav@physics.ucsd.edu
2014-09-01
We develop a method for calculating the correlation structure of the Cosmic Microwave Background (CMB) using Feynman diagrams, when the CMB has been modified by gravitational lensing, Faraday rotation, patchy reionization, or other distorting effects. This method is used to calculate the bias of the Hu-Okamoto quadratic estimator in reconstructing the lensing power spectrum up to O (φ{sup 4}) in the lensing potential φ. We consider both the diagonal noise TT TT, EB EB, etc. and, for the first time, the off-diagonal noise TT TE, TB EB, etc. The previously noted large O (φ{sup 4}) term in the second order noise is identified to come from a particular class of diagrams. It can be significantly reduced by a reorganization of the φ expansion. These improved estimators have almost no bias for the off-diagonal case involving only one B component of the CMB, such as EE EB.
Yoo, Jaiyul
2009-01-15
We present a coherent theoretical framework for computing gravitational lensing effects and redshift-space distortions in an inhomogeneous universe and investigate their impacts on galaxy two-point statistics. Adopting the linearized Friedmann-Lemaitre-Robertson-Walker metric, we derive the gravitational lensing and the generalized Sachs-Wolfe effects that include the weak lensing distortion, magnification, and time delay effects, and the redshift-space distortion, Sachs-Wolfe, and integrated Sachs-Wolfe effects, respectively. Based on this framework, we first compute their effects on observed source fluctuations, separating them as two physically distinct origins: the volume effect that involves the change of volume and is always present in galaxy two-point statistics, and the source effect that depends on the intrinsic properties of source populations. Then we identify several terms that are ignored in the standard method, and we compute the observed galaxy two-point statistics, an ensemble average of all the combinations of the intrinsic source fluctuations and the additional contributions from the gravitational lensing and the generalized Sachs-Wolfe effects. This unified treatment of galaxy two-point statistics clarifies the relation of the gravitational lensing and the generalized Sachs-Wolfe effects to the metric perturbations and the underlying matter fluctuations. For near-future dark energy surveys, we compute additional contributions to the observed galaxy two-point statistics and analyze their impact on the anisotropic structure. Thorough theoretical modeling of galaxy two-point statistics would be not only necessary to analyze precision measurements from upcoming dark energy surveys, but also provide further discriminatory power in understanding the underlying physical mechanisms.
Modified gravity: the CMB, weak lensing and general parameterisations
Thomas, Shaun A.; Appleby, Stephen A.; Weller, Jochen E-mail: stephen.appleby@ph.tum.de
2011-03-01
We examine general physical parameterisations for viable gravitational models in the f(R) framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass M(a) we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation μ(a,k) and the ratio of the Newtonian potentials η(a,k). We argue that although f(R) models are well described by the general [μ(a,k),η(a,k)] parameterization, specific functional forms of μ,η in the literature do not accurately represent f(R) behaviour, specifically at low redshift. We subsequently construct an improved description for the scalaron mass (and therefore μ(a,k) and η(a,k)) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum-where the signatures are evident-thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass M{sub 0} = 9.4 × 10{sup −30}eV at the ∼ 20% level. However, the decay rate of the scalaron mass, with fiducial value ν = 1.5, can be constrained to ∼ 3% uncertainty.
Strong gravitational lensing with Gauss-Bonnet correction
Sadeghi, J.; Vaez, H. E-mail: h.vaez@umz.ac.ir
2014-06-01
In this paper we investigate the strong gravitational lensing in a five dimensional background with Gauss-Bonnet gravity, so that in 4-dimensions the Gauss-Bonnet correction disappears. By considering the logarithmic term for deflection angle, we obtain the deflection angle α-circumflex and corresponding parameters ā and b-bar . Finally, we estimate some properties of relativistic images such as θ{sub ∞}, s and r{sub m}.
Reducing systematic error in weak lensing cluster surveys
Utsumi, Yousuke; Miyazaki, Satoshi; Hamana, Takashi; Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian P.; Oguri, Masamune
2014-05-10
Weak lensing provides an important route toward collecting samples of clusters of galaxies selected by mass. Subtle systematic errors in image reduction can compromise the power of this technique. We use the B-mode signal to quantify this systematic error and to test methods for reducing this error. We show that two procedures are efficient in suppressing systematic error in the B-mode: (1) refinement of the mosaic CCD warping procedure to conform to absolute celestial coordinates and (2) truncation of the smoothing procedure on a scale of 10'. Application of these procedures reduces the systematic error to 20% of its original amplitude. We provide an analytic expression for the distribution of the highest peaks in noise maps that can be used to estimate the fraction of false peaks in the weak-lensing κ-signal-to-noise ratio (S/N) maps as a function of the detection threshold. Based on this analysis, we select a threshold S/N = 4.56 for identifying an uncontaminated set of weak-lensing peaks in two test fields covering a total area of ∼3 deg{sup 2}. Taken together these fields contain seven peaks above the threshold. Among these, six are probable systems of galaxies and one is a superposition. We confirm the reliability of these peaks with dense redshift surveys, X-ray, and imaging observations. The systematic error reduction procedures we apply are general and can be applied to future large-area weak-lensing surveys. Our high-peak analysis suggests that with an S/N threshold of 4.5, there should be only 2.7 spurious weak-lensing peaks even in an area of 1000 deg{sup 2}, where we expect ∼2000 peaks based on our Subaru fields.
Probing Primordial Non-Gaussianity with Weak-lensing Minkowski Functionals
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi; Nishimichi, Takahiro
2012-11-01
We study the cosmological information contained in the Minkowski functionals (MFs) of weak gravitational lensing convergence maps. We show that the MFs provide strong constraints on the local-type primordial non-Gaussianity parameter f NL. We run a set of cosmological N-body simulations and perform ray-tracing simulations of weak lensing to generate 100 independent convergence maps of a 25 deg2 field of view for f NL = -100, 0 and 100. We perform a Fisher analysis to study the degeneracy among other cosmological parameters such as the dark energy equation of state parameter w and the fluctuation amplitude σ8. We use fully nonlinear covariance matrices evaluated from 1000 ray-tracing simulations. For upcoming wide-field observations such as those from the Subaru Hyper Suprime-Cam survey with a proposed survey area of 1500 deg2, the primordial non-Gaussianity can be constrained with a level of f NL ~ 80 and w ~ 0.036 by weak-lensing MFs. If simply scaled by the effective survey area, a 20,000 deg2 lensing survey using the Large Synoptic Survey Telescope will yield constraints of f NL ~ 25 and w ~ 0.013. We show that these constraints can be further improved by a tomographic method using source galaxies in multiple redshift bins.
PROBING PRIMORDIAL NON-GAUSSIANITY WITH WEAK-LENSING MINKOWSKI FUNCTIONALS
Shirasaki, Masato; Yoshida, Naoki; Nishimichi, Takahiro; Hamana, Takashi
2012-11-20
We study the cosmological information contained in the Minkowski functionals (MFs) of weak gravitational lensing convergence maps. We show that the MFs provide strong constraints on the local-type primordial non-Gaussianity parameter f {sub NL}. We run a set of cosmological N-body simulations and perform ray-tracing simulations of weak lensing to generate 100 independent convergence maps of a 25 deg{sup 2} field of view for f {sub NL} = -100, 0 and 100. We perform a Fisher analysis to study the degeneracy among other cosmological parameters such as the dark energy equation of state parameter w and the fluctuation amplitude {sigma}{sub 8}. We use fully nonlinear covariance matrices evaluated from 1000 ray-tracing simulations. For upcoming wide-field observations such as those from the Subaru Hyper Suprime-Cam survey with a proposed survey area of 1500 deg{sup 2}, the primordial non-Gaussianity can be constrained with a level of f {sub NL} {approx} 80 and w {approx} 0.036 by weak-lensing MFs. If simply scaled by the effective survey area, a 20,000 deg{sup 2} lensing survey using the Large Synoptic Survey Telescope will yield constraints of f {sub NL} {approx} 25 and w {approx} 0.013. We show that these constraints can be further improved by a tomographic method using source galaxies in multiple redshift bins.
An X-ray study of gravitational lenses
NASA Astrophysics Data System (ADS)
Dai, Xinyu
2004-11-01
Gravitational lensing of distant quasars by intervening galaxies is a spectacular phenomenon in the universe. With the advent of Chandra, it is possible to resolve for the first time in the X-ray band lensed quasar images with separations greater than about 0.35 arcsec. We use lensing as a tool to study AGN and Cosmology with Chandra and XMM-Newton. First, we present results from a mini-survey of relatively high redshift (1.7 < z < 4) gravitationally lensed radio-quiet quasars observed with the Chandra X-ray Observatory and with XMM-Newton. The lensing magnification effect allows us to search for changes in quasar spectroscopic and flux variability properties with redshift over three orders of magnitude in intrinsic X-ray luminosity. It extends the study of quasar properties to unlensed X-ray flux levels as low as a few times 10 -15 erg cm -2 s -1 in the observed 0.4-8 keV band. For the first time, these observations of lensed quasars have provided medium to high signal-to-noise ratio X-ray spectra of a sample of relatively high-redshift and low X-ray luminosity quasars. We find a possible correlation between the X-ray powerlaw photon index and X-ray luminosity of the gravitationally lensed radio-quiet quasar sample. The X-ray spectral slope steepens as the X-ray luminosity increases. This correlation is still signific ant when we combine our data with other samples of radio-quiet quasars with z > 1.5, especially in the low luminosity range between 10^43 -10^45.5 erg s -1 . This result is surprising considering that such a correlation is not found for quasars with redshifts below 1.5. We suggest that this correlation can be understood in the context of the hot-corona model for X-ray emission from quasar accretion disks, under the hypothesis that the quasars in our sample accrete very close to their Eddington limits and the observed luminosity range is set by the range of black hole masses (this hypothesis is consistent with recent predictions of semi
A new weak lensing shear analysis method using ellipticity defined by 0th order moments
NASA Astrophysics Data System (ADS)
Okura, Yuki; Futamase, Toshifumi
2015-04-01
We developed a new method that uses ellipticity defined by 0th order moments (0th-ellipticity) for weak gravitational lensing shear analysis. Although there is a strong correlation between the ellipticity calculated using this approach and the usual ellipticity defined by the 2nd order moment, the ellipticity calculated here has a higher signal-to-noise ratio because it is weighted to the central region of the image. These results were confirmed using data for Abell 1689 from the Subaru telescope. For shear analysis, we adopted the ellipticity of re-smeared artificial image method for point spread function correction, and we tested the precision of this 0th-ellipticity with simple simulation, then we obtained the same level of precision with the results of ellipticity defined by quadrupole moments. Thus, we can expect that weak lensing analysis using 0 shear will be improved in proportion to the statistical error.
NASA Astrophysics Data System (ADS)
Chen, Bin; Kantowski, R.; Dai, X.
2014-01-01
We have developed an accurate gravitational lens theory for an inhomogeneity embedded in an otherwise homogeneous universe, which to the lowest order is applicable to any mass distribution. We derive the Fermat potential for a spherically symmetric lens embedded in a FLRW cosmology and use it to investigate the late-time integrated Sachs-Wolfe effect (ISW) caused by individual large scale inhomogeneities, in particular, cosmic voids. We present a simple analytical expression for the CMB temperature fluctuation across such a lens as the derivative of the lens Fermat potential. Our formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. Our results are particularly useful for modeling ISW effects extracted through stacking large numbers of cosmic voids and clusters (that is, the aperture photometry method). For structures co-expanding with the background cosmology, i.e., for time-independent density contrasts, we find that the gravitational lensing time delay alone can produce fluctuations of the order of seen in recent observations by WMAP and Planck. We revisit the possibility of explaining the non-Gaussian cold spot on the south hemisphere via the Rees-Sciama effect of a large cosmic void using constraints obtained from the most recent void catalogs and our new void-lensing formalism, and compare it with other explanations such as a collapsing cosmic texture. We also study the remapping of primordial CMB anisotropies, the weak-lensing shear, and magnification caused by void lensing.
Gravitational lensing size scales for quasars
NASA Astrophysics Data System (ADS)
Chartas, G.; Rhea, C.; Kochanek, C.; Dai, X.; Morgan, C.; Blackburne, J.; Chen, B.; Mosquera, A.; MacLeod, C.
2016-05-01
We review results from our monitoring observations of several lensed quasars performed in the optical, UV, and X-ray bands. Modeling of the multi-wavelength light curves provides constraints on the extent of the optical, UV, and X-ray emission regions. One of the important results of our analysis is that the optical sizes as inferred from the microlensing analysis are significantly larger than those predicted by the theoretical-thin-disk estimate. In a few cases we also constrain the slope of the size-wavelength relation. Our size constraints of the soft and hard X-ray emission regions of quasars indicate that in some objects of our sample the hard X-ray emission region is more compact than the soft and in others the soft emission region is smaller. This difference may be the result of the relative strengths of the disk-reflected (harder and extended) versus corona-direct (softer and compact) components in the quasars of our sample. Finally, we present the analysis of several strong microlensing events where we detect an evolution of the relativistic Fe line profile as the magnification caustic traverses the accretion disk. These caustic crossings are used to provide constraints on the innermost stable circular orbit (ISCO) radius and the accretion disk inclination angle of the black hole in quasar RX J1131-1231.
The HST Frontier Fields: Gravitational Lensing Models Release
NASA Astrophysics Data System (ADS)
Coe, Dan A.; Lotz, J.; Natarajan, P.; Richard, J.; Zitrin, A.; Kneib, J.; Ebeling, H.; Sharon, K.; Johnson, T.; Limousin, M.; Bradac, M.; Hoag, A.; Cain, B.; Merten, J.; Williams, L. L.; Sebesta, K.; Meneghetti, M.; Koekemoer, A. M.; Barker, E. A.
2014-01-01
The Hubble Frontier Fields (HFF) is a Director's Discretionary Time (DDT) program to deeply observe up to six massive strong-lensing galaxy clusters and six "blank" fields in parallel. These complementary observations will yield magnified and direct images of some of the most distant galaxies yet observed. The strongly lensed images will be our deepest views of our universe to date. Interpretation of some (but not all) observed properties of the strongly lensed galaxies requires gravitational lens modeling. In order to maximize the value of this public dataset to the extragalactic community, STScI commissioned five teams funded by NASA to derive the best possible lens models from existing data. After coordinating to share observational constraints, including measured redshifts of strongly lensed galaxies, the teams independently derived lens models using robust, established methodologies. STScI released these models to the community in October before HFF observations of the first cluster, Abell 2744. Here we describe these models as well as a web tool which allows users to extract magnification estimates with uncertainties from all models for any galaxy strongly lensed by a HFF cluster. Inputs are the galaxy's coordinates (RA and Dec), redshift, and (optionally) observed radius. We also discuss ongoing work to study lens model uncertainties by modeling simulated clusters.
Galaxy Cluster Center Detection Methods with Weak Lensing
NASA Astrophysics Data System (ADS)
Simet, Melanie
2013-01-01
The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. Misidentification of centers, either because a well-defined center does not exist or because candidate centers are incorrectly identified or ranked, leads to systematic underestimates of cluster masses. Weak lensing provides a potential lever on this issue by directly probing the distribution of dark matter. We test methods of determining cluster centers directly from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ~500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. In cases where other center identification methods fail, however, the method may still be useful to distinguish between competing options.
Catastrophic photometric redshift errors: Weak-lensing survey requirements
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using onlymore » the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less
QUANTIFYING THE BIASES OF SPECTROSCOPICALLY SELECTED GRAVITATIONAL LENSES
Arneson, Ryan A.; Brownstein, Joel R.; Bolton, Adam S. E-mail: joelbrownstein@astro.utah.edu
2012-07-01
Spectroscopic selection has been the most productive technique for the selection of galaxy-scale strong gravitational lens systems with known redshifts. Statistically significant samples of strong lenses provide a powerful method for measuring the mass-density parameters of the lensing population, but results can only be generalized to the parent population if the lensing selection biases are sufficiently understood. We perform controlled Monte Carlo simulations of spectroscopic lens surveys in order to quantify the bias of lenses relative to parent galaxies in velocity dispersion, mass axis ratio, and mass-density profile. For parameters typical of the SLACS and BELLS surveys, we find (1) no significant mass axis ratio detection bias of lenses relative to parent galaxies; (2) a very small detection bias toward shallow mass-density profiles, which is likely negligible compared to other sources of uncertainty in this parameter; (3) a detection bias toward smaller Einstein radius for systems drawn from parent populations with group- and cluster-scale lensing masses; and (4) a lens-modeling bias toward larger velocity dispersions for systems drawn from parent samples with sub-arcsecond mean Einstein radii. This last finding indicates that the incorporation of velocity-dispersion upper limits of non-lenses is an important ingredient for unbiased analyses of spectroscopically selected lens samples. In general, we find that the completeness of spectroscopic lens surveys in the plane of Einstein radius and mass-density profile power-law index is quite uniform, up to a sharp drop in the region of large Einstein radius and steep mass-density profile, and hence that such surveys are ideally suited to the study of massive field galaxies.
Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong; Piórkowska, Aleksandra E-mail: dingxuheng@mail.bnu.edu.cn E-mail: zhuzh@bnu.edu.cn
2014-10-01
Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previous paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.
TESTING THE DARK ENERGY WITH GRAVITATIONAL LENSING STATISTICS
Cao Shuo; Zhu Zonghong; Covone, Giovanni
2012-08-10
We study the redshift distribution of two samples of early-type gravitational lenses, extracted from a larger collection of 122 systems, to constrain the cosmological constant in the {Lambda}CDM model and the parameters of a set of alternative dark energy models (XCDM, Dvali-Gabadadze-Porrati, and Ricci dark energy models), in a spatially flat universe. The likelihood is maximized for {Omega}{sub {Lambda}} = 0.70 {+-} 0.09 when considering the sample excluding the Sloan Lens ACS systems (known to be biased toward large image-separation lenses) and no-evolution, and {Omega}{sub {Lambda}} = 0.81 {+-} 0.05 when limiting to gravitational lenses with image separation {Delta}{theta} > 2'' and no-evolution. In both cases, results accounting for galaxy evolution are consistent within 1{sigma}. The present test supports the accelerated expansion, by excluding the null hypothesis (i.e., {Omega}{sub {Lambda}} = 0) at more than 4{sigma}, regardless of the chosen sample and assumptions on the galaxy evolution. A comparison between competitive world models is performed by means of the Bayesian information criterion. This shows that the simplest cosmological constant model-that has only one free parameter-is still preferred by the available data on the redshift distribution of gravitational lenses. We perform an analysis of the possible systematic effects, finding that the systematic errors due to sample incompleteness, galaxy evolution, and model uncertainties approximately equal the statistical errors, with present-day data. We find that the largest sources of systemic errors are the dynamical normalization and the high-velocity cutoff factor, followed by the faint-end slope of the velocity dispersion function.
Non-linear relativistic contributions to the cosmological weak-lensing convergence
Andrianomena, Sambatra; Clarkson, Chris; Patel, Prina; Umeh, Obinna; Uzan, Jean-Philippe E-mail: chris.clarkson@gmail.com E-mail: umeobinna@gmail.com
2014-06-01
Relativistic contributions to the dynamics of structure formation come in a variety of forms, and can potentially give corrections to the standard picture on typical scales of 100 Mpc. These corrections cannot be obtained by Newtonian numerical simulations, so it is important to accurately estimate the magnitude of these relativistic effects. Density fluctuations couple to produce a background of gravitational waves, which is larger than any primordial background. A similar interaction produces a much larger spectrum of vector modes which represent the frame-dragging rotation of spacetime. These can change the metric at the percent level in the concordance model at scales below the equality scale. Vector modes modify the lensing of background galaxies by large-scale structure. This gives in principle the exciting possibility of measuring relativistic frame dragging effects on cosmological scales. The effects of the non-linear tensor and vector modes on the cosmic convergence are computed and compared to first-order lensing contributions from density fluctuations, Doppler lensing, and smaller Sachs-Wolfe effects. The lensing from gravitational waves is negligible so we concentrate on the vector modes. We show the relative importance of this for future surveys such as Euclid and SKA. We find that these non-linear effects only marginally affect the overall weak lensing signal so they can safely be neglected in most analyses, though are still much larger than the linear Sachs-Wolfe terms. The second-order vector contribution can dominate the first-order Doppler lensing term at moderate redshifts and are actually more important for survey geometries like the SKA.
Gravitationally Lensed X-Ray Sources at the Galactic Center
NASA Astrophysics Data System (ADS)
Castelaz, Michael W.; Rottler, L.
2012-01-01
More than two thousand x-ray sources located within 20 pc of the Galactic Center (GC) have been identified by Muno et al. (2003). If an x-ray source is located behind the Galactic Center and offset by a small angle from the GC projected on the sky, then that x-ray source could be gravitationally lensed. The consequences of finding gravitationally lensed sources at the Galactic Center include the ability to independently measure the mass of the GC as well as provide a new probe of the density distribution of the GC (e.g. Wardle & Yusef-Zadeh 1992). Inspecting x-ray images of the GC we were immediately drawn to a set of four x-ray objects. The identified objects are cataloged as CXOJ 174541.0-290014, 174540.1-290005, 174540.0-290031, and 174538.1-290022. These are the brightest and most obvious variable x-ray objects whose positions suggest patterns of images that may either be an inclined quad or two sets of dual gravitational lens patterns. Based on the image patterns, and image brightnesses and relative variations, we modeled possible lens systems using two algorithms. Both of the algorithms describing gravitational lenses are based on the Fermat potential and its time derivatives. For a lens radius of R = 0.01 pc, the total enclosed mass is 2.6 x 107 M⊙ and for R = 0.001 pc, the total enclosed mass is 2.6 x 105 M⊙. These masses are consistent with other measurements of the mass of the GC, such as 4.5 x 106 M⊙ (Ghez et al. 2008). We will present these results and our plans to further study the nature of these x-ray objects.
The DES Science Verification weak lensing shear catalogues
NASA Astrophysics Data System (ADS)
Jarvis, M.; Sheldon, E.; Zuntz, J.; Kacprzak, T.; Bridle, S. L.; Amara, A.; Armstrong, R.; Becker, M. R.; Bernstein, G. M.; Bonnett, C.; Chang, C.; Das, R.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler, T. F.; Gangkofner, C.; Gruen, D.; Hirsch, M.; Huff, E. M.; Jain, B.; Kent, S.; Kirk, D.; MacCrann, N.; Melchior, P.; Plazas, A. A.; Refregier, A.; Rowe, B.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Suchyta, E.; Troxel, M. A.; Vikram, V.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Clampitt, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Martini, P.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nord, B.; Ogando, R.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.
2016-08-01
We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-year DES, which is expected to cover 5000 square degrees.
The DES Science Verification Weak Lensing Shear Catalogs
Jarvis, M.
2015-07-20
We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.
The DES Science Verification weak lensing shear catalogues
NASA Astrophysics Data System (ADS)
Jarvis, M.; Sheldon, E.; Zuntz, J.; Kacprzak, T.; Bridle, S. L.; Amara, A.; Armstrong, R.; Becker, M. R.; Bernstein, G. M.; Bonnett, C.; Chang, C.; Das, R.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler, T. F.; Gangkofner, C.; Gruen, D.; Hirsch, M.; Huff, E. M.; Jain, B.; Kent, S.; Kirk, D.; MacCrann, N.; Melchior, P.; Plazas, A. A.; Refregier, A.; Rowe, B.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Suchyta, E.; Troxel, M. A.; Vikram, V.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Clampitt, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Martini, P.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nord, B.; Ogando, R.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.
2016-08-01
We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies, respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-yr DES, which is expected to cover 5000 square degrees.
The DES Science Verification Weak Lensing Shear Catalogs
Jarvis, M.
2016-05-01
We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SVmore » data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.« less
The DES Science Verification Weak Lensing Shear Catalogues
NASA Astrophysics Data System (ADS)
Jarvis, M.; Sheldon, E.; Zuntz, J.; Kacprzak, T.; Bridle, S. L.; Amara, A.; Armstrong, R.; Becker, M. R.; Bernstein, G. M.; Bonnett, C.; Chang, C.; Das, R.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler, T. F.; Gangkofner, C.; Gruen, D.; Hirsch, M.; Huff, E. M.; Jain, B.; Kent, S.; Kirk, D.; MacCrann, N.; Melchior, P.; Plazas, A. A.; Refregier, A.; Rowe, B.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Suchyta, E.; Troxel, M. A.; Vikram, V.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Clampitt, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Martini, P.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nord, B.; Ogando, R.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.
2016-05-01
We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-year DES, which is expected to cover 5000 square degrees.
Gravitational lensing analysis of the Kilo-Degree Survey
NASA Astrophysics Data System (ADS)
Kuijken, Konrad; Heymans, Catherine; Hildebrandt, Hendrik; Nakajima, Reiko; Erben, Thomas; de Jong, Jelte T. A.; Viola, Massimo; Choi, Ami; Hoekstra, Henk; Miller, Lance; van Uitert, Edo; Amon, Alexandra; Blake, Chris; Brouwer, Margot; Buddendiek, Axel; Conti, Ian Fenech; Eriksen, Martin; Grado, Aniello; Harnois-Déraps, Joachim; Helmich, Ewout; Herbonnet, Ricardo; Irisarri, Nancy; Kitching, Thomas; Klaes, Dominik; La Barbera, Francesco; Napolitano, Nicola; Radovich, Mario; Schneider, Peter; Sifón, Cristóbal; Sikkema, Gert; Simon, Patrick; Tudorica, Alexandru; Valentijn, Edwin; Verdoes Kleijn, Gijs; van Waerbeke, Ludovic
2015-12-01
The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological studies from weak lensing and photometric redshifts. It uses the European Southern Observatory VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in four filters similar to the Sloan Digital Sky Survey ugri bands. The best seeing time is reserved for deep r-band observations. The median 5σ limiting AB magnitude is 24.9 and the median seeing is below 0.7 arcsec. Initial KiDS observations have concentrated on the Galaxy and Mass Assembly (GAMA) regions near the celestial equator, where extensive, highly complete redshift catalogues are available. A total of 109 survey tiles, 1 square degree each, form the basis of the first set of lensing analyses of halo properties of GAMA galaxies. Nine galaxies per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69 arcmin-2. Accounting for the shape measurement weight, the median redshift of the sources is 0.53. KiDS data processing follows two parallel tracks, one optimized for weak lensing measurement and one for accurate matched-aperture photometry (for photometric redshifts). This technical paper describes the lensing and photometric redshift measurements (including a detailed description of the Gaussian aperture and photometry pipeline), summarizes the data quality and presents extensive tests for systematic errors that might affect the lensing analyses. We also provide first demonstrations of the suitability of the data for cosmological measurements, and describe our blinding procedure for preventing confirmation bias in the scientific analyses. The KiDS catalogues presented in this paper are released to the community through http://kids.strw.leidenuniv.nl.
Infrared observations of gravitational lensing in Abell 2219 with CIRSI
NASA Astrophysics Data System (ADS)
Gray, Meghan E.; Ellis, Richard S.; Refregier, Alexandre; Bézecourt, Jocelyn; McMahon, Richard G.; Beckett, Martin G.; Mackay, Craig D.; Hoenig, Michael D.
2000-10-01
We present the first detection of a gravitational depletion signal at near-infrared wavelengths, based on deep panoramic images of the cluster Abell 2219 (z=0.22) taken with the Cambridge Infrared Survey Instrument (CIRSI) at the prime focus of the 4.2-m William Herschel Telescope. Infrared studies of gravitational depletion offer a number of advantages over similar techniques applied at optical wavelengths, and can provide reliable total masses for intermediate-redshift clusters. Using the maximum-likelihood technique developed by Schneider, King & Erben, we detect the gravitational depletion at the 3σ confidence level. By modelling the mass distribution as a singular isothermal sphere and ignoring the uncertainty in the unlensed number counts, we find an Einstein radius of θE ~= 13.7+3.9-4.2 arcsec (66per cent confidence limit). This corresponds to a projected velocity dispersion of σv~800kms-1, in agreement with constraints from strongly lensed features. For a Navarro, Frenk & White mass model, the radial dependence observed indicates a best-fitting halo scalelength of 125h-1kpc. We investigate the uncertainties arising from the observed fluctuations in the unlensed number counts, and show that clustering is the dominant source of error. We extend the maximum-likelihood method to include the effect of incompleteness, and discuss the prospects of further systematic studies of lensing in the near-infrared band.
The SuperCLASS Weak Lensing Deep Field Survey
NASA Astrophysics Data System (ADS)
Harrison, Ian; Superclass Collaboration
2014-04-01
SuperCLASS is a survey of 1.75 square degrees of the Northern sky using the e-MERLIN telescope array at a frequency of 1.4GHz, aiming to reach an image noise RMS level of 4 micro-Jy/beam. The primary goal is to use the expected source density of ~1 per square arcminute (giving a total of ~10,000), ~150 milli-arcsecond resolution and presence in the survey region of 5 massive Abell clusters to measure a significant weak lensing effect in the radio band for only the second time, proving the potential of radio weak lensing as a powerful tool for mapping dark matter and constraining cosmological models. In doing this we will also learn a significant amount about the source population (star forming galaxies and radio AGN) themselves and their polarisation properties. SuperCLASS will not only require development of a pipeline for making the highly accurate determination of shapes of a large number of sources for performing standard weak lensing measurements, but will also form a test bed for new methods, such as the use of polarisation information to mitigate the biasing effect of intrinsic alignments between galaxies, which will be a key systematic for future weak lensing surveys. Whilst the challenges of the necessary shape measurement in image plane optical data are relatively well-explored, there is little experience in meeting those involved in the use of data from radio interferometers. The knowledge gained about efficient and accurate techniques for large scale radio astronomy from SuperCLASS will be invaluable in the build up to the next generation of experiments.
Robust weak-lensing mass calibration of Planck galaxy clusters
NASA Astrophysics Data System (ADS)
von der Linden, Anja; Mantz, Adam; Allen, Steven W.; Applegate, Douglas E.; Kelly, Patrick L.; Morris, R. Glenn; Wright, Adam; Allen, Mark T.; Burchat, Patricia R.; Burke, David L.; Donovan, David; Ebeling, Harald
2014-09-01
In light of the tension in cosmological constraints reported by the Planck team between their Sunyaev-Zel'dovich-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-lensing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of
DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive neutrinos
NASA Astrophysics Data System (ADS)
Carbone, Carmelita; Petkova, Margarita; Dolag, Klaus
2016-07-01
We present, for the first time in the literature, a full reconstruction of the total (linear and non-linear) ISW/Rees-Sciama effect in the presence of massive neutrinos, together with its cross-correlations with CMB-lensing and weak-lensing signals. The present analyses make use of all-sky maps extracted via ray-tracing across the gravitational potential distribution provided by the ``Dark Energy and Massive Neutrino Universe'' (DEMNUni) project, a set of large-volume, high-resolution cosmological N-body simulations, where neutrinos are treated as separate collisionless particles. We correctly recover, at 1–2% accuracy, the linear predictions from CAMB. Concerning the CMB-lensing and weak-lensing signals, we also recover, with similar accuracy, the signal predicted by Boltzmann codes, once non-linear neutrino corrections to HALOFIT are accounted for. Interestingly, in the ISW/Rees-Sciama signal, and its cross correlation with lensing, we find an excess of power with respect to the massless case, due to free streaming neutrinos, roughly at the transition scale between the linear and non-linear regimes. The excess is ~ 5 – 10% at l ~ 100 for the ISW/Rees-Sciama auto power spectrum, depending on the total neutrino mass Mν, and becomes a factor of ~ 4 for Mν = 0.3 eV, at l ~ 600, for the ISW/Rees-Sciama cross power with CMB-lensing. This effect should be taken into account for the correct estimation of the CMB temperature bispectrum in the presence of massive neutrinos.
Optimizing weak lensing mass estimates for cluster profile uncertainty
Gruen, D.; Bernstein, G. M.; Lam, T. Y.; Seitz, S.
2011-09-11
Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M_{200m }due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement M_{ap} that minimizes the mass estimate variance <(M_{ap} - M_{200m})^{2}> in the presence of all these forms of variability. Depending on halo mass and observational conditions, the resulting mass estimator improves on M_{ap} filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.
Optimizing weak lensing mass estimates for cluster profile uncertainty
Gruen, D.; Bernstein, G. M.; Lam, T. Y.; Seitz, S.
2011-09-11
Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M200m due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement Map that minimizes the mass estimate variance <(Map - M200m)2> in the presence of all these forms of variability. Dependingmore » on halo mass and observational conditions, the resulting mass estimator improves on Map filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.« less
SKA Weak Lensing II: Simulated Performance and Survey Design Considerations
NASA Astrophysics Data System (ADS)
Bonaldi, Anna; Harrison, Ian; Camera, Stefano; Brown, Michael L.
2016-08-01
We construct a pipeline for simulating weak lensing cosmology surveys with the Square Kilometre Array (SKA), taking as inputs telescope sensitivity curves; correlated source flux, size and redshift distributions; a simple ionospheric model; source redshift and ellipticity measurement errors. We then use this simulation pipeline to optimise a 2-year weak lensing survey performed with the first deployment of the SKA (SKA1). Our assessments are based on the total signal-to-noise of the recovered shear power spectra, a metric that we find to correlate very well with a standard dark energy figure of merit. We first consider the choice of frequency band, trading off increases in number counts at lower frequencies against poorer resolution; our analysis strongly prefers the higher frequency Band 2 (950-1760 MHz) channel of the SKA-MID telescope to the lower frequency Band 1 (350-1050 MHz). Best results would be obtained by allowing the centre of Band 2 to shift towards lower frequency, around 1.1 GHz. We then move on to consider survey size, finding that an area of 5,000 square degrees is optimal for most SKA1 instrumental configurations. Finally, we forecast the performance of a weak lensing survey with the second deployment of the SKA. The increased survey size (3π steradian) and sensitivity improves both the signal-to-noise and the dark energy metrics by two orders of magnitude.
Detecting particle dark matter signatures by cross-correlating γ-ray anisotropies with weak lensing
NASA Astrophysics Data System (ADS)
Camera, S.; Fornasa, M.; Fornengo, N.; Regis, M.
2016-05-01
The underlying nature of dark matter still represents one of the fundamental questions in contemporary cosmology. Although observations well agree with its description in terms of a new fundamental particle, neither direct nor indirect signatures of its particle nature have been detected so far, despite a strong experimental effort. Similarly, particle accelerators have hitherto failed at producing dark matter particles in collider physics experiments. Here, we illustrate how the cross-correlation between anisotropies in the diffuse γ-ray background and weak gravitational lensing effects represents a novel promising way in the quest of detecting particle dark matter signatures.
A comparison of cosmological models using strong gravitational lensing galaxies
Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng E-mail: jjwei@pmo.ac.cn E-mail: fmelia@email.arizona.edu E-mail: xfwu@pmo.ac.cn
2015-01-01
Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the R{sub h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out R{sub h}=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead R{sub h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the R{sub h}=ct universe eventually
A Comparison of Cosmological Models Using Strong Gravitational Lensing Galaxies
NASA Astrophysics Data System (ADS)
Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng
2015-01-01
Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the {{R}h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ˜ 99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ˜ 200 strong gravitational lenses would be sufficient to rule out {{R}h}=ct at this level of accuracy, while ˜ 300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead {{R}h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the {{R}h}=ct universe eventually emerge as
A note on a linearized approach to gravitational lensing
NASA Astrophysics Data System (ADS)
Walters, S. J.; Forbes, L. K.
2011-10-01
A recent paper by Walters, Forbes and Jarvis presented new kinematic formulae for ray tracing in gravitational lensing models. The approach can generate caustic maps, but is computationally expensive. Here, a linearized approximation to that formulation is presented. Although still complicated, the linearized equations admit a remarkable closed-form solution. As a result, linearized approximations to the caustic patterns may be generated extremely rapidly, and are found to be in good agreement with the results of full non-linear computation. The usual Einstein-angle approximation is derived as a small angle approximation to the solution presented here.
Strong Gravitational Lensing Insights into Dark Matter Physics
NASA Astrophysics Data System (ADS)
Moustakas, Leonidas A.; Keeton, C. R.; Sigurdson, K. R.; Cyr-Racine, F.; Fadely, R.; Dobler, G.; Marshall, P. J.; OMEGA Explorer Science Team
2013-01-01
The thermal or interaction properties of dark matter are expected to lead to different levels of sub-galactic structure within Milky-Way scale galaxies. Through observations of galaxies acting as strong gravitational lenses, it is possible to statistically map the details of these structures. In recent theoretical and simulation work examined through Importance Sampling approaches, we demonstrate how efficiently dark matter substructures can be statistically constrained through select ground- and space-based measurements, and map out forecasts for how well possible Hubble Space Telescope and possible future space based experiments may perform.
Statistical uncertainties and systematic errors in weak lensing mass estimates of galaxy clusters
NASA Astrophysics Data System (ADS)
Köhlinger, F.; Hoekstra, H.; Eriksen, M.
