Sample records for weakly coordinating solvents

  1. An Aliphatic Solvent-Soluble Lithium Salt of the Perhalogenated Weakly Coordinating Anion [Al(OC(CCl3)(CF3)2)4](-).


    Zheng, Xin; Zhang, Zaichao; Tan, Gengwen; Wang, Xinping


    The facile synthesis of a new highly aliphatic solvent-soluble Li(+) salt of the perhalogenated weakly coordinating anion [Al(OC(CCl3)(CF3)2)4](-) and its application in stabilizing the Ph3C(+) cation were investigated. The lithium salt Li[Al(OC(CCl3)(CF3)2)4] (4) was prepared by the treatment of 4 mol equiv of HOC(CCl3)(CF3)2 with purified LiAlH4 in n-hexane from -20 °C to room temperature. Compound 4 is highly soluble in both polar and nonpolar solvents, and it bears both CCl3 and CF3 groups, resulting in a lower symmetry around the Al center compared to that of Li[Al(OC(CF3)3)4] (1). Treatment of 4 with Ph3CCl afforded the ionic compound [Ph3C][Al(OC(CCl3)(CF3)2)4] (5) bearing the Ph3C(+) cation with concomitant elimination of LiCl, suggesting the potential application of [Al(OC(CCl3)(CF3)2)4](-) in stabilizing reactive cationic species. Compounds 4 and 5 were fully characterized by spectroscopic and structural methods. PMID:26784742

  2. Contraction of weak polyelectrolyte multilayers in response to organic solvents.


    Gu, Yuanqing; Ma, Yubing; Vogt, Bryan D; Zacharia, Nicole S


    Weak polyelectrolyte multilayers (PEMs) prepared by the layer-by-layer assembly technique have recently been found to demonstrate a unique contraction upon exposure to organic solvents. This response is dependent upon which organic solvent is employed, and fundamental questions have not been clarified regarding the correlation of the magnitude of the film contraction with solvent type. In this work, we used solubility parameters to analyze the response of branched poly(ethylene imine)/poly(acrylic acid) (BPEI/PAA) multilayers when exposed to a variety of solvents. BPEI/PAA multilayers were immersed in a series of 16 different organic solvents and solvent mixtures. Immersion in organic solvent caused film dehydration and therefore contraction and also induced changes in the mechanical properties of PEMs. The film thickness was the best predictor of how a film swelled in water or contracted in organic solvent when using different batches of commercially available polyelectrolytes, rather than polyelectrolyte assembly pH conditions. The degree of film contraction was correlated with Hansen and Kamlet-Taft solubility parameters as well as solvent dielectric constant. In most cases, the hydrogen bonding ability of solvents is the primary factor to determine the magnitude of film contraction. For these solvents, increasing the temperature which corresponds to decreasing the strength of hydrogen bonding, also decreases the ability to dehydrate the films. For solvents that do not follow these trends with the strength of hydrogen bonding, a stronger correlation was found between contraction and dielectric constant, indicating that both traditional solvent quality arguments and electrostatics are important to understanding the contraction of PEMs in organic solvents. PMID:26699080

  3. High Yield C-Derivatization of Weakly Coordinating Carborane Anions

    PubMed Central

    Nava, Matthew J.


    Unlike the “parent” carborane anion CHB11H11−, halogenated carborane anions such as CHB11H5Br6− can be readily C-functionalized in high yield and purity, enhancing their utility as weakly coordinating anions. PMID:20450167

  4. Triflyloxy-substituted carboranes as useful weakly coordinating anions.


    Press, Loren P; McCulloch, Billy J; Gu, Weixing; Chen, Chun-Hsing; Foxman, Bruce M; Ozerov, Oleg V


    New carborane anions carrying one or three triflyloxy substituents are described. The mono-triflyloxy substituted carborane can be halogenated to give pentabromo and decachloro derivatives with preservation of the B-OTf linkage. The use of [HCB11Cl10OTf](-) as a weakly coordinating anion is demonstrated. PMID:26251850

  5. Influence of solute-solvent coordination on the orientational relaxation of ion assemblies in polar solvents

    NASA Astrophysics Data System (ADS)

    Ji, Minbiao; Hartsock, Robert W.; Sung, Zheng; Gaffney, Kelly J.


    We have investigated the rotational dynamics of lithium thiocyanate (LiNCS) dissolved in various polar solvents with time and polarization resolved vibrational spectroscopy. LiNCS forms multiple distinct ionic structures in solution that can be distinguished with the CN stretch vibrational frequency of the different ionic assemblies. By varying the solvent and the LiNCS concentration, the number and type of ionic structures present in solution can be controlled. Control of the ionic structure provides control over the volume, shape, and dipole moment of the solute, critical parameters for hydrodynamic and dielectric continuum models of friction. The use of solutes with sizes comparable to or smaller than the solvent molecules also helps amplify the sensitivity of the measurement to the short-ranged solute-solvent interaction. The measured orientational relaxation dynamics show many clear and distinct deviations from simple hydrodynamic behavior. All ionic structures in all solvents exhibit multi-exponential relaxation dynamics that do not scale with the solute volume. For Lewis base solvents such as benzonitrile, dimethyl carbonate, and ethyl acetate, the observed dynamics strongly show the effect of solute-solvent complex formation. For the weak Lewis base solvent nitromethane, we see no evidence for solute-solvent complex formation, but still see strong deviation from the predictions of simple hydrodynamic theory.

  6. Solvent extraction: the coordination chemistry behind extractive metallurgy.


    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B


    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents. PMID:24088789

  7. Metal Recognition Driven by Weak Interactions: A Case Study in Solvent Extraction.


    Poirot, Rémi; Le Goff, Xavier; Diat, Olivier; Bourgeois, Damien; Meyer, Daniel


    Tuning the affinity of a medium for a given metallic cation with the sole modification of weak interactions is a challenge for molecular recognition. Solvent extraction is a key technique employed in the recovery and purification of valuable metals, and it is facing an increased complexity of metal fluxes to deal with. The selectivity of such processes generally relies on the use of specific ligands, designed after their coordination chemistry. In the present study, we illustrate the possibility to employ the sole control of weak interactions to achieve the selective extraction of Pd(II) over Nd(III) : the control over selectivity is obtained by tuning the self-assembly of the organic phase. A model is proposed, after detailed experimental analysis of molecular (XRD, NMR) and supra-molecular (SAXS) features of the organic phases. We thus demonstrate that Pd(II) extraction is driven by metal coordination, whereas Nd(III) extraction requires aggregation of the extractant in addition to metal coordination. These results are of general interest for the applications which rely on the stabilization of metals in organic phases. PMID:27062532

  8. Reactive p-block cations stabilized by weakly coordinating anions

    PubMed Central

    Engesser, Tobias A.; Lichtenthaler, Martin R.; Schleep, Mario


    The chemistry of the p-block elements is a huge playground for fundamental and applied work. With their bonding from electron deficient to hypercoordinate and formally hypervalent, the p-block elements represent an area to find terra incognita. Often, the formation of cations that contain p-block elements as central ingredient is desired, for example to make a compound more Lewis acidic for an application or simply to prove an idea. This review has collected the reactive p-block cations (rPBC) with a comprehensive focus on those that have been published since the year 2000, but including the milestones and key citations of earlier work. We include an overview on the weakly coordinating anions (WCAs) used to stabilize the rPBC and give an overview to WCA selection, ionization strategies for rPBC-formation and finally list the rPBC ordered in their respective group from 13 to 18. However, typical, often more organic ion classes that constitute for example ionic liquids (imidazolium, ammonium, etc.) were omitted, as were those that do not fulfill the – naturally subjective – “reactive”-criterion of the rPBC. As a rule, we only included rPBC with crystal structure and only rarely refer to important cations published without crystal structure. This collection is intended for those who are simply interested what has been done or what is possible, as well as those who seek advice on preparative issues, up to people having a certain application in mind, where the knowledge on the existence of a rPBC that might play a role as an intermediate or active center may be useful. PMID:26612538

  9. Weak Coordination as a Powerful Means for Developing Broadly Useful C–H Functionalization Reactions

    PubMed Central

    Engle, Keary M.; Mei, Tian-Sheng; Wasa, Masayuki


    functional group (or groups) can be used to chelate the metal catalyst and position it for selective C–H cleavage. Precoordination can overcome the paraffin nature of C–H bonds by increasing the effective concentration of the substrate so that it needn't be used as solvent. From a synthetic perspective, it is desirable to use a functional group that is an intrinsic part of the substrate so that extra steps for installation and removal of an external directing group can be avoided. In this way, dramatic increases in molecular complexity can be accomplished in a single stroke through stereo- and site-selective introduction of a new functional group. Although reactivity is a major challenge (as with first functionalization), the philosophy in further functionalization differs—the major challenge is developing reactions that work with predictable selectivity in intricately functionalized contexts on commonly occurring structural motifs. In this Account, we focus on an emergent theme within the further functionalization literature: the use of commonly occurring functional groups to direct C–H cleavage through weak coordinations. We discuss our motivation for studying Pd-catalyzed C–H functionalization assisted by weakly coordinating functional groups and chronicle our endeavors to bring reactions of this type to fruition. Through this approach, we have developed reactions with a diverse range of substrates and coupling partners, with the broad scope likely stemming from higher reactivity of the less stable cyclopalladated intermediates held in place by weak coordinations. PMID:22166158

  10. Rhenium complexes with weakly coordinating solvent ligands, cis[Re(PR{sub 3})(CO){sub 4}(L)][BAr{sub F}], L = CH{sub 2}Cl{sub 2}, Et{sub 2}O, NC{sub 5}F{sub 5}: Decomposition to chloride-bridged dimers in CH{sub 2}Cl{sub 2} solution

    SciTech Connect

    Huhmann-Vincent, J.; Scott, B.L.; Kubas, G.J.


    The solvent-coordinated complexes [cis-Re(CO){sub 4}(PR{sub 3})(S)][BAr{sub F}] (R = Ph, {sup i}Pr, Cy, BAr{sub F} = [B(3,5-(CF{sub 3}){sub 2}C{sub 6}H{sub 3}){sub 4}]{sup {minus}}) for S = Et{sub 2}O, CH{sub 2}Cl{sub 2}, and NC{sub 5}F{sub 5} have been prepared from reaction of the neutral methyl precursors, cis-Re-(CO){sub 4}(PR{sub 3})(Me), with either [H(OEt{sub 2}){sub 2}][BAr{sub F}] or [Ph{sub 3}C][BAr{sub F}] in the appropriate solvent. A crystal structure of the complex [cis-Re(CO){sub 4}(P{sup i}Pr{sub 3})(ClCH{sub 2}Cl)][BAr{sub F}] shows that the dichloromethane ligand is coordinated through one chlorine, with an Re-Cl distance of 2.554(2) {angstrom}. The first example of a structurally characterized pentafluoropyridine complex of rhenium was also determined, [cis-Re(CO){sub 4}(P{sup i}Pr{sub 3})(NC{sub 5}F{sub 5})][BAr{sub F}], with an Re-N distance of 2.319(5) {angstrom}. Activation of C-Cl bonds in the dichloromethane complexes result in the formation of the chloride-bridged dimers, {l_brace}[cis-Re(CO){sub 4}(PR{sub 3})]{sub 2}({mu}-Cl){r_brace}{l_brace}BAr{sub f}{r_brace}, and the X-ray structures of the Ph and Cy derivatives were determined.



    Reas, W.H.


    A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.

  12. Coordinative Properties of Highly Fluorinated Solvents with Amino and Ether Groups

    PubMed Central

    Boswell, Paul G.; Lugert, Elizabeth C.; Rábai, József; Amin, Elizabeth A.; Bühlmann, Philippe


    In spite of the widespread use of perfluorinated solvents with amino and ether groups in a variety of application fields, the coordinative properties of these compounds are poorly known. It is generally assumed that the electron withdrawing perfluorinated moieties render these functional groups rather inert, but little is known quantitatively about the extent of their inertness. This paper reports on the interactions between inorganic monocations and perfluorotripentylamine and 2H-perfluoro-5,8,11-trimethyl-3,6,9,12-tetraoxapentadecane, as determined with fluorous liquid-membrane cation-selective electrodes doped with tetrakis[3,5-bis(perfluorohexyl)phenyl]borate salts. The amine does not undergo measurable association with any ion tested, and its formal pKa is shown to be smaller than -0.5. This is consistent with the nearly planar structure of the amine at its nitrogen center, as obtained with density functional theory calculations. The tetraether interacts very weakly with Na+ and Li+. Assuming 1:1 stoichiometry, formal association constants were determined to be 2.3 and 1.5 M-1, respectively. This disproves an earlier proposition that the Lewis base character in such compounds may be non-existent. Due to the extremely low polarity of fluorous solvents and the resulting high extent of ion pair formation, a fluorophilic electrolyte salt with perfluoroalkyl substituents on both the cation and the anion had to be developed for these experiments. In its pure form, this first fluorophilic electrolyte salt is an ionic liquid with a glass transition temperature, Tg, of -18.5 °C. Interestingly, the molar conductivity of solutions of this salt increases very steeply in the high concentration range, making it a particularly effective electrolyte salt. PMID:16316244

  13. Photoinduced strong acid–weak base reactions in a polar aprotic solvent

    NASA Astrophysics Data System (ADS)

    Lee, Young Min; Park, Sun-Young; Kim, Heesu; Gyum Kim, Taeg; Kwon, Oh-Hoon


    The excited-state proton transfer (ESPT) of the strong photoacid, N-methyl-7-hydroxyquinolinium, was studied in the presence of different weak bases such as methanol, ethanol, and dimethyl sulfoxide in an aprotic solvent of acetonitrile. Here, we present chemical kinetics analysis of the ESPT mechanism to explain biphasic fluorescence decay of the parent photoacid and the sign reversal of the rise and decay of the resulting conjugate-base fluorescence. The ESPT of the free photoacid showed a molecularity of 2 with reacting alcohol molecules. In the ground state, it was found that a fraction of the photoacid formed 1 : 2 hydrogen-bonded complexes with the residual water present in the aprotic solvent or 1 : 1 complexes with the additive alcohols. In the excited state, these adducts underwent proton transfer when complexed further with diffusing alcohol molecules.

  14. Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions.


    Geiger, William E; Barrière, Frédéric


    Electrochemistry is a powerful tool for the study of oxidative electron-transfer reactions (anodic processes). Since the 1960s, the electrolytes of choice for nonaqueous electrochemistry were relatively small (heptaatomic or smaller) inorganic anions, such as perchlorate, tetrafluoroborate, or hexafluorophosphate. Owing to the similar size-to-charge ratios of these "traditional" anions, structural alterations of the electrolyte anion are not particularly valuable in effecting changes in the corresponding redox reactions. Systematic variations of supporting electrolytes were largely restricted to cathodic processes, in which interactions of anions produced in the reactions are altered by changes in electrolyte cations. A typical ladder involves going from a weakly ion-pairing tetraalkylammonium cation, [N(C(n)H(2n+1))(4)](+), with n > or = 4, to more strongly ion-pairing counterparts with n < 4, and culminating in very strongly ion-pairing alkali metal ions. A new generation of supporting electrolyte salts that incorporate a weakly coordinating anion (WCA) expands anodic applications by providing a dramatically different medium in which to generate positively charged electrolysis products. A chain of electrolyte anions is now available for the control of anodic reactions, beginning with weakly ion-pairing WCAs, progressing through the traditional anions, and culminating in halide ions. Although the electrochemical properties of a number of different WCAs have been reported, the most systematic work involves fluoro- or trifluoromethyl-substituted tetraphenylborate anions (fluoroarylborate anions). In this Account, we focus on tetrakis(perfluorophenyl)borate, [B(C(6)F(5))(4)](-), which has a significantly more positive anodic window than tetrakis[(3,5-bis(trifluoromethyl)phenyl)]borate, [BArF(24)](-), making it suitable in a larger range of anodic oxidations. These WCAs also have a characteristic of specific importance to organometallic redox processes. Many electron

  15. Protein solvent and weak protein protein interactions in halophilic malate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Ebel, Christine; Faou, Pierre; Zaccai, Giuseppe


    With the aim to correlate the solvation, stability and solubility properties of halophilic malate dehydrogenase, we characterized its weak interparticle interactions by small-angle neutron scattering in various solvents. The protein concentration dependence of the apparent radius of gyration and forward scattered intensity extrapolated from Guinier plots, and thus the second virial coefficient, A2, were determined for each solvent condition. In NaCl 1M+2-methylpentane-2,4-diol 30%, a solvent that promotes protein crystallization, A2 is negative, -0.4×10 -4 ml mol g -2 and indicating attractive interactions; in ammonium sulfate 3M, in which the protein precipitates at high concentrations, A2˜0. In 2-5M NaCl, 1-3.5M NaOAc, 1-4.5M KF or 1-2M (NH 4) 2SO 4, in which the protein is very soluble, A2 is positive with a value of the order of 0.4×10 -4 ml mol g -2 which decreases with increasing salt concentration. In MgCl 2 however, A2 increases with increasing salt concentration from 0.2 to 1.3M.

  16. Preparation of cadmium selenide colloidal quantum dots in non-coordinating solvent octadecene

    NASA Astrophysics Data System (ADS)

    Mazing, D. S.; Brovko, A. M.; Matyushkin, L. B.; Aleksandrova, O. A.; Moshnikov, V. A.


    Nearly monodisperse cadmium selenide quantum dots (QDs) were synthesized in non-coordinating solvent octadecene through phosphine-free method using oleic acid as surfactant. Selenium powder suspension in octadecene obtained by ultrasound processing was used as one of precursor solutions. Influence of multiple selenium precursor injections on nanocrystal growth process was investigated. Nanoparticles were characterized by means of absorption and photoluminescence spectroscopies.

  17. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    SciTech Connect

    Li, Xiu-Hua; Zhang, Qi; Hu, Ping


    A multifunctional homochiral coordination polymer, [Co(H{sub 2}O)(BDC)(4,4′-BPY)]∙3H{sub 2}O (1) (H{sub 2}BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions.

  18. Solvent wrapped metastable colloidal crystals: highly mutable colloidal assemblies sensitive to weak external disturbance.


    Yang, Dongpeng; Ye, Siyun; Ge, Jianping


    Solvent wrapped "metastable" crystalline colloidal arrays (CCAs) have been prepared by supersaturation induced precipitation and self-assembly of monodisperse particles in polar/nonpolar organic solvents. These metastable CCAs possess ordered structures but with less stability comparing with traditionally fixed colloidal crystal systems. They are stabilized by the balance between long-range attraction and electrostatic repulsion of neighboring like-charged particles. Monitoring the reflection intensity during evaporation suggests that these crystals can exist for several hours at 90 °C and even longer at room temperature. Based on the evolution of particle volume fraction in whole suspension (φ(SiO2)), crystal phase (φ(crystal)), and liquid phase (φ(liquid)), the formation of metastable CCAs can be understood as a microscopic phase separation process, where the homogeneous dispersion will separate into a "crystal phase" with orderly stacked particles and a "liquid phase" with randomly dispersed particles. Further calculation of the volume fraction of crystal phase (V(crystal)/V(total)) and the ratio of particles in crystal phase (f(crystal)) shows that with the increase of designed Φ(SiO2), more particles precipitate to form colloidal crystals with larger sizes but the lattice spacing of the microcrystals remains constant. Unlike fixed or traditional responsive CCAs, these metastable CCAs can reversibly assemble and disassemble with great ease, because little energy is involved or required in this transformation. Therefore, they can sense weak external disturbances, including subtle motion and slight friction or shearing forces. PMID:24266836

  19. Weakness


    Lack of strength; Muscle weakness ... feel weak but have no real loss of strength. This is called subjective weakness. It may be ... flu. Or, you may have a loss of strength that can be noted on a physical exam. ...

  20. Pd(II) coordinated deprotonated diphenyl phosphino amino pyridine: reactivity towards solvent, base, and acid.


    Pratihar, Sanjay; Pegu, Rupa; Guha, Ankur Kanti; Sarma, Bipul


    The reactivity and stability of P(III)-N and P(III)≈N bonds will be different towards various solvents, bases, and acids because of their difference in bond strength due to different N-pπ-P-dπ donor bonding. For this, a P≈N containing Pd(II) complex, [Pd(DPAP)2] (C1), was synthesized from the reaction between PdCl2(COD) (COD = 1,4-cyclooctadiene) and 2 equiv. DPAP (diphenyl phosphino amino pyridine) ligand, followed by deprotonation of the N-H proton of the coordinated DPAP. The reactivity and stability of coordinated P≈N in complex C1 were determined in various protic and aprotic solvents, bases, and acids. The inertness of coordinated P=N towards various solvents and bases was observed, whereas protonation occurs at the nitrogen of P=N in the presence of an acid to form P-NH, with the generation of dicationic palladium complexes (C2). The dicationic complex C2 is found to be stable in the presence of bulky monoanionic Sn(IV) reagents, whereas, in the presence of more nucleophilic anions like Br(-) or I(-), dissociation of one DPAP ligand from dicationic Pd(II) complexes C2 leads to the generation of Pd(DPAP)X2 (X = Br(-), I(-)). Finally, the utility of the complexes towards Suzuki coupling of various aryl bromides and aryl or heteraryl boronic acids has been checked. PMID:25312248

  1. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    SciTech Connect

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi


    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1–3 contain four types of 2{sub 1} helical chains. While the Nd(III) ions are bridged through μ{sub 2}-HIDC{sup 2−} and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of solvent DMF to formate acid or oxalic acid under solvothermal conditions. The isostructural complexes 1–3 contain four types of different 2{sub 1} helical chains in the 2D layer and 1 exhibits bright red solid-state phosphorescence upon UV radiation. - Highlights: • Four unexpected 2D lanthanide coordination compounds have been synthesized through in situ reactions under solvothermal conditions. • The complexes 1–3 contain four types of 2{sub 1} helical chains in the layer. • Complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.

  2. Oxidation of alkanes by cobalt(II) salts of weakly coordinating anions

    SciTech Connect

    Goldstein, A.S.; Drago, R.S. )


    Catalysts which effect the selective oxidation of alkanes under mild reaction conditions are highly desired. Commercial processes exist which involve the oxidation of alkanes by O{sub 2} with cobalt carboxylate catalysts. Elevated temperatures and pressures are required, and the metal ion function is to decompose hydroperoxides formed in a radical-chain process. The authors have demonstrated that a weakly solvated cobalt-acetonitrile complex (Co(NCCH{sub 3}){sub 4})(PF{sub 6}){sub 2}, with a weakly coordinating anion catalyzes the air oxidation of alkanes under mild conditions (75C and 3 atm). Cyclohexane and adamantane are converted to the corresponding alcohol and ketone products. The commercial catalyst for cyclohexane oxidation does not function under these milder conditions. Experiments indicate a mechanism in which the metal ion functions both as an initiator and as a hydroperoxide decomposition catalyst.

  3. Reversible and selective solvent adsorption in layered metal-organic frameworks by coordination control.


    Yin, Xinbo; Chen, Haohong; Song, Yuna; Wang, Yang; Li, Qiaowei; Zhang, Lijuan


    With various functionalities in the framework and high thermal stability, metal-organic frameworks (MOFs) have been extensively studied for the applications in adsorption and separation. In last decade, synthesizing new MOFs with desired structures and improved chemical stability to meet these applications has drawn great attention. In this report, by using an organic ligand with azolate moiety, benzo-bis(imidazole) (H2BBI), we synthesized two new 2D layered MOF structures with distinct topologies. Framework 1 {[Zn2Cl2(BBI)(MSM)2]n, MSM=methylsulfonylmethane}, constructed from tetrahedral Zn(II) and BBI, maintains its structure in organic solvents, such as methanol and benzene, and even in water. Meanwhile, framework 2 {[Cd2Cl2(BBI)(DMSO)2]n, DMSO=dimethyl sulfoxide} differs from framework 1, and is assembled from trigonal bipyramidal Cd(II) and square planar BBI. By removing the DMSO molecules coordinated to Cd(II) (25 weight% of the structure), 2 could transform to 3 {[Cd2Cl2(BBI)]n}, which was further characterized by high-resolution powder X-ray diffraction. The solvent-free 3 retains the original connectivity within each layer, and is capable of reversible and selective adsorption of DMSO molecules. The bistable four- and five-coordinated geometry exchange of Cd(II) is the origin of this adsorption with improved selectivity and capacity. PMID:24183447

  4. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    SciTech Connect

    Banerjee, Debasis; Finkelstein, Jeffrey; Smirnov, A.; Forster, Paul M.; Borkowski, Lauren A.; Teat, Simon J.; Parise, John B.


    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg4(3,5-PDC)4(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-D network with a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite testing

  5. Retrieval-based face annotation by weak label regularized local coordinate coding.


    Wang, Dayong; Hoi, Steven C H; He, Ying; Zhu, Jianke; Mei, Tao; Luo, Jiebo


    Auto face annotation, which aims to detect human faces from a facial image and assign them proper human names, is a fundamental research problem and beneficial to many real-world applications. In this work, we address this problem by investigating a retrieval-based annotation scheme of mining massive web facial images that are freely available over the Internet. In particular, given a facial image, we first retrieve the top $(n)$ similar instances from a large-scale web facial image database using content-based image retrieval techniques, and then use their labels for auto annotation. Such a scheme has two major challenges: 1) how to retrieve the similar facial images that truly match the query, and 2) how to exploit the noisy labels of the top similar facial images, which may be incorrect or incomplete due to the nature of web images. In this paper, we propose an effective Weak Label Regularized Local Coordinate Coding (WLRLCC) technique, which exploits the principle of local coordinate coding by learning sparse features, and employs the idea of graph-based weak label regularization to enhance the weak labels of the similar facial images. An efficient optimization algorithm is proposed to solve the WLRLCC problem. Moreover, an effective sparse reconstruction scheme is developed to perform the face annotation task. We conduct extensive empirical studies on several web facial image databases to evaluate the proposed WLRLCC algorithm from different aspects. The experimental results validate its efficacy. We share the two constructed databases "WDB" (714,454 images of 6,025 people) and "ADB" (126,070 images of 1,200 people) with the public. To further improve the efficiency and scalability, we also propose an offline approximation scheme (AWLRLCC) which generally maintains comparable results but significantly reduces the annotation time. PMID:24457510

  6. An europium(III) diglycolamide complex: insights into the coordination chemistry of lanthanides in solvent extraction.


    Antonio, Mark R; McAlister, Daniel R; Horwitz, E Philip


    The synthesis, stoichiometry, and structural characterization of a homoleptic, cationic europium(III) complex with three neutral tetraalkyldiglycolamide ligands are reported. The tri(bismuth tetrachloride)tris(N,N,N',N'-tetra-n-octyldiglycolamide)Eu salt, [Eu(TODGA)3][(BiCl4)3] obtained from methanol was examined by Eu L3-edge X-ray absorption spectroscopy (XAS) to reveal an inner-sphere coordination of Eu(3+) that arises from 9 O atoms and two next-nearest coordination spheres that arise from 6 carbon atoms each. A structural model is proposed in which each TODGA ligand with its O=Ca-Cb-O-Cb-Ca=O backbone acts as a tridentate O donor, where the two carbonyl O atoms and the one ether O atom bond to Eu(3+). Given the structural rigidity of the tridentate coordination motif in [Eu(TODGA)3](3+) with six 5-membered chelate rings, the six Eu-Ca and six Eu-Cb interactions are readily resolved in the EXAFS (extended X-ray absorption fine structure) spectrum. The three charge balancing [BiCl4](-) anions are beyond the cationic [Eu(TODGA)3](3+) cluster in an outer sphere environment that is too distant to be detected by XAS. Despite their sizeable length and propensity for entanglement, the four n-octyl groups of each TODGA (for a total of twelve) do not perturb the Eu(3+) coordination environment over that seen from previously reported single-crystal structures of tripositive lanthanide (Ln(3+)) complexes with tetraalkyldiglycolamide ligands (of the same 1:3 metal-to-ligand ratio stoichiometry) but having shorter i-propyl and i-butyl groups. The present results set the foundation for understanding advanced solvent extraction processes for the separation of the minor, tripositive actinides (Am, Cm) from the Ln(3+) ions in terms of the local structure of Eu(3+) in a solid state coordination complex with TODGA. PMID:25310364

  7. Coordination of weakly binding anions to [Ru2(μ-O2CCH3)4]+ in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dunlop, Kate; Wang, Ruiyao; Stanley Cameron, T.; Aquino, Manuel A. S.


    Four new complexes involving the diruthenium(II,III) tetraacetate core, [Ru2(μ-O2CCH3)4]+, with three relatively weakly binding anions ClO4-, NO3- and CFCO2- have been synthesized and structurally characterized in exclusively aqueous media. Despite their low, but still positive, apparent donor numbers (D.N.) in water (according to previous literature by Linert et al.) both NO3- (D.N. = 0.21) and CFCO2- (D.N. < 8.65) do coordinate axially to [Ru2(μ-O2CCH3)4]+ , with water having a D.N. = 19.5. NO3- forms both a polymer, [Ru2(μ-O2CCH3)4(NO3)]x, and a mixed axial adduct with water, [Ru2(μ-O2CCH3)4(H2O)(NO3)] depending on reaction stoichiometry. CFCO2- forms a double salt of the form [Ru2(μ-O2CCH3)4(H2O)2] [Ru2(μ-O2CCH3)4(CF3COO)2]⋯2H2O. ClO4-, with a negative apparent D.N. in water of -12.4, only "binds" outer-sphere to form [Ru2(μ-O2CCH3)4(H2O)2](ClO4), at all reaction stoichiometries (as does the PF6- ion whose structure was also determined and found to be the same as a previous result). These results are compared to the very limited data of [Ru2(μ-O2CCH3)4]+ adduct salts in aqueous solution and it is concluded that despite the low donor numbers, as long as they are positive, the species formed in water can be every bit as varied and rich as those formed in other solvents.

  8. Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity

    PubMed Central

    Zeitler, Magteld; Tass, Peter A.


    Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike timing–dependent plasticity CR stimulation causes a decrease of synaptic weights and finally anti-kindling, i.e., unlearning of abnormally strong synaptic connectivity and abnormal neuronal synchrony. Long-lasting desynchronizing aftereffects of CR stimulation have been verified in pre-clinical and clinical proof of concept studies. In general, for different neuromodulation approaches, both invasive and non-invasive, it is desirable to enable effective stimulation at reduced stimulation intensities, thereby avoiding side effects. For the first time, we here present a two-stage CR stimulation protocol, where two qualitatively different types of CR stimulation are delivered one after another, and the first stage comes at a particularly weak stimulation intensity. Numerical simulations show that a two-stage CR stimulation can induce the same degree of anti-kindling as a single-stage CR stimulation with intermediate stimulation intensity. This stimulation approach might be clinically beneficial in patients suffering from brain diseases characterized by abnormal neuronal synchrony where a first treatment stage should be performed at particularly weak stimulation intensities in order to avoid side effects. This might, e.g., be relevant in the context of acoustic CR stimulation in tinnitus patients with hyperacusis or in the case of electrical deep brain CR stimulation with sub-optimally positioned leads or side effects caused by stimulation of the target itself. We discuss how to apply our method in first in man and proof of concept studies. PMID:27242500

  9. Vibrational effects in a weakly-interacting quantum solvent: The CO molecule in 4He gas and in 4He droplets

    NASA Astrophysics Data System (ADS)

    Paesani, F.; Gianturco, F. A.


    The coupling between the intermolecular motion and the internal vibrational coordinate in the He-CO system is computed at the post-Hartree-Fock level using the DFT+DISP model already employed by us for similar systems and reviewed here in the main text. The quality of the computation of such weak effects is compared with other, earlier model calculations and then used for the evaluation of the vibrational relaxation cross sections of the CO molecule diluted in 4He gas. A further assessment of the vibrational coupling is carried out by computing, with a stochastic approach that employs the Diffusion Monte Carlo method, the effects on the vibrational frequency of the CO impurity from its immersion in 4He droplets of variable size. Both sets of results are analyzed and discussed to gauge the reliability of the computed coupling vis-a-vis one of those suggested by earlier calculations. This study provides further evidence on the difficulty of quantitatively obtaining from calculations the extremely small effects connected with molecular vibrational features in this system and caused by the weak interaction between the title molecule and a quantum solvent like 4He.

  10. Solvent tuning of the substitution behavior of a seven-coordinate iron(III) complex.


    Ivanović-Burmazović, Ivana; Hamza, Mohamed S A; van Eldik, Rudi


    A detailed kinetic study of the substitution behavior of the seven-coordinate [Fe(dapsox)(L)2]ClO4 complex (H(2)dapsox = 2,6-diacetylpyridine-bis(semioxamazide), L = solvent or its deprotonated form) with thiocyanate as a function of the thiocyanate concentration, temperature, and pressure was undertaken in protic (EtOH and acidified EtOH and MeOH) and aprotic (DMSO) organic solvents. The lability and substitution mechanism depend strongly on the selected solvent (i.e., on solvolytic and protolytic processes). In the case of alcoholic solutions, substitution of both solvent molecules by thiocyanate could be observed, whereas in DMSO only one substitution step occurred. For both substitution steps, [Fe(dapsox)(L)2]ClO4 shows similar mechanistic behavior in methanol and ethanol, which is best reflected by the values of the activation volumes (MeOH DeltaV(I) = +15.0 +/- 0.3 cm(3) mol(-1), DeltaV(II) = +12.0 +/- 0.2 cm(3) mol(-1); EtOH DeltaV(I) = +15.8 +/- 0.7 cm(3) mol(-1), DeltaV(II) = +11.1 +/- 0.5 cm(3) mol(-1)). On the basis of the reported activation parameters, a dissociative (D) mechanism for the first substitution step and a D or dissociative interchange (I(d)) mechanism for the second substitution step are suggested for the reaction in MeOH and EtOH. This is consistent with the predominant existence of alcoxo [Fe(dapsox)(ROH)(OR)] species in alcoholic solutions. In comparison, the activation parameters for the substitution of the aqua-hydroxo [Fe(dapsox)(H2O)(OH)] complex by thiocyanate at pH 5.1 in MES were determined to be DeltaH = 72 +/- 3 kJ mol(-1), DeltaS = +38 +/- 11 J K(-1) mol(-1), and DeltaV = -3.0 +/- 0.1 cm(3) mol(-1), and the operation of a dissociative interchange mechanism was suggested, taking the effect of pressure on the employed buffer into account. The addition of triflic acid to the alcoholic solutions ([HOTf] = 10(-3) and 10(-2) M to MeOH and EtOH, respectively) resulted in a drastic changeover in mechanism for the first substitution

  11. Selective and effective binding of pillar[5,6]arenes toward secondary ammonium salts with a weakly coordinating counteranion.


    Li, Chunju; Shu, Xiaoyan; Li, Jian; Fan, Jiazeng; Chen, Zhenxia; Weng, Linhong; Jia, Xueshun


    The selective and effective binding of secondary ammoniums with a weakly coordinating tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF) counteranion by per-ethylated pillar[5,6]arenes is reported. The construction of a first pillararene-based self-sorting system consisting of two wheels and two axles is also described. PMID:22866893

  12. Weak coordination among petiole, leaf, vein, and gas-exchange traits across 41 Australian angiosperm species and its possible implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life-forms. However, recent reports suggest that this relationship may become weak or break down completely within the angiosperms. Methods To examine this possi...

  13. Ionic Liquids with Weakly Coordinating [M(III)(OR(F))4](-) Anions.


    Rupp, Alexander B A; Krossing, Ingo


    Ionic liquids (ILs) are defined as salts with melting points below 100 °C. They attracted much attention in the last two decades due to their unique set of properties, including high conductivities, low viscosities, negligible vapor pressure, and high electrochemical resistance. ILs are seen as tunable systems, of which (also in mixtures) up to 10(19) combinations may exist. These properties make ILs interesting candidates for a variety of fundamental to industrial applications. Our addition to this field was weakly coordinating, little interacting anions, the highly fluorinated aluminates [Al(OR(F))4](-) (R(F) = C(CF3)3, C(CH3), (CF3)2, and CH(CF3)2 and later also CH2(CF3)). We have used these anions in a broad spectrum of applications, including the stabilization of reactive cations, (polymerization) catalysis, and conducting salts for cyclic voltammetry or in electrochemical cells. Especially the [Al(Ohfip)4](-) (hfip = CH(CF3)2) anions in combination with asymmetric organic cations turned out to be very well suited for the synthesis of ILs with very low melting points, some even far below 0 °C. Also the analogous borates, [B(OR(F))4](-), were shown to yield ILs, and currently a plethora of such aluminate and borate ILs have been synthesized and thoroughly investigated. In many aspects, at least the [Al(Ohfip)4](-) ILs present almost ideally noninteracting prototype ILs with (nearly) isotropic but weak and flat Coulomb potential. Consequently, their overall interionic interactions are significantly reduced compared with other classes of ILs, resulting in an extraordinarily low degree, or (for short cation chain lengths below six) even complete absence of ion pairing. From thorough analysis of the principles governing the physical properties of this highly fluorinated IL class with minimized interactions, we were able to learn basic principles that could be extended, for example, to the prediction of the principal properties of a wide variety of typical ILs. In

  14. Coordination conversion of cobalt(II) in binary aqueous-organic solvents

    SciTech Connect

    Khvostova, N.O.; Karapetyan, G.O.; Yanush, O.V.


    It has been shown that the thermochromic conversions of cobalt(II) in binary solvents are influenced by a number of factors: the nature of the solvent, the strength of the complexes of octahedral symmetry formed, the outer-sphere influence of the solvent on the complexes, the form of the anion, the solvation of the participants in the reaction, and the interaction of the components of the solvent with one another. A correlation between the strength and the spectral position of the absorption bands of the complexes of the activator has been established, and a spectroscopic criterion for selecting the solvents has been proposed. The expediency of using binary solvents to create effective thermochromic media with variable phototransmission has been substantiated.

  15. Palladium-Catalyzed Site-Selective C-H Functionalization of Weakly Coordinating Sulfonamides: Synthesis of Biaryl Sulfonamides.


    Vanjari, Rajeshwer; Guntreddi, Tirumaleswararao; Singh, Krishna Nand


    A novel and site selective C-H functionalization of unsubstituted sulfonamides has been developed for the synthesis of ortho aryl sulfonamides. The reaction involves highly regioselective ortho mono arylation of weakly coordinating SO2 NH2 directing group by means of aryl iodides. Palladium acetate in the presence of silver(I) oxide is found to be the most effective catalytic system. PMID:26763530

  16. Weak coordination of neutral S- and O-donor proximal ligands to a ferrous porphyrin nitrosyl. Characterization of 6-coordinate complexes at low T.


    Martirosyan, G G; Kurtikyan, T S; Azizyan, A S; Iretskii, A V; Ford, P C


    The interaction of the S- and O-donor ligands tetrahydrothiophen (THT) and tetrahydrofuran (THF) with the ferrous nitrosyl complex Fe(TTP)(NO) (TTP(2-) is meso-tetra-p-tolyl-porphyrinatodianion) was studied at various temperatures both in solid state and solution using electronic and infrared absorption spectroscopy. Upon addition of these ligands to a cryostat containing sublimed layers of Fe(TTP)(NO), no complex formation was detected at room temperature. However, upon lowering the temperature, spectral changes were observed that are consistent with ligand binding in axial position trans to the NO (the proximal site) and formation of the six-coordinate adducts. Analogous behavior was observed in solution. In both media, the six-coordinate adducts are stable only at low temperature and dissociate to the 5-coordinate nitrosyl complexes upon warming. The NO stretching frequencies of the six-coordinate thioether and ether complexes were recorded and binding constants for the weak bonding of proximal THF and THT ligands were determined from the spectral changes. These parameters are compared with those obtained for the N-donor ligand pyrrolidine. PMID:23376554

  17. Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism

    PubMed Central

    Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan


    Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior. PMID:25113225

  18. Layer-by-layer modification of high surface curvature nanoparticles with weak polyelectrolytes using a multiphase solvent precipitation process.


    Nagaraja, Ashvin T; You, Yil-Hwan; Choi, Jeong-Wan; Hwang, Jin-Ha; Meissner, Kenith E; McShane, Michael J


    The layer-by-layer modification of ≈5 nm mercaptocarboxylic acid stabilized gold nanoparticles was studied in an effort to illustrate effective means to overcome practical issues in handling and performing surface modification of such extremely small materials. To accomplish this, each layer deposition cycle was separated into a multi-step process wherein solution pH was controlled in two distinct phases of polyelectrolyte adsorption and centrifugation. Additionally, a solvent precipitation step was introduced to make processing more amenable by concentrating the sample and exchanging solution pH before ultracentrifugation. The pH-dependent assembly on gold nanoparticles was assessed after each layer deposition cycle by monitoring the plasmon peak absorbance location, surface charge, and the percentage of nanoparticles recovered. The selection of solution pH during the adsorption phase was found to be a critical parameter to enhance particle recovery and maximize surface charge when coating with weak polyelectrolytes. One bilayer was deposited with a high yield and the modified particles exhibited enhanced colloidal stability across a broad pH range and increased ionic strength. These findings support the adoption of this multi-step processing approach as an effective and generalizable approach to improve stability of high surface curvature particles. PMID:26771506

  19. Solvent-vapour-assisted pathways and the role of pre-organization in solid-state transformations of coordination polymers.


    Wright, James S; Vitórica-Yrezábal, Iñigo J; Adams, Harry; Thompson, Stephen P; Hill, Adrian H; Brammer, Lee


    A family of one-dimensional coordination polymers, [Ag4(O2C(CF2)2CF3)4(phenazine)2(arene) n ]·m(arene), 1 (arene = toluene or xylene), have been synthesized and crystallographically characterized. Arene guest loss invokes structural transformations to yield a pair of polymorphic coordination polymers [Ag4(O2C(CF2)2CF3)4(phenazine)2], 2a and/or 2b , with one- and two-dimensional architectures, respectively. The role of pre-organization of the polymer chains of 1 in the selectivity for formation of either polymorph is explored, and the templating effect of toluene and p-xylene over o-xylene or m-xylene in the formation of arene-containing architecture 1 is also demonstrated. The formation of arene-free phase 2b , not accessible in a phase-pure form through other means, is shown to be the sole product of loss of toluene from 1-tol·tol [Ag4(O2C(CF2)2CF3)4(phenazine)2(toluene)]·2(toluene), a phase containing toluene coordinated to Ag(I) in an unusual μ:η(1),η(1) manner. Solvent-vapour-assisted conversion between the polymorphic coordination polymers and solvent-vapour influence on the conversion of coordination polymers 1 to 2a and 2b is also explored. The transformations have been examined and confirmed by X-ray diffraction, NMR spectroscopy and thermal analyses, including in situ diffraction studies of some transformations. PMID:25866656

  20. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz


    Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.

  1. Strength and weaknesses of modeling the dynamics of mode-locked lasers by means of collective coordinates

    NASA Astrophysics Data System (ADS)

    Alsaleh, M.; Mback, C. B. L.; Tchomgo Felenou, E.; Tchofo Dinda, P.; Grelu, Ph; Porsezian, K.


    We address the efficiency of theoretical tools used in the development and optimization of mode-locked fiber lasers. Our discussion is based on the practical case of modeling the dynamics of a dispersion-managed fiber laser. One conventional approach uses discrete propagation equations, followed by the analysis of the numerical results through a collective coordinate projection. We compare the latter with our dynamical collective coordinate approach (DCCA), which combines both modeling and analysis in a compact form. We show that for single pulse dynamics, the DCCA allows a much quicker solution mapping in the space of cavity parameters than the conventional approach, along with a good accuracy. We also discuss the weaknesses of the DCCA, in particular when multiple pulsing bifurcations occur.

  2. Computational, electrochemical, and spectroscopic studies of two mononuclear cobaloximes: the influence of an axial pyridine and solvent on the redox behaviour and evidence for pyridine coordination to cobalt(i) and cobalt(ii) metal centres.


    Lawrence, Mark A W; Celestine, Michael J; Artis, Edward T; Joseph, Lorne S; Esquivel, Deisy L; Ledbetter, Abram J; Cropek, Donald M; Jarrett, William L; Bayse, Craig A; Brewer, Matthew I; Holder, Alvin A


    [Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO (where py = pyridine) in acetone. The formulation of complex was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex . A spectrophotometric titration involving complex and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(ii) centre diminished the peak current at the Epc value of the Co(I/0) redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical (59)Co NMR spectroscopic data for the formation of Co(i) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(i) metal centre is more favourable than coordination to a cobalt(ii) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes and in various solvents demonstrated the dramatic effects of the axial

  3. Solvent-regulated assemblies of four Zn(II) coordination polymers constructed by flexible tetracarboxylates and pyridyl ligands

    NASA Astrophysics Data System (ADS)

    Fang, Kang; He, Xiang; Shao, Min; Li, Ming-Xing


    Four unique complexes with diverse coordination architectures were synthesized upon complexation of 5,5-(1,4-phenylenebis (methylene))bis (oxy)- diisophthalic acid (H4L) with zinc ions by using different solvent. namely, {[Zn(H2L) (bpp)]·DEF}n (1), {[Zn2(L) (bpp)2]·4H2O}n (2), {[Zn2(L) (pdp)2]·3H2O·DEF}n (3), {[Zn2(L) (pdp)2].4H2O}n (4). Complexes 1,2 and 3,4 are obtained by varying solvents to control their structures. The size of solvent molecular plays an important role to control different structure of these compounds. Compound 1 is 2D waved framework with (4, 4) grid layer as sql topology. Compound 3 displays a (4,6)-connected 2-nodal net with a fsc topology. Compounds 2 and 4 are all three-dimensional network simplified as (4,4)-connected 2-nodal net with a bbf topology. The photochemical properties of compounds 1-4 were tested in the solid state at room temperature, owing to their strong luminescent emissions, complexes 1-4 are good candidates for photoactive materials.

  4. Weak coordination among petiole, leaf, vein, and gas-exchange traits across Australian angiosperm species and its possible implications.


    Gleason, Sean M; Blackman, Chris J; Chang, Yvonne; Cook, Alicia M; Laws, Claire A; Westoby, Mark


    Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life forms. However, it has also been suggested that this relationship may become weak or break down completely within the angiosperms. We examined coordination between hydraulic, leaf vein, and gas-exchange traits across a diverse group of 35 evergreen Australian angiosperms, spanning a large range in leaf structure and habitat. Leaf-specific conductance was calculated from petiole vessel anatomy and was also measured directly using the rehydration technique. Leaf vein density (thought to be a determinant of gas exchange rate), maximal stomatal conductance, and net CO 2 assimilation rate were also measured for most species (n = 19-35). Vein density was not correlated with leaf-specific conductance (either calculated or measured), stomatal conductance, nor maximal net CO 2 assimilation, with r (2) values ranging from 0.00 to 0.11, P values from 0.909 to 0.102, and n values from 19 to 35 in all cases. Leaf-specific conductance calculated from petiole anatomy was weakly correlated with maximal stomatal conductance (r (2) = 0.16; P = 0.022; n = 32), whereas the direct measurement of leaf-specific conductance was weakly correlated with net maximal CO 2 assimilation (r (2) = 0.21; P = 0.005; n = 35). Calculated leaf-specific conductance, xylem ultrastructure, and leaf vein density do not appear to be reliable proxy traits for assessing differences in rates of gas exchange or growth across diverse sets of evergreen angiosperms. PMID:26811791

  5. Transgenic expression of an expanded (GCG)13 repeat PABPN1 leads to weakness and coordination defects in mice.


    Dion, Patrick; Shanmugam, Vijayalakshmi; Gaspar, Claudia; Messaed, Christiane; Meijer, Inge; Toulouse, André; Laganiere, Janet; Roussel, Julie; Rochefort, Daniel; Laganiere, Simon; Allen, Carol; Karpati, George; Bouchard, Jean-Pierre; Brais, Bernard; Rouleau, Guy A


    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder caused by a (GCG)n trinucleotide repeat expansion in the poly(A) binding protein nuclear-1 (PABPN1) gene, which in turn leads to an expanded polyalanine tract in the protein. We generated transgenic mice expressing either the wild type or the expanded form of human PABPN1, and transgenic animals with the expanded form showed clear signs of abnormal limb clasping, muscle weakness, coordination deficits, and peripheral nerves alterations. Analysis of mitotic and postmitotic tissues in those transgenic animals revealed ubiquitinated PABPN1-positive intranuclear inclusions (INIs) in neuronal cells. This latter observation led us to test and confirm the presence of similar INIs in postmortem brain sections from an OPMD patient. Our results indicate that expanded PABPN1, presumably via the toxic effects of its polyalanine tract, can lead to inclusion formation and neurodegeneration in both the mouse and the human. PMID:15755680

  6. Mono/bimetallic water-stable lanthanide coordination polymers as luminescent probes for detecting cations, anions and organic solvent molecules.