2015-11-01
Upcoming and ongoing large area weak lensing surveys will also discover large samples of galaxy clusters. Accurate and precise masses of galaxy clusters are of major importance for cosmology, for example, in establishing well-calibrated observational halo mass functions for comparison with cosmological predictions. We investigate the level of statistical uncertainties and sources of systematic errors expected for weak lensing mass estimates. Future surveys that will cover large areas on the sky, such as Euclid or LSST and to lesser extent DES, will provide the largest weak lensing cluster samples with the lowest level of statistical noise regarding ensembles of galaxy clusters. However, the expected low level of statistical uncertainties requires us to scrutinize various sources of systematic errors. In particular, we investigate the bias due to cluster member galaxies which are erroneously treated as background source galaxies due to wrongly assigned photometric redshifts. We find that this effect is significant when referring to stacks of galaxy clusters. Finally, we study the bias due to miscentring, i.e. the displacement between any observationally defined cluster centre and the true minimum of its gravitational potential. The impact of this bias might be significant with respect to the statistical uncertainties. However, complementary future missions such as eROSITA will allow us to define stringent priors on miscentring parameters which will mitigate this bias significantly.
Probing Dark Energy with Weak Lensing with LSST
NASA Astrophysics Data System (ADS)
Dell'Antonio, Ian P.; Wittman, D.; Jain, B.; Bosch, J.; Clowe, D.; Jarvis, M.; Jee, M.; Tyson, J.; Zhan, H.; LSST Weak Lensing Science Collaboration
2011-01-01
LSST will measure the shape, magnitude, and colors of more than 3x109 galaxies over 20,000 square degrees. These data will be used in several complementary ways to measure the properties of dark energy. Reconstruction of the shear power spectrum on linear and non-linear scales l /< 2000, and of the cross-correlation of shear measured in different photometric redshift bins, provides a constraint on the evolution of dark energy that is complementary to the purely geometric measures provided by Supernovae and BAO. Combining weak lensing and BAO measurements breaks degeneracies and results in tighter constraints on dark energy than each method can provide individually. Cross-correlation of the shear and galaxy number density signal within redshift shells minimizes the sensitivity to photo-z errors. Measurements of the shear bispectrum constrain dark energy and allow an independent test of theories of gravity. In addition to the galaxy shape correlations, LSST will detect 50,000 shear peaks with significance greater than 4σ, and 10,000 securely detected clusters of galaxies with line-of-sight velocity dispersions greater than 700 km/s. These allow independent constraints on the dark energy signature in the growth of structure. Tomographic study of the shear of background galaxies as a function of redshift allows the a geometric test of dark energy to be extracted from the weak lensing data. Finally, lensing signatures beyond the shear (magnification and flexion) will be accessible with LSST with unprecedented statistical power. The ability of LSST to extract the dark energy signal will depend on the accuracy with which the stellar PSF can be determined, and on the unbiased reconstruction of object shapes from long sequences of exposures in which the objects are detected at low significance. We discuss the prospects for cosmological constraints from weak lensing studies with LSST.
Catastrophic photometric redshift errors: Weak-lensing survey requirements
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N_{spec} of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N_{spec} is ~10^{6} we find that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N_{spec} to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z_{s} – z_{p} distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.
Simulating Gravity: Dark Matter and Gravitational Lensing in the Classroom
NASA Astrophysics Data System (ADS)
Ford, Jes; Stang, Jared; Anderson, Catherine
2015-12-01
Dark matter makes up most of the matter in the universe but very little of a standard introductory physics curriculum. Here we present our construction and use of a spandex sheet-style gravity simulator to qualitatively demonstrate two aspects of modern physics related to dark matter. First, we describe an activity in which students explore the dependence of orbital velocities on the central mass of a system, in a demonstration of how scientists first discovered dark matter. Second, we discuss the use of the gravity simulator as a visualization of gravitational lensing, a current astronomical technique for mapping dark matter in the sky. After providing the necessary background for the phenomena of interest, we describe our construction of the gravity simulator and detail our facilitation of these two activities. Together, these activities provide a conceptual visualization of gravitational phenomena related to indirect detection techniques for studying dark matter.
Weak lensing by galaxy troughs in DES Science Verification data
Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; M. Jarvis; Kavprzak, T.; Krause, E.; et al
2015-11-29
In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers ofmore » the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.« less
Weak Lensing by Galaxy Troughs in DES Science Verification Data
Gruen, D.
2015-09-29
We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.
Weak lensing by galaxy troughs in DES Science Verification data
NASA Astrophysics Data System (ADS)
Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; Jarvis, M.; Kacprzak, T.; Krause, E.; Mana, A.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Neto, A. Fausti; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Zhang, Y.; Zuntz, J.
2016-01-01
We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ-15σ for the smallest angular scales) for troughs with the redshift range z ∈ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.
Weak lensing by galaxy troughs in DES Science Verification data
Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; M. Jarvis; Kavprzak, T.; Krause, E.; Mana, A.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Becker, M. R.; Benoit-Levy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Neto, A. Fausti; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miguel, R.; Mohr, J. J.; Nord, B.; Orgando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Zhang, Y.; Zuntz, J.
2015-11-29
In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.
GRAVITATIONAL LENSING CORRECTIONS IN FLAT {Lambda}CDM COSMOLOGY
Kantowski, Ronald; Chen Bin; Dai Xinyu E-mail: Bin.Chen-1@ou.ed
2010-08-01
We compute the deflection angle to order (m/r {sub 0}){sup 2} and m/r{sub 0} x {Lambda}r {sup 2}{sub 0} for a light ray traveling in a flat {Lambda}CDM cosmology that encounters a completely condensed mass region. We use a Swiss cheese model for the inhomogeneities and find that the most significant correction to the Einstein angle occurs not because of the nonlinear terms but instead occurs because the condensed mass is embedded in a background cosmology. The Swiss cheese model predicts a decrease in the deflection angle of {approx}2% for weakly lensed galaxies behind the rich cluster A1689 and that the reduction can be as large as {approx}5% for similar rich clusters at z {approx} 1. Weak-lensing deflection angles caused by galaxies can likewise be reduced by as much as {approx}4%. We show that the lowest order correction in which {Lambda} appears is proportional to m/r{sub 0} x {radical}({Lambda}r{sub 0}{sup 2}) and could cause as much as a {approx}0.02% increase in the deflection angle for light that passes through a rich cluster. The lowest order nonlinear correction in the mass is proportional to m/r{sub 0}x{radical}(m/r{sub 0}) and can increase the deflection angle by {approx}0.005% for weak lensing by galaxies.
NASA Astrophysics Data System (ADS)
Massey, Richard; Hoekstra, Henk; Kitching, Thomas; Rhodes, Jason; Cropper, Mark; Amiaux, Jérôme; Harvey, David; Mellier, Yannick; Meneghetti, Massimo; Miller, Lance; Paulin-Henriksson, Stéphane; Pires, Sandrine; Scaramella, Roberto; Schrabback, Tim
2013-02-01
The first half of this paper explores the origin of systematic biases in the measurement of weak gravitational lensing. Compared to previous work, we expand the investigation of point spread function instability and fold in for the first time the effects of non-idealities in electronic imaging detectors and imperfect galaxy shape measurement algorithms. Together, these now explain the additive {A}(ℓ) and multiplicative {M}(ℓ) systematics typically reported in current lensing measurements. We find that overall performance is driven by a product of a telescope/camera's absolute performance, and our knowledge about its performance. The second half of this paper propagates any residual shear measurement biases through to their effect on cosmological parameter constraints. Fully exploiting the statistical power of Stage IV weak lensing surveys will require additive biases overline{{A}}≲ 1.8× 10^{-12} and multiplicative biases overline{{M}}≲ 4.0× 10^{-3}. These can be allocated between individual budgets in hardware, calibration data and software, using results from the first half of the paper. If instrumentation is stable and well calibrated, we find extant shear measurement software from Gravitational Lensing Accuracy Testing 2010 (GREAT10) already meet requirements on galaxies detected at signal-to-noise ratio = 40. Averaging over a population of galaxies with a realistic distribution of sizes, it also meets requirements for a 2D cosmic shear analysis from space. If used on fainter galaxies or for 3D cosmic shear tomography, existing algorithms would need calibration on simulations to avoid introducing bias at a level similar to the statistical error. Requirements on hardware and calibration data are discussed in more detail in a companion paper. Our analysis is intentionally general, but is specifically being used to drive the hardware and ground segment performance budget for the design of the European Space Agency's recently selected Euclid mission.
NASA Astrophysics Data System (ADS)
McCully, Curtis
Type Ia supernovae (SNe Ia) and gravitational lensing are important cosmological probes, but both are limited by theoretical, systematic uncertainties. One key uncertainty in distances derived using SNe Ia is our lack of understanding of the explosion mechanism for normal SNe Ia. We have studied peculiar type Iax supernovae that appear to be related to normal SNe Ia with the goal of understanding white dwarf explosions as a whole. In Chapter 2, using late-time Hubble Space Telescope (HST) observations of SN 2008A and SN 2005hk, both prototypical SNe Iax, we argue that these objects are pure deflagration explosions that do not unbind the white dwarf. In Chapter 3, we present observations of the type Iax SN 2012Z, one of the nearest ever discovered. Fortunately for us, its host galaxy, NGC 1309, was observed extensively with HST/ACS (to measure a Cepheid distance), giving us incredibly deep pre-explosion images of the site of SN 2012Z. We find that there is a source coincident with the position of the SN. We argue that the source is likely a helium star companion to the white dwarf that exploded. In galaxy-scale gravitational lenses, one of the largest systematic uncertainties arises due to other mass in the environment of the lens or along the line of sight (LOS). In Chapter 4, we develop an analytic framework to account for LOS effects. Our framework employs a hybrid approach treating a few perturbing galaxies as strong lenses, making it accurate, while treating the rest in the weak lensing approximation, making it also computationally efficient. In Chapter 5, we test our framework using simulations of realistic mass models. We suggest a method to characterize the strength of the LOS effects allowing us to systematically test when the weak lensing approximation is valid. We show that LOS effects are not equivalent to a single shear, but these non-linear effects are correctly captured by our framework. Our new methodology can be used to constrain cosmological
Weak lensing survey of galaxy clusters in the CFHTLS Deep
NASA Astrophysics Data System (ADS)
Gavazzi, R.; Soucail, G.
2007-02-01
Aims: We present a weak lensing search of galaxy clusters in the 4 deg2 of the CFHT Legacy Survey Deep. This work aims at building a mass-selected sample of clusters with well controlled selection effects. This present survey is a preliminary step toward a full implementation in the forthcoming 170 deg2 of the CFHTLS Wide survey. Methods: We use the deep i' band images observed under subarcsecond seeing conditions to perform weak lensing mass reconstructions and to identify high convergence peaks. Thanks to the availability of deep u^*g'r'i'z' exposures, sources are selected from their photometric redshifts in the weak lensing analysis. We also use lensing tomography to derive an estimate of the lens redshift. After considering the raw statistics of peaks we check whether they can be associated to a clear optical counterpart or to published X-ray selected clusters. Results: Among the 14 peaks found above a signal-to-noise detection threshold ν=3.5, nine are secure detections with estimated redshift 0.1⪉ z_l⪉0.7 and a velocity dispersion 450⪉σ_v⪉ 700 {km s}-1. This low mass range is accessible thanks to the high density of background sources. Considering the intersection between the shear-selected clusters and XMM-LSS X-ray clusters in the D1 field, we observe that the ICM gas in these low-mass clusters (T_X˜1{-}2 keV) is not hotter than the temperature inferred from shear, this trend being different for published massive clusters. A more extended weak lensing survey, with higher statistics of mass structures will be a promising way to bypass several of the problems related to standard detection methods based on the complex physics of baryons. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of
THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS
Krause, Elisabeth; Dore, Olivier; Chang, Tzu-Ching; Umetsu, Keiichi
2013-01-10
The upcoming new generation of spectroscopic galaxy redshift surveys will provide large samples of cosmic voids, large distinct, underdense structures in the universe. Combining these with future galaxy imaging surveys, we study the prospects of probing the underlying matter distribution in and around cosmic voids via the weak gravitational lensing effects of stacked voids, utilizing both shear and magnification information. The statistical precision is greatly improved by stacking a large number of voids along different lines of sight, even when taking into account the impact of inherent miscentering and projection effects. We show that Dark Energy Task Force Stage IV surveys, such as the Euclid satellite and the Large Synoptic Survey Telescope, should be able to detect the void lensing signal with sufficient precision from stacking abundant medium-sized voids, thus providing direct constraints on the matter density profile of voids independent of assumptions on galaxy bias.
Cross-correlation of Planck CMB lensing and CFHTLenS galaxy weak lensing maps
NASA Astrophysics Data System (ADS)
Liu, Jia; Hill, J. Colin
2015-09-01
We cross-correlate cosmic microwave background (CMB) lensing and galaxy weak lensing maps using the Planck 2013 and 2015 data and the 154 deg2 Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). This measurement probes large-scale structure at intermediate redshifts ≈0.9 , between the high- and low-redshift peaks of the CMB and CFHTLenS lensing kernels, respectively. Using the noise properties of these data sets and standard Planck 2015 Λ CDM cosmological parameters, we forecast a signal-to-noise ratio ≈4.6 for the cross-correlation. We find that the noise level of our actual measurement agrees well with this estimate, but the amplitude of the signal lies well below the theoretical prediction. The best-fit amplitudes of our measured cross-correlations are A2013=0.48 ±0.26 and A2015=0.44 ±0.22 , using the 2013 and 2015 Planck CMB lensing maps, respectively, where A =1 corresponds to the fiducial Planck 2015 Λ CDM prediction. Due to the low measured amplitude, the detection significance is moderate (≈2 σ ) and the data are in tension with the theoretical prediction (≈2 - 2.5 σ ) . The tension is reduced somewhat when compared to predictions using WMAP9 parameters, for which we find A2013=0.56 ±0.30 and A2015=0.52 ±0.26 . We consider various systematic effects, finding that photometric redshift uncertainties, contamination by intrinsic alignments, and effects due to the masking of galaxy clusters in the Planck 2015 CMB lensing reconstruction are able to help resolve the tension at a significant level (≈10 % each). An overall multiplicative bias in the CFHTLenS shear data could also play a role, which can be tested with existing data. We close with forecasts for measurements of the CMB lensing—galaxy lensing cross-correlation using ongoing and future weak lensing surveys, which will definitively test the significance of the tension in our results with respect to Λ CDM .
A gravitationally lensed water maser in the early Universe.
Impellizzeri, C M Violette; McKean, John P; Castangia, Paola; Roy, Alan L; Henkel, Christian; Brunthaler, Andreas; Wucknitz, Olaf
2008-12-18
Water masers are found in dense molecular clouds closely associated with supermassive black holes at the centres of active galaxies. On the basis of the understanding of the local water-maser luminosity function, it was expected that masers at intermediate and high redshifts would be extremely rare. However, galaxies at redshifts z > 2 might be quite different from those found locally, not least because of more frequent mergers and interaction events. Here we use gravitational lensing to search for masers at higher redshifts than would otherwise be possible, and find a water maser at redshift 2.64 in the dust- and gas-rich, gravitationally lensed type-1 quasar MG J0414+0534 (refs 6-13). The isotropic luminosity is 10,000 (, solar luminosity), which is twice that of the most powerful local water maser and half that of the most distant maser previously known. Using the locally determined luminosity function, the probability of finding a maser this luminous associated with any single active galaxy is 10(-6). The fact that we see such a maser in the first galaxy we observe must mean that the volume densities and luminosities of masers are higher at redshift 2.64. PMID:19092930
Are some BL Lacs artefacts of gravitational lensing?
Ostriker, J P; Vietri, M
1990-03-01
WE suggested in 1985 that a significant fraction of BL Lacertae objects, a kind of lineless quasar, seen in nearby galaxies are in fact images, gravitationally lensed and substantially amplified by stars in the nearby galaxy, of background objects, optically violent variable (OVV) quasars at redshifts z > 1 (ref. 1). This hypothesis was made on the basis of certain general similarities between BL Lacs and O Ws, but for two recently observed BL Lacs(2,3) a strong case can be made that the accompanying elliptical galaxy is a foreground object. In addition, we argue that the distribution of BL Lac redshifts is hard to understand without gravitational lensing, unless we happen to be at a very local maximum of the spatial cosmic distribution of BL Lacs. Our analysis also indicates that the galaxies whose stars are likely to act as microlenses will be found in two peaks, one nearby, with redshift 0.05-0.10, and the other near the distant quasar. PMID:18278021
Gravitational lens equation for embedded lenses; magnification and ellipticity
Chen, B.; Kantowski, R.; Dai, X.
2011-10-15
We give the lens equation for light deflections caused by point mass condensations in an otherwise spatially homogeneous and flat universe. We assume the signal from a distant source is deflected by a single condensation before it reaches the observer. We call this deflector an embedded lens because the deflecting mass is part of the mean density. The embedded lens equation differs from the conventional lens equation because the deflector mass is not simply an addition to the cosmic mean. We prescribe an iteration scheme to solve this new lens equation and use it to compare our results with standard linear lensing theory. We also compute analytic expressions for the lowest order corrections to image amplifications and distortions caused by incorporating the lensing mass into the mean. We use these results to estimate the effect of embedding on strong lensing magnifications and ellipticities and find only small effects, <1%, contrary to what we have found for time delays and for weak lensing, {approx}5%.
Model-independent characterisation of strong gravitational lenses
NASA Astrophysics Data System (ADS)
Wagner, J.; Bartelmann, M.
2016-05-01
We develop a new approach to extracting model-independent information from observations of strong gravitational lenses. The approach is based on the generic properties of images near the fold and cusp catastrophes in caustics and critical curves. The observables we used are the relative image positions, the magnification ratios and ellipticities of extended images, and time delays between images with temporally varying intensity. We show how these observables constrain derivatives and ratios of derivatives of the lensing potential near a critical curve. Based on these measured properties of the lensing potential, classes of parametric lens models can then easily be restricted to the parameter values that are compatible with the measurements, thus allowing fast scans of a large variety of models. Applying our approach to a representative galaxy (JVAS B1422+231) and a galaxy-cluster lens (MACS J1149.5+2223), we show which model-independent information can be extracted in each case and demonstrate that the parameters obtained by our approach for known parametric lens models agree well with those found by detailed model fitting.
The central image of a gravitationally lensed quasar.
Winn, Joshua N; Rusin, David; Kochanek, Christopher S
2004-02-12
A galaxy can act as a gravitational lens, producing multiple images of a background object. Theory predicts that there should be an odd number of images produced by the lens, but hitherto almost all lensed objects have two or four images. The missing 'central' images, which should be faint and appear near the centre of the lensing galaxy, have long been sought as probes of galactic cores too distant to resolve with ordinary observations. There are five candidates for central images, but in one case the third image is not necessarily the central one, and in the others the putative central images might be foreground sources. Here we report a secure identification of a central image, based on radio observations of one of the candidates. Lens models using the central image reveal that the massive black hole at the centre of the lensing galaxy has a mass of <2 x 10(8) solar masses (M(o)), and the galaxy's surface density at the location of the central image is > 20,000M(o) pc(-2), which is in agreement with expections based on observations of galaxies that are much closer to the Earth. PMID:14961114
Broad Iron Emission from Gravitationally Lensed Quasars Observed by Chandra
NASA Astrophysics Data System (ADS)
Walton, D. J.; Reynolds, M. T.; Miller, J. M.; Reis, R. C.; Stern, D.; Harrison, F. A.
2015-06-01
Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0≲ z≲ 4.5 observed with Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise ratio (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local active galactic nuclei (AGNs), we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3σ level. This implies that iron emission from the inner disk is relatively common in the population of lensed quasars, and in turn further demonstrates that, with additional observations, this population represents an opportunity to significantly extend the sample of AGN spin measurements out to high redshift.
Gravitational lensing by self-dual black holes in loop quantum gravity
NASA Astrophysics Data System (ADS)
Sahu, Satyabrata; Lochan, Kinjalk; Narasimha, D.
2015-03-01
We study gravitational lensing by a recently proposed black hole solution in loop quantum gravity. We highlight the fact that the quantum gravity corrections to the Schwarzschild metric in this model evade the "mass suppression" effects (that the usual quantum gravity corrections are susceptible to) by virtue of one of the parameters in the model being dimensionless, which is unlike any other quantum gravity motivated parameter. Gravitational lensing in the strong and weak deflection regimes is studied, and a sample consistency relation is presented which could serve as a test of this model. We discuss that, though the consistency relation for this model is qualitatively similar to what would have been in Brans-Dicke, in general it can be a good discriminator between many alternative theories. Although the observational prospects do not seem to be very optimistic even for a galactic supermassive black hole case, time delay between relativistic images for a billion solar mass black holes in other galaxies might be within reach of future relativistic lensing observations.
Properties of Galaxy Dark Matter Halos from Weak Lensing
NASA Astrophysics Data System (ADS)
Hoekstra, Henk; Yee, H. K. C.; Gladders, Michael D.
2004-05-01
We present the results of a study of weak lensing by galaxies based on 45.5 deg2 of RC-band imaging data from the Red-Sequence Cluster Survey (RCS). We define a sample of lenses with 19.5
Search for strong gravitational lensing effect in the current GRB data of BATSE
NASA Astrophysics Data System (ADS)
Li, ChunYu; Li, LiXin
2014-08-01
Because gamma-ray bursts (GRBs) trace the high- z universe, there is an appreciable probability for a GRB to be gravitational lensed by galaxies in the universe. Herein we consider the gravitational lensing effect of GRBs contributed by the dark matter halos in galaxies. Assuming that all halos have the singular isothermal sphere (SIS) mass profile in the mass range 1010 h -1 M ⊙ < M < 2×1013 h -1 M ⊙ and all GRB samples follow the intrinsic redshift distribution and luminosity function derived from the Swift LGRBs sample, we calculated the gravitational lensing probability in BATSE, Swift/BAT and Fermi/GBM GRBs, respectively. With an derived probability result in BATSE GRBs, we searched for lensed GRB pairs in the BATSE5B GRB Spectral catalog. The search did not find any convincing gravitationally lensed events. We discuss our result and future observations for GRB lensing observation.
Applegate, D. E; Mantz, A.; Allen, S. W.; von der Linden, A.; Morris, R. G.; Hilbert, S.; Kelly, P. L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; et al
2016-02-04
This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within amore » characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c200 = 3.0+4.4–1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.« less
NASA Astrophysics Data System (ADS)
Applegate, D. E.; Mantz, A.; Allen, S. W.; der Linden, A. von; Morris, R. Glenn; Hilbert, S.; Kelly, Patrick L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; Schmidt, R. W.
2016-04-01
This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within a characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9 per cent (stat) ± 9 per cent (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c_{200} = 3.0_{-1.8}^{+4.4}. Anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30-50 per cent, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.
NASA Astrophysics Data System (ADS)
Tagore, Amitpal Singh
Gravitational lens modeling of spatially resolved sources is a challenging inverse problem that can involve many observational constraints and model parameters. I present a new software package, pixsrc, that works in conjunction with the lensmodel software and builds on established pixel-based source reconstruction (PBSR) algorithms for de-lensing a source and constraining lens model parameters. Using test data, I explore statistical and systematic uncertainties associated with gridding, source regularization, interpolation errors, noise, and telescope pointing. I compare two gridding schemes in the source plane: a fully adaptive grid and an adaptive Cartesian grid. I also consider regularization schemes that minimize derivatives of the source and introduce a scheme that minimizes deviations from an analytic source profile. Careful choice of gridding and regularization can reduce "discreteness noise" in the chi2 surface that is inherent in the pixel-based methodology. With a gridded source, errors due to interpolation need to be taken into account (especially for high S/N data). Different realizations of noise and telescope pointing lead to slightly different values for lens model parameters, and the scatter between different "observations" can be comparable to or larger than the model uncertainties themselves. The same effects create scatter in the lensing magnification at the level of a few percent for a peak S/N of 10. I then apply pixsrc to observations of lensed, high-redshift galaxies. SDSS J0901+1814, is an ultraluminous infrared galaxy at z=2.26 that is also UV-bright, and it is lensed by a foreground group of galaxies at z=0.35. I constrain the lens model using maps of CO(3-2) rotational line emission and optical imaging and apply the lens model to observations of CO(1-0), H-alpha, and [NII] line emission as well. Using the de-lensed images, I calculate properties of the source, such as the gas mass fraction and dynamical mass. Finally, I examine a
Relativistic weak lensing from a fully non-linear cosmological density field
NASA Astrophysics Data System (ADS)
Thomas, D. B.; Bruni, M.; Wands, D.
2015-09-01
In this paper we examine cosmological weak lensing on non-linear scales and show that there are Newtonian and relativistic contributions and that the latter can also be extracted from standard Newtonian simulations. We use the post-Friedmann formalism, a post-Newtonian type framework for cosmology, to derive the full weak-lensing deflection angle valid on non-linear scales for any metric theory of gravity. We show that the only contributing term that is quadratic in the first order deflection is the expected Born correction and lens-lens coupling term. We use this deflection angle to analyse the vector and tensor contributions to the E- and B- mode cosmic shear power spectra. In our approach, once the gravitational theory has been specified, the metric components are related to the matter content in a well-defined manner. Specifying General Relativity, we write down a complete set of equations for a GR+ΛCDM universe for computing all of the possible lensing terms from Newtonian N-body simulations. We illustrate this with the vector potential and show that, in a GR+ΛCDM universe, its contribution to the E-mode is negligible with respect to that of the conventional Newtonian scalar potential, even on non-linear scales. Thus, under the standard assumption that Newtonian N-body simulations give a good approximation of the matter dynamics, we show that the standard ray tracing approach gives a good description for a ΛCDM cosmology.
A generalized method for measuring weak lensing magnification with weighted number counts
NASA Astrophysics Data System (ADS)
Gillis, Bryan R.; Taylor, Andy N.
2016-03-01
We present a derivation of a generalized optimally weighted estimator for the weak lensing magnification signal, including a calculation of errors. With this estimator, we present a local method for optimally estimating the local effects of magnification from weak gravitational lensing, using a comparison of number counts in an arbitrary region of space to the expected unmagnified number counts. We show that when equivalent lens and source samples are used, this estimator is simply related to the optimally weighted correlation function estimator used in past work and vice-versa, but this method has the benefits that it can calculate errors with significantly less computational time, that it can handle overlapping lens and source samples, and that it can easily be extended to mass-mapping. We present a proof-of-principle test of this method on data from the Canada-France-Hawaii Telescope Lensing Survey, showing that its calculated magnification signals agree with predictions from model fits to shear data. Finally, we investigate how magnification data can be used to supplement shear data in determining the best-fitting model mass profiles for galaxy dark matter haloes. We find that at redshifts greater than z ˜ 0.6, the inclusion of magnification can often significantly improve the constraints on the components of the mass profile which relate to galaxies' local environments relative to shear alone, and in high-redshift low- and medium-mass bins, it can have a higher signal-to-noise than the shear signal.
Probing Cosmology with Weak Lensing Peak Counts and Minkowski Functionals
NASA Astrophysics Data System (ADS)
Kratochvil, Jan Michael; Wang, S.; Lim, E. A.; Haiman, Z.; May, M.
2010-05-01
The new method of counting peaks in weak lensing (WL) maps, as a function of their height, to probe models of dark energy and to constrain cosmological parameters offers advantages over similar, more traditional statistics like cluster counts: Because peaks can be identified in two-dimensional WL maps directly, they can provide constraints which are free from potential selection effects and biases involved in identifying and determining the masses of galaxy clusters. Our pilot study (Kratochvil, Haiman, May 2009), where we investigated three cosmological models with different constant values of the dark energy equation of state parameter w=-0.8, w=-1, w=-1.2 and with a fixed normalization of the primordial power spectrum, revealed a parameter sensitivity of w which warrants a numerically very costly in-depth study when marginalization over other uncertain cosmological parameters is included. Towards that goal, we present recent results from a new, extensive simulation suite of ninety 5123-particle N-body simulations, run on New York Blue at BNL, allowing us to vary several cosmological parameters individually and yielding vastly improved statistics. Studies have shown that weak lensing maps likely contain as much information in the nonlinear regime as in the linear one. While being a powerful probe of the nonlinear regime, weak lensing peak counts capture by definition only a subset of the total available information in the convergence maps. In particular, we found that relatively low-amplitude peaks account for most of the parameter sensitivity detected, hinting to a more complicated structure. Therefore, we extend our work by probing the morphology of the maps with Minkowski functionals, in our quest to extract the most possible information from the nonlinear aspects of large-scale structure formation.
Weak-lensing statistics from the Coyote Universe
NASA Astrophysics Data System (ADS)
Eifler, Tim
2011-11-01
Analysing future weak-lensing data sets from KIDS, Dark Energy Survey (DES), LSST, Euclid and WFIRST requires precise predictions for the weak-lensing measures. In this paper, we present a weak-lensing prediction code based on the Coyote Universe emulator. The Coyote Universe emulator predicts the (non-linear) power spectrum of density fluctuations (Pδ) to high accuracy for k∈[0.002; 3.4] h Mpc-1 within the redshift interval z∈[0; 1]; outside this regime, we extend Pδ using a modified HALOFIT code. This pipeline is used to calculate various second-order cosmic shear statistics, e.g., shear power spectrum, shear-shear correlation function, ring statistics and Complete Orthogonal Set of EB-mode Integrals (COSEBIs), and we examine how the upper limit in k (and z), to which Pδ is known, impacts on these statistics. For example, we find that kmax˜ 8 h Mpc-1 causes a bias in the shear power spectrum at ℓ˜ 4000 that is comparable to the statistical errors (intrinsic shape noise and cosmic variance) of a DES-like survey, whereas for LSST-like errors kmax˜ 15 h Mpc-1 is needed to limit the bias at ℓ˜ 4000. For the most recently developed second-order shear statistics, the COSEBIs, we find that nine modes can be calculated accurately knowing Pδ to kmax= 10 h Mpc-1. The COSEBIs allow for an EB-mode decomposition using a shear-shear correlation function measured over a finite range, thereby avoiding any EB-mode mixing due to finite survey size. We perform a detailed study in a five-dimensional parameter space in order to examine whether all cosmological information is captured by these nine modes with the result that already 7-8 modes are sufficient.
Three Gravitational Lenses for the Price of One: Enhanced Strong Lensing Through Galaxy Clustering
Fassnacht, Chris D.; McKean, J.P.; Koopmans, L.V.E.; Treu, T.; Blandford, R.D.; Auger, M.W.; Jeltema, T.E.; Lubin, L.M.; Margoniner, V.E.; Wittman, D.; /UC, Davis /Kapteyn Astron. Inst., Groningen /UC, Santa Barbara /KIPAC, Menlo Park /Carnegie Inst. Observ.
2006-04-03
We report the serendipitous discovery of two strong gravitational lens candidates (ACS J160919+6532 and ACS J160910+6532) in deep images obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, each less than 40'' from the previously known gravitational lens system CLASS B1608+656. The redshifts of both lens galaxies have been measured with Keck and Gemini: one is a member of a small galaxy group at z {approx} 0.63, which also includes the lensing galaxy in the B1608+656 system, and the second is a member of a foreground group at z {approx} 0.43. By measuring the effective radii and surface brightnesses of the two lens galaxies, we infer their velocity dispersions based on the passively evolving Fundamental Plane (FP) relation. Elliptical isothermal lens mass models are able to explain their image configurations within the lens hypothesis, with a velocity dispersion compatible with that estimated from the FP for a reasonable source-redshift range. Based on the large number of massive early-type galaxies in the field and the number-density of faint blue galaxies, the presence of two additional lens systems around CLASS B1608+656 is not unlikely in hindsight. Gravitational lens galaxies are predominantly early-type galaxies, which are clustered, and the lensed quasar host galaxies are also clustered. Therefore, obtaining deep high-resolution images of the fields around known strong lens systems is an excellent method of enhancing the probability of finding additional strong gravitational lens systems.
Probing dark matter halos with strong gravitational lensing
NASA Astrophysics Data System (ADS)
Ferreras, Ignacio
2015-08-01
Strong gravitational lensing over galaxy scales allows us to explore dark matter halos and their connection with the luminous component. In this talk we present recent work on a sample extracted from the SLACS dataset, where the spectroscopic information from SDSS allows us to study the effect of a non-universal initial mass function on the stellar mass-to-light ratio. In addition, by studying galaxies where the background source probes the central part of the lens, we can derive significant constraints on the properties of the dark matter halo. This is one of the few observational methods that can be used to contrast with the standard concentration-virial mass relationships proposed by numerical simulations.
Gravitational Lensing Science with the Atacama Cosmology Telescope Polarization Survey
NASA Astrophysics Data System (ADS)
Van Englen, Alexander; Atacama Cosmology Telescope Team
2016-01-01
The gravitational lensing of the cosmic microwave background (CMB) has emerged as a new probe of precision cosmology. The Atacama Cosmology Telescope is currently undergoing its second year surveying the CMB sky at arcminute angular resolution. CMB maps obtained from this survey can be used to reconstruct the density of dark matter along the line of sight between us and the CMB last-scattering surface. These maps can be used both on their own and in cross-correlation with other probes of large scale structure to trace the history of structure growth in the Universe. In this talk I will summarize recent results from these analyses, highlighting constraints on the neutrino mass and dark energy as well as the history of star formation obtained from cross-correlation with maps of the cosmic infrared background.
SPACE WARPS - I. Crowdsourcing the discovery of gravitational lenses
NASA Astrophysics Data System (ADS)
Marshall, Philip J.; Verma, Aprajita; More, Anupreeta; Davis, Christopher P.; More, Surhud; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Wilcox, Julianne; Baeten, Elisabeth; Macmillan, Christine; Cornen, Claude; Baumer, Michael; Simpson, Edwin; Lintott, Chris J.; Miller, David; Paget, Edward; Simpson, Robert; Smith, Arfon M.; Küng, Rafael; Saha, Prasenjit; Collett, Thomas E.
2016-01-01
We describe SPACE WARPS, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowdsourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web-based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low-probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 deg2 of Canada-France-Hawaii Telescope Legacy Survey imaging into some 430 000 overlapping 82 by 82 arcsec tiles and displaying them on the site, we were joined by around 37 000 volunteers who contributed 11 million image classifications over the course of eight months. This stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in stage 2 to yield a sample that we expect to be over 90 per cent complete and 30 per cent pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SPACE WARPS system to the wide field survey era, based on our projection that searches of 105 images could be performed by a crowd of 105 volunteers in 6 d.
Measuring angular diameter distances of strong gravitational lenses
NASA Astrophysics Data System (ADS)
Jee, I.; Komatsu, E.; Suyu, S. H.
2015-11-01
The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304) and RXJ1131-1231 (zL=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DA per object. This improves to 13% when we measure σ2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2 with 5% precision.
The Distance Duality Relation from Strong Gravitational Lensing
NASA Astrophysics Data System (ADS)
Liao, Kai; Li, Zhengxiang; Cao, Shuo; Biesiada, Marek; Zheng, Xiaogang; Zhu, Zong-Hong
2016-05-01
Under very general assumptions of the metric theory of spacetime, photons traveling along null geodesics and photon number conservation, two observable concepts of cosmic distance, i.e., the angular diameter and the luminosity distances are related to each other by the so-called distance duality relation (DDR) {D}L={D}A{(1+z)}2. Observational validation of this relation is quite important because any evidence of its violation could be a signal of new physics. In this paper we introduce a new method to test the DDR based on strong gravitational lensing systems and type Ia supernovae (SNe Ia) under a flat universe. The method itself is worth attention because unlike previously proposed techniques, it does not depend on all other prior assumptions concerning the details of cosmological model. We tested it using a new compilation of strong lensing (SL) systems and JLA compilation of SNe Ia and found no evidence of DDR violation. For completeness, we also combined it with previous cluster data and showed its power on constraining the DDR. It could become a promising new probe in the future in light of forthcoming massive SL surveys and because of expected advances in galaxy cluster modeling.
WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY
Shan Huanyuan; Tao Charling; Kneib, Jean-Paul; Jauzac, Mathilde; Limousin, Marceau; Fan Zuhui; Massey, Richard; Rhodes, Jason; Thanjavur, Karun; McCracken, Henry J.
2012-03-20
We present the first weak gravitational lensing analysis of the completed Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We study the 64 deg{sup 2} W1 field, the largest of the CFHTLS-Wide survey fields, and present the largest contiguous weak lensing convergence 'mass map' yet made. 2.66 million galaxy shapes are measured, using the Kaiser Squires and Broadhurst Method (KSB) pipeline verified against high-resolution Hubble Space Telescope imaging that covers part of the CFHTLS. Our i'-band measurements are also consistent with an analysis of independent r'-band imaging. The reconstructed lensing convergence map contains 301 peaks with signal-to-noise ratio {nu} > 3.5, consistent with predictions of a {Lambda}CDM model. Of these peaks, 126 lie within 3.'0 of a brightest central galaxy identified from multicolor optical imaging in an independent, red sequence survey. We also identify seven counterparts for massive clusters previously seen in X-ray emission within 6 deg{sup 2} XMM-LSS survey. With photometric redshift estimates for the source galaxies, we use a tomographic lensing method to fit the redshift and mass of each convergence peak. Matching these to the optical observations, we confirm 85 groups/clusters with {chi}{sup 2}{sub reduced} < 3.0, at a mean redshift (z{sub c} ) = 0.36 and velocity dispersion ({sigma}{sub c}) = 658.8 km s{sup -1}. Future surveys, such as DES, LSST, KDUST, and EUCLID, will be able to apply these techniques to map clusters in much larger volumes and thus tightly constrain cosmological models.