    Wang, Huarui; Qin, Jianhua; Huang, Chao; Han, Yanbing; Xu, Wenjuan; Hou, Hongwei


    Eleven water-stable isostructural mono/bimetallic lanthanide coordination polymers (Ln-CPs) {[EuxTb1-x (HL)(H2O)3]·H2O}n (x = 1.0 (1), 0.9 (3), 0.8 (4), 0.7 (5), 0.6 (6), 0.4 (7), 0.3 (8), 0.2 (9), 0.1 (10), 0.05 (11), 0 (2), H4L = 5,5'-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid) with uncoordinated Lewis basic triazole sites within the pores were prepared. The Ln-CPs represented by 1 showed a rapid and drastic emission quenching induced by external Fe(3+) and Cr(3+) cations and CrO4(2-) and CO3(2-) anions in aqueous solution. In addition, because of the comparable emission intensities of Eu(3+) and Tb(3+) ions, bimetallic CP 8 can be used as a ratiometric luminescent sensor for organic solvent molecules. Moreover, the luminescent color of the 8 sensor in pyridine and in other guest solvents undergoes obvious changes that can be clearly distinguished by the naked eye. PMID:27443408

  7. Exchange of Coordinated Solvent During Crystallization of a Metal-Organic Framework Observed by In Situ High-Energy X-ray Diffraction.


    Wu, Yue; Breeze, Matthew I; Clarkson, Guy J; Millange, Franck; O'Hare, Dermot; Walton, Richard I


    Using time-resolved monochromatic high energy X-ray diffraction, we present an in situ study of the solvothermal crystallisation of a new MOF [Yb2 (BDC)3 (DMF)2 ]⋅H2 O (BDC=benzene-1,4-dicarboxylate and DMF=N,N-dimethylformamide) under solvothermal conditions, from mixed water/DMF solvent. Analysis of high resolution powder patterns obtained reveals an evolution of lattice parameters and electron density during the crystallisation process and Rietveld analysis shows that this is due to a gradual topochemical replacement of coordinated solvent molecules. The water initially coordinated to Yb(3+) is replaced by DMF as the reaction progresses. PMID:26959076

  8. The investigation of the solvent effect on coordination of nicotinato ligand with cobalt(II) complex containing tris(2-benzimidazolylmethyl)amine: A computational study

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran


    The electronic structure of [Co(ntb)(nic)]+ complex ion are optimized by using density functional theory (DFT) method with mix basis set. Where (ntb) represents tris(2-benzimidazolylmethyl)amine ligand and (nic) is the anion of nicotinic acids. Six different fields, vacuum, chloroform, butanonitrile, methanol, water and formamide solvents are used in these calculations. The calculated structural parameters indicate that (nic) ligand coordinates to cobalt(II) containing (ntb) ligand with one oxygen atom in butanonitrile, methanol, water and formamide solvents but coordinates with two oxygen atoms in vacuum. These results are supported with IR, UV and 1H NMR spectra. According to the calculated results, the geometry of [Co(ntb)(nic)]+ complex ion is distorted octahedral in vacuum while the geometry is distorted square pyramidal in the all other solvents. Distorted octahedral [Co(ntb)(nic)]+ complex ion have not been synthesized as experimentally and it is predicted with computational chemistry methods.

  9. Design and synthesis of two luminescent Zn(II)-based coordination polymers with different structures regulated by different solvent system

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Ping; Wen, Gui-Lin; Liao, Yi; Wang, Jun; Lu, Lu; Wu, Yu; Xie, Bin


    Two new coordination polymers (CPs) [Zn(HL)(H2O)]n (1) and [Zn3(L)2(H2O)2]n·(H2O)n (2), based on a multifunctional ligand combined carboxylate groups and a nitrogen donor group 5-(6-carboxypyridin-2-yl)isophthalic acid (H3L), have been synthesized under different solvent media and fully characterized by powder X-ray diffraction (PXRD), infrared (IR) spectra, elemental analyses (EA) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analysis reveals that 1 shows 1D dimeric chain structure, while 2 gives a 3D dense packing framework. Topology analysis illustrates that 2 can be simplified as a 3-nodal net (4, 5, 6-connected net) with the point symbol of {44·62}{46·64}2{48·66·8}. In addition, solid state luminescent properties of two complexes have also been studied in detail, which may act as the potential optical materials.

  10. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    NASA Astrophysics Data System (ADS)

    Li, Zhao-Hao; Xue, Li-Ping; Miao, Shao-Bin; Zhao, Bang-Tun


    The reaction of Cd(NO3)2·4H2O, 2,5-thiophenedicarboxylic acid (H2tdc) and 1,2-bis(imidazol-1‧-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd2(CO2)2] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1-3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1-3 were also investigated for the first time, and all the complexes emit blue luminescence in the solid state.

  11. Substrate binding preferences and pKa determinations of a nitrile hydratase model complex: Variable solvent coordination to [(bmmp-TASN)Fe]OTf

    PubMed Central

    O’Toole, Martin G.; Bennett, Brian; Mashuta, Mark S.; Grapperhaus, Craig A.


    The five-coordinate iron-dithiolate complex (N,N′-4,7-bis-(2′-methyl-2′-mercatopropyl)-1-thia-4,7-diazacyclononane)iron(III), [LFe]+, has been isolated as the triflate salt from reaction of the previously reported LFeCl with thallium triflate. Spectroscopic characterization confirms an S = 1/2 ground state in non-coordinating solvents with room temperature µeff = 1.78 µB and EPR derived g-values of g1 = 2.06, g2 = 2.03 and g3 = 2.02. [LFe]+ binds a variety of coordinating solvents resulting in six-coordinate complexes [LFe-solvent]+. In acetonitrile the low-spin [LFe-NCMe]+ (g1 = 2.27, g2 = 2.18 and g3 = 1.98) is in equilibrium with [LFe]+ with a binding constant of Keq = 4.03 at room temperature. Binding of H2O, DMF, methanol, DMSO and pyridine to [LFe]+ yields high-spin six-coordinate complexes with EPR spectra that display significant strain in the rhombic zero-field splitting term E/D. Addition of one equivalent of triflic acid to the previously reported diiron species (LFe)2O results in the formation of [(LFe)2OH]OTf, which has been characterized by x-ray crystallography. The aqueous chemistry of [LFe]+ reveals three distinct species as a function of pH: [LFe-OH2]+, [(LFe)2OH]OTf, and (LFe)2O. The pKa values for [LFe-OH2]+ and [(LFe)2OH]OTf are 5.4 ± .1 and 6.52 ± .05 respectively. PMID:19166306

  12. Tunable Aryl Alkyl Ionic Liquids with Weakly Coordinating Tetrakis((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)borate [B(hfip)4 ] Anions.


    Kaliner, Maria; Rupp, Alexander; Krossing, Ingo; Strassner, Thomas


    Weakly coordinating borate or aluminate anions have recently been shown to yield interesting properties of the resulting ionic liquids (ILs). The same is true for large phenyl-substituted imidazolium cations, which can be tuned by the choice, position, or number of substituents on the aromatic ring. We were therefore interested to combine these aryl alkyl imidazolium cations with the weakly coordinating tetrakis((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)borate [B(hfip)4 ](-) anions to study the physical properties and viscosities of these ionic liquids. Despite the large size and high molecular weight of these readily available ILs, they are liquid at room temperature and show remarkably low glass transition points and relatively high decomposition temperatures. PMID:27333433

  13. Coordinated study of non-seismic and weak seismic events (magnitude M less than 5) using VLF radio links

    NASA Astrophysics Data System (ADS)

    Wolbang, Daniel; Biernat, Helfried K.; Friedrich, Martin; Schwingenschuh, Konrad; Besser, B. P.; Eichelberger, Hans; Prattes, Gustav; Rozhnoi, Alexander; Solovieva, Maria; Biagi, Pier Francesco; Boudjada, Mohammed Y.

    In this study we analyze low seismicity earthquakes (EQs) with magnitudes M < 5 in South Eastern Europe, time period 2011-2013, via very low frequency (VLF) radio links. The main scientific objective of the statistical and event based investigations are reliable characterization of typical seismic and non-seismic variations in the VLF signal. The focus is on robust results, especially for weak EQs, because non-seismic influences could have a strong effect on the analysis. Various electromagnetic methods have been developed in order to study possible earthquake precursor phenomena generated in the lithosphere and then propagating in the atmosphere / ionosphere [1]. The major challenge of this seismo-electromagnetic (SEM) method is to differentiate parameter variations and disentangle seismic from non-seismic sources. In the course of the European radio receiver network (International Network for Frontier Research on Earthquake Precursors, INFREP) radio signals in the VLF/LF frequency range are continuously recorded by dedicated, distributed transmitters. The major VLF receiving station for this study (10-50 kHz, Graz, Austria) operates continuously throughout the year, the selected network-wide temporal resolution is 20 sec, 12 transmitters, located mainly in Europe, are received (amplitude and phase). The facility has a proven high reliability and availability. The VLF links from the transmitters to the receivers are sometimes more, sometimes less influenced by various disturbances. In case the signal is crossing an EQ preparation zone, we are in principle able to detect seismic activity if the signal to noise ratio is high enough [2]. Generally we distinguish between ionospheric or atmospheric disturbances, influences which depend on the EQ properties, and transmitter variations itself. Ionospheric / Atmospheric variations can be generated, e.g. by geomagnetic storms, solar flares or waves in the troposphere. The properties of the sub-ionospheric VLF waveguide are

  14. Part I. Student success in intensive versus traditional introductory chemistry courses. Part II. Synthesis of salts of the weakly coordinating trisphat anion

    NASA Astrophysics Data System (ADS)

    Hall, Mildred V.

    Part I. Intensive courses have been shown to be associated with equal or greater student success than traditional-length courses in a wide variety of disciplines and education levels. Student records from intensive and traditional-length introductory general chemistry courses were analyzed to determine the effects, of the course format, the level of academic experience, life experience (age), GPA, academic major and gender on student success in the course. Pretest scores, GPA and ACT composite scores were used as measures of academic ability and prior knowledge; t-tests comparing the means of these variables were used to establish that the populations were comparable prior to the course. Final exam scores, total course points and pretest-posttest differences were used as measures of student success; t-tests were used to determine if differences existed between the populations. ANCOVA analyses revealed that student GPA, pretest scores and course format were the only variables tested that were significant in accounting for the variance of the academic success measures. In general, the results indicate that students achieved greater academic success in the intensive-format course, regardless of the level of academic experience, life experience, academic major or gender. Part II. Weakly coordinating anions have many important applications, one of which is to function as co-catalysts in the polymerization of olefins by zirconocene. The structure of tris(tetrachlorobenzenedialato) phosphate(V) or "trisphat" anion suggests that it might be an outstanding example of a weakly coordinating anion. Trisphat acid was synthesized and immediately used to prepare the stable tributylammonium trisphat, which was further reacted to produce trisphat salts of Group I metal cations in high yields. Results of the 35Cl NQR analysis of these trisphat salts indicate only very weak coordination between the metal cations and the chlorine atoms of the trisphat anion.

  15. Micromolding of a Highly Fluorescent Reticular Coordination Polymer: Solvent-Mediated Reconfigurable Polymerization in a Soft Lithographic Mold

    SciTech Connect

    Y You; H Yang; J Chung; J Kim; Y Jung; S Park


    Coordination polymerization of pyridine-based ligands and zinc or silver ions was controlled by soft lithographic micromolding in capillaries. The polymer patterns that are produced are highly fluorescent and supramolecularly structured.

  16. Synthesis of the salts of weakly coordination stibate ions & Students' perceptions of two- and three-dimensional animations depicting an oxidation-reduction reaction

    NASA Astrophysics Data System (ADS)

    Rosenthal, Deborah Renee


    SYTHESIS OF SALTS OF WEAKLY COORDINATING STIBATE IONS. Weakly coordinating anions have many important applications including olefin polymerization co-catalysis. In an attempt to make tristibic acid, distibic acid and tetrastibic acid were made. Cesium, barium, nickel(II), and diethylammonium salts of tetrastibic acid were also synthesized. Tetrastibic acid and the ammonium salts were concluded to be stable. Elemental analyses showed that neither tristibic acid nor tristibic acid were stable under the reaction conditions employed. STUDENTS' PERCEPTIONS OF TWO- AND THREE-DIMENSIONAL ANIMATIONS DEPICTING AN OXIDATION-REDUCATION REACTION. Electrochemistry is a difficult subject for many students to comprehend. In order to improve teaching in this area of chemistry, semi-structured clinical interviews on second-semester introductory chemistry students were conducted in which students' were asked to explain the particulate behavior of the chemicals in an oxidation-reduction reaction. The interviews included questions after students viewed the chemical demonstration and two computer animations depicting the particulate nature of the same chemical reaction. Misinterpretations of the two animations were identified and described in detail. The simpler 2-D animation was beneficial in helping students understand the oxidation-reduction reaction and write the balanced chemical equation. However, the 3-D animation did not appear to be detrimental to student understanding. Suggestions, taken from the students' comments in the interviews, for improving the animations and for teaching electrochemistry were discussed.

  17. Coordination-Enabled One-Step Assembly of Ultrathin, Hybrid Microcapsules with Weak pH-Response.


    Yang, Chen; Wu, Hong; Yang, Xiao; Shi, Jiafu; Wang, Xiaoli; Zhang, Shaohua; Jiang, Zhongyi


    In this study, an ultrathin, hybrid microcapsule is prepared though coordination-enabled one-step assembly of tannic acid (TA) and titanium(IV) bis(ammonium lactate) dihydroxide (Ti-BALDH) upon a hard-templating method. Briefly, the PSS-doped CaCO3 microspheres with a diameter of 5-8 μm were synthesized and utilized as the sacrificial templates. Then, TA-Ti(IV) coatings were formed on the surface of the PSS-doped CaCO3 templates through soaking in TA and Ti-BALDH aqueous solutions under mild conditions. After removing the template by EDTA treatment, the TA-Ti(IV) microcapsules with a capsule wall thickness of 15 ± 3 nm were obtained. The strong coordination bond between polyphenol and Ti(IV) conferred the TA-Ti(IV) microcapsules high structural stability in the range of pH values 3.0-11.0. Accordingly, the enzyme-immobilized TA-Ti(IV) microcapsules exhibited superior pH and thermal stabilities. This study discloses the formation of TA-Ti(IV) microcapsules that are suitable for use as supports in catalysis due to their extensive pH and thermal stabilities. PMID:25897477

  18. Structural variation from 1D to 3D: effects of ligands and solvents on the construction of lead(II)-organic coordination polymers.


    Yang, Jin; Li, Guo-Dong; Cao, Jun-Jun; Yue, Qi; Li, Guang-Hua; Chen, Jie-Sheng


    A series of Pb(II) coordination polymers [Pb(ndc)(dpp)] (1), [Pb(ndc)(ptcp)].0.5 H2O (2), [Pb(ndc)(dppz)] (3), [Pb(ndc)(tcpn)(2)] (4), [Pb2(ndc)2(tcpp)] (5), [Pb(Hndc)2].H2O (6), [Pb(ndc)(dma)] (7), [Pb(bdc)(dma)] (8), [Pb(trans-chdc)(H2O)] (9), and [Pb2(cis-chdc)2].NH(CH3)2 (10), where ndc=1,4-naphthalenedicarboxylate, dpp=4,7-diphenyl-1,10-phenanthroline, ptcp=2-phenyl-1H-1,3,7,8-tetraazacyclopenta[l]phenanthrene, dppz=dipyrido[3,2-a:2',3'-c]phenazine, tcpn=2-(1H-1,3,7,8-tetraazacyclopenta[l]phenanthren-2-yl)naphthol, tcpp=4-(1H-1,3,7,8-tetraazacyclopenta[l]phenanthren-2-yl)phenol, dma=N,N-dimethylacetamide, bdc=1,4-benzenedicarboxylate, and chdc=1,4-cyclohexanedicarboxylate, have been synthesized from a hydrothermal or solvothermal reaction system by varying the ligands or the solvents. Compounds 1-5 crystallize with an N-donor chelating ligand and an aromatic dicarboxylate linker. Compounds 1-4 are 1D polymers with different pi-pi stacking interactions, whereas compound 5 consists of 2D layers. The structures of compounds 7, 8, and 10 are 3D frameworks formed by connection of the Pb(II) centers by organic acid ligands. Compound 7 is chiral although the ndc ligand is achiral, while the framework of 8 is a typical 3D (3,4)-connected net. Compound 10 is the first example of Pb(II) wheel cluster [Pb(8)O(8)] units bridged by carboxylate groups. Compound 6 contains 1D chains which are further extended to a 3D structure by pi-pi interactions. Compound 9 consists of a 2D network constructed by Pb(II) centers and trans-chdc ligands. The structural differences between 7 and 8 and between 9 and 10 indicate the importance of solvents for framework formation of the coordination polymers. By varying the solvent the cis and trans conformations of H(2)chdc in 9 and 10 were separated completely. The photoluminescence and nonlinear optical properties of the coordination polymers have also been investigated. PMID:17212363

  19. Ag coordination compounds of a bifunctional diaminotriazine-imidazole ligand with various anions and solvents: Synthesis, structures, photoluminescence, and thermal properties

    NASA Astrophysics Data System (ADS)

    Mei, Hong-Xin; Huang, Hua-Qi; Zhang, Ting; Huang, Rong-Bin; Zheng, Lan-Sun


    Six coordination compounds of Ag(I) and 2,4-diamino-6-[2-(2-methyl-1-imidazolyl)ethyl]-1,3,5-triazine (L, Ag:L = 1:2) with different anions and solvents, namely, [Ag(L)2]•(NO3)•4(H2O) (1), [Ag(L)2 ] · 1 / 2 (nds) ·(MeOH) ·(H2O) (2, H2nds = 1,5-naphthalenedisulfonic acid), [Ag(L)2 ] · 1 / 2 (nds) ·(MeOH) · 5 / 2 (H2O) (3), [Ag(L)2 ] · 1 / 2 (nds) ·(CH3CN) (4), [Ag(L)2]•(ClO4)•(MeOH)•(H2O) (5), and [Ag(L)2]•(ClO4)•2(H2O) (6), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. In these compounds, each Ag(I) ion is ligated by two imidazole nitrogens to form a Ag(L)2 unit. The anions and solvents determine hydrogen-bonding between the DAT groups links the Ag(L)2 units whether to form chains in 1 and 2 or layers in 3-6. In addition, thermogravimetric analysis (TGA) and luminescent properties of these compounds were also investigated.

  20. Synthesis, structure and properties of a 3D plywood-like nickel(II) hexaazamacrocyclic coordination polymer constructed from weak Ni\\ctdot O interactions and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Tao, Bo; Jiang, Xiang; Xia, Hua; Cheng, Hefa


    A 3D plywood-like nickel(II) hexaazamacrocyclic coordination polymer {[Ni(hto)(H2btec]}n (2) (hto = 1,3,6,9,11,14-hexaazatricyclo[,9]octadecane, H4btec = 1,2,4,5-benzenetetracarboxylic acid) was synthesized by a slow diffusion method and characterized by X-ray crystallography and spectroscopic methods. The structure of 2 is made up of [Ni(hto)]2+ cation and H2btec2- anion in a molecular ratio of 1:1. The nickel(II) ions in the complex are bridged by the H2btec2- ligand based on weak Ni⋯O coordination interactions to form a 1D chain. The alternate cross-like 1D chains are packed in a plywood-like structure and interconnected with each other by hydrogen bonding to form a 3D network. Complex 2 exhibits fluorescent emission in the solid state at room temperature.

  1. Solvent-templated supramolecular isomerism in 2D coordination polymer constructed by Ni(II)2Co(II) nodes and dicyanamido spacers: drastic change in magnetic behaviours.


    Ghosh, Soumavo; Mukherjee, Sandip; Seth, Piya; Mukherjee, Partha Sarathi; Ghosh, Ashutosh


    Two heterometallic coordination polymers (CPs) have been prepared using [Ni(II)L]2Co(II) (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) as nodes and dicyanamido spacers by varying the solvent for synthesis. Structural characterizations revealed that methanol assisted the formation of a two-dimensional (4,4) connected rhombic grid network of [(NiL)2Co(NCNCN)2]∞ (1a) whereas relatively less polar acetonitrile afforded a different superstructure {[(NiL)2Co(NCNCN)2]·CH3CN}∞ (1b) with a two-dimensional (4,4) connected square grid network. The presence of acetonitrile molecules in the structure of 1b seems to change the spatial orientation of the terminal metalloligands [NiL] from pseudo-eclipsed in 1a to staggered-like in 1b around the central Co(II). These structural changes in the nodes together with the conformationally flexible dicyanamido spacers, which are cis coordinated to the Co(II) in both trinuclear units, led to the differences in the final 2D network. Variable-temperature magnetic susceptibility measurements revealed that this supramolecular isomerism led to a drastic transition from spin-frustrated antiferromagnetism for 1a to a dominant ferromagnetic behaviour for 1b. The geometrical differences in Ni2Co coordination clusters (CCs) which are scalene triangular in 1a but nearly linear in 1b, are held responsible for the changes of the magnetic properties. The DFT calculations of exchange interactions between metal centres provide a clear evidence of the role played by the fundamental geometrical factors on the nature and magnitude of the magnetic coupling in these pseudo-polymorphic CPs. PMID:23900267

  2. Selective removal of alkali metal cations from multiply-charged ions via gas-phase ion/ion reactions using weakly coordinating anions.


    Luongo, Carl A; Bu, Jiexun; Burke, Nicole L; Gilbert, Joshua D; Prentice, Boone M; Cummings, Steven; Reed, Christopher A; McLuckey, Scott A


    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 (-)), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 (-)). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations. PMID:25560986

  3. Selective Removal of Alkali Metal Cations from Multiply-Charged Ions via Gas-Phase Ion/Ion Reactions Using Weakly Coordinating Anions

    NASA Astrophysics Data System (ADS)

    Luongo, Carl A.; Bu, Jiexun; Burke, Nicole L.; Gilbert, Joshua D.; Prentice, Boone M.; Cummings, Steven; Reed, Christopher A.; McLuckey, Scott A.


    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 -), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 -). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations.

  4. Dissolution of metal salts in bis(trifluoromethylsulfonyl)imide-based ionic liquids: studying the affinity of metal cations toward a "weakly coordinating" anion.


    Bortolini, Olga; Chiappe, Cinzia; Ghilardi, Tiziana; Massi, Alessandro; Pomelli, Christian Silvio


    Despite the weakly coordinating ability of the bis(trifluoromethylsulfonyl)imide anion ([Tf2N](-)) the corresponding ionic liquids (ILs) are able to dissolve relevant amounts of metal salts having the same anion, M[Tf2N]x. To better understand the metal dissolution process we evaluated the interaction ability of a set of metal cations (Y(III), Al(III), Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Li(I), and Na(I)) toward the [Tf2N](-) anion measuring the relative aptitude to give the corresponding anionic monocharged complex, [M(Tf2N)x+1](-) using the ESI-MS technique. UV-vis and NMR measurements were carried out to verify the consistence between the liquid and the gas phase. Density functional theory calculations have been used to identify the metal-containing species and determine their relative stability. An interesting correlation between interaction ability and chemical properties (Lewis acidity) was found. PMID:25361174

  5. Higher coordinate gold(I) complexes with the weak Lewis base tri(4-fluorophenyl) phosphine. Synthesis, structural, luminescence, and DFT studies

    NASA Astrophysics Data System (ADS)

    Agbeworvi, George; Assefa, Zerihun; Sykora, Richard E.; Taylor, Jared; Crawford, Carlos


    The structures and spectroscopic properties of two high coordinate gold(I) phosphine complexes with the TFFPP=tri(4-fluorophenyl)phosphine ligand are reported. Synthesis in a 1:3 metal to ligand ratio provided the compound [AuCl(TFFPP)3] (2) that crystallize in the P 1 bar space group, where the asymmetric unit consists of three independent molecules. In all three sites, two sets of bond angles display distinctly different ranges. The three P-Au-P angles have average values of 117.92°, 117.57°, and 114.78° for sites A, B, and C, with the corresponding P-Au-Cl angles of 98.31°, 99.05°, and 103.38°, respectively. The chloride ion coordinates as the fourth ligand, at the corresponding Au-Cl distance of 2.7337, 2.6825, and 2.6951 Å for the three sites. This distance is longer by 0.40-0.45 Å than the Au-Cl distance found in the mono TFFPP complex 1 (2.285 Å) indicating a weakening of the Au-Cl interaction as the coordination number increases. In compound 3, [Au(TFFPP)3]Cl·½CH2Cl2·H2O, the structure consists of three phosphine ligands bound to the gold(I) atom, but the Cl- exists as uncoordinated counter anion. The structural differences observed in the two complexes are attributable to crystal-packing effects caused by the introduction of H-bonding as well as enhanced intra and inter-molecular π-interaction in 3. The photoluminescence of the complexes compared with that of the ligand show ligand centered emission perturbed by the metal coordination. Theoretical DFT studies conducted on these complexes supports assignments of the electronic transitions observed in these systems.