Shirasaki, Masato; Yoshida, Naoki
2014-05-01
The measurement of cosmic shear using weak gravitational lensing is a challenging task that involves a number of complicated procedures. We study in detail the systematic errors in the measurement of weak-lensing Minkowski Functionals (MFs). Specifically, we focus on systematics associated with galaxy shape measurements, photometric redshift errors, and shear calibration correction. We first generate mock weak-lensing catalogs that directly incorporate the actual observational characteristics of the Canada-France-Hawaii Lensing Survey (CFHTLenS). We then perform a Fisher analysis using the large set of mock catalogs for various cosmological models. We find that the statistical error associated with the observational effects degrades the cosmological parameter constraints by a factor of a few. The Subaru Hyper Suprime-Cam (HSC) survey with a sky coverage of ∼1400 deg{sup 2} will constrain the dark energy equation of the state parameter with an error of Δw {sub 0} ∼ 0.25 by the lensing MFs alone, but biases induced by the systematics can be comparable to the 1σ error. We conclude that the lensing MFs are powerful statistics beyond the two-point statistics only if well-calibrated measurement of both the redshifts and the shapes of source galaxies is performed. Finally, we analyze the CFHTLenS data to explore the ability of the MFs to break degeneracies between a few cosmological parameters. Using a combined analysis of the MFs and the shear correlation function, we derive the matter density Ω{sub m0}=0.256±{sub 0.046}{sup 0.054}.
OBSERVING GRAVITATIONAL LENSING EFFECTS BY Sgr A* WITH GRAVITY
Bozza, V.; Mancini, L. E-mail: mancini@mpia-hd.mpg.de
2012-07-01
The massive black hole Sgr A* at the Galactic center is surrounded by a cluster of stars orbiting around it. Light from these stars is bent by the gravitational field of the black hole, giving rise to several phenomena: astrometric displacement of the primary image, the creation of a secondary image that may shift the centroid of Sgr A*, and magnification effects on both images. The soon-to-be second-generation Very Large Telescope Interferometer instrument GRAVITY will perform observations in the near-infrared of the Galactic center at unprecedented resolution, opening the possibility of observing such effects. Here we investigate the observability limits for GRAVITY of gravitational lensing effects on the S-stars in the parameter space 1[D{sub LS}, {gamma}, K], where D{sub LS} is the distance between the lens and the source, {gamma} is the alignment angle of the source, and K is the source's apparent magnitude in the K band. The easiest effect to observe in future years is the astrometric displacement of primary images. In particular, the shift of the star S17 from its Keplerian orbit will be detected as soon as GRAVITY becomes operative. For exceptional configurations, it will be possible to detect effects related to the spin of the black hole or post-Newtonian orders in the deflection.
Observing Gravitational Lensing Effects by Sgr A* with GRAVITY
NASA Astrophysics Data System (ADS)
Bozza, V.; Mancini, L.
2012-07-01
The massive black hole Sgr A* at the Galactic center is surrounded by a cluster of stars orbiting around it. Light from these stars is bent by the gravitational field of the black hole, giving rise to several phenomena: astrometric displacement of the primary image, the creation of a secondary image that may shift the centroid of Sgr A*, and magnification effects on both images. The soon-to-be second-generation Very Large Telescope Interferometer instrument GRAVITY will perform observations in the near-infrared of the Galactic center at unprecedented resolution, opening the possibility of observing such effects. Here we investigate the observability limits for GRAVITY of gravitational lensing effects on the S-stars in the parameter space 1[D LS, γ, K], where D LS is the distance between the lens and the source, γ is the alignment angle of the source, and K is the source's apparent magnitude in the K band. The easiest effect to observe in future years is the astrometric displacement of primary images. In particular, the shift of the star S17 from its Keplerian orbit will be detected as soon as GRAVITY becomes operative. For exceptional configurations, it will be possible to detect effects related to the spin of the black hole or post-Newtonian orders in the deflection.
Gravitational lensing: a unique probe of dark matter and dark energy.
Ellis, Richard S
2010-03-13
I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe-the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects. PMID:20123743
Gravitational lensing: a unique probe of dark matter and dark energy
Ellis, Richard S.
2010-01-01
I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe—the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects. PMID:20123743
WEAK-LENSING PEAK FINDING: ESTIMATORS, FILTERS, AND BIASES
Schmidt, Fabian
2011-07-10
Large catalogs of shear-selected peaks have recently become a reality. In order to properly interpret the abundance and properties of these peaks, it is necessary to take into account the effects of the clustering of source galaxies, among themselves and with the lens. In addition, the preferred selection of magnified galaxies in a flux- and size-limited sample leads to fluctuations in the apparent source density that correlate with the lensing field. In this paper, we investigate these issues for two different choices of shear estimators that are commonly in use today: globally normalized and locally normalized estimators. While in principle equivalent, in practice these estimators respond differently to systematic effects such as magnification and cluster member dilution. Furthermore, we find that the answer to the question of which estimator is statistically superior depends on the specific shape of the filter employed for peak finding; suboptimal choices of the estimator+filter combination can result in a suppression of the number of high peaks by orders of magnitude. Magnification and size bias generally act to increase the signal-to-noise {nu} of shear peaks; for high peaks the boost can be as large as {Delta}{nu} {approx} 1-2. Due to the steepness of the peak abundance function, these boosts can result in a significant increase in the observed abundance of shear peaks. A companion paper investigates these same issues within the context of stacked weak-lensing mass estimates.
NASA Astrophysics Data System (ADS)
Lieber, Michael; Kaplan, Michael; Sholl, Michael; Bernstein, Gary
2010-07-01
Many astrophysicists consider the mystery of accelerated expansion of the universe by a field called dark energy as the greatest challenge to solve in cosmology. Gravitational weak lensing has been identfied as one of the best methods to provide constraints on dark energy model parameters. Weak lensing introduces image shear which can be measured statistically from a large sample of galaxies by determining the ellipticity parameters. Several papers have suggested that a goal in the ability to measure shape biases should be <0.1% - this goal will be reviewed in terms of the observatory "transfer function" with comments interspersed regarding allocation inconsistencies. Time-varying effects introduced by thermoelastic deformations and vibration add bias and noise to the galaxy shape measurements. This is compounded by the wide field-of-view required for the weak lensing science which leads to a spatially varying point spead function (PSF). To fully understand these effects, a detailed integrated model (IM) was constructed which includes a coupled scene/ structure/ optics/ disturbance model. This IM was applied to the Joint Dark Energy Mission (JDEM) Omega design concept. Results indicate that previous models of vibration disturbance effects have been too simplified and the allocation for vibration needs to be re-evaluated. Furthermore, because of the complicated processing required to accurately extract shape parameters, it is argued that an IM is needed for maximizing science return by iterating the telescope/ instrument design against mission cost constraints, and processing e¤ectiveness of shape extraction algorithms, instrument calibration techniques and measurement desensitization of observatory effects.
NASA Astrophysics Data System (ADS)
Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; Merten, Julian; Donahue, Megan; Postman, Marc
2016-04-01
We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19≲ z≲ 0.69 selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10″–16‧). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200–2000 kpc h‑1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of c{| }z=0.34=3.95+/- 0.35 at M200c ≃ 14 × 1014 M⊙ and an intrinsic scatter of σ ({ln}{c}200{{c}})=0.13+/- 0.06, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h‑1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro–Frenk–White (NFW), Einasto, and DARKexp models
The impact of correlated noise on galaxy shape estimation for weak lensing
NASA Astrophysics Data System (ADS)
Gurvich, Alex; Mandelbaum, Rachel
2016-04-01
The robust estimation of the tiny distortions (shears) of galaxy shapes caused by weak gravitational lensing in the presence of much larger shape distortions due to the point spread function (PSF) has been widely investigated. One major problem is that most galaxy shape measurement methods are subject to bias due to pixel noise in the images (`noise bias'). Noise bias is usually characterized using uncorrelated noise fields; however, real images typically have low-level noise correlations due to galaxies below the detection threshold, and some types of image processing can induce further noise correlations. We investigate the effective detection significance and its impact on noise bias in the presence of correlated noise for one method of galaxy shape estimation. For a fixed noise variance, the biases in galaxy shape estimates can differ substantially for uncorrelated versus correlated noise. However, use of an estimate of detection significance that accounts for the noise correlations can almost entirely remove these differences, leading to consistent values of noise bias as a function of detection significance for correlated and uncorrelated noise. We confirm the robustness of this finding to properties of the galaxy, the PSF, and the noise field, and quantify the impact of anisotropy in the noise correlations. Our results highlight the importance of understanding the pixel noise model and its impact on detection significances when correcting for noise bias on weak lensing.
Analytical Kerr-Sen dilaton-axion black hole lensing in the weak deflection limit
Gyulchev, Galin N.; Yazadjiev, Stoytcho S.
2010-01-15
We investigate analytical gravitational lensing by charged, stationary, axially symmetric Kerr-Sen dilaton-axion black holes in the weak-deflection limit. Approximate solutions to the lightlike equations of motion are present up to and including third-order terms in M/b, a/b, and r{sub {alpha}/}b, where M is the black hole mass, a is the angular momentum, r{sub {alpha}=}Q{sup 2}/M, Q being the charge and b is the impact parameter of the light ray. We compute the positions of the two weak field images, the corresponding signed and absolute magnifications up to post-Newtonian order. It is shown that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly with the increase of the charge. The pointlike caustics drift away from the optical axis and do not depend on the charge. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole.
Gravitational lensing in the supernova legacy survey (SNLS)
NASA Astrophysics Data System (ADS)
Kronborg, T.; Hardin, D.; Guy, J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Jönsson, J.; Pain, R.; Pedersen, K.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Sullivan, M.; Palanque-Delabrouille, N.; Ruhlmann-Kleider, V.
2010-05-01
Aims: The observed brightness of type Ia supernovae is affected by gravitational lensing caused by the mass distribution along the line of sight, which introduces an additional dispersion into the Hubble diagram. We look for evidence of lensing in the SuperNova Legacy Survey 3-year data set. Methods: We investigate the correlation between the residuals from the Hubble diagram and the gravitational magnification based on a modeling of the mass distribution of foreground galaxies. A deep photometric catalog, photometric redshifts, and well established mass luminosity relations are used. Results: We find evidence of a lensing signal with a 2.3σ significance. The current result is limited by the number of SNe, their redshift distribution, and the other sources of scatter in the Hubble diagram. Separating the galaxy population into a red and a blue sample has a positive impact on the significance of the signal detection. On the other hand, increasing the depth of the galaxy catalog, the precision of photometric redshifts or reducing the scatter in the mass luminosity relations have little effect. We show that for the full SuperNova Legacy Survey sample (~400 spectroscopically confirmed type Ia SNe and ~200 photometrically identified type Ia SNe), there is an 80% probability of detecting the lensing signal with a 3σ significance. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on
Weber's gravitational force as static weak field approximation
NASA Astrophysics Data System (ADS)
Tiandho, Yuant
2016-02-01
Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.
Interpolation of PSF based on compressive sampling and its application in weak lensing survey
NASA Astrophysics Data System (ADS)
Suksmono, Andriyan B.
2014-09-01
We propose a new point spread function (PSF) interpolation method based on compressive sampling (CS). Complex-Valued fractional Brownion motion (CV-fBm) field is used as a model of the PSF spatial distribution. The 1/f property of the fBm implies that it is a compressible field; therefore, CS will be able to fully reconstruct the field based on a small number of random samples. Performance evaluation shows the advantages of the proposed method over boxcar filtering, polynomial fitting, inverse distance weighting, and thin-plate methods. Potential applicability of the proposed method in weak gravitational lensing survey, particularly for interpolating fast varying PSF that represent distortion by turbulent field is also discussed.
NASA Astrophysics Data System (ADS)
Konrad, S.; Majer, C. L.; Meyer, S.; Sarli, E.; Bartelmann, M.
2013-05-01
We present a method of estimating the lensing potential from massive galaxy clusters for given observational X-ray data. The concepts developed and applied in this work can be easily combined with other techniques to infer the lensing potential, e.g. weak gravitational lensing or galaxy kinematics, to obtain an overall best-fit model for the lensing potential. After elaborating on the physical details and assumptions the method is based on, we explain how the numerical algorithm itself is implemented with a Richardson-Lucy algorithm as a central part. Our reconstruction method is tested on simulated galaxy clusters with a spherically symmetric NFW density profile filled with gas in hydrostatic equilibrium. We describe in detail how these simulated observational data sets are created and how they need to be fed into our algorithm. We tested the robustness of the algorithm against small parameter changes and estimate the quality of the reconstructed lensing potentials. As it turns out, we achieve a very high degree of accuracy in reconstructing the lensing potential. The statistical errors remain below 2.0%, whereas the systematical error does not exceed 1.0%.
Correcting the z ˜ 8 Galaxy Luminosity Function for Gravitational Lensing Magnification Bias
NASA Astrophysics Data System (ADS)
Mason, Charlotte A.; Treu, Tommaso; Schmidt, Kasper B.; Collett, Thomas E.; Trenti, Michele; Marshall, Philip J.; Barone-Nugent, Robert; Bradley, Larry D.; Stiavelli, Massimo; Wyithe, Stuart
2015-05-01
We present a Bayesian framework to account for the magnification bias from both strong and weak gravitational lensing in estimates of high-redshift galaxy luminosity functions (LFs). We illustrate our method by estimating the z ˜ 8 UV LF using a sample of 97 Y-band dropouts (Lyman break galaxies) found in the Brightest of Reionizing Galaxies (BoRG) survey and from the literature. We find the LF is well described by a Schechter function with characteristic magnitude of {{M}\\star }=-19.85-0.35+0.30, faint-end slope of α =-1.72-0.29+0.30, and number density of {{log }10}{{{\\Psi }}\\star }(Mp{{c}-3})=-3.00-0.31+0.23. These parameters are consistent within the uncertainties with those inferred from the same sample without accounting for the magnification bias, demonstrating that the effect is small for current surveys at z ˜ 8, and cannot account for the apparent overdensity of bright galaxies compared to a Schechter function found recently by Bowler et al. and Finkelstein et al. We estimate that the probability of finding a strongly lensed z ˜ 8 source in our sample is in the range ˜3-15% depending on limiting magnitude. We identify one strongly lensed candidate and three cases of intermediate lensing in BoRG (estimated magnification μ > 1.4) in addition to the previously known candidate group-scale strong lens. Using a range of theoretical LFs we conclude that magnification bias will dominate wide field surveys—such as those planned for the Euclid and WFIRST missions—especially at z > 10. Magnification bias will need to be accounted for in order to derive accurate estimates of high-redshift LFs in these surveys and to distinguish between galaxy formation models.
Gravitational lensing effects of a Reissner-Nordstrom-de Sitter black hole
NASA Astrophysics Data System (ADS)
Zhao, Fan; Tang, Jianfeng; He, Feng
2016-06-01
We investigate the influence of cosmological constant Λ on gravitational lensing. By the method of an elliptic integral, we give out the solution to the null geodesic equation in the Reissner-Nordstrom-de Sitter spacetime. The deflection angle of light is obtained by studying the intrinsic geometry of the spatial equatorial plane in the Reissner-Nordstrom-de Sitter spacetime. By applying the expansion of elliptic integrals, we find the deflection angle in the weak field limit and in the strong field limit, respectively. We find the angular position and magnification of images and discuss its behavior under changed Λ . At last, we give out the higher-order term in the strong field limit.
NASA Astrophysics Data System (ADS)
Hojjati, Alireza; McCarthy, Ian G.; Harnois-Deraps, Joachim; Ma, Yin-Zhe; Van Waerbeke, Ludovic; Hinshaw, Gary; Le Brun, Amandine M. C.
2015-10-01
We use the cosmo-OWLS suite of cosmological hydrodynamical simulations, which includes different galactic feedback models, to predict the cross-correlation signal between weak gravitational lensing and the thermal Sunyaev-Zeldovich (tSZ) y-parameter. The predictions are compared to the recent detection reported by van Waerbeke and collaborators. The simulations reproduce the weak lensing-tSZ cross-correlation, ξyκ(θ), well. The uncertainty arising from different possible feedback models appears to be important on small scales only (0θ lesssim 1 arcmin), while the amplitude of the correlation on all scales is sensitive to cosmological parameters that control the growth rate of structure (such as σ8, Ωm and Ωb). This study confirms our previous claim (in Ma et al.) that a significant proportion of the signal originates from the diffuse gas component in low-mass (Mhalo lesssim 1014 Msolar) clusters as well as from the region beyond the virial radius. We estimate that approximately 20% of the detected signal comes from low-mass clusters, which corresponds to about 30% of the baryon density of the Universe. The simulations also suggest that more than half of the baryons in the Universe are in the form of diffuse gas outside halos (gtrsim 5 times the virial radius) which is not hot or dense enough to produce a significant tSZ signal or be observed by X-ray experiments. Finally, we show that future high-resolution tSZ-lensing cross-correlation observations will serve as a powerful tool for discriminating between different galactic feedback models.
Cosmic superstring gravitational lensing phenomena: Predictions for networks of (p,q) strings
Shlaer, Benjamin; Wyman, Mark
2005-12-15
The unique, conical space-time created by cosmic strings brings about distinctive gravitational lensing phenomena. The variety of these distinctive phenomena is increased when the strings have nontrivial mutual interactions. In particular, when strings bind and create junctions, rather than intercommute, the resulting configurations can lead to novel gravitational lensing patterns. In this brief note, we use exact solutions to characterize these phenomena, the detection of which would be strong evidence for the existence of complex cosmic string networks of the kind predicted by string theory-motivated cosmic string models. We also correct some common errors in the lensing phenomenology of straight cosmic strings.
Gravitational anomaly and Hawking radiation near a weakly isolated horizon
Wu Xiaoning; Huang Chaoguang; Sun Jiarui
2008-06-15
Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.
Gravitational anomaly and Hawking radiation near a weakly isolated horizon
NASA Astrophysics Data System (ADS)
Wu, Xiaoning; Huang, Chao-Guang; Sun, Jia-Rui
2008-06-01
Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.
Large-scale correlations between QSOs and galaxies - an effect caused by gravitational lensing?
NASA Astrophysics Data System (ADS)
Bartelmann, M.; Schneider, P.
1993-02-01
Large-scale correlations between Lick galaxies and radio-loud, distant QSOs have been observed and interpreted in terms of gravitational lensing (Fugmann 1990). We argue that, if gravitational lensing is indeed responsible for such correlations, this is a most remarkable observation, and try to understand whether lensing may account for it. To do so, we use the lensing properties of a model for dark matter inhomogeneities on large scales, based on the adhesion approximation, to construct artificial QSO samples. (Model) galaxy counts in the vicinity of the (synthetic) sample QSOs are then subjected to rank-order statistical analyses. We find that statistically significant large-scale correlations between QSOs and galaxies can indeed be caused by gravitational lensing, but the amplitude of this effect depends sensitively on the assumed intrinsic luminosity function of the QSOs, the flux threshold of the (synthetic) sample, and the source redshift. We conclude that gravitational lensing can indeed account for QSO-galaxy associations on angular scales as large as some ten arc minutes. We also find that this effect can only be understood in terms of lensing by dark matter inhomogeneities.
Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas
NASA Astrophysics Data System (ADS)
Zhu, Ding Yu; Shen, Jian Qi
2016-03-01
The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.
Weak lensing analysis of the galaxy cluster RXJ1117.4+0743 ([VMF98]097)
NASA Astrophysics Data System (ADS)
Gonzalez, E. J.; Domínguez, M.; García Lambas, D.; Moreschi, O.; Foex, G.; Nilo Castellon, J. L.; Alonso, M. V.
We present a weak lensing analysis of the galaxy cluster RXJ1117.4+0743 ([VMF98]097) at ; based on data collected with Gemini South Telescope. The cluster was formerly analyzed by Carrasco et al. (2007; ApJ; 664; 777); and they found a large discrepancy between the mass estimated from X-ray observations and lensing estimates; exceeding the lensing mass by more than a factor three. Our result for the mass from the weak lensing analysis is lower than the mass obtained by Carrasco et al. and closer to the X-ray mass.
Weak Lensing : Ground vs. Space in the Cosmos Field
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi M.; Massey, R. J.; Ellis, R. S.; Rhodes, J.
2006-12-01
Weak lensing statistics are best for large numbers wide surveys with greater number of galaxies and deep surveys with a higher number density of galaxies. Although space-based surveys are unparalleled in their depth, ground-based surveys are the more cost-effective way to survey wide regions of the sky. We assess the relative merits of the two observing platforms, by using premier, multi-band, ground-based Subaru SuprimeCam data and space-based Hubble ACS data, in the 2 sq. degree COSMOS field in three ways. First, we compare shear measurements of individual galaxies and identify the relative calibration of the two datasets in terms of the largest subset in magnitude and size that is consistent. Second, we compare spaceand ground-based mass maps to quantify the relative completeness and contamination of the resulting cluster catalogs. We find that more clusters with XMM catalog counterparts are detected from space than ground and some ground-based clusters are possibly spurious detections. Third, we perform a detailed comparison of the precision with which it is possible to reconstruct the mass and size of four clusters at various redshifts identified from both ground and space. We find that the noise is much lower from space in all three investigations, but find no evidence for systematic overestimation or underestimation of the individual cluster properties by either survey.
An Instrumentation Systematic for Weak Lensing from WFIRST
NASA Astrophysics Data System (ADS)
Jayaraman, Arun; Shapiro, Charles; Mandelbaum, Rachel; Hirata, Christopher M.; Kruk, Jeffrey W.; Rhodes, Jason
2016-06-01
The Wide Field Infra-Red Space Telescope (WFIRST), which is planned to be launched in 2025, will image the Universe in the near-Infrared bands and help measure shapes of ~400M galaxies according to the current survey design. Given such a big dataset, in order to be able to make precise weak lensing measurements and thereby understand the dark sectors of the Universe, it is necessary to not be biased by systematic effects. An understanding of systematic effects that arise from both astrophysical situations and from the instrumentation becomes crucial. The detectors used in WFIRST are made of HgCdTe and have CMOS based readout electronics, thus suffering from systematic effects that are different from that of CCDs. In this talk, I will focus on one such effect called the 'Interpixel Capacitance' (IPC) effect, which is a form of electrical crosstalk between neighboring pixels. I will show some results on how the shape of observed PSF, which will include the effect of IPC, varies as a function of the IPC parameters. I will also show how the shear measurement bias is affected if the IPC in the individual exposures is not perfectly corrected for, due to the misestimation of the IPC parameters. The requirements on PSF shapes and measurement biases can be translated into requirements on the IPC parameters and thus be used to specify the desired level of detector performance.
Weak Gravitational Wave and Casimir Energy of a Scalar Field
NASA Astrophysics Data System (ADS)
Tavakoli, F.; Pirmoradian, R.; Parsabod, I.
2016-09-01
In this paper, we calculate the effect of a weak gravitational field on the Casimir force between two ideal plates subjected to a massless minimally coupled field. It is the aim of this work to study the Casimir energy under a weak perturbation of gravity. Moreover, the fluctuations of the stress-energy tensor for a scalar field in de Sitter space-time are computed as well.
UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS
Serjeant, S.
2014-09-20
The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function. Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.
Mass-concentration relation and weak lensing peak counts
NASA Astrophysics Data System (ADS)
Cardone, V. F.; Camera, S.; Sereno, M.; Covone, G.; Maoli, R.; Scaramella, R.
2015-02-01
Context. The statistics of peaks in weak lensing convergence maps is a promising tool for investigating both the properties of dark matter haloes and constraining the cosmological parameters. Aims: We study how the number of detectable peaks and its scaling with redshift depend upon the cluster's dark matter halo profiles and use peak statistics to constrain the parameters of the mass-concentration (MC) relation. We investigate which constraints the Euclid mission can set on the MC coefficients taking degeneracies with the cosmological parameters into account, too. Methods: To this end, we first estimated the number of peaks and its redshift distribution for different MC relations and found that the steeper the mass dependence and the greater the normalisation, the larger the number of detectable clusters, with the total number of peaks changing up to 40% depending on the MC relation. We then performed a Fisher matrix forecast of the errors on the MC relation parameters, as well as on cosmological parameters. Results: We find that peak number counts detected by Euclid can determine the normalization Av, the mass Bv, redshift Cv slopes, and intrinsic scatter σv of the MC relation to an unprecedented accuracy, which is σ(Av) /Av = 1%, σ(Bv) /Bv = 4%, σ(Cv) /Cv = 9%, and σ(σv) /σv = 1% if all cosmological parameters are assumed to be known. If we relax this severe assumption, constraints are degraded, but remarkably good results can be restored by setting only some of the parameters or combining peak counts with Planck data. This precision can give insight into competing scenarios of structure formation and evolution and into the role of baryons in cluster assembling. Alternatively, for a fixed MC relation, future peak counts can perform as well as current BAO and SNeIa when combined with Planck.
ON THE ACCURACY OF WEAK-LENSING CLUSTER MASS RECONSTRUCTIONS
Becker, Matthew R.; Kravtsov, Andrey V.
2011-10-10
We study the bias and scatter in mass measurements of galaxy clusters resulting from fitting a spherically symmetric Navarro, Frenk, and White model to the reduced tangential shear profile measured in weak-lensing (WL) observations. The reduced shear profiles are generated for {approx}10{sup 4} cluster-sized halos formed in a {Lambda}CDM cosmological N-body simulation of a 1 h{sup -1} Gpc box. In agreement with previous studies, we find that the scatter in the WL masses derived using this fitting method has irreducible contributions from the triaxial shapes of cluster-sized halos and uncorrelated large-scale matter projections along the line of sight. Additionally, we find that correlated large-scale structure within several virial radii of clusters contributes a smaller, but nevertheless significant, amount to the scatter. The intrinsic scatter due to these physical sources is {approx}20% for massive clusters and can be as high as {approx}30% for group-sized systems. For current, ground-based observations, however, the total scatter should be dominated by shape noise from the background galaxies used to measure the shear. Importantly, we find that WL mass measurements can have a small, {approx}5%-10%, but non-negligible amount of bias. Given that WL measurements of cluster masses are a powerful way to calibrate cluster mass-observable relations for precision cosmological constraints, we strongly emphasize that a robust calibration of the bias requires detailed simulations that include more observational effects than we consider here. Such a calibration exercise needs to be carried out for each specific WL mass estimation method, as the details of the method determine in part the expected scatter and bias. We present an iterative method for estimating mass M{sub 500c} that can eliminate the bias for analyses of ground-based data.
Impact of Atmospheric Chromatic Effects on Weak Lensing Measurements
NASA Astrophysics Data System (ADS)
Meyers, Joshua E.; Burchat, Patricia R.
2015-07-01
Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma.
3D weak lensing: Modified theories of gravity
NASA Astrophysics Data System (ADS)
Pratten, Geraint; Munshi, Dipak; Valageas, Patrick; Brax, Philippe
2016-05-01
Weak lensing (WL) promises to be a particularly sensitive probe of both the growth of large-scale structure as well as the fundamental relation between matter density perturbations and metric perturbations, thus providing a powerful tool with which we may constrain modified theories of gravity (MG) on cosmological scales. Future deep, wide-field WL surveys will provide an unprecedented opportunity to constrain deviations from General Relativity. Employing a 3D analysis based on the spherical Fourier-Bessel expansion, we investigate the extent to which MG theories will be constrained by a typical 3D WL survey configuration including noise from the intrinsic ellipticity distribution σɛ of source galaxies. Here, we focus on two classes of screened theories of gravity: (i) f (R ) chameleon models and (ii) environmentally dependent dilaton models. We use one-loop perturbation theory combined with halo models in order to accurately model the evolution of the matter power spectrum with redshift in these theories. Using a χ2 analysis, we show that for an all-sky spectroscopic survey, the parameter fR0 can be constrained in the range fR0<5 ×10-6(9 ×10-6) for n =1 (2 ) with a 3 σ confidence level. This can be achieved by using relatively low-order angular harmonics ℓ<100 . Higher-order harmonics ℓ>100 could provide tighter constraints but are subject to nonlinear effects, such as baryonic feedback, that must be accounted for. We also employ a Principal Component Analysis in order to study the parameter degeneracies in the MG parameters. The confusion from intrinsic ellipticity correlation and modification of the matter power spectrum at a small scale due to feedback mechanisms is briefly discussed.
Seeing in the Dark: Weak Lensing from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Huff, Eric Michael
modified "photometric fundamental plane" replaces velocity dispersions with photometric galaxy properties, thus obviating the need for spectroscopic data. We present the first detection of magnification using this method by applying it to photometric catalogs from the Sloan Digital Sky Survey. This analysis shows that the derived magnification signal is comparable to that available from conventional methods using gravitational shear. We suppress the dominant sources of systematic error and discuss modest improvements that may allow this method to equal or even surpass the signal-to-noise achievable with shear. Moreover, some of the dominant sources of systematic error are substantially different from those of shear-based techniques. The second outlines an idea for using the optical Tully-Fisher relation to dramatically improve the signal-to-noise and systematic error control for shear measurements. The expected error properties and potential advantages of such a measurement are proposed, and a pilot study is suggested in order to test the viability of Tully-Fisher weak lensing in the context of the forthcoming generation of large spectroscopic surveys.
NASA Astrophysics Data System (ADS)
Petri, Andrea; Liu, Jia; Haiman, Zoltán; May, Morgan; Hui, Lam; Kratochvil, Jan M.
2015-05-01
Weak gravitational lensing is a powerful cosmological probe, with non-Gaussian features potentially containing the majority of the information. We examine constraints on the parameter triplet (Ωm,w ,σ8) from non-Gaussian features of the weak lensing convergence field, including a set of moments (up to fourth order) and Minkowski functionals, using publicly available data from the 154 deg2 CFHTLenS survey. We utilize a suite of ray-tracing N-body simulations spanning 91 points in (Ωm,w ,σ8) parameter space, replicating the galaxy sky positions, redshifts and shape noise in the CFHTLenS catalogs. We then build an emulator that interpolates the simulated descriptors as a function of (Ωm,w ,σ8), and use it to compute the likelihood function and parameter constraints. We employ a principal component analysis to reduce dimensionality and to help stabilize the constraints with respect to the number of bins used to construct each statistic. Using the full set of statistics, we find Σ8≡σ8(Ωm/0.27 )0.55=0.75 ±0.04 (68% C.L.), in agreement with previous values. We find that constraints on the (Ωm,σ8) doublet from the Minkowski functionals suffer a strong bias. However, high-order moments break the (Ωm,σ8) degeneracy and provide a tight constraint on these parameters with no apparent bias. The main contribution comes from quartic moments of derivatives.
NASA Astrophysics Data System (ADS)
Liu, Xiangkun; Li, Baojiu; Zhao, Gong-Bo; Chiu, Mu-Chen; Fang, Wei; Pan, Chuzhong; Wang, Qiao; Du, Wei; Yuan, Shuo; Fu, Liping; Fan, Zuhui
2016-07-01
In this Letter, we report the observational constraints on the Hu-Sawicki f (R ) theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or x-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter |fR 0| for n =1 . The 95% C.L. is log10|fR 0|<-4.82 given WMAP9 priors on (Ωm , As ). With Planck15 priors, the corresponding result is log10|fR 0|<-5.16 .
Liu, Xiangkun; Li, Baojiu; Zhao, Gong-Bo; Chiu, Mu-Chen; Fang, Wei; Pan, Chuzhong; Wang, Qiao; Du, Wei; Yuan, Shuo; Fu, Liping; Fan, Zuhui
2016-07-29
In this Letter, we report the observational constraints on the Hu-Sawicki f(R) theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or x-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter |f_{R0}| for n=1. The 95% C.L. is log_{10}|f_{R0}|<-4.82 given WMAP9 priors on (Ω_{m}, A_{s}). With Planck15 priors, the corresponding result is log_{10}|f_{R0}|<-5.16. PMID:27517761
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Müller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaš, G. E.; Perrina, C.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.; Falco, E. E.
2014-11-01
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 1046 erg s-1. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.
Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M.; André, M.; Anton, G.; Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J.; Basa, S.; Biagi, S.; Capone, A.; Caramete, L.; and others
2014-11-01
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.
NASA Astrophysics Data System (ADS)
Becker, Matthew R.
2013-10-01
I present a new algorithm, Curved-sky grAvitational Lensing for Cosmological Light conE simulatioNS (CALCLENS), for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift-dependent shear signals including corrections to the Born approximation by using multiple-plane ray tracing and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (˜10 000 square degrees) can be ray traced efficiently at high resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy (≲1 per cent) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogues to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.
Probing cluster potentials through gravitational lensing of background X-ray sources
NASA Technical Reports Server (NTRS)
Refregier, A.; Loeb, A.
1996-01-01
The gravitational lensing effect of a foreground galaxy cluster, on the number count statistics of background X-ray sources, was examined. The lensing produces a deficit in the number of resolved sources in a ring close to the critical radius of the cluster. The cluster lens can be used as a natural telescope to study the faint end of the (log N)-(log S) relation for the sources which account for the X-ray background.
Rotation of galaxies as a signature of cosmic strings in weak lensing surveys.
Thomas, Daniel B; Contaldi, Carlo R; Magueijo, João
2009-10-30
Vector perturbations sourced by topological defects can generate rotations in the lensing of background galaxies. This is a potential smoking gun for the existence of defects since rotation generates a curl-like component in the weak lensing signal which is not generated by standard density perturbations at linear order. This rotation signal is calculated as generated by cosmic strings. Future large scale weak lensing surveys should be able to detect this signal even for string tensions an order of magnitude lower than current constraints. PMID:19905797
SDSS J0246-0825: A New Gravitationally Lensed Quasar from the Sloan Digital Sky Survey
Inada, N; Burles, S; Gregg, M D; Becker, R H; Schechter, P L; Eisenstein, D J; Oguri, M; Castander, F J; Hall, P B; Johnston, D E; Pindor, B; Richards, G T; Schneider, D P; White, R L; Brinkmann, J; Szalay, A; York, D G
2005-11-10
We report the discovery of a new two-image gravitationally lensed quasar, SDSS J024634.11-082536.2 (SDSS J0246-0825). This object was selected as a lensed quasar candidate from the Sloan Digital Sky Survey (SDSS) by the same algorithm that was used to discover other SDSS lensed quasars (e.g., SDSS J0924+0219). Multicolor imaging with the Magellan Consortium's Walter Baade 6.5-m telescope and the spectroscopic observations using the W. M. Keck Observatory's Keck II telescope confirm that SDSS J0246-0825 consists of two lensed images ({Delta}{theta} = 1''.04) of a source quasar at z = 1.68. Imaging observations with the Keck telescope and the Hubble Space Telescope reveal an extended object between the two quasar components, which is likely to be a lensing galaxy of this system. From the absorption lines in the spectra of quasar components and the apparent magnitude of the galaxy, combined with the expected absolute magnitude from the Faber-Jackson relation, we estimate the redshift of the lensing galaxy to be z = 0.724. A highly distorted ring is visible in the Hubble Space Telescope images, which is likely to be the lensed host galaxy of the source quasar. Simple mass modeling predicts the possibility that there is a small (faint) lensing object near the primary lensing galaxy.
A weak-lensing analysis of the Abell 383 cluster
NASA Astrophysics Data System (ADS)
Huang, Z.; Radovich, M.; Grado, A.; Puddu, E.; Romano, A.; Limatola, L.; Fu, L.
2011-05-01
Aims: We use deep CFHT and SUBARU uBVRIz archival images of the Abell 383 cluster (z = 0.187) to estimate its mass by weak-lensing. Methods: To this end, we first use simulated images to check the accuracy provided by our Kaiser-Squires-Broadhurst (KSB) pipeline. These simulations include shear testing programme (STEP) 1 and 2 simulations, as well as more realistic simulations of the distortion of galaxy shapes by a cluster with a Navarro-Frenk-White (NFW) profile. From these simulations we estimate the effect of noise on shear measurement and derive the correction terms. The R-band image is used to derive the mass by fitting the observed tangential shear profile with an NFW mass profile. Photometric redshifts are computed from the uBVRIz catalogs. Different methods for the foreground/background galaxy selection are implemented, namely selection by magnitude, color, and photometric redshifts, and the results are compared. In particular, we developed a semi-automatic algorithm to select the foreground galaxies in the color-color diagram, based on the observed colors. Results: Using color selection or photometric redshifts improves the correction of dilution from foreground galaxies: this leads to higher signals in the inner parts of the cluster. We obtain a cluster mass Mvir = 7.5+2.7_{-1.9 × 1014} M⊙: this value is 20% higher than previous estimates and is more consistent the mass expected from X-ray data. The R-band luminosity function of the cluster is computed and gives a total luminosity Ltot = (2.14 ± 0.5) × 1012 L⊙ and a mass-to-luminosity ratio M/L 300 M⊙/L⊙. Based on: data collected with the Subaru Telescope (University of Tokyo) and obtained from the SMOKA, which is operated by the Astronomy Data Center, National Astronomical Observatory of Japan; observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada
Discovery of a new component in the gravitationally lensed quasar 0957 + 561
NASA Technical Reports Server (NTRS)
Jones, C.; Stern, C.; Falco, E.; Forman, W.; David, L.; Shapiro, I.; Fabian, A. C.