  6. Solvent-induced syntheses, crystal structures, magnetic properties, and single-crystal-to-single-crystal transformation of azido-Cu(II) coordination polymers with 2-naphthoic acid as co-ligand.


    Liu, Xiangyu; Cen, Peipei; Li, Hui; Ke, Hongshan; Zhang, Sheng; Wei, Qing; Xie, Gang; Chen, Sanping; Gao, Shengli


    Based on the solvent-induced effect, three new azido-copper coordination polymers--[Cu(2-na)(N3)] (1), [Cu(2-na)(N3)] (2), and [Cu(2-na)(N3)(C2H5OH)] (3) (where 2-na = 2-naphthoic acid)--have been successfully prepared. Structure analysis shows that the Cu(II) cations in compounds 1-3 present tetra-, penta-, and hexa-coordination geometries, respectively. Compound 1 is a well-isolated one-dimensional (1D) chain with the EO-azido group, while 2 is an isomer of 1 and exhibits a two-dimensional (2D) layer involving the EE-azido group. Thermodynamically, density functional theory (DFT) calculation reveals that 2 occupies the stable state and 1 locates in the metastable state. Compound 3 consists of a 1D chain with triple bridging mode, which is derived from 1, and undergoes a single-crystal-to-single-crystal transformation by soaking in ethanol solvent; the powdery product of 1, namely 1b, could be yielded after the dealcoholization of compound 3. Magnetic measurements indicate that compounds 1-3 perform strong intrachain ferromagnetic interactions, experiencing long-range magnetic ordering and slow magnetic relaxation. Compound 1 features the metamagnetic behavior with a transition temperature of 15 K, while 2 and 3 display spin glass behavior with the phase transition temperatures of 15 and 12 K, respectively. Magneto-structure relationships are investigated as well. PMID:25014208

  7. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution II: Solvent Coordinate-Dependent Reaction Path.


    Daschakraborty, Snehasis; Kiefer, Philip M; Miller, Yifat; Motro, Yair; Pines, Dina; Pines, Ehud; Hynes, James T


    The protonation of methylamine base CH3NH2 by carbonic acid H2CO3 within a hydrogen (H)-bonded complex in aqueous solution was studied via Car-Parrinello dynamics in the preceding paper (Daschakraborty, S.; Kiefer, P. M.; Miller, Y.; Motro, Y.; Pines, D.; Pines, E.; Hynes, J. T. J. Phys. Chem. B 2016, DOI: 10.1021/acs.jpcb.5b12742). Here some important further details of the reaction path are presented, with specific emphasis on the water solvent's role. The overall reaction is barrierless and very rapid, on an ∼100 fs time scale, with the proton transfer (PT) event itself being very sudden (<10 fs). This transfer is preceded by the acid-base H-bond's compression, while the water solvent changes little until the actual PT occurrence; this results from the very strong driving force for the reaction, as indicated by the very favorable acid-protonated base ΔpKa difference. Further solvent rearrangement follows immediately the sudden PT's production of an incipient contact ion pair, stabilizing it by establishment of equilibrium solvation. The solvent water's short time scale ∼120 fs response to the incipient ion pair formation is primarily associated with librational modes and H-bond compression of water molecules around the carboxylate anion and the protonated base. This is consistent with this stabilization involving significant increase in H-bonding of hydration shell waters to the negatively charged carboxylate group oxygens' (especially the former H2CO3 donor oxygen) and the nitrogen of the positively charged protonated base's NH3(+). PMID:26876428

  8. Two Isostructural Coordination Polymers Showing Diverse Magnetic Behaviors: Weak Coupling (Ni(II)) and an Ordered Array of Single-Chain Magnets (Co(II)).


    Chen, Min; Zhao, Hui; Sañudo, E Carolina; Liu, Chun-Sen; Du, Miao


    Two isomorphic 3-D complexes with the formulas [M3(TPTA) (OH)2(H2O)4]n (M = Ni for 1 and Co for 2; H4TPTA = [1,1':4',1″-terphenyl]-2',3,3″,5'-tetracarboxylic acid) have been synthesized and magnetically characterized. Complexes 1 (Ni(II)) and 2 (Co(II)) have the same 1-D rod-shaped inorganic SBUs but exhibit significantly different magnetic properties. Complex 2(Co(II)) is a 3-D arrangement of a 1-D Co(II) single-chain magnet (SCM), while complex 1(Ni(II)) exhibits weak coupling. PMID:27022765

  9. Alkaline earth imidazolate coordination polymers by solvent free melt synthesis as potential host lattices for rare earth photoluminescence: (x)(∞)[AE(Im)2(ImH)(2-3)], Mg, Ca, Sr, Ba, x = 1-2.


    Zurawski, Alexander; Rybak, J-Christoph; Meyer, Larissa V; Matthes, Philipp R; Stepanenko, Vladimir; Dannenbauer, Nicole; Würthner, Frank; Müller-Buschbaum, Klaus


    The series of alkaline earth elements magnesium, calcium, strontium and barium yields single crystalline imidazolate coordination polymers by reactions of the metals with a melt of 1H-imidazole: (1)(∞)[Mg(Im)(2)(ImH)(3)] (1), (2)(∞)[AE(Im)(2)(ImH)(2)], AE = Ca (2), Sr (3), and (1)(∞)[Ba(Im)(2)(ImH)(2)] (4). No additional solvents were used for the reactions. Co-doping experiments by addition of the rare earth elements cerium, europium and terbium were carried out. They indicate (2)(∞)[Sr(Im)(2)(ImH)(2)] as a possible host lattice for cerium(III) photoluminescence showing a blue emission and thus a novel blue emitting hybrid material phosphor 3:Ce(3+). Co-doping with europium and terbium is also possible but resulted in formation of (3)(∞)[Sr(Im)(2)]:Ln, Ln = Eu and Tb (5), with both exhibiting green emission of either Eu(2+) or Tb(3+). The other alkaline earth elements do not show acceptance of the rare earth ions investigated and a different structural chemistry. For magnesium and barium one-dimensional strand structures are observed whereas calcium and strontium give two-dimensional network structures. Combined with an increase of the ionic radii of AE(2+) the coordinative demand is also increasing from Mg(2+) to Ba(2+), reflected by four different crystal structures for the four elements Mg, Ca, Sr, Ba in 1-4. Different linkages of the imidazolate ligands result in a change from complete σ-N coordination in 1 to additional η(5)-π coordination in 4. The success of co-doping with different lanthanide ions is based on a match in the chemical behaviour and cationic radii. The use of strontium for host lattices with imidazole is a rare example in coordination chemistry of co-doping with small amounts of luminescence centers and successfully reduces the amount of high price rare earth elements in hybrid materials while maintaining the properties. All compounds are examples of pure N-coordinated coordination polymers of the alkaline earth metals and were

  10. Fluoro- and perfluoralkylsulfonylpentafluoroanilides: synthesis and characterization of NH acids for weakly coordinating anions and their gas-phase and solution acidities.


    Kögel, Julius F; Linder, Thomas; Schröder, Fabian G; Sundermeyer, Jörg; Goll, Sascha K; Himmel, Daniel; Krossing, Ingo; Kütt, Karl; Saame, Jaan; Leito, Ivo


    Fluoro- and perfluoralkylsulfonyl pentafluoroanilides [HN(C6F5)(SO2X); X = F, CF3, C4F9, C8F17] are a class of imides with two different strongly electron-withdrawing substituents attached to a nitrogen atom. They are NH acids, the unsymmetrical hybrids of the well-known symmetrical bissulfonylimides and bispentafluorophenylamine. The syntheses, the structures of these perfluoroanilides, their solvates, and some selected lithium salts give rise to a structural variety beyond the symmetrical parent compounds. The acidities of representative subsets of these novel NH acids have been investigated experimentally and quantum-chemically and their gas-phase acidities (GAs) are reported, as well as the pKa values of these compounds in acetonitrile (MeCN) and DMSO solution. In quantum chemical investigations with the vertical and relaxed COSMO cluster-continuum models (vCCC/rCCC), the unusual situation is encountered that the DMSO-solvated acid Me2SO-H-N(SO2CF3)2, optimized in the gas phase (vCCC model), dissociates to Me2SO-H(+)-N(SO2CF3)2(-) during structural relaxation and full optimization with the solvation model turned on (rCCC model). This proton transfer underlines the extremely high acidity of HN(SO2CF3)2. The importance of this effect is studied computationally in DMSO and MeCN solution. Usually this effect is less pronounced in MeCN and is of higher importance in the more basic solvent DMSO. Nevertheless, the neglect of the structural relaxation upon solvation causes typical changes in the computational pKa values of 1 to 4 orders of magnitude (4-20 kJ mol(-1)). The results provide evidence that the published experimental DMSO pKa value of HN(SO2CF3)2 should rather be interpreted as the pKa of a Me2SO-H(+)-N(SO2CF3)2(-) contact ion pair. PMID:25727401

  11. Color tunable and near white-light emission of two solvent-induced 2D lead(II) coordination networks based on a rigid ligand 1-tetrazole-4-imidazole-benzene.


    Chen, Jun; Zhang, Qing; Liu, Zhi-Fa; Wang, Shuai-Hua; Xiao, Yu; Li, Rong; Xu, Jian-Gang; Zhao, Ya-Ping; Zheng, Fa-Kun; Guo, Guo-Cong


    Two new lead(II) coordination polymers, [Pb(NO3)(tzib)]n (1) and [Pb(tzib)2]n (2), were successfully synthesized from the reaction of a rigid ligand 1-tetrazole-4-imidazole-benzene (Htzib) and lead(II) nitrate in different solvents. The obtained polymers have been characterized by single-crystal X-ray diffraction analyses, which show that both polymers feature 2D layer structures. The inorganic anion nitrate in 1 shows a μ2-κO3:κO3 bridging mode to connect adjacent lead ions into a zigzag chain, and then the organic ligands tzib(-) join the neighboring chains into a 2D layer by a μ3-κN1:κN2:κN6 connection mode. In 2, there are two different bridging modes of the tzib(-) ligand: μ3-κN1:κN2:κN6 and μ3-κN1:κN6 to coordinate the lead ions into a 2D layer structure. Interestingly, both polymers displayed broadband emissions covering the entire visible spectra, which could be tunable to near white-light emission by varying excitation wavelengths. PMID:25952460

  12. Relevance of Solvent Characteristics on Ion-Binding and the Structure Formation of Neutral Polymers in Electrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Faiza Hakem, Ilhem; Lal, Jyotsana; Bockstaller, Michael


    Polymers carrying functional groups constituted of heteroatoms are omnipresent in biology and polymer technology, for example in the development of solid state polymer electrolytes. When dissolved in polar solvents, these polymers can coordinate ions that result in an effective transformation of the neutral polymer into a weakly charged polyelectrolyte as indicated by the characteristic changes in the polymers solution characteristics. In our contribution we discuss the implications of solvent characteristics -- i.e. dielectric constant and hydrogen bonding capacity -- and the ion-strength of the added electrolyte on the polymer-ion coordination as well as polymer solution characteristics. A mean-field model to predict the amount of ion-coordination is presented and validated for the particular case of poly(oxy ethylene)/salt solutions. The Random Phase Approximation (RPA) is applied to extract quantitative information about the coordination of ions to the polymer in solution from small-angle neutron scattering (SANS) data.

  13. Solvent substitution

    SciTech Connect

    Not Available


    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  14. Weak Deeply Virtual Compton Scattering

    SciTech Connect

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin


    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities.

  15. Solvent Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities such as corn and molasses was an important historical fermentation. Unfortunately,...

  16. Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.


    Experimental results on the non-conservation of parity and charge conservation in weak interactions are reviewed. The two-component theory of the neutrino is discussed. Lepton reactions are examined under the assumption of the law of conservation of leptons and that the neutrino is described by a two- component theory. From the results of this examination, the universal Fermi interactions are analyzed. Although reactions involving the neutrino can be described, the same is not true of reactions which do not involve the lepton, as the discussion of the decay of K mesons and hyperons shows. The question of the invariance of time reversal is next examined. (J.S.R.)

  17. Solvent-induced and polyether-ligand-induced redox isomerization within an asymmetrically coordinated mixed-valence ion: trans-(py)(NH[sub 3])[sub 4]Ru(4-NCpy)Ru(2,2[prime]-bpy)[sub 2]Cl[sup 4+

    SciTech Connect

    Curtis, J.C.; Massum, M. ); Roberts, J.A.; Blackbourn, R.L.; Dong, Yuhua; Johnson, C.S.; Hupp, J.T. )


    Advantage is taken of oxidation-state-dependent ligand (ammine)/solvent interactions to shift redox potentials and effect redox isomerization in the title complex. In poorly basic solvents, the stable isomeric form is trans-(py)(NH[sub 3])[sub 4]Ru[sup II](NCpy)Ru[sup III](bpy)[sub 2]Cl[sup 4+] (py is pyridine; NCpy is 4-cyanopyridine; bpy is 2,2[prime]-bipyridine). In contrast, in stronger Lewis bases or in a mixture of strong and weak bases (dimethyl sulfoxide + nitromethane), the preferred isomer is trans-(py)(NH[sub 3])[sub 4]Ru[sup III](NCpy)Ru[sup II](bpy)Cl[sup 4+]. Evidence for redox isomerization was obtained, in part, from plots of formal potentials versus solvent Lewis basicity. Confirmatory evidence was obtained from a combination of electrochemical reaction entropy and resonance Raman spectroscopic experiments. UV-vis-near-IR absorption experiments, however, were not found to be useful in demonstrating isomerization. In a released series of experiments, redox isomerization was also demonstrated based on ammine binding by either a low molecular weight poly(ethylene glycol) species or by a macrocyclic ligand, dibenzo-36-crown-12. Much smaller molar amounts of either the polymer (substoichiometric) or crown (approximately stoichiometic) are required, in comparison to basic solvent (several-fold excess), in order to induce isomerization in nitromethane as the initial solvent. The possible general utility of the redox isomerization concept in time-resolved intramolecular charge-transfer studies and in optical studies of competitive hole- and electron hole- and electron-transfer pathways is mentioned.

  18. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Lee, Dong Woog; Ahn, B. Kollbe; Seo, Sungbaek; Kaufman, Yair; Israelachvili, Jacob N.; Waite, J. Herbert


    Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing followed by fluid-fluid phase separation, such as coacervation. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water-DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (~25 s) and robust underwater contact adhesion (Wad >= 2 J m-2) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials.

  19. The role of solvent and the outer coordination sphere on H2 oxidation using [Ni(PCy2NPyz2)2]2+

    SciTech Connect

    Dutta, Arnab; Lense, Sheri J.; Roberts, John A.; Helm, Monte L.; Shaw, Wendy J.


    Hydrogenase enzymes are reversible catalysts for H2 production/oxidation, operating with fast rates and minimal overpotentials in water. Many synthetic catalyst mimics of hydrogenase operate in organic solvents. However, recent work has demonstrated the importance of water in the performance of some model complexes. In this work, the H2oxidation activity of [Ni(PCy2N(3–pyridazyl)methyl2)2]2+ (CyPyz) was compared as a function of acetonitrile, methanol, and water. The reactivity was compared under neutral and acidic conditions in all three solvents and improvement in catalytic activity, from 2 to 40 s-1, was observed with increasing hydrogen bonding ability of the solvent. In addition, the overpotential for catalysis drops significantly in the presence of acid in all solvents, from as high as 600 mV to as low as 70 mV, primarily due to the shift in the equilibrium potential under these conditions. Finally, H2 production was also observed in the same solution, demonstrating bidirectional (irreversible) homogeneous H2 production/oxidation. A structurally and electronically similar complex with a benzyl instead of a pyridazyl group was not stable under these conditions, limiting the evaluation of the contributions of the outer coordination sphere. Collectively, we show that by tuning conditions we can promote fast, efficient H2 oxidation and bidirectional catalysis.

  20. Solvent wash solution


    Neace, J.C.


    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  1. Solvent wash solution


    Neace, James C.


    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  2. Technology coordination

    NASA Technical Reports Server (NTRS)

    Hartman, Steven


    Viewgraphs on technology coordination are provided. Topics covered include: technology coordination process to date; goals; how the Office of Aeronautics and Space Technology (OAST) can support the Office of Space Science and Applications (OSSA); how OSSA can support OAST; steps to technology transfer; and recommendations.



    Dawson, L.R.; Fields, P.R.


    The separation of neptunium from an aqueous solution by solvent extraction and the extraction of neptunium from the solvent solution are described. Neptunium is separated from an aqueous solution containing tetravalent or hexavalent neptunium nitrate, nitric acid, and a nitrate salting out agent, such as sodium nitrate, by contacting the solution with an organic solvent such as diethyl ether. Subsequently, the neptunium nitrate is extracted from the organic solvent extract phase with water.

  4. Solvent refining process

    SciTech Connect

    Mead, T.C.; Sequeira, A.J.; Smith, B.F.


    An improved process is described for solvent refining lubricating oil base stocks from petroleum fractions containing both aromatic and nonaromatic constituents. The process utilizes n-methyl-2-pyrrolidone as a selective solvent for aromatic hydrocarbons wherein the refined oil fraction and the extract fraction are freed of final traces of solvent by stripping with gaseous ammonia. The process has several advantages over conventional processes including a savings in energy required for the solvent refining process, and reduced corrosion of the process equipment.

  5. Weak Value Theory

    SciTech Connect

    Shikano, Yutaka


    I show that the weak value theory is useful from the viewpoints of the experimentally verifiability, consistency, capacity for explanation as to many quantum paradoxes, and practical advantages. As an example, the initial state in the Hardy paradox can be experimentally verified using the weak value via the weak measurement.

  6. Solvents and sustainable chemistry

    PubMed Central

    Welton, Tom


    Solvents are widely recognized to be of great environmental concern. The reduction of their use is one of the most important aims of green chemistry. In addition to this, the appropriate selection of solvent for a process can greatly improve the sustainability of a chemical production process. There has also been extensive research into the application of so-called green solvents, such as ionic liquids and supercritical fluids. However, most examples of solvent technologies that give improved sustainability come from the application of well-established solvents. It is also apparent that the successful implementation of environmentally sustainable processes must be accompanied by improvements in commercial performance. PMID:26730217

  7. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.


    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  8. Dual solvent refining process

    SciTech Connect

    Woodle, R.A.


    A dual solvent refining process is claimed for solvent refining petroleum based lubricating oil stocks with n-methyl-2-pyrrolidone as selective solvent for aromatic oils wherein a highly paraffinic oil having a narrow boiling range approximating the boiling point of n-methyl-2-pyrrolidone is employed as a backwash solvent. The process of the invention results in an increased yield of refined lubricating oil stock of a predetermined quality and simplifies separation of the solvents from the extract and raffinate oil fractions.

  9. State Coordination of Higher Education: The Modern Concept.

    ERIC Educational Resources Information Center

    Glenny, Lyman A.

    Coordination of higher education as practiced in three similar organizational forms is assessed: the statewide governing board, the regulatory coordinating board, and the advisory board. Attention is directed to why coordination is important, criticism of coordination, kinds of organizations used, the accomplishments and weaknesses of the…

  10. Deep eutectic solvents as novel extraction media for phenolic compounds from model oil.


    Gu, Tongnian; Zhang, Mingliang; Tan, Ting; Chen, Jia; Li, Zhan; Zhang, Qinghua; Qiu, Hongdeng


    Deep eutectic solvents (DES) as a new kind of green solvent were used for the first time to excellently extract phenolic compounds from model oil. It was also proved that DES could be used to extract other polar compounds from non-polar or weakly-polar solvents by liquid-phase microextraction. PMID:25144155

  11. Two-Coordinate Magnesium(I) Dimers Stabilized by Super Bulky Amido Ligands.


    Boutland, Aaron J; Dange, Deepak; Stasch, Andreas; Maron, Laurent; Jones, Cameron


    A variety of very bulky amido magnesium iodide complexes, LMgI(solvent)0/1 and [LMg(μ-I)(solvent)0/1 ]2 (L=-N(Ar)(SiR3 ); Ar=C6 H2 {C(H)Ph2 }2 R'-2,6,4; R=Me, Pr(i) , Ph, or OBu(t) ; R'=Pr(i) or Me) have been prepared by three synthetic routes. Structurally characterized examples of these materials include the first unsolvated amido magnesium halide complexes, such as [LMg(μ-I)]2 (R=Me, R'=Pr(i) ). Reductions of several such complexes with KC8 in the absence of coordinating solvents have afforded the first two-coordinate magnesium(I) dimers, LMg-MgL (R=Me, Pr(i) or Ph; R'=Pr(i) , or Me), in low to good yields. Reductions of two of the precursor complexes in the presence of THF have given the related THF adduct complexes, L(THF)Mg-Mg(THF)L (R=Me; R'=Pr(i) ) and LMg-Mg(THF)L (R=Pr(i) ; R'=Me) in trace yields. The X-ray crystal structures of all magnesium(I) complexes were obtained. DFT calculations on the unsolvated examples reveal their Mg-Mg bonds to be covalent and of high s-character, while Ph⋅⋅⋅Mg bonding interactions in the compounds were found to be weak at best. PMID:27303934

  12. Magnetosheath Coordinates

    NASA Astrophysics Data System (ADS)

    Schulz, M.; Chen, M. W.


    The eventual goal of this work is to develop an approximate analytical representation of solar-wind streamlines in the magnetosheath surrounding a magnetosphere of rather general shape. Previous analytical representations of magnetosheath streamlines and magnetic fields have invoked magnetopause shapes that conform to standard coordinate systems (e.g., spherical, cylindrical, paraboloidal, ellipsoidal), but it seems now that such a restriction on magnetopause shape is unnecessary. In the present work it is assumed only that the magnetopause is a continuously differentiable convex surface axisymmetric about the Sun-Earth line. This geometry permits the construction of an orthogonal coordinate system (mu, eta, chi) such that eta is the cosine of the cone angle between the Sun-Earth line and any conical surafce extending normally outward from the magnetopause, mu is a measure of the perpendicular distance of any magnetosheath point from the magnetopause, and chi is an azimuthal coordinate measured around the Sun-Earth line. It is convenient here to assign a label mu = mu* to the magnetopause itself, so that mu - mu* denotes perpendicular distance from the magnetopause and mu* is an adjustable parameter roughly comparable to the radius of the magnetotail. This choice provides for a rough correspondence between the (mu, eta, chi) coordinates introduced here and the ellipsoidal coordinates used in our previous efforts at magnetosheath modeling.

  13. The Lanthanide Contraction beyond Coordination Chemistry.


    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K; Olvera de la Cruz, Monica; Qiao, Baofu; Ellis, Ross J


    The lanthanide contraction is conceptualized traditionally through coordination chemistry. Here we break this mold in a structural study of lanthanide ions dissolved in an amphiphilic liquid. The lanthanide contraction perturbs the weak interactions between molecular aggregates that drive mesoscale assembly and emergent behavior. The weak interactions correlate with lanthanide ion transport properties, suggesting new strategies for rare-earth separation that exploit forces outside of the coordination sphere. PMID:27060294

  14. Aperiodic Weak Topological Superconductors.


    Fulga, I C; Pikulin, D I; Loring, T A


    Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand. PMID:27391744

  15. Aperiodic Weak Topological Superconductors

    NASA Astrophysics Data System (ADS)

    Fulga, I. C.; Pikulin, D. I.; Loring, T. A.


    Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand.

  16. Solvent extraction of diatomite

    SciTech Connect

    Williams, W.


    There is provided a method of extracting hydrocarbons from a diatomite ore. The particle size of the ore is first reduced to form a processed ore. The processed ore is then mixed with a substantially irregular granular material to form an unstratified ore mixture having increased permeability to an extracting solvent. The unstratified ore mixture is then permeated with an extracting solvent to obtain a hydrocarbon-solvent stream from which hydrocarbons are subsequently separated. The irregular granular material may be sand.

  17. Solvent extraction process

    SciTech Connect

    Woodle, R.A.


    A solvent refining process is disclosed utilizing n-methyl-2-pyrrolidone as solvent in which primary extract from the extraction zone is cooled to form a secondary raffinate and secondary extract and the secondary and primary raffinates are blended to produce an increased yield of product of desired quality. In a preferred embodiment of the process, the lubricating oil feedstock to the process is first contacted with a stripping medium previously used in the process for the recovery of solvent from at least one of the product streams whereby solvent contained in said stripping medium is recovered therefrom.


    ERIC Educational Resources Information Center



  19. A naphthalimide-based fluorescent sensor for halogenated solvents.


    Dai, Li; Wu, Di; Qiao, Qinglong; Yin, Wenting; Yin, Jun; Xu, Zhaochao


    A fluorescent sensor for halogenated solvents termed AMN is reported. AMN shows strong fluorescence in most halogenated solvents (QE > 0.1) but weak fluorescence (QE<0.01) in most non-halogenated solvents. In chlorinated solvents, the fluorescence intensity decreased with the reduction of chlorine content. On the contrary, in brominated solvents the fluorescence intensity increased with the reduction of bromine content. It is worth mentioning that AMN displayed fluorescence emission centered at 520 nm in CCl4 with a quantum yield of 0.607, at 556 nm in CHCl3 with a quantum yield of 0.318, at 584 nm in CH2Cl2 with a quantum yield of 0.128, whereas in CHBr3 was centered at 441 nm with a quantum yield of 0.012. AMN was shown to have the ability to differentiate CCl4, CHCl3, CH2Cl2 and CHBr3 halogenated solvents. PMID:26691881



    Butler, J.P.


    A process is described for the recovery of neptuniunn from dissolver solutions by solvent extraction. The neptunium containing solution should be about 5N, in nitric acid.and about 0.1 M in ferrous ion. The organic extracting agent is tributyl phosphate, and the neptuniunn is recovered from the organic solvent phase by washing with water.


    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and a low-emission vapor degreaser with closed solvent, liquid an...

  2. Solvent-free synthesis

    EPA Science Inventory

    This chapter gives a brief introduction about solvent-free reactions whose importance can be gauged by the increasing number of publications every year during the last decade. The mechanistic aspects of the reactions under solvent-free conditions have been highlighted. Our observ...

  3. Alternative Green Solvents Project

    NASA Technical Reports Server (NTRS)

    Maloney, Phillip R.


    Necessary for safe and proper functioning of equipment. Mainly halogenated solvents. Tetrachloride, Trichloroethylene (TCE), CFC-113. No longer used due to regulatory/safety concerns. Precision Cleaning at KSC: Small % of total parts. Used for liquid oxygen (LOX) systems. Dual solvent process. Vertrel MCA (decafluoropentane (DFP) and trons-dichloroethylene) HFE-7100. DFP has long term environmental concerns. Project Goals: a) Identify potential replacements. b) 22 wet chemical processes. c) 3 alternative processes. d) Develop test procedures. e) Contamination and cleaning. f) Analysis. g) Use results to recommend alternative processes. Conclusions: a) No alternative matched Vertrel in this study. b) No clear second place solvent. c) Hydrocarbons- easy; Fluorinated greases- difficult. d) Fluorinated component may be needed in replacement solvent. e) Process may need to make up for shortcoming of the solvent. f) Plasma and SCC02 warrant further testing.

  4. Conformational transitions of a weak polyampholyte

    NASA Astrophysics Data System (ADS)

    Narayanan Nair, Arun Kumar; Uyaver, Sahin; Sun, Shuyu


    Using grand canonical Monte Carlo simulations of a flexible polyelectrolyte where the charges are in contact with a reservoir of constant chemical potential given by the solution pH, we study the behavior of weak polyelectrolytes in poor and good solvent conditions for polymer backbone. We address the titration behavior and conformational properties of a flexible diblock polyampholyte chain formed of two oppositely charged weak polyelectrolyte blocks, each containing equal number of identical monomers. The change of solution pH induces charge asymmetry in a diblock polyampholyte. For diblock polyampholyte chains in poor solvents, we demonstrate that a discontinuous transition between extended (tadpole) and collapsed (globular) conformational states is attainable by varying the solution pH. The double-minima structure in the probability distribution of the free energy provides direct evidence for the first-order like nature of this transition. At the isoelectric point electrostatically driven coil-globule transition of diblock polyampholytes in good solvents is found to consist of different regimes identified with increasing electrostatic interaction strength. At pH values above or below the isoelectric point diblock chains are found to have polyelectrolyte-like behavior due to repulsion between uncompensated charges along the chain.



    Jonke, A.A.


    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  6. History of Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.


    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  7. Solvent alternatives guide

    SciTech Connect

    Elion, J.M.; Monroe, K.R.; Hill, E.A.


    It is no longer legal to manufacture or import chlorofluorocarbon 113 or methyl chloroform solvents, and companies that currently clean their parts with either material are now required to implement environmentally safe substitutes. To help find alternative methods, Research Triangle Institute`s Surface Cleaning Technology Program has designed a Solvent Alternatives Guide (SAGE), an online tool that enables access to practical information and recommendations for acceptable solvents. Developed in partnership with the US Environmental Protection Agency, SAGE is available free of charge on the Internet`s World Wide Web.

  8. Neutron Polarization Analysis for Biphasic Solvent Extraction Systems


    Motokawa, Ryuhei; Endo, Hitoshi; Nagao, Michihiro; Heller, William T.


    Here we performed neutron polarization analysis (NPA) of extracted organic phases containing complexes, comprised of Zr(NO3)4 and tri-n-butyl phosphate, which enabled decomposition of the intensity distribution of small-angle neutron scattering (SANS) into the coherent and incoherent scattering components. The coherent scattering intensity, containing structural information, and the incoherent scattering compete over a wide range of magnitude of scattering vector, q, specifically when q is larger than q* ≈ 1/Rg, where Rg is the radius of gyration of scatterer. Therefore, it is important to determine the incoherent scattering intensity exactly to perform an accurate structural analysis from SANS data when Rgmore » is small, such as the aforementioned extracted coordination species. Although NPA is the best method for evaluating the incoherent scattering component for accurately determining the coherent scattering in SANS, this method is not used frequently in SANS data analysis because it is technically challenging. In this study, we successfully demonstrated that experimental determination of the incoherent scattering using NPA is suitable for sample systems containing a small scatterer with a weak coherent scattering intensity, such as extracted complexes in biphasic solvent extraction systems.« less


    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  10. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems


    Nerad, Bruce A.; Krantz, William B.


    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  11. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)


    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.



    Hyman, H.H.; Leader, G.R.


    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  13. LLNL solvent substitution

    SciTech Connect

    Benkovitch, M.G.


    Allied-Signal Inc., Kansas City Division (KCD), manufactures the electrical, electromechanical, mechanical, and plastic components for nuclear weapons. The KCD has made a commitment to eliminate the use of chlorohydrocarbon (CHC) and chlorofluorocarbon (CFC) solvents to the greatest technical extent possible consistent with nuclear safety and stockpile reliability requirements by July 1993. Several non-halogenated solvents (Exxate 1000, Bioact EC-7, Bioact EC-7R, d-limonene, ACT-100, Kester 5769, and isopropyl alcohol) were evaluated to determine the most effective, non-chlorinated non-fluorinated, alternate solvent cleaning system for a particular electronic assembly in lieu of the current trichloroethylenefisopropyl alcohol baseline cleaning process. All of these solvents were evaluated using current manual spray cleaning processes. The solvents were evaluated for their effectiveness in removing a rosin based RMA solder flux, a particular silicone mold release, and a wide variety of general contaminants (oils, greases, mold releases, resins, etc.) normally found in production departments. A DI water/isopropyl alcohol spray cleaning process was also evaluated for removing two organic acid fluxes. Test samples were contaminated, spray cleaned with the appropriate solvent, and then analyzed for cleanliness. The Meseran Surface Analyzer was used to measure,, organic contamination on the samples before and after cleaning. An Omega Meter Model 600 was also used to detect solder flux residues.

  14. Cleaning without chlorinated solvents

    SciTech Connect

    Thompson, L.M.; Simandl, R.F.


    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  15. Cleaning without chlorinated solvents

    NASA Technical Reports Server (NTRS)

    Thompson, L. M.; Simandl, R. F.


    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92 percent. The program has been a twofold effort. Vapor degreasers used in batch cleaning operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting, and bonding. Cleaning ability was determined using techniques such as x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes, and swelling of epoxies.

  16. How Do Teachers Coordinate Their Work? A Framing Approach

    ERIC Educational Resources Information Center

    Dumay, Xavier


    Since the 1970s, schools have been characterized as loosely coupled systems, meaning that the teachers' work is weakly coordinated at the local level. Nonetheless, few studies have focused on the local variations of coordination modes, their sources and their nature. In this article, the process of local coordination of the teachers'…

  17. Modeling, Measuring, and Compensating Color Weak Vision

    NASA Astrophysics Data System (ADS)

    Oshima, Satoshi; Mochizuki, Rika; Lenz, Reiner; Chao, Jinhui


    We use methods from Riemann geometry to investigate transformations between the color spaces of color-normal and color weak observers. The two main applications are the simulation of the perception of a color weak observer for a color normal observer and the compensation of color images in a way that a color weak observer has approximately the same perception as a color normal observer. The metrics in the color spaces of interest are characterized with the help of ellipsoids defined by the just-noticable-differences between color which are measured with the help of color-matching experiments. The constructed mappings are isometries of Riemann spaces that preserve the perceived color-differences for both observers. Among the two approaches to build such an isometry, we introduce normal coordinates in Riemann spaces as a tool to construct a global color-weak compensation map. Compared to previously used methods this method is free from approximation errors due to local linearizations and it avoids the problem of shifting locations of the origin of the local coordinate system. We analyse the variations of the Riemann metrics for different observers obtained from new color matching experiments and describe three variations of the basic method. The performance of the methods is evaluated with the help of semantic differential (SD) tests.

  18. Weak bond screening system

    NASA Astrophysics Data System (ADS)

    Chuang, S. Y.; Chang, F. H.; Bell, J. R.

    Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.

  19. True and masked three-coordinate T-shaped platinum(II) intermediates

    PubMed Central

    Ortuño, Manuel A


    Summary Although four-coordinate square-planar geometries, with a formally 16-electron counting, are absolutely dominant in isolated Pt(II) complexes, three-coordinate, 14-electron Pt(II) complexes are believed to be key intermediates in a number of platinum-mediated organometallic transformations. Although very few authenticated three-coordinate Pt(II) complexes have been characterized, a much larger number of complexes can be described as operationally three-coordinate in a kinetic sense. In these compounds, which we have called masked T-shaped complexes, the fourth position is occupied by a very weak ligand (agostic bond, solvent molecule or counteranion), which can be easily displaced. This review summarizes the structural features of the true and masked T-shaped Pt(II) complexes reported so far and describes synthetic strategies employed for their formation. Moreover, recent experimental and theoretical reports are analyzed, which suggest the involvement of such intermediates in reaction mechanisms, particularly C–H bond-activation processes. PMID:23946831

  20. Weak bump quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, B. J.; Mcdowell, J.


    Research into the optical, ultraviolet and infrared continuum emission from quasars and their host galaxies was carried out. The main results were the discovery of quasars with unusually weak infrared emission and the construction of a quantitative estimate of the dispersion in quasar continuum properties. One of the major uncertainties in the measurement of quasar continuum strength is the contribution to the continuum of the quasar host galaxy as a function of wavelength. Continuum templates were constructed for different types of host galaxy and individual estimates made of the decomposed quasar and host continua based on existing observations of the target quasars. The results are that host galaxy contamination is worse than previously suspected, and some apparent weak bump quasars are really normal quasars with strong host galaxies. However, the existence of true weak bump quasars such as PHL 909 was confirmed. The study of the link between the bump strength and other wavebands was continued by comparing with IRAS data. There is evidence that excess far infrared radiation is correlated with weaker ultraviolet bumps. This argues against an orientation effect and implies a probable link with the host galaxy environment, for instance the presence of a luminous starburst. However, the evidence still favors the idea that reddening is not important in those objects with ultraviolet weak bumps. The same work has led to the discovery of a class of infrared weak quasars. Pushing another part of the envelope of quasar continuum parameter space, the IR-weak quasars have implications for understanding the effects of reddening internal to the quasars, the reality of ultraviolet turnovers, and may allow further tests of the Phinney dust model for the IR continuum. They will also be important objects for studying the claimed IR to x-ray continuum correlation.

  1. Weak bump quasars

    NASA Technical Reports Server (NTRS)

    Mcdowell, Jonathan C.; Elvis, Martin; Wilkes, Belinda J.; Willner, Steven P.; Oey, M. S.


    The recent emphasis on big bumps dominating the UV continuum of quasars has obscured the facts that bump properties vary widely and that there are objects in which no such component is evident. As part of a survey of quasar continuum spectra, a class of quasars is identified in which the optical-UV continuum big bump feature appears to be weak or absent, relative to both IR and X-ray. These weak bump quasars are otherwise normal objects and constitute a few percent of the quasar population.

  2. Infrared weak quasars

    NASA Technical Reports Server (NTRS)

    Mcdowell, J. C.; Elvis, M.; Wilkes, B. J.


    Examples of quasars with anomalously weak IR emission are presented, and the effects of starlight subtraction on estimates of the UV and IR component strengths are discussed. Inferred model parameters are very sensitive to the position of the peak of the UV energy distribution. In many low redshift objects the peak is not seen; even in those objects where the turnover is clear, the turnover may not be intrinsic but instead due to reddening within the quasar host galaxy. The small number of unusual quasars with weak IR emission will be of utility as a probe of the quasar phenomenon in the absence of dominant dust reprocessing.

  3. Weak shock reflection

    NASA Astrophysics Data System (ADS)

    Hunter, John K.; Brio, Moysey


    We present numerical solutions of a two-dimensional inviscid Burgers equation which provides an asymptotic description of the Mach reflection of weak shocks. In our numerical solutions, the incident, reflected, and Mach shocks meet at a triple point, and there is a supersonic patch behind the triple point, as proposed by Guderley for steady weak-shock reflection. A theoretical analysis indicates that there is an expansion fan at the triple point, in addition to the three shocks. The supersonic patch is extremely small, and this work is the first time it has been resolved.

  4. In praise of weakness

    NASA Astrophysics Data System (ADS)

    Steinberg, Aephraim; Feizpour, Amir; Rozema; Mahler; Hayat


    Quantum physics is being transformed by a radical new conceptual and experimental approach known as weak measurement that can do everything from tackling basic quantum mysteries to mapping the trajectories of photons in a Young's double-slit experiment. Aephraim Steinberg, Amir Feizpour, Lee Rozema, Dylan Mahler and Alex Hayat unveil the power of this new technique.

  5. Weaknesses in Underperforming Schools

    ERIC Educational Resources Information Center

    van de Grift, Wim; Houtveen, Thoni


    In some Dutch elementary schools, the average performance of students over several years is significantly below the level that could be expected of them. This phenomenon is known as "underperformance." The most important identifiable weaknesses that go along with this phenomenon are that (a) learning material offered at school is insufficient to…

  6. Weak Radial Artery Pulse

    PubMed Central

    Venugopalan, Poothirikovil; Sivakumar, Puthuval; Ardley, Robert G.; Oates, Crispian


    We present an 11year-old boy with a weak right radial pulse, and describe the successful application of vascular ultrasound to identify the ulnar artery dominance and a thin right radial artery with below normal Doppler flow velocity that could explain the discrepancy. The implications of identifying this anomaly are discussed. PMID:22375269

  7. Weak Lensing with LSST

    NASA Astrophysics Data System (ADS)

    Wittman, David M.; Jain, B.; Jarvis, M.; Knox, L.; Margoniner, V.; Takada, M.; Tyson, J.; Zhan, H.; LSST Weak Lensing Science Collaboration


    Constraining dark energy parameters with weak lensing is one of the primary science goals of the LSST. The LSST Weak Lensing Science Collaboration has been formed with the goal of optimizing the weak lensing science by optimizing the survey cadence; working with Data Management to insure high-quality pipeline processing which will meet our needs; developing the necessary analysis tools well before the onset of data-taking; participating in high-fidelity simulations to test the system end-to-end; and analyzing the real dataset as it becomes available. We review the major weak lensing probes, the twoand three-point shear correlations, and how they constrain dark energy parameters. We also review the possibility of going beyond dark energy models and testing gravity with the LSST data. To realize the promise of the awesome LSST statistical precision, we must ensure that systematic errors are kept under control. We review the major sources of systematics and our plans for mitigation. We present data that demonstrate that these sources of systematics can be kept to a level smaller than the statistical error.

  8. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  9. Separation by solvent extraction


    Holt, Jr., Charles H.


    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from to C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  10. Halogenated solvent remediation


    Sorenson, Kent S.


    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  11. Halogenated solvent remediation


    Sorenson, Jr., Kent S.


    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  12. Breathing with chlorinated solvents

    SciTech Connect

    McCarty, P.L.


    Chlorinated solvents are effective cleaners and in the past dirted solvents were dumped into landfills, stored in tanks that often leaked, or spilled. As a result the most common contaminants of organic groundwater at hazardous waste sites are the two major chlorinated solvents - tetrachloroethylene (PCE) and trichloroethylene (TCE). Both are suspected carcinogens and both are highly resistant to biodegradation. Now however, there is a report of a bacterium that can remove all of the chlorine atoms from both by halorespiration to form ethene, an innocuous end product. This article goes on to discuss the background of biodegradation of chlorinated compounds, why it is so difficult, and what the future is in this area. 9 refs., 1 fig.

  13. Solvent resistant copolyimide

    NASA Technical Reports Server (NTRS)

    Chang, Alice C. (Inventor); St. Clair, Terry L. (Inventor)


    A solvent resistant copolyimide was prepared by reacting 4,4'-oxydiphthalic anhydride with a diaimine blend comprising, based on the total amount of the diamine blend, about 75 to 90 mole percent of 3,4'-oxydianiline and about 10 to 25 mole percent p-phenylene diamine. The solvent resistant copolyimide had a higher glass transition temperature when cured at , and C. than LaRC.TM.-IA. The composite prepared from the copolyimide had similar mechanical properties to LaRC.TM.-IA. Films prepared from the copolyimide were resistant to immediate breakage when exposed to solvents such as dimethylacetamide and chloroform. The adhesive properties of the copolyimide were maintained even after testing at,, and C.

  14. Safe battery solvents


    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.


    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  15. Weak Interactions and Instability Cascades.


    Kadoya, Taku; McCann, Kevin S


    Food web theory states that a weak interactor which is positioned in the food web such that it tends to deflect, or mute, energy away from a potentially oscillating consumer-resource interaction often enhances community persistence and stability. Here we examine how adding other weak interactions (predation/harvesting) on the stabilizing weak interactor alters the stability of food web using a set of well-established food web models/modules. We show that such "weak on weak" interaction chains drive an indirect dynamic cascade that can rapidly ignite a distant consumer-resource oscillator. Nonetheless, we also show that the "weak on weak" interactions are still more stable than the food web without them, and so weak interactions still generally act to stabilize food webs. Rather, these results are best interpreted to say that the degree of the stabilizing effect of a given important weak interaction can be severely compromised by other weak interactions (including weak harvesting). PMID:26219561

  16. Solvent dewatering coal

    SciTech Connect

    Hardesty, D.E.; Buchholz, H.F.


    Drying of wet coal is facilitated by the addition of a nonaqueous solvent, such as acetone, to the coal followed by application of heat to remove both solvent and water from the coal. The coal may be further upgraded by briquetting or pelletizing fine coal particles with waxes and resins extracted from the coal, or the waxes and resins may be left on the coal to reduce the tendency of the coal to reabsorb water. In addition, minerals such as sodium and potassium salts may be removed from the coal to reduce slagging and fouling behavior of the coal.

  17. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange.


    Zhao, Qiang; Lee, Dong Woog; Ahn, B Kollbe; Seo, Sungbaek; Kaufman, Yair; Israelachvili, Jacob N; Waite, J Herbert


    Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing followed by fluid-fluid phase separation, such as coacervation. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water-DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (∼25 s) and robust underwater contact adhesion (Wad ≥ 2 J m(-2)) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials. PMID:26779881

  18. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange

    PubMed Central

    Seo, Sungbaek; Kaufman, Yair; Israelachvili, Jacob N.; Waite, J. Herbert


    Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing1 followed by fluid–fluid phase separation, such as coacervation2–5. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water–DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (~25 s) and robust underwater contact adhesion (Wad ≥ 2 J m−2) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials. PMID:26779881

  19. Nonadiabatic dynamics of photoinduced proton-coupled electron transfer: comparison of explicit and implicit solvent simulations.


    Auer, Benjamin; Soudackov, Alexander V; Hammes-Schiffer, Sharon


    Theoretical approaches for simulating the ultrafast dynamics of photoinduced proton-coupled electron transfer (PCET) reactions in solution are developed and applied to a series of model systems. These processes are simulated by propagating nonadiabatic surface hopping trajectories on electron-proton vibronic surfaces that depend on the solute and solvent nuclear coordinates. The PCET system is represented by a four-state empirical valence bond model, and the solvent is treated either as explicit solvent molecules or as a dielectric continuum, in which case the solvent dynamics is described in terms of two collective solvent coordinates corresponding to the energy gaps associated with electron and proton transfer. The explicit solvent simulations reveal two distinct solvent relaxation time scales, where the faster time scale relaxation corresponds to librational motions of solvent molecules in the first solvation shell, and the slower time scale relaxation corresponds to the bulk solvent dielectric response. The charge transfer dynamics is strongly coupled to both the fast and slow time scale solvent dynamics. The dynamical multistate continuum theory is extended to include the effects of two solvent relaxation time scales, and the resulting coupled generalized Langevin equations depend on parameters that can be extracted from equilibrium molecular dynamics simulations. The implicit and explicit solvent approaches lead to qualitatively similar charge transfer and solvent dynamics for model PCET systems, suggesting that the implicit solvent treatment captures the essential elements of the nonequilibrium solvent dynamics for many systems. A combination of implicit and explicit solvent approaches will enable the investigation of photoinduced PCET processes in a variety of condensed phase systems. PMID:22651684

  20. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre


    This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy

  1. Weakly supervised glasses removal

    NASA Astrophysics Data System (ADS)

    Wang, Zhicheng; Zhou, Yisu; Wen, Lijie


    Glasses removal is an important task on face recognition, in this paper, we provide a weakly supervised method to remove eyeglasses from an input face image automatically. We choose sparse coding as face reconstruction method, and optical flow to find exact shape of glasses. We combine the two processes iteratively to remove glasses more accurately. The experimental results reveal that our method works much better than these algorithms alone, and it can remove various glasses to obtain natural looking glassless facial images.

  2. Asymptotically Safe Weak Interactions

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier

    We emphasize that the electroweak interactions without a Higgs boson are very similar to quantum general relativity. The Higgs field could just be a dressing field and might not exist as a propagating particle. In that interpretation, the electroweak interactions without a Higgs boson could be renormalizable at the nonperturbative level because of a nontrivial fixed point. Tree-level unitarity in electroweak bosons scattering is restored by the running of the weak scale.

  3. Composite weak bosons

    SciTech Connect

    Suzuki, M.


    Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.


    EPA Science Inventory

    Solvent extraction does not destroy hazardous contaminants, but is a means of separating those contaminants from soils, sludges, and sediments, thereby reducing the volume of the hazardous material that must be treated. enerally it is used as one in a series of unit operations an...


    EPA Science Inventory

    Solvent extraction does not destroy wastes, but is a means of separating hazardous contaminants from soils, sludges, and sediments, thereby reducing the volume of the hazardous waste that must be treated. enerally it is used as one ina series of unit operations, and can reduce th...

  6. Organic solvent topical report

    SciTech Connect

    COWLEY, W.L.


    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  7. Organic solvent topical report

    SciTech Connect

    Cowley, W.L.


    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  8. Automated solvent concentrator

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.; Stuart, J. L.


    Designed for automated drug identification system (AUDRI), device increases concentration by 100. Sample is first filtered, removing particulate contaminants and reducing water content of sample. Sample is extracted from filtered residue by specific solvent. Concentrator provides input material to analysis subsystem.


    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery. The technologies were (1) atmospheric batch distillation, (2) vacuum heat-pump distillation, and (3) low-emission vapor degreas...


    EPA Science Inventory

    Computer-aided design of chemicals and chemical mixtures provides a powerful tool to help engineers identify cleaner process designs and more-benign alternatives to toxic industrial solvents. Three software programs are discussed: (1) PARIS II (Program for Assisting the Replaceme...

  11. Solvent vapor collector


    Ellison, Kenneth; Whike, Alan S.


    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  12. Solvent-Ion Interactions in Salt Water: A Simple Experiment.

    ERIC Educational Resources Information Center

    Willey, Joan D.


    Describes a procedurally quick, simple, and inexpensive experiment which illustrates the magnitude and some effects of solvent-ion interactions in aqueous solutions. Theoretical information, procedures, and examples of temperature, volume and hydration number calculations are provided. (JN)

  13. Gravitational anomaly and Hawking radiation near a weakly isolated horizon

    SciTech Connect

    Wu Xiaoning; Huang Chaoguang; Sun Jiarui


    Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.

  14. Gravitational anomaly and Hawking radiation near a weakly isolated horizon

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoning; Huang, Chao-Guang; Sun, Jia-Rui


    Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.

  15. A coordination chemistry study of hydrated and solvated cationic vanadium ions in oxidation states +III, +IV, and +V in solution and solid state.


    Krakowiak, Joanna; Lundberg, Daniel; Persson, Ingmar


    The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen-donor solvents water, dimethyl sulfoxide (DMSO), and N,N'-dimethylpropyleneurea (DMPU) has been studied in solution by extended X-ray absorption fine structure (EXAFS) and large-angle X-ray scattering (LAXS) and in the solid state by single-crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and DMSO-solvated oxovanadium(IV) ions, vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O═V-O(perp) bond angle is ca. 98°. In the DMPU-solvated oxovanadium(IV) ion, the space-demanding properties of the DMPU molecule leave no solvent molecule in the trans position to the oxo group, which reduces the coordination number to 5. The O═V-O bond angle is consequently much larger, 107°, and the mean V═O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and DMSO-solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in the cis position with a mean V═O bond distance of 1.6 Å and a O═V═O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen-donor ligands. PMID:22950803

  16. Charge stabilization in nonpolar solvents.


    Hsu, M F; Dufresne, E R; Weitz, D A


    While the important role of electrostatic interactions in aqueous colloidal suspensions is widely known and reasonably well-understood, their relevance to nonpolar suspensions remains mysterious. We measure the interaction potentials of colloidal particles in a nonpolar solvent with reverse micelles. We find surprisingly strong electrostatic interactions characterized by surface potentials, |ezeta|, from 2.0 to 4.4 k(B)T and screening lengths, kappa(-1), from 0.2 to 1.4 microm. Interactions depend on the concentration of reverse micelles and the degree of confinement. Furthermore, when the particles are weakly confined, the values of |ezeta| and kappa extracted from interaction measurements are consistent with bulk measurements of conductivity and electrophoretic mobility. A simple thermodynamic model, relating the structure of the micelles to the equilibrium ionic strength, is in good agreement with both conductivity and interaction measurements. Since dissociated ions are solubilized by reverse micelles, the entropic incentive to charge a particle surface is qualitatively changed from aqueous systems, and surface entropy plays an important role. PMID:15896027

  17. Weakly broken galileon symmetry

    SciTech Connect

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo


    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  18. Weak decay of hypernuclei

    SciTech Connect

    Grace, R.


    The Moby Dick spectrometer (at BNL) in coincidence with a range spectrometer and a TOF neutron detector will be used to study the weak decay modes of /sup 12/C. The Moby Dick spectrometer will be used to reconstruct and tag events in which specific hypernuclear states are formed in the reaction K/sup -/ + /sup 12/C ..-->.. ..pi../sup -/ + /sup 12/C. Subsequent emission of decay products (pions, protons and neutrons) in coincidence with the fast forward pion will be detected in a time and range spectrometer, and a neutron detector.

  19. Solvent dewaxing of lubricating oils

    SciTech Connect

    Sequeira, A. Jr.


    This paper describes improvement in a process for producing a dewaxed lubricating oil from a wax-bearing mineral oil by the steps comprising; mixing the oil with a dewaxing solvent thereby forming an oil-solvent mixture, chilling the oil-solvent mixture to a dewaxing temperature thereby crystallizing the wax and forming an oil-solvent crystalline wax mixture, separating the oil-solvent-crystalline wax mixture to form a dewaxed oil-solvent mixture and crystalline wax, steam stripping the dewaxed oil-solvent mixture at a temperature of 300{degrees}F to 600{degrees}F and pressure of 1 atm to 3 atm, to yield a solvent free dewaxed oil.


    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  1. Solvent substitution for electronic products

    SciTech Connect

    Benkovich, M.K.


    Allied-Signal Inc., Kansas City Division (KCD), manufactures the electrical, electrochemical, mechanical, and plastic components for nuclear weapons. The KCD has made a commitment to eliminate the use of chlorohydrocarbon (CHC) and chlorofluorocarbon (CFC) solvents to the greatest technical extent possible consistent with nuclear safety and stockpile reliability requirements. Current cleaning processes in the production departments use trichloroethylene, 1,1,1-trichloroethane, and various CFC-113 based solvents. Several non-halogenated solvents (Solvent A - an aqueous solvent based on N,N-dimethylacetamide, Solvent B - an aqueous mixture of ethanol amines, Solvent C - a hydrocarbon solvent based on octadecyl acetate, Solvent D - a terpene (d-limonene) hydrocarbon solvent combined with emulsifiers, Solvent E - a terpene (d-limonene) hydrocarbon solvent combined with a separation agent, d-limonene, and isopropyl alcohol) were evaluated to determine the most effective, non-chlorinated, non-fluorinated, alternate solvent cleaning system. All of these solvents were evaluated using current manual spray cleaning processes. The solvents were evaluated for their effectiveness in removing a rosin based RMA solder flux, a particular silicone mold release, and oils, greases, mold releases, resins, etc. The Meseran Surface Analyzer was used to measure organic contamination on the samples before and after cleaning. An Omega Meter Model 600 was also used to detect solder flux residues. Solvents C, D, E and d-limonene the best alternatives to trichloroethylene for removing all of the contaminants tested. For this particular electronic assembly, d-limonene was chosen as the alternate because of material compatibility and long-term reliability concerns.

  2. Glove permeation by organic solvents

    SciTech Connect

    Nelson, G.O.; Lum, B.Y.; Carlson, G.J.; Wong, C.M.; Johnson, J.S.


    The vapor penetration of 29 common laboratory solvents on 28 protective gloves has been tested and measured using gas-phase, infrared spectrophotometric techniques to determine the permeation characteristics. Five different types of permeation behavior were identified. No one glove offered complete protection against all the solvents tested. The permeation rate of the solvent was found to be inversely proportional to glove thickness for a given manufacturer's material. Of two solvent mixtures tested, one exhibited a large, positive, synergistic rate.


    EPA Science Inventory

    PARIS II (the program for assisting the replacement of industrial solvents, version II), developed at the USEPA, is a unique software tool that can be used for customizing the design of replacement solvents and for the formulation of new solvents. This program helps users avoid ...

  4. Hazardous solvent substitution

    SciTech Connect

    Twitchell, K.E.


    Eliminating hazardous solvents is good for the environment, worker safety, and the bottom line. However, even though we are motivated to find replacements, the big question is `What can we use as replacements for hazardous solvents?`You, too, can find replacements for your hazardous solvents. All you have to do is search for them. Search through the vendor literature of hundreds of companies with thousands of products. Ponder the associated material safety data sheets, assuming of course that you can obtain them and, having obtained them, that you can read them. You will want to search the trade magazines and other sources for product reviews. You will want to talk to users about how well the product actually works. You may also want to check US Environmental Protection Agency (EPA) and other government reports for toxicity and other safety information. And, of course, you will want to compare the product`s constituent chemicals with the many hazardous constituency lists to ensure the safe and legal use of the product in your workplace.

  5. Optimized coordinates in vibrational coupled cluster calculations

    SciTech Connect

    Thomsen, Bo; Christiansen, Ove; Yagi, Kiyoshi


    The use of variationally optimized coordinates, which minimize the vibrational self-consistent field (VSCF) ground state energy with respect to orthogonal transformations of the coordinates, has recently been shown to improve the convergence of vibrational configuration interaction (VCI) towards the exact full VCI [K. Yagi, M. Keçeli, and S. Hirata, J. Chem. Phys. 137, 204118 (2012)]. The present paper proposes an incorporation of optimized coordinates into the vibrational coupled cluster (VCC), which has in the past been shown to outperform VCI in approximate calculations where similar restricted state spaces are employed in VCI and VCC. An embarrassingly parallel algorithm for variational optimization of coordinates for VSCF is implemented and the resulting coordinates and potentials are introduced into a VCC program. The performance of VCC in optimized coordinates (denoted oc-VCC) is examined through pilot applications to water, formaldehyde, and a series of water clusters (dimer, trimer, and hexamer) by comparing the calculated vibrational energy levels with those of the conventional VCC in normal coordinates and VCI in optimized coordinates. For water clusters, in particular, oc-VCC is found to gain orders of magnitude improvement in the accuracy, exemplifying that the combination of optimized coordinates localized to each monomer with the size-extensive VCC wave function provides a supreme description of systems consisting of weakly interacting sub-systems.

  6. Solvent replacement for green processing.

    PubMed Central

    Sherman, J; Chin, B; Huibers, P D; Garcia-Valls, R; Hatton, T A


    The implementation of the Montreal Protocol, the Clean Air Act, and the Pollution Prevention Act of 1990 has resulted in increased awareness of organic solvent use in chemical processing. The advances made in the search to find "green" replacements for traditional solvents are reviewed, with reference to solvent alternatives for cleaning, coatings, and chemical reaction and separation processes. The development of solvent databases and computational methods that aid in the selection and/or design of feasible or optimal environmentally benign solvent alternatives for specific applications is also discussed. Images Figure 2 Figure 3 PMID:9539018


    SciTech Connect

    Walker, D; Samuel Fink, S


    Southwest Research Institute (SwRI) conducted a burn test of the Caustic-Side Solvent Extraction (CSSX) solvent to determine the combustion products. The testing showed hydrogen fluoride gas is not a combustion product from a solvent fire when up to 70% of the solvent is consumed. The absence of HF in the combustion gases may reflect concentration of the modifier containing the fluoride groups in the unburned portion. SwRI reported results for other gases (CO, HCN, NOx, formaldehyde, and hydrocarbons). The results, with other supporting information, can be used for evaluating the consequences of a facility fire involving the CSSX solvent inventory.

  8. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    SciTech Connect

    Moyer, Bruce A.; Birdwell, Jr, Joseph F.; Bonnesen, Peter V.; Bruffey, Stephanie H.; Delmau, Laetitia Helene; Duncan, Nathan C.; Ensor, Dale; Hill, Talon G.; Lee, Denise L.; Rajbanshi, Arbin; Roach, Benjamin D.; Szczygiel, Patricia L.; Frederick V. Sloop, Jr.; Stoner, Erica L.; Williams, Neil J.


    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  9. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad


    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  10. Occupational solvent exposure and cognition

    PubMed Central

    Sabbath, E.L.; Glymour, M.M.; Berr, C.; Singh-Manoux, A.; Zins, M.; Goldberg, M.


    Objective: Chronic occupational solvent exposure is associated with long-term cognitive deficits. Cognitive reserve may protect solvent-exposed workers from cognitive impairment. We tested whether the association between chronic solvent exposure and cognition varied by educational attainment, a proxy for cognitive reserve. Methods: Data were drawn from a prospective cohort of French national gas and electricity (GAZEL) employees (n = 4,134). Lifetime exposure to 4 solvent types (chlorinated solvents, petroleum solvents, benzene, and nonbenzene aromatic solvents) was assessed using a validated job-exposure matrix. Education was dichotomized at less than secondary school or below. Cognitive impairment was defined as scoring below the 25th percentile on the Digit Symbol Substitution Test at mean age 59 (SD 2.8; 88% of participants were retired at testing). Log-binomial regression was used to model risk ratios (RRs) for poor cognition as predicted by solvent exposure, stratified by education and adjusted for sociodemographic and behavioral factors. Results: Solvent exposure rates were higher among less-educated patients. Within this group, there was a dose-response relationship between lifetime exposure to each solvent type and RR for poor cognition (e.g., for high exposure to benzene, RR = 1.24, 95% confidence interval 1.09–1.41), with significant linear trends (p < 0.05) in 3 out of 4 solvent types. Recency of solvent exposure also predicted worse cognition among less-educated patients. Among those with secondary education or higher, there was no significant or near-significant relationship between any quantification of solvent exposure and cognition. Conclusions: Solvent exposure is associated with poor cognition only among less-educated individuals. Higher cognitive reserve in the more-educated group may explain this finding. PMID:22641403

  11. Solvent effects on the resonance Raman and electronic absorption spectra of bacteriochlorophyll a cation radical

    SciTech Connect

    Misono, Yasuhito; Itoh, Koichi; Limanatara, Leenawaty; Koyama, Yasushi


    Resonance Raman and electronic absorption spectra of bacteriocholrophyll a cation radical (BChl a{sup .+}) were recorded in 14 different kinds of solvents. The frequency of the ring-breathing Raman band of BChl a{sup .+} was in the region of 1596-1599 cm{sup -1} in solvents forming the pentacoordinated state in neutral bacteriochlorophyll a (BChl a), while it was in the region of 1584-1588 cm{sup -1} in solvents forming the hexacoordinated state. BChl a{sup .+} exhibited a key absorption band in the regions 546-554 and 557-563 nm in the above penta- and hexa-coordinating solvents. Therefore, it has been concluded that the penta- and hexa-coordinated states are retained even after conversion of BChl a into BChl a{sup .+} (one-electron oxidization). Application of this rule to the case of 2-propanol solution showed transformation from the penta- to the hexa-coordinated state upon one-electron oxidation in this particular solution. The coordination states of BChl a{sup .+} could be correlated with the donor number(DN) and the Taft parameters, {Beta} and {pi}{sup *}, of the solvent: The hexacoordinated state was formed in solvents with DN >= 18 or {Beta} > 0.5 showing higher electron donating power, while the pentacoordinated state was formed in solvents with {pi}{sup *} > 0.65 showing higher dielectric stabilization. 27 refs., 8 figs., 3 tabs.

  12. Nanometrization of Lanthanide-Based Coordination Polymers.


    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier


    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. PMID:26471940

  13. Dynamics of Radical Ion Pairs following Photoinduced Electron Transfer in Solvents with Low and Intermediate Polarities.


    Mentel, Kamila K; Nunes, Rui M D; Serpa, Carlos; Arnaut, Luis G


    Fluorescence quenching of p-xylene, naphthalene, or pyrene by fumaronitrile in apolar solvents and in solvents of intermediate polarities leads to weakly fluorescent radical ion pairs. This emission is assigned to ion pairs in close contact on the basis of their solvent polarity dependence, kinetics, and thermodynamics. The temperature-dependence of the intensity and fluorescence emission maxima of ion pairs in methyl acetate reveals that they have decay channels competitive with their thermal equilibration. The results presented in this work are consistent with the direct formation of contact ion pairs in weakly polar solvents and in solvents of intermediate polarities as the result of bimolecular photoinduced electron transfer reactions between aromatic hydrocarbons and nitriles. The implications of these findings in free-energy relationships of electron transfer reactions are discussed. PMID:25588979

  14. Solvent Fractionation of Lignin

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori


    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. The major issues for the commercial production of value added high performance lignin products are lignin s physical and chemical heterogenities. To overcome these problems, a variety of procedures have been developed to produce pure lignin suitable for high performace applications such as lignin-derived carbon materials. However, most of the isolation procedures affect lignin s properties and structure. In this chapter, a short review of the effect of solvent fractionation on lignin s properties and structure is presented.

  15. A thermodynamic study of selective solvation in solvent mixtures.


    Cabot, Rafel; Hunter, Christopher A


    Changes in the (31)P NMR chemical shift of tri-n-butylphosphine oxide have been measured as function of solvent composition in a number of binary solvent mixtures. The data were analysed using a model that separates the contributions of specific H-bond interactions with the first solvation shell and the non-specific effects of the bulk solvent on the chemical shift. This allowed measurement of equilibrium constants between differently solvated states of the probe and hence thermodynamic quantification of preferential solvation in the binary mixtures. The results are analysed in the context of the electrostatic solvent competition model, which assumes that solvent effects on intermolecular interactions can be interpreted based on the exchange of specific functional group contacts, with minimal involvement of the bulk solvent. The thermodynamic measurements of preferential solvation were used to determine the H-bond donor parameter alpha for cyclohexane, n-octane, n-dodecane, benzene, 1,4-dioxane, carbon tetrachloride, acetone, dichloromethane, dimethyl sulfoxide and chloroform. For solvents where the H-bond donor parameters have been measured as solutes in carbon tetrachloride solution, the H-bond donor parameters measured here for the same compounds as solvents are practically identical, i.e. solute and solvent H-bond parameters are directly interchangable. For alkanes, the experimental H-bond donor parameter is significantly larger than expected based on calculated molecular electrostatic potential surfaces. This might suggest an increase in the relative importance of van der Waals interactions when electrostatic effects are weak. PMID:20449502

  16. Extraordinary aluminum coordination in a novel homometallic double complex salt.


    Mandai, Toshihiko; Masu, Hyuma; Johansson, Patrik


    We have characterized a novel aluminum-based homometallic double complex salt, incorporating discrete octa-coordinated cationic [Al(G3)2](3+) and hexa-coordinated anionic [Al(TfO)4(OH)2](3-) complexes (G3 = triglyme, TfO = trifluoromethanesulfonate). X-ray crystallography, Raman spectra, and DFT calculations demonstrate extraordinary weak Al(3+) coordination in [Al(G3)2](3+). PMID:26024493

  17. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent

    SciTech Connect

    Delmau, Laetitia Helene; Moyer, Bruce A


    The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

  18. Reaction coordinates for electron transfer reactions

    SciTech Connect

    Rasaiah, Jayendran C.; Zhu Jianjun


    The polarization fluctuation and energy gap formulations of the reaction coordinate for outer sphere electron transfer are linearly related to the constant energy constraint Lagrangian multiplier m in Marcus' theory of electron transfer. The quadratic dependence of the free energies of the reactant and product intermediates on m and m+1, respectively, leads to similar dependence of the free energies on the reaction coordinates and to the same dependence of the activation energy on the reorganization energy and the standard reaction free energy. Within the approximations of a continuum model of the solvent and linear response of the longitudinal polarization to the electric field in Marcus' theory, both formulations of the reaction coordinate are expected to lead to the same results.

  19. Solvents level dipole moments.


    Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E


    The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule. PMID:21923185

  20. 2,5-PRODAN derivatives as highly sensitive sensors of low solvent acidity.


    Yoon, Alexandra H; Whitworth, Laura C; Wagner, Joel D; Abelt, Christopher J


    Two 5-acyl-2-dimethylaminonaphthalene derivatives, one with a propionyl group and the other with a fused cyclohexanone ring, are investigated as sensors of H-bond-donating ability in protic solvents of low solvent acidity. Their fluorescence is highly quenched in protic solvents, and the quenching order of magnitude is linearly related to the H-bond-donating ability of the solvent as quantified by the solvent acidity (SA) scale. As the solvent acidity increases from 0.15 to 0.40, the fluorescence for both is quenched by more than a factor of ten; thus, they are extremely sensitive sensors of the hydrogen-bond-donating ability in this weakly acidic range. Preferential solvation studies suggest that quenching occurs from a doubly H-bonded excited state. PMID:24853615

  1. Movement and Coordination


    ... will seem to be continually on the go—running, kicking, climbing, jumping. His attention span, which was ... his coordination. In the months ahead, your child’s running will become smoother and more coordinated. He’ll ...

  2. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)


    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  3. Toxicological profile for Stoddard solvent

    SciTech Connect


    This statement was prepared to give you information about Stoddard solvent and to emphasize the human health effects that may result from exposure to it. The Environmental Protection Agency (EPA) has identified 1,397 sites on its `National Priorities List` (NPL). Stoddard solvent has been found in at least seven of these sites.



    Feder, H.M.; Ader, M.; Ross, L.E.


    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  5. Processing Coordination Ambiguity

    ERIC Educational Resources Information Center

    Engelhardt, Paul E.; Ferreira, Fernanda


    We examined temporarily ambiguous coordination structures such as "put the butter in the bowl and the pan on the towel." Minimal Attachment predicts that the ambiguous noun phrase "the pan" will be interpreted as a noun-phrase coordination structure because it is syntactically simpler than clausal coordination. Constraint-based theories assume…

  6. Analysis Coordinator Report

    NASA Technical Reports Server (NTRS)

    Nothnagel, A.


    We present the IVS analysis coordination issues of 2012. The IVS Analysis Coordinator is responsible for generating and disseminating the official IVS products. This requires consistency of the input data by strict adherence to models and conventions. The term of the current IVS Analysis Coordinator will end on February 28, 2013.

  7. Solvent degradation products in nuclear fuel processing solvents

    SciTech Connect

    Shook, H.E. Jr.


    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.


    EPA Science Inventory

    This project evaluated solvent used to clean paint manufacture equipment for its utility in production of subsequent batches of solvent-borne paint. eusing wash solvent would reduce the amount of solvent disposed of as waste. he evaluation of this wash-solvent recovery technology...


    EPA Science Inventory

    Solvent substitution is an effective and useful means of eliminating the use of harmful solvents, but finding substitute solvents which are less harmful and as effective as currently used solvents presents significant difficulties. Solvent substitution is a form of reverse engin...

  10. Structure and efficient luminescence upconversion of Ln(iii) aromatic N-oxide coordination polymers.


    Chong, Bowie S K; Moore, Evan G


    A series of lanthanide-based coordination polymers {[Yb1-xErx(4,4'-bpdo)3(H2O)2](CF3SO3)3}∞ were synthesised by solvent diffusion techniques, where 4,4'-bpdo = 4,4'-bipyridine-N,N'-dioxide, and using differing mole fractions of Yb(iii) and Er(iii) which were systematically varied (x = 0, 0.05, 0.20, 0.50 and 1). All of the materials obtained were characterised using elemental analyses, single-crystal X-ray diffraction (SXRD) and solid-state photoluminescence studies. Structurally, the coordination polymers crystallise as an isomorphous series of infinite 2D sheets, which contain two inner sphere water molecules, and are isostructural with a previously characterised homometallic Yb(iii) compound. In addition to the normal Near Infra-Red (NIR) luminescence, these compounds also demonstrate upconversion emission upon 980 nm excitation. Upconversion luminescence measurements reveal visible emission in the red, green, and blue regions corresponding to the (2)H11/2→(4)I15/2, (4)F9/2→(4)I15/2 and (2)H9/2→(4)I15/2 transitions of the Er(iii) cation upon two and three-photon excitation. We also observed weak emission from the Er(iii) cation in the UV region for the first time in a Ln-MOF based material. PMID:27411484

  11. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of beta-carotene in nonpolar solvent.