1993-01-01
X-ray observations of the gravitationally lensed quasar 0957 + 561 with the Einstein Observatory High Resolution Imager indicate the presence of a new component in the system. The significantly greater X-ray intensity of image A compared with image B and the extended X-ray emission can be interpreted as the gravitational lensing of a quasi-circular X-ray emitting region into a partial Einstein ring. It is suggested that the observed X-ray emission is produced by a strong cooling flow which could arise were 0957 + 561 embedded in a group of cluster galaxies.
SDSS J094604.90+183541.8: A GRAVITATIONALLY LENSED QUASAR AT z = 4.8
McGreer, Ian D.; Fan Xiaohui; Bian Fuyan; Farnsworth, Kara; Hall, Patrick B.; Inada, Naohisa; Oguri, Masamune; Strauss, Michael A.; Schneider, Donald P.
2010-08-15
We report the discovery of a gravitationally lensed quasar identified serendipitously in the Sloan Digital Sky Survey (SDSS). The object, SDSS J094604.90+183541.8, was initially targeted for spectroscopy as a luminous red galaxy, but the SDSS spectrum has the features of both a z = 0.388 galaxy and a z = 4.8 quasar. We have obtained additional imaging that resolves the system into two quasar images separated by 3.''06 and a bright galaxy that is strongly blended with one of the quasar images. We confirm spectroscopically that the two quasar images represent a single-lensed source at z = 4.8 with a total magnification of 3.2, and we derive a model for the lensing galaxy. This is the highest redshift lensed quasar currently known. We examine the issues surrounding the selection of such an unusual object from existing data and briefly discuss implications for lensed quasar surveys.
Probabilities for gravitational lensing by point masses in a locally inhomogeneous universe
NASA Technical Reports Server (NTRS)
Isaacson, Jeffrey A.; Canizares, Claude R.
1989-01-01
Probability functions for gravitational lensing by point masses that incorporate Poisson statistics and flux conservation are formulated in the Dyer-Roeder construction. Optical depths to lensing for distant sources are calculated using both the method of Press and Gunn (1973) which counts lenses in an otherwise empty cone, and the method of Ehlers and Schneider (1986) which projects lensing cross sections onto the source sphere. These are then used as parameters of the probability density for lensing in the case of a critical (q0 = 1/2) Friedmann universe. A comparison of the probability functions indicates that the effects of angle-averaging can be well approximated by adjusting the average magnification along a random line of sight so as to conserve flux.
NASA Astrophysics Data System (ADS)
Spitzer, Isaac; Quimby, Robert
2016-01-01
Strongly lensed quasars can be used to study the Hubble constant and the lens mass by measuring time delay and image separation. These objects can require years of data to confirm however, so using data from preexisting surveys could greatly reduce the amount of time required to study them. We attempt to use Palomar Transient Factory survey data to detect variability in strongly lensed quasars and to measure time delays between the quasar images. We test our procedure using known gravitationally lensed quasars with measured time delays.
NASA Astrophysics Data System (ADS)
Biernaux, J.; Magain, P.; Sluse, D.; Chantry, V.
2016-01-01
Context. The luminosity profiles of galaxies acting as strong gravitational lenses can be tricky to study. Indeed, strong gravitational lensing images display several lensed components, both point-like and diffuse, around the lensing galaxy. Those objects limit the study of the galaxy luminosity to its inner parts. Therefore, the usual fitting methods perform rather badly on such images. Previous studies of strong lenses luminosity profiles using software such as GALFIT or IMFITFITS and various PSF-determining methods have resulted in somewhat discrepant results. Aims: The present work aims at investigating the causes of those discrepancies, as well as at designing more robust techniques for studying the morphology of early-type lensing galaxies with the ability to subtract a lensed signal from their luminosity profiles. Methods: We design a new method to independently measure each shape parameter, namely, the position angle, ellipticity, and half-light radius of the galaxy. Our half-light radius measurement method is based on an innovative scheme for computing isophotes that is well suited to measuring the morphological properties of gravititational lensing galaxies. Its robustness regarding various specific aspects of gravitational lensing image processing is analysed and tested against GALFIT. It is then applied to a sample of systems from the CASTLES database. Results: Simulations show that, when restricted to small, inner parts of the lensing galaxy, the technique presented here is more trustworthy than GALFIT. It gives more robust results than GALFIT, which shows instabilities regarding the fitting region, the value of the Sérsic index, and the signal-to-noise ratio. It is therefore better suited than GALFIT for gravitational lensing galaxies. It is also able to study lensing galaxies that are not much larger than the PSF. New values for the half-light radius of the objects in our sample are presented and compared to previous works. Table 6 is only available
COMPARING DENSE GALAXY CLUSTER REDSHIFT SURVEYS WITH WEAK-LENSING MAPS
Hwang, Ho Seong; Geller, Margaret J.; Zahid, H. Jabran; Diaferio, Antonaldo; Rines, Kenneth J. E-mail: mgeller@cfa.harvard.edu E-mail: diaferio@ph.unito.it
2014-12-20
We use dense redshift surveys of nine galaxy clusters at z ∼ 0.2 to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70%-89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross-correlate the galaxy number density maps with the weak-lensing maps. The cross-correlation signal when we include foreground and background galaxies at 0.5z {sub cl} < z < 2z {sub cl} is 10%-23% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross-correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross-correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross-correlation signal excesses (>20% for A383, A689, and A750). The fractional excess in the cross-correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.
CALCLENS: Curved-sky grAvitational Lensing for Cosmological Light conE simulatioNS
NASA Astrophysics Data System (ADS)
Becker, Matthew R.
2012-10-01
CALCLENS, written in C and employing widely available software libraries, efficiently computes weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. The algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift-dependent shear signals including corrections to the Born approximation by using multiple-plane ray tracing, and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multgrid methods. As a result, large areas of sky (~10,000 square degrees) can be ray traced efficiently at high-resolution using only a few hundred cores on widely available machines. Coupled with realistic galaxy populations placed in large N-body light cone simulations, CALCLENS is ideally suited for the construction of synthetic weak lensing shear catalogs to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys.
Kernel regression estimates of time delays between gravitationally lensed fluxes
NASA Astrophysics Data System (ADS)
AL Otaibi, Sultanah; Tiňo, Peter; Cuevas-Tello, Juan C.; Mandel, Ilya; Raychaudhury, Somak
2016-06-01
Strongly lensed variable quasars can serve as precise cosmological probes, provided that time delays between the image fluxes can be accurately measured. A number of methods have been proposed to address this problem. In this paper, we explore in detail a new approach based on kernel regression estimates, which is able to estimate a single time delay given several data sets for the same quasar. We develop realistic artificial data sets in order to carry out controlled experiments to test the performance of this new approach. We also test our method on real data from strongly lensed quasar Q0957+561 and compare our estimates against existing results.
Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing.
Milgrom, Mordehai
2013-07-26
The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an isolated, bounded (baryonic) mass, M, is ϕ(r)=(MGa0)1/2ln(r). Relativistic MOND theories predict that the lensing effects of M are dictated by ϕ(r) as general-relativity lensing is dictated by the Newtonian potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized standardly as 2σ2) that depends only on M: σ=(MGa0/4)1/4. I compare these predictions with recent results of galaxy-galaxy lensing, and find agreement on all counts. For the “blue”-lenses subsample (“spiral” galaxies) MOND reproduces the observations well with an r′-band M/Lr′∼(1–3)(M/L)⊙, and for “red” lenses (“elliptical” galaxies) with M/Lr′∼(3–6)(M/L)⊙, both consistent with baryons only. In contradistinction, Newtonian analysis requires, typically, M/Lr′∼130(M/L)⊙, bespeaking a mass discrepancy of a factor ∼40. Compared with the staple, rotation-curve tests, MOND is here tested in a wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed to several-times-lower accelerations–as low as a few percent of a0. PMID:23931350
Simulation of a Combined SZE and Weak Lensing Cluster Survey for Amiba Experiment
NASA Astrophysics Data System (ADS)
Umetsu, Keiichi; Chiueh, Tzihong; Lin, Kai-Yang; Wu, Jun-Mein; Tseng, Yao-Huan
We present simulations of interferometric Sunyaev-Zel'dovich effect (SZE) and optical weak lenisng observations for the forthcoming AMiBA experiment, aiming at searching for high-redshift clusters of galaxies. On the basis of simulated sky maps, we have derived theoretical halo number counts and redshift distributions of selected halo samples for an AMiBA SZE survey and a weak lensing follow-up survey. By utilizing the conditional number counts of weak lensing halos with the faint SZE detection, we show that a combined SZE and weak lensing survey can gain an additional fainter halo sample at a given false positive rate, which cannot be obtained from either survey alone.
Testing Einstein's weak equivalence principle with gravitational waves
NASA Astrophysics Data System (ADS)
Wu, Xue-Feng; Gao, He; Wei, Jun-Jie; Mészáros, Peter; Zhang, Bing; Dai, Zi-Gao; Zhang, Shuang-Nan; Zhu, Zong-Hong
2016-07-01
A conservative constraint on Einstein's weak equivalence principle (WEP) can be obtained under the assumption that the observed time delay between correlated particles from astronomical sources is dominated by the gravitational fields through which they move. Current limits on the WEP are mainly based on the observed time delays of photons with different energies. It is highly desirable to develop more accurate tests that include the gravitational wave (GW) sector. The detection by the advanced LIGO/VIRGO systems of gravitational waves will provide attractive candidates for constraining the WEP, extending the tests to gravitational interactions with potentially higher accuracy. Considering the capabilities of the advanced LIGO/VIRGO network and the source direction uncertainty, we show that the joint detection of GWs and electromagnetic signals could probe the WEP to an accuracy down to 10-10 , which is one order of magnitude tighter than previous limits, and 7 orders of magnitude tighter than the multimessenger (photons and neutrinos) results by supernova 1987A.
A weak lensing comparability study of galaxy mergers that host AGNs
NASA Astrophysics Data System (ADS)
Harvey, D.; Courbin, F.
2015-07-01
We compared the total mass density profiles of three different types of galaxies using weak gravitational lensing: (i) 29 galaxies that host quasars at bar{z}˜ 0.32 that are in a post-starburst quasar (PSQ) phase with high star formation indicating recent merger activity, (ii) 22 large elliptical galaxies from the Sloan Lens ACS Survey (SLACS) sample that do not host a quasar at bar{z}˜ 0.23, and (iii) 17 galaxies that host moderately luminous quasars at bar{z}˜ 0.36 powered by disc instabilities, but with no intense star formation. In an initial test we found no evidence for a connection between the merger state of a galaxy and the profile of the halo, with the PSQ profile comparable to that of the other two samples and consistent with the Leauthaud et al. study of moderately luminous quasars in Cosmic Evolution Survey (COSMOS). Given the compatibility of the two quasar samples, we combined these and found no evidence for any connection between black hole activity and the dark matter halo. All three mass profiles remained compatible with isothermality given the present data.
Cross-correlating Sunyaev-Zel'dovich and weak lensing maps
NASA Astrophysics Data System (ADS)
Munshi, Dipak; Joudaki, Shahab; Coles, Peter; Smidt, Joseph; Kay, Scott T.
2014-07-01
We present novel statistical tools to cross-correlate frequency cleaned thermal Sunyaev-Zel'dovich (tSZ) maps and tomographic weak lensing (wl) convergence maps. Moving beyond the lowest order cross-correlation, we introduce a hierarchy of mixed higher order statistics, the cumulants and cumulant correlators, to analyse non-Gaussianity in real space, as well as corresponding polyspectra in the harmonic domain. Using these moments, we derive analytical expressions for the joint two-point probability distribution function for smoothed tSZ (y) and convergence (κ) maps. The presence of tomographic information allows us to study the evolution of higher order mixed tSZ-wl statistics with redshift. We express the joint PDFs pκy(κ, y) in terms of individual one-point PDFs [pκ(κ), py(y)] and the relevant bias functions [bκ(κ), by(y)]. Analytical results for two different regimes are presented that correspond to the small and large angular smoothing scales. Results are also obtained for corresponding hotspots in the tSZ and convergence maps. In addition to results based on hierarchical techniques and perturbative methods, we present results of calculations based on the lognormal approximation. The analytical expressions derived here are generic and applicable to cross-correlation studies of arbitrary tracers of large-scale structure including, e.g., that of tSZ and soft X-ray background. We provide detailed comparison of our analytical results against state of the art Millennium Gas Simulations with and without non-gravitational effects such as pre-heating and cooling. Comparison of these results with gravity only simulations, shows reasonable agreement and can be used to isolate effect of non-gravitational physics from observational data.
Probing cosmology with weak lensing selected clusters. II. Dark energy and f(R) gravity models
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Hamana, Takashi; Yoshida, Naoki
2016-02-01
Ongoing and future wide-field galaxy surveys can be used to locate a number of clusters of galaxies with cosmic shear measurement alone. We study constraints on cosmological models using statistics of weak lensing selected galaxy clusters. We extend our previous theoretical framework to model the statistical properties of clusters in variants of cosmological models as well as in the standard ΛCDM model. Weak lensing selection of clusters does not rely on conventional assumptions such as the relation between luminosity and mass and/or hydrostatic equilibrium, but a number of observational effects compromise robust identification. We use a large set of realistic mock weak lensing catalogs as well as analytic models to perform a Fisher analysis and make a forecast for constraining two competing cosmological models, the wCDM model and f(R) model proposed by Hu and Sawicki (2007, Phys. Rev. D, 76, 064004), with our lensing statistics. We show that weak lensing selected clusters are excellent probes of cosmology when combined with cosmic shear power spectrum even in the presence of galaxy shape noise and masked regions. With the information from weak lensing selected clusters, the precision of cosmological parameter estimates can be improved by a factor of ˜1.6 and ˜8 for the wCDM model and f(R) model, respectively. The Hyper Suprime-Cam survey with sky coverage of 1250 degrees squared can constrain the equation of state of dark energy w0 with a level of Δw0 ˜ 0.1. It can also constrain the additional scalar degree of freedom in the f(R) model with a level of |fR0| ˜ 5 × 10-6, when constraints from cosmic microwave background measurements are incorporated. Future weak lensing surveys with sky coverage of 20000 degrees squared will place tighter constraints on w0 and |fR0| even without cosmic microwave background measurements.
CLASH: Weak-lensing shear-and-magnification analysis of 20 galaxy clusters
Umetsu, Keiichi; Czakon, Nicole; Medezinski, Elinor; Lemze, Doron; Ford, Holland; Nonino, Mario; Balestra, Italo; Biviano, Andrea; Merten, Julian; Postman, Marc; Koekemoer, Anton; Meneghetti, Massimo; Donahue, Megan; Molino, Alberto; Benítez, Narciso; Seitz, Stella; Gruen, Daniel; Broadhurst, Tom; Grillo, Claudio; Melchior, Peter; and others
2014-11-10
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≅ 25 in the radial range of 200-3500 kpc h {sup –1}, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c{sub 200c}=4.01{sub −0.32}{sup +0.35} at an effective halo mass of M{sub 200c}=1.34{sub −0.09}{sup +0.10}×10{sup 15} M{sub ⊙}. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is α{sub E}=0.191{sub −0.068}{sup +0.071}, which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as
Gravitational force in weakly correlated particle spatial distributions.
Gabrielli, Andrea; Masucci, Adolfo Paolo; Labini, Francesco Sylos
2004-03-01
We study the statistics of the gravitational (Newtonian) force in a particular class of weakly correlated spatial distributions of pointlike and unitary mass particles generated by the so-called Gauss-Poisson point processes. In particular we extend to these distributions the analysis that Chandrasekhar introduced for purely Poisson processes. In this way we can find the explicit asymptotic behavior of the probability density function of the force for both large and small values of the field as a generalization of the Holtzmark statistics. In particular, we show how the modifications at large fields depend on the density correlations introduced at small scales. The validity of the introduced approximations is positively tested through a direct comparison with the analysis of the statistics of the gravitational force in numerical simulations of Gauss-Poisson processes. PMID:15089268
Rozo, Eduardo; Wu, Hao-Yi; Schmidt, Fabian; /Caltech
2011-11-04
When extracting the weak lensing shear signal, one may employ either locally normalized or globally normalized shear estimators. The former is the standard approach when estimating cluster masses, while the latter is the more common method among peak finding efforts. While both approaches have identical signal-to-noise in the weak lensing limit, it is possible that higher order corrections or systematic considerations make one estimator preferable over the other. In this paper, we consider the efficacy of both estimators within the context of stacked weak lensing mass estimation in the Dark Energy Survey (DES). We find that the two estimators have nearly identical statistical precision, even after including higher order corrections, but that these corrections must be incorporated into the analysis to avoid observationally relevant biases in the recovered masses. We also demonstrate that finite bin-width effects may be significant if not properly accounted for, and that the two estimators exhibit different systematics, particularly with respect to contamination of the source catalog by foreground galaxies. Thus, the two estimators may be employed as a systematic cross-check of each other. Stacked weak lensing in the DES should allow for the mean mass of galaxy clusters to be calibrated to {approx}2% precision (statistical only), which can improve the figure of merit of the DES cluster abundance experiment by a factor of {approx}3 relative to the self-calibration expectation. A companion paper investigates how the two types of estimators considered here impact weak lensing peak finding efforts.
Testing metallicity indicators at z ˜ 1.4 with the gravitationally lensed galaxy CASSOWARY 20
NASA Astrophysics Data System (ADS)
James, Bethan L.; Pettini, Max; Christensen, Lise; Auger, Matthew W.; Becker, George D.; King, Lindsay J.; Quider, Anna M.; Shapley, Alice E.; Steidel, Charles C.
2014-05-01
We present X-shooter observations of CASSOWARY 20 (CSWA 20), a star-forming (SFR ˜ 6 M⊙ yr-1) galaxy at z = 1.433, magnified by a factor of 11.5 by the gravitational lensing produced by a massive foreground galaxy at z = 0.741. We analysed the integrated physical properties of the H II regions of CSWA 20 using temperature- and density-sensitive emission lines. We find the abundance of oxygen to be ˜1/7 of solar, while carbon is ˜50 times less abundant than in the Sun. The unusually low C/O ratio may be an indication of a particularly rapid time-scale of chemical enrichment. The wide wavelength coverage of X-shooter gives us access to five different methods for determining the metallicity of CSWA 20, three based on emission lines from H II regions and two on absorption features formed in the atmospheres of massive stars. All five estimates are in agreement, within the factor of ˜2 uncertainty of each method. The interstellar medium (ISM) of CSWA 20 only partially covers the star-forming region as viewed from our direction; in particular, absorption lines from neutrals and first ions are exceptionally weak. We find evidence for large-scale outflows of the ISM with speeds of up 750 km s-1, similar to the values measured in other high-z galaxies sustaining much higher rates of star formation.
THE EINSTEIN CROSS: CONSTRAINT ON DARK MATTER FROM STELLAR DYNAMICS AND GRAVITATIONAL LENSING
Van de Ven, Glenn; Falcon-Barroso, Jesus; Cappellari, Michele; Miller, Bryan W.; De Zeeuw, P. Tim
2010-08-20
We present two-dimensional line-of-sight stellar kinematics of the lens galaxy in the Einstein Cross, obtained with the GEMINI 8 m telescope, using the GMOS integral-field spectrograph. The stellar kinematics extend to a radius of 4'' (with 0.''2 spaxels), covering about two-thirds of the effective (or half-light) radius R{sub e} {approx_equal} 6'' of this early-type spiral galaxy at redshift z{sub l} {approx_equal} 0.04, of which the bulge is lensing a background quasar at redshift z{sub s} {approx_equal} 1.7. The velocity map shows regular rotation up to {approx}100 km s{sup -1} around the minor axis of the bulge, consistent with axisymmetry. The velocity dispersion map shows a weak gradient increasing toward a central (R < 1'') value of {sigma}{sub 0} = 170 {+-} 9 km s{sup -1}. We deproject the observed surface brightness from Hubble Space Telescope imaging to obtain a realistic luminosity density of the lens galaxy, which in turn is used to build axisymmetric dynamical models that fit the observed kinematic maps. We also construct a gravitational lens model that accurately fits the positions and relative fluxes of the four quasar images. We combine these independent constraints from stellar dynamics and gravitational lensing to study the total mass distribution in the inner parts of the lens galaxy. We find that the resulting luminous and total mass distribution are nearly identical around the Einstein radius R{sub E} = 0.''89, with a slope that is close to isothermal, but which becomes shallower toward the center if indeed mass follows light. The dynamical model fits to the observed kinematic maps result in a total mass-to-light ratio Y{sub dyn} = 3.7 {+-} 0.5 Y{sub sun,I} (in the I band). This is consistent with the Einstein mass M{sub E} = 1.54 x 10{sup 10} M {sub sun} divided by the (projected) luminosity within R{sub E} , which yields a total mass-to-light ratio of Y {sub E} = 3.4 Y{sub sun,I}, with an error of at most a few percent. We estimate from
A strategy for finding gravitationally-lensed distant supernovae
Sullivan, Mark; Ellis, Richard; Nugent, Peter; Smail, Ian; Madau, Piero
2000-07-17
Distant Type Ia and II supernovae (SNe) can serve as valuable probes of the history of the cosmic expansion and star formation, and provide important information on their progenitor models. At present, however, there are few observational constraints on the abundance of SNe at high redshifts. A major science driver for the Next Generation Space Telescope (NGST) is the study of very distant supernovae. In this paper we discuss strategies for finding and counting distant SNe by using repeat imaging of super-critical intermediate redshift clusters whose mass distributions are well-constrained via modelling of strongly-lensed features. For a variety of different models for the star formation history and supernova progenitors, we estimate the likelihood of detecting lensed SNe as a function of their redshift. In the case of a survey conducted by HST, we find a high probability of seeing a supernova in a single return visit with either WFPC-2 or ACS, and a much higher probability of detecting examples with z &62; 1 in the lensed case. Most events would represent magnified SNe II at z{approximately}1, and a fraction will be more distant examples. We discuss various ways to classify such events using ground-based infrared photometry. We demonstrate an application of the method using the HST archival data and discuss the case of a possible event found in the rich cluster AC 114 (z=0.31).
A DETECTION OF WEAK-LENSING MAGNIFICATION USING GALAXY SIZES AND MAGNITUDES
Schmidt, Fabian; Rhodes, Jason; Leauthaud, Alexie; Tanaka, Masayuki; Massey, Richard; George, Matthew R.; Koekemoer, Anton M.; Finoguenov, Alexis
2012-01-10
Weak lensing is commonly measured using shear through galaxy ellipticities or using the effect of magnification bias on galaxy number densities. Here, we report on the first detection of weak-lensing magnification with a new, independent technique using the distribution of galaxy sizes and magnitudes. These data come for free in galaxy surveys designed for measuring shear. We present the magnification estimator and apply it to an X-ray-selected sample of galaxy groups in the COSMOS Hubble Space Telescope survey. The measurement of the projected surface density {Sigma}(r) is consistent with the shear measurements within the uncertainties and has roughly 40% of the signal to noise of the latter. We discuss systematic issues and challenges to realizing the potential of this new probe of weak lensing.
TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS: A SUBARU FIELD
Kurtz, Michael J.; Geller, Margaret J.; Fabricant, Daniel G.; Utsumi, Yousuke; Miyazaki, Satoshi; Dell'Antonio, Ian P. E-mail: mgeller@cfa.harvard.edu E-mail: yousuke.utsumi@nao.ac.jp E-mail: ian@het.brown.edu
2012-05-10
We use a dense redshift survey in the foreground of the Subaru GTO2deg{sup 2} weak-lensing field (centered at {alpha}{sub 2000} = 16{sup h}04{sup m}44{sup s}; {delta}{sub 2000} = 43 Degree-Sign 11'24'') to assess the completeness and comment on the purity of massive halo identification in the weak-lensing map. The redshift survey (published here) includes 4541 galaxies; 4405 are new redshifts measured with the Hectospec on the MMT. Among the weak-lensing peaks with a signal-to-noise greater than 4.25, 2/3 correspond to individual massive systems; this result is essentially identical to the Geller et al. test of the Deep Lens Survey (DLS) field F2. The Subaru map, based on images in substantially better seeing than the DLS, enables detection of less massive halos at fixed redshift as expected. We demonstrate that the procedure adopted by Miyazaki et al. for removing some contaminated peaks from the weak-lensing map improves agreement between the lensing map and the redshift survey in the identification of candidate massive systems.
NASA Astrophysics Data System (ADS)
Okura, Yuki; Petri, Andrea; May, Morgan; Plazas, Andrés A.; Tamagawa, Toru
2016-07-01
Weak gravitational lensing causes subtle changes in the apparent shapes of galaxies due to the bending of light by the gravity of foreground masses. By measuring the shapes of large numbers of galaxies (millions in recent surveys, up to tens of billions in future surveys) we can infer the parameters that determine cosmology. Imperfections in the detectors used to record images of the sky can introduce changes in the apparent shapes of galaxies, which in turn can bias the inferred cosmological parameters. In this paper we consider the effect of two widely discussed sensor imperfections: tree rings, due to impurity gradients that cause transverse electric fields in the charge-coupled devices (CCDs), and pixel size variation, due to periodic CCD fabrication errors. These imperfections can be observed when the detectors are subject to uniform illumination (flat-field images). We develop methods to determine the spurious shear and convergence (due to the imperfections) from the flat-field images. We calculate how the spurious shear when added to the lensing shear will bias the determination of cosmological parameters. We apply our methods to candidate sensors of the Large Synoptic Survey Telescope (LSST) as a timely and important example, analyzing flat-field images recorded with LSST prototype CCDs in the laboratory. We find that tree rings and periodic pixel size variation present in the LSST CCDs will introduce negligible bias to cosmological parameters determined from the lensing power spectrum, specifically w, {{{Ω }}}m, and {σ }8.
NASA Astrophysics Data System (ADS)
Umeh, Obinna; Clarkson, Chris; Maartens, Roy
2014-10-01
The next generation of telescopes will usher in an era of precision cosmology, capable of determining the cosmological model to beyond the percent level. For this to be effective, the theoretical model must be understood to at least the same level of precision. A range of subtle relativistic effects remain to be explored theoretically, and offer the potential for probing general relativity in this new regime. We present the distance-redshift relation to second order in cosmological perturbation theory for a general dark energy model. This relation determines the magnification of sources at high precision, as well as redshift space distortions in the mildly non-linear regime. We identify a range of new lensing effects, including: double-integrated and nonlinear-integrated Sachs-Wolfe contributions, transverse Doppler effects, lensing from the induced vector mode and gravitational wave backgrounds, in addition to lensing from the second-order potential. Modifications to Doppler lensing from redshift space distortions are identified. Finally, we find a new double-coupling between the density fluctuations integrated along the line of sight, and gradients in the density fluctuations coupled to transverse velocities along the line of sight. These can be large and thus offer important new probes of gravitational lensing and general relativity. This paper accompanies paper II (Umeh, Clarkson and Maartens 2014 Class. Quantum Grav. 31 205001) , where a comprehensive derivation is given.
Constraining the minimum luminosity of high redshift galaxies through gravitational lensing
NASA Astrophysics Data System (ADS)
Mashian, Natalie; Loeb, Abraham
2013-12-01
We simulate the effects of gravitational lensing on the source count of high redshift galaxies as projected to be observed by the Hubble Frontier Fields program and the James Webb Space Telescope (JWST) in the near future. Taking the mass density profile of the lensing object to be the singular isothermal sphere (SIS) or the Navarro-Frenk-White (NFW) profile, we model a lens residing at a redshift of zL = 0.5 and explore the radial dependence of the resulting magnification bias and its variability with the velocity dispersion of the lens, the photometric sensitivity of the instrument, the redshift of the background source population, and the intrinsic maximum absolute magnitude (Mmax) of the sources. We find that gravitational lensing enhances the number of galaxies with redshifts zgtrsim 13 detected in the angular region θE/2 <= θ <= 2θE (where θE is the Einstein angle) by a factor of ~ 3 and 1.5 in the HUDF (df/dν0 ~ 9 nJy) and medium-deep JWST surveys (df/dν0 ~ 6 nJy). Furthermore, we find that even in cases where a negative magnification bias reduces the observed number count of background sources, the lensing effect improves the sensitivity of the count to the intrinsic faint-magnitude cut-off of the Schechter luminosity function. In a field centered on a strong lensing cluster, observations of zgtrsim 6 and zgtrsim 13 galaxies with JWST can be used to infer this cut-off magnitude for values as faint as Mmax ~ -14.4 and -16.1 mag (Lmin ≈ 2.5 × 1026 and 1.2 × 1027 erg s-1 Hz-1) respectively, within the range bracketed by existing theoretical models. Gravitational lensing may therefore offer an effective way of constraining the low-luminosity cut-off of high-redshift galaxies.
Aspects of electrostatics in a weak gravitational field
NASA Astrophysics Data System (ADS)
Padmanabhan, Hamsa; Padmanabhan, T.
2010-05-01
Several features of electrostatics of point charged particles in a weak, homogeneous, gravitational field are discussed using the Rindler metric to model the gravitational field. Some previously known results are obtained by simpler and more transparent procedures and are interpreted in an intuitive manner. Specifically: (a) We discuss possible definitions of the electric field in curved spacetime (and noninertial frames), argue in favour of a specific definition for the electric field and discuss its properties. (b) We show that the electrostatic potential of a charge at rest in the Rindler frame (which is known and is usually expressed as a complicated function of the coordinates) is expressible as A 0 = q/ λ where λ is the affine parameter distance along the null geodesic from the charge to the field point. (c) This relates well with the result that the electric field lines of a charge coincide with the null geodesics; that is, both light and the electric field lines ‘bend’ in the same manner in a weak gravitational field. We provide a simple proof for this result as well as for the fact that the null geodesics (and field lines) are circles in space. (d) We obtain the sum of the electrostatic forces exerted by one charge on another in the Rindler frame and discuss its interpretation. In particular, we compare the results in the Rindler frame and in the inertial frame and discuss their consistency. (e) We show how a purely electrostatic term in the Rindler frame appears as a radiation term in the inertial frame. (In part, this arises because charges at rest in a weak gravitational field possess additional weight due to their electrostatic energy. This weight is proportional to the acceleration and falls inversely with distance—which are the usual characteristics of a radiation field.) (f) We also interpret the origin of the radiation reaction term by extending our approach to include a slowly varying acceleration. Many of these results might have possible
Nemesis, Tyche, Planet Nine Hypotheses. I. Can We Detect the Bodies Using Gravitational Lensing?
NASA Astrophysics Data System (ADS)
Philippov, J. P.; Chobanu, M. I.
2016-08-01
In this paper, the hypothesis of the existence of a massive dark body (Nemesis, Tyche, Planet Nine, or any other trans-Plutonian planet) at the Solar system periphery is analysed. Basic physical properties and orbital characteristics of such massive bodies are considered. The problem of the definition of a scattering angle of a photon in the gravitational field of a spherical lens is studied. It is shown that, the required value of the scattering angle can be measured for the cases of Nemesis and Tyche. The formation of gravitational lensing images is studied here for a point mass event. It is demonstrated that in most cases of the close rapprochement of a source and the lens (for Nemesis and Tyche), it is possible to resolve two images. The possibility of resolving these images is one of the main arguments favouring the gravitational lensing method as its efficiency in searching for dark massive objects at the edge of the Solar System is higher than the one corresponding to other methods such as stellar occultation. For the cases of Planet Nine and any other trans-Plutonian planet, the strong gravitational lensing is impossible because at least one of the images is always eclipsed.
SDSS J102111.02+491330.4: A Newly discovered gravitationally lensed quasar
Pindor, Bart; Eisenstein, Daniel J.; Gregg, Michael D.; Becker, Robert H.; Inada, Naohisa; Oguri, Masamune; Hall, Patrick B.; Johnston, David E.; Richards, Gordon T.; Schneider, Donald P.; Turner, Edwin L.; Brasi, Guido; Hinz, Philip M.; Kenworthy, Matthew A.; Miller, Doug; Barentine, J.C.; Brewington, Howard J.; Brinkmann, J.; Harvanek, Michael; Kleinman, S.J.; Krzesinski, Jurek; /Toronto U., Astron. Dept. /Arizona U., Astron. Dept. - Steward Observ. /UC, Davis /LLNL, Livermore /Tokyo U., Inst. Astron. /Tokyo U. /Princeton U. Observ. /York U., Canada /Penn State U., Astron. Astrophys. /Apache Point Observ. /Mt. Suhora Observ., Cracow /Fermilab /Chicago U., Astron. Astrophys. Ctr.
2005-09-01
We report follow-up observations of two gravitational lens candidates identified in the Sloan Digital Sky Survey (SDSS) dataset. We have confirmed that SDSS J102111.02+491330.4 is a previously unknown gravitationally lensed quasar. This lens system exhibits two images of a z = 1.72 quasar, with an image separation of 1.14'' {+-} 0.04''. Optical and near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Observations of SDSS J112012.12+671116.0 indicate that it is more likely a binary quasar than a gravitational lens. This system has two quasars at a redshift of z = 1.49, with an angular separation of 1.49'' {+-} 0.02''. However, the two quasars have markedly different SEDs and no lens galaxy is apparent in optical and near-IR images of this system. We also present a list of 31 SDSS lens candidates which follow-up observations have confirmed are not gravitational lenses.
SDSSJ102111.02+491330.4: A Newly Discovered Gravitationally Lensed Quasar
Pindor, B; Eisenstein, D J; Gregg, M D; Becker, R H; Inada, N; Oguri, M; Hall, P B; Johnston, D E; Richards, G T; Schneider, D P; Turner, E L; Brasi, G; Hinz, P M; Kenworthy, M A; Miller, D; Barentine, J C; Brewington, H J; Brinkmann, J; Harvanek, M; Kleinman, S J; Krzesinski, J; Long, D; Neilsen Jr., E H; Newman, P R; Nitta, A; Snedden, S A; York, D G
2005-11-10
We report follow-up observations of two gravitational lens candidates identified in the Sloan Digital Sky Survey (SDSS) dataset. We have confirmed that SDSS J102111.02+491330.4 is a previously unknown gravitationally lensed quasar. This lens system exhibits two images of a z = 1.72 quasar, with an image separation of 1''.14 {+-} 0.04. Optical and near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Observations of SDSS J112012.12+671116.0 indicate that it is more likely a binary quasar than a gravitational lens. This system has two quasars at a redshift of z = 1.49, with an angular separation of 1''.49 {+-} 0.02. However, the two quasars have markedly different SEDs and no lens galaxy is apparent in optical and near-IR images of this system. We also present a list of 31 SDSS lens candidates which follow-up observations have confirmed are not gravitational lenses.
Equatorial gravitational lensing by accelerating and rotating black hole with NUT parameter
NASA Astrophysics Data System (ADS)
Sharif, M.; Iftikhar, Sehrish
2016-01-01
This paper is devoted to study equatorial gravitational lensing in accelerating and rotating black hole with a NUT parameter in the strong field limit. For this purpose, we first calculate null geodesic equation using the Hamilton-Jacobi separation method. We then numerically obtain deflection angle and deflection coefficients which depend on acceleration and spin parameter of the black hole. We also investigate observables in the strong field limit by taking the example of a black hole in the center of galaxy. It is concluded that acceleration parameter has a significant effect on the strong field lensing in the equatorial plane.
The Dust-to-Gas Ratio in the Damped Ly alpha Clouds Towards the Gravitationally Lensed QSO 0957+561
NASA Technical Reports Server (NTRS)
Zuo, Lin; Beaver, E. A.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Lyons, R. W.
1997-01-01
We present HST/FOS spectra of the two bright images (A and B) of the gravitationally lensed QSO 0957+561 in the wavelength range 2200-3300 A. We find that the absorption system (Z(sub abs)) = 1.3911) near z(sub em) is a weak, damped Ly alpha system with strong Ly alpha absorption lines seen in both images. However, the H(I) column densities are different, with the line of sight to image A intersecting a larger column density. The continuum shapes of the two spectra differ in the sense that the flux level of image A increases more slowly toward shorter wavelengths than that of image B. We explain this as the result of differential reddening by dust grains in the damped Ly alpha absorber. A direct outcome of this explanation is a determination of the dust-to-gas ratio, k, in the damped Ly alpha system. We derive k = 0.55 + 0.18 for a simple 1/lambda extinction law and k = 0.31 + 0.10 for the Galactic extinction curve. For gravitationally lensed systems with damped Ly alpha absorbers, our method is a powerful tool for determining the values and dispersion of k, and the shapes of extinction curves, especially in the FUV and EUV regions. We compare our results with previous work.