    Burt, Jim A; Zhao, Xihua; McHale, Jeanne L


    The influence of solvent dynamics on optical spectra is often described by a stochastic model which assumes exponential relaxation of the time-correlation function for solvent-induced frequency fluctuations. In contrast, theory and experiment suggest that the initial (subpicosecond) phase of solvent relaxation, resulting from inertial motion of the solvent, is a Gaussian function of time. In this work, we employ numerical and analytical calculations to compare the predicted absorption line shapes and the derived solvent reorganization energies obtained from exponential (Brownian oscillator) versus Gaussian (inertial) solvent dynamics. Both models predict motional narrowing as the ratio kappa = Lambda/Delta is increased, where Lambda and Delta are the frequency and variance, respectively, of the solvent-induced frequency fluctuations. However, the motional narrowing limit is achieved at lower values of kappa for the Brownian oscillator model compared to the inertial model. For a given line shape, the derived value of the solvent reorganization energy lambdasolv is only weakly dependent on the solvent relaxation model employed, though different solvent parameters Lambda and Delta are obtained. The two models are applied to the analysis of the temperature-dependent absorption spectrum of beta-carotene in isopentane and CS2. The derived values of lambdasolv using the Gaussian model are found to be in better agreement with the high temperature limit of Delta2/2kBT than are the values obtained using the Brownian oscillator model. In either approach, the solvent reorganization energy is found to increase slightly with temperature as a result of an increase in the variance Delta of the solvent-induced frequency fluctuations. PMID:15268604

  12. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of β-carotene in nonpolar solvent

    NASA Astrophysics Data System (ADS)

    Burt, Jim A.; Zhao, Xihua; McHale, Jeanne L.


    The influence of solvent dynamics on optical spectra is often described by a stochastic model which assumes exponential relaxation of the time-correlation function for solvent-induced frequency fluctuations. In contrast, theory and experiment suggest that the initial (subpicosecond) phase of solvent relaxation, resulting from inertial motion of the solvent, is a Gaussian function of time. In this work, we employ numerical and analytical calculations to compare the predicted absorption line shapes and the derived solvent reorganization energies obtained from exponential (Brownian oscillator) versus Gaussian (inertial) solvent dynamics. Both models predict motional narrowing as the ratio κ=Λ/Δ is increased, where Λ and Δ are the frequency and variance, respectively, of the solvent-induced frequency fluctuations. However, the motional narrowing limit is achieved at lower values of κ for the Brownian oscillator model compared to the inertial model. For a given line shape, the derived value of the solvent reorganization energy λsolv is only weakly dependent on the solvent relaxation model employed, though different solvent parameters Λ and Δ are obtained. The two models are applied to the analysis of the temperature-dependent absorption spectrum of β-carotene in isopentane and CS2. The derived values of λsolv using the Gaussian model are found to be in better agreement with the high temperature limit of Δ2/2kBT than are the values obtained using the Brownian oscillator model. In either approach, the solvent reorganization energy is found to increase slightly with temperature as a result of an increase in the variance Δ of the solvent-induced frequency fluctuations.

  13. Cesium Concentration in MCU Solvent

    SciTech Connect

    Walker, D


    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing {approx}4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to {approx}2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain {approx}23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a {approx}70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank

  14. Movement Coordination during Conversation

    PubMed Central

    Latif, Nida; Barbosa, Adriano V.; Vatiokiotis-Bateson, Eric; Castelhano, Monica S.; Munhall, K. G.


    Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers’ perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers. PMID:25119189

  15. Solvent viscosity dependence for enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Sitnitsky, A. E.


    A mechanism for relationship of solvent viscosity with reaction rate constant at enzyme action is suggested. It is based on fluctuations of electric field in enzyme active site produced by thermally equilibrium rocking (crankshaft motion) of the rigid plane (in which the dipole moment ≈3.6 D lies) of a favourably located and oriented peptide group (or may be a few of them). Thus the rocking of the plane leads to fluctuations of the electric field of the dipole moment. These fluctuations can interact with the reaction coordinate because the latter in its turn has transition dipole moment due to separation of charges at movement of the reacting system along it. The rocking of the plane of the peptide group is sensitive to the microviscosity of its environment in protein interior and the latter is a function of the solvent viscosity. Thus we obtain an additional factor of interrelationship for these characteristics with the reaction rate constant. We argue that due to the properties of the crankshaft motion the frequency spectrum of the electric field fluctuations has a sharp resonance peak at some frequency and the corresponding Fourier mode can be approximated as oscillations. We employ a known result from the theory of thermally activated escape with periodic driving to obtain the reaction rate constant and argue that it yields reliable description of the pre-exponent where the dependence on solvent viscosity manifests itself. The suggested mechanism is shown to grasp the main feature of this dependence known from the experiment and satisfactorily yields the upper limit of the fractional index of a power in it.

  16. Adventures in Coordinate Space

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.


    A variety of coordinate systems have been used to study the N-body problem for cases involving a dominant central mass. These include the traditional Keplerian orbital elements and the canonical Delaunay variables, which both incorporate conserved quantities of the two-body problem. Recently, Cartesian coordinate systems have returned to favour with the rise of mixed-variable symplectic integrators, since these coordinates prove to be more efficient than using orbital elements. Three sets of canonical Cartesian coordinates are well known, each with its own advantages and disadvantages. Inertial coordinates (which include barycentric coordinates as a special case) are the simplest and easiest to implement. However, they suffer from the disadvantage that the motion of the central body must be calculated explicitly, leading to relatively large errors in general. Jacobi coordinates overcome this problem by replacing the coordinates and momenta of the central body with those of the system as a whole, so that momentum is conserved exactly. This leads to substantial improvements in accuracy, but has the disadvantage that every object is treated differently, and interactions between each pair of bodies are now expressed in a complicated manner involving the coordinates of many bodies. Canonical heliocentric coordinates (also known as democratic heliocentric coordinates) treat all bodies equally, and conserve the centre of mass motion, but at the cost of introducing momentum cross terms into the kinetic energy. This complicates the development of higher order symplectic integrators and symplectic correctors, as well as the development of methods used to resolve close encounters with the central body. Here I will re-examine the set of possible canonical Cartesian coordinate systems to determine if it is possible to (a) conserve the centre of mass motion, (b) treat all bodies equally, and (c) eliminate the momentum cross terms. I will demonstrate that this is indeed possible

  17. Experimental investigations of weak definite and weak indefinite noun phrases

    PubMed Central

    Klein, Natalie M.; Gegg-Harrison, Whitney M.; Carlson, Greg N.; Tanenhaus, Michael K.


    Definite noun phrases typically refer to entities that are uniquely identifiable in the speaker and addressee’s common ground. Some definite noun phrases (e.g. the hospital in Mary had to go the hospital and John did too) seem to violate this uniqueness constraint. We report six experiments that were motivated by the hypothesis that these “weak definite” interpretations arise in “incorporated” constructions. Experiments 1-3 compared nouns that seem to allow for a weak definite interpretation (e.g. hospital, bank, bus, radio) with those that do not (e.g. farm, concert, car, book). Experiments 1 and 2 used an instruction-following task and picture-judgment task, respectively, to demonstrate that a weak definite need not uniquely refer. In Experiment 3 participants imagined scenarios described by sentences such as The Federal Express driver had to go to the hospital/farm. The imagined scenarios following weak definite noun phrases were more likely to include conventional activities associated with the object, whereas following regular nouns, participants were more likely to imagine scenarios that included typical activities associated with the subject; similar effects were observed with weak indefinites. Experiment 4 found that object-related activities were reduced when the same subject and object were used with a verb that does not license weak definite interpretations. In Experiment 5, a science fiction story introduced an artificial lexicon for novel concepts. Novel nouns that shared conceptual properties with English weak definite nouns were more likely to allow weak reference in a judgment task. Experiment 6 demonstrated that familiarity for definite articles and anti- familiarity for indefinite articles applies to the activity associated with the noun, consistent with predictions made by the incorporation analysis. PMID:23685208

  18. Swelling of lignites in organic solvents

    SciTech Connect

    R.G. Makitra; D.V. Bryk


    Data on the swelling of Turkish lignites can be summarized using linear multiparameter equations that take into account various properties of solvents. Factors responsible for the amounts of absorbed solvents are the basicity and cohesion energy density of the solvents.


    EPA Science Inventory

    To meet the great need of replacing many harmful solvents commonly used by industry and the public with environmentally benign substitute solvents, the PARIS II solvent design software has been developed. Although the difficulty of successfully finding replacements increases with...

  20. Resisting Weakness of the Will

    PubMed Central

    Levy, Neil


    I develop an account of weakness of the will that is driven by experimental evidence from cognitive and social psychology. I will argue that this account demonstrates that there is no such thing as weakness of the will: no psychological kind corresponds to it. Instead, weakness of the will ought to be understood as depletion of System II resources. Neither the explanatory purposes of psychology nor our practical purposes as agents are well-served by retaining the concept. I therefore suggest that we ought to jettison it, in favour of the vocabulary and concepts of cognitive psychology. PMID:22984298

  1. Weak-shock reflection factors

    SciTech Connect

    Reichenbach, H.; Kuhl, A.L.


    The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: square-wave planar shock reflection from wedges; square-wave planar shock reflection from cylinders; and spherical blast wave reflection from a planar surface. We restrict ourselves to weak shocks. Shocks with a Mach number of M{sub O} < 1.56 in air or with an overpressure of {Delta}{sub PI} < 25 psi (1.66 bar) under normal ambient conditions are called weak.

  2. Divalent Cu, Cd, and Pb Biosorption in Mixed Solvents

    PubMed Central

    Al-Qunaibit, M. H.


    Dead dried Chlorella vulgaris was studied in terms of its performance in binding divalent copper, cadmium, and lead ions from their aqueous or 50% v/v methanol, ethanol, and acetone solutions. The percentage uptake of cadmium ions exhibited a general decrease with decrease in dielectric constant values, while that of copper and lead ions showed a general decrease with increase in donor numbers. Uptake percentage becomes less sensitive to solvent properties the larger the atomic radius of the biosorbed ion, and uptake of copper was the most affected. FT-IR analyses revealed stability of the biomass in mixed solvents and a shift in vibrations of amide(I) and (II), carboxylate, glucose ring, and metal oxygen upon metal binding in all media. ΔνCOO values (59–69 cm−1) confirmed bidentate metal coordination to carboxylate ligands. The value of νasCOO increased slightly upon Cu, Cd, and Pb biosorption from aqueous solutions indicating lowering of symmetry, while a general decrease was noticed in mixed solvents pointing to the opposite. M–O stretching frequencies increased unexpectedly with increase in atomic mass as a result of solvent effect on the nature of binding sites. Lowering polarity of the solvent permits variations in metal-alga bonds strengths; the smaller the metal ion, the more affected. PMID:19688108

  3. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano


    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  4. Caustic-Side Solvent Extraction Solvent-Composition Recommendation

    SciTech Connect

    Klatt, L.N.


    The U.S. Department of Energy has selected caustic-side solvent extraction as the preferred cesium removal technology for the treatment of high-level waste stored at the Savannah River Site. Data for the solubility of the extractant, calix[4]arene-bis(tert-octyl benzo-crown-6), acquired and reported for the Salt Processing Program down-select decision, showed the original solvent composition to be supersaturated with respect to the extractant. Although solvent samples have been observed for approximately 1 year without any solids formation, work was completed to define a new solvent composition that was thermodynamically stable with respect to solids formation and to expand the operating temperature with respect to third-phase formation. Chemical and physical data as a function of solvent component concentrations were collected. The data included calix[4]arene-bis(tert-octyl benzo-crown-6) solubility; cesium distribution ratio under extraction, scrub, and strip conditions; flow sheet robustness; temperature range of third-phase formation; dispersion numbers for the solvent against waste simulant, scrub and strip acids, and sodium hydroxide wash solutions; solvent density; viscosity; and surface and interfacial tension. These data were mapped against a set of predefined performance criteria. The composition of 0.007 M calix[4]arene-bis(tert-octyl benzo-crown-6), 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol, and 0.003 M tri-n-octylamine in the diluent Isopar{reg_sign} L provided the best match between the measured properties and the performance criteria. Therefore, it is recommended as the new baseline solvent composition.

  5. An ab initio study of specific solvent effects on the electronic coupling element in electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Henderson, Thomas M.; Cave, Robert J.


    Specific solvent effects on the electronic coupling element for electron transfer are examined using two model donor-acceptor systems (Zn2+ and Li2+) and several model "solvent" species (He, Ne, H2O, and NH3). The effects are evaluated relative to the given donor-acceptor pair without solvent present. The electronic coupling element (Hab) is found to depend strongly on the identity of the intervening solvent, with He atoms decreasing Hab, whereas H2O and NH3 significantly increase Hab. The distance dependence (essentially exponential decay) is weakly affected by a single intervening solvent atom-molecule. However, when the donor-acceptor distance increases in concert with addition of successively greater numbers of solvent species, the decay with distance of Hab is altered appreciably. Effects due to varying the orientation of molecular solvent are found, somewhat surprisingly, to be quite modest.

  6. [Exposure to solvents and tardy epilepsy: 2 clinical cases].


    Bernardini, P; Scoppetta, C


    Organic solvents (OS) are widely used in industry and craft work. The neurotoxic effects of OS are well known in occupational exposure occurring in poor industrial hygiene conditions. There has been interest recently in a possible epileptogenic effect of OS exposure. Two cases are reported of late onset epilepsy observed in workers heavily exposed to OS. Case 1 was a 27-year-old male painter employed in a car body repair workshop. Solvent exposure was high for a few months because after his regular work, the man continued working as a car body painter in his own private concern. After a period of weakness and headache, probably indicating an excessive solvent absorption, he suffered two generalized paroxysmal seizures during sleep which necessitated hospitalization and continuous treatment with barbiturates. Case 2 was a 44-year-old male painter in a road advertising billboard factory who was continuously exposed to OS. Ten years previously he had been exposed to accidental massive inhalation of solvent vapours while opening a drum of solvents for coloured paint. Acute solvent poisoning followed and seven weeks later he suffered several epileptic episodes associated with typical EEG alterations; for many years, however, treatment was ineffective. In both cases there was neither a history of neurologic disease nor any other neurologic dysfunctions and the results of comprehensive neuroradiological studies were normal. Evidence exists of a chronological connection between high exposure to paint solvents and clinical evidence of late onset epilepsy, but it is not possible to identify a definite causal relationship.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1528164

  7. Weak interactions and presupernova evolution

    SciTech Connect

    Aufderheide, M.B. State Univ. of New York . Dept. of Physics)


    The role of weak interactions, particularly electron capture and {beta}{sup {minus}} decay, in presupernova evolution is discussed. The present uncertainty in these rates is examined and the possibility of improving the situation is addressed. 12 refs., 4 figs.

  8. Weak ferromagnetism in the cuprates

    NASA Astrophysics Data System (ADS)

    Chovan, J.; Papanicolaou, N.


    An effective field theory that describes the low-frequency spin dynamics in the low-temperature orthorhombic phase of La 2CuO 4 is derived. The main features of the inherent covert weak ferromagnetism are thus accounted for in a straightforward manner but some of the finer theoretical predictions would require further experimental investigation. In particular, theory predicts the occurrence of magnetic stripes in undoped La 2CuO 4 which mediate the observed weak-ferromagnetic transition.

  9. Explicitly computing geodetic coordinates from Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Zeng, Huaien


    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.


    EPA Science Inventory

    SAGE is a comprehensive guide designed to provide pollution prevention information on solvent and process alternatives for parts cleaning and degreasing. SAGE does not recommend any ozone depleting chemicals. SAGE was developed by the Surface Cleaning Program at Research Triang...

  11. SOLV-DB: Solvents Data

    DOE Data Explorer

    SOLV-DB provides a specialized mix of information on commercially available solvents. The development of the database was funded under the Strategic Environmental Research and Development Program (SERDP) with funds from EPA and DOE's Office of Industrial Technologies in EE. The information includes: • Health and safety considerations involved in choosing and using solvents • Chemical and physical data affecting the suitability of a particular solvent for a wide range of potential applications • Regulatory responsibilities, including exposure and effluent limits, hazard classification status with respect to several key statutes, and selected reporting requirements • Environmental fate data, to indicate whether a solvent is likely to break down or persist in air or water, and what types of waste treatment techniques may apply to it • CAS numbers (from Chemical Abstracts Service) and Sax Numbers (from Sax,, Dangerous Properties of Industrial Materials) Supplier Information See help information at (Specialized Interface)


    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and low-emission vapor degreasing. The atmospheric and vacuum ...

  13. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    SciTech Connect

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon


    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  14. Nonadiabatic dynamics of electron transfer in solution: explicit and implicit solvent treatments that include multiple relaxation time scales.


    Schwerdtfeger, Christine A; Soudackov, Alexander V; Hammes-Schiffer, Sharon


    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  15. Water as a solvent for life

    NASA Astrophysics Data System (ADS)

    Pohorille, Andrew


    “Follow the water” is our basic strategy in searching for life in the universe. The universality of water as the solvent for living systems is usually justified by arguing that water supports the rich organic chemistry that seeds life, but alternative chemistries are possible in other organic solvents. Here, other, essential criteria for life that have not been sufficiently considered so far, will be discussed.Life is based on non-covalent interactions. They might be either specific (enzyme-substrate interactions, selective ion transport) or nonspecific (lipid-lipid or lipid-protein interactions). Their strength needs to be properly tuned, and this is mediated by the solvent. If interactions are too weak, there might be undesired response to natural fluctuations of physical and chemical parameters. If they are too strong it could impede kinetics and energetics of cellular processes. Thus, the solvent must allow for balancing these interactions, which provides strong constraints for life.Water exhibits a remarkable trait that it promotes both solvophobic and solvophilic interactions. Solvophobic (hydrophobic in the case of water) interactions are necessary for self-organization of matter. They are responsible, among others, for the formation of membranes and protein folding. The diversity of structures supported by hydrophobic interactions is the hallmark of terrestrial life responsible for its diversity, evolution and the ability to survive environmental changes. Solvophilic interactions, in turn, are needed to ensure solubility of polar species. Water offers a large temperature domain of stable liquid and the characteristic hydrophobic effects are a consequence of the temperature insensitivity of essential properties of its liquid state. Water, however, might not be the only liquid with these properties. Properties of water and other pure liquids or their mixtures that have a high dielectric constant and simultaneously support self-organization will be

  16. Asymptotes in Polar Coordinates.

    ERIC Educational Resources Information Center

    Fay, Temple H.


    An old way to determine asymptotes for curves described in polar coordinates is presented. Practice in solving trigonometric equations, in differentiation, and in calculating limits is involved. (MNS)

  17. New insight of coordination and extraction of uranium(VI) with N-donating ligands in room temperature ionic liquids: N,N'-diethyl-N,N'-ditolyldipicolinamide as a case study.


    Yuan, Li-Yong; Sun, Man; Mei, Lei; Wang, Lin; Zheng, Li-Rong; Gao, Zeng-Qiang; Zhang, Jing; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun


    Room temperature ionic liquids (RTILs) represent a recent new class of solvents applied in liquid/liquid extraction based nuclear fuel reprocessing, whereas the related coordination chemistry and detailed extraction processes are still not well understood and remain of deep fundamental interest. The work herein provides a new insight of coordination and extraction of uranium(VI) with N-donating ligands, e.g., N,N'-diethyl-N,N'-ditolyldipicolinamide (EtpTDPA), in commonly used RTILs. Exploration of the extraction mechanism, speciation analyses of the extracted U(VI), and crystallographic studies of the interactions of EtpTDPA with U(VI) were performed, including the first structurally characterized UO2(EtpTDPA)2(NTf2) and UO2(EtpTDPA)2(PF6)2 compounds and a first case of crystallographic differentiation between the extracted U(VI) complexes in RTILs and in molecular solvents. It was found that in RTILs two EtpTDPA molecules coordinate with one U(VI) ion through the carbonyl and pyridine nitrogen moieties, while NTf2(-) and PF6(-) act as counterions. The absence of NO3(-) in the complexes is coincident with a cation-exchange extraction. In contrast, both the extracted species and extraction mechanisms are greatly different in dichloromethane, in which UO2(2+) coordinates in a neutral complex form with one EtpTDPA molecule and two NO3(-) cations. In addition, the complex formation in RTILs is independent of the cation exchange since incorporating UO2(NO3)2, EtpTDPA, and LiNTf2 or KPF6 in a solution also produces the same complex as that in RTILs, revealing the important roles of weakly coordinating anions on the coordination chemistry between U(VI) and EtpTDPA. These findings suggest that cation-exchange extraction mode for ILs-based extraction system probably originates from the supply of weakly coordinating anions from RTILs. Thus the coordination of uranium(VI) with extractants as well as the cation-exchange extraction mode may be potentially changed by varying the

  18. Solvents and Parkinson disease: A systematic review of toxicological and epidemiological evidence

    PubMed Central

    Lock, Edward A.; Zhang, Jing; Checkoway, Harvey


    Parkinson disease (PD) is a debilitating neurodegenerative motor disorder, with its motor symptoms largely attributable to loss of dopaminergic neurons in the substantia nigra. The causes of PD remain poorly understood, although environmental toxicants may play etiologic roles. Solvents are widespread neurotoxicants present in the workplace and ambient environment. Case reports of parkinsonism, including PD, have been associated with exposures to various solvents, most notably trichloroethylene (TCE). Animal toxicology studies have been conducted on various organic solvents, with some, including TCE, demonstrating potential for inducing nigral system damage. However, a confirmed animal model of solvent-induced PD has not been developed. Numerous epidemiologic studies have investigated potential links between solvents and PD, yielding mostly null or weak associations. An exception is a recent study of twins indicating possible etiologic relations with TCE and other chlorinated solvents, although findings were based on small numbers, and dose–response gradients were not observed. At present, there is no consistent evidence from either the toxicological or epidemiologic perspective that any specific solvent or class of solvents is a cause of PD. Future toxicological research that addresses mechanisms of nigral damage from TCE and its metabolites, with exposure routes and doses relevant to human exposures, is recommended. Improvements in epidemiologic research, especially with regard to quantitative characterization of long-term exposures to specific solvents, are needed to advance scientific knowledge on this topic. PMID:23220449

  19. Alternative solvents for improving the greenness of normal phase liquid chromatography of lipid classes.


    Prache, Nolwenn; Abreu, Sonia; Sassiat, Patrick; Thiébaut, Didier; Chaminade, Pierre


    An evaluation of solvents alternative to n-heptane (d-limonene and hexamethyldisiloxane) and chloroform (cyclopentyl methyl ether, 2-methyltetrahydrofuran and isopentyl acetate) was developed for lipid classes separation of non-polar cholesteryl ester to highly polar phospholipids by high-performance liquid chromatography on bare silica stationary phase and evaporative light-scattering detection. Screening of alternative solvents was used to estimate their compatibility with liquid chromatography and evaporative light-scattering detection and to evaluate their chromatographic selectivity. This work shows that n-heptane can be advantageously replaced by hexamethyldisiloxane. An increase of non-polar lipids retention is observed with hexamethyldisiloxane as weak solvent. Chloroform, which is largely used for lipid analysis, might be replaced efficaciously by cyclopentyl methyl ether, 2-methyltetrahydrofuran or isopentyl acetate. Aside from offering a different selectivity, the gradients composed by one or both alternative solvents gave efficient and comparable or even better separations than those obtained with conventional solvents. PMID:27554026

  20. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    NASA Technical Reports Server (NTRS)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi


    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  1. Weakness


    ... spine) Stroke MUSCLE DISEASES Becker muscular dystrophy Dermatomyositis Muscular dystrophy (Duchenne) Myotonic dystrophy POISONING Botulism Poisoning ( insecticides , nerve gas) Shellfish poisoning OTHER Anemia Myasthenia gravis Polio

  2. Noncommutativity in weakly curved background by canonical methods

    SciTech Connect

    Davidovic, Lj.; Sazdovic, B.