NASA Astrophysics Data System (ADS)
Hunt, L. R.; Pisano, D. J.; Edel, S.
2016-08-01
Neutral hydrogen (Hi) provides a very important fuel for star formation, but is difficult to detect at high redshift due to weak emission, limited sensitivity of modern instruments, and terrestrial radio frequency interference (RFI) at low frequencies. We report the first attempt to use gravitational lensing to detect Hi line emission from three gravitationally lensed galaxies behind the cluster Abell 773, two at redshifts of 0.398 and one at z = 0.487, using the Green Bank Telescope. We find that a 3σ upper limit for a galaxy with a rotation velocity of 200 km s‑1 is M H i = 6.58 × 109 and 1.5 × 1010 M ⊙ at z = 0.398 and z = 0.487. The estimated Hi masses of the sources at z = 0.398 and z = 0.487 are factors of 3.7 and ∼30 times lower than our detection limits at the respective redshifts. To facilitate these observations we have used sigma-clipping to remove both narrow- and wideband RFI but retain the signal from the source. We are able to reduce the noise of the spectrum by ∼25% using our routine instead of discarding observations with too much RFI. The routine is most effective when ∼10% of the integrations or fewer contain RFI. These techniques can be used to study Hi in highly magnified distant galaxies that are otherwise too faint to detect.
NASA Astrophysics Data System (ADS)
Hunt, L. R.; Pisano, D. J.; Edel, S.
2016-08-01
Neutral hydrogen (Hi) provides a very important fuel for star formation, but is difficult to detect at high redshift due to weak emission, limited sensitivity of modern instruments, and terrestrial radio frequency interference (RFI) at low frequencies. We report the first attempt to use gravitational lensing to detect Hi line emission from three gravitationally lensed galaxies behind the cluster Abell 773, two at redshifts of 0.398 and one at z = 0.487, using the Green Bank Telescope. We find that a 3σ upper limit for a galaxy with a rotation velocity of 200 km s‑1 is M H i = 6.58 × 109 and 1.5 × 1010 M ⊙ at z = 0.398 and z = 0.487. The estimated Hi masses of the sources at z = 0.398 and z = 0.487 are factors of 3.7 and ˜30 times lower than our detection limits at the respective redshifts. To facilitate these observations we have used sigma-clipping to remove both narrow- and wideband RFI but retain the signal from the source. We are able to reduce the noise of the spectrum by ˜25% using our routine instead of discarding observations with too much RFI. The routine is most effective when ˜10% of the integrations or fewer contain RFI. These techniques can be used to study Hi in highly magnified distant galaxies that are otherwise too faint to detect.
Bradac, M.
2005-04-13
We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145, the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If the redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(< 360h{sup -1}kpc) = (1.2 {+-} 0.3) x 10{sup 15}M{circle_dot}. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.
Bradač, M.; Erben, T.; Schneider, P.; Hildebrandt, H.; Lombardi, M.; Schirmer, M.; Miralles, J. -M.; Clowe, D.; Schindler, S.
2005-07-01
We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145 , the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If the redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(<360 h^{ -1} kpc)= (1.2± 0.3) x 10^{15} M_{⊙}. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.
Analysis of gravitational effects on liquid lenses (ANGEL)
NASA Astrophysics Data System (ADS)
Newman, Kevin; Stephens, Kyle
2012-09-01
Liquid lenses have been developed as a means for fast and reliable variable-focus optics by using an adjustable curvature in a liquid-liquid interface. The use of liquid lenses also provides the benefit of reducing the number of elements in a system, and providing a degree of freedom without any moving parts. Different methods for surface curvature actuation have been developed, including aperture adjustment, mechanical actuators, stimuli-responsive hydrogels, and mechanical-wetting. Current liquid lens designs are limited to small apertures (less than 4mm) and density-matching fluids to lessen the negative effects of gravity. By creating a lens intended for use in a microgravity environment, the aperture size can be increased by orders of magnitude, and optimal fluids can be used regardless of their density. Using a large-aperture (12mm) liquid lens, image and surface metrology was conducted using a fixed-focus configuration. The Software Configurable Optical Test System (SCOTS) method was utilized to test the effect of microgravity, standard gravity, and hypergravity on the liquid lens during parabolic flights. Under standard gravity, the RMS wavefront error (WFE) was 27 wavelengths, while microgravity conditions allowed an improvement to 17 wavelengths RMS WFE. Test performance can be improved by using lower viscosity fluids or longer duration microgravity flights. The experiment also served as an engineering demonstration for the SCOTS method in an environment where other methods of optical metrology would be impossible.
Source-position transformation: an approximate invariance in strong gravitational lensing
NASA Astrophysics Data System (ADS)
Schneider, Peter; Sluse, Dominique
2014-04-01
The main obstacle that gravitational lensing has in determining accurate masses of deflectors, or in determining precise estimates for the Hubble constant, is the degeneracy of lensing observables with respect to the mass-sheet transformation (MST). The MST is a global modification of the mass distribution which leaves all image positions, shapes, and flux ratios invariant, but which changes the time delay. Here we show that another global transformation of lensing mass distributions exists which leaves image positions and flux ratios almost invariant, and of which the MST is a special case. As is the case for the MST, this new transformation only applies if one considers only those source components that are at the same distance from us. Whereas for axi-symmetric lenses this source position transformation exactly reproduces all strong lensing observables, it does so only approximately for more general lens situations. We provide crude estimates for the accuracy with which the transformed mass distribution can reproduce the same image positions as the original lens model, and present an illustrative example of its performance. This new invariance transformation is most likely the reason why the same strong lensing information can be accounted for with rather different mass models.
Detecting Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters
Baxter, Eric Jones
2014-08-01
Clusters of galaxies gravitationally lens the Cosmic Microwave Background (CMB) leading to a distinct signal in the CMB on arcminute scales. Measurement of the cluster lensing effect offers the exciting possibility of constraining the masses of galaxy clusters using CMB data alone. Improved constraints on cluster masses are in turn essential to the use of clusters as cosmological probes: uncertainties in cluster masses are currently the dominant systematic affecting cluster abundance constraints on cosmology. To date, however, the CMB cluster lensing signal remains undetected because of its small magnitude and angular size. In this thesis, we develop a maximum likelihood approach to extracting the signal from CMB temperature data. We validate the technique by applying it to mock data designed to replicate as closely as possible real data from the South Pole Telescope’s (SPT) Sunyaev-Zel’dovich (SZ) survey: the effects of the SPT beam, transfer function, instrumental noise and cluster selection are incorporated. We consider the effects of foreground emission on the analysis and show that uncertainty in amount of foreground lensing results in a small systematic error on the lensing constraints. Additionally, we show that if unaccounted for, the SZ effect leads to unacceptably large biases on the lensing constraints and develop an approach for removing SZ contamination. The results of the mock analysis presented here suggest that a 4σ first detection of the cluster lensing effect can be achieved with current SPT-SZ data.
NASA Astrophysics Data System (ADS)
Okabe, Nobuhiro; Umetsu, Keiichi; Tamura, Takayuki; Fujita, Yutaka; Takizawa, Motokazu; Zhang, Yu-Ying; Matsushita, Kyoko; Hamana, Takashi; Fukazawa, Yasushi; Futamase, Tasushi; Kawaharada, Madoka; Miyazaki, Satoshi; Mochizuki, Yukiko; Nakazawa, Kazuhiro; Ohashi, Takaya; Ota, Naomi; Sasaki, Toru; Sato, Kosuke; Tam, Sutieng
2014-10-01
We conduct a joint X-ray and weak-lensing study of four relaxed galaxy clusters (Hydra A, A 478, A 1689, and A 1835) observed by both Suzaku and Subaru out to virial radii, with the aim of understanding recently discovered unexpected features of the intracluster medium (ICM) in cluster outskirts. We show that the average hydrostatic-to-lensing total mass ratio for the four clusters decreases from ˜ 70% to ˜ 40% as the overdensity contrast decreases from 500 to the virial value. The average gas mass fraction from lensing total mass estimates increases with cluster radius and agrees with the cosmic mean baryon fraction within the virial radius, whereas the X-ray-based gas fraction considerably exceeds the cosmic values due to underestimation of the hydrostatic mass. We also develop a new advanced method for determining normalized cluster radial profiles for multiple X-ray observables by simultaneously taking into account both their radial dependence and multivariate scaling relations with weak-lensing masses. Although the four clusters span a range of halo mass, concentration, X-ray luminosity, and redshift, we find that the gas entropy, pressure, temperature, and density profiles are all remarkably self-similar when scaled with the weak-lensing M200 mass and r200 radius. The entropy monotonically increases out to ˜ 0.5 r200 ˜ r1000 following the accretion shock heating model K(r) ∝ r1.1, and flattens at ≳ 0.5 r200. The universality of the scaled entropy profiles indicates that the thermalization mechanism over the entire cluster region (> 0.1 r200) is controlled by gravitation in a common way for all clusters, although the heating efficiency in the outskirts needs to be modified from the standard r1.1 law. The bivariate scaling functions of the gas density and temperature reveal that the flattening of the outskirts entropy profile is caused by the steepening of the temperature, rather than the flattening of the gas density.
Complementarity of weak lensing and peculiar velocity measurements in testing general relativity
Song, Yong-Seon; Zhao Gongbo; Bacon, David; Koyama, Kazuya; Nichol, Robert C.; Pogosian, Levon
2011-10-15
We explore the complementarity of weak lensing and galaxy peculiar velocity measurements to better constrain modifications to General Relativity. We find no evidence for deviations from General Relativity on cosmological scales from a combination of peculiar velocity measurements (for Luminous Red Galaxies in the Sloan Digital Sky Survey) with weak lensing measurements (from the Canadian France Hawaii Telescope Legacy Survey). We provide a Fisher error forecast for a Euclid-like space-based survey including both lensing and peculiar velocity measurements and show that the expected constraints on modified gravity will be at least an order of magnitude better than with present data, i.e. we will obtain {approx_equal}5% errors on the modified gravity parametrization described here. We also present a model-independent method for constraining modified gravity parameters using tomographic peculiar velocity information, and apply this methodology to the present data set.
Planck 2013 results. XVII. Gravitational lensing by large-scale structure
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2.
NASA Astrophysics Data System (ADS)
Bandara, Kaushala; Crampton, D.; Peng, C. Y.; Simard, L.
2012-01-01
We take advantage of the magnification in size and flux of a galaxy, provided by gravitational lensing, to analyze the properties of 62 strongly lensed galaxies of the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies span a redshift range of 0.20 <= z <= 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes and Sersic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, "disk"-like population with the peaks of the size and Sersic index distributions corresponding to ˜1.50 kpc and n˜1 respectively. Comparison of the SLACS lensed galaxies to a non-lensing, broad-band imaging based survey shows that a lensing survey allows us to probe a galaxy population that is typically ˜ 2 magnitudes fainter. Our analysis allows us to compare the
Around the Clock Observations of the Q0957+561A,B Gravitationally Lensed Quasar
NASA Astrophysics Data System (ADS)
Colley, Wesley N.; Schild, Rudolph E.; Abajas, Cristina; Alcalde, David; Aslan, Zeki; Barrena, Rafael; Dudinov, Vladimir; Khamitov, Irek; Kjernsmo, Kjetil; Lee, Hyun Ju; Lee, Jonghwan; Lee, Myung Gyoon; Licandro, Javier; Maoz, Dan; Mediavilla, Evencio; Motta, Verónica; Muñoz, Jose; Oscoz, Alex; Serra-Ricart, Miquel; Sinelnikov, Igor; Stabell, Rolf; Teuber, Jan; Zheleznyak, Alexander
2002-01-01
An observing campaign with 10 participating observatories has undertaken to monitor the optical brightness of the Q0957 gravitationally lensed quasar for 10 consecutive nights in 2000 January. The resulting A image brightness curve has significant brightness fluctuations and makes a photometric prediction for the B image light curve for a second campaign planned for 2001 March 12-21. The ultimate purpose is to determine the gravitational lens time delay to a fraction of an hour and to seek evidence of rapid microlensing.
Cosmological constraints from strong gravitational lensing in clusters of galaxies.
Jullo, Eric; Natarajan, Priyamvada; Kneib, Jean-Paul; D'Aloisio, Anson; Limousin, Marceau; Richard, Johan; Schimd, Carlo
2010-08-20
Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and w(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2sigma contours on the dark energy equation-of-state parameter w(x) by approximately 30%. PMID:20724628
NASA Astrophysics Data System (ADS)
Chen, Yun; Geng, Chao-Qiang; Cao, Shuo; Huang, Yu-Mei; Zhu, Zong-Hong
2015-02-01
We constrain the scalar field dark energy model with an inverse power-law potential, i.e., V(phi) propto phi-α (α > 0), from a set of recent cosmological observations by compiling an updated sample of Hubble parameter measurements including 30 independent data points. Our results show that the constraining power of the updated sample of H(z) data with the HST prior on H0 is stronger than those of the SCP Union2 and Union2.1 compilations. A recent sample of strong gravitational lensing systems is also adopted to confine the model even though the results are not significant. A joint analysis of the strong gravitational lensing data with the more restrictive updated Hubble parameter measurements and the Type Ia supernovae data from SCP Union2 indicates that the recent observations still can not distinguish whether dark energy is a time-independent cosmological constant or a time-varying dynamical component.
Gravitational lensing by a massive black hole at the Galactic center
NASA Technical Reports Server (NTRS)
Wardle, Mark; Yusef-Zadeh, Farhad
1992-01-01
The manifestations of gravitational lensing by a massive black hole at the Galactic center, with particular attention given to lensing of stars in the stellar cluster that lie behind Sgr A*, and of Sgr A east, a nonthermal extended radio source which is known with certainty to lie behind the Galactic center. Lensing of the stellar cluster produces a deficit of stellar images within 10 mas of the center, and a surplus between 30 and 300 mas. The results suggest that the proper motion of the stars will produce brightness variations of stellar images on a time scale of a few years or less. Both images of such a source should be visible, and will rise and fall in luminosity together.
Combining weak lensing tomography with halo clustering to probe dark energy
NASA Astrophysics Data System (ADS)
Shapiro, Charles; Dodelson, Scott
2007-10-01
Two methods of constraining the properties of dark energy are weak lensing tomography and cluster counting. Uncertainties in mass calibration of clusters can be reduced by using the properties of halo clustering (the clustering of clusters). However, within a single survey, weak lensing and halo clustering probe the same density fluctuations. We explore the question of whether this information can be used twice—once in weak lensing and then again in halo clustering to calibrate cluster masses—or whether the combined dark energy constraints are weaker than the sum of the individual constraints. For a survey like the Dark Energy Survey (DES), we find that the cosmic shearing of source galaxies at high redshifts is indeed highly correlated with halo clustering at lower redshifts. Surprisingly, this correlation does not degrade cosmological constraints for a DES-like survey, and in fact, constraints are marginally improved since the correlations themselves act as additional observables. This considerably simplifies the analysis for a DES-like survey: when weak lensing and halo clustering are treated as independent experiments, the combined dark energy constraints (cluster counts included) are accurate if not slightly conservative. Our findings mirror those of Takada and Bridle, who investigated correlations between the cosmic shear and cluster counts.
Spectroscopic identification of 25 disk galaxy candidate gravitational lenses in the SDSS
NASA Astrophysics Data System (ADS)
Focardi, P.; Rossetti, E.
2015-09-01
Context. Galaxy-scale gravitational lenses are powerful tools, which can be used to address major astrophysical questions that are still open. They can be identified either through imaging or through spectroscopy, which is less efficient than imaging but offers the major advantage of having both source and deflector red shift previously measured at discovery. Spectroscopic identification requires huge data sets of high spectral quality, such as the SDSS, and has so far focused on early-type galaxies, as the most massive galaxies are found among them. Aims: We aimed to perform spectroscopic identification of disk galaxies acting as gravitational lenses. Methods: We have selected about 300 000 galaxy spectra with EW(Hα) ≤-10 Å from the SDSS DR 8. On these spectra, we ran our original code RES, which is a fast, reliable tool able to provide a red-shift measure and to identify discordant red-shift systems if present. We have required RES to identify only systems based on a minimum number of four emission lines. We have inspected all the (54) SDSS images of the double z systems identified by RES and discarded systems for which z duplicity could be easily ascribed to the presence of two distinct objects. The remaining 25 systems, for which double z is very likely to be due to the gravitational lensing phenomenon, constitute our sample. Results: For each gravitational lens candidate system, we provide SDSS identification and image emission lines detected by RES and activity classification, when derivable. The disky nature of our candidate lenses is confirmed by their images, stellar mass estimates, g - r rest-frame colours and occurrence of star burst phenomena.
Weak lensing statistics as a probe of {OMEGA} and power spectrum.
NASA Astrophysics Data System (ADS)
Bernardeau, F.; van Waerbeke, L.; Mellier, Y.
1997-06-01
The possibility of detecting weak lensing effects from deep wide field imaging surveys has opened new means of probing the large-scale structure of the Universe and measuring cosmological parameters. In this paper we present a systematic study of the expected dependence of the low order moments of the filtered gravitational local convergence on the power spectrum of the density fluctuations and on the cosmological parameters {OMEGA}_0_ and {LAMBDA}. The results show a significant dependence on all these parameters. Though we note that this degeneracy could be partially raised by considering two populations of sources, at different redshifts, computing the third moment is more promising since it is expected, in the quasi-linear regime and for Gaussian initial conditions, to be only {OMEGA}_0_ dependent (with a slight degeneracy with {LAMBDA}) when it is correctly expressed in terms of the second moment. More precisely we show that the variance of the convergence varies approximately as P(k){OMEGA}_0_^1.5^z_s_^1.5^, whereas the skewness varies as {OMEGA}_0_^-0.8^z_s_^-1.35^, where P(k) is the projected power spectrum and z_s_ the redshift of the sources. Thus, used jointly they can provide both P(k) and {OMEGA}_0_. However, the dependence on the redshift of the sources is large and could be a major concern for a practical implementation. We have estimated the errors expected for these parameters in a realistic scenario and sketched what would be the observational requirements for doing such measurements. A more detailed study of an observational strategy is left for a second paper.
A NEW APPROACH TO IDENTIFYING THE MOST POWERFUL GRAVITATIONAL LENSING TELESCOPES
Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark; Keeton, Charles R.; Hogg, David W.; Gonzalez, Anthony H.
2013-05-20
The best gravitational lenses for detecting distant galaxies are those with the largest mass concentrations and the most advantageous configurations of that mass along the line of sight. Our new method for finding such gravitational telescopes uses optical data to identify projected concentrations of luminous red galaxies (LRGs). LRGs are biased tracers of the underlying mass distribution, so lines of sight with the highest total luminosity in LRGs are likely to contain the largest total mass. We apply this selection technique to the Sloan Digital Sky Survey and identify the 200 fields with the highest total LRG luminosities projected within a 3.'5 radius over the redshift range 0.1 {<=} z {<=} 0.7. The redshift and angular distributions of LRGs in these fields trace the concentrations of non-LRG galaxies. These fields are diverse; 22.5% contain one known galaxy cluster and 56.0% contain multiple known clusters previously identified in the literature. Thus, our results confirm that these LRGs trace massive structures and that our selection technique identifies fields with large total masses. These fields contain two to three times higher total LRG luminosities than most known strong-lensing clusters and will be among the best gravitational lensing fields for the purpose of detecting the highest redshift galaxies.
Caustics of 1/rn binary gravitational lenses: from galactic haloes to exotic matter
NASA Astrophysics Data System (ADS)
Bozza, V.; Melchiorre, C.
2016-03-01
We investigate the caustic topologies for binary gravitational lenses made up of two objects whose gravitational potential declines as 1/rn. With n<1 this corresponds to power-law dust distributions like the singular isothermal sphere. The n>1 regime can be obtained with some violations of the energy conditions, one famous example being the Ellis wormhole. Gravitational lensing provides a natural arena to distinguish and identify such exotic objects in our Universe. We find that there are still three topologies for caustics as in the standard Schwarzschild binary lens, with the main novelty coming from the secondary caustics of the close topology, which become huge at higher n. After drawing caustics by numerical methods, we derive a large amount of analytical formulae in all limits that are useful to provide deeper insight in the mathematics of the problem. Our study is useful to better understand the phenomenology of galaxy lensing in clusters as well as the distinct signatures of exotic matter in complex systems.
Discreteness of space from GUP in a weak gravitational field
NASA Astrophysics Data System (ADS)
Deb, Soumen; Das, Saurya; Vagenas, Elias C.
2016-04-01
Quantum gravity effects modify the Heisenberg's uncertainty principle to a generalized uncertainty principle (GUP). Earlier work showed that the GUP-induced corrections to the Schrödinger equation, when applied to a non-relativistic particle in a one-dimensional box, led to the quantization of length. Similarly, corrections to the Klein-Gordon and the Dirac equations, gave rise to length, area and volume quantizations. These results suggest a fundamental granular structure of space. In this work, it is investigated how spacetime curvature and gravity might influence this discreteness of space. In particular, by adding a weak gravitational background field to the above three quantum equations, it is shown that quantization of lengths, areas and volumes continue to hold. However, it should be noted that the nature of this new quantization is quite complex and under proper limits, it reduces to cases without gravity. These results suggest that quantum gravity effects are universal.
Gravitational failure of sea cliffs in weakly lithified sediment
Hampton, M.A.
2002-01-01
Gravitational failure of sea cliffs eroded into weakly lithified sediment at several sites in California involves episodic stress-release fracturing and cantilevered block falls. The principal variables that influence the gravitational stability are tensional stresses generated during the release of horizontal confining stress and weakening of the sediment with increased saturation levels. Individual failures typically comprise less than a cubic meter of sediment, but large areas of a cliff face can be affected by sustained instability over a period of several days. Typically, only the outer meter or so of sediment is removed during a failure episode. In-place sediment saturation levels vary over time and space, generally being higher during the rainy season but moderate to high year-round. Laboratory direct-shear tests show that sediment cohesion decreases abruptly with increasing saturation level; the decrease is similar for all tested sediment if the cohesion is normalized by the maximum, dry-sediment cohesion. Large failures that extend over most or all of the height of the sea cliff are uncommon, but a few large wedge-shaped failures sometimes occur, as does separation of large blocks at sea cliff-gully intersections.
NASA Astrophysics Data System (ADS)
Becker, Matthew Rand
I present a new algorithm, CALCLENS, for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift- dependent shear signals including corrections to the Born approximation by using multiple- plane ray tracing, and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (~10,000 square degrees) can be ray traced efficiently at high-resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy ( ≲ 1%) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogs to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.
Confirmation of general relativity on large scales from weak lensing and galaxy velocities.
Reyes, Reinabelle; Mandelbaum, Rachel; Seljak, Uros; Baldauf, Tobias; Gunn, James E; Lombriser, Lucas; Smith, Robert E
2010-03-11
Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, E(G), that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth rate. The combination is insensitive to 'galaxy bias' (the difference between the clustering of visible galaxies and invisible dark matter) and is thus robust to the uncertainty in this parameter. Modified theories of gravity generally predict values of E(G) different from the general relativistic prediction because, in these theories, the 'gravitational slip' (the difference between the two potentials that describe perturbations in the gravitational metric) is non-zero, which leads to changes in the growth of structure and the strength of the gravitational lensing effect. Here we report that E(G) = 0.39 +/- 0.06 on length scales of tens of megaparsecs, in agreement with the general relativistic prediction of E(G) approximately 0.4. The measured value excludes a model within the tensor-vector-scalar gravity theory, which modifies both Newtonian and Einstein gravity. However, the relatively large uncertainty still permits models within f(R) theory, which is an extension of general relativity. A fivefold decrease in uncertainty is needed to rule out these models. PMID:20220843
Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization
NASA Astrophysics Data System (ADS)
Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad
2015-05-01
Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.
Gravitational lensing effects of vacuum strings - Exact solutions
NASA Technical Reports Server (NTRS)
Gott, J. R., III
1985-01-01
Exact interior and exterior solutions to Einstein's field equations are derived for vacuum strings. The exterior solution for a uniform density vacuum string corresponds to a conical space while the interior solution is that of a spherical cap. For Mu equals 0-1/4 the external metric is ds-squared = -dt-squared + dr-squared + (1-4 Mu)-squared r-squared dphi-squared + dz-squared, where Mu is the mass per unit length in the string in Planck masses per Planck length. A maximum mass per unit length for a string is 6.73 x 10 to the 27th g/cm. It is shown that strings cause temperature fluctuations in the cosmic microwave background and produce equal brightness double QSO images separated by up to several minutes of arc. Formulae for lensing probabilities, image splittings, and time delays are derived for strings in a realistic cosmological setting. String searches using ST, the VLA, and the COBE satellite are discussed.
Okabe, Nobuhiro; Futamase, Toshifumi; Kuroshima, Risa; Kajisawa, Masaru
2014-04-01
We present a 4 deg{sup 2} weak gravitational lensing survey of subhalos in the very nearby Coma cluster using the Subaru/Suprime-Cam. The large apparent size of cluster subhalos allows us to measure the mass of 32 subhalos detected in a model-independent manner, down to the order of 10{sup –3} of the virial mass of the cluster. Weak-lensing mass measurements of these shear-selected subhalos enable us to investigate subhalo properties and the correlation between subhalo masses and galaxy luminosities for the first time. The mean distortion profiles stacked over subhalos show a sharply truncated feature which is well-fitted by a Navarro-Frenk-White (NFW) mass model with the truncation radius, as expected due to tidal destruction by the main cluster. We also found that subhalo masses, truncation radii, and mass-to-light ratios decrease toward the cluster center. The subhalo mass function, dn/dln M {sub sub}, in the range of 2 orders of magnitude in mass, is well described by a single power law or a Schechter function. Best-fit power indices of 1.09{sub −0.32}{sup +0.42} for the former model and 0.99{sub −0.23}{sup +0.34} for the latter, are in remarkable agreement with slopes of ∼0.9-1.0 predicted by the cold dark matter paradigm. The tangential distortion signals in the radial range of 0.02-2 h {sup –1} Mpc from the cluster center show a complex structure which is well described by a composition of three mass components of subhalos, the NFW mass distribution as a smooth component of the main cluster, and a lensing model from a large scale structure behind the cluster. Although the lensing signals are 1 order of magnitude lower than those for clusters at z ∼ 0.2, the total signal-to-noise ratio, S/N = 13.3, is comparable, or higher, because the enormous number of background source galaxies compensates for the low lensing efficiency of the nearby cluster.
De Putter, Roland; Doré, Olivier; Das, Sudeep
2014-01-10
Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias and scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).
Model-free analysis of quadruply imaged gravitationally lensed systems and substructured galaxies
NASA Astrophysics Data System (ADS)
Woldesenbet, Addishiwot G.; Williams, Liliya L. R.
2015-11-01
Multiple image gravitational lens systems, and especially quads, are invaluable in determining the amount and distribution of mass in galaxies. This is usually done by mass modelling using parametric or free-form methods. An alternative way of extracting information about lens mass distribution is to use lensing degeneracies and invariants. Where applicable, they allow one to make conclusions about whole classes of lenses without model fitting. Here, we use approximate, but observationally useful invariants formed by the three relative polar angles of quad images around the lens centre to show that many smooth elliptical+shear lenses can reproduce the same set of quad image angles within observational error. This result allows us to show in a model-free way what the general class of smooth elliptical+shear lenses looks like in the three-dimensional (3D) space of image relative angles, and that this distribution does not match that of the observed quads. We conclude that, even though smooth elliptical+shear lenses can reproduce individual quads, they cannot reproduce the quad population. What is likely needed is substructure, with clump masses larger than those responsible for flux ratio anomalies in quads, or luminous or dark nearby perturber galaxies.
Candidate Gravitationally Lensed Dusty Star-forming Galaxies in the Herschel Wide Area Surveys
NASA Astrophysics Data System (ADS)
Nayyeri, H.; Keele, M.; Cooray, A.; Riechers, D. A.; Ivison, R. J.; Harris, A. I.; Frayer, D. T.; Baker, A. J.; Chapman, S. C.; Eales, S.; Farrah, D.; Fu, H.; Marchetti, L.; Marques-Chaves, R.; Martinez-Navajas, P. I.; Oliver, S. J.; Omont, A.; Perez-Fournon, I.; Scott, D.; Vaccari, M.; Vieira, J.; Viero, M.; Wang, L.; Wardlow, J.
2016-05-01
We present a list of candidate gravitationally lensed dusty star-forming galaxies (DSFGs) from the HerMES Large Mode Survey and the Herschel Stripe 82 Survey. Together, these partially overlapping surveys cover 372 deg2 on the sky. After removing local spiral galaxies and known radio-loud blazars, our candidate list of lensed DSFGs is composed of 77 sources with 500 μm flux densities (S 500) greater than 100 mJy. Such sources are dusty starburst galaxies similar to the first bright sub-millimeter galaxies (SMGs) discovered with SCUBA. We expect a large fraction of this list to be strongly lensed, with a small fraction made up of bright SMG–SMG mergers that appear as hyper-luminous infrared galaxies ({L}{IR}\\gt {10}13 {L}ȯ ). Thirteen of the 77 candidates have spectroscopic redshifts from CO spectroscopy with ground-based interferometers, putting them at z\\gt 1 and well above the redshift of the foreground lensing galaxies. The surface density of our sample is 0.21 ± 0.03 deg‑2. We present follow-up imaging of a few of the candidates to confirm their lensing nature. The sample presented here is an ideal tool for higher-resolution imaging and spectroscopic observations to understand the detailed properties of starburst phenomena in distant galaxies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
SDSS J133401.39+331534.3: A NEW SUBARCSECOND GRAVITATIONALLY LENSED QUASAR
Rusu, Cristian E.; Iye, Masanori; Oguri, Masamune; Inada, Naohisa; Kayo, Issha; Hayano, Yutaka; Oya, Shin; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Minowa, Yosuke; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto
2011-09-01
The quasar SDSS J133401.39+331534.3 at z = 2.426 is found to be a two-image gravitationally lensed quasar with an image separation of 0.''833. The object is first identified as a lensed quasar candidate in the Sloan Digital Sky Survey Quasar Lens Search, and then confirmed as a lensed system from follow-up observations at the Subaru and University of Hawaii 2.2 m telescopes. We estimate the redshift of the lensing galaxy to be 0.557 based on absorption lines in the quasar spectra as well as the color of the galaxy. In particular, we observe the system with the Subaru Telescope AO188 adaptive optics with a laser guide star, in order to derive accurate astrometry, which well demonstrates the usefulness of the laser guide star adaptive optics imaging for studying strong lens systems. Our mass modeling with improved astrometry implies that a nearby bright galaxy {approx}4'' apart from the lensing galaxy is likely to affect the lens potential.
Bandara, Kaushala; Crampton, David; Peng, Chien; Simard, Luc
2013-11-01
We take advantage of the magnification in size and flux of a galaxy provided by gravitational lensing to analyze the properties of 62 strongly lensed galaxies from the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies spans a redshift range of 0.20 ≤ z ≤ 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes, and Sérsic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, {sup d}isk{sup -}like population with the peaks of the size and Sérsic index distributions corresponding to ∼1.50 kpc and n ∼ 1, respectively. Comparison of the SLACS galaxies to a non-lensing, broadband imaging survey shows that a lensing survey allows us to probe a galaxy population that reaches ∼2 mag fainter. Our analysis allows us to compare the (z) = 0.61 disk galaxy sample (n ≤ 2.5) to an unprecedented local galaxy sample of ∼670, 000 SDSS galaxies at z ∼ 0.1; this analysis indicates that the evolution of the luminosity-size relation since z ∼ 1 may not be fully explained by a pure-size or pure-luminosity evolution but may instead require a combination of both. Our observations are also in agreement with recent numerical simulations of disk galaxies that show evidence of a mass-dependent evolution since z ∼ 1, where high-mass disk galaxies (M{sub *} > 10{sup 9} M{sub ☉}) evolve more in size and low-mass disk galaxies (M{sub *} ≤ 10{sup 9} M{sub ☉}) evolve more in luminosity.
Multi Dark Lens Simulations: weak lensing light-cones and data base presentation
NASA Astrophysics Data System (ADS)
Giocoli, Carlo; Jullo, Eric; Metcalf, R. Benton; de la Torre, Sylvain; Yepes, Gustavo; Prada, Francisco; Comparat, Johan; Göttlober, Stefan; Kyplin, Anatoly; Kneib, Jean-Paul; Petkova, Margarita; Shan, Huan Yuan; Tessore, Nicolas
2016-09-01
In this paper we present a large data base of weak lensing light cones constructed using different snapshots from the Big MultiDark simulation (BigMDPL). The ray-tracing through different multiple plane has been performed with the GLAMER code accounting both for single source redshifts and for sources distributed along the cosmic time. This first paper presents weak lensing forecasts and results according to the geometry of the VIPERS-W1 and VIPERS-W4 field of view. Additional fields will be available on our data base and new ones can be run upon request. Our data base also contains some tools for lensing analysis. In this paper we present results for convergence power spectra, one point and high order weak lensing statistics useful for forecasts and for cosmological studies. Covariance matrices have also been computed for the different realizations of the W1 and W4 fields. In addition we compute also galaxy-shear and projected density contrasts for different halo masses at two lens redshift according to the CFHTLS source redshift distribution both using stacking and cross-correlation techniques, finding very good agreement.
MultiDarkLens Simulations: weak lensing light-cones and data base presentation
NASA Astrophysics Data System (ADS)
Giocoli, Carlo; Jullo, Eric; Metcalf, R. Benton; de la Torre, Sylvain; Yepes, Gustavo; Prada, Francisco; Comparat, Johan; Göttlober, Stefan; Kyplin, Anatoly; Kneib, Jean-Paul; Petkova, Margarita; Shan, HuanYuan; Tessore, Nicolas
2016-06-01
In this paper we present a large database of weak lensing light cones constructed using different snapshots from the Big MultiDark simulation (BigMDPL). The ray-tracing through different multiple plane has been performed with the GLAMER code accounting both for single source redshifts and for sources distributed along the cosmic time. This first paper presents weak lensing forecasts and results according to the geometry of the VIPERS-W1 and VIPERS-W4 field of view. Additional fields will be available on our database and new ones can be run upon request. Our database also contains some tools for lensing analysis. In this paper we present results for convergence power spectra, one point and high order weak lensing statistics useful for forecasts and for cosmological studies. Covariance matrices have also been computed for the different realisations of the W1 and W4 fields. In addition we compute also galaxy-shear and projected density contrasts for different halo masses at two lens redshift according to the CFHTLS source redshift distribution both using stacking and cross-correlation techniques, finding very good agreement.
Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field
Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.
2013-11-20
The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.
Joint cosmic microwave background and weak lensing analysis: constraints on cosmological parameters.
Contaldi, Carlo R; Hoekstra, Henk; Lewis, Antony
2003-06-01
We use cosmic microwave background (CMB) observations together with the red-sequence cluster survey weak lensing results to derive constraints on a range of cosmological parameters. This particular choice of observations is motivated by their robust physical interpretation and complementarity. Our combined analysis, including a weak nucleosynthesis constraint, yields accurate determinations of a number of parameters including the amplitude of fluctuations sigma(8)=0.89+/-0.05 and matter density Omega(m)=0.30+/-0.03. We also find a value for the Hubble parameter of H(0)=70+/-3 km s(-1) Mpc(-1), in good agreement with the Hubble Space Telescope key-project result. We conclude that the combination of CMB and weak lensing data provides some of the most powerful constraints available in cosmology today. PMID:12857304
Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O
2014-04-01
We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics. PMID:24745402
NASA Astrophysics Data System (ADS)
Ade, P. A. R.; Akiba, Y.; Anthony, A. E.; Arnold, K.; Atlas, M.; Barron, D.; Boettger, D.; Borrill, J.; Borys, C.; Chapman, S.; Chinone, Y.; Dobbs, M.; Elleflot, T.; Errard, J.; Fabbian, G.; Feng, C.; Flanigan, D.; Gilbert, A.; Grainger, W.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Holzapfel, W. L.; Hori, Y.; Howard, J.; Hyland, P.; Inoue, Y.; Jaehnig, G. C.; Jaffe, A.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Leitch, E. M.; Linder, E.; Lungu, M.; Matsuda, F.; Matsumura, T.; Meng, X.; Miller, N. J.; Morii, H.; Moyerman, S.; Myers, M. J.; Navaroli, M.; Nishino, H.; Paar, H.; Peloton, J.; Poletti, D.; Quealy, E.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K.; Schanning, I.; Schenck, D. E.; Sherwin, B. D.; Shimizu, A.; Shimmin, C.; Shimon, M.; Siritanasak, P.; Smecher, G.; Spieler, H.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Takakura, S.; Tikhomirov, A.; Tomaru, T.; Wilson, B.; Yadav, A.; Zahn, O.; Polarbear Collaboration
2014-04-01
We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.