    Using the canonical method, we investigate the Dp-brane world-volume noncommutativity in a weakly curved background. The term 'weakly curved' means that, in the leading order, the source of nonflatness is an infinitesimally small Kalb-Ramond field B{sub {mu}{nu}}, linear in coordinate, while the Ricci tensor does not contribute, being an infinitesimal of the second order. On the solution of boundary conditions, we find a simple expression for the space-time coordinates in terms of the effective coordinates and momenta. This basic relation helped us to prove that noncommutativity appears only on the world sheet boundary. The noncommutativity parameter has a standard form, but with the infinitesimally small and coordinate-dependent antisymmetric tensor B{sub {mu}{nu}}. This result coincides with that obtained on the group manifolds in the limit of the large level n of the current algebra. After quantization, the algebra of the functions on the Dp-brane world volume is represented with the Kontsevich star product instead of the Moyal one in the flat background.

  3. Quantum discord with weak measurements

    SciTech Connect

    Singh, Uttam Pati, Arun Kumar


    Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: •Introduced the role of weak measurements in quantifying quantum correlation. •We have introduced the notion of the super quantum discord (SQD). •For pure entangled state, we show that the SQD exceeds the entanglement entropy. •This shows that quantum correlation depends not only on observer but also on measurement strength.

  4. Social Postural Coordination

    ERIC Educational Resources Information Center

    Varlet, Manuel; Marin, Ludovic; Lagarde, Julien; Bardy, Benoit G.


    The goal of the current study was to investigate whether a visual coupling between two people can produce spontaneous interpersonal postural coordination and change their intrapersonal postural coordination involved in the control of stance. We examined the front-to-back head displacements of participants and the angular motion of their hip and…

  5. IVS Technology Coordinator Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan


    This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.

  6. Team coordination dynamics.


    Gorman, Jamie C; Amazeen, Polemnia G; Cooke, Nancy J


    Team coordination consists of both the dynamics of team member interaction and the environmental dynamics to which a team is subjected. Focusing on dynamics, an approach is developed that contrasts with traditional aggregate-static concepts of team coordination as characterized by the shared mental model approach. A team coordination order parameter was developed to capture momentary fluctuations in coordination. Team coordination was observed in three-person uninhabited air vehicle teams across two experimental sessions. The dynamics of the order parameter were observed under changes of a team familiarity control parameter. Team members returned for the second session to either the same (Intact) or different (Mixed) team. 'Roadblock' perturbations, or novel changes in the task environment, were introduced in order to probe the stability of team coordination. Nonlinear dynamic methods revealed differences that a traditional approach did not: Intact and Mixed team coordination dynamics looked very different; Mixed teams were more stable than Intact teams and explored the space of solutions without the need for correction. Stability was positively correlated with the number of roadblock perturbations that were overcome successfully. The novel and non-intuitive contribution of a dynamical analysis was that Mixed teams, who did not have a long history working together, were more adaptive. Team coordination dynamics carries new implications for traditional problems such as training adaptive teams. PMID:20587302

  7. 6. Coordination and control.



    Any complex operation requires a system for management. In most societies, disaster management is the responsibility of the government. Coordination and control is a system that provides the oversight for all of the disaster management functions. The roles and responsibilities of a coordination and control centre include: (1) planning; (2) maintenance of inventories; (3) activation of the disaster response plan; (4) application of indicators of function; (5) surveillance; (6) information management; (7) coordination of activities of the BSFs; (8) decision-making; (9) priority setting; (10) defining overarching goal and objectives for interventions; (11) applying indicators of effectiveness; (12) applying indicators of benefit and impact; (13) exercising authority; (14) managing resources; (15) initiating actions; (16) preventing influx of unneeded resources; (17) defining progress; (18) providing information; (19) liasing with responding organisations; and (20) providing quality assurance. Coordination and control is impossible without communications. To accomplish coordination and control, three factors must be present: (1) mandate; (2) power and authority; and (3) available resources. Coordination and control is responsible for the evaluation of the effectiveness and benefits/impacts of all interventions. Coordination and control centres (CCCs) are organised hierarchically from the on-scene CCCs (incident command) to local provincial to national CCCs. Currently, no comprehensive regional and international CCCs have been universally endorsed. Systems such as the incident command system, the unified command system, and the hospital incident command system are described as are the humanitarian reform movement and the importance of coordination and control in disaster planning and preparedness. PMID:24785803

  8. Computational comparison of oxidation stability: Solvent/salt monomers vs solvent-solvent/salt pairs

    NASA Astrophysics Data System (ADS)

    Kim, Dong Young; Park, Min Sik; Lim, Younhee; Kang, Yoon-Sok; Park, Jin-Hwan; Doo, Seok-Gwang


    A fundamental understanding of the anodic stabilities of electrolytes is important for the development of advanced high-voltage electrolytes. In this study, we calculated and systematically compared the oxidation stabilities of monomeric solvents and anions, and bimolecular solvent-solvent and anion-solvent systems that are considered to be high-voltage electrolyte components, using ab initio calculations. Oxidation stabilities of solvent or anion monomers without considering specific solvation molecules cannot represent experimental oxidation stabilities. The oxidation of electrolytes usually forms neutral or cationic radicals, which immediately undergo further reactions stabilizing the products. Oxidatively driven intermolecular reactions are the main reason for the lower oxidation stabilities of electrolytes compared with those of monomeric compounds. Electrolyte components such as tetramethylene sulfone (TMS), ethyl methyl sulfone (EMS), bis(oxalate)borate (BOB-), and bis(trifluoromethane)sulfonamide (TFSI-) that minimize such intermolecular chemical reactions on oxidation can maintain the oxidation stabilities of monomers. In predictions of the theoretical oxidation stabilities of electrolytes, simple comparisons of highest occupied molecular orbital energies can be misleading, even if microsolvation or bulk clusters are considered. Instead, bimolecular solvent complexes with a salt anion should be at least considered in oxidation calculations. This study provides important information on fundamental and applied aspects of the development of electrolytes.

  9. Coal liquefaction process with enhanced process solvent


    Givens, Edwin N.; Kang, Dohee


    In an improved coal liquefaction process, including a critical solvent deashing stage, high value product recovery is improved and enhanced process-derived solvent is provided by recycling second separator underflow in the critical solvent deashing stage to the coal slurry mix, for inclusion in the process solvent pool.

  10. Dielectric anisotropy in polar solvents under external fields

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin


    We investigate dielectric saturation and increment in polar liquids under external fields. We couple a previously introduced dipolar solvent model to a uniform electric field and derive the electrostatic kernel of interacting dipoles. This procedure allows an unambiguous definition of the liquid dielectric permittivity embodying non-linear dielectric response and correlation effects. We find that the presence of the external field results in a dielectric anisotropy characterized by a two-component dielectric permittivity tensor. The increase of the electric field amplifies the permittivity component parallel to the field direction, i.e. dielectric increment is observed along the field. However, the perpendicular component is lowered below the physiological permittivity {{\\varepsilon}w}≈ 77 , indicating dielectric saturation perpendicular to the field. By comparison with Molecular Dynamics simulations from the literature, we show that the mean-field level dielectric response theory underestimates dielectric saturation. The inclusion of dipolar correlations at the weak-coupling level intensify the mean-field level dielectric saturation and improves the agreement with simulation data at weak electric fields. The correlation-corrected theory predicts as well the presence of a metastable configuration corresponding to the antiparallel alignment of dipoles with the field. This prediction can be verified by solvent-explicit simulations where solvent molecules are expected to be trapped transiently in this metastable state.

  11. Warping the Weak Gravity Conjecture

    NASA Astrophysics Data System (ADS)

    Kooner, Karta; Parameswaran, Susha; Zavala, Ivonne


    The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.

  12. Method of treating radioactively contaminated solvent waste

    SciTech Connect

    Jablonski, W.; Mallek, H.; Plum, W.


    A method of and apparatus for treating radioactively contaminated solvent waste are claimed. The solvent waste is supplied to material such as peat, vermiculite, diaton, etc. This material effects the distribution or dispersion of the solvent and absorbs the foreign substances found in the solvent waste. Air or an inert gas flows through the material in order to pick up the solvent portions which are volatile as a consequence of their vapor pressure. The thus formed gas mixture, which includes air or inert gas and solvent portions, is purified in a known manner by thermal, electrical, or catalytic combustion of the solvent portions.

  13. Cosmology and the weak interaction

    SciTech Connect

    Schramm, D.N. ):)


    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.

  14. Cosmology and the weak interaction

    NASA Technical Reports Server (NTRS)

    Schramm, David N.


    The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.

  15. DOE solvent handbook information sheet

    SciTech Connect

    Chavez, A.A.


    Solvents and cleaners are used in the Department of Defense (DOD) and the Department of Energy-Defense Program (DOE-DP) maintenance facilities for removing wax, grease, oil, carbon, machining fluids, solder fluxes, mold releases, and other contaminants before repairing or electroplating parts. Private industry also uses cleaners and degreasers for surface preparation of various metals. Growing environmental and worker safety concerns have brought attention to these solvents and cleaners, most of which are classified as toxic. Tightening government regulations have already excluded the use of some chemicals, and restrict the use of various halogenated hydrocarbons because of their atmospheric-ozone depleting effects, as well as their cancer-related risks. As a result, a program was established to develop an efficient, easily accessible, electronic solvent utilization handbook. This is being accomplished by: (1) identifying solvents (alternatives) that are not currently restricted by government regulations for use DOE-DP facilities, and private industry, (2) evaluating their cleaning performance, (3) evaluating their corrosivity, (4) evaluating their air emissions, (5) evaluating the possibility of recycling or recovering all or portions of the alternative degreasers, (6) testing substitute solvents compatibility with non-metallic materials, (7) inputting all of the data gathered (including previous biodegradability information) into a database, and (8) developing a methodology for efficient, widespread access to the data base information system.

  16. DOE solvent handbook information sheet

    SciTech Connect

    Chavez, A.A.


    Solvents and cleaners are used in the Department of Defense (DOD) and the Department of Energy-Defense Program (DOE-DP) maintenance facilities for removing wax, grease, oil, carbon, machining fluids, solder fluxes, mold releases, and other contaminants before repairing or electroplating parts. Private industry also uses cleaners and degreasers for surface preparation of various metals. Growing environmental and worker safety concerns have brought attention to these solvents and cleaners, most of which are classified as toxic. Tightening government regulations have already excluded the use of some chemicals, and restrict the use of various halogenated hydrocarbons because of their atmospheric-ozone depleting effects, as well as their cancer-related risks. As a result, a program was established to develop an efficient, easily accessible, electronic solvent utilization handbook. This is being accomplished by: (1) identifying solvents (alternatives) that are not currently restricted by government regulations for use DOE-DP facilities, and private industry, (2) evaluating their cleaning performance, (3) evaluating their corrosivity, (4) evaluating their air emissions, (5) evaluating the possibility of recycling or recovering all or portions of the alternative degreasers, (6) testing substitute solvents compatibility with non-metallic materials, (7) inputting all of the data gathered (including previous biodegradability information) into a database, and (8) developing a methodology for efficient, widespread access to the data base information system.

  17. Coordination sequences and coordination waves in matter

    SciTech Connect

    Rau, V. G. Pugaev, A. A.; Rau, T. F.


    A possible way of partitioning a space into polycubes (n-dimensional modifications of Golomb polyominoes, which are generally nonconvex) is used as a basic model of ordered matter structure. It is suggested that layer-by-layer growth of a structure, occurring along the geodetics of the digraph of a net defined by the local rules of bonding of polycubes, justifies the phenomenological laws of shaping (self-similarity during the growth, independence of the polyhedron shape on the 'seed,' the symmetry of the growth polyhedron, etc.). Specific results of the analysis of number sequences of the increase in coordination circles for planar periodic partitions of model and real crystal structures, as well as the preliminary results of investigation of standing coordination topological waves, revealed for the first time in computer experiments, are reported.

  18. Helpful hints for physical solvent absorption

    SciTech Connect

    Wolfer, W.


    Review of experience with natural gas treatment using physical solvents points to design and operating suggestions. Experiences with three plants using either Selexol or Sepasolv MPE solvent shows that both solvents perform well. The solvents offer economical and problem-free purification of natural gas. The Sepasolv MPE and Selexol solvents are very similar in chemical structure and physical properties. Thus, their application range is almost similar. An exchange is possible in most plants without equipment modification and/or process data.

  19. Solvent sensitive polymer composite structures

    NASA Astrophysics Data System (ADS)

    Chiappini, A.; Armellini, C.; Carpentiero, A.; Minati, L.; Righini, G. C.; Ferrari, M.


    In this paper we describe a composite system based on polystyrene colloidal nanoparticles assembled and embedded in an elastomeric matrix (polymer colloidal crystal, PCC), in the specific we have designed a PCC structure which displays an iridescent green color that can be attributed to the photonic crystal effect. This effect has been exploited to create a chemical sensor, in fact optical measurements have evidenced that the composite structure presents a different optical response as a function of the solvent applied on the surface. In particular we have demonstrated that the PCC possess, for specific solvents: (i) high sensitivity, (ii) fast response (less than 1s), and (iii) reversibility of the signal change. Finally preliminary results on the PCC have shown that this system can be also used as optical writing substrate using a specific solvent as ink, moreover an erasing procedure is also reported and discussed.

  20. N-{Delta} weak transition

    SciTech Connect

    Graczyk, Krzysztof M.


    A short review of the Rein-Sehgal and isobar models is presented. The attention is focused on the nucleon-{Delta}(1232) weak transition form-factors. The results of the recent re-analyses of the ANL and BNL bubble chamber neutrino-deuteron scattering data are discussed.

  1. Focal weakness following herpes zoster.

    PubMed Central

    Cockerell, O C; Ormerod, I E


    Three patients presented with focal weakness of an arm which followed segmental herpes zoster affecting the same limb. Neurophysiological investigations suggest that the site of the lesion lay at the root, plexus, or peripheral nerve level. This reflects the various ways in which the virus may affect the peripheral nervous system. PMID:8410022

  2. Cosmology with weak lensing surveys.


    Munshi, Dipak; Valageas, Patrick


    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy. PMID:16286284

  3. Modeling Solvent Broadening on the Vibronic Spectra of a Series of Coumarin Dyes. From Implicit to Explicit Solvent Models.


    Cerezo, Javier; Avila Ferrer, Francisco J; Prampolini, Giacomo; Santoro, Fabrizio


    We present a protocol to estimate the solvent-induced broadening of electronic spectra based on a model that explicitly takes into account the environment embedding the solute. Starting from a classical approximation of the solvent contribution to the spectrum, the broadening arises from the spread of the excitation energies due to the fluctuation of the solvent coordinates, and it is represented as a Gaussian line shape that convolutes the vibronic spectrum of the solute. The latter is computed in harmonic approximation at room temperature with a time-dependent approach. The proposed protocol for the computation of spectral broadening exploits molecular dynamics (MD) simulations performed on the solute-solvent system, keeping the solute degrees of freedom frozen, followed by the computation of the excitation properties with a quantum mechanics/molecular mechanics (QM/MM) approach. The factors that might influence each step of the protocol are analyzed in detail, including the selection of the empirical force field (FF) adopted in the MD simulations and the QM/MM partition of the system to compute the excitation energies. The procedure is applied to a family of coumarin dyes, and the results are compared with experiments and with the predictions of a very recent work (Cerezo et al., Phys. Chem. Chem. Phys. 2015, 17, 11401-11411), where an implicit model was adopted for the solvent. The final spectra of the considered coumarins were obtained without including ad hoc phenomenological parameters and indicate that the broadenings computed with explicit and implicit models both follow the experimental trend, increasing as the polarity change from the initial to the final state increases. More in detail, the implicit model provides larger estimations of the broadening that are closer to the experimental evidence, while explicit models appear to better capture relative differences arising from different solvents or different solutes. Possible inaccuracies of the adopted

  4. Automated Solvent Seaming of Large Polyimide Membranes

    NASA Technical Reports Server (NTRS)

    Rood, Robert; Moore, James D.; Talley, Chris; Gierow, Paul A.


    A solvent-based welding process enables the joining of precise, cast polyimide membranes at their edges to form larger precise membranes. The process creates a homogeneous, optical-quality seam between abutting membranes, with no overlap and with only a very localized area of figure disturbance. The seam retains 90 percent of the strength of the parent material. The process was developed for original use in the fabrication of wide-aperture membrane optics, with areal densities of less than 1 kg/m2, for lightweight telescopes, solar concentrators, antennas, and the like to be deployed in outer space. The process is just as well applicable to the fabrication of large precise polyimide membranes for flat or inflatable solar concentrators and antenna reflectors for terrestrial applications. The process is applicable to cast membranes made of CP1 (or equivalent) polyimide. The process begins with the precise fitting together and fixturing of two membrane segments. The seam is formed by applying a metered amount of a doped solution of the same polyimide along the abutting edges of the membrane segments. After the solution has been applied, the fixtured films are allowed to dry and are then cured by convective heating. The weld material is the same as the parent material, so that what is formed is a homogeneous, strong joint that is almost indistinguishable from the parent material. The success of the process is highly dependent on formulation of the seaming solution from the correct proportion of the polyimide in a suitable solvent. In addition, the formation of reliable seams depends on the deposition of a precise amount of the seaming solution along the seam line. To ensure the required precision, deposition is performed by use of an automated apparatus comprising a modified commercially available, large-format, ink-jet print head on an automated positioning table. The printing head jets the seaming solution into the seam area at a rate controlled in coordination with

  5. Solvent reorganization of electron transitions in viscous solvents

    SciTech Connect

    Ghorai, Pradip K.; Matyushov, Dmitry V.


    We develop a model of electron transfer reactions at conditions of nonergodicity when the time of solvent relaxation crosses the observation time window set up by the reaction rate. Solvent reorganization energy of intramolecular electron transfer in a charge-transfer molecule dissolved in water and acetonitrile is studied by molecular dynamics simulations at varying temperatures. We observe a sharp decrease of the reorganization energy at a temperature identified as the temperature of structural arrest due to cage effect, as discussed by the mode-coupling theory. This temperature also marks the onset of the enhancement of translational diffusion relative to rotational relaxation signaling the breakdown of the Stokes-Einstein relation. The change in the reorganization energy at the transition temperature reflects the dynamical arrest of the slow, collective relaxation of the solvent related to the relaxation of the solvent dipolar polarization. An analytical theory proposed to describe this effect agrees well with both the simulations and experimental Stokes shift data. The theory is applied to the analysis of charge-transfer kinetics in a low-temperature glass former. We show that the reorganization energy is substantially lower than its equilibrium value for the low-temperature portion of the data. The theory predicts the possibility of discontinuous changes in the dependence of the electron transfer rate on the free energy gap when the reaction switches between ergodic and nonergodic regimes.

  6. Solvent diffusion into fluoropolymer membranes

    SciTech Connect

    Aminabhavi, T.M.; Munnolli, R.S.


    Solvent diffusion in polymers is important to the physical properties of the material from processing to end-use and shelf-life. Many aspects of diffusion in polymers have been studied using indirect and direct methods. Du Pont`s fluoropolymers are known for their excellent resistance to a variety of organic solvents. This paper describes the measurement of diffusion coefficients and the derived thermodynamic quantities on four different fluoropolymer membranes with several esters. This information is interpreted in terms of the molecular organization and phase structure. Diffusion coefficients are sensitive to structural changes as well as binding and association phenomena.

  7. Solvent Influences on the Molecular Aggregation of Magnesium Aryloxides

    SciTech Connect



    Magnesium aryloxides were prepared in a variety of solvents through the reaction of dibutyl magnesium with sterically varied aryl alcohols: 2,6-dimethylphenol (H-DMP), 2,6-diisopropylphenol (H-DIP), and 2,4,6-trichlorophenol (H-TCP). Upon using a sufficiently strong Lewis-basic solvent, the monomeric species Mg(DMP){sub 2}(py){sub 3} (1, py = pyridine), Mg(DIP){sub 2}(THF){sub 3}, (2a, THF = tetrahydrofuran) Mg(TCP){sub 2}(THF){sub 3} (3) were isolated. Each of these complexes possesses a five-coordinate magnesium that adopts a trigonal bipyramidal geometry. In the absence of a Lewis base, the reaction with H-DIP yields a soluble trinuclear complex, [Mg(DIP){sub 2}]{sub 3} (2b). The Mg metal centers in 2b adopt a linear arrangement with a four-coordinate central metal while the outer metal centers are reduced to just three-coordinate. Solution spectroscopic methods suggest that while 2b remains intact, the monomeric species (1, 2a, and 3) are involved in equilibria, which facilitate intermolecular ligand transfer.

  8. A flexible polymer chain in a critical solvent: Coil or globule?

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Georgi, N.; Kiselev, M. G.


    We study the behavior of a flexible polymer chain in the presence of a low-molecular weight solvent in the vicinity of a liquid-gas critical point within the framework of a self-consistent field theory. The total free energy of the dilute polymer solution is expressed as a function of the radius of gyration of the polymer and the average solvent number density within the gyration volume at the level of the mean-field approximation. Varying the strength of attraction between polymer and solvent we show that two qualitatively different regimes occur at the liquid-gas critical point. In case of weak polymer-solvent interactions the polymer chain is in a globular state. On the contrary, in case of strong polymer-solvent interactions the polymer chain attains an expanded conformation. We discuss the influence of the critical solvent density fluctuations on the polymer conformation. The reported effect could be used to excert control on the polymer conformation by changing the thermodynamic state of the solvent. It could also be helpful to estimate the solvent density within the gyration volume of the polymer for drug delivery and molecular imprinting applications.

  9. Phase behavior and second osmotic virial coefficient for competitive polymer solvation in mixed solvent solutions

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.


    We apply our recently developed generalized Flory-Huggins (FH) type theory for the competitive solvation of polymers by two mixed solvents to explain general trends in the variation of phase boundaries and solvent quality (quantified by the second osmotic virial coefficient B 2 ) with solvent composition. The complexity of the theoretically predicted miscibility patterns for these ternary mixtures arises from the competitive association between the polymer and the solvents and from the interplay of these associative interactions with the weak van der Waals interactions between all components of the mixture. The main focus here lies in determining the influence of the free energy parameters for polymer-solvent association (solvation) and the effective FH interaction parameters {χαβ} (driving phase separation) on the phase boundaries (specifically the spinodals), the second osmotic virial coefficient B 2 , and the relation between the positions of the spinodal curves and the theta temperatures at which B 2 vanishes. Our classification of the predicted miscibility patterns is relevant to numerous applications of ternary polymer solutions in industrial formulations and the use of mixed solvent systems for polymer characterization, such as chromatographic separation where mixed solvents are commonly employed. A favorable comparison of B 2 with experimental data for poly(methyl methacrylate)/acetonitrile/methanol (or 1-propanol) solutions only partially supports the validity of our theoretical predictions due to the lack of enough experimental data and the neglect of the self and mutual association of the solvents.

  10. Theoretical study of chlorophyll a hydrates formation in aqueous organic solvents.


    Ben Fredj, Arij; Ruiz-López, Manuel F


    A theoretical analysis of chlorophyll a (Chla) hydration processes in aqueous organic solvents has been carried out by means of quantum chemistry calculations. A detailed knowledge of the thermodynamics of these processes is fundamental in order to better understand the organization of chlorophyll molecules in vivo, specifically the structure of chlorophyll pairs in photosystems I and II. In the present work, we assumed a Chla model in which the phytyl chain is replaced by a methyl group. Calculations were performed at the B3LYP/6-31G(d) level corrected for basis set superposition errors and dispersion interaction energy. This computational scheme was previously shown to provide data close to MP2/6-311++(2d,2p) results. Solvents effects were taken into account using either continuum (for nonpolar solvents) or discrete-continuum (for polar coordinating solvents) methods. In the latter case, we first examined the structure of Chla in rigorously dry solutions. Two types of solvents were characterized according to Mg-atom coordination: In type I solvents (acetone, acetonitrile, DMSO), Mg exhibits five-coordination, whereas in type II solvents (THF, pyridine), Mg exhibits six-coordination. Hydration processes are quite dependent on solvent nature. In nonpolar or low-polarity solvents such as cyclohexane or chloroform, hydration is always exothermic and exergonic, despite a large entropy term that strongly opposes hydration. In polar solvents of type II, hydration is quite unfavorable, and essentially no hydrates are expected in these media, except perhaps at very large water concentrations (although, in such a case, the medium cannot be simply described as an organic solvent). In polar solvents of type I, the situation is intermediate, and dihydration is favorable in some cases (acetone, acetonitrile) and unfavorable in others (DMSO). It is interesting to note that first hydration processes in coordinating solvents (of either type I or type II), where a water molecule