Matter in the Beam: Weak Lensing, Substructures, and the Temperature of Dark Matter
NASA Astrophysics Data System (ADS)
Mahdi, Hareth S.; Elahi, Pascal J.; Lewis, Geraint F.; Power, Chris
2016-08-01
Warm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows that the weak lensing magnification, convergence, and shear distributions can be used to distinguish between CDM and WDM models. WDM models increase the probability of weak magnifications, with the differences being significant to ≳5σ, while leaving no significant imprint on the shear distribution. WDM clusters analyzed in this work are more homogeneous than CDM ones, and the fractional decrease in the amount of material in haloes is proportional to the average increase in the magnification. This difference arises from matter that would be bound in compact haloes in CDM being smoothly distributed over much larger volumes at lower densities in WDM. Moreover, the signature does not solely lie in the probability distribution function but in the full spatial distribution of the convergence field.
Constraining the minimum luminosity of high redshift galaxies through gravitational lensing
Mashian, Natalie; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu
2013-12-01
We simulate the effects of gravitational lensing on the source count of high redshift galaxies as projected to be observed by the Hubble Frontier Fields program and the James Webb Space Telescope (JWST) in the near future. Taking the mass density profile of the lensing object to be the singular isothermal sphere (SIS) or the Navarro-Frenk-White (NFW) profile, we model a lens residing at a redshift of z{sub L} = 0.5 and explore the radial dependence of the resulting magnification bias and its variability with the velocity dispersion of the lens, the photometric sensitivity of the instrument, the redshift of the background source population, and the intrinsic maximum absolute magnitude (M{sub max}) of the sources. We find that gravitational lensing enhances the number of galaxies with redshifts z∼> 13 detected in the angular region θ{sub E}/2 ≤ θ ≤ 2θ{sub E} (where θ{sub E} is the Einstein angle) by a factor of ∼ 3 and 1.5 in the HUDF (df/dν{sub 0} ∼ 9 nJy) and medium-deep JWST surveys (df/dν{sub 0} ∼ 6 nJy). Furthermore, we find that even in cases where a negative magnification bias reduces the observed number count of background sources, the lensing effect improves the sensitivity of the count to the intrinsic faint-magnitude cut-off of the Schechter luminosity function. In a field centered on a strong lensing cluster, observations of z∼> 6 and z∼> 13 galaxies with JWST can be used to infer this cut-off magnitude for values as faint as M{sub max} ∼ -14.4 and -16.1 mag (L{sub min} ≈ 2.5 × 10{sup 26} and 1.2 × 10{sup 27} erg s{sup −1} Hz{sup −1}) respectively, within the range bracketed by existing theoretical models. Gravitational lensing may therefore offer an effective way of constraining the low-luminosity cut-off of high-redshift galaxies.
STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827
Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.
2010-06-01
We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.
How gravitational lensing helps γ-ray photons avoid γ – γ absorption
Barnacka, Anna; Böttcher, Markus; Sushch, Iurii E-mail: Markus.Bottcher@nwu.ac.za
2014-08-01
We investigate potential γ – γ absorption of γ-ray emission from blazars arising from inhomogeneities along the line of sight, beyond the diffuse Extragalactic Background Light (EBL). As plausible sources of excess γ – γ opacity, we consider (1) foreground galaxies, including cases in which this configuration leads to strong gravitational lensing, (2) individual stars within these foreground galaxies, and (3) individual stars within our own galaxy, which may act as lenses for microlensing events. We found that intervening galaxies close to the line of sight are unlikely to lead to significant excess γ – γ absorption. This opens up the prospect of detecting lensed gamma-ray blazars at energies above 10 GeV with their gamma-ray spectra effectively only affected by the EBL. The most luminous stars located either in intervening galaxies or in our galaxy provide an environment in which these gamma-rays could, in principle, be significantly absorbed. However, despite a large microlensing probability due to stars located in intervening galaxies, γ-rays avoid absorption by being deflected by the gravitational potentials of such intervening stars to projected distances ({sup i}mpact parameters{sup )} where the resulting γ – γ opacities are negligible. Thus, neither of the intervening excess photon fields considered here, provide a substantial source of excess γ – γ opacity beyond the EBL, even in the case of very close alignments between the background blazar and a foreground star or galaxy.
High-Resolution Infrared Imaging of FSC 10214+4724: Evidence for Gravitational Lensing
NASA Astrophysics Data System (ADS)
Graham, James R.; Liu, Michael C.
1995-08-01
We present near-infrared observations of the ultraluminous high-redshift (z = 2.286) IRAS source FSC 10214+4724 obtained in 0."4 seeing at the W. M. Keck telescope. These observations show that FSC 10214+4724 consists of a highly symmetric circular arc centered on a second weaker source. The arc has an angular extent of about 140 deg and is probably unresolved in the transverse direction. This morphology constitutes compelling prima facie evidence for a gravitationally lensed system. Our images also contain evidence for the faint counterimage predicted by the lens hypothesis. The morphology of FSC 10214+4724 can be explained in terms of a gravitationally lensed background source if the object at the center of curvature of the arc is an L* galaxy at z ~ 0.7. If FSC 10214+4724 is lensed, then there is significant magnification and its luminosity has been overestimated by a large factor. Our results suggest that FSC 10214+4724 is not a uniquely luminous object but ranks among the most powerful quasars and ultraluminous IRAS galaxies.
Okura, Yuki; Petri, Andrea; May, Morgan; Plazas, Andrés A.; Tamagawa, Toru
2016-06-27
Weak gravitational lensing causes subtle changes in the apparent shapes of galaxies due to the bending of light by the gravity of foreground masses. By measuring the shapes of large numbers of galaxies (millions in recent surveys, up to tens of billions in future surveys) we can infer the parameters that determine cosmology. Imperfections in the detectors used to record images of the sky can introduce changes in the apparent shape of galaxies, which in turn can bias the inferred cosmological parameters. Here in this paper we consider the effect of two widely discussed sensor imperfections: tree-rings, due to impuritymore » gradients which cause transverse electric fields in the Charge-Coupled Devices (CCD), and pixel-size variation, due to periodic CCD fabrication errors. These imperfections can be observed when the detectors are subject to uniform illumination (flat field images). We develop methods to determine the spurious shear and convergence (due to the imperfections) from the flat-field images. We calculate how the spurious shear when added to the lensing shear will bias the determination of cosmological parameters. We apply our methods to candidate sensors of the Large Synoptic Survey Telescope (LSST) as a timely and important example, analyzing flat field images recorded with LSST prototype CCDs in the laboratory. In conclusion, we find that tree-rings and periodic pixel-size variation present in the LSST CCDs will introduce negligible bias to cosmological parameters determined from the lensing power spectrum, specifically w,Ωm and σ8.« less
PROBING THE INNER KILOPARSEC OF MASSIVE GALAXIES WITH STRONG GRAVITATIONAL LENSING
Hezaveh, Yashar D.; Marshall, Philip J.; Blandford, Roger D.
2015-01-30
We examine the prospects of detecting demagnified images of gravitational lenses in observations of strongly lensed millimeter-wave molecular emission lines with ALMA. We model the lensing galaxies as a superposition of a dark matter component, a stellar component, and a central super-massive black hole (SMBH) and assess the detectability of the central images for a range of relevant parameters (e.g., stellar core, black hole mass, and source size). We find that over a large range of plausible parameters, future deep observations of lensed molecular lines with ALMA should enable the detection of the central images at ≳3σ significance. We use a Fisher analysis to examine the constraints that could be placed on these parameters in various scenarios and find that for large stellar cores, both the core size and the mass of the central SMBHs can be accurately measured. We also study the prospects for detecting binary SMBHs with such observations and find that only under rare conditions and with very long integrations (∼40 hr) the masses of both SMBHs may be measured using the distortions of central images.
Weak lensing effects on the galaxy three-point correlation function
Schmidt, Fabian; Vallinotto, Alberto; Sefusatti, Emiliano; Dodelson, Scott
2008-08-15
We study the corrections to the galaxy three-point correlation function induced by weak lensing magnification due to the matter distribution along the line of sight. We consistently derive all the correction terms arising up to second order in perturbation theory and provide analytic expressions as well as order-of-magnitude estimates for their relative importance. The magnification contributions depend on the geometry of the projected triangle on the sky plane and scale with different powers of the number count slope and redshift of the galaxy sample considered. We evaluate all terms numerically and show that, depending on the triangle configuration as well as the galaxy sample considered, weak lensing can in general significantly contribute to and alter the three-point correlation function observed through galaxy and quasar catalogs.
Strong field limit analysis of gravitational lensing in Kerr-Taub-NUT spacetime
Wei, Shao-Wen; Liu, Yu-Xiao; Fu, Chun-E; Yang, Ke E-mail: liuyx@lzu.edu.cn E-mail: yangke09@lzu.edu.cn
2012-10-01
In this paper, we study numerically the quasi-equatorial lensing by the stationary, axially-symmetric black hole in Kerr-Taub-NUT spacetime in the strong field limit. The deflection angle of light ray and other strong deflection limit coefficients are obtained numerically and they are found to be closely dependent on the NUT charge n and spin a. We also compute the magnification and the positions of the relativistic images. The caustics are studied and the results show that these caustics drift away from the optical axis, which is quite different from the Schwarzschild black hole case. Moreover, the intersections of the critical curves on the equatorial plane are obtained and it is shown that they increase with the NUT charge. These results show that there is a significant effect of the NUT charge on the strong gravitational lensing.
Infrared imaging of MG 0414 + 0534 - The red gravitational lens systems as lensed radio galaxies
NASA Technical Reports Server (NTRS)
Annis, James; Luppino, Gerard A.
1993-01-01
We present an IR image of the gravitational lens system MG 0414 + 0534, and IR photometry of PG 1115 + 080, H1413 + 117, and Q1429 - 008. The IR of MG 0414 + 0534 shows a morphology that is similar to the radio and optical morphologies. The object is bright (K-prime = 13.7) and extremely red (I-K-prime = 5.7). MG 0414 + 0534 thus becomes the second radio-selected lens system to have very red optical IR colors. When plotted on a color-magnitude diagram of objects from a radio survey, MG 0414 + 0534 and the other very red system, MG 1131 + 0456, lie near the locus of radio galaxies. We therefore suggest that these systems are lensed high-redshift radio galaxies. In general, lensed radio galaxies should be common among lens systems selected from radio surveys, since a high proportion of radio sources are radio galaxies.
NASA Astrophysics Data System (ADS)
Ling, Chenxiaoji; Wang, Qiao; Li, Ran; Li, Baojiu; Wang, Jie; Gao, Liang
2015-09-01
We explore the Minkowski functionals (MFs) of weak lensing convergence map to distinguish between f (R ) gravity and the general relativity (GR). The mock weak lensing convergence maps are constructed with a set of high-resolution simulations assuming different gravity models. It is shown that the lensing MFs of f (R ) gravity can be considerably different from that of GR because of the environmentally dependent enhancement of structure formation. We also investigate the effect of lensing noise on our results, and find that it is likely to distinguish F5, F6, and GR gravity models with a galaxy survey of ˜3000 degree2 and with a background source number density of ng=30 arcmin-2 , comparable to an upcoming survey dark energy survey (DES).We also find that the f (R ) signal can be partially degenerate with the effect of changing cosmology, but combined use of other observations, such as the cosmic microwave background (CMB) data, can help break this degeneracy.
IDCS J1426.5+3508: Weak Lensing Analysis of a Massive Galaxy Cluster at z = 1.75
NASA Astrophysics Data System (ADS)
Mo, Wenli; Gonzalez, Anthony; Jee, M. James; Massey, Richard; Rhodes, Jason; Brodwin, Mark; Eisenhardt, Peter; Marrone, Daniel P.; Stanford, S. A.; Zeimann, Gregory R.
2016-02-01
We present a weak lensing study of the galaxy cluster IDCS J1426.5+3508 at z = 1.75, which is the highest-redshift strong lensing cluster known and the most distant cluster for which a weak lensing analysis has been undertaken. Using F160W, F814W, and F606W observations with the Hubble Space Telescope, we detect tangential shear at 2σ significance. Fitting a Navarro–Frenk–White mass profile to the shear with a theoretical median mass-concentration relation, we derive a mass {M}200,{crit}={2.3}-1.4+2.1× {10}14 M⊙. This mass is consistent with previous mass estimates from the Sunyaev–Zel’dovich (SZ) effect, X-ray, and strong lensing. The cluster lies on the local SZ–weak lensing mass scaling relation observed at low redshift, indicative of minimal evolution in this relation.
Weak Lensing Analysis of Massive Galaxy Cluster IDCS J1426.5+3508 at z=1.75
NASA Astrophysics Data System (ADS)
Mo, Wenli; Gonzalez, Anthony H.; Jee, Myungkook J.; Massey, Richard; Rhodes, Jason; Brodwin, Mark; Eisenhardt, Peter R.; Marrone, Daniel P.; Stanford, S. Adam; Zeimann, Gregory
2016-01-01
We present a weak lensing study of the galaxy cluster IDCS J1426.5+3508 at z=1.75, which is the highest redshift strong lensing cluster known and the most distant cluster for which a weak lensing analysis has been undertaken. Using F160W, F814W, and F606W observations with the Hubble Space Telescope, we detect tangential shear at 2σ significance. Fitting a Navarro-Frenk-White mass profile to the shear with a theoretical median mass-concentration relation, we derive a mass consistent with previous mass estimates from the Sunyaev-Zel'dovich (SZ) effect, X-ray, and strong lensing. The cluster lies on the local SZ-weak lensing mass scaling relation observed at low redshift, indicative of minimal evolution in this relation.
Non-Gaussian forecasts of weak lensing with and without priors
NASA Astrophysics Data System (ADS)
Sellentin, Elena; Schäfer, Björn Malte
2016-02-01
Including priors into a data analysis can mask the information content of a given data set alone. However, since the information content of a data set is usually estimated with the Fisher matrix, priors are added to enforce an approximately Gaussian likelihood. Here, we estimate the information content of a Euclid-like weak lensing data set with and without priors. Without priors, the Fisher matrix for 2d-weak lensing includes unphysical values of Ωm and h. The Cramer-Rao inequality then does not need to apply. We find that the new DALI expansion and Monte Carlo Markov Chains agree well and predict the presence of a dark energy with high significance, whereas a Fisher forecast also allows decelerated expansion. We find that a 2d-weak lensing analysis provides a sharp lower limit on the Hubble constant of h > 0.4, even if the equation of state of dark energy is jointly estimated. This is not predicted by the Fisher matrix and usually masked in other works by a sharp prior on h. Additionally, we find that DALI estimates Figures of Merit in the presence of non-Gaussianities better than the Fisher matrix and demonstrate how DALI allows switching to a speedy Hamiltonian Monte Carlo sampling of a highly curved likelihood with acceptance rates of ≈0.5. This shows how quick forecasts can be upgraded to accurate forecasts whenever needed. Results were gained with the public code from DALI.
MEASURING PRIMORDIAL NON-GAUSSIANITY THROUGH WEAK-LENSING PEAK COUNTS
Marian, Laura; Hilbert, Stefan; Smith, Robert E.; Schneider, Peter; Desjacques, Vincent
2011-02-10
We explore the possibility of detecting primordial non-Gaussianity of the local type using weak-lensing peak counts. We measure the peak abundance in sets of simulated weak-lensing maps corresponding to three models f{sub NL} = 0, - 100, and 100. Using survey specifications similar to those of EUCLID and without assuming any knowledge of the lens and source redshifts, we find the peak functions of the non-Gaussian models with f{sub NL} = {+-}100 to differ by up to 15% from the Gaussian peak function at the high-mass end. For the assumed survey parameters, the probability of fitting an f{sub NL} = 0 peak function to the f{sub NL} = {+-}100 peak functions is less than 0.1%. Assuming the other cosmological parameters are known, f{sub NL} can be measured with an error {Delta}f{sub NL} {approx} 13. It is therefore possible that future weak-lensing surveys like EUCLID and LSST may detect primordial non-Gaussianity from the abundance of peak counts, and provide information complementary to that obtained from the cosmic microwave background.
The CASSOWARY spectroscopy survey: a new sample of gravitationally lensed galaxies in SDSS
NASA Astrophysics Data System (ADS)
Stark, Daniel P.; Auger, Matthew; Belokurov, Vasily; Jones, Tucker; Robertson, Brant; Ellis, Richard S.; Sand, David J.; Moiseev, Alexei; Eagle, Will; Myers, Thomas
2013-12-01
Bright gravitationally lensed galaxies provide our most detailed view of galaxies at high redshift. The very brightest (r < 21) systems enable high spatial and spectral resolution measurements, offering unique constraints on the outflow energetics, metallicity gradients and stellar populations in high-redshift galaxies. Yet as a result of the small number of ultrabright z ≃ 2 lensed systems with confirmed redshifts, most detailed spectroscopic studies have been limited in their scope. With the goal of increasing the number of bright lensed galaxies available for detailed follow-up, we have undertaken a spectroscopic campaign targeting wide separation (≳3 arcsec) galaxy-galaxy lens candidates within the Sloan Digital Sky Survey (SDSS). Building on the earlier efforts of our Cambridge and Sloan Survey Of Wide Arcs in Thesky survey, we target a large sample of candidate galaxy-galaxy lens systems in SDSS using a well-established search algorithm which identifies blue arc-like structures situated around luminous red galaxies. In this paper, we present a new redshift catalogue containing 29 lensed sources in SDSS confirmed through spectroscopic follow-up of candidate galaxy-galaxy lens systems. Included in this new sample are two of the brightest galaxies (r = 19.6 and 19.7) known at z ≃ 2, a low metallicity (12 + log (O/H) ≃ 8.0) extreme nebular line emitting galaxy at z = 1.43, and numerous systems for which detailed follow-up will be possible. The source redshifts span 0.9 < z < 2.5 (median redshift of 1.9), and their optical magnitudes are in the range 19.6 ≲ r ≲ 22.3. We present a brief source-by-source discussion of the spectroscopic properties extracted from our confirmatory spectra and discuss some initial science results. Preliminary lens modelling reveals average source magnifications of 5-10 times. With more than 50 gravitationally lensed z ≳ 1 galaxies now confirmed within SDSS, it will soon be possible for the first time to develop generalized
Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data
NASA Astrophysics Data System (ADS)
Viola, M.; Cacciato, M.; Brouwer, M.; Kuijken, K.; Hoekstra, H.; Norberg, P.; Robotham, A. S. G.; van Uitert, E.; Alpaslan, M.; Baldry, I. K.; Choi, A.; de Jong, J. T. A.; Driver, S. P.; Erben, T.; Grado, A.; Graham, Alister W.; Heymans, C.; Hildebrandt, H.; Hopkins, A. M.; Irisarri, N.; Joachimi, B.; Loveday, J.; Miller, L.; Nakajima, R.; Schneider, P.; Sifón, C.; Verdoes Kleijn, G.
2015-10-01
The Kilo-Degree Survey is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of ˜1400 spectroscopically identified galaxy groups and clusters from the Galaxy And Mass Assembly survey. We detect a highly significant signal (signal-to-noise-ratio ˜120), allowing us to study the properties of dark matter haloes over one and a half order of magnitude in mass, from M ˜ 1013-1014.5 h-1 M⊙. We interpret the results for various subsamples of groups using a halo model framework which accounts for the mis-centring of the brightest cluster galaxy (used as the tracer of the group centre) with respect to the centre of the group's dark matter halo. We find that the density profiles of the haloes are well described by an NFW profile with concentrations that agree with predictions from numerical simulations. In addition, we constrain scaling relations between the mass and a number of observable group properties. We find that the mass scales with the total r-band luminosity as a power law with slope 1.16 ± 0.13 (1σ) and with the group velocity dispersion as a power law with slope 1.89 ± 0.27 (1σ). Finally, we demonstrate the potential of weak lensing studies of groups to discriminate between models of baryonic feedback at group scales by comparing our results with the predictions from the Cosmo-OverWhelmingly Large Simulations project, ruling out models without AGN feedback.
NASA Astrophysics Data System (ADS)
High, F. W.; Hoekstra, H.; Leethochawalit, N.; de Haan, T.; Abramson, L.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bazin, G.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Conroy, M.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Natoli, T.; Nurgaliev, D.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; Šuhada, R.; Tokarz, S.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.
2012-10-01
We use weak gravitational lensing to measure the masses of five galaxy clusters selected from the South Pole Telescope (SPT) survey, with the primary goal of comparing these with the SPT Sunyaev-Zel'dovich (SZ) and X-ray-based mass estimates. The clusters span redshifts 0.28 < z < 0.43 and have masses M 500 > 2 × 1014 h -1 M ⊙, and three of the five clusters were discovered by the SPT survey. We observed the clusters in the g'r'i' passbands with the Megacam imager on the Magellan Clay 6.5 m telescope. We measure a mean ratio of weak-lensing (WL) aperture masses to inferred aperture masses from the SZ data, both within an aperture of R 500, SZ derived from the SZ mass, of 1.04 ± 0.18. We measure a mean ratio of spherical WL masses evaluated at R 500, SZ to spherical SZ masses of 1.07 ± 0.18, and a mean ratio of spherical WL masses evaluated at R 500, WL to spherical SZ masses of 1.10 ± 0.24. We explore potential sources of systematic error in the mass comparisons and conclude that all are subdominant to the statistical uncertainty, with dominant terms being cluster concentration uncertainty and N-body simulation calibration bias. Expanding the sample of SPT clusters with WL observations has the potential to significantly improve the SPT cluster mass calibration and the resulting cosmological constraints from the SPT cluster survey. These are the first WL detections using Megacam on the Magellan Clay telescope.
NASA Astrophysics Data System (ADS)
Hagstotz, Steffen; Schäfer, Björn Malte; Merkel, Philipp M.
2015-11-01
Many weak-lensing calculations make use of the Born approximation where the light ray is approximated by a straight path. We examine the effect of Born-corrections for lensing of the cosmic microwave background (CMB) in an analytical approach by taking perturbative corrections to the geodesic into account. The resulting extra power in the lensing potential spectrum is comparable to the power generated by non-linear structure formation and affects especially the polarization spectra, leading to relative changes of the order of 10-3 for the E-mode spectrum and several per cent on all scales to the B-mode spectrum. In contrast, there is only little change of spectra involving the CMB temperature. Additionally, the corrections excite one more degree of freedom resulting in a deflection component which cannot be described as a gradient of the lensing potential as it is related to image rotation in lens-lens coupling. We estimate the magnitude of this effect on the CMB spectra and find it to be negligible.
Full-sky formulae for weak lensing power spectra from total angular momentum method
Yamauchi, Daisuke; Taruya, Atsushi; Namikawa, Toshiya E-mail: namikawa@yukawa.kyoto-u.ac.jp
2013-08-01
We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra.
NASA Astrophysics Data System (ADS)
Niikura, Hiroko; Takada, Masahiro; Okabe, Nobuhiro; Martino, Rossella; Takahashi, Ryuichi
2015-12-01
We develop a novel method of measuring the lensing distortion profiles of clusters by stacking the "scaled" amplitudes of background galaxy ellipticities as a function of the "scaled" centric radius according to the Navarro-Frenk-White (NFW) prediction of each cluster, based on the assumption that the different clusters in a sample follow the universal NFW profile. First we demonstrate the feasibility of this method using both the analytical NFW model and simulated halos in a suite of high-resolution N-body simulations. We then apply, as a proof of concept, this method to the Subaru weak lensing data and the XMM/Chandra X-ray observables for a sample of 50 massive clusters in the redshift range 0.15 ≤ z ≤ 0.3, where their halo masses differ from each other by up to a factor of 10. To estimate the NFW parameters of each cluster, we use the halo mass proxy relation of X-ray observables, based on either the hydrostatic equilibrium or the gas mass, and then infer the halo concentration from the model scaling relation of halo concentration with halo mass. We evaluate the performance of the NFW scaling analysis by measuring the scatters of 50 cluster lensing profiles relative to the NFW predictions over a range of radii, 0.14 ≤ R/[h-1 Mpc] ≤ 2.8. We found 4-6 σ-level evidence of the universal NFW profile in 50 clusters, for both the X-ray halo mass proxy relations, although the gas mass appears to be a better proxy of the underlying true mass. By comparing the measurements with the simulations of cluster lensing profiles taking into account the statistical errors of intrinsic galaxy shapes in the Subaru data, we argue that additional halo mass errors or intrinsic scatters of σ(M500c)/M500c ˜ 0.2-0.3 could reconcile the difference between measurements and simulations. This method allows us to some extent to preserve characteristics of individual clusters in the statistical weak lensing analysis, thereby yielding a new means of exploiting the underlying genuine
Analyzing Star Formation Properties in Dusty Early Universe Galaxies Using Gravitational Lensing
NASA Astrophysics Data System (ADS)
Bradli, Jaclyn C.; Bussmann, R. Shane; Riechers, Dominik A.; Clements, David; Perez-Fournon, Ismael
2015-01-01
Strong gravitational lensing has recently become one of the most important tools for studying star formation properties in extremely high redshift galaxies. Dust-obscured star-forming galaxies found at far-infrared/sub-millimeter wavelengths are important in the assembly of stellar mass and the evolution of massive galaxies. We present Submillimeter Array (SMA) imaging of Lockman 102, a strongly lensed submillimeter galaxy at z=5.29, discovered by the Herschel Space Observatory. The system was observed at 250, 350, 500 and 1000 microns, corresponding to rest frame wavelengths of 40, 56, 80, and 159 microns respectively. The observations were targeted at the thermal dust emission and the [CII] interstellar medium cooling line. We report an estimated photometric redshift of ~1.9 for the lensing galaxy, making it possibly the most distant lens currently known. We use uvmcmcfit, a publicly available Markov Chain Monte Carlo software tool we have developed for interferometric data, to fit lens models to Lockman 102. The results obtained from uvmcmcfit suggest the lensed system is composed of a single lensing galaxy and two extended sources. We have strong constraints on an intrinsic flux density of Lockman 102 of 4.55 + 0.45 mJy magnified by a factor of 12.5 + 1.2. From a modified blackbody fit we compute an intrinsic far infrared luminosity of 5.5e12 L⊙.This implies a star formation rate of ~950 M⊙ yr-1, making Lockman 102 an extremely active dusty galaxy. We also compare Lockman 102 to other dusty luminous starburst galaxies at similar redshift, HLS0918 (Rawle et al. 2014) and AzTEC-3 (Riechers et al. 2014a) and determine it is among the most luminous and active galaxies ~1 Gyr after the Big Bang. It is only with strong lensing that the SMA is able to undertake such a detailed study of a galaxy at this distance; the continued improvements from new facilities such as ALMA offer a promising future in observing even more distant lensed systems.
Cosmological constraints from the large-scale weak lensing of SDSS MaxBCG clusters
NASA Astrophysics Data System (ADS)
Zu, Ying; Weinberg, David H.; Rozo, Eduardo; Sheldon, Erin S.; Tinker, Jeremy L.; Becker, Matthew R.
2014-04-01
We derive constraints on the matter density Ωm and the amplitude of matter clustering σ8 from measurements of large-scale weak lensing (projected separation R = 5-30 h-1 Mpc) by clusters in the Sloan Digital Sky Survey MaxBCG catalogue. The weak lensing signal is proportional to the product of Ωm and the cluster-mass correlation function ξcm. With the relation between optical richness and cluster mass constrained by the observed cluster number counts, the predicted lensing signal increases with increasing Ωm or σ8, with mild additional dependence on the assumed scatter between richness and mass. The dependence of the signal on scale and richness partly breaks the degeneracies among these parameters. We incorporate external priors on the richness-mass scatter from comparisons to X-ray data and on the shape of the matter power spectrum from galaxy clustering, and we test our adopted model for ξcm against N-body simulations. Using a Bayesian approach with minimal restrictive priors, we find σ8(Ωm/0.325)0.501 = 0.828 ± 0.049, with marginalized constraints of Ω _m=0.325_{-0.067}^{+0.086} and σ _8=0.828_{-0.097}^{+0.111}, consistent with constraints from other MaxBCG studies that use weak lensing measurements on small scales (R ≤ 2 h-1 Mpc). The (Ωm, σ8) constraint is consistent with and orthogonal to the one inferred from Wilkinson Microwave Anisotropy Probe cosmic microwave background data, reflecting agreement with the structure growth predicted by General Relativity for a Λ cold dark matter (ΛCDM) cosmological model. A joint constraint assuming ΛCDM yields Ω _m=0.298_{-0.020}^{+0.019} and σ _8=0.831_{-0.020}^{+0.020}. For these parameters and our best-fitting scatter, we obtain a tightly constrained mean richness-mass relation of MaxBCG clusters, N200 = 25.4(M/3.61 × 1014 h-1 M⊙)0.74, with a normalization uncertainty of 1.5 per cent. Our cosmological parameter errors are dominated by the statistical uncertainties of the large-scale weak
ERIC Educational Resources Information Center
Turner, Edwin L.
1988-01-01
Describes cosmic flukes which offer a unique window on new information about the universe. Discusses the historical background, theory, and detection of this effect. Proposes the importance of information found by the examination of these phenomena. (CW)
Chen, Yun; Geng, Chao-Qiang; Cao, Shuo; Huang, Yu-Mei; Zhu, Zong-Hong E-mail: geng@phys.nthu.edu.tw E-mail: huangymei@gmail.com
2015-02-01
We constrain the scalar field dark energy model with an inverse power-law potential, i.e., V(φ) ∝ φ{sup −α} (α > 0), from a set of recent cosmological observations by compiling an updated sample of Hubble parameter measurements including 30 independent data points. Our results show that the constraining power of the updated sample of H(z) data with the HST prior on H{sub 0} is stronger than those of the SCP Union2 and Union2.1 compilations. A recent sample of strong gravitational lensing systems is also adopted to confine the model even though the results are not significant. A joint analysis of the strong gravitational lensing data with the more restrictive updated Hubble parameter measurements and the Type Ia supernovae data from SCP Union2 indicates that the recent observations still can not distinguish whether dark energy is a time-independent cosmological constant or a time-varying dynamical component.
SDSS J131339.98+515128.3: A new GravitationallyLensed Quasar Selected Based on Near-infrared Excess
Ofek, E.O.; Oguri, M.; Jackson, N.; Inada, N.; Kayo, I.
2007-09-28
We report the discovery of a new gravitationally lensed quasar, SDSS J131339.98+515128.3, at a redshift of 1:875 with an image separation of 1: 0024. The lensing galaxy is clearly detected in visible-light follow-up observations. We also identify three absorption-line doublets in the spectra of the lensed quasar images, from which we measure the lens redshift to be 0:194. Like several other known lenses, the lensed quasar images have different continuum slopes. This difference is probably the result of reddening and microlensing in the lensing galaxy. The lensed quasar was selected by correlating Sloan Digital Sky Survey (SDSS) spectroscopic quasars with Two Micron All Sky Survey (2MASS) sources and choosing quasars that show near-infrared (IR) excess. The near-IR excess can originate, for example, from the contribution of the lensing galaxy at near-IR wavelengths. We show that the near-IR excess technique is indeed an efficient method to identify lensed systems from a large sample of quasars.
Gravitational lensing limits on the cosmological constant in a flat universe
NASA Technical Reports Server (NTRS)
Turner, Edwin L.
1990-01-01
Inflationary cosmological theories predict, and some more general aesthetic criteria suggest, that the large-scale spatial curvature of the universe k should be accurately zero (i.e., flat), a condition which is satisfied when the universe's present mean density and the value of the cosmological constant Lambda have certain pairs of values. Available data on the frequency of multiple image-lensing of high-redshift quasars by galaxies suggest that the cosmological constant cannot make a dominant contribution to producing a flat universe. In particular, if the mean density of the universe is as small as the baryon density inferred from standard cosmic nucleosynthesis calculations or as determined from typical dynamical studies of galaxies and galaxy clusters, then a value of Lambda large enough to produce a k = 0 universe would result in a substantially higher frequency of multiple-image lensing of quasars than has been observed so far. Shortcomings of the available lens data and uncertainties concerning galaxy properties allow some possibility of escaping this conclusion, but systematic searches for a gravitational lenses and continuing investigations of galaxy mass distributions should soon provide decisive information. It is also noted that nonzero-curvature cosmological models can account for the observed frequency of galaxy-quasar lens systems and for a variety of other constraints.
A WEAK-LENSING AND NEAR-INFRARED STUDY OF A3192: DISASSEMBLING A RICHNESS CLASS 3 ABELL CLUSTER
Hamilton-Morris, Victoria; Smith, Graham P.; Haines, C. P.; Sanderson, A. J. R.; Edge, A. C.; Egami, E.; Marshall, P. J.; Targett, T. A. E-mail: gps@star.sr.bham.ac.uk
2012-04-01
We present a joint gravitational lensing and near-infrared study of the galaxy cluster Abell 3192 (A3192) that has been associated both with galaxies at z = 0.168 and with the X-ray luminous cluster RXC J0358.8-2955 (RXC J0358) at z = 0.425. Weak-lensing analysis of our Hubble Space Telescope snapshot observation with the Advanced Camera for Surveys detects two mass over-densities separated by {approx}2 arcmin, one adjacent to the optical position of A3192 (4.4{sigma} significance) and the other adjacent to the X-ray position of RXC J0358 (6.2{sigma} significance). These mass peaks coincide with peaks in the K-band luminosity density of galaxies with near-infrared colors consistent with the red sequence at z = 0.168 and z 0.425, respectively. Moreover, the Bayesian evidence of parameterized mass models that include two cluster/group-scale halos centered on the respective mass peaks exceeds that of single-halo models by a factor of {>=}10. The total projected mass of each galaxy system within 250 kpc of the respective peaks is M{sub WL}(z = 0.168) {approx_equal} 3 Multiplication-Sign 10{sup 13} M{sub Sun} and M{sub WL}(z = 0.425) {approx_equal} 1.2 Multiplication-Sign 10{sup 14} M{sub Sun }, both with total mass-to-light ratios of M{sub WL}/L{sub K} {approx_equal} 20 M{sub Sun }/L{sub Sun }. The original Abell cluster therefore comprises two independent galaxy systems-a foreground group at z = 0.168 and RXC J0358 at z = 0.425. Our results demonstrate the power of combining X-ray, near-infrared, and weak-lensing observations to select massive clusters, place those clusters and interloper galaxy systems along the line of sight, and measure their masses. This combination will be invaluable to robust interpretation of future high-redshift cluster surveys, including eROSITA.
NASA Astrophysics Data System (ADS)
Sotani, Hajime; Miyamoto, Umpei
2015-08-01
We systematically examine the properties of null geodesics around an electrically charged, asymptotically flat black hole in Eddington-inspired Born-Infeld gravity, varying the electric charge of the black hole and the coupling constant in the theory. We find that the radius of the unstable circular orbit for a massless particle decreases with the coupling constant, if the value of the electrical charge is fixed. Additionally, we consider the strong gravitational lensing around such a black hole. We show that the deflection angle, the position angle of the relativistic images, and the magnification due to the light bending in strong gravitational field are quite sensitive to the parameters determining the black hole solution. Thus, through the accurate observations associated with the strong gravitational lensing, it might be possible to reveal the gravitational theory in a strong field regime.
Effects of dark matter substructures on gravitational lensing: results from the Aquarius simulations
NASA Astrophysics Data System (ADS)
Xu, D. D.; Mao, Shude; Wang, Jie; Springel, V.; Gao, Liang; White, S. D. M.; Frenk, Carlos S.; Jenkins, Adrian; Li, Guoliang; Navarro, Julio F.
2009-09-01
We use the high-resolution Aquarius simulations of the formation of Milky Way-sized haloes in the Λ cold dark matter cosmology to study the effects of dark matter substructures on gravitational lensing. Each halo is resolved with ~108 particles (at a mass resolution mp ~ 103 to 104h-1Msolar) within its virial radius. Subhaloes with masses msub >~ 105h-1Msolar are well resolved, an improvement of at least two orders of magnitude over previous lensing studies. We incorporate a baryonic component modelled as a Hernquist profile and account for the response of the dark matter via adiabatic contraction. We focus on the `anomalous' flux ratio problem, in particular on the violation of the cusp-caustic relation due to substructures. We find that subhaloes with masses less than ~108h-1Msolar play an important role in causing flux anomalies; such low-mass subhaloes have been unresolved in previous studies. There is large scatter in the predicted flux ratios between different haloes and between different projections of the same halo. In some cases, the frequency of predicted anomalous flux ratios is comparable to that observed for the radio lenses, although in most cases it is not. The probability for the simulations to reproduce the observed violations of the cusp lenses is ~10-3. We therefore conclude that the amount of substructure in the central regions of the Aquarius haloes is insufficient to explain the observed frequency of violations of the cusp-caustic relation. These conclusions are based purely on our dark matter simulations which ignore the effect of baryons on subhalo survivability.
Small-scale structures of dark matter and flux anomalies in quasar gravitational lenses
NASA Astrophysics Data System (ADS)
Metcalf, R. Benton; Amara, Adam
2012-02-01
We investigate the statistics of flux anomalies in gravitationally lensed quasi-stellar objects as a function of dark matter halo properties such as substructure content and halo ellipticity. We do this by creating a very large number of simulated lenses with finite source sizes to compare with the data. After analysing these simulations, we conclude the following. (1) The finite size of the source is important. The point source approximation commonly used can cause biased results. (2) The widely used Rcusp statistic is sensitive to halo ellipticity as well as the lens' substructure content. (3) For compact substructure, we find new upper bounds on the amount of substructure from the fact that no simple single-galaxy lenses have been observed with a single source having more than four well separated images. (4) The frequency of image flux anomalies is largely dependent on the total surface mass density in substructures and the size-mass relation for the substructures, and not on the range of substructure masses. (5) Substructure models with the same size-mass relation produce similar numbers of flux anomalies even when their internal mass profiles are different. (6) The lack of high image multiplicity lenses puts a limit on a combination of the substructures' size-mass relation, surface density and mass. (7) Substructures with shallower mass profiles and/or larger sizes produce less extra images. (8) The constraints that we are able to measure here with current data are roughly consistent with Λ cold dark matter (ΛCDM) N-body simulations.
Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Henderson, C. B.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others
2012-05-20
We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
NASA Astrophysics Data System (ADS)
Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Gaudi, B. S.; Henderson, C. B.; Hung, L.-W.; Jablonski, F.; Janczak, J.; Lee, C.-U.; Mallia, F.; Maury, A.; McCormick, J.; McGregor, D.; Monard, L. A. G.; Moorhouse, D.; Muñoz, J. A.; Natusch, T.; Nelson, C.; Park, B.-G.; Pogge, R. W.; "TG" Tan, T.-G.; Thornley, G.; Yee, J. C.; μFUN Collaboration; Abe, F.; Barnard, E.; Baudry, J.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Furusawa, K.; Hayashi, F.; Hearnshaw, J. B.; Hosaka, S.; Itow, Y.; Kamiya, K.; Kilmartin, P. M.; Kobara, S.; Korpela, A.; Lin, W.; Ling, C. H.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Nagaya, M.; Nishimoto, K.; Ohnishi, K.; Okumura, T.; Omori, K.; Perrott, Y. C.; Rattenbury, N.; Saito, To.; Skuljan, L.; Sullivan, D. J.; Suzuki, D.; Suzuki, K.; Sweatman, W. L.; Takino, S.; Tristram, P. J.; Wada, K.; Yock, P. C. M.; MOA Collaboration; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; OGLE Collaboration; Albrow, M. D.; Bachelet, E.; Batista, V.; Bennett, C. S.; Bowens-Rubin, R.; Brillant, S.; Cassan, A.; Cole, A.; Corrales, E.; Coutures, Ch.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Kane, S. R.; Menzies, J.; Sahu, K. C.; Wambsganss, J.; Williams, A.; Zub, M.; PLANET Collaboration; Allan, A.; Bramich, D. M.; Browne, P.; Clay, N.; Fraser, S.; Horne, K.; Kains, N.; Mottram, C.; Snodgrass, C.; Steele, I.; Tsapras, Y.; RoboNet Collaboration; Alsubai, K. A.; Bozza, V.; Burgdorf, M. J.; Calchi Novati, S.; Dodds, P.; Dreizler, S.; Finet, F.; Gerner, T.; Glitrup, M.; Grundahl, F.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Hundertmark, M.; Jørgensen, U. G.; Kerins, E.; Liebig, C.; Maier, G.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Proft, S.; Rahvar, S.; Ricci, D.; Scarpetta, G.; Schäfer, S.; Schönebeck, F.; Skottfelt, J.; Surdej, J.; Southworth, J.; Zimmer, F.; MiNDSTEp Consortium
2012-05-01
We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θE ~ 0.08 mas combined with the short timescale of t E ~ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ~0.84 M ⊙ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
NASA Astrophysics Data System (ADS)
Linet, B.; Teyssandier, P.
2016-02-01
We present a complete analysis of the light rays within the linearized, weak-field approximation of a Schwarzschild-like metric describing the gravitational field of an isolated, spherically symmetric body. We prove in this context the existence of two time transfer functions and we obtain these functions in an exact closed-form. We are led to distinguish two regimes. In the first regime, the two time transfer functions correspond to rays which are confined in regions of spacetime where the weak-field approximation is valid. Such a regime occurs in gravitational lensing configurations with double images of a given source. We find the general expressions of the angular separation and the difference in light travel time between the two images. In the second regime, there exists only one time transfer function corresponding to a light ray remaining in a region of weak field. Performing a Taylor expansion of this function with respect to the gravitational constant, we obtain the Shapiro time delay completed by a series of so-called "enhanced terms." The enhanced terms beyond the third order are new.
A new model to predict weak-lensing peak counts. II. Parameter constraint strategies
NASA Astrophysics Data System (ADS)
Lin, Chieh-An; Kilbinger, Martin
2015-11-01
Context. Peak counts have been shown to be an excellent tool for extracting the non-Gaussian part of the weak lensing signal. Recently, we developed a fast stochastic forward model to predict weak-lensing peak counts. Our model is able to reconstruct the underlying distribution of observables for analysis. Aims: In this work, we explore and compare various strategies for constraining a parameter using our model, focusing on the matter density Ωm and the density fluctuation amplitude σ8. Methods: First, we examine the impact from the cosmological dependency of covariances (CDC). Second, we perform the analysis with the copula likelihood, a technique that makes a weaker assumption than does the Gaussian likelihood. Third, direct, non-analytic parameter estimations are applied using the full information of the distribution. Fourth, we obtain constraints with approximate Bayesian computation (ABC), an efficient, robust, and likelihood-free algorithm based on accept-reject sampling. Results: We find that neglecting the CDC effect enlarges parameter contours by 22% and that the covariance-varying copula likelihood is a very good approximation to the true likelihood. The direct techniques work well in spite of noisier contours. Concerning ABC, the iterative process converges quickly to a posterior distribution that is in excellent agreement with results from our other analyses. The time cost for ABC is reduced by two orders of magnitude. Conclusions: The stochastic nature of our weak-lensing peak count model allows us to use various techniques that approach the true underlying probability distribution of observables, without making simplifying assumptions. Our work can be generalized to other observables where forward simulations provide samples of the underlying distribution.
Radio Weak Lensing Shear Measurement in the Visibility Domain - I. Methodology
NASA Astrophysics Data System (ADS)
Rivi, M.; Miller, L.; Makhathini, S.; Abdalla, F. B.
2016-08-01
The high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that are competitive with optical surveys. We present an adaptation to radio data of lensfit, a method for galaxy shape measurement originally developed and used for optical weak lensing surveys. This likelihood method uses an analytical galaxy model and makes a Bayesian marginalisation of the likelihood over uninteresting parameters. It has the feature of working directly in the visibility domain, which is the natural approach to adopt with radio interferometer data, avoiding systematics introduced by the imaging process. As a proof of concept, we provide results for visibility simulations of individual galaxies with flux density S ≥ 10μJy at the phase centre of the proposed SKA1-MID baseline configuration, adopting 12 frequency channels in the band 950 - 1190 MHz. Weak lensing shear measurements from a population of galaxies with realistic flux and scalelength distributions are obtained after natural gridding of the raw visibilities. Shear measurements are expected to be affected by `noise bias': we estimate the bias in the method as a function of signal-to-noise ratio (SNR). We obtain additive and multiplicative bias values that are comparable to SKA1 requirements for SNR > 18 and SNR > 30, respectively. The multiplicative bias for SNR >10 is comparable to that found in ground-based optical surveys such as CFHTLenS, and we anticipate that similar shear measurement calibration strategies to those used for optical surveys may be used to good effect in the analysis of SKA radio interferometer data.
NASA Astrophysics Data System (ADS)
Jauzac, Mathilde; Jullo, Eric; Kneib, Jean-Paul; Ebeling, Harald; Leauthaud, Alexie; Ma, Cheng-Jiun; Limousin, Marceau; Massey, Richard; Richard, Johan
2012-11-01
We report the first weak lensing detection of a large-scale filament funnelling matter on to the core of the massive galaxy cluster MACS J0717.5+3745. Our analysis is based on a mosaic of 18 multipassband images obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope, covering an area of ˜10 × 20 arcmin2. We use a weak lensing pipeline developed for the Cosmic Evolution Survey, modified for the analysis of galaxy clusters, to produce a weak lensing catalogue. A mass map is then computed by applying a weak gravitational lensing multiscale reconstruction technique designed to describe irregular mass distributions such as the one investigated here. We test the resulting mass map by comparing the mass distribution inferred for the cluster core with the one derived from strong lensing constraints and find excellent agreement. Our analysis detects the MACS J0717.5+3745 filament within the 3σ detection contour of the lensing mass reconstruction, and underlines the importance of filaments for theoretical and numerical models of the mass distribution in the cosmic web. We measure the filament's projected length as ˜4.5 h74-1 Mpc, and its mean density as (2.92 ± 0.66) × 108 h74 M⊙ kpc-2. Combined with the redshift distribution of galaxies obtained after an extensive spectroscopic follow-up in the area, we can rule out any projection effect resulting from the chance alignment on the sky of unrelated galaxy group-scale structures. Assuming plausible constraints concerning the structure's geometry based on its galaxy velocity field, we construct a three-dimensional (3D) model of the large-scale filament. Within this framework, we derive the 3D length of the filament to be 18 h74-1 Mpc. The filament's deprojected density in terms of the critical density of the Universe is measured as (206 ± 46) ρcrit, a value that lies at the very high end of the range predicted by numerical simulations. Finally, we study the distribution of stellar mass in the
Weak Lensing Analysis of IDCS J1426.5+3508: A Massive Galaxy Cluster at z=1.75
NASA Astrophysics Data System (ADS)
Mo, Wenli
2015-08-01
We present a weak lensing study of the galaxy cluster IDCS J1426.5+3508 which, at z=1.75, is the highest redshift strong lensing cluster known and the most distant cluster for which a weak lensing analysis has been undertaken. Using F160W, F814W, and F606W observations with the Hubble Space Telescope, we detect a tangential shear signal out to a radius of ~1 Mpc. Fitting the shear to a Navarro-Frenk-White mass profile, we derive a mass that agrees with previous masses calculated from the Sunyaev-Zel'dovich (SZ) effect, X-ray, and strong lensing observations. The combination of weak lensing and SZ measurements are consistent with the scaling relation observed at low redshift, indicative of minimal evolution in this relation. The cluster concentration is not well-constrained by the weak lensing data alone, but we derive a concentration using the SZ mass measurements as a prior. It has previously been noted that an exceptionally high concentration might afford a means to explain the unexpected existence of a giant arc in this cluster. Our data argue that the concentration is not unusually large, indicating that an alternate solution is required.
High-precision simulations of the weak lensing effect on cosmic microwave background polarization
NASA Astrophysics Data System (ADS)
Fabbian, Giulio; Stompor, Radek
2013-08-01
We studied the accuracy, robustness, and self-consistency of pixel-domain simulations of the gravitational lensing effect on the primordial cosmic microwave background (CMB) anisotropies due to the large-scale structure of the Universe. In particular, we investigated the dependence of the precision of the results precision on some crucial parameters of these techniques and propose a semi-analytic framework to determine their values so that the required precision is a priori assured and the numerical workload simultaneously optimized. Our focus was on the B-mode signal, but we also discuss other CMB observables, such as the total intensity, T, and E-mode polarization, emphasizing differences and similarities between all these cases. Our semi-analytic considerations are backed up by extensive numerical results. Those are obtained using a code, nicknamed lenS2HAT - for lensing using scalable spherical harmonic transforms (S2HAT) - which we have developed in the course of this work. The code implements a version of the previously described pixel-domain approach and permits performing the simulations at very high resolutions and data volumes, thanks to its efficient parallelization provided by the S2HAT library - a parallel library for calculating of the spherical harmonic transforms. The code is made publicly available.
Weak Lensing Calibrated M-T Scaling Relation of Galaxy Groups in the COSMOS Fieldsstarf
NASA Astrophysics Data System (ADS)
Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.
2013-11-01
The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute2, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48^{+0.13}_{-0.09}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which
Cosmic discordance: are Planck CMB and CFHTLenS weak lensing measurements out of tune?
NASA Astrophysics Data System (ADS)
MacCrann, Niall; Zuntz, Joe; Bridle, Sarah; Jain, Bhuvnesh; Becker, Matthew R.
2015-08-01
We examine the level of agreement between low-redshift weak lensing data and the cosmic microwave background using measurements from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) and Planck+Wilkinson Microwave Anisotropy Probe (WMAP) polarization. We perform an independent analysis of the CFHTLenS six bin tomography results of Heymans et al. We extend their systematics treatment and find the cosmological constraints to be relatively robust to the choice of non-linear modelling, extension to the intrinsic alignment model and inclusion of baryons. We find that when marginalized in the Ωm-σ8 plane, the 95 per cent confidence contours of CFHTLenS and Planck+WMAP only just touch, but the discrepancy is less significant in the full six-dimensional parameter space of Λ cold dark matter (ΛCDM). Allowing a massive active neutrino or tensor modes does not significantly resolve the tension in the full n-dimensional parameter space. Our results differ from some in the literature because we use the full tomographic information in the weak lensing data and marginalize over systematics. We note that adding a sterile neutrino to ΛCDM brings the 2D marginalized contours into greater overlap, mainly due to the extra effective number of neutrino species, which we find to be 0.88 ± 0.43 (68 per cent) greater than standard on combining the data sets. We discuss why this is not a completely satisfactory resolution, leaving open the possibility of other new physics or observational systematics as contributing factors. We provide updated cosmology fitting functions for the CFHTLenS constraints and discuss the differences from ones used in the literature.
Selecting background galaxies in weak-lensing analysis of galaxy clusters
NASA Astrophysics Data System (ADS)
Formicola, I.; Radovich, M.; Meneghetti, M.; Mazzotta, P.; Grado, A.; Giocoli, C.
2016-05-01
In this paper, we present a new method to select the faint, background galaxies used to derive the mass of galaxy clusters by weak lensing. The method is based on the simultaneous analysis of the shear signal, that should be consistent with zero for the foreground, unlensed galaxies, and of the colours of the galaxies: photometric data from the COSMic evOlution Survey are used to train the colour selection. In order to validate this methodology, we test it against a set of state-of-the-art image simulations of mock galaxy clusters in different redshift [0.23-0.45] and mass [0.5-1.55 × 1015 M⊙] ranges, mimicking medium-deep multicolour imaging observations [e.g. Subaru, Large Binocular Telescope]. The performance of our method in terms of contamination by unlensed sources is comparable to a selection based on photometric redshifts, which however requires a good spectral coverage and is thus much more observationally demanding. The application of our method to simulations gives an average ratio between estimated and true masses of ˜0.98 ± 0.09. As a further test, we finally apply our method to real data, and compare our results with other weak-lensing mass estimates in the literature: for this purpose, we choose the cluster Abell 2219 (z = 0.228), for which multiband (BVRi) data are publicly available.
News from z ˜ 6--10 Galaxy Candidates Found Behind Gravitational Lensing Clusters
NASA Astrophysics Data System (ADS)
Schaerer, D.; Pelló, R.; Egami, E.; Hempel, A.; Richard, J.; Le Borgne, J.-F.; Kneib, J.-P.; Wise, M.; Boone, F.; Combes, F.
2007-12-01
We summarise the current status of our project to identify and study z ˜ 6-10 galaxies thanks to strong gravitational lensing. Building on the detailed work from tet{sch:richard06}, we present results from new follow-up observations (imaging) undertaken with ACS/HST and the Spitzer Space Telescope and compare our results with findings from the Hubble Ultra-Deep Field (UDF). These new observations are in agreement with the high-z nature for the vast majority of the candidates presented in tet{sch:richard06}. We also discuss the properties of other optical dropout sources found in our searches and related objects (EROs, sub-mm galaxies, etc.) from other surveys.
Gravitational lensing effects in a time-variable cosmological 'constant' cosmology
NASA Technical Reports Server (NTRS)
Ratra, Bharat; Quillen, Alice
1992-01-01
A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.
NASA Astrophysics Data System (ADS)
Cañameras, R.; Nesvadba, N. P. H.; Guery, D.; McKenzie, T.; König, S.; Petitpas, G.; Dole, H.; Frye, B.; Flores-Cacho, I.; Montier, L.; Negrello, M.; Beelen, A.; Boone, F.; Dicken, D.; Lagache, G.; Le Floc'h, E.; Altieri, B.; Béthermin, M.; Chary, R.; de Zotti, G.; Giard, M.; Kneissl, R.; Krips, M.; Malhotra, S.; Martinache, C.; Omont, A.; Pointecouteau, E.; Puget, J.-L.; Scott, D.; Soucail, G.; Valtchanov, I.; Welikala, N.; Yan, L.
2015-09-01
We present an analysis of CO spectroscopy and infrared-to-millimetre dust photometry of 11 exceptionally bright far-infrared (FIR) and sub-mm sources discovered through a combination of the Planck all-sky survey and follow-up Herschel-SPIRE imaging - "Planck's Dusty Gravitationally Enhanced subMillimetre Sources". Each source has a secure spectroscopic redshift z = 2.2-3.6 from multiple lines obtained through a blind redshift search with EMIR at the IRAM 30-m telescope. Interferometry was obtained at IRAM and the SMA, and along with optical/near-infrared imaging obtained at the CFHT and the VLT reveal morphologies consistent with strongly gravitationally lensed sources, including several giant arcs. Additional photometry was obtained with JCMT/SCUBA-2 and IRAM/GISMO at 850 μm and 2 mm, respectively. The SEDs of our sources peak near either the 350 μm or 500 μm bands of SPIRE with peak flux densities between 0.35 and 1.14 Jy. All objects are extremely bright isolated point sources in the 18'' beam of SPIREat 250 μm, with apparent FIR luminosities of up to 3 × 1014 L⊙ (not correcting for the lensing effect). Their morphologies, sizes, CO line widths, CO luminosities, dust temperatures, and FIR luminosities provide additional empirical evidence that these are amongst the brightest strongly gravitationally lensed high-redshift galaxies on the sub-mm sky. Our programme extends the successful wide-area searches for strongly gravitationally lensed high-redshift galaxies (carried out with the South Pole Telescope and Herschel) towards even brighter sources, which are so rare that their systematic identification requires a genuine all-sky survey like Planck. Six sources are above the ≃600 mJy 90% completeness limit of the Planck catalogue of compact sources (PCCS) at 545 and 857 GHz, which implies that these must literally be amongst the brightest high-redshift FIR and sub-mm sources on the extragalactic sky. We discuss their dust masses and temperatures, and use
Mediavilla, E.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.
2011-11-01
We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N {sup -3/4} dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.
MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS
Chu, Z.; Lin, W. P.; Li, G. L.; Kang, X. E-mail: linwp@shao.ac.cn
2013-03-10
An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.
A Sneak Peek at the JWST Era: Observing Galaxies Below the Hubble Limit with Gravitational Lensing
NASA Astrophysics Data System (ADS)
Livermore, Rachael C.
2016-01-01
The installation of WFC3 on the Hubble Space Telescope pushed the frontier of high-redshift galaxy studies to only 500 Myr after the Big Bang. However, observations in this epoch remain challenging and are limited to the brightest galaxies; the fainter sources believed to be responsible for reionizing the Universe remain beyond the grasp of Hubble. With gravitational lensing, however, we can benefit from the magnification of faint sources, which brings them within reach of today's telescopes. The Hubble Frontier Fields program is a deep survey of strongly lensing clusters observed in the optical and near-infrared. Unfortunately, detecting highly magnified, intrinsically faint galaxies in these fields has proved challenging due to the bright foregound cluster galaxies and intracluster light. We have developed a technique using wavelet decomposition to overcome these difficulties and detect galaxies at z~7 with intrinsic UV magnitudes as faint as MUV = -13. We present this method and the resulting luminosity functions, which support a steep faint-end slope extending out to the observational limits. Our method has uncovered hundreds of galaxies at z > 6 fainter than any that have been seen before, providing our first insight into the small galaxy population during the epoch of reionization and a preview of the capabilities of JWST.
Constraints on the identity of the dark matter from strong gravitational lenses
NASA Astrophysics Data System (ADS)
Li, Ran; Frenk, Carlos S.; Cole, Shaun; Gao, Liang; Bose, Sownak; Hellwing, Wojciech A.
2016-07-01
The cold dark matter (CDM) cosmological model unambiguously predicts that a large number of haloes should survive as subhaloes when they are accreted into a larger halo. The CDM model would be ruled out if such substructures were shown not to exist. By contrast, if the dark matter consists of Warm Dark Matter (WDM) particles, then below a threshold mass that depends on the particle mass far fewer substructures would be present. Finding subhaloes below a certain mass would then rule out warm particle masses below some value. Strong gravitational lensing provides a clean method to measure the subhalo mass function through distortions in the structure of Einstein rings and giant arcs. Using mock lensing observations constructed from high-resolution N-body simulations, we show that measurements of approximately 100 strong lens systems with a detection limit of Mlow = 107 h-1 M⊙ would clearly distinguish CDM from WDM in the case where this consists of 7 keV sterile neutrinos such as those that might be responsible for the 3.5 keV X-ray emission line recently detected in galaxies and clusters.
Strong gravitational lensing as a tool to investigate the structure of jets at high energies
Barnacka, Anna; Geller, Margaret J.; Benbow, Wystan; Dell'antonio, Ian P.
2014-06-20
The components of blazar jets that emit radiation span a factor of 10{sup 10} in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources, and the observed light curve is thus the sum of the images. Durations of γ-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.
Constraints on the identity of the dark matter from strong gravitational lenses
NASA Astrophysics Data System (ADS)
Li, Ran; Frenk, Carlos S.; Cole, Shaun; Gao, Liang; Bose, Sownak; Hellwing, Wojciech A.
2016-07-01
The cold dark matter (CDM) cosmological model unambigously predicts that a large number of haloes should survive as subhaloes when they are accreted into a larger halo. The CDM model would be ruled out if such substructures were shown not to exist. By contrast, if the dark matter consists of warm particles (WDM), then below a threshold mass that depends on the particle mass far fewer substructures would be present. Finding subhaloes below a certain mass would then rule out warm particle masses below some value. Strong gravitational lensing provides a clean method to measure the subhalo mass function through distortions in the structure of Einstein rings and giant arcs.Using mock lensing observations constructed from high-resolution N-body simulations, we show that measurements of approximately 100 strong lens systems with a detection limit of $10^7 h^{-1} M_{\\odot}$ would clearly distinguish CDM from WDM in the case where this consists of 7 keV sterile neutrinos such as those that might be responsible for the 3.5 keV X-ray emission line recently detected in galaxies and clusters.
Visualizing the gravitational lensing and vortex and tendex lines of colliding black holes
NASA Astrophysics Data System (ADS)
Khan, Haroon; Lovelace, Geoffery; SXS Collaboration
2016-03-01
Gravitational waves (GW's) are ripples of space and time that are created when the universe unleashes its violent nature in the presence of strong gravity. Merging black holes (BH) are one of the most promising sources of GW's. In order to detect and physically study the GW's emitted by merging BH with ground based detectors such as Advanced LIGO, we must accurately predict how the waveforms look and behave. This can only be done by numerically simulating BH mergers on supercomputers, because all analytical approximations fail near the time of merger. This poster focuses on using these simulations to answer the question of ``What do merging BH look like''? I will present visualizations made using the Spectral Einstein Code (SpEC) and in particular a raytracing lensing code, developed by the SXS Lensing team, that shows how merging BH bend the light around them. I will also present visualizations of the vortex and tendex lines for a binary BH system, using SpEC. Vortex lines describe how an observer will be twisted by the BH and the tendex lines describe how much an observer would be stretched and squeezed. I am exploring how these lines change with time.
Constraints on the identity of the dark matter from strong gravitational lenses
NASA Astrophysics Data System (ADS)
Li, Ran; Frenk, Carlos S.; Cole, Shaun; Gao, Liang; Bose, Sownak; Hellwing, Wojciech A.
2016-04-01
The Cold Dark Matter (CDM) cosmological model unambigously predicts that a large number of haloes should survive as subhaloes when they are accreted into a larger halo. The CDM model would be ruled out if such substructures were shown not to exist. By contrast, if the dark matter consists of Warm Dark Matter particles (WDM), then below a threshold mass that depends on the particle mass far fewer substructures would be present. Finding subhaloes below a certain mass would then rule out warm particle masses below some value. Strong gravitational lensing provides a clean method to measure the subhalo mass function through distortions in the structure of Einstein rings and giant arcs. Using mock lensing observations constructed from high-resolution N-body simulations, we show that measurements of approximately 100 strong lens systems with a detection limit of Mlow = 107h-1M⊙ would clearly distinguish CDM from WDM in the case where this consists of 7 keV sterile neutrinos such as those that might be responsible for the 3.5 keV X-ray emission line recently detected in galaxies and clusters.
NASA Astrophysics Data System (ADS)
Rusu, Cristian E.; Oguri, Masamune; Minowa, Yosuke; Iye, Masanori; Inada, Naohisa; Oya, Shin; Kayo, Issha; Hayano, Yutaka; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto
2016-05-01
We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 28 gravitationally lensed quasars and candidates (23 doubles, 1 quad, 1 possible triple, and 3 candidates) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in five systems, without a priori knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity ≳0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time delays in order to infer the Hubble constant.
Cosmological constraints from the 100-deg2 weak-lensing survey
NASA Astrophysics Data System (ADS)
Benjamin, Jonathan; Heymans, Catherine; Semboloni, Elisabetta; van Waerbeke, Ludovic; Hoekstra, Henk; Erben, Thomas; Gladders, Michael D.; Hetterscheidt, Marco; Mellier, Yannick; Yee, H. K. C.
2007-10-01
We present a cosmic shear analysis of the 100-deg2 weak-lensing survey, combining data from the CFHTLS-Wide, RCS, VIRMOS-DESCART and GaBoDS surveys. Spanning ~100 deg2, with a median source redshift z ~ 0.78, this combined survey allows us to place tight joint constraints on the matter density parameter Ωm, and the amplitude of the matter power spectrum σ8, finding σ8(Ωm/0.24)0.59 = 0.84 +/- 0.05. Tables of the measured shear correlation function and the calculated covariance matrix for each survey are included as supplementary material to the online version of this article. The accuracy of our results is a marked improvement on previous work owing to three important differences in our analysis; we correctly account for sample variance errors by including a non-Gaussian contribution estimated from numerical simulations; we correct the measured shear for a calibration bias as estimated from simulated data; we model the redshift distribution, n(z), of each survey from the largest deep photometric redshift catalogue currently available from the CFHTLS-Deep. This catalogue is randomly sampled to reproduce the magnitude distribution of each survey with the resulting survey-dependent n(z) parametrized using two different models. While our results are consistent for the n(z) models tested, we find that our cosmological parameter constraints depend weakly (at the 5 per cent level) on the inclusion or exclusion of galaxies with low-confidence photometric redshift estimates (z > 1.5). These high-redshift galaxies are relatively few in number but contribute a significant weak-lensing signal. It will therefore be important for future weak-lensing surveys to obtain near-infrared data to reliably determine the number of high-redshift galaxies in cosmic shear analyses. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada (NRCC), the Institut des Sciences de l'Univers (INSU) of the Centre
NASA Astrophysics Data System (ADS)
Neronov, A.; Vovk, Ie.
2016-01-01
We show that observation of the time-dependent effect of microlensing of relativistically broadened emission lines (such as e.g. the Fe K α line in x rays) in strongly lensed quasars could provide data on celestial mechanics of circular orbits in the direct vicinity of the horizon of supermassive black holes. This information can be extracted from the observation of evolution of the red/blue edge of the magnified line just before and just after the period of crossing of the innermost stable circular orbit by the microlensing caustic. The functional form of this evolution is insensitive to numerous astrophysical parameters of the accreting black hole and of the microlensing caustics network system (as opposed to the evolution of the full line spectrum). Measurement of the temporal evolution of the red/blue edge could provide a precision measurement of the radial dependence of the gravitational redshift and of velocity of the circular orbits, down to the innermost stable circular orbit. These measurements could be used to discriminate between general relativity and alternative models of the relativistic gravity in which the dynamics of photons and massive bodies orbiting the gravitating center is different from that of the geodesics in the Schwarzschild or Kerr space-times.
STRIDES: Galaxy Evolution over Cosmic Time from new samples of Gravitationally Lensed Quasars
NASA Astrophysics Data System (ADS)
Agnello, Adriano; Treu, Tommaso
2015-08-01
When a quasar is gravitationally lensed by a galaxy, its multiple images show light-curves that are offset by awell defined time delay, which depends on the mass profile of the lens and on cosmological distances to the lens and the source. By measuring the time-delay and accurately modelling the deflector's mass profile, this provides one-step measurements of cosmological distances to objects at redshift $z\\sim1,$ whence the cosmological parameters (primarily $H_0$). One can turn this argument around and learn about galaxies instead, or even perform a joint (and less biased) inference. The joint modelling of the lens, the source structure and time-variability implies that the DM halos of lens galaxies at z~0.4-1 and the source properties of quasars and their hosts at z~1-2are inferred, besides information on cosmology that is complementary to other low-redshift probes such as SN Ia and BAO.A large (N~100) sample of lensed quasars will be transformative in this sense, as these systems are rare on the sky.I will describe our STRIDES[*] searches in the Dark Energy Survey, aiming at 120 previously unknown lensed quasars brighter than i=21. Candidates have been selected with a variety of data mining techniques and flagged for follow-up (on spectroscopy, high-resolution imaging and lightcurve variability), which will take place in the following months. I will also cover recent modelling development of already monitored lenses within our collaboration, including a sharp multi-band reconstruction of the sources and use of stellar kinematics to ensure unbiased uncertainties on the lens mass profiles.This will lead to: (i) percent-level uncertainties on cosmological parameters(ii) insight on the coevolution of quasars and their host galaxies throughout cosmic time, up to z~2(iii) a quantative description of dark matter density profiles and the substructure content in massive galaxies up to z~1.[*] strides.physics.ucsb.edu
Berge, Joel; Refregier, Alexandre
2010-04-01
We compare the efficiency of weak-lensing-selected galaxy cluster counts and of the weak-lensing bispectrum at capturing non-Gaussian features in the dark matter distribution. We use the halo model to compute the weak-lensing power spectrum, the bispectrum, and the expected number of detected clusters, and derive constraints on cosmological parameters for a large, low systematic weak-lensing survey, by focusing on the OMEGA{sub m}-sigma{sub 8} plane and on the dark energy equation of state. We separate the power spectrum into the resolved and the unresolved parts of the data, the resolved part being defined as detected clusters, and the unresolved part as the rest of the field. We consider four kinds of clusters counts, taking into account different amount of information: signal-to-noise ratio peak counts, counts as a function of clusters' mass, counts as a function of clusters' redshift, and counts as a function of clusters' mass and redshift. We show that when combined with the power spectrum, those four kinds of counts provide similar constraints, thus allowing one to perform the most direct counts, signal-to-noise peak counts, and get percent level constraints on cosmological parameters. We show that the weak-lensing bispectrum gives constraints comparable to those given by the power spectrum and captures non-Gaussian features as well as cluster counts, its combination with the power spectrum giving errors on cosmological parameters that are similar to, if not marginally smaller than, those obtained when combining the power spectrum with cluster counts. We finally note that in order to reach its potential, the weak-lensing bispectrum must be computed using all triangle configurations, as equilateral triangles alone do not provide useful information. The appendices summarize the halo model, and the way the power spectrum and bispectrum are computed in this framework.
NASA Astrophysics Data System (ADS)
Egami, E.
2011-09-01
On the extragalactic side, one of the most remarkable results coming out of Herschel is the discovery of extremely bright (>100 mJy in the SPIRE bands) gravitationally lensed galaxies. The great sensitivity and mapping speed of SPIRE have enabled us to find these rare extraordinary objects. What is truly exciting about these bright lensed galaxies is that they enable a variety of detailed multi-wavelength follow-up observations, shedding new light on the physical properties of these high-redshift sources. In this regard, our OT1 program, "SPIRE Snapshot Survey of Massive Galaxy Clusters" turned out to be a great success. After imaging ~50 galaxies out of 279 in the program, we have already found two spectacularly bright lensed galaxies, one of which is at a redshift of 4.69. This type of cluster-lensed sources are not only bright but also spatially stretched over a large scale, so ALMA (or NOEMA in the north) is likely to be able to study them at the level of individual GMCs. Such studies will open up a new frontier in the study of high-redshift galaxies. Here, we propose to extend this highly efficient and effective survey of gravitationally lensed galaxies to another 353 clusters carefully chosen from the SPT and CODEX cluster samples. These samples contain newly discovered high-redshift (z>0.3) massive (>3-4e14 Msun) clusters, which can be used as powerful gravitational lenses to magnify sources at high redshift. With the OT1 and OT2 surveys together, we expect to find ~20 highly magnified SPIRE sources with exceptional brightnesses (assuming a discovery rate of ~1/30). Such a unique sample of extraordinary objects will enable a variety of follow-up sciences, and will therefore remain as a great legacy of the Herschel mission for years to come.
Weak lensing study of 16 DAFT/FADA clusters: Substructures and filaments
NASA Astrophysics Data System (ADS)
Martinet, Nicolas; Clowe, Douglas; Durret, Florence; Adami, Christophe; Acebrón, Ana; Hernandez-García, Lorena; Márquez, Isabel; Guennou, Loic; Sarron, Florian; Ulmer, Mel
2016-05-01
While our current cosmological model places galaxy clusters at the nodes of a filament network (the cosmic web), we still struggle to detect these filaments at high redshifts. We perform a weak lensing study for a sample of 16 massive, medium-high redshift (0.4
Mask effects on cosmological studies with weak-lensing peak statistics
Liu, Xiangkun; Pan, Chuzhong; Fan, Zuhui; Wang, Qiao
2014-03-20
With numerical simulations, we analyze in detail how the bad data removal, i.e., the mask effect, can influence the peak statistics of the weak-lensing convergence field reconstructed from the shear measurement of background galaxies. It is found that high peak fractions are systematically enhanced because of the presence of masks; the larger the masked area is, the higher the enhancement is. In the case where the total masked area is about 13% of the survey area, the fraction of peaks with signal-to-noise ratio ν ≥ 3 is ∼11% of the total number of peaks, compared with ∼7% of the mask-free case in our considered cosmological model. This can have significant effects on cosmological studies with weak-lensing convergence peak statistics, inducing a large bias in the parameter constraints if the effects are not taken into account properly. Even for a survey area of 9 deg{sup 2}, the bias in (Ω {sub m}, σ{sub 8}) is already intolerably large and close to 3σ. It is noted that most of the affected peaks are close to the masked regions. Therefore, excluding peaks in those regions in the peak statistics can reduce the bias effect but at the expense of losing usable survey areas. Further investigations find that the enhancement of the number of high peaks around the masked regions can be largely attributed to the smaller number of galaxies usable in the weak-lensing convergence reconstruction, leading to higher noise than that of the areas away from the masks. We thus develop a model in which we exclude only those very large masks with radius larger than 3' but keep all the other masked regions in peak counting statistics. For the remaining part, we treat the areas close to and away from the masked regions separately with different noise levels. It is shown that this two-noise-level model can account for the mask effect on peak statistics very well, and the bias in cosmological parameters is significantly reduced if this model is applied in the parameter fitting.
Impact of spurious shear on cosmological parameter estimates from weak lensing observables
Petri, Andrea; May, Morgan; Haiman, Zoltán; Kratochvil, Jan M.
2014-12-30
We research, residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet (Ωm,w,σ8) derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MFs), low-order moments (LMs), and peak counts (PKs). Our main results are as follows: (i) We find an order of magnitude smaller biasesmore » from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of σsys2 ≈ 10-7, biases from the PS and LM would be unimportant even for a survey with the statistical power of Large Synoptic Survey Telescope. However, we find that for surveys larger than ≈ 100 deg2, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF, PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in (Ωm,w,σ8) parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.« less
Impact of spurious shear on cosmological parameter estimates from weak lensing observables
Petri, Andrea; May, Morgan; Haiman, Zoltán; Kratochvil, Jan M.
2014-12-30
We research, residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet (Ω_{m},w,σ_{8}) derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MFs), low-order moments (LMs), and peak counts (PKs). Our main results are as follows: (i) We find an order of magnitude smaller biases from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of σ_{sys}^{2} ≈ 10^{-7}, biases from the PS and LM would be unimportant even for a survey with the statistical power of Large Synoptic Survey Telescope. However, we find that for surveys larger than ≈ 100 deg^{2}, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF, PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in (Ωm,w,σ8) parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.
Self-calibration of photometric redshift scatter in weak-lensing surveys
Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary
2010-06-11
Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as the planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.
Self-calibration of photometric redshift scatter in weak-lensing surveys
Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary
2010-06-11
Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less
Schlaufman, K
2004-10-11
Atmospheric turbulence can mimic the effects of weak lensing in astronomical images, so it is necessary to understand to what degree turbulence affects weak lensing measurements. In particular, we studied the ellipticity induced upon the point-spread functions (PSFs) of a grid of simulated stars separated by distances (d {approx} 1{prime}) that will be characteristic of Large Synoptic Survey Telescope (LSST) images. We observe that atmospherically induced ellipticity changes on small scales (d < 0.5{prime}) and use linear interpolation between stars separated by d = 0.5{prime} to determine the induced ellipticity everywhere in the field-of-view.
Morokuma, Tomoki; Inada, Naohisa; Oguri, Masamune; Ichikawa, Shin-Ichi; Kawano, Yozo; Tokita, Kouichi; Kayo, Issha; Hall, Patrick B.; Kochanek, Christopher S.; Richards, Gordon T.; York, Donald G.; Schneider, Donald P.; /Tokyo U., Inst. Astron. /KIPAC, Menlo Park /Princeton U. /Tokyo, Astron. Observ. /Nagoya U. /York U., Canada /Ohio State U., Dept. Astron. /Johns Hopkins U. /Drexel U. /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI /Penn State U., Astron. Astrophys.
2006-09-28
We report the discovery of the two-image gravitationally lensed quasar SDSS J133222.62+034739.9 (SDSS J1332+0347) with an image separation of {Delta}{theta} = 1.14''. This system consists of a source quasar at z{sub s} = 1.445 and a lens galaxy at z{sub l} = 0.191. The agreement of the luminosity, ellipticity and position angle of the lens galaxy with those expected from lens model confirms the lensing hypothesis.
A comparison of weak-lensing masses and X-ray properties of galaxy clusters
NASA Astrophysics Data System (ADS)
Hoekstra, Henk
2007-07-01
We present measurements of the masses of 20 X-ray luminous clusters of galaxies at intermediate redshifts, determined from a weak-lensing analysis of deep archival R-band data obtained using the Canada-France-Hawaii Telescope. Compared to previous work, our analysis accounts for a number of effects that are typically ignored, but can lead to small biases, or incorrect error estimates. We derive masses that are essentially model-independent and find that they agree well with measurements of the velocity dispersion of cluster galaxies and with the results of X-ray studies. Assuming a power law between the lensing mass and the X-ray temperature, M2500 ~ Tα, we find a best-fitting slope of α = 1.34+0.30-0.28. This slope agrees with self-similar cluster models and studies based on X-ray data alone. For a cluster with a temperature of kT = 5 keV we obtain a mass M2500 = (1.4 +/- 0.2)×1014h-1Msolar in fair agreement with recent Chandra and XMM studies. Based on observations from the Canada-France-Hawaii Telescope, which is operated by the National Research Council of Canada, le Centre National de la Recherche Scientifique and the University of Hawaii. E-mail: hoekstra@uvic.ca
SIMULATIONS OF WIDE-FIELD WEAK LENSING SURVEYS. I. BASIC STATISTICS AND NON-GAUSSIAN EFFECTS
Sato, Masanori; Takahashi, Ryuichi; Matsubara, Takahiko; Sugiyama, Naoshi; Hamana, Takashi; Takada, Masahiro; Yoshida, Naoki
2009-08-20
We study the lensing convergence power spectrum and its covariance for a standard {lambda}CDM cosmology. We run 400 cosmological N-body simulations and use the outputs to perform a total of 1000 independent ray-tracing simulations. We compare the simulation results with analytic model predictions. The semianalytic model based on Smith et al. fitting formula underestimates the convergence power by {approx} 30% at arcmin angular scales. For the convergence power spectrum covariance, the halo model reproduces the simulation results remarkably well over a wide range of angular scales and source redshifts. The dominant contribution at small angular scales comes from the sample variance due to the number fluctuations of halos in a finite survey volume. The signal-to-noise ratio for the convergence power spectrum is degraded by the non-Gaussian covariances by up to a factor of 5 for a weak lensing survey to z{sub s} {approx} 1. The probability distribution of the convergence power spectrum estimators, among the realizations, is well approximated by a {chi}{sup 2} distribution with broadened variance given by the non-Gaussian covariance, but has a larger positive tail. The skewness and kurtosis have non-negligible values especially for a shallow survey. We argue that a prior knowledge on the full distribution may be needed to obtain an unbiased estimate on the ensemble-averaged band power at each angular scale from a finite volume survey.
NASA Astrophysics Data System (ADS)
Almosallami, Azzam
2011-03-01
In this paper we derived the relativistic Quantized force, where the force given as a function of frequency [1]. Where, in this paper we defined the relativistic momentum as a function of frequency equivalent to the energy held by a body, and time, and then the quantized force is given as the first derivative of the momentum with respect to time. Subsequently we introduce in section one Newton's second law as it is relativistic quantized, and in section two we introduce the relativistic quantized inertial force, and then the relativistic quantized gravitational force, and the quantized gravitational time dilation. At the end we shall generalize the Schwartzschild metric to describe the weak and strong gravitational field.
Real space estimator for the weak lensing convergence from the CMB
NASA Astrophysics Data System (ADS)
Carvalho, C. S.; Moodley, K.
2010-06-01
We propose an estimator defined in real space for the reconstruction of the weak lensing potential due to the intervening large-scale structure from high resolution maps of the cosmic microwave background. This estimator was motivated as an alternative to the quadratic estimator in harmonic space to surpass the difficulties of the analysis of maps containing galactic cuts and point source excisions. Using maps synthesized by pixel remapping, we implement the estimator for two experiments, namely, one in the absence and one in the presence of detector noise, and compare the reconstruction of the convergence field with that obtained with the quadratic estimator defined in harmonic space. We find good agreement between the input and the reconstructed power spectra using the proposed real space estimator. We discuss interesting features of the real space estimator and future extensions of this work.
Bonnett, C.
2015-07-21
We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δ_{z} ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ_{8} of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σ_{crit}, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.
NASA Astrophysics Data System (ADS)
Clerkin, L.; Kirk, D.; Manera, M.; Lahav, O.; Abdalla, F.; Amara, A.; Bacon, D.; Chang, C.; Gaztañaga, E.; Hawken, A.; Jain, B.; Joachimi, B.; Vikram, V.; Abbott, T.; Allam, S.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Carrasco Kind, M.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Melchior, P.; Miquel, R.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.
2016-08-01
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (κWL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10'- 40'(corresponding to physical scales of 3-10 Mpc). We note that as κWL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the κWL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10'and 20', with a best-fit χ2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10'. Above 20'a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.
On the bias of the distance-redshift relation from gravitational lensing
NASA Astrophysics Data System (ADS)
Kaiser, Nick; Peacock, John A.
2016-02-01
A long-standing question in cosmology is whether gravitational lensing changes the distance-redshift relation D (z) or the mean flux density of sources. Interest in this has been rekindled by recent studies in non-linear relativistic perturbation theory that find biases in both the area of a surface of constant redshift and in the mean distance to this surface, with a fractional bias in both cases of the order of the mean squared convergence <κ2>. Any such area bias could alter cosmic microwave background (CMB) cosmology, and the corresponding bias in mean flux density could affect supernova cosmology. We show that the perturbation to the area of a surface of constant redshift is in reality much smaller, being of the order of the cumulative bending angle squared, or roughly a part-in-a-million effect. This validates the arguments of Weinberg that the mean magnification of sources is unity and of Kibble & Lieu that the mean direction-averaged inverse magnification is unity. It also validates the conventional treatment of CMB lensing. But the existence of a scatter in magnification will cause any non-linear function of these conserved quantities to be statistically biased. The fractional bias in such quantities is generally of order <κ2>, which is orders of magnitude larger than the area perturbation. Claims for large bias in area or flux density of sources appear to have resulted from misinterpretation of such effects: they do not represent a new non-Newtonian effect, nor do they invalidate standard cosmological analyses.
NASA Astrophysics Data System (ADS)
Errard, Josquin; Feeney, Stephen M.; Peiris, Hiranya V.; Jaffe, Andrew H.
2016-03-01
Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)~1.3×10-4, σ(nt)~0.03, σ( ns )~1.8×10
NASA Technical Reports Server (NTRS)
Wagoner, Robert V.; Linder, Eric V.
1987-01-01
A review is presented concerning the gravitational lensing of supernovae by intervening condensed objects, including dark matter candidates such as dim stars and black holes. the expansion of the supernova beam within the lens produces characteristic time-dependent amplification and polarization which depend upon the mass of the lens. The effects of the shearing of the beam due to surrounding masses are considered, although the study of these effects is confined to isolated masses whose size is much less than that of the supernova (about 10 to the 15th cm). Equations for the effects of lensing and graphs comparing these effects in different classes of supernovae are compared. It is found that candidates for lensing would be those supernovae at least as bright as their parent galaxy, or above the range of luminosities expected for their spectral class.
A demonstration of position angle-only weak lensing shear estimators on the GREAT3 simulations
NASA Astrophysics Data System (ADS)
Whittaker, Lee; Brown, Michael L.; Battye, Richard A.
2015-12-01
We develop and apply the position angle-only shear estimator of Whittaker, Brown & Battye to realistic galaxy images. This is done by demonstrating the method on the simulations of the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, which include contributions from anisotropic point spread functions (PSFs). We measure the position angles of the galaxies using three distinct methods - the integrated light method, quadrupole moments of surface brightness, and using model-based ellipticity measurements provided by IM3SHAPE. A weighting scheme is adopted to address biases in the position angle measurements which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due to measurement errors on the position angles and correlations between the measurement errors and the true position angles, are corrected for using simulated galaxy images and an iterative procedure. The properties of the simulations are estimated using the deep field images provided as part of the challenge. A method is developed to match the distributions of galaxy fluxes and half-light radii from the deep fields to the corresponding distributions in the field of interest. We recover angle-only shear estimates with a performance close to current well-established model and moments-based methods for all three angle measurement techniques. The Q-values for all three methods are found to be Q ˜ 400. The code is freely available online at http://www.jb.man.ac.uk/mbrown/angle_only_shear/.
Resolving the High-energy Universe with Strong Gravitational Lensing: The Case of PKS 1830-211
NASA Astrophysics Data System (ADS)
Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan
2015-08-01
Gravitational lensing is a potentially powerful tool for elucidating the origin of gamma-ray emission from distant sources. Cosmic lenses magnify the emission from distant sources and produce time delays between mirage images. Gravitationally induced time delays depend on the position of the emitting regions in the source plane. The Fermi/LAT telescope continuously monitors the entire sky and detects gamma-ray flares, including those from gravitationally lensed blazars. Therefore, temporal resolution at gamma-ray energies can be used to measure these time delays, which, in turn, can be used to resolve the origin of the gamma-ray flares spatially. We provide a guide to the application and Monte Carlo simulation of three techniques for analyzing these unresolved light curves: the autocorrelation function, the double power spectrum, and the maximum peak method. We apply these methods to derive time delays from the gamma-ray light curve of the gravitationally lensed blazar PKS 1830-211. The result of temporal analysis combined with the properties of the lens from radio observations yield an improvement in spatial resolution at gamma-ray energies by a factor of 10,000. We analyze four active periods. For two of these periods the emission is consistent with origination from the core, and for the other two the data suggest that the emission region is displaced from the core by more than ˜1.5 kpc. For the core emission, the gamma-ray time delays, 23+/- 0.5 {days} and 19.7+/- 1.2 days, are consistent with the radio time delay of {26}-5+4 days.
NASA Astrophysics Data System (ADS)
Cooray, Asantha
2013-10-01
We propose WFC3 G102 and G141 grism spectral imaging of two gravitationally lensed dusty, starburst galaxies found with the 600 square degree Herschel-ATLAS survey. One galaxy is the brightest {both in far-IR at 250 micron and in near-IR in J/K-band}, while the second is the largest {11 arcsec on the sky} of the lensed sub-mm galaxies in a sample of 200 imaged with WFC3/F110W. The two galaxies are at redshifts that are optimal for grism observations with HST/WFC3. The lensing flux magnification and spatial enhancement makes them very unique for the study proposed hereand will increase the number of lensed galaxies imaged in spectral lines with WFC3 grisms to three from existing single serendipitous lens studied in HST-3D survey. With WFC3 grism spectra taken in a specific orientation to minimize foreground and lensing galaxy confusion we can map each of these galaxies in a variety of spatially-resolved spectral lines in the rest-frame optical, including impostant Balmer lines for studies on the interstellar medium. The grism spectra will allow us to determine the gas-phase metallicities of these two galaxies and to study the extinction of optically-thin regions compared to direct sub-mm emission seen in interferometric continuum images of optically thick dust in starbursting knots and clumps. With spatial resolution provided by gravitational lensing combined with HST/WFC3 resolution, we will be able to study the dependence of line ratios in high density/SFR regions to low dense diffuse environments.
Properties of Weak Lensing Clusters Detected on Hyper Suprime-Cam’s 2.3 deg2 field
NASA Astrophysics Data System (ADS)
Miyazaki, Satoshi; Oguri, Masamune; Hamana, Takashi; Tanaka, Masayuki; Miller, Lance; Utsumi, Yousuke; Komiyama, Yutaka; Furusawa, Hisanori; Sakurai, Junya; Kawanomoto, Satoshi; Nakata, Fumiaki; Uraguchi, Fumihiro; Koike, Michitaro; Tomono, Daigo; Lupton, Robert; Gunn, James E.; Karoji, Hiroshi; Aihara, Hiroaki; Murayama, Hitoshi; Takada, Masahiro
2015-07-01
We present properties of moderately massive clusters of galaxies detected by the newly developed Hyper Suprime-Cam on the Subaru telescope using weak gravitational lensing. Eight peaks exceeding a signal-to-noise ratio (S/N) of 4.5 are identified on the convergence S/N map of a 2.3 deg2 field observed during the early commissioning phase of the camera. Multi-color photometric data are used to generate optically selected clusters using the Cluster finding algorithm based on the Multiband Identification of Red-sequence galaxies algorithm. The optical cluster positions were correlated with the peak positions from the convergence map. All eight significant peaks have optical counterparts. The velocity dispersion of clusters is evaluated by adopting the Singular Isothemal Sphere fit to the tangential shear profiles, yielding virial mass estimates, {M}{500c}, of the clusters which range from 2.7 × 1013 to 4.4 × 10 {}14 {M}⊙ . The number of peaks is considerably larger than the average number expected from ΛCDM cosmology but this is not extremely unlikely if one takes the large sample variance in the small field into account. We could, however, safely argue that the peak count strongly favors the recent Planck result suggesting a high {σ }8 value of 0.83. The ratio of stellar mass to the dark matter halo mass shows a clear decline as the halo mass increases. If the gas mass fraction, fg, in halos is universal, as has been suggested in the literature, the observed baryon mass in stars and gas shows a possible deficit compared with the total baryon density estimated from the baryon oscillation peaks in anisotropy of the cosmic microwave background.
Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Gandhi, Poshak; Horiuchi, Takashi; Koyamada, Suzuka; Okamoto, Rina
2014-10-20
We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/High Dispersion Spectrograph, we performed high-resolution (R ∼ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at z {sub em} ∼ 2.197) whose image separation angle, θ ∼ 22.''5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in images A and B discovered by Misawa et al. has remained unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, Δt ∼ 744 days, but rather due to differences along the sightlines. We also discovered a time variation of C IV absorption strength in both images A and B due to a change in the ionization condition. If a typical absorber's size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.
NASA Astrophysics Data System (ADS)
Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Gandhi, Poshak; Horiuchi, Takashi; Koyamada, Suzuka; Okamoto, Rina
2014-10-01
We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/High Dispersion Spectrograph, we performed high-resolution (R ~ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at z em ~ 2.197) whose image separation angle, θ ~ 22.''5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in images A and B discovered by Misawa et al. has remained unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, Δt ~ 744 days, but rather due to differences along the sightlines. We also discovered a time variation of C IV absorption strength in both images A and B due to a change in the ionization condition. If a typical absorber's size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Observations of radio-quiet quasars at 10-mas resolution by use of gravitational lensing
NASA Astrophysics Data System (ADS)
Jackson, Neal; Tagore, Amitpal S.; Roberts, Carl; Sluse, Dominique; Stacey, Hannah; Vives-Arias, Hector; Wucknitz, Olaf; Volino, Filomena
2015-11-01
We present Very Large Array detections of radio emission in 4 four-image gravitational lens systems with quasar sources: HS 0810+2554, RX J0911+0511, HE 0435-1223 and SDSS J0924+0219, and extended Multi-Element Remote Linked Interferometer (e-MERLIN) observations of two of the systems. The first three are detected at a high level of significance, and SDSS J0924+0219 is detected. HS 0810+2554 is resolved, allowing us for the first time to achieve 10-mas resolution of the source frame in the structure of a radio-quiet quasar. The others are unresolved or marginally resolved. All four objects are among the faintest radio sources yet detected, with intrinsic flux densities in the range 1-5 μJy; such radio objects, if unlensed, will only be observable routinely with the Square Kilometre Array. The observations of HS 0810+2554, which is also detected with e-MERLIN, strongly suggest the presence of a mini active galactic nucleus, with a radio core and milliarcsecond scale jet. The flux densities of the lensed images in all but HE 0435-1223 are consistent with smooth galaxy lens models without the requirement for smaller scale substructure in the model, although some interesting anomalies are seen between optical and radio flux densities. These are probably due to microlensing effects in the optical.
THE REMARKABLE {gamma}-RAY ACTIVITY IN THE GRAVITATIONALLY LENSED BLAZAR PKS 1830-211
Donnarumma, I.; De Rosa, A.; Vittorini, V.; Tavani, M.; Striani, E.; Pacciani, L.; Popovic, L. C.; Simic, S.; Kuulkers, E.; Vercellone, S.; Verrecchia, F.; Pittori, C.; Giommi, P.; Barbiellini, G.; Bulgarelli, A.
2011-08-01
We report the extraordinary {gamma}-ray activity (E > 100 MeV) of the gravitationally lensed blazar PKS 1830-211 (z = 2.507) detected by AGILE between 2010 October and November. On October 14, the source experienced a factor of {approx}12 flux increase with respect to its average value and remained brightest at this flux level ({approx}500 x 10{sup -8} photons cm{sup -2} s{sup -1}) for about four days. The one-month {gamma}-ray light curve across the flare showed a mean flux F(E > 100 MeV) = 200 x 10{sup -8} photons cm{sup -2} s{sup -1}, which resulted in a factor of four enhancement with respect to the average value. Following the {gamma}-ray flare, the source was observed in near-IR (NIR)-optical energy bands at the Cerro Tololo Inter-American Observatory and in X-Rays by Swift/X-Ray Telescope and INTEGRAL/IBIS. The main result of these multifrequency observations is that the large variability observed in {gamma}-rays does not have a significant counterpart at lower frequencies: no variation greater than a factor of {approx}1.5 appeared in the NIR and X-Ray energy bands. PKS 1830-211 is then a good '{gamma}-ray only flaring' blazar showing substantial variability only above 10-100 MeV. We discuss the theoretical implications of our findings.
Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data
NASA Astrophysics Data System (ADS)
Holanda, R. F. L.; Busti, V. C.; Alcaniz, J. S.
2016-02-01
We propose and perform a new test of the cosmic distance-duality relation (CDDR), DL(z) / DA(z) (1 + z)2 = 1, where DA is the angular diameter distance and DL is the luminosity distance to a given source at redshift z, using strong gravitational lensing (SGL) and type Ia Supernovae (SNe Ia) data. We show that the ratio D=DA12/DA2 and D*=DL12/DL2, where the subscripts 1 and 2 correspond, respectively, to redshifts z1 and z2, are linked by D/D*=(1+z1)2 if the CDDR is valid. We allow departures from the CDDR by defining two functions for η(z1), which equals unity when the CDDR is valid. We find that combination of SGL and SNe Ia data favours no violation of the CDDR at 1σ confidence level (η(z) simeq 1), in complete agreement with other tests and reinforcing the theoretical pillars of the CDDR.
NASA Astrophysics Data System (ADS)
Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battistelli, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon; Dunkley, Joanna; Dünner, Rolando; Fowler, Joseph W.; Gralla, Megan; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent D.; Kosowsky, Arthur; Lupton, Robert H.; Marriage, Tobias A.; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Reese, Erik D.; Schmitt, Benjamin L.; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jonathan L.; Spergel, David N.; Staggs, Suzanne T.; Swetz, Daniel S.; Switzer, Eric R.; Thornton, Robert; Trac, Hy; Wollack, Ed
2014-04-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.
NASA Technical Reports Server (NTRS)
Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battisetti, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gralla, Megan; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent D; Kosowsky, Arthur; Wollack, Ed
2014-01-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ?CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6s detection significance.
Discovery of two gravitationally lensed quasars in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Agnello, A.; Treu, T.; Ostrovski, F.; Schechter, P. L.; Buckley-Geer, E. J.; Lin, H.; Auger, M. W.; Courbin, F.; Fassnacht, C. D.; Frieman, J.; Kuropatkin, N.; Marshall, P. J.; McMahon, R. G.; Meylan, G.; More, A.; Suyu, S. H.; Rusu, C. E.; Finley, D.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Gruen, D.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Walker, A. R.; Wechsler, R. H.; Zhang, Y.
2015-12-01
We present spectroscopic confirmation of two new gravitationally lensed quasars, discovered in the Dark Energy Survey (DES) and Wide-field Infrared Survey Explorer (WISE) based on their multiband photometry and extended morphology in DES images. Images of DES J0115-5244 show a red galaxy with two blue point sources at either side, which are images of the same quasar at zs = 1.64 as obtained by our long-slit spectroscopic data. The Einstein radius estimated from the DES images is 0.51 arcsec. DES J2146-0047 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fibre spectrum shows a quasar component at zs = 2.38 and absorption by Mg II and Fe II at zl = 0.799, which we tentatively associate with the foreground lens galaxy. Our long-slit spectra show that the blue components are resolved images of the same quasar. The Einstein radius is 0.68 arcsec, corresponding to an enclosed mass of 1.6 × 1011 M⊙. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data mining and model-based selection that is being applied to the entire DES data set.
NASA Astrophysics Data System (ADS)
Man, Jingyun; Cheng, Hongbo
2015-07-01
Here we investigate the gravitational lensing in the strong field limit of a Schwarzschild black hole with a solid deficit angle owing to a global monopole within the context of the f (R ) gravity theory. We obtain the expressions of the deflection angle and time delay in the forms of elliptic integrals and discuss the asymptotic behavior of the elliptic integrals to find the explicit formulas of the angle and time difference in the strong field limit. We show that the deflection angle and the time delay between multiple images are related not only to the monopole but also to the f (R ) correction ψ0 by taking the cosmological boundary into account. Some observables such as the minimum impact parameter, the angular separation, the relative magnification, and the compacted angular position are estimated as well. It is intriguing that a tiny modification on standard general relativity will make a remarkable deviation on the angle and the time lag, offering a significant way to explore some possible distinct signatures of the topological soliton and the correction of Einstein's general relativity.
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
Liu, Jia; May, Morgan; Petri, Andrea; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M.
2015-03-04
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ωm, σ8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator thatmore » interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ωm, σ8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ωm, σ8) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ8(Ωm/0.27)0.63 = 0.85+0.03-0.03.« less
NASA Astrophysics Data System (ADS)
Chang, C.; Pujol, A.; Gaztañaga, E.; Amara, A.; Réfrégier, A.; Bacon, D.; Becker, M. R.; Bonnett, C.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Giannantonio, T.; Hartley, W.; Jarvis, M.; Kacprzak, T.; Ross, A. J.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Kind, M. Carrasco; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.
2016-04-01
We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a ˜116 deg2 area of the Dark Energy Survey (DES) Science Verification data. This method was first developed in Amara et al. (2012) and later re-examined in a companion paper (Pujol et al. 2016) with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find the galaxy bias and 1σ error bars in 4 photometric redshift bins to be 1.12 ± 0.19 (z = 0.2 - 0.4), 0.97 ± 0.15 (z = 0.4 - 0.6), 1.38 ± 0.39 (z = 0.6 - 0.8), and 1.45 ± 0.56 (z = 0.8 - 1.0). These measurements are consistent at the 2σ level with measurements on the same dataset using galaxy clustering and cross-correlation of galaxies with CMB lensing, with most of the redshift bins consistent within the 1σ error bars. In addition, our method provides the only σ8-independent constraint among the three. We forward-model the main observational effects using mock galaxy catalogs by including shape noise, photo-z errors and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
Liu, Jia; May, Morgan; Petri, Andrea; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M.
2015-03-04
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ω_{m}, σ_{8}, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ω_{m}, σ_{8}, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ω_{m}, σ_{8}) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ_{8}(Ω_{m}/0.27)0.63 = 0.85^{+0.03}_{-0.03}.
Frontier Fields: Subaru Weak-Lensing Analysis of the Merging Galaxy Cluster A2744
NASA Astrophysics Data System (ADS)
Medezinski, Elinor; Umetsu, Keiichi; Okabe, Nobuhiro; Nonino, Mario; Molnar, Sandor; Massey, Richard; Dupke, Renato; Merten, Julian
2016-01-01
We present a weak-lensing analysis of the merging Frontier Fields (FF) cluster Abell 2744 using new Subaru/Suprime-Cam imaging. The wide-field lensing mass distribution reveals this cluster is comprised of four distinct substructures. Simultaneously modeling the two-dimensional reduced shear field using a combination of a Navarro-Frenk-White (NFW) model for the main core and truncated NFW models for the subhalos, we determine their masses and locations. The total mass of the system is constrained as {M}200{{c}}=(2.06+/- 0.42)× {10}15 {M}⊙ . The most massive clump is the southern component with {M}200{{c}}=(7.7+/- 3.4)× {10}14 {M}⊙ , followed by the western substructure ({M}200{{c}}=(4.5+/- 2.0)× {10}14 {M}⊙ ) and two smaller substructures to the northeast ({M}200{{c}}=(2.8+/- 1.6)× {10}14 {M}⊙ ) and northwest ({M}200{{c}}=(1.9+/- 1.2)× {10}14 {M}⊙ ). The presence of the four substructures supports the picture of multiple mergers. Using a composite of hydrodynamical binary simulations we explain this complicated system without the need for a “slingshot” effect to produce the northwest X-ray interloper, as previously proposed. The locations of the substructures appear to be offset from both the gas ({87}-28+34 arcsec, 90% CL) and the galaxies ({72}-53+34 arcsec, 90% CL) in the case of the northwestern and western subhalos. To confirm or refute these findings, high resolution space-based observations extending beyond the current FF limited coverage to the west and northwestern area are essential. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Society of Japan.
Constraining multiplicative bias in CFHTLenS weak lensing shear data
NASA Astrophysics Data System (ADS)
Liu, Jia; Ortiz-Vazquez, Alvaro; Hill, J. Colin
2016-05-01
Several recent cosmological analyses have found tension between constraints derived from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) data and those derived from other data sets, such as the Planck cosmic microwave background (CMB) temperature anisotropies. Similarly, a direct cross-correlation of the CFHTLenS data with Planck CMB lensing data yielded an anomalously low amplitude compared to expectations based on Planck or WMAP-derived cosmological parameters Liu and Hill [Phys. Rev. D 92, 063517 (2015)]. One potential explanation for these results is a multiplicative bias afflicting the CFHTLenS galaxy shape measurements, from which shears are inferred. Simulations are used in the CFHTLenS pipeline to calibrate such biases, but no data-driven constraints have been presented to date. In this paper, we cross-correlate CFHTLenS galaxy density maps with CFHTLenS shear maps and Planck CMB lensing maps to calibrate an additional multiplicative shear bias (m ) in CFHTLenS (beyond the multiplicative correction that has already been applied to the CFHTLenS galaxy shears), following methods suggested by Vallinotto [Astrophys. J. 759, 32 (2012)], and Das et al. [arXiv:1311.2338]. We analyze three magnitude-limited galaxy samples, finding 2 - 4 σ evidence for m <1 using the deepest sample (i <24 ), while the others are consistent with m =1 (no bias). This matches the expectation that the shapes of faint galaxies are the most prone to measurement biases. Our results for m are essentially independent of the assumed cosmology, and only weakly sensitive to assumptions about the galaxy bias. We consider three galaxy bias models, finding in all cases that the best-fit multiplicative shear bias is less than unity (neglecting photometric redshift errors and intrinsic alignment contamination). A value of m ≈0.9 would suffice to reconcile the amplitude of density fluctuations inferred from the CFHTLenS shear two-point statistics with that inferred from Planck CMB
Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar
NASA Astrophysics Data System (ADS)
James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.
2015-03-01
Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this, our team at Double Negative Visual Effects, in collaboration with physicist Kip Thorne, developed a code called Double Negative Gravitational Renderer (DNGR) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering; and they differ from physicists’ image-generation techniques (which generally rely on individual light rays rather than ray bundles), and also differ from techniques previously used in the film industry’s CGI community. This paper has four purposes: (i) to describe DNGR for physicists and CGI practitioners, who may find interesting and useful some of our unconventional techniques. (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies; we focus on the shapes, sizes and influence of caustics and critical curves, the creation and annihilation of stellar images, the pattern of multiple images, and the influence of almost-trapped light rays, and we find similar results to the more familiar case of a camera far from the hole. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie Interstellar, were generated with DNGR—including, especially, the influences of (a) colour changes due to doppler and gravitational frequency shifts, (b) intensity changes due to the frequency shifts, (c) simulated camera lens flare, and (d) decisions that the film makers made about
NASA Astrophysics Data System (ADS)
Yushchenko, A.; Kim, C.; Sergeev, A.
2003-04-01
Quasar-galaxy associations can be explained as gravitational lensing by globular clusters, located in the halos of the foreground galaxies and dwarf galaxies in small groups of galaxies. We propose an observational test for checking this hypothesis. We used the SUPERCOSMOS sky survey to find the overdensities of star-like sources with zero proper motions in the vicinities of the~foreground galaxies from the CfA3 catalog. The results obtained for 19413 galaxies are presented. We show the results of calculations of number densities of star-like sources with zero proper motions in the vicinity of 19413 galaxies. Two different effects can explain the observational data: lensing by globular clusters and lensing by dwarf galaxies. We carried out the CCD 3-color photometry with the 2.0-m telescope of the~Terskol Observatory and the 1.8-m telescope of the Bohyunsan Observatory (South Korea) to select extremely lensed objects around several galaxies for future spectroscopic observations. From ads Wed Jan 12 06:25:17 2005 Return-Path:
Random walks in cosmology: Weak lensing, the halo model, and reionization
NASA Astrophysics Data System (ADS)
Zhang, Jun
This thesis discusses theoretical problems in three areas of cosmology: weak lensing, the halo model, and reionization. In weak lensing, we investigate the impact of the intrinsic alignment on the density-ellipticity correlations using the tidal torquing theory. Under the assumption of the Gaussianity of the tidal field, we find that the intrinsic alignment does not contaminate the density-ellipticity correlation even if the source clustering correlations are taken into account. The non-Gaussian contributions to both the intrinsic density-ellipticity and ellipticity- ellipticity correlations are often non-negligible. In a separate work, we discuss a useful scaling relation in weak lensing measurements. Given a foreground galaxy-density field or shear field, its cross-correlation with the shear field from a background population of source galaxies scales with the source redshift in a way that allows us to effectively measure geometrical distances as a function of redshift and thereby constrain dark energy properties without assuming anything about the galaxy-mass/mass power spectrum. Such a geometrical method can yield a ~ 0.03--0.07 [Special characters omitted.] measurement on the dark energy abundance and equation of state, for a photometric redshift accuracy of [Delta] z ~ 0.01--0.05 and a survey with median redshift of ~1. The geometrical method also provides a consistency check of the standard cosmological model because it is completely independent of structure formation. In the excursion set theory of the halo model, we derive the first-crossing distribution of random walks with a moving barrier of a general shape. Such a distribution is shown to satisfy an integral equation that can be solved by a simple matrix inversion, without the need for Monte Carlo simulations, making it useful for exploring a large parameter space. We discuss examples in which common analytic approximations fail, a failure that can be remedied using our method. In reionization, we
NASA Astrophysics Data System (ADS)
Osato, Ken; Shirasaki, Masato; Yoshida, Naoki
2015-06-01
We study the impact of baryonic physics on cosmological parameter estimation with weak-lensing surveys. We run a set of cosmological hydrodynamics simulations with different galaxy formation models. We then perform ray-tracing simulations through the total matter density field to generate 100 independent convergence maps with a field of view of 25 {{deg }2}, and we use them to examine the ability of the following three lensing statistics as cosmological probes: power spectrum (PS), peak counts, and Minkowski functionals (MFs). For the upcoming wide-field observations, such as the Subaru Hyper Suprime-Cam (HSC) survey with a sky coverage of 1400 {{deg }2}, these three statistics provide tight constraints on the matter density, density fluctuation amplitude, and dark energy equation of state, but parameter bias is induced by baryonic processes such as gas cooling and stellar feedback. When we use PS, peak counts, and MFs, the magnitude of relative bias in the dark energy equation of state parameter w is at a level of, respectively, δ w∼ 0.017, 0.061, and 0.0011. For the HSC survey, these values are smaller than the statistical errors estimated from Fisher analysis. The bias could be significant when the statistical errors become small in future observations with a much larger survey area. We find that the bias is induced in different directions in the parameter space depending on the statistics employed. While the two-point statistic, i.e., PS, yields robust results against baryonic effects, the overall constraining power is weak compared with peak counts and MFs. On the other hand, using one of peak counts or MFs, or combined analysis with multiple statistics, results in a biased parameter estimate. The bias can be as large as 1σ for the HSC survey and will be more significant for upcoming wider-area surveys. We suggest to use an optimized combination so that the baryonic effects on parameter estimation are mitigated. Such a “calibrated” combination can
NASA Astrophysics Data System (ADS)
Lagattuta, David James
Understanding the distribution of mass on cosmic scales provides context for a number of astrophysical topics, including galaxy evolution, structure formation, and cosmology. In this dissertation, I present new research into the distribution of mass throughout the universe, ranging from small (sub-galactic) to large (Supercluster) scales. This work is spread over four separate studies, each focusing on slightly different cosmological distance scales. In the first study, I employ strong and weak gravitational lensing to measure the mass profiles of a sample of massive elliptical galaxies at moderate redshift (z ˜ 0.6). I find that the total mass profile is best described by an isothermal (r -2) distribution, which disagrees with predictions made by numerical simulations. This disagreement provides important clues about the poorly understood interactions between dark matter and baryons. Furthermore, I compare these results to those of a low-redshift (z ˜ 0.2) galaxy sample, and this allows me to constrain the evolution of galaxy-scale mass profiles over a timescale of ˜ 7 billion years. In the second and third studies, I combine strong lensing constraints and high-resolution adaptive optics imaging to develop new mass models for the lens systems B0128+437 and B1938+666. I use these models to search for the presence of small-scale substructures (satellite galaxies) in the vicinity of the host lens. While structure formation models predict a large number of substructure galaxies orbiting a host, this does not agree with observations of the local universe, where only a handful of satellites are seen. I compare the upper-limit substructure constraints from the two strong lenses to the properties of known Milky Way satellites, and lay the foundation for a comprehensive census of extragalactic substructure, using a large sample of lenses to better resolve the tension between theory and observation. Finally, in the fourth study, I focus on mass at super-galactic scales
A new model to predict weak-lensing peak counts. I. Comparison with N-body simulations
NASA Astrophysics Data System (ADS)
Lin, Chieh-An; Kilbinger, Martin
2015-04-01
Context. Weak-lensing peak counts have been shown to be a powerful tool for cosmology. They provide non-Gaussian information of large scale structures and are complementary to second-order statistics. Aims: We propose a new flexible method for predicting weak-lensing peak counts, which can be adapted to realistic scenarios, such as a real source distribution, intrinsic galaxy alignment, mask effects, and photo-z errors from surveys. The new model is also suitable for applying the tomography technique and nonlinear filters. Methods: A probabilistic approach to modeling peak counts is presented. First, we sample halos from a mass function. Second, we assign them density profiles. Third, we place those halos randomly on the field of view. The creation of these "fast simulations" requires much less computing time than do N-body runs. Then, we perform ray-tracing through these fast simulation boxes and select peaks from weak-lensing maps to predict peak number counts. The computation is achieved by our Camelus algorithm. Results: We compare our results to N-body simulations to validate our model. We find that our approach is in good agreement with full N-body runs. We show that the lensing signal dominates shape noise and Poisson noise for peaks with S/N between 4 and 6. Also, counts from the same S/N range are sensitive to Ωm and σ8. We show how our model can distinguish between various combinations of those two parameters. Conclusions: In this paper, we offer a powerful tool for studying weak-lensing peaks. The potential of our forward model is its high flexibility, which makes the using peak counts under realistic survey conditions feasible. The Camelus source code is released via the website http://www.cosmostat.org/software/camelus/